Home | History | Annotate | Download | only in CodeGen
      1 //===-- ShrinkWrap.cpp - Compute safe point for prolog/epilog insertion ---===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This pass looks for safe point where the prologue and epilogue can be
     11 // inserted.
     12 // The safe point for the prologue (resp. epilogue) is called Save
     13 // (resp. Restore).
     14 // A point is safe for prologue (resp. epilogue) if and only if
     15 // it 1) dominates (resp. post-dominates) all the frame related operations and
     16 // between 2) two executions of the Save (resp. Restore) point there is an
     17 // execution of the Restore (resp. Save) point.
     18 //
     19 // For instance, the following points are safe:
     20 // for (int i = 0; i < 10; ++i) {
     21 //   Save
     22 //   ...
     23 //   Restore
     24 // }
     25 // Indeed, the execution looks like Save -> Restore -> Save -> Restore ...
     26 // And the following points are not:
     27 // for (int i = 0; i < 10; ++i) {
     28 //   Save
     29 //   ...
     30 // }
     31 // for (int i = 0; i < 10; ++i) {
     32 //   ...
     33 //   Restore
     34 // }
     35 // Indeed, the execution looks like Save -> Save -> ... -> Restore -> Restore.
     36 //
     37 // This pass also ensures that the safe points are 3) cheaper than the regular
     38 // entry and exits blocks.
     39 //
     40 // Property #1 is ensured via the use of MachineDominatorTree and
     41 // MachinePostDominatorTree.
     42 // Property #2 is ensured via property #1 and MachineLoopInfo, i.e., both
     43 // points must be in the same loop.
     44 // Property #3 is ensured via the MachineBlockFrequencyInfo.
     45 //
     46 // If this pass found points matching all these properties, then
     47 // MachineFrameInfo is updated this that information.
     48 //===----------------------------------------------------------------------===//
     49 #include "llvm/ADT/BitVector.h"
     50 #include "llvm/ADT/SetVector.h"
     51 #include "llvm/ADT/Statistic.h"
     52 // To check for profitability.
     53 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
     54 // For property #1 for Save.
     55 #include "llvm/CodeGen/MachineDominators.h"
     56 #include "llvm/CodeGen/MachineFunctionPass.h"
     57 // To record the result of the analysis.
     58 #include "llvm/CodeGen/MachineFrameInfo.h"
     59 // For property #2.
     60 #include "llvm/CodeGen/MachineLoopInfo.h"
     61 // For property #1 for Restore.
     62 #include "llvm/CodeGen/MachinePostDominators.h"
     63 #include "llvm/CodeGen/Passes.h"
     64 // To know about callee-saved.
     65 #include "llvm/CodeGen/RegisterClassInfo.h"
     66 #include "llvm/CodeGen/RegisterScavenging.h"
     67 #include "llvm/MC/MCAsmInfo.h"
     68 #include "llvm/Support/Debug.h"
     69 // To query the target about frame lowering.
     70 #include "llvm/Target/TargetFrameLowering.h"
     71 // To know about frame setup operation.
     72 #include "llvm/Target/TargetInstrInfo.h"
     73 #include "llvm/Target/TargetMachine.h"
     74 // To access TargetInstrInfo.
     75 #include "llvm/Target/TargetSubtargetInfo.h"
     76 
     77 #define DEBUG_TYPE "shrink-wrap"
     78 
     79 using namespace llvm;
     80 
     81 STATISTIC(NumFunc, "Number of functions");
     82 STATISTIC(NumCandidates, "Number of shrink-wrapping candidates");
     83 STATISTIC(NumCandidatesDropped,
     84           "Number of shrink-wrapping candidates dropped because of frequency");
     85 
     86 static cl::opt<cl::boolOrDefault>
     87     EnableShrinkWrapOpt("enable-shrink-wrap", cl::Hidden,
     88                         cl::desc("enable the shrink-wrapping pass"));
     89 
     90 namespace {
     91 /// \brief Class to determine where the safe point to insert the
     92 /// prologue and epilogue are.
     93 /// Unlike the paper from Fred C. Chow, PLDI'88, that introduces the
     94 /// shrink-wrapping term for prologue/epilogue placement, this pass
     95 /// does not rely on expensive data-flow analysis. Instead we use the
     96 /// dominance properties and loop information to decide which point
     97 /// are safe for such insertion.
     98 class ShrinkWrap : public MachineFunctionPass {
     99   /// Hold callee-saved information.
    100   RegisterClassInfo RCI;
    101   MachineDominatorTree *MDT;
    102   MachinePostDominatorTree *MPDT;
    103   /// Current safe point found for the prologue.
