Home | History | Annotate | Download | only in MCTargetDesc
      1 //===- HexagonMCInstrInfo.cpp - Hexagon sub-class of MCInst ---------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This class extends MCInstrInfo to allow Hexagon specific MCInstr queries
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "HexagonMCInstrInfo.h"
     15 
     16 #include "Hexagon.h"
     17 #include "HexagonBaseInfo.h"
     18 #include "HexagonMCChecker.h"
     19 
     20 #include "llvm/MC/MCContext.h"
     21 #include "llvm/MC/MCExpr.h"
     22 #include "llvm/MC/MCInstrInfo.h"
     23 #include "llvm/MC/MCSubtargetInfo.h"
     24 
     25 namespace llvm {
     26 void HexagonMCInstrInfo::addConstant(MCInst &MI, uint64_t Value,
     27                                      MCContext &Context) {
     28   MI.addOperand(MCOperand::createExpr(MCConstantExpr::create(Value, Context)));
     29 }
     30 
     31 void HexagonMCInstrInfo::addConstExtender(MCContext &Context,
     32                                           MCInstrInfo const &MCII, MCInst &MCB,
     33                                           MCInst const &MCI) {
     34   assert(HexagonMCInstrInfo::isBundle(MCB));
     35   MCOperand const &exOp =
     36       MCI.getOperand(HexagonMCInstrInfo::getExtendableOp(MCII, MCI));
     37 
     38   // Create the extender.
     39   MCInst *XMCI =
     40       new (Context) MCInst(HexagonMCInstrInfo::deriveExtender(MCII, MCI, exOp));
     41 
     42   MCB.addOperand(MCOperand::createInst(XMCI));
     43 }
     44 
     45 iterator_range<MCInst::const_iterator>
     46 HexagonMCInstrInfo::bundleInstructions(MCInst const &MCI) {
     47   assert(isBundle(MCI));
     48   return make_range(MCI.begin() + bundleInstructionsOffset, MCI.end());
     49 }
     50 
     51 size_t HexagonMCInstrInfo::bundleSize(MCInst const &MCI) {
     52   if (HexagonMCInstrInfo::isBundle(MCI))
     53     return (MCI.size() - bundleInstructionsOffset);
     54   else
     55     return (1);
     56 }
     57 
     58 bool HexagonMCInstrInfo::canonicalizePacket(MCInstrInfo const &MCII,
     59                                             MCSubtargetInfo const &STI,
     60                                             MCContext &Context, MCInst &MCB,
     61                                             HexagonMCChecker *Check) {
     62   // Examine the packet and convert pairs of instructions to compound
     63   // instructions when possible.
     64   if (!HexagonDisableCompound)
     65     HexagonMCInstrInfo::tryCompound(MCII, Context, MCB);
     66   // Check the bundle for errors.
     67   bool CheckOk = Check ? Check->check() : true;
     68   if (!CheckOk)
     69     return false;
     70   HexagonMCShuffle(MCII, STI, MCB);
     71   // Examine the packet and convert pairs of instructions to duplex
     72   // instructions when possible.
     73   MCInst InstBundlePreDuplex = MCInst(MCB);
     74   if (!HexagonDisableDuplex) {
     75     SmallVector<DuplexCandidate, 8> possibleDuplexes;
     76     possibleDuplexes = HexagonMCInstrInfo::getDuplexPossibilties(MCII, MCB);
     77     HexagonMCShuffle(MCII, STI, Context, MCB, possibleDuplexes);
     78   }
     79   // Examines packet and pad the packet, if needed, when an
     80   // end-loop is in the bundle.
     81   HexagonMCInstrInfo::padEndloop(Context, MCB);
     82   // If compounding and duplexing didn't reduce the size below
     83   // 4 or less we have a packet that is too big.
