1 //===-- DependenceAnalysis.cpp - DA Implementation --------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // DependenceAnalysis is an LLVM pass that analyses dependences between memory 11 // accesses. Currently, it is an (incomplete) implementation of the approach 12 // described in 13 // 14 // Practical Dependence Testing 15 // Goff, Kennedy, Tseng 16 // PLDI 1991 17 // 18 // There's a single entry point that analyzes the dependence between a pair 19 // of memory references in a function, returning either NULL, for no dependence, 20 // or a more-or-less detailed description of the dependence between them. 21 // 22 // Currently, the implementation cannot propagate constraints between 23 // coupled RDIV subscripts and lacks a multi-subscript MIV test. 24 // Both of these are conservative weaknesses; 25 // that is, not a source of correctness problems. 26 // 27 // The implementation depends on the GEP instruction to differentiate 28 // subscripts. Since Clang linearizes some array subscripts, the dependence 29 // analysis is using SCEV->delinearize to recover the representation of multiple 30 // subscripts, and thus avoid the more expensive and less precise MIV tests. The 31 // delinearization is controlled by the flag -da-delinearize. 32 // 33 // We should pay some careful attention to the possibility of integer overflow 34 // in the implementation of the various tests. This could happen with Add, 35 // Subtract, or Multiply, with both APInt's and SCEV's. 36 // 37 // Some non-linear subscript pairs can be handled by the GCD test 38 // (and perhaps other tests). 39 // Should explore how often these things occur. 40 // 41 // Finally, it seems like certain test cases expose weaknesses in the SCEV 42 // simplification, especially in the handling of sign and zero extensions. 43 // It could be useful to spend time exploring these. 44 // 45 // Please note that this is work in progress and the interface is subject to 46 // change. 47 // 48 //===----------------------------------------------------------------------===// 49 // // 50 // In memory of Ken Kennedy, 1945 - 2007 // 51 // // 52 //===----------------------------------------------------------------------===// 53 54 #include "llvm/Analysis/DependenceAnalysis.h" 55 #include "llvm/ADT/STLExtras.h" 56 #include "llvm/ADT/Statistic.h" 57 #include "llvm/Analysis/AliasAnalysis.h" 58 #include "llvm/Analysis/LoopInfo.h" 59 #include "llvm/Analysis/ScalarEvolution.h" 60 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 61 #include "llvm/Analysis/ValueTracking.h" 62 #include "llvm/IR/InstIterator.h" 63 #include "llvm/IR/Module.h" 64 #include "llvm/IR/Operator.h" 65 #include "llvm/Support/CommandLine.h" 66 #include "llvm/Support/Debug.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/raw_ostream.h" 69 70 using namespace llvm; 71 72 #define DEBUG_TYPE "da" 73 74 //===----------------------------------------------------------------------===// 75 // statistics 76 77 STATISTIC(TotalArrayPairs, "Array pairs tested"); 78 STATISTIC(SeparableSubscriptPairs, "Separable subscript pairs"); 79 STATISTIC(CoupledSubscriptPairs, "Coupled subscript pairs"); 80 STATISTIC(NonlinearSubscriptPairs, "Nonlinear subscript pairs"); 81 STATISTIC(ZIVapplications, "ZIV applications"); 82 STATISTIC(ZIVindependence, "ZIV independence"); 83 STATISTIC(StrongSIVapplications, "Strong SIV applications"); 84 STATISTIC(StrongSIVsuccesses, "Strong SIV successes"); 85 STATISTIC(StrongSIVindependence, "Strong SIV independence"); 86 STATISTIC(WeakCrossingSIVapplications, "Weak-Crossing SIV applications"); 87 STATISTIC(WeakCrossingSIVsuccesses, "Weak-Crossing SIV successes"); 88 STATISTIC(WeakCrossingSIVindependence, "Weak-Crossing SIV independence"); 89 STATISTIC(ExactSIVapplications, "Exact SIV applications"); 90 STATISTIC(ExactSIVsuccesses, "Exact SIV successes"); 91 STATISTIC(ExactSIVindependence, "Exact SIV independence"); 92 STATISTIC(WeakZeroSIVapplications, "Weak-Zero SIV applications"); 93 STATISTIC(WeakZeroSIVsuccesses, "Weak-Zero SIV successes"); 94 STATISTIC(WeakZeroSIVindependence, "Weak-Zero SIV independence"); 95 STATISTIC(ExactRDIVapplications, "Exact RDIV applications"); 96 STATISTIC(ExactRDIVindependence, "Exact RDIV independence"); 97 STATISTIC(SymbolicRDIVapplications, "Symbolic RDIV applications"); 98 STATISTIC(SymbolicRDIVindependence, "Symbolic RDIV independence"); 99 STATISTIC(DeltaApplications, "Delta applications"); 100 STATISTIC(DeltaSuccesses, "Delta successes"); 101 STATISTIC(DeltaIndependence, "Delta independence"); 102 STATISTIC(DeltaPropagations, "Delta propagations"); 103 STATISTIC(GCDapplications, "GCD applications"); 104 STATISTIC(GCDsuccesses, "GCD successes"); 105 STATISTIC(GCDindependence, "GCD independence"); 106 STATISTIC(BanerjeeApplications, "Banerjee applications"); 107 STATISTIC(BanerjeeIndependence, "Banerjee independence"); 108 STATISTIC(BanerjeeSuccesses, "Banerjee successes"); 109 110 static cl::opt<bool> 111 Delinearize("da-delinearize", cl::init(false), cl::Hidden, cl::ZeroOrMore, 112 cl::desc("Try to delinearize array references.")); 113 114 //===----------------------------------------------------------------------===// 115 // basics 116 117 INITIALIZE_PASS_BEGIN(DependenceAnalysis, "da", 118 "Dependence Analysis", true, true) 119 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 120 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 121 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 122 INITIALIZE_PASS_END(DependenceAnalysis, "da", 123 "Dependence Analysis", true, true) 124 125 char DependenceAnalysis::ID = 0; 126 127 128 FunctionPass *llvm::createDependenceAnalysisPass() { 129 return new DependenceAnalysis(); 130 } 131 132 133 bool DependenceAnalysis::runOnFunction(Function &F) { 134 this->F = &F; 135 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 136 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 137 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 138 return false; 139 } 140 141 142 void DependenceAnalysis::releaseMemory() { 143 } 144 145 146 void DependenceAnalysis::getAnalysisUsage(AnalysisUsage &AU) const { 147 AU.setPreservesAll(); 148 AU.addRequiredTransitive<AAResultsWrapperPass>(); 149 AU.addRequiredTransitive<ScalarEvolutionWrapperPass>(); 150 AU.addRequiredTransitive<LoopInfoWrapperPass>(); 151 } 152 153 154 // Used to test the dependence analyzer. 155 // Looks through the function, noting loads and stores. 156 // Calls depends() on every possible pair and prints out the result. 157 // Ignores all other instructions. 158 static 159 void dumpExampleDependence(raw_ostream &OS, Function *F, 160 DependenceAnalysis *DA) { 161 for (inst_iterator SrcI = inst_begin(F), SrcE = inst_end(F); 162 SrcI != SrcE; ++SrcI) { 163 if (isa<StoreInst>(*SrcI) || isa<LoadInst>(*SrcI)) { 164 for (inst_iterator DstI = SrcI, DstE = inst_end(F); 165 DstI != DstE; ++DstI) { 166 if (isa<StoreInst>(*DstI) || isa<LoadInst>(*DstI)) { 167 OS << "da analyze - "; 168 if (auto D = DA->depends(&*SrcI, &*DstI, true)) { 169 D->dump(OS); 170 for (unsigned Level = 1; Level <= D->getLevels(); Level++) { 171 if (D->isSplitable(Level)) { 172 OS << "da analyze - split level = " << Level; 173 OS << ", iteration = " << *DA->getSplitIteration(*D, Level); 174 OS << "!\n"; 175 } 176 } 177 } 178 else 179 OS << "none!\n"; 180 } 181 } 182 } 183 } 184 } 185 186 187 void DependenceAnalysis::print(raw_ostream &OS, const Module*) const { 188 dumpExampleDependence(OS, F, const_cast<DependenceAnalysis *>(this)); 189 } 190 191 //===----------------------------------------------------------------------===// 192 // Dependence methods 193 194 // Returns true if this is an input dependence. 195 bool Dependence::isInput() const { 196 return Src->mayReadFromMemory() && Dst->mayReadFromMemory(); 197 } 198 199 200 // Returns true if this is an output dependence. 201 bool Dependence::isOutput() const { 202 return Src->mayWriteToMemory() && Dst->mayWriteToMemory(); 203 } 204 205 206 // Returns true if this is an flow (aka true) dependence. 207 bool Dependence::isFlow() const { 208 return Src->mayWriteToMemory() && Dst->mayReadFromMemory(); 209 } 210 211 212 // Returns true if this is an anti dependence. 213 bool Dependence::isAnti() const { 214 return Src->mayReadFromMemory() && Dst->mayWriteToMemory(); 215 } 216 217 218 // Returns true if a particular level is scalar; that is, 219 // if no subscript in the source or destination mention the induction 220 // variable associated with the loop at this level. 221 // Leave this out of line, so it will serve as a virtual method anchor 222 bool Dependence::isScalar(unsigned level) const { 223 return false; 224 } 225 226 227 //===----------------------------------------------------------------------===// 228 // FullDependence methods 229 230 FullDependence::FullDependence(Instruction *Source, Instruction *Destination, 231 bool PossiblyLoopIndependent, 232 unsigned CommonLevels) 233 : Dependence(Source, Destination), Levels(CommonLevels), 234 LoopIndependent(PossiblyLoopIndependent) { 235 Consistent = true; 236 if (CommonLevels) 237 DV = make_unique<DVEntry[]>(CommonLevels); 238 } 239 240 // The rest are simple getters that hide the implementation. 241 242 // getDirection - Returns the direction associated with a particular level. 243 unsigned FullDependence::getDirection(unsigned Level) const { 244 assert(0 < Level && Level <= Levels && "Level out of range"); 245 return DV[Level - 1].Direction; 246 } 247 248 249 // Returns the distance (or NULL) associated with a particular level. 250 const SCEV *FullDependence::getDistance(unsigned Level) const { 251 assert(0 < Level && Level <= Levels && "Level out of range"); 252 return DV[Level - 1].Distance; 253 } 254 255 256 // Returns true if a particular level is scalar; that is, 257 // if no subscript in the source or destination mention the induction 258 // variable associated with the loop at this level. 259 bool FullDependence::isScalar(unsigned Level) const { 260 assert(0 < Level && Level <= Levels && "Level out of range"); 261 return DV[Level - 1].Scalar; 262 } 263 264 265 // Returns true if peeling the first iteration from this loop 266 // will break this dependence. 267 bool FullDependence::isPeelFirst(unsigned Level) const { 268 assert(0 < Level && Level <= Levels && "Level out of range"); 269 return DV[Level - 1].PeelFirst; 270 } 271 272 273 // Returns true if peeling the last iteration from this loop 274 // will break this dependence. 275 bool FullDependence::isPeelLast(unsigned Level) const { 276 assert(0 < Level && Level <= Levels && "Level out of range"); 277 return DV[Level - 1].PeelLast; 278 } 279 280 281 // Returns true if splitting this loop will break the dependence. 282 bool FullDependence::isSplitable(unsigned Level) const { 283 assert(0 < Level && Level <= Levels && "Level out of range"); 284 return DV[Level - 1].Splitable; 285 } 286 287 288 //===----------------------------------------------------------------------===// 289 // DependenceAnalysis::Constraint methods 290 291 // If constraint is a point <X, Y>, returns X. 292 // Otherwise assert. 293 const SCEV *DependenceAnalysis::Constraint::getX() const { 294 assert(Kind == Point && "Kind should be Point"); 295 return A; 296 } 297 298 299 // If constraint is a point <X, Y>, returns Y. 300 // Otherwise assert. 301 const SCEV *DependenceAnalysis::Constraint::getY() const { 302 assert(Kind == Point && "Kind should be Point"); 303 return B; 304 } 305 306 307 // If constraint is a line AX + BY = C, returns A. 308 // Otherwise assert. 309 const SCEV *DependenceAnalysis::Constraint::getA() const { 310 assert((Kind == Line || Kind == Distance) && 311 "Kind should be Line (or Distance)"); 312 return A; 313 } 314 315 316 // If constraint is a line AX + BY = C, returns B. 317 // Otherwise assert. 318 const SCEV *DependenceAnalysis::Constraint::getB() const { 319 assert((Kind == Line || Kind == Distance) && 320 "Kind should be Line (or Distance)"); 321 return B; 322 } 323 324 325 // If constraint is a line AX + BY = C, returns C. 326 // Otherwise assert. 327 const SCEV *DependenceAnalysis::Constraint::getC() const { 328 assert((Kind == Line || Kind == Distance) && 329 "Kind should be Line (or Distance)"); 330 return C; 331 } 332 333 334 // If constraint is a distance, returns D. 335 // Otherwise assert. 336 const SCEV *DependenceAnalysis::Constraint::getD() const { 337 assert(Kind == Distance && "Kind should be Distance"); 338 return SE->getNegativeSCEV(C); 339 } 340 341 342 // Returns the loop associated with this constraint. 343 const Loop *DependenceAnalysis::Constraint::getAssociatedLoop() const { 344 assert((Kind == Distance || Kind == Line || Kind == Point) && 345 "Kind should be Distance, Line, or Point"); 346 return AssociatedLoop; 347 } 348 349 350 void DependenceAnalysis::Constraint::setPoint(const SCEV *X, 351 const SCEV *Y, 352 const Loop *CurLoop) { 353 Kind = Point; 354 A = X; 355 B = Y; 356 AssociatedLoop = CurLoop; 357 } 358 359 360 void DependenceAnalysis::Constraint::setLine(const SCEV *AA, 361 const SCEV *BB, 362 const SCEV *CC, 363 const Loop *CurLoop) { 364 Kind = Line; 365 A = AA; 366 B = BB; 367 C = CC; 368 AssociatedLoop = CurLoop; 369 } 370 371 372 void DependenceAnalysis::Constraint::setDistance(const SCEV *D, 373 const Loop *CurLoop) { 374 Kind = Distance; 375 A = SE->getOne(D->getType()); 376 B = SE->getNegativeSCEV(A); 377 C = SE->getNegativeSCEV(D); 378 AssociatedLoop = CurLoop; 379 } 380 381 382 void DependenceAnalysis::Constraint::setEmpty() { 383 Kind = Empty; 384 } 385 386 387 void DependenceAnalysis::Constraint::setAny(ScalarEvolution *NewSE) { 388 SE = NewSE; 389 Kind = Any; 390 } 391 392 393 // For debugging purposes. Dumps the constraint out to OS. 394 void DependenceAnalysis::Constraint::dump(raw_ostream &OS) const { 395 if (isEmpty()) 396 OS << " Empty\n"; 397 else if (isAny()) 398 OS << " Any\n"; 399 else if (isPoint()) 400 OS << " Point is <" << *getX() << ", " << *getY() << ">\n"; 401 else if (isDistance()) 402 OS << " Distance is " << *getD() << 403 " (" << *getA() << "*X + " << *getB() << "*Y = " << *getC() << ")\n"; 404 else if (isLine()) 405 OS << " Line is " << *getA() << "*X + " << 406 *getB() << "*Y = " << *getC() << "\n"; 407 else 408 llvm_unreachable("unknown constraint type in Constraint::dump"); 409 } 410 411 412 // Updates X with the intersection 413 // of the Constraints X and Y. Returns true if X has changed. 