    104   /// The prologue will be inserted before the first instruction
    105   /// in this basic block.
    106   MachineBasicBlock *Save;
    107   /// Current safe point found for the epilogue.
    108   /// The epilogue will be inserted before the first terminator instruction
    109   /// in this basic block.
    110   MachineBasicBlock *Restore;
    111   /// Hold the information of the basic block frequency.
    112   /// Use to check the profitability of the new points.
    113   MachineBlockFrequencyInfo *MBFI;
    114   /// Hold the loop information. Used to determine if Save and Restore
    115   /// are in the same loop.
    116   MachineLoopInfo *MLI;
    117   /// Frequency of the Entry block.
    118   uint64_t EntryFreq;
    119   /// Current opcode for frame setup.
    120   unsigned FrameSetupOpcode;
    121   /// Current opcode for frame destroy.
    122   unsigned FrameDestroyOpcode;
    123   /// Entry block.
    124   const MachineBasicBlock *Entry;
    125   typedef SmallSetVector<unsigned, 16> SetOfRegs;
    126   /// Registers that need to be saved for the current function.
    127   mutable SetOfRegs CurrentCSRs;
    128   /// Current MachineFunction.
    129   MachineFunction *MachineFunc;
    130 
    131   /// \brief Check if \p MI uses or defines a callee-saved register or
    132   /// a frame index. If this is the case, this means \p MI must happen
    133   /// after Save and before Restore.
    134   bool useOrDefCSROrFI(const MachineInstr &MI, RegScavenger *RS) const;
    135 
    136   const SetOfRegs &getCurrentCSRs(RegScavenger *RS) const {
    137     if (CurrentCSRs.empty()) {
    138       BitVector SavedRegs;
    139       const TargetFrameLowering *TFI =
    140           MachineFunc->getSubtarget().getFrameLowering();
    141 
    142       TFI->determineCalleeSaves(*MachineFunc, SavedRegs, RS);
    143 
    144       for (int Reg = SavedRegs.find_first(); Reg != -1;
    145            Reg = SavedRegs.find_next(Reg))
    146         CurrentCSRs.insert((unsigned)Reg);
    147     }
    148     return CurrentCSRs;
    149   }
    150 
    151   /// \brief Update the Save and Restore points such that \p MBB is in
    152   /// the region that is dominated by Save and post-dominated by Restore
    153   /// and Save and Restore still match the safe point definition.
    154   /// Such point may not exist and Save and/or Restore may be null after
    155   /// this call.
    156   void updateSaveRestorePoints(MachineBasicBlock &MBB, RegScavenger *RS);
    157 
    158   /// \brief Initialize the pass for \p MF.
    159   void init(MachineFunction &MF) {
    160     RCI.runOnMachineFunction(MF);
    161     MDT = &getAnalysis<MachineDominatorTree>();
    162     MPDT = &getAnalysis<MachinePostDominatorTree>();
    163     Save = nullptr;
    164     Restore = nullptr;
    165     MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
    166     MLI = &getAnalysis<MachineLoopInfo>();
    167     EntryFreq = MBFI->getEntryFreq();
    168     const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
    169     FrameSetupOpcode = TII.getCallFrameSetupOpcode();
    170     FrameDestroyOpcode = TII.getCallFrameDestroyOpcode();
    171     Entry = &MF.front();
    172     CurrentCSRs.clear();
    173     MachineFunc = &MF;
    174 
    175     ++NumFunc;
    176   }
    177 
    178   /// Check whether or not Save and Restore points are still interesting for
    179   /// shrink-wrapping.
    180   bool ArePointsInteresting() const { return Save != Entry && Save && Restore; }
    181 
    182   /// \brief Check if shrink wrapping is enabled for this target and function.
    183   static bool isShrinkWrapEnabled(const MachineFunction &MF);
    184 
    185 public:
    186   static char ID;
    187 
    188   ShrinkWrap() : MachineFunctionPass(ID) {
    189     initializeShrinkWrapPass(*PassRegistry::getPassRegistry());
    190   }
    191 
    192   void getAnalysisUsage(AnalysisUsage &AU) const override {
    193     AU.setPreservesAll();
    194     AU.addRequired<MachineBlockFrequencyInfo>();
    195     AU.addRequired<MachineDominatorTree>();
    196     AU.addRequired<MachinePostDominatorTree>();
    197     AU.addRequired<MachineLoopInfo>();
    198     MachineFunctionPass::getAnalysisUsage(AU);
    199   }
    200 
    201   const char *getPassName() const override {
    202     return "Shrink Wrapping analysis";
    203   }
    204 
    205   /// \brief Perform the shrink-wrapping analysis and update
    206   /// the MachineFrameInfo attached to \p MF with the results.
