Home | History | Annotate | Download | only in Analysis
      1 //===-- Lint.cpp - Check for common errors in LLVM IR ---------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This pass statically checks for common and easily-identified constructs
     11 // which produce undefined or likely unintended behavior in LLVM IR.
     12 //
     13 // It is not a guarantee of correctness, in two ways. First, it isn't
     14 // comprehensive. There are checks which could be done statically which are
     15 // not yet implemented. Some of these are indicated by TODO comments, but
     16 // those aren't comprehensive either. Second, many conditions cannot be
     17 // checked statically. This pass does no dynamic instrumentation, so it
     18 // can't check for all possible problems.
     19 //
     20 // Another limitation is that it assumes all code will be executed. A store
     21 // through a null pointer in a basic block which is never reached is harmless,
     22 // but this pass will warn about it anyway. This is the main reason why most
     23 // of these checks live here instead of in the Verifier pass.
     24 //
     25 // Optimization passes may make conditions that this pass checks for more or
     26 // less obvious. If an optimization pass appears to be introducing a warning,
     27 // it may be that the optimization pass is merely exposing an existing
     28 // condition in the code.
     29 //
     30 // This code may be run before instcombine. In many cases, instcombine checks
     31 // for the same kinds of things and turns instructions with undefined behavior
     32 // into unreachable (or equivalent). Because of this, this pass makes some
     33 // effort to look through bitcasts and so on.
     34 //
     35 //===----------------------------------------------------------------------===//
     36 
     37 #include "llvm/Analysis/Lint.h"
     38 #include "llvm/ADT/STLExtras.h"
     39 #include "llvm/ADT/SmallSet.h"
     40 #include "llvm/Analysis/AliasAnalysis.h"
     41 #include "llvm/Analysis/AssumptionCache.h"
     42 #include "llvm/Analysis/ConstantFolding.h"
     43 #include "llvm/Analysis/InstructionSimplify.h"
     44 #include "llvm/Analysis/Loads.h"
     45 #include "llvm/Analysis/Passes.h"
     46 #include "llvm/Analysis/TargetLibraryInfo.h"
     47 #include "llvm/Analysis/ValueTracking.h"
     48 #include "llvm/IR/CallSite.h"
     49 #include "llvm/IR/DataLayout.h"
     50 #include "llvm/IR/Dominators.h"
     51 #include "llvm/IR/Function.h"
     52 #include "llvm/IR/Module.h"
     53 #include "llvm/IR/InstVisitor.h"
     54 #include "llvm/IR/IntrinsicInst.h"
     55 #include "llvm/IR/LegacyPassManager.h"
     56 #include "llvm/Pass.h"
     57 #include "llvm/Support/Debug.h"
     58 #include "llvm/Support/raw_ostream.h"
     59 using namespace llvm;
     60 
     61 namespace {
     62   namespace MemRef {
     63     static const unsigned Read     = 1;
     64     static const unsigned Write    = 2;
     65     static const unsigned Callee   = 4;
     66     static const unsigned Branchee = 8;
     67   }
     68 
     69   class Lint : public FunctionPass, public InstVisitor<Lint> {
     70     friend class InstVisitor<Lint>;
     71 
     72     void visitFunction(Function &F);
     73 
     74     void visitCallSite(CallSite CS);
     75     void visitMemoryReference(Instruction &I, Value *Ptr,
     76                               uint64_t Size, unsigned Align,
     77                               Type *Ty, unsigned Flags);
     78     void visitEHBeginCatch(IntrinsicInst *II);
     79     void visitEHEndCatch(IntrinsicInst *II);
     80 
     81     void visitCallInst(CallInst &I);
     82     void visitInvokeInst(InvokeInst &I);
     83     void visitReturnInst(ReturnInst &I);
     84     void visitLoadInst(LoadInst &I);
     85     void visitStoreInst(StoreInst &I);
     86     void visitXor(BinaryOperator &I);
     87     void visitSub(BinaryOperator &I);
     88     void visitLShr(BinaryOperator &I);
     89     void visitAShr(BinaryOperator &I);
     90     void visitShl(BinaryOperator &I);
     91     void visitSDiv(BinaryOperator &I);
     92     void visitUDiv(BinaryOperator &I);
     93     void visitSRem(BinaryOperator &I);
     94     void visitURem(BinaryOperator &I);
     95     void visitAllocaInst(AllocaInst &I);
     96     void visitVAArgInst(VAArgInst &I);