414 // Corresponds to Figure 4 from the paper 415 // 416 // Practical Dependence Testing 417 // Goff, Kennedy, Tseng 418 // PLDI 1991 419 bool DependenceAnalysis::intersectConstraints(Constraint *X, 420 const Constraint *Y) { 421 ++DeltaApplications; 422 DEBUG(dbgs() << "\tintersect constraints\n"); 423 DEBUG(dbgs() << "\t X ="; X->dump(dbgs())); 424 DEBUG(dbgs() << "\t Y ="; Y->dump(dbgs())); 425 assert(!Y->isPoint() && "Y must not be a Point"); 426 if (X->isAny()) { 427 if (Y->isAny()) 428 return false; 429 *X = *Y; 430 return true; 431 } 432 if (X->isEmpty()) 433 return false; 434 if (Y->isEmpty()) { 435 X->setEmpty(); 436 return true; 437 } 438 439 if (X->isDistance() && Y->isDistance()) { 440 DEBUG(dbgs() << "\t intersect 2 distances\n"); 441 if (isKnownPredicate(CmpInst::ICMP_EQ, X->getD(), Y->getD())) 442 return false; 443 if (isKnownPredicate(CmpInst::ICMP_NE, X->getD(), Y->getD())) { 444 X->setEmpty(); 445 ++DeltaSuccesses; 446 return true; 447 } 448 // Hmmm, interesting situation. 449 // I guess if either is constant, keep it and ignore the other. 450 if (isa<SCEVConstant>(Y->getD())) { 451 *X = *Y; 452 return true; 453 } 454 return false; 455 } 456 457 // At this point, the pseudo-code in Figure 4 of the paper 458 // checks if (X->isPoint() && Y->isPoint()). 459 // This case can't occur in our implementation, 460 // since a Point can only arise as the result of intersecting 461 // two Line constraints, and the right-hand value, Y, is never 462 // the result of an intersection. 463 assert(!(X->isPoint() && Y->isPoint()) && 464 "We shouldn't ever see X->isPoint() && Y->isPoint()"); 465 466 if (X->isLine() && Y->isLine()) { 467 DEBUG(dbgs() << "\t intersect 2 lines\n"); 468 const SCEV *Prod1 = SE->getMulExpr(X->getA(), Y->getB()); 469 const SCEV *Prod2 = SE->getMulExpr(X->getB(), Y->getA()); 470 if (isKnownPredicate(CmpInst::ICMP_EQ, Prod1, Prod2)) { 471 // slopes are equal, so lines are parallel 472 DEBUG(dbgs() << "\t\tsame slope\n"); 473 Prod1 = SE->getMulExpr(X->getC(), Y->getB()); 474 Prod2 = SE->getMulExpr(X->getB(), Y->getC()); 475 if (isKnownPredicate(CmpInst::ICMP_EQ, Prod1, Prod2)) 476 return false; 477 if (isKnownPredicate(CmpInst::ICMP_NE, Prod1, Prod2)) { 478 X->setEmpty(); 479 ++DeltaSuccesses; 480 return true; 481 } 482 return false; 483 } 484 if (isKnownPredicate(CmpInst::ICMP_NE, Prod1, Prod2)) { 485 // slopes differ, so lines intersect 486 DEBUG(dbgs() << "\t\tdifferent slopes\n"); 487 const SCEV *C1B2 = SE->getMulExpr(X->getC(), Y->getB()); 488 const SCEV *C1A2 = SE->getMulExpr(X->getC(), Y->getA()); 489 const SCEV *C2B1 = SE->getMulExpr(Y->getC(), X->getB()); 490 const SCEV *C2A1 = SE->getMulExpr(Y->getC(), X->getA()); 491 const SCEV *A1B2 = SE->getMulExpr(X->getA(), Y->getB()); 492 const SCEV *A2B1 = SE->getMulExpr(Y->getA(), X->getB()); 493 const SCEVConstant *C1A2_C2A1 = 494 dyn_cast<SCEVConstant>(SE->getMinusSCEV(C1A2, C2A1)); 495 const SCEVConstant *C1B2_C2B1 = 496 dyn_cast<SCEVConstant>(SE->getMinusSCEV(C1B2, C2B1)); 497 const SCEVConstant *A1B2_A2B1 = 498 dyn_cast<SCEVConstant>(SE->getMinusSCEV(A1B2, A2B1)); 499 const SCEVConstant *A2B1_A1B2 = 500 dyn_cast<SCEVConstant>(SE->getMinusSCEV(A2B1, A1B2)); 501 if (!C1B2_C2B1 || !C1A2_C2A1 || 502 !A1B2_A2B1 || !A2B1_A1B2) 503 return false; 504 APInt Xtop = C1B2_C2B1->getAPInt(); 505 APInt Xbot = A1B2_A2B1->getAPInt(); 506 APInt Ytop = C1A2_C2A1->getAPInt(); 507 APInt Ybot = A2B1_A1B2->getAPInt(); 508 DEBUG(dbgs() << "\t\tXtop = " << Xtop << "\n"); 509 DEBUG(dbgs() << "\t\tXbot = " << Xbot << "\n"); 510 DEBUG(dbgs() << "\t\tYtop = " << Ytop << "\n"); 511 DEBUG(dbgs() << "\t\tYbot = " << Ybot << "\n"); 512 APInt Xq = Xtop; // these need to be initialized, even 513 APInt Xr = Xtop; // though they're just going to be overwritten 514 APInt::sdivrem(Xtop, Xbot, Xq, Xr); 515 APInt Yq = Ytop; 516 APInt Yr = Ytop; 517 APInt::sdivrem(Ytop, Ybot, Yq, Yr); 518 if (Xr != 0 || Yr != 0) { 519 X->setEmpty(); 520 ++DeltaSuccesses; 521 return true; 522 } 523 DEBUG(dbgs() << "\t\tX = " << Xq << ", Y = " << Yq << "\n"); 524 if (Xq.slt(0) || Yq.slt(0)) { 525 X->setEmpty(); 526 ++DeltaSuccesses; 527 return true; 528 } 529 if (const SCEVConstant *CUB = 530 collectConstantUpperBound(X->getAssociatedLoop(), Prod1->getType())) { 531 APInt UpperBound = CUB->getAPInt(); 532 DEBUG(dbgs() << "\t\tupper bound = " << UpperBound << "\n"); 533 if (Xq.sgt(UpperBound) || Yq.sgt(UpperBound)) { 534 X->setEmpty(); 535 ++DeltaSuccesses; 536 return true; 537 } 538 } 539 X->setPoint(SE->getConstant(Xq), 540 SE->getConstant(Yq), 541 X->getAssociatedLoop()); 542 ++DeltaSuccesses; 543 return true; 544 } 545 return false; 546 } 547 548 // if (X->isLine() && Y->isPoint()) This case can't occur. 549 assert(!(X->isLine() && Y->isPoint()) && "This case should never occur"); 550 551 if (X->isPoint() && Y->isLine()) { 552 DEBUG(dbgs() << "\t intersect Point and Line\n"); 553 const SCEV *A1X1 = SE->getMulExpr(Y->getA(), X->getX()); 554 const SCEV *B1Y1 = SE->getMulExpr(Y->getB(), X->getY()); 555 const SCEV *Sum = SE->getAddExpr(A1X1, B1Y1); 556 if (isKnownPredicate(CmpInst::ICMP_EQ, Sum, Y->getC())) 557 return false; 558 if (isKnownPredicate(CmpInst::ICMP_NE, Sum, Y->getC())) { 559 X->setEmpty(); 560 ++DeltaSuccesses; 561 return true; 562 } 563 return false; 564 } 565 566 llvm_unreachable("shouldn't reach the end of Constraint intersection"); 567 return false; 568 } 569 570 571 //===----------------------------------------------------------------------===// 572 // DependenceAnalysis methods 573 574 // For debugging purposes. Dumps a dependence to OS. 575 void Dependence::dump(raw_ostream &OS) const { 576 bool Splitable = false; 577 if (isConfused()) 578 OS << "confused"; 579 else { 580 if (isConsistent()) 581 OS << "consistent "; 582 if (isFlow()) 583 OS << "flow"; 584 else if (isOutput()) 585 OS << "output"; 586 else if (isAnti()) 587 OS << "anti"; 588 else if (isInput()) 589 OS << "input"; 590 unsigned Levels = getLevels(); 591 OS << " ["; 592 for (unsigned II = 1; II <= Levels; ++II) { 593 if (isSplitable(II)) 594 Splitable = true; 595 if (isPeelFirst(II)) 596 OS << 'p'; 597 const SCEV *Distance = getDistance(II); 598 if (Distance) 599 OS << *Distance; 600 else if (isScalar(II)) 601 OS << "S"; 602 else { 603 unsigned Direction = getDirection(II); 604 if (Direction == DVEntry::ALL) 605 OS << "*"; 606 else { 607 if (Direction & DVEntry::LT) 608 OS << "<"; 609 if (Direction & DVEntry::EQ) 610 OS << "="; 611 if (Direction & DVEntry::GT) 612 OS << ">"; 613 } 614 } 615 if (isPeelLast(II)) 616 OS << 'p'; 617 if (II < Levels) 618 OS << " "; 619 } 620 if (isLoopIndependent()) 621 OS << "|<"; 622 OS << "]"; 623 if (Splitable) 624 OS << " splitable"; 625 } 626 OS << "!\n"; 627 } 628 629 static AliasResult underlyingObjectsAlias(AliasAnalysis *AA, 630 const DataLayout &DL, const Value *A, 631 const Value *B) { 632 const Value *AObj = GetUnderlyingObject(A, DL); 633 const Value *BObj = GetUnderlyingObject(B, DL); 634 return AA->alias(AObj, DL.getTypeStoreSize(AObj->getType()), 635 BObj, DL.getTypeStoreSize(BObj->getType())); 636 } 637 638 639 // Returns true if the load or store can be analyzed. Atomic and volatile 640 // operations have properties which this analysis does not understand. 641 static 642 bool isLoadOrStore(const Instruction *I) { 643 if (const LoadInst *LI = dyn_cast<LoadInst>(I)) 644 return LI->isUnordered(); 645 else if (const StoreInst *SI = dyn_cast<StoreInst>(I)) 646 return SI->isUnordered(); 647 return false; 648 } 649 650 651 static 652 Value *getPointerOperand(Instruction *I) { 653 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 654 return LI->getPointerOperand(); 655 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 656 return SI->getPointerOperand(); 657 llvm_unreachable("Value is not load or store instruction"); 658 return nullptr; 659 } 660 661 662 // Examines the loop nesting of the Src and Dst 663 // instructions and establishes their shared loops. Sets the variables 664 // CommonLevels, SrcLevels, and MaxLevels. 665 // The source and destination instructions needn't be contained in the same 666 // loop. The routine establishNestingLevels finds the level of most deeply 667 // nested loop that contains them both, CommonLevels. An instruction that's 668 // not contained in a loop is at level = 0. MaxLevels is equal to the level 669 // of the source plus the level of the destination, minus CommonLevels. 670 // This lets us allocate vectors MaxLevels in length, with room for every 671 // distinct loop referenced in both the source and destination subscripts. 672 // The variable SrcLevels is the nesting depth of the source instruction. 673 // It's used to help calculate distinct loops referenced by the destination. 674 // Here's the map from loops to levels: 675 // 0 - unused 676 // 1 - outermost common loop 677 // ... - other common loops 678 // CommonLevels - innermost common loop 679 // ... - loops containing Src but not Dst 680 // SrcLevels - innermost loop containing Src but not Dst 681 // ... - loops containing Dst but not Src 682 // MaxLevels - innermost loops containing Dst but not Src 683 // Consider the follow code fragment: 684 // for (a = ...) { 685 // for (b = ...) { 686 // for (c = ...) { 687 // for (d = ...) { 688 // A[] = ...; 689 // } 690 // } 691 // for (e = ...) { 692 // for (f = ...) { 693 // for (g = ...) { 694 // ... = A[]; 695 // } 696 // } 697 // } 698 // } 699 // } 700 // If we're looking at the possibility of a dependence between the store 701 // to A (the Src) and the load from A (the Dst), we'll note that they 702 // have 2 loops in common, so CommonLevels will equal 2 and the direction 703 // vector for Result will have 2 entries. SrcLevels = 4 and MaxLevels = 7. 704 // A map from loop names to loop numbers would look like 705 // a - 1 706 // b - 2 = CommonLevels 707 // c - 3 708 // d - 4 = SrcLevels 709 // e - 5 710 // f - 6 711 // g - 7 = MaxLevels 712 void DependenceAnalysis::establishNestingLevels(const Instruction *Src, 713 const Instruction *Dst) { 714 const BasicBlock *SrcBlock = Src->getParent(); 715 const BasicBlock *DstBlock = Dst->getParent(); 716 unsigned SrcLevel = LI->getLoopDepth(SrcBlock); 717 unsigned DstLevel = LI->getLoopDepth(DstBlock); 718 const Loop *SrcLoop = LI->getLoopFor(SrcBlock); 719 const Loop *DstLoop = LI->getLoopFor(DstBlock); 720 SrcLevels = SrcLevel; 721 MaxLevels = SrcLevel + DstLevel; 722 while (SrcLevel > DstLevel) { 723 SrcLoop = SrcLoop->getParentLoop(); 724 SrcLevel--; 725 } 726 while (DstLevel > SrcLevel) { 727 DstLoop = DstLoop->getParentLoop(); 728 DstLevel--; 729 } 730 while (SrcLoop != DstLoop) { 731 SrcLoop = SrcLoop->getParentLoop(); 732 DstLoop = DstLoop->getParentLoop(); 733 SrcLevel--; 734 } 735 CommonLevels = SrcLevel; 736 MaxLevels -= CommonLevels; 737 } 738 739 740 // Given one of the loops containing the source, return 741 // its level index in our numbering scheme. 742 unsigned DependenceAnalysis::mapSrcLoop(const Loop *SrcLoop) const { 743 return SrcLoop->getLoopDepth(); 744 } 745 746 747 // Given one of the loops containing the destination, 748 // return its level index in our numbering scheme. 749 unsigned DependenceAnalysis::mapDstLoop(const Loop *DstLoop) const { 750 unsigned D = DstLoop->getLoopDepth(); 751 if (D > CommonLevels) 752 return D - CommonLevels + SrcLevels; 753 else 754 return D; 755 } 756 757 758 // Returns true if Expression is loop invariant in LoopNest. 759 bool DependenceAnalysis::isLoopInvariant(const SCEV *Expression, 760 const Loop *LoopNest) const { 761 if (!LoopNest) 762 return true; 763 return SE->isLoopInvariant(Expression, LoopNest) && 764 isLoopInvariant(Expression, LoopNest->getParentLoop()); 765 } 766 767 768 769 // Finds the set of loops from the LoopNest that 770 // have a level <= CommonLevels and are referred to by the SCEV Expression. 771 void DependenceAnalysis::collectCommonLoops(const SCEV *Expression, 772 const Loop *LoopNest, 773 SmallBitVector &Loops) const { 774 while (LoopNest) { 775 unsigned Level = LoopNest->getLoopDepth(); 776 if (Level <= CommonLevels && !SE->isLoopInvariant(Expression, LoopNest)) 777 Loops.set(Level); 778 LoopNest = LoopNest->getParentLoop(); 779 } 780 } 781 782 void DependenceAnalysis::unifySubscriptType(ArrayRef<Subscript *> Pairs) { 783 784 unsigned widestWidthSeen = 0; 785 Type *widestType; 786 787 // Go through each pair and find the widest bit to which we need 788 // to extend all of them. 789 for (unsigned i = 0; i < Pairs.size(); i++) { 790 const SCEV *Src = Pairs[i]->Src; 791 const SCEV *Dst = Pairs[i]->Dst; 792 IntegerType *SrcTy = dyn_cast<IntegerType>(Src->getType()); 793 IntegerType *DstTy = dyn_cast<IntegerType>(Dst->getType()); 794 if (SrcTy == nullptr || DstTy == nullptr) { 795 assert(SrcTy == DstTy && "This function only unify integer types and " 796 "expect Src and Dst share the same type " 797 "otherwise."); 798 continue; 799 } 800 if (SrcTy->getBitWidth() > widestWidthSeen) { 801 widestWidthSeen = SrcTy->getBitWidth(); 802 widestType = SrcTy; 803 } 804 if (DstTy->getBitWidth() > widestWidthSeen) { 805 widestWidthSeen = DstTy->getBitWidth(); 806 widestType = DstTy; 807 } 808 } 809 810 811 assert(widestWidthSeen > 0); 812 813 // Now extend each pair to the widest seen. 814 for (unsigned i = 0; i < Pairs.size(); i++) { 815 const SCEV *Src = Pairs[i]->Src; 816 const SCEV *Dst = Pairs[i]->Dst; 817 IntegerType *SrcTy = dyn_cast<IntegerType>(Src->getType()); 818 IntegerType *DstTy = dyn_cast<IntegerType>(Dst->getType()); 819 if (SrcTy == nullptr || DstTy == nullptr) { 820 assert(SrcTy == DstTy && "This function only unify integer types and " 821 "expect Src and Dst share the same type " 822 "otherwise."); 823 continue; 824 } 825 if (SrcTy->getBitWidth() < widestWidthSeen) 826 // Sign-extend Src to widestType 827 Pairs[i]->Src = SE->getSignExtendExpr(Src, widestType); 828 if (DstTy->getBitWidth() < widestWidthSeen) { 829 // Sign-extend Dst to widestType 830 Pairs[i]->Dst = SE->getSignExtendExpr(Dst, widestType); 831 } 832 } 833 } 834 835 // removeMatchingExtensions - Examines a subscript pair. 836 // If the source and destination are identically sign (or zero) 837 // extended, it strips off the extension in an effect to simplify 838 // the actual analysis. 