     84   if (HexagonMCInstrInfo::bundleSize(MCB) > HEXAGON_PACKET_SIZE)
     85     return false;
     86   HexagonMCShuffle(MCII, STI, MCB);
     87   return true;
     88 }
     89 
     90 void HexagonMCInstrInfo::clampExtended(MCInstrInfo const &MCII,
     91                                        MCContext &Context, MCInst &MCI) {
     92   assert(HexagonMCInstrInfo::isExtendable(MCII, MCI) ||
     93          HexagonMCInstrInfo::isExtended(MCII, MCI));
     94   MCOperand &exOp =
     95       MCI.getOperand(HexagonMCInstrInfo::getExtendableOp(MCII, MCI));
     96   // If the extended value is a constant, then use it for the extended and
     97   // for the extender instructions, masking off the lower 6 bits and
     98   // including the assumed bits.
     99   int64_t Value;
    100   if (exOp.getExpr()->evaluateAsAbsolute(Value)) {
    101     unsigned Shift = HexagonMCInstrInfo::getExtentAlignment(MCII, MCI);
    102     exOp.setExpr(MCConstantExpr::create((Value & 0x3f) << Shift, Context));
    103   }
    104 }
    105 
    106 MCInst HexagonMCInstrInfo::createBundle() {
    107   MCInst Result;
    108   Result.setOpcode(Hexagon::BUNDLE);
    109   Result.addOperand(MCOperand::createImm(0));
    110   return Result;
    111 }
    112 
    113 MCInst *HexagonMCInstrInfo::deriveDuplex(MCContext &Context, unsigned iClass,
    114                                          MCInst const &inst0,
    115                                          MCInst const &inst1) {
    116   assert((iClass <= 0xf) && "iClass must have range of 0 to 0xf");
    117   MCInst *duplexInst = new (Context) MCInst;
    118   duplexInst->setOpcode(Hexagon::DuplexIClass0 + iClass);
    119 
    120   MCInst *SubInst0 = new (Context) MCInst(deriveSubInst(inst0));
    121   MCInst *SubInst1 = new (Context) MCInst(deriveSubInst(inst1));
    122   duplexInst->addOperand(MCOperand::createInst(SubInst0));
    123   duplexInst->addOperand(MCOperand::createInst(SubInst1));
    124   return duplexInst;
    125 }
    126 
    127 MCInst HexagonMCInstrInfo::deriveExtender(MCInstrInfo const &MCII,
    128                                           MCInst const &Inst,
    129                                           MCOperand const &MO) {
    130   assert(HexagonMCInstrInfo::isExtendable(MCII, Inst) ||
    131          HexagonMCInstrInfo::isExtended(MCII, Inst));
    132 
    133   MCInstrDesc const &Desc = HexagonMCInstrInfo::getDesc(MCII, Inst);
    134   MCInst XMI;
    135   XMI.setOpcode((Desc.isBranch() || Desc.isCall() ||
    136                  HexagonMCInstrInfo::getType(MCII, Inst) == HexagonII::TypeCR)
    137                     ? Hexagon::A4_ext_b
    138                     : Hexagon::A4_ext);
    139   if (MO.isImm())
    140     XMI.addOperand(MCOperand::createImm(MO.getImm() & (~0x3f)));
    141   else if (MO.isExpr())
    142     XMI.addOperand(MCOperand::createExpr(MO.getExpr()));
    143   else
    144     llvm_unreachable("invalid extendable operand");
    145   return XMI;
    146 }
    147 
    148 MCInst const *HexagonMCInstrInfo::extenderForIndex(MCInst const &MCB,
    149                                                    size_t Index) {
    150   assert(Index <= bundleSize(MCB));
    151   if (Index == 0)
    152     return nullptr;
    153   MCInst const *Inst =
    154       MCB.getOperand(Index + bundleInstructionsOffset - 1).getInst();
    155   if (isImmext(*Inst))
    156     return Inst;
    157   return nullptr;
    158 }
    159 
    160 void HexagonMCInstrInfo::extendIfNeeded(MCContext &Context,
    161                                         MCInstrInfo const &MCII, MCInst &MCB,
    162                                         MCInst const &MCI, bool MustExtend) {
    163   if (isConstExtended(MCII, MCI) || MustExtend)
    164     addConstExtender(Context, MCII, MCB, MCI);
    165 }
    166 
    167 HexagonII::MemAccessSize
    168 HexagonMCInstrInfo::getAccessSize(MCInstrInfo const &MCII, MCInst const &MCI) {
    169   const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
    170 
    171   return (HexagonII::MemAccessSize((F >> HexagonII::MemAccessSizePos) &
    172                                    HexagonII::MemAccesSizeMask));
    173 }
    174 
    175 unsigned HexagonMCInstrInfo::getBitCount(MCInstrInfo const &MCII,
    176                                          MCInst const &MCI) {
    177   uint64_t const F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
    178   return ((F >> HexagonII::ExtentBitsPos) & HexagonII::ExtentBitsMask);
    179 }
    180 
    181 // Return constant extended operand number.