     97     void visitIndirectBrInst(IndirectBrInst &I);
     98     void visitExtractElementInst(ExtractElementInst &I);
     99     void visitInsertElementInst(InsertElementInst &I);
    100     void visitUnreachableInst(UnreachableInst &I);
    101 
    102     Value *findValue(Value *V, bool OffsetOk) const;
    103     Value *findValueImpl(Value *V, bool OffsetOk,
    104                          SmallPtrSetImpl<Value *> &Visited) const;
    105 
    106   public:
    107     Module *Mod;
    108     const DataLayout *DL;
    109     AliasAnalysis *AA;
    110     AssumptionCache *AC;
    111     DominatorTree *DT;
    112     TargetLibraryInfo *TLI;
    113 
    114     std::string Messages;
    115     raw_string_ostream MessagesStr;
    116 
    117     static char ID; // Pass identification, replacement for typeid
    118     Lint() : FunctionPass(ID), MessagesStr(Messages) {
    119       initializeLintPass(*PassRegistry::getPassRegistry());
    120     }
    121 
    122     bool runOnFunction(Function &F) override;
    123 
    124     void getAnalysisUsage(AnalysisUsage &AU) const override {
    125       AU.setPreservesAll();
    126       AU.addRequired<AAResultsWrapperPass>();
    127       AU.addRequired<AssumptionCacheTracker>();
    128       AU.addRequired<TargetLibraryInfoWrapperPass>();
    129       AU.addRequired<DominatorTreeWrapperPass>();
    130     }
    131     void print(raw_ostream &O, const Module *M) const override {}
    132 
    133     void WriteValues(ArrayRef<const Value *> Vs) {
    134       for (const Value *V : Vs) {
    135         if (!V)
    136           continue;
    137         if (isa<Instruction>(V)) {
    138           MessagesStr << *V << '\n';
    139         } else {
    140           V->printAsOperand(MessagesStr, true, Mod);
    141           MessagesStr << '\n';
    142         }
    143       }
    144     }
    145 
    146     /// \brief A check failed, so printout out the condition and the message.
    147     ///
    148     /// This provides a nice place to put a breakpoint if you want to see why
    149     /// something is not correct.
    150     void CheckFailed(const Twine &Message) { MessagesStr << Message << '\n'; }
    151 
    152     /// \brief A check failed (with values to print).
    153     ///
    154     /// This calls the Message-only version so that the above is easier to set
    155     /// a breakpoint on.
    156     template <typename T1, typename... Ts>
    157     void CheckFailed(const Twine &Message, const T1 &V1, const Ts &...Vs) {
    158       CheckFailed(Message);
    159       WriteValues({V1, Vs...});
    160     }
    161   };
    162 }
    163 
    164 char Lint::ID = 0;
    165 INITIALIZE_PASS_BEGIN(Lint, "lint", "Statically lint-checks LLVM IR",
    166                       false, true)
    167 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
    168 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
    169 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
    170 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
    171 INITIALIZE_PASS_END(Lint, "lint", "Statically lint-checks LLVM IR",
    172                     false, true)
    173 
    174 // Assert - We know that cond should be true, if not print an error message.
    175 #define Assert(C, ...) \
    176     do { if (!(C)) { CheckFailed(__VA_ARGS__); return; } } while (0)
    177 
    178 // Lint::run - This is the main Analysis entry point for a
    179 // function.
    180 //
    181 bool Lint::runOnFunction(Function &F) {
    182   Mod = F.getParent();
    183   DL = &F.getParent()->getDataLayout();
    184   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
    185   AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
    186   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
    187   TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
    188   visit(F);
    189   dbgs() << MessagesStr.str();
    190   Messages.clear();
    191   return false;
    192 }
    193 
    194 void Lint::visitFunction(Function &F) {
    195   // This isn't undefined behavior, it's just a little unusual, and it's a
    196   // fairly common mistake to neglect to name a function.
    197   Assert(F.hasName() || F.hasLocalLinkage(),
    198          "Unusual: Unnamed function with non-local linkage", &F);
    199 
    200   // TODO: Check for irreducible control flow.