839 void DependenceAnalysis::removeMatchingExtensions(Subscript *Pair) { 840 const SCEV *Src = Pair->Src; 841 const SCEV *Dst = Pair->Dst; 842 if ((isa<SCEVZeroExtendExpr>(Src) && isa<SCEVZeroExtendExpr>(Dst)) || 843 (isa<SCEVSignExtendExpr>(Src) && isa<SCEVSignExtendExpr>(Dst))) { 844 const SCEVCastExpr *SrcCast = cast<SCEVCastExpr>(Src); 845 const SCEVCastExpr *DstCast = cast<SCEVCastExpr>(Dst); 846 const SCEV *SrcCastOp = SrcCast->getOperand(); 847 const SCEV *DstCastOp = DstCast->getOperand(); 848 if (SrcCastOp->getType() == DstCastOp->getType()) { 849 Pair->Src = SrcCastOp; 850 Pair->Dst = DstCastOp; 851 } 852 } 853 } 854 855 856 // Examine the scev and return true iff it's linear. 857 // Collect any loops mentioned in the set of "Loops". 858 bool DependenceAnalysis::checkSrcSubscript(const SCEV *Src, 859 const Loop *LoopNest, 860 SmallBitVector &Loops) { 861 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Src); 862 if (!AddRec) 863 return isLoopInvariant(Src, LoopNest); 864 const SCEV *Start = AddRec->getStart(); 865 const SCEV *Step = AddRec->getStepRecurrence(*SE); 866 const SCEV *UB = SE->getBackedgeTakenCount(AddRec->getLoop()); 867 if (!isa<SCEVCouldNotCompute>(UB)) { 868 if (SE->getTypeSizeInBits(Start->getType()) < 869 SE->getTypeSizeInBits(UB->getType())) { 870 if (!AddRec->getNoWrapFlags()) 871 return false; 872 } 873 } 874 if (!isLoopInvariant(Step, LoopNest)) 875 return false; 876 Loops.set(mapSrcLoop(AddRec->getLoop())); 877 return checkSrcSubscript(Start, LoopNest, Loops); 878 } 879 880 881 882 // Examine the scev and return true iff it's linear. 883 // Collect any loops mentioned in the set of "Loops". 884 bool DependenceAnalysis::checkDstSubscript(const SCEV *Dst, 885 const Loop *LoopNest, 886 SmallBitVector &Loops) { 887 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Dst); 888 if (!AddRec) 889 return isLoopInvariant(Dst, LoopNest); 890 const SCEV *Start = AddRec->getStart(); 891 const SCEV *Step = AddRec->getStepRecurrence(*SE); 892 const SCEV *UB = SE->getBackedgeTakenCount(AddRec->getLoop()); 893 if (!isa<SCEVCouldNotCompute>(UB)) { 894 if (SE->getTypeSizeInBits(Start->getType()) < 895 SE->getTypeSizeInBits(UB->getType())) { 896 if (!AddRec->getNoWrapFlags()) 897 return false; 898 } 899 } 900 if (!isLoopInvariant(Step, LoopNest)) 901 return false; 902 Loops.set(mapDstLoop(AddRec->getLoop())); 903 return checkDstSubscript(Start, LoopNest, Loops); 904 } 905 906 907 // Examines the subscript pair (the Src and Dst SCEVs) 908 // and classifies it as either ZIV, SIV, RDIV, MIV, or Nonlinear. 909 // Collects the associated loops in a set. 910 DependenceAnalysis::Subscript::ClassificationKind 911 DependenceAnalysis::classifyPair(const SCEV *Src, const Loop *SrcLoopNest, 912 const SCEV *Dst, const Loop *DstLoopNest, 913 SmallBitVector &Loops) { 914 SmallBitVector SrcLoops(MaxLevels + 1); 915 SmallBitVector DstLoops(MaxLevels + 1); 916 if (!checkSrcSubscript(Src, SrcLoopNest, SrcLoops)) 917 return Subscript::NonLinear; 918 if (!checkDstSubscript(Dst, DstLoopNest, DstLoops)) 919 return Subscript::NonLinear; 920 Loops = SrcLoops; 921 Loops |= DstLoops; 922 unsigned N = Loops.count(); 923 if (N == 0) 924 return Subscript::ZIV; 925 if (N == 1) 926 return Subscript::SIV; 927 if (N == 2 && (SrcLoops.count() == 0 || 928 DstLoops.count() == 0 || 929 (SrcLoops.count() == 1 && DstLoops.count() == 1))) 930 return Subscript::RDIV; 931 return Subscript::MIV; 932 } 933 934 935 // A wrapper around SCEV::isKnownPredicate. 936 // Looks for cases where we're interested in comparing for equality. 937 // If both X and Y have been identically sign or zero extended, 938 // it strips off the (confusing) extensions before invoking 939 // SCEV::isKnownPredicate. Perhaps, someday, the ScalarEvolution package 940 // will be similarly updated. 941 // 942 // If SCEV::isKnownPredicate can't prove the predicate, 943 // we try simple subtraction, which seems to help in some cases 944 // involving symbolics. 945 bool DependenceAnalysis::isKnownPredicate(ICmpInst::Predicate Pred, 946 const SCEV *X, 947 const SCEV *Y) const { 948 if (Pred == CmpInst::ICMP_EQ || 949 Pred == CmpInst::ICMP_NE) { 950 if ((isa<SCEVSignExtendExpr>(X) && 951 isa<SCEVSignExtendExpr>(Y)) || 952 (isa<SCEVZeroExtendExpr>(X) && 953 isa<SCEVZeroExtendExpr>(Y))) { 954 const SCEVCastExpr *CX = cast<SCEVCastExpr>(X); 955 const SCEVCastExpr *CY = cast<SCEVCastExpr>(Y); 956 const SCEV *Xop = CX->getOperand(); 957 const SCEV *Yop = CY->getOperand(); 958 if (Xop->getType() == Yop->getType()) { 959 X = Xop; 960 Y = Yop; 961 } 962 } 963 } 964 if (SE->isKnownPredicate(Pred, X, Y)) 965 return true; 966 // If SE->isKnownPredicate can't prove the condition, 967 // we try the brute-force approach of subtracting 968 // and testing the difference. 969 // By testing with SE->isKnownPredicate first, we avoid 970 // the possibility of overflow when the arguments are constants. 971 const SCEV *Delta = SE->getMinusSCEV(X, Y); 972 switch (Pred) { 973 case CmpInst::ICMP_EQ: 974 return Delta->isZero(); 975 case CmpInst::ICMP_NE: 976 return SE->isKnownNonZero(Delta); 977 case CmpInst::ICMP_SGE: 978 return SE->isKnownNonNegative(Delta); 979 case CmpInst::ICMP_SLE: 980 return SE->isKnownNonPositive(Delta); 981 case CmpInst::ICMP_SGT: 982 return SE->isKnownPositive(Delta); 983 case CmpInst::ICMP_SLT: 984 return SE->isKnownNegative(Delta); 985 default: 986 llvm_unreachable("unexpected predicate in isKnownPredicate"); 987 } 988 } 989 990 991 // All subscripts are all the same type. 992 // Loop bound may be smaller (e.g., a char). 993 // Should zero extend loop bound, since it's always >= 0. 994 // This routine collects upper bound and extends or truncates if needed. 995 // Truncating is safe when subscripts are known not to wrap. Cases without 996 // nowrap flags should have been rejected earlier. 997 // Return null if no bound available. 998 const SCEV *DependenceAnalysis::collectUpperBound(const Loop *L, 999 Type *T) const { 1000 if (SE->hasLoopInvariantBackedgeTakenCount(L)) { 1001 const SCEV *UB = SE->getBackedgeTakenCount(L); 1002 return SE->getTruncateOrZeroExtend(UB, T); 1003 } 1004 return nullptr; 1005 } 1006 1007 1008 // Calls collectUpperBound(), then attempts to cast it to SCEVConstant. 1009 // If the cast fails, returns NULL. 1010 const SCEVConstant *DependenceAnalysis::collectConstantUpperBound(const Loop *L, 1011 Type *T 1012 ) const { 1013 if (const SCEV *UB = collectUpperBound(L, T)) 1014 return dyn_cast<SCEVConstant>(UB); 1015 return nullptr; 1016 } 1017 1018 1019 // testZIV - 1020 // When we have a pair of subscripts of the form [c1] and [c2], 1021 // where c1 and c2 are both loop invariant, we attack it using 1022 // the ZIV test. Basically, we test by comparing the two values, 1023 // but there are actually three possible results: 1024 // 1) the values are equal, so there's a dependence 1025 // 2) the values are different, so there's no dependence 1026 // 3) the values might be equal, so we have to assume a dependence. 1027 // 1028 // Return true if dependence disproved. 1029 bool DependenceAnalysis::testZIV(const SCEV *Src, 1030 const SCEV *Dst, 1031 FullDependence &Result) const { 1032 DEBUG(dbgs() << " src = " << *Src << "\n"); 1033 DEBUG(dbgs() << " dst = " << *Dst << "\n"); 1034 ++ZIVapplications; 1035 if (isKnownPredicate(CmpInst::ICMP_EQ, Src, Dst)) { 1036 DEBUG(dbgs() << " provably dependent\n"); 1037 return false; // provably dependent 1038 } 1039 if (isKnownPredicate(CmpInst::ICMP_NE, Src, Dst)) { 1040 DEBUG(dbgs() << " provably independent\n"); 1041 ++ZIVindependence; 1042 return true; // provably independent 1043 } 1044 DEBUG(dbgs() << " possibly dependent\n"); 1045 Result.Consistent = false; 1046 return false; // possibly dependent 1047 } 1048 1049 1050 // strongSIVtest - 1051 // From the paper, Practical Dependence Testing, Section 4.2.1 1052 // 1053 // When we have a pair of subscripts of the form [c1 + a*i] and [c2 + a*i], 1054 // where i is an induction variable, c1 and c2 are loop invariant, 1055 // and a is a constant, we can solve it exactly using the Strong SIV test. 1056 // 1057 // Can prove independence. Failing that, can compute distance (and direction). 1058 // In the presence of symbolic terms, we can sometimes make progress. 1059 // 1060 // If there's a dependence, 1061 // 1062 // c1 + a*i = c2 + a*i' 1063 // 1064 // The dependence distance is 1065 // 1066 // d = i' - i = (c1 - c2)/a 1067 // 1068 // A dependence only exists if d is an integer and abs(d) <= U, where U is the 1069 // loop's upper bound. If a dependence exists, the dependence direction is 1070 // defined as 1071 // 1072 // { < if d > 0 1073 // direction = { = if d = 0 1074 // { > if d < 0 1075 // 1076 // Return true if dependence disproved. 1077 bool DependenceAnalysis::strongSIVtest(const SCEV *Coeff, 1078 const SCEV *SrcConst, 1079 const SCEV *DstConst, 1080 const Loop *CurLoop, 1081 unsigned Level, 1082 FullDependence &Result, 1083 Constraint &NewConstraint) const { 1084 DEBUG(dbgs() << "\tStrong SIV test\n"); 1085 DEBUG(dbgs() << "\t Coeff = " << *Coeff); 1086 DEBUG(dbgs() << ", " << *Coeff->getType() << "\n"); 1087 DEBUG(dbgs() << "\t SrcConst = " << *SrcConst); 1088 DEBUG(dbgs() << ", " << *SrcConst->getType() << "\n"); 1089 DEBUG(dbgs() << "\t DstConst = " << *DstConst); 1090 DEBUG(dbgs() << ", " << *DstConst->getType() << "\n"); 1091 ++StrongSIVapplications; 1092 assert(0 < Level && Level <= CommonLevels && "level out of range"); 1093 Level--; 1094 1095 const SCEV *Delta = SE->getMinusSCEV(SrcConst, DstConst); 1096 DEBUG(dbgs() << "\t Delta = " << *Delta); 1097 DEBUG(dbgs() << ", " << *Delta->getType() << "\n"); 1098 1099 // check that |Delta| < iteration count 1100 if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) { 1101 DEBUG(dbgs() << "\t UpperBound = " << *UpperBound); 1102 DEBUG(dbgs() << ", " << *UpperBound->getType() << "\n"); 1103 const SCEV *AbsDelta = 1104 SE->isKnownNonNegative(Delta) ? Delta : SE->getNegativeSCEV(Delta); 1105 const SCEV *AbsCoeff = 1106 SE->isKnownNonNegative(Coeff) ? Coeff : SE->getNegativeSCEV(Coeff); 1107 const SCEV *Product = SE->getMulExpr(UpperBound, AbsCoeff); 1108 if (isKnownPredicate(CmpInst::ICMP_SGT, AbsDelta, Product)) { 1109 // Distance greater than trip count - no dependence 1110 ++StrongSIVindependence; 1111 ++StrongSIVsuccesses; 1112 return true; 1113 } 1114 } 1115 1116 // Can we compute distance? 1117 if (isa<SCEVConstant>(Delta) && isa<SCEVConstant>(Coeff)) { 1118 APInt ConstDelta = cast<SCEVConstant>(Delta)->getAPInt(); 1119 APInt ConstCoeff = cast<SCEVConstant>(Coeff)->getAPInt(); 1120 APInt Distance = ConstDelta; // these need to be initialized 1121 APInt Remainder = ConstDelta; 1122 APInt::sdivrem(ConstDelta, ConstCoeff, Distance, Remainder); 1123 DEBUG(dbgs() << "\t Distance = " << Distance << "\n"); 1124 DEBUG(dbgs() << "\t Remainder = " << Remainder << "\n"); 1125 // Make sure Coeff divides Delta exactly 1126 if (Remainder != 0) { 1127 // Coeff doesn't divide Distance, no dependence 1128 ++StrongSIVindependence; 1129 ++StrongSIVsuccesses; 1130 return true; 1131 } 1132 Result.DV[Level].Distance = SE->getConstant(Distance); 1133 NewConstraint.setDistance(SE->getConstant(Distance), CurLoop); 1134 if (Distance.sgt(0)) 1135 Result.DV[Level].Direction &= Dependence::DVEntry::LT; 1136 else if (Distance.slt(0)) 1137 Result.DV[Level].Direction &= Dependence::DVEntry::GT; 1138 else 1139 Result.DV[Level].Direction &= Dependence::DVEntry::EQ; 1140 ++StrongSIVsuccesses; 1141 } 1142 else if (Delta->isZero()) { 1143 // since 0/X == 0 1144 Result.DV[Level].Distance = Delta; 1145 NewConstraint.setDistance(Delta, CurLoop); 1146 Result.DV[Level].Direction &= Dependence::DVEntry::EQ; 1147 ++StrongSIVsuccesses; 1148 } 1149 else { 1150 if (Coeff->isOne()) { 1151 DEBUG(dbgs() << "\t Distance = " << *Delta << "\n"); 1152 Result.DV[Level].Distance = Delta; // since X/1 == X 1153 NewConstraint.setDistance(Delta, CurLoop); 1154 } 1155 else { 1156 Result.Consistent = false; 1157 NewConstraint.setLine(Coeff, 1158 SE->getNegativeSCEV(Coeff), 1159 SE->getNegativeSCEV(Delta), CurLoop); 1160 } 1161 1162 // maybe we can get a useful direction 1163 bool DeltaMaybeZero = !SE->isKnownNonZero(Delta); 1164 bool DeltaMaybePositive = !SE->isKnownNonPositive(Delta); 1165 bool DeltaMaybeNegative = !SE->isKnownNonNegative(Delta); 1166 bool CoeffMaybePositive = !SE->isKnownNonPositive(Coeff); 1167 bool CoeffMaybeNegative = !SE->isKnownNonNegative(Coeff); 1168 // The double negatives above are confusing. 1169 // It helps to read !SE->isKnownNonZero(Delta) 1170 // as "Delta might be Zero" 1171 unsigned NewDirection = Dependence::DVEntry::NONE; 1172 if ((DeltaMaybePositive && CoeffMaybePositive) || 1173 (DeltaMaybeNegative && CoeffMaybeNegative)) 1174 NewDirection = Dependence::DVEntry::LT; 1175 if (DeltaMaybeZero) 1176 NewDirection |= Dependence::DVEntry::EQ; 1177 if ((DeltaMaybeNegative && CoeffMaybePositive) || 1178 (DeltaMaybePositive && CoeffMaybeNegative)) 1179 NewDirection |= Dependence::DVEntry::GT; 1180 if (NewDirection < Result.DV[Level].Direction) 1181 ++StrongSIVsuccesses; 1182 Result.DV[Level].Direction &= NewDirection; 1183 } 1184 return false; 1185 } 1186 1187 1188 // weakCrossingSIVtest - 1189 // From the paper, Practical Dependence Testing, Section 4.2.2 1190 // 1191 // When we have a pair of subscripts of the form [c1 + a*i] and [c2 - a*i], 1192 // where i is an induction variable, c1 and c2 are loop invariant, 1193 // and a is a constant, we can solve it exactly using the 1194 // Weak-Crossing SIV test. 1195 // 1196 // Given c1 + a*i = c2 - a*i', we can look for the intersection of 1197 // the two lines, where i = i', yielding 1198 // 1199 // c1 + a*i = c2 - a*i 1200 // 2a*i = c2 - c1 1201 // i = (c2 - c1)/2a 1202 // 1203 // If i < 0, there is no dependence. 1204 // If i > upperbound, there is no dependence. 