    182 unsigned short HexagonMCInstrInfo::getCExtOpNum(MCInstrInfo const &MCII,
    183                                                 MCInst const &MCI) {
    184   const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
    185   return ((F >> HexagonII::ExtendableOpPos) & HexagonII::ExtendableOpMask);
    186 }
    187 
    188 MCInstrDesc const &HexagonMCInstrInfo::getDesc(MCInstrInfo const &MCII,
    189                                                MCInst const &MCI) {
    190   return (MCII.get(MCI.getOpcode()));
    191 }
    192 
    193 unsigned short HexagonMCInstrInfo::getExtendableOp(MCInstrInfo const &MCII,
    194                                                    MCInst const &MCI) {
    195   const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
    196   return ((F >> HexagonII::ExtendableOpPos) & HexagonII::ExtendableOpMask);
    197 }
    198 
    199 MCOperand const &
    200 HexagonMCInstrInfo::getExtendableOperand(MCInstrInfo const &MCII,
    201                                          MCInst const &MCI) {
    202   unsigned O = HexagonMCInstrInfo::getExtendableOp(MCII, MCI);
    203   MCOperand const &MO = MCI.getOperand(O);
    204 
    205   assert((HexagonMCInstrInfo::isExtendable(MCII, MCI) ||
    206           HexagonMCInstrInfo::isExtended(MCII, MCI)) &&
    207          (MO.isImm() || MO.isExpr()));
    208   return (MO);
    209 }
    210 
    211 unsigned HexagonMCInstrInfo::getExtentAlignment(MCInstrInfo const &MCII,
    212                                                 MCInst const &MCI) {
    213   const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
    214   return ((F >> HexagonII::ExtentAlignPos) & HexagonII::ExtentAlignMask);
    215 }
    216 
    217 unsigned HexagonMCInstrInfo::getExtentBits(MCInstrInfo const &MCII,
    218                                            MCInst const &MCI) {
    219   const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
    220   return ((F >> HexagonII::ExtentBitsPos) & HexagonII::ExtentBitsMask);
    221 }
    222 
    223 // Return the max value that a constant extendable operand can have
    224 // without being extended.
    225 int HexagonMCInstrInfo::getMaxValue(MCInstrInfo const &MCII,
    226                                     MCInst const &MCI) {
    227   uint64_t const F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
    228   unsigned isSigned =
    229       (F >> HexagonII::ExtentSignedPos) & HexagonII::ExtentSignedMask;
    230   unsigned bits = (F >> HexagonII::ExtentBitsPos) & HexagonII::ExtentBitsMask;
    231 
    232   if (isSigned) // if value is signed
    233     return ~(-1U << (bits - 1));
    234   else
    235     return ~(-1U << bits);
    236 }
    237 
    238 // Return the min value that a constant extendable operand can have
    239 // without being extended.