    201 }
    202 
    203 void Lint::visitCallSite(CallSite CS) {
    204   Instruction &I = *CS.getInstruction();
    205   Value *Callee = CS.getCalledValue();
    206 
    207   visitMemoryReference(I, Callee, MemoryLocation::UnknownSize, 0, nullptr,
    208                        MemRef::Callee);
    209 
    210   if (Function *F = dyn_cast<Function>(findValue(Callee,
    211                                                  /*OffsetOk=*/false))) {
    212     Assert(CS.getCallingConv() == F->getCallingConv(),
    213            "Undefined behavior: Caller and callee calling convention differ",
    214            &I);
    215 
    216     FunctionType *FT = F->getFunctionType();
    217     unsigned NumActualArgs = CS.arg_size();
    218 
    219     Assert(FT->isVarArg() ? FT->getNumParams() <= NumActualArgs
    220                           : FT->getNumParams() == NumActualArgs,
    221            "Undefined behavior: Call argument count mismatches callee "
    222            "argument count",
    223            &I);
    224 
    225     Assert(FT->getReturnType() == I.getType(),
    226            "Undefined behavior: Call return type mismatches "
    227            "callee return type",
    228            &I);
    229 
    230     // Check argument types (in case the callee was casted) and attributes.
    231     // TODO: Verify that caller and callee attributes are compatible.
    232     Function::arg_iterator PI = F->arg_begin(), PE = F->arg_end();
    233     CallSite::arg_iterator AI = CS.arg_begin(), AE = CS.arg_end();
    234     for (; AI != AE; ++AI) {
    235       Value *Actual = *AI;
    236       if (PI != PE) {
    237         Argument *Formal = &*PI++;
    238         Assert(Formal->getType() == Actual->getType(),
    239                "Undefined behavior: Call argument type mismatches "
    240                "callee parameter type",
    241                &I);
    242 
    243         // Check that noalias arguments don't alias other arguments. This is
    244         // not fully precise because we don't know the sizes of the dereferenced
    245         // memory regions.
    246         if (Formal->hasNoAliasAttr() && Actual->getType()->isPointerTy())
    247           for (CallSite::arg_iterator BI = CS.arg_begin(); BI != AE; ++BI)
    248             if (AI != BI && (*BI)->getType()->isPointerTy()) {
    249               AliasResult Result = AA->alias(*AI, *BI);
    250               Assert(Result != MustAlias && Result != PartialAlias,
    251                      "Unusual: noalias argument aliases another argument", &I);
    252             }
    253 
    254         // Check that an sret argument points to valid memory.
    255         if (Formal->hasStructRetAttr() && Actual->getType()->isPointerTy()) {
    256           Type *Ty =
    257             cast<PointerType>(Formal->getType())->getElementType();
    258           visitMemoryReference(I, Actual, DL->getTypeStoreSize(Ty),
    259                                DL->getABITypeAlignment(Ty), Ty,
    260                                MemRef::Read | MemRef::Write);
    261         }
    262       }
    263     }
    264   }
    265 
    266   if (CS.isCall() && cast<CallInst>(CS.getInstruction())->isTailCall())
    267     for (CallSite::arg_iterator AI = CS.arg_begin(), AE = CS.arg_end();
    268          AI != AE; ++AI) {
    269       Value *Obj = findValue(*AI, /*OffsetOk=*/true);
    270       Assert(!isa<AllocaInst>(Obj),
    271              "Undefined behavior: Call with \"tail\" keyword references "
    272              "alloca",
    273              &I);
    274     }
    275 
    276 
    277   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I))
    278     switch (II->getIntrinsicID()) {
    279     default: break;
    280 
    281     // TODO: Check more intrinsics
    282 
    283     case Intrinsic::memcpy: {
    284       MemCpyInst *MCI = cast<MemCpyInst>(&I);
    285       // TODO: If the size is known, use it.
    286       visitMemoryReference(I, MCI->getDest(), MemoryLocation::UnknownSize,
    287                            MCI->getAlignment(), nullptr, MemRef::Write);
    288       visitMemoryReference(I, MCI->getSource(), MemoryLocation::UnknownSize,
    289                            MCI->getAlignment(), nullptr, MemRef::Read);
    290 
    291       // Check that the memcpy arguments don't overlap. The AliasAnalysis API
    292       // isn't expressive enough for what we really want to do. Known partial
    293       // overlap is not distinguished from the case where nothing is known.