1205 // If i = 0 (i.e., if c1 = c2), there's a dependence with distance = 0. 1206 // If i = upperbound, there's a dependence with distance = 0. 1207 // If i is integral, there's a dependence (all directions). 1208 // If the non-integer part = 1/2, there's a dependence (<> directions). 1209 // Otherwise, there's no dependence. 1210 // 1211 // Can prove independence. Failing that, 1212 // can sometimes refine the directions. 1213 // Can determine iteration for splitting. 1214 // 1215 // Return true if dependence disproved. 1216 bool DependenceAnalysis::weakCrossingSIVtest(const SCEV *Coeff, 1217 const SCEV *SrcConst, 1218 const SCEV *DstConst, 1219 const Loop *CurLoop, 1220 unsigned Level, 1221 FullDependence &Result, 1222 Constraint &NewConstraint, 1223 const SCEV *&SplitIter) const { 1224 DEBUG(dbgs() << "\tWeak-Crossing SIV test\n"); 1225 DEBUG(dbgs() << "\t Coeff = " << *Coeff << "\n"); 1226 DEBUG(dbgs() << "\t SrcConst = " << *SrcConst << "\n"); 1227 DEBUG(dbgs() << "\t DstConst = " << *DstConst << "\n"); 1228 ++WeakCrossingSIVapplications; 1229 assert(0 < Level && Level <= CommonLevels && "Level out of range"); 1230 Level--; 1231 Result.Consistent = false; 1232 const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst); 1233 DEBUG(dbgs() << "\t Delta = " << *Delta << "\n"); 1234 NewConstraint.setLine(Coeff, Coeff, Delta, CurLoop); 1235 if (Delta->isZero()) { 1236 Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::LT); 1237 Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::GT); 1238 ++WeakCrossingSIVsuccesses; 1239 if (!Result.DV[Level].Direction) { 1240 ++WeakCrossingSIVindependence; 1241 return true; 1242 } 1243 Result.DV[Level].Distance = Delta; // = 0 1244 return false; 1245 } 1246 const SCEVConstant *ConstCoeff = dyn_cast<SCEVConstant>(Coeff); 1247 if (!ConstCoeff) 1248 return false; 1249 1250 Result.DV[Level].Splitable = true; 1251 if (SE->isKnownNegative(ConstCoeff)) { 1252 ConstCoeff = dyn_cast<SCEVConstant>(SE->getNegativeSCEV(ConstCoeff)); 1253 assert(ConstCoeff && 1254 "dynamic cast of negative of ConstCoeff should yield constant"); 1255 Delta = SE->getNegativeSCEV(Delta); 1256 } 1257 assert(SE->isKnownPositive(ConstCoeff) && "ConstCoeff should be positive"); 1258 1259 // compute SplitIter for use by DependenceAnalysis::getSplitIteration() 1260 SplitIter = SE->getUDivExpr( 1261 SE->getSMaxExpr(SE->getZero(Delta->getType()), Delta), 1262 SE->getMulExpr(SE->getConstant(Delta->getType(), 2), ConstCoeff)); 1263 DEBUG(dbgs() << "\t Split iter = " << *SplitIter << "\n"); 1264 1265 const SCEVConstant *ConstDelta = dyn_cast<SCEVConstant>(Delta); 1266 if (!ConstDelta) 1267 return false; 1268 1269 // We're certain that ConstCoeff > 0; therefore, 1270 // if Delta < 0, then no dependence. 1271 DEBUG(dbgs() << "\t Delta = " << *Delta << "\n"); 1272 DEBUG(dbgs() << "\t ConstCoeff = " << *ConstCoeff << "\n"); 1273 if (SE->isKnownNegative(Delta)) { 1274 // No dependence, Delta < 0 1275 ++WeakCrossingSIVindependence; 1276 ++WeakCrossingSIVsuccesses; 1277 return true; 1278 } 1279 1280 // We're certain that Delta > 0 and ConstCoeff > 0. 1281 // Check Delta/(2*ConstCoeff) against upper loop bound 1282 if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) { 1283 DEBUG(dbgs() << "\t UpperBound = " << *UpperBound << "\n"); 1284 const SCEV *ConstantTwo = SE->getConstant(UpperBound->getType(), 2); 1285 const SCEV *ML = SE->getMulExpr(SE->getMulExpr(ConstCoeff, UpperBound), 1286 ConstantTwo); 1287 DEBUG(dbgs() << "\t ML = " << *ML << "\n"); 1288 if (isKnownPredicate(CmpInst::ICMP_SGT, Delta, ML)) { 1289 // Delta too big, no dependence 1290 ++WeakCrossingSIVindependence; 1291 ++WeakCrossingSIVsuccesses; 1292 return true; 1293 } 1294 if (isKnownPredicate(CmpInst::ICMP_EQ, Delta, ML)) { 1295 // i = i' = UB 1296 Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::LT); 1297 Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::GT); 1298 ++WeakCrossingSIVsuccesses; 1299 if (!Result.DV[Level].Direction) { 1300 ++WeakCrossingSIVindependence; 1301 return true; 1302 } 1303 Result.DV[Level].Splitable = false; 1304 Result.DV[Level].Distance = SE->getZero(Delta->getType()); 1305 return false; 1306 } 1307 } 1308 1309 // check that Coeff divides Delta 1310 APInt APDelta = ConstDelta->getAPInt(); 1311 APInt APCoeff = ConstCoeff->getAPInt(); 1312 APInt Distance = APDelta; // these need to be initialzed 1313 APInt Remainder = APDelta; 1314 APInt::sdivrem(APDelta, APCoeff, Distance, Remainder); 1315 DEBUG(dbgs() << "\t Remainder = " << Remainder << "\n"); 1316 if (Remainder != 0) { 1317 // Coeff doesn't divide Delta, no dependence 1318 ++WeakCrossingSIVindependence; 1319 ++WeakCrossingSIVsuccesses; 1320 return true; 1321 } 1322 DEBUG(dbgs() << "\t Distance = " << Distance << "\n"); 1323 1324 // if 2*Coeff doesn't divide Delta, then the equal direction isn't possible 1325 APInt Two = APInt(Distance.getBitWidth(), 2, true); 1326 Remainder = Distance.srem(Two); 1327 DEBUG(dbgs() << "\t Remainder = " << Remainder << "\n"); 1328 if (Remainder != 0) { 1329 // Equal direction isn't possible 1330 Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::EQ); 1331 ++WeakCrossingSIVsuccesses; 1332 } 1333 return false; 1334 } 1335 1336 1337 // Kirch's algorithm, from 1338 // 1339 // Optimizing Supercompilers for Supercomputers 1340 // Michael Wolfe 1341 // MIT Press, 1989 1342 // 1343 // Program 2.1, page 29. 1344 // Computes the GCD of AM and BM. 1345 // Also finds a solution to the equation ax - by = gcd(a, b). 1346 // Returns true if dependence disproved; i.e., gcd does not divide Delta. 1347 static 1348 bool findGCD(unsigned Bits, APInt AM, APInt BM, APInt Delta, 1349 APInt &G, APInt &X, APInt &Y) { 1350 APInt A0(Bits, 1, true), A1(Bits, 0, true); 1351 APInt B0(Bits, 0, true), B1(Bits, 1, true); 1352 APInt G0 = AM.abs(); 1353 APInt G1 = BM.abs(); 1354 APInt Q = G0; // these need to be initialized 1355 APInt R = G0; 1356 APInt::sdivrem(G0, G1, Q, R); 1357 while (R != 0) { 1358 APInt A2 = A0 - Q*A1; A0 = A1; A1 = A2; 1359 APInt B2 = B0 - Q*B1; B0 = B1; B1 = B2; 1360 G0 = G1; G1 = R; 1361 APInt::sdivrem(G0, G1, Q, R); 1362 } 1363 G = G1; 1364 DEBUG(dbgs() << "\t GCD = " << G << "\n"); 1365 X = AM.slt(0) ? -A1 : A1; 1366 Y = BM.slt(0) ? B1 : -B1; 1367 1368 // make sure gcd divides Delta 1369 R = Delta.srem(G); 1370 if (R != 0) 1371 return true; // gcd doesn't divide Delta, no dependence 1372 Q = Delta.sdiv(G); 1373 X *= Q; 1374 Y *= Q; 1375 return false; 1376 } 1377 1378 1379 static 1380 APInt floorOfQuotient(APInt A, APInt B) { 1381 APInt Q = A; // these need to be initialized 1382 APInt R = A; 1383 APInt::sdivrem(A, B, Q, R); 1384 if (R == 0) 1385 return Q; 1386 if ((A.sgt(0) && B.sgt(0)) || 1387 (A.slt(0) && B.slt(0))) 1388 return Q; 1389 else 1390 return Q - 1; 1391 } 1392 1393 1394 static 1395 APInt ceilingOfQuotient(APInt A, APInt B) { 1396 APInt Q = A; // these need to be initialized 1397 APInt R = A; 1398 APInt::sdivrem(A, B, Q, R); 1399 if (R == 0) 1400 return Q; 1401 if ((A.sgt(0) && B.sgt(0)) || 1402 (A.slt(0) && B.slt(0))) 1403 return Q + 1; 1404 else 1405 return Q; 1406 } 1407 1408 1409 static 1410 APInt maxAPInt(APInt A, APInt B) { 1411 return A.sgt(B) ? A : B; 1412 } 1413 1414 1415 static 1416 APInt minAPInt(APInt A, APInt B) { 1417 return A.slt(B) ? A : B; 1418 } 1419 1420 1421 // exactSIVtest - 1422 // When we have a pair of subscripts of the form [c1 + a1*i] and [c2 + a2*i], 1423 // where i is an induction variable, c1 and c2 are loop invariant, and a1 1424 // and a2 are constant, we can solve it exactly using an algorithm developed 1425 // by Banerjee and Wolfe. See Section 2.5.3 in 1426 // 1427 // Optimizing Supercompilers for Supercomputers 1428 // Michael Wolfe 1429 // MIT Press, 1989 1430 // 1431 // It's slower than the specialized tests (strong SIV, weak-zero SIV, etc), 1432 // so use them if possible. They're also a bit better with symbolics and, 1433 // in the case of the strong SIV test, can compute Distances. 1434 // 1435 // Return true if dependence disproved. 1436 bool DependenceAnalysis::exactSIVtest(const SCEV *SrcCoeff, 1437 const SCEV *DstCoeff, 1438 const SCEV *SrcConst, 1439 const SCEV *DstConst, 1440 const Loop *CurLoop, 1441 unsigned Level, 1442 FullDependence &Result, 1443 Constraint &NewConstraint) const { 1444 DEBUG(dbgs() << "\tExact SIV test\n"); 1445 DEBUG(dbgs() << "\t SrcCoeff = " << *SrcCoeff << " = AM\n"); 1446 DEBUG(dbgs() << "\t DstCoeff = " << *DstCoeff << " = BM\n"); 1447 DEBUG(dbgs() << "\t SrcConst = " << *SrcConst << "\n"); 1448 DEBUG(dbgs() << "\t DstConst = " << *DstConst << "\n"); 1449 ++ExactSIVapplications; 1450 assert(0 < Level && Level <= CommonLevels && "Level out of range"); 1451 Level--; 1452 Result.Consistent = false; 1453 const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst); 1454 DEBUG(dbgs() << "\t Delta = " << *Delta << "\n"); 1455 NewConstraint.setLine(SrcCoeff, SE->getNegativeSCEV(DstCoeff), 1456 Delta, CurLoop); 1457 const SCEVConstant *ConstDelta = dyn_cast<SCEVConstant>(Delta); 1458 const SCEVConstant *ConstSrcCoeff = dyn_cast<SCEVConstant>(SrcCoeff); 1459 const SCEVConstant *ConstDstCoeff = dyn_cast<SCEVConstant>(DstCoeff); 1460 if (!ConstDelta || !ConstSrcCoeff || !ConstDstCoeff) 1461 return false; 1462 1463 // find gcd 1464 APInt G, X, Y; 1465 APInt AM = ConstSrcCoeff->getAPInt(); 1466 APInt BM = ConstDstCoeff->getAPInt(); 1467 unsigned Bits = AM.getBitWidth(); 1468 if (findGCD(Bits, AM, BM, ConstDelta->getAPInt(), G, X, Y)) { 1469 // gcd doesn't divide Delta, no dependence 1470 ++ExactSIVindependence; 1471 ++ExactSIVsuccesses; 1472 return true; 1473 } 1474 1475 DEBUG(dbgs() << "\t X = " << X << ", Y = " << Y << "\n"); 1476 1477 // since SCEV construction normalizes, LM = 0 1478 APInt UM(Bits, 1, true); 1479 bool UMvalid = false; 1480 // UM is perhaps unavailable, let's check 1481 if (const SCEVConstant *CUB = 1482 collectConstantUpperBound(CurLoop, Delta->getType())) { 1483 UM = CUB->getAPInt(); 1484 DEBUG(dbgs() << "\t UM = " << UM << "\n"); 1485 UMvalid = true; 1486 } 1487 1488 APInt TU(APInt::getSignedMaxValue(Bits)); 1489 APInt TL(APInt::getSignedMinValue(Bits)); 1490 1491 // test(BM/G, LM-X) and test(-BM/G, X-UM) 1492 APInt TMUL = BM.sdiv(G); 1493 if (TMUL.sgt(0)) { 1494 TL = maxAPInt(TL, ceilingOfQuotient(-X, TMUL)); 1495 DEBUG(dbgs() << "\t TL = " << TL << "\n"); 1496 if (UMvalid) { 1497 TU = minAPInt(TU, floorOfQuotient(UM - X, TMUL)); 1498 DEBUG(dbgs() << "\t TU = " << TU << "\n"); 1499 } 1500 } 1501 else { 1502 TU = minAPInt(TU, floorOfQuotient(-X, TMUL)); 1503 DEBUG(dbgs() << "\t TU = " << TU << "\n"); 1504 if (UMvalid) { 1505 TL = maxAPInt(TL, ceilingOfQuotient(UM - X, TMUL)); 1506 DEBUG(dbgs() << "\t TL = " << TL << "\n"); 1507 } 1508 } 1509 1510 // test(AM/G, LM-Y) and test(-AM/G, Y-UM) 1511 TMUL = AM.sdiv(G); 1512 if (TMUL.sgt(0)) { 1513 TL = maxAPInt(TL, ceilingOfQuotient(-Y, TMUL)); 1514 DEBUG(dbgs() << "\t TL = " << TL << "\n"); 1515 if (UMvalid) { 1516 TU = minAPInt(TU, floorOfQuotient(UM - Y, TMUL)); 1517 DEBUG(dbgs() << "\t TU = " << TU << "\n"); 1518 } 1519 } 1520 else { 1521 TU = minAPInt(TU, floorOfQuotient(-Y, TMUL)); 1522 DEBUG(dbgs() << "\t TU = " << TU << "\n"); 1523 if (UMvalid) { 1524 TL = maxAPInt(TL, ceilingOfQuotient(UM - Y, TMUL)); 1525 DEBUG(dbgs() << "\t TL = " << TL << "\n"); 1526 } 1527 } 1528 if (TL.sgt(TU)) { 1529 ++ExactSIVindependence; 1530 ++ExactSIVsuccesses; 1531 return true; 1532 } 1533 1534 // explore directions 1535 unsigned NewDirection = Dependence::DVEntry::NONE; 1536 1537 // less than 1538 APInt SaveTU(TU); // save these 1539 APInt SaveTL(TL); 1540 DEBUG(dbgs() << "\t exploring LT direction\n"); 1541 TMUL = AM - BM; 1542 if (TMUL.sgt(0)) { 1543 TL = maxAPInt(TL, ceilingOfQuotient(X - Y + 1, TMUL)); 1544 DEBUG(dbgs() << "\t\t TL = " << TL << "\n"); 1545 } 1546 else { 1547 TU = minAPInt(TU, floorOfQuotient(X - Y + 1, TMUL)); 1548 DEBUG(dbgs() << "\t\t TU = " << TU << "\n"); 1549 } 1550 if (TL.sle(TU)) { 1551 NewDirection |= Dependence::DVEntry::LT; 1552 ++ExactSIVsuccesses; 1553 } 1554 1555 // equal 1556 TU = SaveTU; // restore 1557 TL = SaveTL; 1558 DEBUG(dbgs() << "\t exploring EQ direction\n"); 1559 if (TMUL.sgt(0)) { 1560 TL = maxAPInt(TL, ceilingOfQuotient(X - Y, TMUL)); 1561 DEBUG(dbgs() << "\t\t TL = " << TL << "\n"); 1562 } 1563 else { 1564 TU = minAPInt(TU, floorOfQuotient(X - Y, TMUL)); 1565 DEBUG(dbgs() << "\t\t TU = " << TU << "\n"); 1566 } 1567 TMUL = BM - AM; 1568 if (TMUL.sgt(0)) { 1569 TL = maxAPInt(TL, ceilingOfQuotient(Y - X, TMUL)); 1570 DEBUG(dbgs() << "\t\t TL = " << TL << "\n"); 1571 } 1572 else { 1573 TU = minAPInt(TU, floorOfQuotient(Y - X, TMUL)); 1574 DEBUG(dbgs() << "\t\t TU = " << TU << "\n"); 1575 } 1576 if (TL.sle(TU)) { 1577 NewDirection |= Dependence::DVEntry::EQ; 1578 ++ExactSIVsuccesses; 1579 } 1580 1581 // greater than 1582 TU = SaveTU; // restore 1583 TL = SaveTL; 1584 DEBUG(dbgs() << "\t exploring GT direction\n"); 1585 if (TMUL.sgt(0)) { 1586 TL = maxAPInt(TL, ceilingOfQuotient(Y - X + 1, TMUL)); 1587 DEBUG(dbgs() << "\t\t TL = " << TL << "\n"); 1588 } 1589 else { 1590 TU = minAPInt(TU, floorOfQuotient(Y - X + 1, TMUL)); 1591 DEBUG(dbgs() << "\t\t TU = " << TU << "\n"); 1592 } 1593 if (TL.sle(TU)) { 1594 NewDirection |= Dependence::DVEntry::GT; 1595 ++ExactSIVsuccesses; 1596 } 1597 1598 // finished 1599 Result.DV[Level].Direction &= NewDirection; 1600 if (Result.DV[Level].Direction == Dependence::DVEntry::NONE) 1601 ++ExactSIVindependence; 1602 return Result.DV[Level].Direction == Dependence::DVEntry::NONE; 1603 } 1604 1605 1606 1607 // Return true if the divisor evenly divides the dividend. 1608 static 1609 bool isRemainderZero(const SCEVConstant *Dividend, 1610 const SCEVConstant *Divisor) { 1611 APInt ConstDividend = Dividend->getAPInt(); 1612 APInt ConstDivisor = Divisor->getAPInt(); 1613 return ConstDividend.srem(ConstDivisor) == 0; 1614 } 1615 1616 1617 // weakZeroSrcSIVtest - 1618 // From the paper, Practical Dependence Testing, Section 4.2.2 1619 // 1620 // When we have a pair of subscripts of the form [c1] and [c2 + a*i], 1621 // where i is an induction variable, c1 and c2 are loop invariant, 1622 // and a is a constant, we can solve it exactly using the 1623 // Weak-Zero SIV test. 1624 // 1625 // Given 1626 // 1627 // c1 = c2 + a*i 1628 // 1629 // we get 1630 // 1631 // (c1 - c2)/a = i 1632 // 1633 // If i is not an integer, there's no dependence. 