    207   bool runOnMachineFunction(MachineFunction &MF) override;
    208 };
    209 } // End anonymous namespace.
    210 
    211 char ShrinkWrap::ID = 0;
    212 char &llvm::ShrinkWrapID = ShrinkWrap::ID;
    213 
    214 INITIALIZE_PASS_BEGIN(ShrinkWrap, "shrink-wrap", "Shrink Wrap Pass", false,
    215                       false)
    216 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
    217 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
    218 INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTree)
    219 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
    220 INITIALIZE_PASS_END(ShrinkWrap, "shrink-wrap", "Shrink Wrap Pass", false, false)
    221 
    222 bool ShrinkWrap::useOrDefCSROrFI(const MachineInstr &MI,
    223                                  RegScavenger *RS) const {
    224   if (MI.getOpcode() == FrameSetupOpcode ||
    225       MI.getOpcode() == FrameDestroyOpcode) {
    226     DEBUG(dbgs() << "Frame instruction: " << MI << '\n');
    227     return true;
    228   }
    229   for (const MachineOperand &MO : MI.operands()) {
    230     bool UseOrDefCSR = false;
    231     if (MO.isReg()) {
    232       unsigned PhysReg = MO.getReg();
    233       if (!PhysReg)
    234         continue;
    235       assert(TargetRegisterInfo::isPhysicalRegister(PhysReg) &&
    236              "Unallocated register?!");
    237       UseOrDefCSR = RCI.getLastCalleeSavedAlias(PhysReg);
    238     } else if (MO.isRegMask()) {
    239       // Check if this regmask clobbers any of the CSRs.
    240       for (unsigned Reg : getCurrentCSRs(RS)) {
    241         if (MO.clobbersPhysReg(Reg)) {
    242           UseOrDefCSR = true;
    243           break;
    244         }
    245       }
    246     }
    247     if (UseOrDefCSR || MO.isFI()) {
    248       DEBUG(dbgs() << "Use or define CSR(" << UseOrDefCSR << ") or FI("
    249                    << MO.isFI() << "): " << MI << '\n');
    250       return true;
    251     }
    252   }
    253   return false;
    254 }
    255 
    256 /// \brief Helper function to find the immediate (post) dominator.
    257 template <typename ListOfBBs, typename DominanceAnalysis>
    258 MachineBasicBlock *FindIDom(MachineBasicBlock &Block, ListOfBBs BBs,
    259                             DominanceAnalysis &Dom) {
    260   MachineBasicBlock *IDom = &Block;
    261   for (MachineBasicBlock *BB : BBs) {
    262     IDom = Dom.findNearestCommonDominator(IDom, BB);
    263     if (!IDom)
    264       break;
    265   }
    266   return IDom;
    267 }
    268 
    269 void ShrinkWrap::updateSaveRestorePoints(MachineBasicBlock &MBB,
    270                                          RegScavenger *RS) {
    271   // Get rid of the easy cases first.
    272   if (!Save)
    273     Save = &MBB;
    274   else
    275     Save = MDT->findNearestCommonDominator(Save, &MBB);
    276 
    277   if (!Save) {
    278     DEBUG(dbgs() << "Found a block that is not reachable from Entry\n");
    279     return;
    280   }
    281 
    282   if (!Restore)
    283     Restore = &MBB;
    284   else
    285     Restore = MPDT->findNearestCommonDominator(Restore, &MBB);
    286 
    287   // Make sure we would be able to insert the restore code before the
    288   // terminator.
    289   if (Restore == &MBB) {
    290     for (const MachineInstr &Terminator : MBB.terminators()) {
    291       if (!useOrDefCSROrFI(Terminator, RS))
    292         continue;
    293       // One of the terminator needs to happen before the restore point.
    294       if (MBB.succ_empty()) {
    295         Restore = nullptr;
    296         break;
    297       }
    298       // Look for a restore point that post-dominates all the successors.
    299       // The immediate post-dominator is what we are looking for.
    300       Restore = FindIDom<>(*Restore, Restore->successors(), *MPDT);
    301       break;
    302     }
    303   }
    304 
    305   if (!Restore) {
    306     DEBUG(dbgs() << "Restore point needs to be spanned on several blocks\n");
    307     return;
    308   }
    309 
    310   // Make sure Save and Restore are suitable for shrink-wrapping:
    311   // 1. all path from Save needs to lead to Restore before exiting.
    312   // 2. all path to Restore needs to go through Save from Entry.