    294       uint64_t Size = 0;
    295       if (const ConstantInt *Len =
    296               dyn_cast<ConstantInt>(findValue(MCI->getLength(),
    297                                               /*OffsetOk=*/false)))
    298         if (Len->getValue().isIntN(32))
    299           Size = Len->getValue().getZExtValue();
    300       Assert(AA->alias(MCI->getSource(), Size, MCI->getDest(), Size) !=
    301                  MustAlias,
    302              "Undefined behavior: memcpy source and destination overlap", &I);
    303       break;
    304     }
    305     case Intrinsic::memmove: {
    306       MemMoveInst *MMI = cast<MemMoveInst>(&I);
    307       // TODO: If the size is known, use it.
    308       visitMemoryReference(I, MMI->getDest(), MemoryLocation::UnknownSize,
    309                            MMI->getAlignment(), nullptr, MemRef::Write);
    310       visitMemoryReference(I, MMI->getSource(), MemoryLocation::UnknownSize,
    311                            MMI->getAlignment(), nullptr, MemRef::Read);
    312       break;
    313     }
    314     case Intrinsic::memset: {
    315       MemSetInst *MSI = cast<MemSetInst>(&I);
    316       // TODO: If the size is known, use it.
    317       visitMemoryReference(I, MSI->getDest(), MemoryLocation::UnknownSize,
    318                            MSI->getAlignment(), nullptr, MemRef::Write);
    319       break;
    320     }
    321 
    322     case Intrinsic::vastart:
    323       Assert(I.getParent()->getParent()->isVarArg(),
    324              "Undefined behavior: va_start called in a non-varargs function",
    325              &I);
    326 
    327       visitMemoryReference(I, CS.getArgument(0), MemoryLocation::UnknownSize, 0,
    328                            nullptr, MemRef::Read | MemRef::Write);
    329       break;
    330     case Intrinsic::vacopy:
    331       visitMemoryReference(I, CS.getArgument(0), MemoryLocation::UnknownSize, 0,
    332                            nullptr, MemRef::Write);
    333       visitMemoryReference(I, CS.getArgument(1), MemoryLocation::UnknownSize, 0,
    334                            nullptr, MemRef::Read);
    335       break;
    336     case Intrinsic::vaend:
    337       visitMemoryReference(I, CS.getArgument(0), MemoryLocation::UnknownSize, 0,
    338                            nullptr, MemRef::Read | MemRef::Write);
    339       break;
    340 
    341     case Intrinsic::stackrestore:
    342       // Stackrestore doesn't read or write memory, but it sets the
    343       // stack pointer, which the compiler may read from or write to
    344       // at any time, so check it for both readability and writeability.
    345       visitMemoryReference(I, CS.getArgument(0), MemoryLocation::UnknownSize, 0,
    346                            nullptr, MemRef::Read | MemRef::Write);
    347       break;
    348     }
    349 }
    350 
    351 void Lint::visitCallInst(CallInst &I) {
    352   return visitCallSite(&I);
    353 }
    354 
    355 void Lint::visitInvokeInst(InvokeInst &I) {
    356   return visitCallSite(&I);
    357 }
    358 
    359 void Lint::visitReturnInst(ReturnInst &I) {
    360   Function *F = I.getParent()->getParent();
    361   Assert(!F->doesNotReturn(),
    362          "Unusual: Return statement in function with noreturn attribute", &I);
    363 
    364   if (Value *V = I.getReturnValue()) {
    365     Value *Obj = findValue(V, /*OffsetOk=*/true);
    366     Assert(!isa<AllocaInst>(Obj), "Unusual: Returning alloca value", &I);
    367   }
    368 }
    369 
    370 // TODO: Check that the reference is in bounds.
    371 // TODO: Check readnone/readonly function attributes.
    372 void Lint::visitMemoryReference(Instruction &I,
    373                                 Value *Ptr, uint64_t Size, unsigned Align,
    374                                 Type *Ty, unsigned Flags) {
    375   // If no memory is being referenced, it doesn't matter if the pointer
    376   // is valid.
