Home | History | Annotate | Download | only in Analysis
      1 //===- Loads.cpp - Local load analysis ------------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines simple local analyses for load instructions.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "llvm/Analysis/Loads.h"
     15 #include "llvm/Analysis/AliasAnalysis.h"
     16 #include "llvm/Analysis/ValueTracking.h"
     17 #include "llvm/IR/DataLayout.h"
     18 #include "llvm/IR/GlobalAlias.h"
     19 #include "llvm/IR/GlobalVariable.h"
     20 #include "llvm/IR/IntrinsicInst.h"
     21 #include "llvm/IR/LLVMContext.h"
     22 #include "llvm/IR/Module.h"
     23 #include "llvm/IR/Operator.h"
     24 using namespace llvm;
     25 
     26 /// \brief Test if A and B will obviously have the same value.
     27 ///
     28 /// This includes recognizing that %t0 and %t1 will have the same
     29 /// value in code like this:
     30 /// \code
     31 ///   %t0 = getelementptr \@a, 0, 3
     32 ///   store i32 0, i32* %t0
     33 ///   %t1 = getelementptr \@a, 0, 3
     34 ///   %t2 = load i32* %t1
     35 /// \endcode
     36 ///
     37 static bool AreEquivalentAddressValues(const Value *A, const Value *B) {
     38   // Test if the values are trivially equivalent.
     39   if (A == B)
     40     return true;
     41 
     42   // Test if the values come from identical arithmetic instructions.
     43   // Use isIdenticalToWhenDefined instead of isIdenticalTo because
     44   // this function is only used when one address use dominates the
     45   // other, which means that they'll always either have the same
     46   // value or one of them will have an undefined value.
     47   if (isa<BinaryOperator>(A) || isa<CastInst>(A) || isa<PHINode>(A) ||
     48       isa<GetElementPtrInst>(A))
     49     if (const Instruction *BI = dyn_cast<Instruction>(B))
     50       if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI))
     51         return true;
     52 
     53   // Otherwise they may not be equivalent.
     54   return false;
     55 }
     56 
     57 /// \brief Check if executing a load of this pointer value cannot trap.
     58 ///
     59 /// If it is not obviously safe to load from the specified pointer, we do
     60 /// a quick local scan of the basic block containing \c ScanFrom, to determine
     61 /// if the address is already accessed.
     62 ///
     63 /// This uses the pointee type to determine how many bytes need to be safe to
     64 /// load from the pointer.
     65 bool llvm::isSafeToLoadUnconditionally(Value *V, Instruction *ScanFrom,
     66                                        unsigned Align) {
     67   const DataLayout &DL = ScanFrom->getModule()->getDataLayout();
     68 
     69   // Zero alignment means that the load has the ABI alignment for the target
     70   if (Align == 0)
     71     Align = DL.getABITypeAlignment(V->getType()->getPointerElementType());
     72   assert(isPowerOf2_32(Align));
     73 
     74   int64_t ByteOffset = 0;
     75   Value *Base = V;
     76   Base = GetPointerBaseWithConstantOffset(V, ByteOffset, DL);
     77 
     78   if (ByteOffset < 0) // out of bounds
     79     return false;
     80 
     81   Type *BaseType = nullptr;
     82   unsigned BaseAlign = 0;
     83   if (const AllocaInst *AI = dyn_cast<AllocaInst>(Base)) {
     84     // An alloca is safe to load from as load as it is suitably aligned.
     85     BaseType = AI->getAllocatedType();
     86     BaseAlign = AI->getAlignment();
     87   } else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(Base)) {
     88     // Global variables are not necessarily safe to load from if they are
     89     // overridden. Their size may change or they may be weak and require a test
     90     // to determine if they were in fact provided.
     91     if (!GV->mayBeOverridden()) {
     92       BaseType = GV->getType()->getElementType();
     93       BaseAlign = GV->getAlignment();
     94     }
     95   }
     96 
     97   PointerType *AddrTy = cast<PointerType>(V->getType());
     98   uint64_t LoadSize = DL.getTypeStoreSize(AddrTy->getElementType());
     99 
    100   // If we found a base allocated type from either an alloca or global variable,
    101   // try to see if we are definitively within the allocated region. We need to
    102   // know the size of the base type and the loaded type to do anything in this
    103   // case.