    240 int HexagonMCInstrInfo::getMinValue(MCInstrInfo const &MCII,
    241                                     MCInst const &MCI) {
    242   uint64_t const F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
    243   unsigned isSigned =
    244       (F >> HexagonII::ExtentSignedPos) & HexagonII::ExtentSignedMask;
    245   unsigned bits = (F >> HexagonII::ExtentBitsPos) & HexagonII::ExtentBitsMask;
    246 
    247   if (isSigned) // if value is signed
    248     return -1U << (bits - 1);
    249   else
    250     return 0;
    251 }
    252 
    253 char const *HexagonMCInstrInfo::getName(MCInstrInfo const &MCII,
    254                                         MCInst const &MCI) {
    255   return MCII.getName(MCI.getOpcode());
    256 }
    257 
    258 unsigned short HexagonMCInstrInfo::getNewValueOp(MCInstrInfo const &MCII,
    259                                                  MCInst const &MCI) {
    260   const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
    261   return ((F >> HexagonII::NewValueOpPos) & HexagonII::NewValueOpMask);
    262 }
    263 
    264 MCOperand const &HexagonMCInstrInfo::getNewValueOperand(MCInstrInfo const &MCII,
    265                                                         MCInst const &MCI) {
    266   uint64_t const F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
    267   unsigned const O =
    268       (F >> HexagonII::NewValueOpPos) & HexagonII::NewValueOpMask;
    269   MCOperand const &MCO = MCI.getOperand(O);
    270 
    271   assert((HexagonMCInstrInfo::isNewValue(MCII, MCI) ||
    272           HexagonMCInstrInfo::hasNewValue(MCII, MCI)) &&
    273          MCO.isReg());
    274   return (MCO);
    275 }
    276 
    277 /// Return the new value or the newly produced value.
    278 unsigned short HexagonMCInstrInfo::getNewValueOp2(MCInstrInfo const &MCII,
    279                                                   MCInst const &MCI) {
    280   const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
    281   return ((F >> HexagonII::NewValueOpPos2) & HexagonII::NewValueOpMask2);
    282 }
    283 
    284 MCOperand const &
    285 HexagonMCInstrInfo::getNewValueOperand2(MCInstrInfo const &MCII,
    286                                         MCInst const &MCI) {
    287   unsigned O = HexagonMCInstrInfo::getNewValueOp2(MCII, MCI);
    288   MCOperand const &MCO = MCI.getOperand(O);
    289 
    290   assert((HexagonMCInstrInfo::isNewValue(MCII, MCI) ||
    291           HexagonMCInstrInfo::hasNewValue2(MCII, MCI)) &&
    292          MCO.isReg());
    293   return (MCO);
    294 }
    295 
    296 int HexagonMCInstrInfo::getSubTarget(MCInstrInfo const &MCII,
    297                                      MCInst const &MCI) {
    298   const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
    299 
    300   HexagonII::SubTarget Target = static_cast<HexagonII::SubTarget>(
    301       (F >> HexagonII::validSubTargetPos) & HexagonII::validSubTargetMask);
    302 
    303   switch (Target) {
    304   default:
    305     return Hexagon::ArchV4;
    306   case HexagonII::HasV5SubT:
    307     return Hexagon::ArchV5;
    308   }
    309 }
    310 
    311 // Return the Hexagon ISA class for the insn.
    312 unsigned HexagonMCInstrInfo::getType(MCInstrInfo const &MCII,
    313                                      MCInst const &MCI) {
    314   const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
    315 
    316   return ((F >> HexagonII::TypePos) & HexagonII::TypeMask);
    317 }
    318 
    319 unsigned HexagonMCInstrInfo::getUnits(MCInstrInfo const &MCII,
    320                                       MCSubtargetInfo const &STI,
    321                                       MCInst const &MCI) {
    322 
    323   const InstrItinerary *II = STI.getSchedModel().InstrItineraries;
    324   int SchedClass = HexagonMCInstrInfo::getDesc(MCII, MCI).getSchedClass();
    325   return ((II[SchedClass].FirstStage + HexagonStages)->getUnits());
    326 }
    327 
    328 bool HexagonMCInstrInfo::hasImmExt(MCInst const &MCI) {
    329   if (!HexagonMCInstrInfo::isBundle(MCI))
    330     return false;
    331 
    332   for (const auto &I : HexagonMCInstrInfo::bundleInstructions(MCI)) {
    333     auto MI = I.getInst();
    334     if (isImmext(*MI))
    335       return true;
    336   }
    337 
    338   return false;
    339 }
    340 
    341 bool HexagonMCInstrInfo::hasExtenderForIndex(MCInst const &MCB, size_t Index) {
    342   return extenderForIndex(MCB, Index) != nullptr;
    343 }
    344 
    345 // Return whether the instruction is a legal new-value producer.