    377   if (Size == 0)
    378     return;
    379 
    380   Value *UnderlyingObject = findValue(Ptr, /*OffsetOk=*/true);
    381   Assert(!isa<ConstantPointerNull>(UnderlyingObject),
    382          "Undefined behavior: Null pointer dereference", &I);
    383   Assert(!isa<UndefValue>(UnderlyingObject),
    384          "Undefined behavior: Undef pointer dereference", &I);
    385   Assert(!isa<ConstantInt>(UnderlyingObject) ||
    386              !cast<ConstantInt>(UnderlyingObject)->isAllOnesValue(),
    387          "Unusual: All-ones pointer dereference", &I);
    388   Assert(!isa<ConstantInt>(UnderlyingObject) ||
    389              !cast<ConstantInt>(UnderlyingObject)->isOne(),
    390          "Unusual: Address one pointer dereference", &I);
    391 
    392   if (Flags & MemRef::Write) {
    393     if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(UnderlyingObject))
    394       Assert(!GV->isConstant(), "Undefined behavior: Write to read-only memory",
    395              &I);
    396     Assert(!isa<Function>(UnderlyingObject) &&
    397                !isa<BlockAddress>(UnderlyingObject),
    398            "Undefined behavior: Write to text section", &I);
    399   }
    400   if (Flags & MemRef::Read) {
    401     Assert(!isa<Function>(UnderlyingObject), "Unusual: Load from function body",
    402            &I);
    403     Assert(!isa<BlockAddress>(UnderlyingObject),
    404            "Undefined behavior: Load from block address", &I);
    405   }
    406   if (Flags & MemRef::Callee) {
    407     Assert(!isa<BlockAddress>(UnderlyingObject),
    408            "Undefined behavior: Call to block address", &I);
    409   }
    410   if (Flags & MemRef::Branchee) {
    411     Assert(!isa<Constant>(UnderlyingObject) ||
    412                isa<BlockAddress>(UnderlyingObject),
    413            "Undefined behavior: Branch to non-blockaddress", &I);
    414   }
    415 
    416   // Check for buffer overflows and misalignment.
    417   // Only handles memory references that read/write something simple like an
    418   // alloca instruction or a global variable.
    419   int64_t Offset = 0;
    420   if (Value *Base = GetPointerBaseWithConstantOffset(Ptr, Offset, *DL)) {
    421     // OK, so the access is to a constant offset from Ptr.  Check that Ptr is
    422     // something we can handle and if so extract the size of this base object
    423     // along with its alignment.
    424     uint64_t BaseSize = MemoryLocation::UnknownSize;
    425     unsigned BaseAlign = 0;
    426 
    427     if (AllocaInst *AI = dyn_cast<AllocaInst>(Base)) {
    428       Type *ATy = AI->getAllocatedType();
    429       if (!AI->isArrayAllocation() && ATy->isSized())
    430         BaseSize = DL->getTypeAllocSize(ATy);
    431       BaseAlign = AI->getAlignment();
    432       if (BaseAlign == 0 && ATy->isSized())
    433         BaseAlign = DL->getABITypeAlignment(ATy);
    434     } else if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Base)) {
    435       // If the global may be defined differently in another compilation unit
    436       // then don't warn about funky memory accesses.
    437       if (GV->hasDefinitiveInitializer()) {
    438         Type *GTy = GV->getType()->getElementType();
    439         if (GTy->isSized())
    440           BaseSize = DL->getTypeAllocSize(GTy);
    441         BaseAlign = GV->getAlignment();
    442         if (BaseAlign == 0 && GTy->isSized())
    443           BaseAlign = DL->getABITypeAlignment(GTy);
    444       }
    445     }
    446 
    447     // Accesses from before the start or after the end of the object are not
    448     // defined.
    449     Assert(Size == MemoryLocation::UnknownSize ||
    450                BaseSize == MemoryLocation::UnknownSize ||
    451                (Offset >= 0 && Offset + Size <= BaseSize),
    452            "Undefined behavior: Buffer overflow", &I);
    453 
    454     // Accesses that say that the memory is more aligned than it is are not
    455     // defined.