    313   // We achieve that by making sure that:
    314   // A. Save dominates Restore.
    315   // B. Restore post-dominates Save.
    316   // C. Save and Restore are in the same loop.
    317   bool SaveDominatesRestore = false;
    318   bool RestorePostDominatesSave = false;
    319   while (Save && Restore &&
    320          (!(SaveDominatesRestore = MDT->dominates(Save, Restore)) ||
    321           !(RestorePostDominatesSave = MPDT->dominates(Restore, Save)) ||
    322           // Post-dominance is not enough in loops to ensure that all uses/defs
    323           // are after the prologue and before the epilogue at runtime.
    324           // E.g.,
    325           // while(1) {
    326           //  Save
    327           //  Restore
    328           //   if (...)
    329           //     break;
    330           //  use/def CSRs
    331           // }
    332           // All the uses/defs of CSRs are dominated by Save and post-dominated
    333           // by Restore. However, the CSRs uses are still reachable after
    334           // Restore and before Save are executed.
    335           //
    336           // For now, just push the restore/save points outside of loops.
    337           // FIXME: Refine the criteria to still find interesting cases
    338           // for loops.
    339           MLI->getLoopFor(Save) || MLI->getLoopFor(Restore))) {
    340     // Fix (A).
    341     if (!SaveDominatesRestore) {
    342       Save = MDT->findNearestCommonDominator(Save, Restore);
    343       continue;
    344     }
    345     // Fix (B).
    346     if (!RestorePostDominatesSave)
    347       Restore = MPDT->findNearestCommonDominator(Restore, Save);
    348 
    349     // Fix (C).
    350     if (Save && Restore &&
    351         (MLI->getLoopFor(Save) || MLI->getLoopFor(Restore))) {
    352       if (MLI->getLoopDepth(Save) > MLI->getLoopDepth(Restore)) {
    353         // Push Save outside of this loop if immediate dominator is different
    354         // from save block. If immediate dominator is not different, bail out.
    355         MachineBasicBlock *IDom = FindIDom<>(*Save, Save->predecessors(), *MDT);
    356         if (IDom != Save)
    357           Save = IDom;
    358         else {
    359           Save = nullptr;
    360           break;
    361         }
    362       } else {
    363         // If the loop does not exit, there is no point in looking
    364         // for a post-dominator outside the loop.
    365         SmallVector<MachineBasicBlock*, 4> ExitBlocks;
    366         MLI->getLoopFor(Restore)->getExitingBlocks(ExitBlocks);
    367         // Push Restore outside of this loop.
    368         // Look for the immediate post-dominator of the loop exits.
    369         MachineBasicBlock *IPdom = Restore;
    370         for (MachineBasicBlock *LoopExitBB: ExitBlocks) {
    371           IPdom = FindIDom<>(*IPdom, LoopExitBB->successors(), *MPDT);
    372           if (!IPdom)
    373             break;
    374         }
    375         // If the immediate post-dominator is not in a less nested loop,
    376         // then we are stuck in a program with an infinite loop.
    377         // In that case, we will not find a safe point, hence, bail out.
    378         if (IPdom && MLI->getLoopDepth(IPdom) < MLI->getLoopDepth(Restore))
    379           Restore = IPdom;
    380         else {
    381           Restore = nullptr;
    382           break;
    383         }
    384       }
    385     }
    386   }
    387 }
    388 
    389 bool ShrinkWrap::runOnMachineFunction(MachineFunction &MF) {
    390   if (MF.empty() || !isShrinkWrapEnabled(MF))
    391     return false;
    392 
    393   DEBUG(dbgs() << "**** Analysing " << MF.getName() << '\n');
    394 
    395   init(MF);
    396 
    397   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
    398   std::unique_ptr<RegScavenger> RS(
    399       TRI->requiresRegisterScavenging(MF) ? new RegScavenger() : nullptr);
    400 
    401   for (MachineBasicBlock &MBB : MF) {
    402     DEBUG(dbgs() << "Look into: " << MBB.getNumber() << ' ' << MBB.getName()
    403                  << '\n');
    404 
    405     if (MBB.isEHFuncletEntry()) {
    406       DEBUG(dbgs() << "EH Funclets are not supported yet.\n");
    407       return false;
    408     }
    409 
    410     for (const MachineInstr &MI : MBB) {
    411       if (!useOrDefCSROrFI(MI, RS.get()))
    412         continue;
    413       // Save (resp. restore) point must dominate (resp. post dominate)
    414       // MI. Look for the proper basic block for those.
    415       updateSaveRestorePoints(MBB, RS.get());
    416       // If we are at a point where we cannot improve the placement of
    417       // save/restore instructions, just give up.