1634 // If i < 0 or > UB, there's no dependence. 1635 // If i = 0, the direction is <= and peeling the 1636 // 1st iteration will break the dependence. 1637 // If i = UB, the direction is >= and peeling the 1638 // last iteration will break the dependence. 1639 // Otherwise, the direction is *. 1640 // 1641 // Can prove independence. Failing that, we can sometimes refine 1642 // the directions. Can sometimes show that first or last 1643 // iteration carries all the dependences (so worth peeling). 1644 // 1645 // (see also weakZeroDstSIVtest) 1646 // 1647 // Return true if dependence disproved. 1648 bool DependenceAnalysis::weakZeroSrcSIVtest(const SCEV *DstCoeff, 1649 const SCEV *SrcConst, 1650 const SCEV *DstConst, 1651 const Loop *CurLoop, 1652 unsigned Level, 1653 FullDependence &Result, 1654 Constraint &NewConstraint) const { 1655 // For the WeakSIV test, it's possible the loop isn't common to 1656 // the Src and Dst loops. If it isn't, then there's no need to 1657 // record a direction. 1658 DEBUG(dbgs() << "\tWeak-Zero (src) SIV test\n"); 1659 DEBUG(dbgs() << "\t DstCoeff = " << *DstCoeff << "\n"); 1660 DEBUG(dbgs() << "\t SrcConst = " << *SrcConst << "\n"); 1661 DEBUG(dbgs() << "\t DstConst = " << *DstConst << "\n"); 1662 ++WeakZeroSIVapplications; 1663 assert(0 < Level && Level <= MaxLevels && "Level out of range"); 1664 Level--; 1665 Result.Consistent = false; 1666 const SCEV *Delta = SE->getMinusSCEV(SrcConst, DstConst); 1667 NewConstraint.setLine(SE->getZero(Delta->getType()), DstCoeff, Delta, 1668 CurLoop); 1669 DEBUG(dbgs() << "\t Delta = " << *Delta << "\n"); 1670 if (isKnownPredicate(CmpInst::ICMP_EQ, SrcConst, DstConst)) { 1671 if (Level < CommonLevels) { 1672 Result.DV[Level].Direction &= Dependence::DVEntry::LE; 1673 Result.DV[Level].PeelFirst = true; 1674 ++WeakZeroSIVsuccesses; 1675 } 1676 return false; // dependences caused by first iteration 1677 } 1678 const SCEVConstant *ConstCoeff = dyn_cast<SCEVConstant>(DstCoeff); 1679 if (!ConstCoeff) 1680 return false; 1681 const SCEV *AbsCoeff = 1682 SE->isKnownNegative(ConstCoeff) ? 1683 SE->getNegativeSCEV(ConstCoeff) : ConstCoeff; 1684 const SCEV *NewDelta = 1685 SE->isKnownNegative(ConstCoeff) ? SE->getNegativeSCEV(Delta) : Delta; 1686 1687 // check that Delta/SrcCoeff < iteration count 1688 // really check NewDelta < count*AbsCoeff 1689 if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) { 1690 DEBUG(dbgs() << "\t UpperBound = " << *UpperBound << "\n"); 1691 const SCEV *Product = SE->getMulExpr(AbsCoeff, UpperBound); 1692 if (isKnownPredicate(CmpInst::ICMP_SGT, NewDelta, Product)) { 1693 ++WeakZeroSIVindependence; 1694 ++WeakZeroSIVsuccesses; 1695 return true; 1696 } 1697 if (isKnownPredicate(CmpInst::ICMP_EQ, NewDelta, Product)) { 1698 // dependences caused by last iteration 1699 if (Level < CommonLevels) { 1700 Result.DV[Level].Direction &= Dependence::DVEntry::GE; 1701 Result.DV[Level].PeelLast = true; 1702 ++WeakZeroSIVsuccesses; 1703 } 1704 return false; 1705 } 1706 } 1707 1708 // check that Delta/SrcCoeff >= 0 1709 // really check that NewDelta >= 0 1710 if (SE->isKnownNegative(NewDelta)) { 1711 // No dependence, newDelta < 0 1712 ++WeakZeroSIVindependence; 1713 ++WeakZeroSIVsuccesses; 1714 return true; 1715 } 1716 1717 // if SrcCoeff doesn't divide Delta, then no dependence 1718 if (isa<SCEVConstant>(Delta) && 1719 !isRemainderZero(cast<SCEVConstant>(Delta), ConstCoeff)) { 1720 ++WeakZeroSIVindependence; 1721 ++WeakZeroSIVsuccesses; 1722 return true; 1723 } 1724 return false; 1725 } 1726 1727 1728 // weakZeroDstSIVtest - 1729 // From the paper, Practical Dependence Testing, Section 4.2.2 1730 // 1731 // When we have a pair of subscripts of the form [c1 + a*i] and [c2], 1732 // where i is an induction variable, c1 and c2 are loop invariant, 1733 // and a is a constant, we can solve it exactly using the 1734 // Weak-Zero SIV test. 1735 // 1736 // Given 1737 // 1738 // c1 + a*i = c2 1739 // 1740 // we get 1741 // 1742 // i = (c2 - c1)/a 1743 // 1744 // If i is not an integer, there's no dependence. 1745 // If i < 0 or > UB, there's no dependence. 1746 // If i = 0, the direction is <= and peeling the 1747 // 1st iteration will break the dependence. 1748 // If i = UB, the direction is >= and peeling the 1749 // last iteration will break the dependence. 1750 // Otherwise, the direction is *. 1751 // 1752 // Can prove independence. Failing that, we can sometimes refine 1753 // the directions. Can sometimes show that first or last 1754 // iteration carries all the dependences (so worth peeling). 1755 // 1756 // (see also weakZeroSrcSIVtest) 1757 // 1758 // Return true if dependence disproved. 1759 bool DependenceAnalysis::weakZeroDstSIVtest(const SCEV *SrcCoeff, 1760 const SCEV *SrcConst, 1761 const SCEV *DstConst, 1762 const Loop *CurLoop, 1763 unsigned Level, 1764 FullDependence &Result, 1765 Constraint &NewConstraint) const { 1766 // For the WeakSIV test, it's possible the loop isn't common to the 1767 // Src and Dst loops. If it isn't, then there's no need to record a direction. 1768 DEBUG(dbgs() << "\tWeak-Zero (dst) SIV test\n"); 1769 DEBUG(dbgs() << "\t SrcCoeff = " << *SrcCoeff << "\n"); 1770 DEBUG(dbgs() << "\t SrcConst = " << *SrcConst << "\n"); 1771 DEBUG(dbgs() << "\t DstConst = " << *DstConst << "\n"); 1772 ++WeakZeroSIVapplications; 1773 assert(0 < Level && Level <= SrcLevels && "Level out of range"); 1774 Level--; 1775 Result.Consistent = false; 1776 const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst); 1777 NewConstraint.setLine(SrcCoeff, SE->getZero(Delta->getType()), Delta, 1778 CurLoop); 1779 DEBUG(dbgs() << "\t Delta = " << *Delta << "\n"); 1780 if (isKnownPredicate(CmpInst::ICMP_EQ, DstConst, SrcConst)) { 1781 if (Level < CommonLevels) { 1782 Result.DV[Level].Direction &= Dependence::DVEntry::LE; 1783 Result.DV[Level].PeelFirst = true; 1784 ++WeakZeroSIVsuccesses; 1785 } 1786 return false; // dependences caused by first iteration 1787 } 1788 const SCEVConstant *ConstCoeff = dyn_cast<SCEVConstant>(SrcCoeff); 1789 if (!ConstCoeff) 1790 return false; 1791 const SCEV *AbsCoeff = 1792 SE->isKnownNegative(ConstCoeff) ? 1793 SE->getNegativeSCEV(ConstCoeff) : ConstCoeff; 1794 const SCEV *NewDelta = 1795 SE->isKnownNegative(ConstCoeff) ? SE->getNegativeSCEV(Delta) : Delta; 1796 1797 // check that Delta/SrcCoeff < iteration count 1798 // really check NewDelta < count*AbsCoeff 1799 if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) { 1800 DEBUG(dbgs() << "\t UpperBound = " << *UpperBound << "\n"); 1801 const SCEV *Product = SE->getMulExpr(AbsCoeff, UpperBound); 1802 if (isKnownPredicate(CmpInst::ICMP_SGT, NewDelta, Product)) { 1803 ++WeakZeroSIVindependence; 1804 ++WeakZeroSIVsuccesses; 1805 return true; 1806 } 1807 if (isKnownPredicate(CmpInst::ICMP_EQ, NewDelta, Product)) { 1808 // dependences caused by last iteration 1809 if (Level < CommonLevels) { 1810 Result.DV[Level].Direction &= Dependence::DVEntry::GE; 1811 Result.DV[Level].PeelLast = true; 1812 ++WeakZeroSIVsuccesses; 1813 } 1814 return false; 1815 } 1816 } 1817 1818 // check that Delta/SrcCoeff >= 0 1819 // really check that NewDelta >= 0 1820 if (SE->isKnownNegative(NewDelta)) { 1821 // No dependence, newDelta < 0 1822 ++WeakZeroSIVindependence; 1823 ++WeakZeroSIVsuccesses; 1824 return true; 1825 } 1826 1827 // if SrcCoeff doesn't divide Delta, then no dependence 1828 if (isa<SCEVConstant>(Delta) && 1829 !isRemainderZero(cast<SCEVConstant>(Delta), ConstCoeff)) { 1830 ++WeakZeroSIVindependence; 1831 ++WeakZeroSIVsuccesses; 1832 return true; 1833 } 1834 return false; 1835 } 1836 1837 1838 // exactRDIVtest - Tests the RDIV subscript pair for dependence. 1839 // Things of the form [c1 + a*i] and [c2 + b*j], 1840 // where i and j are induction variable, c1 and c2 are loop invariant, 1841 // and a and b are constants. 1842 // Returns true if any possible dependence is disproved. 1843 // Marks the result as inconsistent. 1844 // Works in some cases that symbolicRDIVtest doesn't, and vice versa. 1845 bool DependenceAnalysis::exactRDIVtest(const SCEV *SrcCoeff, 1846 const SCEV *DstCoeff, 1847 const SCEV *SrcConst, 1848 const SCEV *DstConst, 1849 const Loop *SrcLoop, 1850 const Loop *DstLoop, 1851 FullDependence &Result) const { 1852 DEBUG(dbgs() << "\tExact RDIV test\n"); 1853 DEBUG(dbgs() << "\t SrcCoeff = " << *SrcCoeff << " = AM\n"); 1854 DEBUG(dbgs() << "\t DstCoeff = " << *DstCoeff << " = BM\n"); 1855 DEBUG(dbgs() << "\t SrcConst = " << *SrcConst << "\n"); 1856 DEBUG(dbgs() << "\t DstConst = " << *DstConst << "\n"); 1857 ++ExactRDIVapplications; 1858 Result.Consistent = false; 1859 const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst); 1860 DEBUG(dbgs() << "\t Delta = " << *Delta << "\n"); 1861 const SCEVConstant *ConstDelta = dyn_cast<SCEVConstant>(Delta); 1862 const SCEVConstant *ConstSrcCoeff = dyn_cast<SCEVConstant>(SrcCoeff); 1863 const SCEVConstant *ConstDstCoeff = dyn_cast<SCEVConstant>(DstCoeff); 1864 if (!ConstDelta || !ConstSrcCoeff || !ConstDstCoeff) 1865 return false; 1866 1867 // find gcd 1868 APInt G, X, Y; 1869 APInt AM = ConstSrcCoeff->getAPInt(); 1870 APInt BM = ConstDstCoeff->getAPInt(); 1871 unsigned Bits = AM.getBitWidth(); 1872 if (findGCD(Bits, AM, BM, ConstDelta->getAPInt(), G, X, Y)) { 1873 // gcd doesn't divide Delta, no dependence 1874 ++ExactRDIVindependence; 1875 return true; 1876 } 1877 1878 DEBUG(dbgs() << "\t X = " << X << ", Y = " << Y << "\n"); 1879 1880 // since SCEV construction seems to normalize, LM = 0 1881 APInt SrcUM(Bits, 1, true); 1882 bool SrcUMvalid = false; 1883 // SrcUM is perhaps unavailable, let's check 1884 if (const SCEVConstant *UpperBound = 1885 collectConstantUpperBound(SrcLoop, Delta->getType())) { 1886 SrcUM = UpperBound->getAPInt(); 1887 DEBUG(dbgs() << "\t SrcUM = " << SrcUM << "\n"); 1888 SrcUMvalid = true; 1889 } 1890 1891 APInt DstUM(Bits, 1, true); 1892 bool DstUMvalid = false; 1893 // UM is perhaps unavailable, let's check 1894 if (const SCEVConstant *UpperBound = 1895 collectConstantUpperBound(DstLoop, Delta->getType())) { 1896 DstUM = UpperBound->getAPInt(); 1897 DEBUG(dbgs() << "\t DstUM = " << DstUM << "\n"); 1898 DstUMvalid = true; 1899 } 1900 1901 APInt TU(APInt::getSignedMaxValue(Bits)); 1902 APInt TL(APInt::getSignedMinValue(Bits)); 1903 1904 // test(BM/G, LM-X) and test(-BM/G, X-UM) 1905 APInt TMUL = BM.sdiv(G); 1906 if (TMUL.sgt(0)) { 1907 TL = maxAPInt(TL, ceilingOfQuotient(-X, TMUL)); 1908 DEBUG(dbgs() << "\t TL = " << TL << "\n"); 1909 if (SrcUMvalid) { 1910 TU = minAPInt(TU, floorOfQuotient(SrcUM - X, TMUL)); 1911 DEBUG(dbgs() << "\t TU = " << TU << "\n"); 1912 } 1913 } 1914 else { 1915 TU = minAPInt(TU, floorOfQuotient(-X, TMUL)); 1916 DEBUG(dbgs() << "\t TU = " << TU << "\n"); 1917 if (SrcUMvalid) { 1918 TL = maxAPInt(TL, ceilingOfQuotient(SrcUM - X, TMUL)); 1919 DEBUG(dbgs() << "\t TL = " << TL << "\n"); 1920 } 1921 } 1922 1923 // test(AM/G, LM-Y) and test(-AM/G, Y-UM) 1924 TMUL = AM.sdiv(G); 1925 if (TMUL.sgt(0)) { 1926 TL = maxAPInt(TL, ceilingOfQuotient(-Y, TMUL)); 1927 DEBUG(dbgs() << "\t TL = " << TL << "\n"); 1928 if (DstUMvalid) { 1929 TU = minAPInt(TU, floorOfQuotient(DstUM - Y, TMUL)); 1930 DEBUG(dbgs() << "\t TU = " << TU << "\n"); 1931 } 1932 } 1933 else { 1934 TU = minAPInt(TU, floorOfQuotient(-Y, TMUL)); 1935 DEBUG(dbgs() << "\t TU = " << TU << "\n"); 1936 if (DstUMvalid) { 1937 TL = maxAPInt(TL, ceilingOfQuotient(DstUM - Y, TMUL)); 1938 DEBUG(dbgs() << "\t TL = " << TL << "\n"); 1939 } 1940 } 1941 if (TL.sgt(TU)) 1942 ++ExactRDIVindependence; 1943 return TL.sgt(TU); 1944 } 1945 1946 1947 // symbolicRDIVtest - 1948 // In Section 4.5 of the Practical Dependence Testing paper,the authors 1949 // introduce a special case of Banerjee's Inequalities (also called the 1950 // Extreme-Value Test) that can handle some of the SIV and RDIV cases, 1951 // particularly cases with symbolics. Since it's only able to disprove 1952 // dependence (not compute distances or directions), we'll use it as a 1953 // fall back for the other tests. 1954 // 1955 // When we have a pair of subscripts of the form [c1 + a1*i] and [c2 + a2*j] 1956 // where i and j are induction variables and c1 and c2 are loop invariants, 1957 // we can use the symbolic tests to disprove some dependences, serving as a 1958 // backup for the RDIV test. Note that i and j can be the same variable, 1959 // letting this test serve as a backup for the various SIV tests. 1960 // 1961 // For a dependence to exist, c1 + a1*i must equal c2 + a2*j for some 1962 // 0 <= i <= N1 and some 0 <= j <= N2, where N1 and N2 are the (normalized) 1963 // loop bounds for the i and j loops, respectively. So, ... 