    346 bool HexagonMCInstrInfo::hasNewValue(MCInstrInfo const &MCII,
    347                                      MCInst const &MCI) {
    348   const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
    349   return ((F >> HexagonII::hasNewValuePos) & HexagonII::hasNewValueMask);
    350 }
    351 
    352 /// Return whether the insn produces a second value.
    353 bool HexagonMCInstrInfo::hasNewValue2(MCInstrInfo const &MCII,
    354                                       MCInst const &MCI) {
    355   const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
    356   return ((F >> HexagonII::hasNewValuePos2) & HexagonII::hasNewValueMask2);
    357 }
    358 
    359 MCInst const &HexagonMCInstrInfo::instruction(MCInst const &MCB, size_t Index) {
    360   assert(isBundle(MCB));
    361   assert(Index < HEXAGON_PACKET_SIZE);
    362   return *MCB.getOperand(bundleInstructionsOffset + Index).getInst();
    363 }
    364 
    365 bool HexagonMCInstrInfo::isBundle(MCInst const &MCI) {
    366   auto Result = Hexagon::BUNDLE == MCI.getOpcode();
    367   assert(!Result || (MCI.size() > 0 && MCI.getOperand(0).isImm()));
    368   return Result;
    369 }
    370 
    371 // Return whether the insn is an actual insn.
    372 bool HexagonMCInstrInfo::isCanon(MCInstrInfo const &MCII, MCInst const &MCI) {
    373   return (!HexagonMCInstrInfo::getDesc(MCII, MCI).isPseudo() &&
    374           !HexagonMCInstrInfo::isPrefix(MCII, MCI) &&
    375           HexagonMCInstrInfo::getType(MCII, MCI) != HexagonII::TypeENDLOOP);
    376 }
    377 
    378 bool HexagonMCInstrInfo::isCompound(MCInstrInfo const &MCII,
    379                                     MCInst const &MCI) {
    380   return (getType(MCII, MCI) == HexagonII::TypeCOMPOUND);
    381 }
    382 
    383 bool HexagonMCInstrInfo::isDblRegForSubInst(unsigned Reg) {
    384   return ((Reg >= Hexagon::D0 && Reg <= Hexagon::D3) ||
    385           (Reg >= Hexagon::D8 && Reg <= Hexagon::D11));
    386 }
    387 
    388 bool HexagonMCInstrInfo::isDuplex(MCInstrInfo const &MCII, MCInst const &MCI) {
    389   return HexagonII::TypeDUPLEX == HexagonMCInstrInfo::getType(MCII, MCI);
    390 }
    391 
    392 // Return whether the instruction needs to be constant extended.
    393 // 1) Always return true if the instruction has 'isExtended' flag set.
    394 //
    395 // isExtendable:
    396 // 2) For immediate extended operands, return true only if the value is
    397 //    out-of-range.
    398 // 3) For global address, always return true.
    399 
    400 bool HexagonMCInstrInfo::isConstExtended(MCInstrInfo const &MCII,
    401                                          MCInst const &MCI) {
    402   if (HexagonMCInstrInfo::isExtended(MCII, MCI))
    403     return true;
    404   // Branch insns are handled as necessary by relaxation.
    405   if ((HexagonMCInstrInfo::getType(MCII, MCI) == HexagonII::TypeJ) ||
    406       (HexagonMCInstrInfo::getType(MCII, MCI) == HexagonII::TypeCOMPOUND &&
    407        HexagonMCInstrInfo::getDesc(MCII, MCI).isBranch()) ||
    408       (HexagonMCInstrInfo::getType(MCII, MCI) == HexagonII::TypeNV &&
    409        HexagonMCInstrInfo::getDesc(MCII, MCI).isBranch()))
    410     return false;
    411   // Otherwise loop instructions and other CR insts are handled by relaxation
    412   else if ((HexagonMCInstrInfo::getType(MCII, MCI) == HexagonII::TypeCR) &&
    413            (MCI.getOpcode() != Hexagon::C4_addipc))
    414     return false;
    415   else if (!HexagonMCInstrInfo::isExtendable(MCII, MCI))
    416     return false;
    417 
    418   MCOperand const &MO = HexagonMCInstrInfo::getExtendableOperand(MCII, MCI);
    419 
    420   // We could be using an instruction with an extendable immediate and shoehorn
    421   // a global address into it. If it is a global address it will be constant
    422   // extended. We do this for COMBINE.