    104   if (BaseType && BaseType->isSized()) {
    105     if (BaseAlign == 0)
    106       BaseAlign = DL.getPrefTypeAlignment(BaseType);
    107 
    108     if (Align <= BaseAlign) {
    109       // Check if the load is within the bounds of the underlying object.
    110       if (ByteOffset + LoadSize <= DL.getTypeAllocSize(BaseType) &&
    111           ((ByteOffset % Align) == 0))
    112         return true;
    113     }
    114   }
    115 
    116   // Otherwise, be a little bit aggressive by scanning the local block where we
    117   // want to check to see if the pointer is already being loaded or stored
    118   // from/to.  If so, the previous load or store would have already trapped,
    119   // so there is no harm doing an extra load (also, CSE will later eliminate
    120   // the load entirely).
    121   BasicBlock::iterator BBI = ScanFrom->getIterator(),
    122                        E = ScanFrom->getParent()->begin();
    123 
    124   // We can at least always strip pointer casts even though we can't use the
    125   // base here.
    126   V = V->stripPointerCasts();
    127 
    128   while (BBI != E) {
    129     --BBI;
    130 
    131     // If we see a free or a call which may write to memory (i.e. which might do
    132     // a free) the pointer could be marked invalid.
    133     if (isa<CallInst>(BBI) && BBI->mayWriteToMemory() &&
    134         !isa<DbgInfoIntrinsic>(BBI))
    135       return false;
    136 
    137     Value *AccessedPtr;
    138     unsigned AccessedAlign;
    139     if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
    140       AccessedPtr = LI->getPointerOperand();
    141       AccessedAlign = LI->getAlignment();
    142     } else if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) {
    143       AccessedPtr = SI->getPointerOperand();
    144       AccessedAlign = SI->getAlignment();
    145     } else
    146       continue;
    147 
    148     Type *AccessedTy = AccessedPtr->getType()->getPointerElementType();
    149     if (AccessedAlign == 0)
    150       AccessedAlign = DL.getABITypeAlignment(AccessedTy);
    151     if (AccessedAlign < Align)
    152       continue;
    153 
    154     // Handle trivial cases.
    155     if (AccessedPtr == V)
    156       return true;
    157 
    158     if (AreEquivalentAddressValues(AccessedPtr->stripPointerCasts(), V) &&
    159         LoadSize <= DL.getTypeStoreSize(AccessedTy))
    160       return true;
    161   }
    162   return false;
    163 }
    164 
    165 /// DefMaxInstsToScan - the default number of maximum instructions
    166 /// to scan in the block, used by FindAvailableLoadedValue().
    167 /// FindAvailableLoadedValue() was introduced in r60148, to improve jump
    168 /// threading in part by eliminating partially redundant loads.
    169 /// At that point, the value of MaxInstsToScan was already set to '6'
    170 /// without documented explanation.
    171 cl::opt<unsigned>
    172 llvm::DefMaxInstsToScan("available-load-scan-limit", cl::init(6), cl::Hidden,
    173   cl::desc("Use this to specify the default maximum number of instructions "
    174            "to scan backward from a given instruction, when searching for "
    175            "available loaded value"));
    176 
    177 /// \brief Scan the ScanBB block backwards to see if we have the value at the
    178 /// memory address *Ptr locally available within a small number of instructions.
    179 ///
    180 /// The scan starts from \c ScanFrom. \c MaxInstsToScan specifies the maximum
    181 /// instructions to scan in the block. If it is set to \c 0, it will scan the whole
    182 /// block.
    183 ///
    184 /// If the value is available, this function returns it. If not, it returns the
    185 /// iterator for the last validated instruction that the value would be live
    186 /// through. If we scanned the entire block and didn't find something that
    187 /// invalidates \c *Ptr or provides it, \c ScanFrom is left at the last
    188 /// instruction processed and this returns null.
    189 ///
    190 /// You can also optionally specify an alias analysis implementation, which
    191 /// makes this more precise.
    192 ///
    193 /// If \c AATags is non-null and a load or store is found, the AA tags from the
    194 /// load or store are recorded there. If there are no AA tags or if no access is
    195 /// found, it is left unmodified.