1964 // 1965 // c1 + a1*i = c2 + a2*j 1966 // a1*i - a2*j = c2 - c1 1967 // 1968 // To test for a dependence, we compute c2 - c1 and make sure it's in the 1969 // range of the maximum and minimum possible values of a1*i - a2*j. 1970 // Considering the signs of a1 and a2, we have 4 possible cases: 1971 // 1972 // 1) If a1 >= 0 and a2 >= 0, then 1973 // a1*0 - a2*N2 <= c2 - c1 <= a1*N1 - a2*0 1974 // -a2*N2 <= c2 - c1 <= a1*N1 1975 // 1976 // 2) If a1 >= 0 and a2 <= 0, then 1977 // a1*0 - a2*0 <= c2 - c1 <= a1*N1 - a2*N2 1978 // 0 <= c2 - c1 <= a1*N1 - a2*N2 1979 // 1980 // 3) If a1 <= 0 and a2 >= 0, then 1981 // a1*N1 - a2*N2 <= c2 - c1 <= a1*0 - a2*0 1982 // a1*N1 - a2*N2 <= c2 - c1 <= 0 1983 // 1984 // 4) If a1 <= 0 and a2 <= 0, then 1985 // a1*N1 - a2*0 <= c2 - c1 <= a1*0 - a2*N2 1986 // a1*N1 <= c2 - c1 <= -a2*N2 1987 // 1988 // return true if dependence disproved 1989 bool DependenceAnalysis::symbolicRDIVtest(const SCEV *A1, 1990 const SCEV *A2, 1991 const SCEV *C1, 1992 const SCEV *C2, 1993 const Loop *Loop1, 1994 const Loop *Loop2) const { 1995 ++SymbolicRDIVapplications; 1996 DEBUG(dbgs() << "\ttry symbolic RDIV test\n"); 1997 DEBUG(dbgs() << "\t A1 = " << *A1); 1998 DEBUG(dbgs() << ", type = " << *A1->getType() << "\n"); 1999 DEBUG(dbgs() << "\t A2 = " << *A2 << "\n"); 2000 DEBUG(dbgs() << "\t C1 = " << *C1 << "\n"); 2001 DEBUG(dbgs() << "\t C2 = " << *C2 << "\n"); 2002 const SCEV *N1 = collectUpperBound(Loop1, A1->getType()); 2003 const SCEV *N2 = collectUpperBound(Loop2, A1->getType()); 2004 DEBUG(if (N1) dbgs() << "\t N1 = " << *N1 << "\n"); 2005 DEBUG(if (N2) dbgs() << "\t N2 = " << *N2 << "\n"); 2006 const SCEV *C2_C1 = SE->getMinusSCEV(C2, C1); 2007 const SCEV *C1_C2 = SE->getMinusSCEV(C1, C2); 2008 DEBUG(dbgs() << "\t C2 - C1 = " << *C2_C1 << "\n"); 2009 DEBUG(dbgs() << "\t C1 - C2 = " << *C1_C2 << "\n"); 2010 if (SE->isKnownNonNegative(A1)) { 2011 if (SE->isKnownNonNegative(A2)) { 2012 // A1 >= 0 && A2 >= 0 2013 if (N1) { 2014 // make sure that c2 - c1 <= a1*N1 2015 const SCEV *A1N1 = SE->getMulExpr(A1, N1); 2016 DEBUG(dbgs() << "\t A1*N1 = " << *A1N1 << "\n"); 2017 if (isKnownPredicate(CmpInst::ICMP_SGT, C2_C1, A1N1)) { 2018 ++SymbolicRDIVindependence; 2019 return true; 2020 } 2021 } 2022 if (N2) { 2023 // make sure that -a2*N2 <= c2 - c1, or a2*N2 >= c1 - c2 2024 const SCEV *A2N2 = SE->getMulExpr(A2, N2); 2025 DEBUG(dbgs() << "\t A2*N2 = " << *A2N2 << "\n"); 2026 if (isKnownPredicate(CmpInst::ICMP_SLT, A2N2, C1_C2)) { 2027 ++SymbolicRDIVindependence; 2028 return true; 2029 } 2030 } 2031 } 2032 else if (SE->isKnownNonPositive(A2)) { 2033 // a1 >= 0 && a2 <= 0 2034 if (N1 && N2) { 2035 // make sure that c2 - c1 <= a1*N1 - a2*N2 2036 const SCEV *A1N1 = SE->getMulExpr(A1, N1); 2037 const SCEV *A2N2 = SE->getMulExpr(A2, N2); 2038 const SCEV *A1N1_A2N2 = SE->getMinusSCEV(A1N1, A2N2); 2039 DEBUG(dbgs() << "\t A1*N1 - A2*N2 = " << *A1N1_A2N2 << "\n"); 2040 if (isKnownPredicate(CmpInst::ICMP_SGT, C2_C1, A1N1_A2N2)) { 2041 ++SymbolicRDIVindependence; 2042 return true; 2043 } 2044 } 2045 // make sure that 0 <= c2 - c1 2046 if (SE->isKnownNegative(C2_C1)) { 2047 ++SymbolicRDIVindependence; 2048 return true; 2049 } 2050 } 2051 } 2052 else if (SE->isKnownNonPositive(A1)) { 2053 if (SE->isKnownNonNegative(A2)) { 2054 // a1 <= 0 && a2 >= 0 2055 if (N1 && N2) { 2056 // make sure that a1*N1 - a2*N2 <= c2 - c1 2057 const SCEV *A1N1 = SE->getMulExpr(A1, N1); 2058 const SCEV *A2N2 = SE->getMulExpr(A2, N2); 2059 const SCEV *A1N1_A2N2 = SE->getMinusSCEV(A1N1, A2N2); 2060 DEBUG(dbgs() << "\t A1*N1 - A2*N2 = " << *A1N1_A2N2 << "\n"); 2061 if (isKnownPredicate(CmpInst::ICMP_SGT, A1N1_A2N2, C2_C1)) { 2062 ++SymbolicRDIVindependence; 2063 return true; 2064 } 2065 } 2066 // make sure that c2 - c1 <= 0 2067 if (SE->isKnownPositive(C2_C1)) { 2068 ++SymbolicRDIVindependence; 2069 return true; 2070 } 2071 } 2072 else if (SE->isKnownNonPositive(A2)) { 2073 // a1 <= 0 && a2 <= 0 2074 if (N1) { 2075 // make sure that a1*N1 <= c2 - c1 2076 const SCEV *A1N1 = SE->getMulExpr(A1, N1); 2077 DEBUG(dbgs() << "\t A1*N1 = " << *A1N1 << "\n"); 2078 if (isKnownPredicate(CmpInst::ICMP_SGT, A1N1, C2_C1)) { 2079 ++SymbolicRDIVindependence; 2080 return true; 2081 } 2082 } 2083 if (N2) { 2084 // make sure that c2 - c1 <= -a2*N2, or c1 - c2 >= a2*N2 2085 const SCEV *A2N2 = SE->getMulExpr(A2, N2); 2086 DEBUG(dbgs() << "\t A2*N2 = " << *A2N2 << "\n"); 2087 if (isKnownPredicate(CmpInst::ICMP_SLT, C1_C2, A2N2)) { 2088 ++SymbolicRDIVindependence; 2089 return true; 2090 } 2091 } 2092 } 2093 } 2094 return false; 2095 } 2096 2097 2098 // testSIV - 2099 // When we have a pair of subscripts of the form [c1 + a1*i] and [c2 - a2*i] 2100 // where i is an induction variable, c1 and c2 are loop invariant, and a1 and 2101 // a2 are constant, we attack it with an SIV test. While they can all be 2102 // solved with the Exact SIV test, it's worthwhile to use simpler tests when 2103 // they apply; they're cheaper and sometimes more precise. 2104 // 2105 // Return true if dependence disproved. 2106 bool DependenceAnalysis::testSIV(const SCEV *Src, 2107 const SCEV *Dst, 2108 unsigned &Level, 2109 FullDependence &Result, 2110 Constraint &NewConstraint, 2111 const SCEV *&SplitIter) const { 2112 DEBUG(dbgs() << " src = " << *Src << "\n"); 2113 DEBUG(dbgs() << " dst = " << *Dst << "\n"); 2114 const SCEVAddRecExpr *SrcAddRec = dyn_cast<SCEVAddRecExpr>(Src); 2115 const SCEVAddRecExpr *DstAddRec = dyn_cast<SCEVAddRecExpr>(Dst); 2116 if (SrcAddRec && DstAddRec) { 2117 const SCEV *SrcConst = SrcAddRec->getStart(); 2118 const SCEV *DstConst = DstAddRec->getStart(); 2119 const SCEV *SrcCoeff = SrcAddRec->getStepRecurrence(*SE); 2120 const SCEV *DstCoeff = DstAddRec->getStepRecurrence(*SE); 2121 const Loop *CurLoop = SrcAddRec->getLoop(); 2122 assert(CurLoop == DstAddRec->getLoop() && 2123 "both loops in SIV should be same"); 2124 Level = mapSrcLoop(CurLoop); 2125 bool disproven; 2126 if (SrcCoeff == DstCoeff) 2127 disproven = strongSIVtest(SrcCoeff, SrcConst, DstConst, CurLoop, 2128 Level, Result, NewConstraint); 2129 else if (SrcCoeff == SE->getNegativeSCEV(DstCoeff)) 2130 disproven = weakCrossingSIVtest(SrcCoeff, SrcConst, DstConst, CurLoop, 2131 Level, Result, NewConstraint, SplitIter); 2132 else 2133 disproven = exactSIVtest(SrcCoeff, DstCoeff, SrcConst, DstConst, CurLoop, 2134 Level, Result, NewConstraint); 2135 return disproven || 2136 gcdMIVtest(Src, Dst, Result) || 2137 symbolicRDIVtest(SrcCoeff, DstCoeff, SrcConst, DstConst, CurLoop, CurLoop); 2138 } 2139 if (SrcAddRec) { 2140 const SCEV *SrcConst = SrcAddRec->getStart(); 2141 const SCEV *SrcCoeff = SrcAddRec->getStepRecurrence(*SE); 2142 const SCEV *DstConst = Dst; 2143 const Loop *CurLoop = SrcAddRec->getLoop(); 2144 Level = mapSrcLoop(CurLoop); 2145 return weakZeroDstSIVtest(SrcCoeff, SrcConst, DstConst, CurLoop, 2146 Level, Result, NewConstraint) || 2147 gcdMIVtest(Src, Dst, Result); 2148 } 2149 if (DstAddRec) { 2150 const SCEV *DstConst = DstAddRec->getStart(); 2151 const SCEV *DstCoeff = DstAddRec->getStepRecurrence(*SE); 2152 const SCEV *SrcConst = Src; 2153 const Loop *CurLoop = DstAddRec->getLoop(); 2154 Level = mapDstLoop(CurLoop); 2155 return weakZeroSrcSIVtest(DstCoeff, SrcConst, DstConst, 2156 CurLoop, Level, Result, NewConstraint) || 2157 gcdMIVtest(Src, Dst, Result); 2158 } 2159 llvm_unreachable("SIV test expected at least one AddRec"); 2160 return false; 2161 } 2162 2163 2164 // testRDIV - 2165 // When we have a pair of subscripts of the form [c1 + a1*i] and [c2 + a2*j] 2166 // where i and j are induction variables, c1 and c2 are loop invariant, 2167 // and a1 and a2 are constant, we can solve it exactly with an easy adaptation 2168 // of the Exact SIV test, the Restricted Double Index Variable (RDIV) test. 2169 // It doesn't make sense to talk about distance or direction in this case, 2170 // so there's no point in making special versions of the Strong SIV test or 2171 // the Weak-crossing SIV test. 2172 // 2173 // With minor algebra, this test can also be used for things like 2174 // [c1 + a1*i + a2*j][c2]. 2175 // 2176 // Return true if dependence disproved. 2177 bool DependenceAnalysis::testRDIV(const SCEV *Src, 2178 const SCEV *Dst, 2179 FullDependence &Result) const { 2180 // we have 3 possible situations here: 2181 // 1) [a*i + b] and [c*j + d] 2182 // 2) [a*i + c*j + b] and [d] 2183 // 3) [b] and [a*i + c*j + d] 2184 // We need to find what we've got and get organized 2185 2186 const SCEV *SrcConst, *DstConst; 2187 const SCEV *SrcCoeff, *DstCoeff; 2188 const Loop *SrcLoop, *DstLoop; 2189 2190 DEBUG(dbgs() << " src = " << *Src << "\n"); 2191 DEBUG(dbgs() << " dst = " << *Dst << "\n"); 2192 const SCEVAddRecExpr *SrcAddRec = dyn_cast<SCEVAddRecExpr>(Src); 2193 const SCEVAddRecExpr *DstAddRec = dyn_cast<SCEVAddRecExpr>(Dst); 2194 if (SrcAddRec && DstAddRec) { 2195 SrcConst = SrcAddRec->getStart(); 2196 SrcCoeff = SrcAddRec->getStepRecurrence(*SE); 2197 SrcLoop = SrcAddRec->getLoop(); 2198 DstConst = DstAddRec->getStart(); 2199 DstCoeff = DstAddRec->getStepRecurrence(*SE); 2200 DstLoop = DstAddRec->getLoop(); 2201 } 2202 else if (SrcAddRec) { 2203 if (const SCEVAddRecExpr *tmpAddRec = 2204 dyn_cast<SCEVAddRecExpr>(SrcAddRec->getStart())) { 2205 SrcConst = tmpAddRec->getStart(); 2206 SrcCoeff = tmpAddRec->getStepRecurrence(*SE); 2207 SrcLoop = tmpAddRec->getLoop(); 2208 DstConst = Dst; 2209 DstCoeff = SE->getNegativeSCEV(SrcAddRec->getStepRecurrence(*SE)); 2210 DstLoop = SrcAddRec->getLoop(); 2211 } 2212 else 2213 llvm_unreachable("RDIV reached by surprising SCEVs"); 2214 } 2215 else if (DstAddRec) { 2216 if (const SCEVAddRecExpr *tmpAddRec = 2217 dyn_cast<SCEVAddRecExpr>(DstAddRec->getStart())) { 2218 DstConst = tmpAddRec->getStart(); 2219 DstCoeff = tmpAddRec->getStepRecurrence(*SE); 2220 DstLoop = tmpAddRec->getLoop(); 2221 SrcConst = Src; 2222 SrcCoeff = SE->getNegativeSCEV(DstAddRec->getStepRecurrence(*SE)); 2223 SrcLoop = DstAddRec->getLoop(); 2224 } 2225 else 2226 llvm_unreachable("RDIV reached by surprising SCEVs"); 2227 } 2228 else 2229 llvm_unreachable("RDIV expected at least one AddRec"); 2230 return exactRDIVtest(SrcCoeff, DstCoeff, 2231 SrcConst, DstConst, 2232 SrcLoop, DstLoop, 2233 Result) || 2234 gcdMIVtest(Src, Dst, Result) || 2235 symbolicRDIVtest(SrcCoeff, DstCoeff, 2236 SrcConst, DstConst, 2237 SrcLoop, DstLoop); 2238 } 2239 2240 2241 // Tests the single-subscript MIV pair (Src and Dst) for dependence. 2242 // Return true if dependence disproved. 2243 // Can sometimes refine direction vectors. 2244 bool DependenceAnalysis::testMIV(const SCEV *Src, 2245 const SCEV *Dst, 2246 const SmallBitVector &Loops, 2247 FullDependence &Result) const { 2248 DEBUG(dbgs() << " src = " << *Src << "\n"); 2249 DEBUG(dbgs() << " dst = " << *Dst << "\n"); 2250 Result.Consistent = false; 2251 return gcdMIVtest(Src, Dst, Result) || 2252 banerjeeMIVtest(Src, Dst, Loops, Result); 2253 } 2254 2255 2256 // Given a product, e.g., 10*X*Y, returns the first constant operand, 2257 // in this case 10. If there is no constant part, returns NULL. 2258 static 2259 const SCEVConstant *getConstantPart(const SCEVMulExpr *Product) { 2260 for (unsigned Op = 0, Ops = Product->getNumOperands(); Op < Ops; Op++) { 2261 if (const SCEVConstant *Constant = dyn_cast<SCEVConstant>(Product->getOperand(Op))) 2262 return Constant; 2263 } 2264 return nullptr; 2265 } 2266 2267 2268 //===----------------------------------------------------------------------===// 2269 // gcdMIVtest - 2270 // Tests an MIV subscript pair for dependence. 2271 // Returns true if any possible dependence is disproved. 2272 // Marks the result as inconsistent. 2273 // Can sometimes disprove the equal direction for 1 or more loops, 2274 // as discussed in Michael Wolfe's book, 2275 // High Performance Compilers for Parallel Computing, page 235. 2276 // 2277 // We spend some effort (code!) to handle cases like 2278 // [10*i + 5*N*j + 15*M + 6], where i and j are induction variables, 2279 // but M and N are just loop-invariant variables. 2280 // This should help us handle linearized subscripts; 2281 // also makes this test a useful backup to the various SIV tests. 2282 // 2283 // It occurs to me that the presence of loop-invariant variables 2284 // changes the nature of the test from "greatest common divisor" 2285 // to "a common divisor". 2286 bool DependenceAnalysis::gcdMIVtest(const SCEV *Src, 2287 const SCEV *Dst, 2288 FullDependence &Result) const { 2289 DEBUG(dbgs() << "starting gcd\n"); 2290 ++GCDapplications; 2291 unsigned BitWidth = SE->getTypeSizeInBits(Src->getType()); 2292 APInt RunningGCD = APInt::getNullValue(BitWidth); 2293 2294 // Examine Src coefficients. 2295 // Compute running GCD and record source constant. 2296 // Because we're looking for the constant at the end of the chain, 2297 // we can't quit the loop just because the GCD == 1. 2298 const SCEV *Coefficients = Src; 2299 while (const SCEVAddRecExpr *AddRec = 2300 dyn_cast<SCEVAddRecExpr>(Coefficients)) { 2301 const SCEV *Coeff = AddRec->getStepRecurrence(*SE); 2302 const SCEVConstant *Constant = dyn_cast<SCEVConstant>(Coeff); 2303 if (const SCEVMulExpr *Product = dyn_cast<SCEVMulExpr>(Coeff)) 2304 // If the coefficient is the product of a constant and other stuff, 2305 // we can use the constant in the GCD computation. 2306 Constant = getConstantPart(Product); 2307 if (!Constant) 2308 return false; 2309 APInt ConstCoeff = Constant->getAPInt(); 2310 RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs()); 2311 Coefficients = AddRec->getStart(); 2312 } 2313 const SCEV *SrcConst = Coefficients; 2314 2315 // Examine Dst coefficients. 2316 // Compute running GCD and record destination constant. 2317 // Because we're looking for the constant at the end of the chain, 2318 // we can't quit the loop just because the GCD == 1. 2319 Coefficients = Dst; 2320 while (const SCEVAddRecExpr *AddRec = 2321 dyn_cast<SCEVAddRecExpr>(Coefficients)) { 2322 const SCEV *Coeff = AddRec->getStepRecurrence(*SE); 2323 const SCEVConstant *Constant = dyn_cast<SCEVConstant>(Coeff); 2324 if (const SCEVMulExpr *Product = dyn_cast<SCEVMulExpr>(Coeff)) 2325 // If the coefficient is the product of a constant and other stuff, 2326 // we can use the constant in the GCD computation. 2327 Constant = getConstantPart(Product); 2328 if (!Constant) 2329 return false; 2330 APInt ConstCoeff = Constant->getAPInt(); 2331 RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs()); 2332 Coefficients = AddRec->getStart(); 2333 } 2334 const SCEV *DstConst = Coefficients; 2335 2336 APInt ExtraGCD = APInt::getNullValue(BitWidth); 2337 const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst); 2338 DEBUG(dbgs() << " Delta = " << *Delta << "\n"); 2339 const SCEVConstant *Constant = dyn_cast<SCEVConstant>(Delta); 2340 if (const SCEVAddExpr *Sum = dyn_cast<SCEVAddExpr>(Delta)) { 2341 // If Delta is a sum of products, we may be able to make further progress. 2342 for (unsigned Op = 0, Ops = Sum->getNumOperands(); Op < Ops; Op++) { 2343 const SCEV *Operand = Sum->getOperand(Op); 2344 if (isa<SCEVConstant>(Operand)) { 2345 assert(!Constant && "Surprised to find multiple constants"); 2346 Constant = cast<SCEVConstant>(Operand); 2347 } 2348 else if (const SCEVMulExpr *Product = dyn_cast<SCEVMulExpr>(Operand)) { 2349 // Search for constant operand to participate in GCD; 2350 // If none found; return false. 