    423   // We currently only handle isGlobal() because it is the only kind of
    424   // object we are going to end up with here for now.
    425   // In the future we probably should add isSymbol(), etc.
    426   assert(!MO.isImm());
    427   int64_t Value;
    428   if (!MO.getExpr()->evaluateAsAbsolute(Value))
    429     return true;
    430   int MinValue = HexagonMCInstrInfo::getMinValue(MCII, MCI);
    431   int MaxValue = HexagonMCInstrInfo::getMaxValue(MCII, MCI);
    432   return (MinValue > Value || Value > MaxValue);
    433 }
    434 
    435 bool HexagonMCInstrInfo::isExtendable(MCInstrInfo const &MCII,
    436                                       MCInst const &MCI) {
    437   uint64_t const F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
    438   return (F >> HexagonII::ExtendablePos) & HexagonII::ExtendableMask;
    439 }
    440 
    441 bool HexagonMCInstrInfo::isExtended(MCInstrInfo const &MCII,
    442                                     MCInst const &MCI) {
    443   uint64_t const F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
    444   return (F >> HexagonII::ExtendedPos) & HexagonII::ExtendedMask;
    445 }
    446 
    447 bool HexagonMCInstrInfo::isFloat(MCInstrInfo const &MCII, MCInst const &MCI) {
    448   const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
    449   return ((F >> HexagonII::FPPos) & HexagonII::FPMask);
    450 }
    451 
    452 bool HexagonMCInstrInfo::isImmext(MCInst const &MCI) {
    453   auto Op = MCI.getOpcode();
    454   return (Op == Hexagon::A4_ext_b || Op == Hexagon::A4_ext_c ||
    455           Op == Hexagon::A4_ext_g || Op == Hexagon::A4_ext);
    456 }
    457 
    458 bool HexagonMCInstrInfo::isInnerLoop(MCInst const &MCI) {
    459   assert(isBundle(MCI));
    460   int64_t Flags = MCI.getOperand(0).getImm();
    461   return (Flags & innerLoopMask) != 0;
    462 }
    463 
    464 bool HexagonMCInstrInfo::isIntReg(unsigned Reg) {
    465   return (Reg >= Hexagon::R0 && Reg <= Hexagon::R31);
    466 }
    467 
    468 bool HexagonMCInstrInfo::isIntRegForSubInst(unsigned Reg) {
    469   return ((Reg >= Hexagon::R0 && Reg <= Hexagon::R7) ||
    470           (Reg >= Hexagon::R16 && Reg <= Hexagon::R23));
    471 }
    472 
    473 // Return whether the insn is a new-value consumer.
    474 bool HexagonMCInstrInfo::isNewValue(MCInstrInfo const &MCII,
    475                                     MCInst const &MCI) {
    476   const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
    477   return ((F >> HexagonII::NewValuePos) & HexagonII::NewValueMask);
    478 }
    479 
    480 // Return whether the operand can be constant extended.
    481 bool HexagonMCInstrInfo::isOperandExtended(MCInstrInfo const &MCII,
    482                                            MCInst const &MCI,
    483                                            unsigned short OperandNum) {
    484   uint64_t const F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
    485   return ((F >> HexagonII::ExtendableOpPos) & HexagonII::ExtendableOpMask) ==
    486          OperandNum;
    487 }
    488 
    489 bool HexagonMCInstrInfo::isOuterLoop(MCInst const &MCI) {
    490   assert(isBundle(MCI));
    491   int64_t Flags = MCI.getOperand(0).getImm();
    492   return (Flags & outerLoopMask) != 0;
    493 }
    494 
    495 bool HexagonMCInstrInfo::isPredicated(MCInstrInfo const &MCII,
    496                                       MCInst const &MCI) {
    497   const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
    498   return ((F >> HexagonII::PredicatedPos) & HexagonII::PredicatedMask);
    499 }
    500 
    501 bool HexagonMCInstrInfo::isPredicateLate(MCInstrInfo const &MCII,
    502                                          MCInst const &MCI) {
    503   const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
    504   return (F >> HexagonII::PredicateLatePos & HexagonII::PredicateLateMask);
    505 }
    506 
    507 /// Return whether the insn is newly predicated.