    418       if (!ArePointsInteresting()) {
    419         DEBUG(dbgs() << "No Shrink wrap candidate found\n");
    420         return false;
    421       }
    422       // No need to look for other instructions, this basic block
    423       // will already be part of the handled region.
    424       break;
    425     }
    426   }
    427   if (!ArePointsInteresting()) {
    428     // If the points are not interesting at this point, then they must be null
    429     // because it means we did not encounter any frame/CSR related code.
    430     // Otherwise, we would have returned from the previous loop.
    431     assert(!Save && !Restore && "We miss a shrink-wrap opportunity?!");
    432     DEBUG(dbgs() << "Nothing to shrink-wrap\n");
    433     return false;
    434   }
    435 
    436   DEBUG(dbgs() << "\n ** Results **\nFrequency of the Entry: " << EntryFreq
    437                << '\n');
    438 
    439   const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering();
    440   do {
    441     DEBUG(dbgs() << "Shrink wrap candidates (#, Name, Freq):\nSave: "
    442                  << Save->getNumber() << ' ' << Save->getName() << ' '
    443                  << MBFI->getBlockFreq(Save).getFrequency() << "\nRestore: "
    444                  << Restore->getNumber() << ' ' << Restore->getName() << ' '
    445                  << MBFI->getBlockFreq(Restore).getFrequency() << '\n');
    446 
    447     bool IsSaveCheap, TargetCanUseSaveAsPrologue = false;
    448     if (((IsSaveCheap = EntryFreq >= MBFI->getBlockFreq(Save).getFrequency()) &&
    449          EntryFreq >= MBFI->getBlockFreq(Restore).getFrequency()) &&
    450         ((TargetCanUseSaveAsPrologue = TFI->canUseAsPrologue(*Save)) &&
    451          TFI->canUseAsEpilogue(*Restore)))
    452       break;
    453     DEBUG(dbgs() << "New points are too expensive or invalid for the target\n");
    454     MachineBasicBlock *NewBB;
    455     if (!IsSaveCheap || !TargetCanUseSaveAsPrologue) {
    456       Save = FindIDom<>(*Save, Save->predecessors(), *MDT);
    457       if (!Save)
    458         break;
    459       NewBB = Save;
    460     } else {
    461       // Restore is expensive.
    462       Restore = FindIDom<>(*Restore, Restore->successors(), *MPDT);
    463       if (!Restore)
    464         break;
    465       NewBB = Restore;
    466     }
    467     updateSaveRestorePoints(*NewBB, RS.get());
    468   } while (Save && Restore);
    469 
    470   if (!ArePointsInteresting()) {
    471     ++NumCandidatesDropped;
    472     return false;
    473   }
    474 
    475   DEBUG(dbgs() << "Final shrink wrap candidates:\nSave: " << Save->getNumber()
    476                << ' ' << Save->getName() << "\nRestore: "
    477                << Restore->getNumber() << ' ' << Restore->getName() << '\n');
    478 
    479   MachineFrameInfo *MFI = MF.getFrameInfo();
    480   MFI->setSavePoint(Save);
    481   MFI->setRestorePoint(Restore);
    482   ++NumCandidates;
    483   return false;
    484 }
    485 
    486 bool ShrinkWrap::isShrinkWrapEnabled(const MachineFunction &MF) {
    487   const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering();
    488 
    489   switch (EnableShrinkWrapOpt) {
    490   case cl::BOU_UNSET:
    491     return TFI->enableShrinkWrapping(MF) &&
    492       // Windows with CFI has some limitations that make it impossible
    493       // to use shrink-wrapping.
    494       !MF.getTarget().getMCAsmInfo()->usesWindowsCFI() &&
    495       // Sanitizers look at the value of the stack at the location
    496       // of the crash. Since a crash can happen anywhere, the
    497       // frame must be lowered before anything else happen for the
    498       // sanitizers to be able to get a correct stack frame.
    499       !(MF.getFunction()->hasFnAttribute(Attribute::SanitizeAddress) ||
    500         MF.getFunction()->hasFnAttribute(Attribute::SanitizeThread) ||
    501         MF.getFunction()->hasFnAttribute(Attribute::SanitizeMemory));
    502   // If EnableShrinkWrap is set, it takes precedence on whatever the
    503   // target sets. The rational is that we assume we want to test
    504   // something related to shrink-wrapping.
    505   case cl::BOU_TRUE:
    506     return true;
    507   case cl::BOU_FALSE:
    508     return false;
    509   }
    510   llvm_unreachable("Invalid shrink-wrapping state");
    511 }
    512