2351 const SCEVConstant *ConstOp = getConstantPart(Product); 2352 if (!ConstOp) 2353 return false; 2354 APInt ConstOpValue = ConstOp->getAPInt(); 2355 ExtraGCD = APIntOps::GreatestCommonDivisor(ExtraGCD, 2356 ConstOpValue.abs()); 2357 } 2358 else 2359 return false; 2360 } 2361 } 2362 if (!Constant) 2363 return false; 2364 APInt ConstDelta = cast<SCEVConstant>(Constant)->getAPInt(); 2365 DEBUG(dbgs() << " ConstDelta = " << ConstDelta << "\n"); 2366 if (ConstDelta == 0) 2367 return false; 2368 RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ExtraGCD); 2369 DEBUG(dbgs() << " RunningGCD = " << RunningGCD << "\n"); 2370 APInt Remainder = ConstDelta.srem(RunningGCD); 2371 if (Remainder != 0) { 2372 ++GCDindependence; 2373 return true; 2374 } 2375 2376 // Try to disprove equal directions. 2377 // For example, given a subscript pair [3*i + 2*j] and [i' + 2*j' - 1], 2378 // the code above can't disprove the dependence because the GCD = 1. 2379 // So we consider what happen if i = i' and what happens if j = j'. 2380 // If i = i', we can simplify the subscript to [2*i + 2*j] and [2*j' - 1], 2381 // which is infeasible, so we can disallow the = direction for the i level. 2382 // Setting j = j' doesn't help matters, so we end up with a direction vector 2383 // of [<>, *] 2384 // 2385 // Given A[5*i + 10*j*M + 9*M*N] and A[15*i + 20*j*M - 21*N*M + 5], 2386 // we need to remember that the constant part is 5 and the RunningGCD should 2387 // be initialized to ExtraGCD = 30. 2388 DEBUG(dbgs() << " ExtraGCD = " << ExtraGCD << '\n'); 2389 2390 bool Improved = false; 2391 Coefficients = Src; 2392 while (const SCEVAddRecExpr *AddRec = 2393 dyn_cast<SCEVAddRecExpr>(Coefficients)) { 2394 Coefficients = AddRec->getStart(); 2395 const Loop *CurLoop = AddRec->getLoop(); 2396 RunningGCD = ExtraGCD; 2397 const SCEV *SrcCoeff = AddRec->getStepRecurrence(*SE); 2398 const SCEV *DstCoeff = SE->getMinusSCEV(SrcCoeff, SrcCoeff); 2399 const SCEV *Inner = Src; 2400 while (RunningGCD != 1 && isa<SCEVAddRecExpr>(Inner)) { 2401 AddRec = cast<SCEVAddRecExpr>(Inner); 2402 const SCEV *Coeff = AddRec->getStepRecurrence(*SE); 2403 if (CurLoop == AddRec->getLoop()) 2404 ; // SrcCoeff == Coeff 2405 else { 2406 if (const SCEVMulExpr *Product = dyn_cast<SCEVMulExpr>(Coeff)) 2407 // If the coefficient is the product of a constant and other stuff, 2408 // we can use the constant in the GCD computation. 2409 Constant = getConstantPart(Product); 2410 else 2411 Constant = cast<SCEVConstant>(Coeff); 2412 APInt ConstCoeff = Constant->getAPInt(); 2413 RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs()); 2414 } 2415 Inner = AddRec->getStart(); 2416 } 2417 Inner = Dst; 2418 while (RunningGCD != 1 && isa<SCEVAddRecExpr>(Inner)) { 2419 AddRec = cast<SCEVAddRecExpr>(Inner); 2420 const SCEV *Coeff = AddRec->getStepRecurrence(*SE); 2421 if (CurLoop == AddRec->getLoop()) 2422 DstCoeff = Coeff; 2423 else { 2424 if (const SCEVMulExpr *Product = dyn_cast<SCEVMulExpr>(Coeff)) 2425 // If the coefficient is the product of a constant and other stuff, 2426 // we can use the constant in the GCD computation. 2427 Constant = getConstantPart(Product); 2428 else 2429 Constant = cast<SCEVConstant>(Coeff); 2430 APInt ConstCoeff = Constant->getAPInt(); 2431 RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs()); 2432 } 2433 Inner = AddRec->getStart(); 2434 } 2435 Delta = SE->getMinusSCEV(SrcCoeff, DstCoeff); 2436 if (const SCEVMulExpr *Product = dyn_cast<SCEVMulExpr>(Delta)) 2437 // If the coefficient is the product of a constant and other stuff, 2438 // we can use the constant in the GCD computation. 2439 Constant = getConstantPart(Product); 2440 else if (isa<SCEVConstant>(Delta)) 2441 Constant = cast<SCEVConstant>(Delta); 2442 else { 2443 // The difference of the two coefficients might not be a product 2444 // or constant, in which case we give up on this direction. 2445 continue; 2446 } 2447 APInt ConstCoeff = Constant->getAPInt(); 2448 RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs()); 2449 DEBUG(dbgs() << "\tRunningGCD = " << RunningGCD << "\n"); 2450 if (RunningGCD != 0) { 2451 Remainder = ConstDelta.srem(RunningGCD); 2452 DEBUG(dbgs() << "\tRemainder = " << Remainder << "\n"); 2453 if (Remainder != 0) { 2454 unsigned Level = mapSrcLoop(CurLoop); 2455 Result.DV[Level - 1].Direction &= unsigned(~Dependence::DVEntry::EQ); 2456 Improved = true; 2457 } 2458 } 2459 } 2460 if (Improved) 2461 ++GCDsuccesses; 2462 DEBUG(dbgs() << "all done\n"); 2463 return false; 2464 } 2465 2466 2467 //===----------------------------------------------------------------------===// 2468 // banerjeeMIVtest - 2469 // Use Banerjee's Inequalities to test an MIV subscript pair. 2470 // (Wolfe, in the race-car book, calls this the Extreme Value Test.) 2471 // Generally follows the discussion in Section 2.5.2 of 2472 // 2473 // Optimizing Supercompilers for Supercomputers 2474 // Michael Wolfe 2475 // 2476 // The inequalities given on page 25 are simplified in that loops are 2477 // normalized so that the lower bound is always 0 and the stride is always 1. 2478 // For example, Wolfe gives 2479 // 2480 // LB^<_k = (A^-_k - B_k)^- (U_k - L_k - N_k) + (A_k - B_k)L_k - B_k N_k 2481 // 2482 // where A_k is the coefficient of the kth index in the source subscript, 2483 // B_k is the coefficient of the kth index in the destination subscript, 2484 // U_k is the upper bound of the kth index, L_k is the lower bound of the Kth 2485 // index, and N_k is the stride of the kth index. Since all loops are normalized 2486 // by the SCEV package, N_k = 1 and L_k = 0, allowing us to simplify the 2487 // equation to 2488 // 2489 // LB^<_k = (A^-_k - B_k)^- (U_k - 0 - 1) + (A_k - B_k)0 - B_k 1 2490 // = (A^-_k - B_k)^- (U_k - 1) - B_k 2491 // 2492 // Similar simplifications are possible for the other equations. 2493 // 2494 // When we can't determine the number of iterations for a loop, 2495 // we use NULL as an indicator for the worst case, infinity. 2496 // When computing the upper bound, NULL denotes +inf; 2497 // for the lower bound, NULL denotes -inf. 2498 // 2499 // Return true if dependence disproved. 2500 bool DependenceAnalysis::banerjeeMIVtest(const SCEV *Src, 2501 const SCEV *Dst, 2502 const SmallBitVector &Loops, 2503 FullDependence &Result) const { 2504 DEBUG(dbgs() << "starting Banerjee\n"); 2505 ++BanerjeeApplications; 2506 DEBUG(dbgs() << " Src = " << *Src << '\n'); 2507 const SCEV *A0; 2508 CoefficientInfo *A = collectCoeffInfo(Src, true, A0); 2509 DEBUG(dbgs() << " Dst = " << *Dst << '\n'); 2510 const SCEV *B0; 2511 CoefficientInfo *B = collectCoeffInfo(Dst, false, B0); 2512 BoundInfo *Bound = new BoundInfo[MaxLevels + 1]; 2513 const SCEV *Delta = SE->getMinusSCEV(B0, A0); 2514 DEBUG(dbgs() << "\tDelta = " << *Delta << '\n'); 2515 2516 // Compute bounds for all the * directions. 2517 DEBUG(dbgs() << "\tBounds[*]\n"); 2518 for (unsigned K = 1; K <= MaxLevels; ++K) { 2519 Bound[K].Iterations = A[K].Iterations ? A[K].Iterations : B[K].Iterations; 2520 Bound[K].Direction = Dependence::DVEntry::ALL; 2521 Bound[K].DirSet = Dependence::DVEntry::NONE; 2522 findBoundsALL(A, B, Bound, K); 2523 #ifndef NDEBUG 2524 DEBUG(dbgs() << "\t " << K << '\t'); 2525 if (Bound[K].Lower[Dependence::DVEntry::ALL]) 2526 DEBUG(dbgs() << *Bound[K].Lower[Dependence::DVEntry::ALL] << '\t'); 2527 else 2528 DEBUG(dbgs() << "-inf\t"); 2529 if (Bound[K].Upper[Dependence::DVEntry::ALL]) 2530 DEBUG(dbgs() << *Bound[K].Upper[Dependence::DVEntry::ALL] << '\n'); 2531 else 2532 DEBUG(dbgs() << "+inf\n"); 2533 #endif 2534 } 2535 2536 // Test the *, *, *, ... case. 2537 bool Disproved = false; 2538 if (testBounds(Dependence::DVEntry::ALL, 0, Bound, Delta)) { 2539 // Explore the direction vector hierarchy. 2540 unsigned DepthExpanded = 0; 2541 unsigned NewDeps = exploreDirections(1, A, B, Bound, 2542 Loops, DepthExpanded, Delta); 2543 if (NewDeps > 0) { 2544 bool Improved = false; 2545 for (unsigned K = 1; K <= CommonLevels; ++K) { 2546 if (Loops[K]) { 2547 unsigned Old = Result.DV[K - 1].Direction; 2548 Result.DV[K - 1].Direction = Old & Bound[K].DirSet; 2549 Improved |= Old != Result.DV[K - 1].Direction; 2550 if (!Result.DV[K - 1].Direction) { 2551 Improved = false; 2552 Disproved = true; 2553 break; 2554 } 2555 } 2556 } 2557 if (Improved) 2558 ++BanerjeeSuccesses; 2559 } 2560 else { 2561 ++BanerjeeIndependence; 2562 Disproved = true; 2563 } 2564 } 2565 else { 2566 ++BanerjeeIndependence; 2567 Disproved = true; 2568 } 2569 delete [] Bound; 2570 delete [] A; 2571 delete [] B; 2572 return Disproved; 2573 } 2574 2575 2576 // Hierarchically expands the direction vector 2577 // search space, combining the directions of discovered dependences 2578 // in the DirSet field of Bound. Returns the number of distinct 2579 // dependences discovered. If the dependence is disproved, 2580 // it will return 0. 2581 unsigned DependenceAnalysis::exploreDirections(unsigned Level, 2582 CoefficientInfo *A, 2583 CoefficientInfo *B, 2584 BoundInfo *Bound, 2585 const SmallBitVector &Loops, 2586 unsigned &DepthExpanded, 2587 const SCEV *Delta) const { 2588 if (Level > CommonLevels) { 2589 // record result 2590 DEBUG(dbgs() << "\t["); 2591 for (unsigned K = 1; K <= CommonLevels; ++K) { 2592 if (Loops[K]) { 2593 Bound[K].DirSet |= Bound[K].Direction; 2594 #ifndef NDEBUG 2595 switch (Bound[K].Direction) { 2596 case Dependence::DVEntry::LT: 2597 DEBUG(dbgs() << " <"); 2598 break; 2599 case Dependence::DVEntry::EQ: 2600 DEBUG(dbgs() << " ="); 2601 break; 2602 case Dependence::DVEntry::GT: 2603 DEBUG(dbgs() << " >"); 2604 break; 2605 case Dependence::DVEntry::ALL: 2606 DEBUG(dbgs() << " *"); 2607 break; 2608 default: 2609 llvm_unreachable("unexpected Bound[K].Direction"); 2610 } 2611 #endif 2612 } 2613 } 2614 DEBUG(dbgs() << " ]\n"); 2615 return 1; 2616 } 2617 if (Loops[Level]) { 2618 if (Level > DepthExpanded) { 2619 DepthExpanded = Level; 2620 // compute bounds for <, =, > at current level 2621 findBoundsLT(A, B, Bound, Level); 2622 findBoundsGT(A, B, Bound, Level); 2623 findBoundsEQ(A, B, Bound, Level); 2624 #ifndef NDEBUG 2625 DEBUG(dbgs() << "\tBound for level = " << Level << '\n'); 2626 DEBUG(dbgs() << "\t <\t"); 2627 if (Bound[Level].Lower[Dependence::DVEntry::LT]) 2628 DEBUG(dbgs() << *Bound[Level].Lower[Dependence::DVEntry::LT] << '\t'); 2629 else 2630 DEBUG(dbgs() << "-inf\t"); 2631 if (Bound[Level].Upper[Dependence::DVEntry::LT]) 2632 DEBUG(dbgs() << *Bound[Level].Upper[Dependence::DVEntry::LT] << '\n'); 2633 else 2634 DEBUG(dbgs() << "+inf\n"); 2635 DEBUG(dbgs() << "\t =\t"); 2636 if (Bound[Level].Lower[Dependence::DVEntry::EQ]) 2637 DEBUG(dbgs() << *Bound[Level].Lower[Dependence::DVEntry::EQ] << '\t'); 2638 else 2639 DEBUG(dbgs() << "-inf\t"); 2640 if (Bound[Level].Upper[Dependence::DVEntry::EQ]) 2641 DEBUG(dbgs() << *Bound[Level].Upper[Dependence::DVEntry::EQ] << '\n'); 2642 else 2643 DEBUG(dbgs() << "+inf\n"); 2644 DEBUG(dbgs() << "\t >\t"); 2645 if (Bound[Level].Lower[Dependence::DVEntry::GT]) 2646 DEBUG(dbgs() << *Bound[Level].Lower[Dependence::DVEntry::GT] << '\t'); 2647 else 2648 DEBUG(dbgs() << "-inf\t"); 2649 if (Bound[Level].Upper[Dependence::DVEntry::GT]) 2650 DEBUG(dbgs() << *Bound[Level].Upper[Dependence::DVEntry::GT] << '\n'); 2651 else 2652 DEBUG(dbgs() << "+inf\n"); 2653 #endif 2654 } 2655 2656 unsigned NewDeps = 0; 2657 2658 // test bounds for <, *, *, ... 2659 if (testBounds(Dependence::DVEntry::LT, Level, Bound, Delta)) 2660 NewDeps += exploreDirections(Level + 1, A, B, Bound, 2661 Loops, DepthExpanded, Delta); 2662 2663 // Test bounds for =, *, *, ... 2664 if (testBounds(Dependence::DVEntry::EQ, Level, Bound, Delta)) 2665 NewDeps += exploreDirections(Level + 1, A, B, Bound, 2666 Loops, DepthExpanded, Delta); 2667 2668 // test bounds for >, *, *, ... 2669 if (testBounds(Dependence::DVEntry::GT, Level, Bound, Delta)) 2670 NewDeps += exploreDirections(Level + 1, A, B, Bound, 2671 Loops, DepthExpanded, Delta); 2672 2673 Bound[Level].Direction = Dependence::DVEntry::ALL; 2674 return NewDeps; 2675 } 2676 else 2677 return exploreDirections(Level + 1, A, B, Bound, Loops, DepthExpanded, Delta); 2678 } 2679 2680 2681 // Returns true iff the current bounds are plausible. 2682 bool DependenceAnalysis::testBounds(unsigned char DirKind, 2683 unsigned Level, 2684 BoundInfo *Bound, 2685 const SCEV *Delta) const { 2686 Bound[Level].Direction = DirKind; 2687 if (const SCEV *LowerBound = getLowerBound(Bound)) 2688 if (isKnownPredicate(CmpInst::ICMP_SGT, LowerBound, Delta)) 2689 return false; 2690 if (const SCEV *UpperBound = getUpperBound(Bound)) 2691 if (isKnownPredicate(CmpInst::ICMP_SGT, Delta, UpperBound)) 2692 return false; 2693 return true; 2694 } 2695 2696 2697 // Computes the upper and lower bounds for level K 2698 // using the * direction. Records them in Bound. 2699 // Wolfe gives the equations 2700 // 2701 // LB^*_k = (A^-_k - B^+_k)(U_k - L_k) + (A_k - B_k)L_k 2702 // UB^*_k = (A^+_k - B^-_k)(U_k - L_k) + (A_k - B_k)L_k 2703 // 2704 // Since we normalize loops, we can simplify these equations to 2705 // 2706 // LB^*_k = (A^-_k - B^+_k)U_k 2707 // UB^*_k = (A^+_k - B^-_k)U_k 2708 // 2709 // We must be careful to handle the case where the upper bound is unknown. 2710 // Note that the lower bound is always <= 0 2711 // and the upper bound is always >= 0. 2712 void DependenceAnalysis::findBoundsALL(CoefficientInfo *A, 2713 CoefficientInfo *B, 2714 BoundInfo *Bound, 2715 unsigned K) const { 2716 Bound[K].Lower[Dependence::DVEntry::ALL] = nullptr; // Default value = -infinity. 2717 Bound[K].Upper[Dependence::DVEntry::ALL] = nullptr; // Default value = +infinity. 2718 if (Bound[K].Iterations) { 2719 Bound[K].Lower[Dependence::DVEntry::ALL] = 2720 SE->getMulExpr(SE->getMinusSCEV(A[K].NegPart, B[K].PosPart), 2721 Bound[K].Iterations); 2722 Bound[K].Upper[Dependence::DVEntry::ALL] = 2723 SE->getMulExpr(SE->getMinusSCEV(A[K].PosPart, B[K].NegPart), 2724 Bound[K].Iterations); 2725 } 2726 else { 2727 // If the difference is 0, we won't need to know the number of iterations. 2728 if (isKnownPredicate(CmpInst::ICMP_EQ, A[K].NegPart, B[K].PosPart)) 2729 Bound[K].Lower[Dependence::DVEntry::ALL] = 2730 SE->getZero(A[K].Coeff->getType()); 2731 if (isKnownPredicate(CmpInst::ICMP_EQ, A[K].PosPart, B[K].NegPart)) 2732 Bound[K].Upper[Dependence::DVEntry::ALL] = 2733 SE->getZero(A[K].Coeff->getType()); 2734 } 2735 } 2736 2737 2738 // Computes the upper and lower bounds for level K 2739 // using the = direction. Records them in Bound. 