    508 bool HexagonMCInstrInfo::isPredicatedNew(MCInstrInfo const &MCII,
    509                                          MCInst const &MCI) {
    510   const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
    511   return ((F >> HexagonII::PredicatedNewPos) & HexagonII::PredicatedNewMask);
    512 }
    513 
    514 bool HexagonMCInstrInfo::isPredicatedTrue(MCInstrInfo const &MCII,
    515                                           MCInst const &MCI) {
    516   const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
    517   return (
    518       !((F >> HexagonII::PredicatedFalsePos) & HexagonII::PredicatedFalseMask));
    519 }
    520 
    521 bool HexagonMCInstrInfo::isPredReg(unsigned Reg) {
    522   return (Reg >= Hexagon::P0 && Reg <= Hexagon::P3_0);
    523 }
    524 
    525 bool HexagonMCInstrInfo::isPrefix(MCInstrInfo const &MCII, MCInst const &MCI) {
    526   return (HexagonMCInstrInfo::getType(MCII, MCI) == HexagonII::TypePREFIX);
    527 }
    528 
    529 bool HexagonMCInstrInfo::isSolo(MCInstrInfo const &MCII, MCInst const &MCI) {
    530   const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
    531   return ((F >> HexagonII::SoloPos) & HexagonII::SoloMask);
    532 }
    533 
    534 bool HexagonMCInstrInfo::isMemReorderDisabled(MCInst const &MCI) {
    535   assert(isBundle(MCI));
    536   auto Flags = MCI.getOperand(0).getImm();
    537   return (Flags & memReorderDisabledMask) != 0;
    538 }
    539 
    540 bool HexagonMCInstrInfo::isMemStoreReorderEnabled(MCInst const &MCI) {
    541   assert(isBundle(MCI));
    542   auto Flags = MCI.getOperand(0).getImm();
    543   return (Flags & memStoreReorderEnabledMask) != 0;
    544 }
    545 
    546 bool HexagonMCInstrInfo::isSoloAX(MCInstrInfo const &MCII, MCInst const &MCI) {
    547   const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
    548   return ((F >> HexagonII::SoloAXPos) & HexagonII::SoloAXMask);
    549 }
    550 
    551 bool HexagonMCInstrInfo::isSoloAin1(MCInstrInfo const &MCII,
    552                                     MCInst const &MCI) {
    553   const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
    554   return ((F >> HexagonII::SoloAin1Pos) & HexagonII::SoloAin1Mask);
    555 }
    556 
    557 bool HexagonMCInstrInfo::isVector(MCInstrInfo const &MCII, MCInst const &MCI) {
    558   if ((getType(MCII, MCI) <= HexagonII::TypeCVI_LAST) &&
    559       (getType(MCII, MCI) >= HexagonII::TypeCVI_FIRST))
    560     return true;
    561   return false;
    562 }
    563 
    564 int64_t HexagonMCInstrInfo::minConstant(MCInst const &MCI, size_t Index) {
    565   auto Sentinal = static_cast<int64_t>(std::numeric_limits<uint32_t>::max())
    566                   << 8;
    567   if (MCI.size() <= Index)
    568     return Sentinal;
    569   MCOperand const &MCO = MCI.getOperand(Index);
    570   if (!MCO.isExpr())
    571     return Sentinal;
    572   int64_t Value;
    573   if (!MCO.getExpr()->evaluateAsAbsolute(Value))
    574     return Sentinal;
    575   return Value;
    576 }
    577 
    578 void HexagonMCInstrInfo::padEndloop(MCContext &Context, MCInst &MCB) {