    456     if (Align == 0 && Ty && Ty->isSized())
    457       Align = DL->getABITypeAlignment(Ty);
    458     Assert(!BaseAlign || Align <= MinAlign(BaseAlign, Offset),
    459            "Undefined behavior: Memory reference address is misaligned", &I);
    460   }
    461 }
    462 
    463 void Lint::visitLoadInst(LoadInst &I) {
    464   visitMemoryReference(I, I.getPointerOperand(),
    465                        DL->getTypeStoreSize(I.getType()), I.getAlignment(),
    466                        I.getType(), MemRef::Read);
    467 }
    468 
    469 void Lint::visitStoreInst(StoreInst &I) {
    470   visitMemoryReference(I, I.getPointerOperand(),
    471                        DL->getTypeStoreSize(I.getOperand(0)->getType()),
    472                        I.getAlignment(),
    473                        I.getOperand(0)->getType(), MemRef::Write);
    474 }
    475 
    476 void Lint::visitXor(BinaryOperator &I) {
    477   Assert(!isa<UndefValue>(I.getOperand(0)) || !isa<UndefValue>(I.getOperand(1)),
    478          "Undefined result: xor(undef, undef)", &I);
    479 }
    480 
    481 void Lint::visitSub(BinaryOperator &I) {
    482   Assert(!isa<UndefValue>(I.getOperand(0)) || !isa<UndefValue>(I.getOperand(1)),
    483          "Undefined result: sub(undef, undef)", &I);
    484 }
    485 
    486 void Lint::visitLShr(BinaryOperator &I) {
    487   if (ConstantInt *CI = dyn_cast<ConstantInt>(findValue(I.getOperand(1),
    488                                                         /*OffsetOk=*/false)))
    489     Assert(CI->getValue().ult(cast<IntegerType>(I.getType())->getBitWidth()),
    490            "Undefined result: Shift count out of range", &I);
    491 }
    492 
    493 void Lint::visitAShr(BinaryOperator &I) {
    494   if (ConstantInt *CI =
    495           dyn_cast<ConstantInt>(findValue(I.getOperand(1), /*OffsetOk=*/false)))
    496     Assert(CI->getValue().ult(cast<IntegerType>(I.getType())->getBitWidth()),
    497            "Undefined result: Shift count out of range", &I);
    498 }
    499 
    500 void Lint::visitShl(BinaryOperator &I) {
    501   if (ConstantInt *CI =
    502           dyn_cast<ConstantInt>(findValue(I.getOperand(1), /*OffsetOk=*/false)))
    503     Assert(CI->getValue().ult(cast<IntegerType>(I.getType())->getBitWidth()),
    504            "Undefined result: Shift count out of range", &I);
    505 }
    506 
    507 static bool isZero(Value *V, const DataLayout &DL, DominatorTree *DT,
    508                    AssumptionCache *AC) {
    509   // Assume undef could be zero.
    510   if (isa<UndefValue>(V))
    511     return true;
    512 
    513   VectorType *VecTy = dyn_cast<VectorType>(V->getType());
    514   if (!VecTy) {
    515     unsigned BitWidth = V->getType()->getIntegerBitWidth();
    516     APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
    517     computeKnownBits(V, KnownZero, KnownOne, DL, 0, AC,
    518                      dyn_cast<Instruction>(V), DT);
    519     return KnownZero.isAllOnesValue();
    520   }
    521 
    522   // Per-component check doesn't work with zeroinitializer
    523   Constant *C = dyn_cast<Constant>(V);
    524   if (!C)
    525     return false;
    526 
    527   if (C->isZeroValue())
    528     return true;
    529 
    530   // For a vector, KnownZero will only be true if all values are zero, so check
    531   // this per component
    532   unsigned BitWidth = VecTy->getElementType()->getIntegerBitWidth();
    533   for (unsigned I = 0, N = VecTy->getNumElements(); I != N; ++I) {
    534     Constant *Elem = C->getAggregateElement(I);
    535     if (isa<UndefValue>(Elem))
    536       return true;
    537 
    538     APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
    539     computeKnownBits(Elem, KnownZero, KnownOne, DL);
    540     if (KnownZero.isAllOnesValue())
    541       return true;
    542   }
    543 
    544   return false;
    545 }
    546 
    547 void Lint::visitSDiv(BinaryOperator &I) {
    548   Assert(!isZero(I.getOperand(1), I.getModule()->getDataLayout(), DT, AC),
    549          "Undefined behavior: Division by zero", &I);
    550 }
    551 
    552 void Lint::visitUDiv(BinaryOperator &I) {
    553   Assert(!isZero(I.getOperand(1), I.getModule()->getDataLayout(), DT, AC),
    554          "Undefined behavior: Division by zero", &I);
    555 }
    556 
    557 void Lint::visitSRem(BinaryOperator &I) {
    558   Assert(!isZero(I.getOperand(1), I.getModule()->getDataLayout(), DT, AC),
    559          "Undefined behavior: Division by zero", &I);
    560 }
    561 
    562 void Lint::visitURem(BinaryOperator &I) {
    563   Assert(!isZero(I.getOperand(1), I.getModule()->getDataLayout(), DT, AC),
    564          "Undefined behavior: Division by zero", &I);
    565 }
    566 
    567 void Lint::visitAllocaInst(AllocaInst &I) {
    568   if (isa<ConstantInt>(I.getArraySize()))
    569     // This isn't undefined behavior, it's just an obvious pessimization.