    196 Value *llvm::FindAvailableLoadedValue(Value *Ptr, BasicBlock *ScanBB,
    197                                       BasicBlock::iterator &ScanFrom,
    198                                       unsigned MaxInstsToScan,
    199                                       AliasAnalysis *AA, AAMDNodes *AATags) {
    200   if (MaxInstsToScan == 0)
    201     MaxInstsToScan = ~0U;
    202 
    203   Type *AccessTy = cast<PointerType>(Ptr->getType())->getElementType();
    204 
    205   const DataLayout &DL = ScanBB->getModule()->getDataLayout();
    206 
    207   // Try to get the store size for the type.
    208   uint64_t AccessSize = DL.getTypeStoreSize(AccessTy);
    209 
    210   Value *StrippedPtr = Ptr->stripPointerCasts();
    211 
    212   while (ScanFrom != ScanBB->begin()) {
    213     // We must ignore debug info directives when counting (otherwise they
    214     // would affect codegen).
    215     Instruction *Inst = &*--ScanFrom;
    216     if (isa<DbgInfoIntrinsic>(Inst))
    217       continue;
    218 
    219     // Restore ScanFrom to expected value in case next test succeeds
    220     ScanFrom++;
    221 
    222     // Don't scan huge blocks.
    223     if (MaxInstsToScan-- == 0)
    224       return nullptr;
    225 
    226     --ScanFrom;
    227     // If this is a load of Ptr, the loaded value is available.
    228     // (This is true even if the load is volatile or atomic, although
    229     // those cases are unlikely.)
    230     if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
    231       if (AreEquivalentAddressValues(
    232               LI->getPointerOperand()->stripPointerCasts(), StrippedPtr) &&
    233           CastInst::isBitOrNoopPointerCastable(LI->getType(), AccessTy, DL)) {
    234         if (AATags)
    235           LI->getAAMetadata(*AATags);
    236         return LI;
    237       }
    238 
    239     if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
    240       Value *StorePtr = SI->getPointerOperand()->stripPointerCasts();
    241       // If this is a store through Ptr, the value is available!
    242       // (This is true even if the store is volatile or atomic, although
    243       // those cases are unlikely.)
    244       if (AreEquivalentAddressValues(StorePtr, StrippedPtr) &&
    245           CastInst::isBitOrNoopPointerCastable(SI->getValueOperand()->getType(),
    246                                                AccessTy, DL)) {
    247         if (AATags)
    248           SI->getAAMetadata(*AATags);
    249         return SI->getOperand(0);
    250       }
    251 
    252       // If both StrippedPtr and StorePtr reach all the way to an alloca or
    253       // global and they are different, ignore the store. This is a trivial form
    254       // of alias analysis that is important for reg2mem'd code.
    255       if ((isa<AllocaInst>(StrippedPtr) || isa<GlobalVariable>(StrippedPtr)) &&
    256           (isa<AllocaInst>(StorePtr) || isa<GlobalVariable>(StorePtr)) &&
    257           StrippedPtr != StorePtr)
    258         continue;
    259 
    260       // If we have alias analysis and it says the store won't modify the loaded
    261       // value, ignore the store.
    262       if (AA && (AA->getModRefInfo(SI, StrippedPtr, AccessSize) & MRI_Mod) == 0)
    263         continue;
    264 
    265       // Otherwise the store that may or may not alias the pointer, bail out.
    266       ++ScanFrom;
    267       return nullptr;
    268     }
    269 
    270     // If this is some other instruction that may clobber Ptr, bail out.
    271     if (Inst->mayWriteToMemory()) {
    272       // If alias analysis claims that it really won't modify the load,
    273       // ignore it.
    274       if (AA &&
    275           (AA->getModRefInfo(Inst, StrippedPtr, AccessSize) & MRI_Mod) == 0)
    276         continue;
    277 
    278       // May modify the pointer, bail out.
    279       ++ScanFrom;
    280       return nullptr;
    281     }
    282   }
    283 
    284   // Got to the start of the block, we didn't find it, but are done for this
    285   // block.
    286   return nullptr;
    287 }
    288