    579   MCInst Nop;
    580   Nop.setOpcode(Hexagon::A2_nop);
    581   assert(isBundle(MCB));
    582   while ((HexagonMCInstrInfo::isInnerLoop(MCB) &&
    583           (HexagonMCInstrInfo::bundleSize(MCB) < HEXAGON_PACKET_INNER_SIZE)) ||
    584          ((HexagonMCInstrInfo::isOuterLoop(MCB) &&
    585            (HexagonMCInstrInfo::bundleSize(MCB) < HEXAGON_PACKET_OUTER_SIZE))))
    586     MCB.addOperand(MCOperand::createInst(new (Context) MCInst(Nop)));
    587 }
    588 
    589 bool HexagonMCInstrInfo::prefersSlot3(MCInstrInfo const &MCII,
    590                                       MCInst const &MCI) {
    591   if (HexagonMCInstrInfo::getType(MCII, MCI) == HexagonII::TypeCR)
    592     return false;
    593 
    594   unsigned SchedClass = HexagonMCInstrInfo::getDesc(MCII, MCI).getSchedClass();
    595   switch (SchedClass) {
    596   case Hexagon::Sched::ALU32_3op_tc_2_SLOT0123:
    597   case Hexagon::Sched::ALU64_tc_2_SLOT23:
    598   case Hexagon::Sched::ALU64_tc_3x_SLOT23:
    599   case Hexagon::Sched::M_tc_2_SLOT23:
    600   case Hexagon::Sched::M_tc_3x_SLOT23:
    601   case Hexagon::Sched::S_2op_tc_2_SLOT23:
    602   case Hexagon::Sched::S_3op_tc_2_SLOT23:
    603   case Hexagon::Sched::S_3op_tc_3x_SLOT23:
    604     return true;
    605   }
    606   return false;
    607 }
    608 
    609 void HexagonMCInstrInfo::replaceDuplex(MCContext &Context, MCInst &MCB,
    610                                        DuplexCandidate Candidate) {
    611   assert(Candidate.packetIndexI < MCB.size());
    612   assert(Candidate.packetIndexJ < MCB.size());
    613   assert(isBundle(MCB));
    614   MCInst *Duplex =
    615       deriveDuplex(Context, Candidate.iClass,
    616                    *MCB.getOperand(Candidate.packetIndexJ).getInst(),
    617                    *MCB.getOperand(Candidate.packetIndexI).getInst());
    618   assert(Duplex != nullptr);
    619   MCB.getOperand(Candidate.packetIndexI).setInst(Duplex);
    620   MCB.erase(MCB.begin() + Candidate.packetIndexJ);
    621 }
    622 
    623 void HexagonMCInstrInfo::setInnerLoop(MCInst &MCI) {
    624   assert(isBundle(MCI));
    625   MCOperand &Operand = MCI.getOperand(0);
    626   Operand.setImm(Operand.getImm() | innerLoopMask);
    627 }
    628 
    629 void HexagonMCInstrInfo::setMemReorderDisabled(MCInst &MCI) {
    630   assert(isBundle(MCI));
    631   MCOperand &Operand = MCI.getOperand(0);
    632   Operand.setImm(Operand.getImm() | memReorderDisabledMask);
    633   assert(isMemReorderDisabled(MCI));
    634 }
    635 
    636 void HexagonMCInstrInfo::setMemStoreReorderEnabled(MCInst &MCI) {
    637   assert(isBundle(MCI));
    638   MCOperand &Operand = MCI.getOperand(0);
    639   Operand.setImm(Operand.getImm() | memStoreReorderEnabledMask);
    640   assert(isMemStoreReorderEnabled(MCI));
    641 }
    642 
    643 void HexagonMCInstrInfo::setOuterLoop(MCInst &MCI) {
    644   assert(isBundle(MCI));
    645   MCOperand &Operand = MCI.getOperand(0);
    646   Operand.setImm(Operand.getImm() | outerLoopMask);
    647 }
    648 }
    649