    570     Assert(&I.getParent()->getParent()->getEntryBlock() == I.getParent(),
    571            "Pessimization: Static alloca outside of entry block", &I);
    572 
    573   // TODO: Check for an unusual size (MSB set?)
    574 }
    575 
    576 void Lint::visitVAArgInst(VAArgInst &I) {
    577   visitMemoryReference(I, I.getOperand(0), MemoryLocation::UnknownSize, 0,
    578                        nullptr, MemRef::Read | MemRef::Write);
    579 }
    580 
    581 void Lint::visitIndirectBrInst(IndirectBrInst &I) {
    582   visitMemoryReference(I, I.getAddress(), MemoryLocation::UnknownSize, 0,
    583                        nullptr, MemRef::Branchee);
    584 
    585   Assert(I.getNumDestinations() != 0,
    586          "Undefined behavior: indirectbr with no destinations", &I);
    587 }
    588 
    589 void Lint::visitExtractElementInst(ExtractElementInst &I) {
    590   if (ConstantInt *CI = dyn_cast<ConstantInt>(findValue(I.getIndexOperand(),
    591                                                         /*OffsetOk=*/false)))
    592     Assert(CI->getValue().ult(I.getVectorOperandType()->getNumElements()),
    593            "Undefined result: extractelement index out of range", &I);
    594 }
    595 
    596 void Lint::visitInsertElementInst(InsertElementInst &I) {
    597   if (ConstantInt *CI = dyn_cast<ConstantInt>(findValue(I.getOperand(2),
    598                                                         /*OffsetOk=*/false)))
    599     Assert(CI->getValue().ult(I.getType()->getNumElements()),
    600            "Undefined result: insertelement index out of range", &I);
    601 }
    602 
    603 void Lint::visitUnreachableInst(UnreachableInst &I) {
    604   // This isn't undefined behavior, it's merely suspicious.
    605   Assert(&I == &I.getParent()->front() ||
    606              std::prev(I.getIterator())->mayHaveSideEffects(),
    607          "Unusual: unreachable immediately preceded by instruction without "
    608          "side effects",
    609          &I);
    610 }
    611 
    612 /// findValue - Look through bitcasts and simple memory reference patterns
    613 /// to identify an equivalent, but more informative, value.  If OffsetOk
    614 /// is true, look through getelementptrs with non-zero offsets too.
    615 ///
    616 /// Most analysis passes don't require this logic, because instcombine
    617 /// will simplify most of these kinds of things away. But it's a goal of
    618 /// this Lint pass to be useful even on non-optimized IR.
    619 Value *Lint::findValue(Value *V, bool OffsetOk) const {
    620   SmallPtrSet<Value *, 4> Visited;
    621   return findValueImpl(V, OffsetOk, Visited);
    622 }
    623 
    624 /// findValueImpl - Implementation helper for findValue.
    625 Value *Lint::findValueImpl(Value *V, bool OffsetOk,
    626                            SmallPtrSetImpl<Value *> &Visited) const {
    627   // Detect self-referential values.
    628   if (!Visited.insert(V).second)
    629     return UndefValue::get(V->getType());
    630 
    631   // TODO: Look through sext or zext cast, when the result is known to
    632   // be interpreted as signed or unsigned, respectively.
    633   // TODO: Look through eliminable cast pairs.
    634   // TODO: Look through calls with unique return values.
    635   // TODO: Look through vector insert/extract/shuffle.
    636   V = OffsetOk ? GetUnderlyingObject(V, *DL) : V->stripPointerCasts();
    637   if (LoadInst *L = dyn_cast<LoadInst>(V)) {
    638     BasicBlock::iterator BBI = L->getIterator();
    639     BasicBlock *BB = L->getParent();
    640     SmallPtrSet<BasicBlock *, 4> VisitedBlocks;
    641     for (;;) {
    642       if (!VisitedBlocks.insert(BB).second)
    643         break;
    644       if (Value *U =
    645           FindAvailableLoadedValue(L->getPointerOperand(),
    646                                    BB, BBI, DefMaxInstsToScan, AA))
    647         return findValueImpl(U, OffsetOk, Visited);
    648       if (BBI != BB->begin()) break;
    649       BB = BB->getUniquePredecessor();
    650       if (!BB) break;
    651       BBI = BB->end();
    652     }
    653   } else if (PHINode *PN = dyn_cast<PHINode>(V)) {
    654     if (Value *W = PN->hasConstantValue())
    655       if (W != V)
    656         return findValueImpl(W, OffsetOk, Visited);
    657   } else if (CastInst *CI = dyn_cast<CastInst>(V)) {
    658     if (CI->isNoopCast(*DL))
    659       return findValueImpl(CI->getOperand(0), OffsetOk, Visited);
    660   } else if (ExtractValueInst *Ex = dyn_cast<ExtractValueInst>(V)) {
    661     if (Value *W = FindInsertedValue(Ex->getAggregateOperand(),
    662                                      Ex->getIndices()))
    663       if (W != V)
    664         return findValueImpl(W, OffsetOk, Visited);
    665   } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
    666     // Same as above, but for ConstantExpr instead of Instruction.
    667     if (Instruction::isCast(CE->getOpcode())) {
    668       if (CastInst::isNoopCast(Instruction::CastOps(CE->getOpcode()),
    669                                CE->getOperand(0)->getType(), CE->getType(),
    670                                DL->getIntPtrType(V->getType())))
    671         return findValueImpl(CE->getOperand(0), OffsetOk, Visited);
    672     } else if (CE->getOpcode() == Instruction::ExtractValue) {
    673       ArrayRef<unsigned> Indices = CE->getIndices();
    674       if (Value *W = FindInsertedValue(CE->getOperand(0), Indices))
    675         if (W != V)
    676           return findValueImpl(W, OffsetOk, Visited);
    677     }
    678   }
    679 
    680   // As a last resort, try SimplifyInstruction or constant folding.
    681   if (Instruction *Inst = dyn_cast<Instruction>(V)) {
    682     if (Value *W = SimplifyInstruction(Inst, *DL, TLI, DT, AC))
    683       return findValueImpl(W, OffsetOk, Visited);
    684   } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
    685     if (Value *W = ConstantFoldConstantExpression(CE, *DL, TLI))
    686       if (W != V)
    687         return findValueImpl(W, OffsetOk, Visited);
    688   }
    689 
    690   return V;
    691 }
    692 
    693 //===----------------------------------------------------------------------===//
    694 //  Implement the public interfaces to this file...
    695 //===----------------------------------------------------------------------===//
    696 
    697 FunctionPass *llvm::createLintPass() {
    698   return new Lint();
    699 }
    700 
    701 /// lintFunction - Check a function for errors, printing messages on stderr.
    702 ///
    703 void llvm::lintFunction(const Function &f) {
    704   Function &F = const_cast<Function&>(f);
    705   assert(!F.isDeclaration() && "Cannot lint external functions");
    706 
    707   legacy::FunctionPassManager FPM(F.getParent());
    708   Lint *V = new Lint();
    709   FPM.add(V);
    710   FPM.run(F);
    711 }
    712 
    713 /// lintModule - Check a module for errors, printing messages on stderr.
    714 ///
    715 void llvm::lintModule(const Module &M) {
    716   legacy::PassManager PM;
    717   Lint *V = new Lint();
    718   PM.add(V);
    719   PM.run(const_cast<Module&>(M));
    720 }
    721