2740 // Wolfe gives the equations 2741 // 2742 // LB^=_k = (A_k - B_k)^- (U_k - L_k) + (A_k - B_k)L_k 2743 // UB^=_k = (A_k - B_k)^+ (U_k - L_k) + (A_k - B_k)L_k 2744 // 2745 // Since we normalize loops, we can simplify these equations to 2746 // 2747 // LB^=_k = (A_k - B_k)^- U_k 2748 // UB^=_k = (A_k - B_k)^+ U_k 2749 // 2750 // We must be careful to handle the case where the upper bound is unknown. 2751 // Note that the lower bound is always <= 0 2752 // and the upper bound is always >= 0. 2753 void DependenceAnalysis::findBoundsEQ(CoefficientInfo *A, 2754 CoefficientInfo *B, 2755 BoundInfo *Bound, 2756 unsigned K) const { 2757 Bound[K].Lower[Dependence::DVEntry::EQ] = nullptr; // Default value = -infinity. 2758 Bound[K].Upper[Dependence::DVEntry::EQ] = nullptr; // Default value = +infinity. 2759 if (Bound[K].Iterations) { 2760 const SCEV *Delta = SE->getMinusSCEV(A[K].Coeff, B[K].Coeff); 2761 const SCEV *NegativePart = getNegativePart(Delta); 2762 Bound[K].Lower[Dependence::DVEntry::EQ] = 2763 SE->getMulExpr(NegativePart, Bound[K].Iterations); 2764 const SCEV *PositivePart = getPositivePart(Delta); 2765 Bound[K].Upper[Dependence::DVEntry::EQ] = 2766 SE->getMulExpr(PositivePart, Bound[K].Iterations); 2767 } 2768 else { 2769 // If the positive/negative part of the difference is 0, 2770 // we won't need to know the number of iterations. 2771 const SCEV *Delta = SE->getMinusSCEV(A[K].Coeff, B[K].Coeff); 2772 const SCEV *NegativePart = getNegativePart(Delta); 2773 if (NegativePart->isZero()) 2774 Bound[K].Lower[Dependence::DVEntry::EQ] = NegativePart; // Zero 2775 const SCEV *PositivePart = getPositivePart(Delta); 2776 if (PositivePart->isZero()) 2777 Bound[K].Upper[Dependence::DVEntry::EQ] = PositivePart; // Zero 2778 } 2779 } 2780 2781 2782 // Computes the upper and lower bounds for level K 2783 // using the < direction. Records them in Bound. 2784 // Wolfe gives the equations 2785 // 2786 // LB^<_k = (A^-_k - B_k)^- (U_k - L_k - N_k) + (A_k - B_k)L_k - B_k N_k 2787 // UB^<_k = (A^+_k - B_k)^+ (U_k - L_k - N_k) + (A_k - B_k)L_k - B_k N_k 2788 // 2789 // Since we normalize loops, we can simplify these equations to 2790 // 2791 // LB^<_k = (A^-_k - B_k)^- (U_k - 1) - B_k 2792 // UB^<_k = (A^+_k - B_k)^+ (U_k - 1) - B_k 2793 // 2794 // We must be careful to handle the case where the upper bound is unknown. 2795 void DependenceAnalysis::findBoundsLT(CoefficientInfo *A, 2796 CoefficientInfo *B, 2797 BoundInfo *Bound, 2798 unsigned K) const { 2799 Bound[K].Lower[Dependence::DVEntry::LT] = nullptr; // Default value = -infinity. 2800 Bound[K].Upper[Dependence::DVEntry::LT] = nullptr; // Default value = +infinity. 2801 if (Bound[K].Iterations) { 2802 const SCEV *Iter_1 = SE->getMinusSCEV( 2803 Bound[K].Iterations, SE->getOne(Bound[K].Iterations->getType())); 2804 const SCEV *NegPart = 2805 getNegativePart(SE->getMinusSCEV(A[K].NegPart, B[K].Coeff)); 2806 Bound[K].Lower[Dependence::DVEntry::LT] = 2807 SE->getMinusSCEV(SE->getMulExpr(NegPart, Iter_1), B[K].Coeff); 2808 const SCEV *PosPart = 2809 getPositivePart(SE->getMinusSCEV(A[K].PosPart, B[K].Coeff)); 2810 Bound[K].Upper[Dependence::DVEntry::LT] = 2811 SE->getMinusSCEV(SE->getMulExpr(PosPart, Iter_1), B[K].Coeff); 2812 } 2813 else { 2814 // If the positive/negative part of the difference is 0, 2815 // we won't need to know the number of iterations. 2816 const SCEV *NegPart = 2817 getNegativePart(SE->getMinusSCEV(A[K].NegPart, B[K].Coeff)); 2818 if (NegPart->isZero()) 2819 Bound[K].Lower[Dependence::DVEntry::LT] = SE->getNegativeSCEV(B[K].Coeff); 2820 const SCEV *PosPart = 2821 getPositivePart(SE->getMinusSCEV(A[K].PosPart, B[K].Coeff)); 2822 if (PosPart->isZero()) 2823 Bound[K].Upper[Dependence::DVEntry::LT] = SE->getNegativeSCEV(B[K].Coeff); 2824 } 2825 } 2826 2827 2828 // Computes the upper and lower bounds for level K 2829 // using the > direction. Records them in Bound. 2830 // Wolfe gives the equations 2831 // 2832 // LB^>_k = (A_k - B^+_k)^- (U_k - L_k - N_k) + (A_k - B_k)L_k + A_k N_k 2833 // UB^>_k = (A_k - B^-_k)^+ (U_k - L_k - N_k) + (A_k - B_k)L_k + A_k N_k 2834 // 2835 // Since we normalize loops, we can simplify these equations to 2836 // 2837 // LB^>_k = (A_k - B^+_k)^- (U_k - 1) + A_k 2838 // UB^>_k = (A_k - B^-_k)^+ (U_k - 1) + A_k 2839 // 2840 // We must be careful to handle the case where the upper bound is unknown. 2841 void DependenceAnalysis::findBoundsGT(CoefficientInfo *A, 2842 CoefficientInfo *B, 2843 BoundInfo *Bound, 2844 unsigned K) const { 2845 Bound[K].Lower[Dependence::DVEntry::GT] = nullptr; // Default value = -infinity. 2846 Bound[K].Upper[Dependence::DVEntry::GT] = nullptr; // Default value = +infinity. 2847 if (Bound[K].Iterations) { 2848 const SCEV *Iter_1 = SE->getMinusSCEV( 2849 Bound[K].Iterations, SE->getOne(Bound[K].Iterations->getType())); 2850 const SCEV *NegPart = 2851 getNegativePart(SE->getMinusSCEV(A[K].Coeff, B[K].PosPart)); 2852 Bound[K].Lower[Dependence::DVEntry::GT] = 2853 SE->getAddExpr(SE->getMulExpr(NegPart, Iter_1), A[K].Coeff); 2854 const SCEV *PosPart = 2855 getPositivePart(SE->getMinusSCEV(A[K].Coeff, B[K].NegPart)); 2856 Bound[K].Upper[Dependence::DVEntry::GT] = 2857 SE->getAddExpr(SE->getMulExpr(PosPart, Iter_1), A[K].Coeff); 2858 } 2859 else { 2860 // If the positive/negative part of the difference is 0, 2861 // we won't need to know the number of iterations. 2862 const SCEV *NegPart = getNegativePart(SE->getMinusSCEV(A[K].Coeff, B[K].PosPart)); 2863 if (NegPart->isZero()) 2864 Bound[K].Lower[Dependence::DVEntry::GT] = A[K].Coeff; 2865 const SCEV *PosPart = getPositivePart(SE->getMinusSCEV(A[K].Coeff, B[K].NegPart)); 2866 if (PosPart->isZero()) 2867 Bound[K].Upper[Dependence::DVEntry::GT] = A[K].Coeff; 2868 } 2869 } 2870 2871 2872 // X^+ = max(X, 0) 2873 const SCEV *DependenceAnalysis::getPositivePart(const SCEV *X) const { 2874 return SE->getSMaxExpr(X, SE->getZero(X->getType())); 2875 } 2876 2877 2878 // X^- = min(X, 0) 2879 const SCEV *DependenceAnalysis::getNegativePart(const SCEV *X) const { 2880 return SE->getSMinExpr(X, SE->getZero(X->getType())); 2881 } 2882 2883 2884 // Walks through the subscript, 2885 // collecting each coefficient, the associated loop bounds, 2886 // and recording its positive and negative parts for later use. 2887 DependenceAnalysis::CoefficientInfo * 2888 DependenceAnalysis::collectCoeffInfo(const SCEV *Subscript, 2889 bool SrcFlag, 2890 const SCEV *&Constant) const { 2891 const SCEV *Zero = SE->getZero(Subscript->getType()); 2892 CoefficientInfo *CI = new CoefficientInfo[MaxLevels + 1]; 2893 for (unsigned K = 1; K <= MaxLevels; ++K) { 2894 CI[K].Coeff = Zero; 2895 CI[K].PosPart = Zero; 2896 CI[K].NegPart = Zero; 2897 CI[K].Iterations = nullptr; 2898 } 2899 while (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Subscript)) { 2900 const Loop *L = AddRec->getLoop(); 2901 unsigned K = SrcFlag ? mapSrcLoop(L) : mapDstLoop(L); 2902 CI[K].Coeff = AddRec->getStepRecurrence(*SE); 2903 CI[K].PosPart = getPositivePart(CI[K].Coeff); 2904 CI[K].NegPart = getNegativePart(CI[K].Coeff); 2905 CI[K].Iterations = collectUpperBound(L, Subscript->getType()); 2906 Subscript = AddRec->getStart(); 2907 } 2908 Constant = Subscript; 2909 #ifndef NDEBUG 2910 DEBUG(dbgs() << "\tCoefficient Info\n"); 2911 for (unsigned K = 1; K <= MaxLevels; ++K) { 2912 DEBUG(dbgs() << "\t " << K << "\t" << *CI[K].Coeff); 2913 DEBUG(dbgs() << "\tPos Part = "); 2914 DEBUG(dbgs() << *CI[K].PosPart); 2915 DEBUG(dbgs() << "\tNeg Part = "); 2916 DEBUG(dbgs() << *CI[K].NegPart); 2917 DEBUG(dbgs() << "\tUpper Bound = "); 2918 if (CI[K].Iterations) 2919 DEBUG(dbgs() << *CI[K].Iterations); 2920 else 2921 DEBUG(dbgs() << "+inf"); 2922 DEBUG(dbgs() << '\n'); 2923 } 2924 DEBUG(dbgs() << "\t Constant = " << *Subscript << '\n'); 2925 #endif 2926 return CI; 2927 } 2928 2929 2930 // Looks through all the bounds info and 2931 // computes the lower bound given the current direction settings 2932 // at each level. If the lower bound for any level is -inf, 2933 // the result is -inf. 2934 const SCEV *DependenceAnalysis::getLowerBound(BoundInfo *Bound) const { 2935 const SCEV *Sum = Bound[1].Lower[Bound[1].Direction]; 2936 for (unsigned K = 2; Sum && K <= MaxLevels; ++K) { 2937 if (Bound[K].Lower[Bound[K].Direction]) 2938 Sum = SE->getAddExpr(Sum, Bound[K].Lower[Bound[K].Direction]); 2939 else 2940 Sum = nullptr; 2941 } 2942 return Sum; 2943 } 2944 2945 2946 // Looks through all the bounds info and 2947 // computes the upper bound given the current direction settings 2948 // at each level. If the upper bound at any level is +inf, 2949 // the result is +inf. 2950 const SCEV *DependenceAnalysis::getUpperBound(BoundInfo *Bound) const { 2951 const SCEV *Sum = Bound[1].Upper[Bound[1].Direction]; 2952 for (unsigned K = 2; Sum && K <= MaxLevels; ++K) { 2953 if (Bound[K].Upper[Bound[K].Direction]) 2954 Sum = SE->getAddExpr(Sum, Bound[K].Upper[Bound[K].Direction]); 2955 else 2956 Sum = nullptr; 2957 } 2958 return Sum; 2959 } 2960 2961 2962 //===----------------------------------------------------------------------===// 2963 // Constraint manipulation for Delta test. 2964 2965 // Given a linear SCEV, 2966 // return the coefficient (the step) 2967 // corresponding to the specified loop. 2968 // If there isn't one, return 0. 2969 // For example, given a*i + b*j + c*k, finding the coefficient 2970 // corresponding to the j loop would yield b. 2971 const SCEV *DependenceAnalysis::findCoefficient(const SCEV *Expr, 2972 const Loop *TargetLoop) const { 2973 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Expr); 2974 if (!AddRec) 2975 return SE->getZero(Expr->getType()); 2976 if (AddRec->getLoop() == TargetLoop) 2977 return AddRec->getStepRecurrence(*SE); 2978 return findCoefficient(AddRec->getStart(), TargetLoop); 2979 } 2980 2981 2982 // Given a linear SCEV, 2983 // return the SCEV given by zeroing out the coefficient 2984 // corresponding to the specified loop. 2985 // For example, given a*i + b*j + c*k, zeroing the coefficient 2986 // corresponding to the j loop would yield a*i + c*k. 2987 const SCEV *DependenceAnalysis::zeroCoefficient(const SCEV *Expr, 2988 const Loop *TargetLoop) const { 2989 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Expr); 2990 if (!AddRec) 2991 return Expr; // ignore 2992 if (AddRec->getLoop() == TargetLoop) 2993 return AddRec->getStart(); 2994 return SE->getAddRecExpr(zeroCoefficient(AddRec->getStart(), TargetLoop), 2995 AddRec->getStepRecurrence(*SE), 2996 AddRec->getLoop(), 2997 AddRec->getNoWrapFlags()); 2998 } 2999 3000 3001 // Given a linear SCEV Expr, 3002 // return the SCEV given by adding some Value to the 3003 // coefficient corresponding to the specified TargetLoop. 3004 // For example, given a*i + b*j + c*k, adding 1 to the coefficient 3005 // corresponding to the j loop would yield a*i + (b+1)*j + c*k. 3006 const SCEV *DependenceAnalysis::addToCoefficient(const SCEV *Expr, 3007 const Loop *TargetLoop, 3008 const SCEV *Value) const { 3009 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Expr); 3010 if (!AddRec) // create a new addRec 3011 return SE->getAddRecExpr(Expr, 3012 Value, 3013 TargetLoop, 3014 SCEV::FlagAnyWrap); // Worst case, with no info. 3015 if (AddRec->getLoop() == TargetLoop) { 3016 const SCEV *Sum = SE->getAddExpr(AddRec->getStepRecurrence(*SE), Value); 3017 if (Sum->isZero()) 3018 return AddRec->getStart(); 3019 return SE->getAddRecExpr(AddRec->getStart(), 3020 Sum, 3021 AddRec->getLoop(), 3022 AddRec->getNoWrapFlags()); 3023 } 3024 if (SE->isLoopInvariant(AddRec, TargetLoop)) 3025 return SE->getAddRecExpr(AddRec, Value, TargetLoop, SCEV::FlagAnyWrap); 3026 return SE->getAddRecExpr( 3027 addToCoefficient(AddRec->getStart(), TargetLoop, Value), 3028 AddRec->getStepRecurrence(*SE), AddRec->getLoop(), 3029 AddRec->getNoWrapFlags()); 3030 } 3031 3032 3033 // Review the constraints, looking for opportunities 3034 // to simplify a subscript pair (Src and Dst). 3035 // Return true if some simplification occurs. 3036 // If the simplification isn't exact (that is, if it is conservative 3037 // in terms of dependence), set consistent to false. 3038 // Corresponds to Figure 5 from the paper 3039 // 3040 // Practical Dependence Testing 3041 // Goff, Kennedy, Tseng 3042 // PLDI 1991 3043 bool DependenceAnalysis::propagate(const SCEV *&Src, 3044 const SCEV *&Dst, 3045 SmallBitVector &Loops, 3046 SmallVectorImpl<Constraint> &Constraints, 3047 bool &Consistent) { 3048 bool Result = false; 3049 for (int LI = Loops.find_first(); LI >= 0; LI = Loops.find_next(LI)) { 3050 DEBUG(dbgs() << "\t Constraint[" << LI << "] is"); 3051 DEBUG(Constraints[LI].dump(dbgs())); 3052 if (Constraints[LI].isDistance()) 3053 Result |= propagateDistance(Src, Dst, Constraints[LI], Consistent); 3054 else if (Constraints[LI].isLine()) 3055 Result |= propagateLine(Src, Dst, Constraints[LI], Consistent); 3056 else if (Constraints[LI].isPoint()) 3057 Result |= propagatePoint(Src, Dst, Constraints[LI]); 3058 } 3059 return Result; 3060 } 3061 3062 3063 // Attempt to propagate a distance 3064 // constraint into a subscript pair (Src and Dst). 3065 // Return true if some simplification occurs. 3066 // If the simplification isn't exact (that is, if it is conservative 3067 // in terms of dependence), set consistent to false. 3068 bool DependenceAnalysis::propagateDistance(const SCEV *&Src, 3069 const SCEV *&Dst, 3070 Constraint &CurConstraint, 3071 bool &Consistent) { 3072 const Loop *CurLoop = CurConstraint.getAssociatedLoop(); 3073 DEBUG(dbgs() << "\t\tSrc is " << *Src << "\n"); 3074 const SCEV *A_K = findCoefficient(Src, CurLoop); 3075 if (A_K->isZero()) 3076 return false; 3077 const SCEV *DA_K = SE->getMulExpr(A_K, CurConstraint.getD()); 3078 Src = SE->getMinusSCEV(Src, DA_K); 3079 Src = zeroCoefficient(Src, CurLoop); 3080 DEBUG(dbgs() << "\t\tnew Src is " << *Src << "\n"); 3081 DEBUG(dbgs() << "\t\tDst is " << *Dst << "\n"); 3082 Dst = addToCoefficient(Dst, CurLoop, SE->getNegativeSCEV(A_K)); 3083 DEBUG(dbgs() << "\t\tnew Dst is " << *Dst << "\n"); 3084 if (!findCoefficient(Dst, CurLoop)->isZero()) 3085 Consistent = false; 3086 return true; 3087 } 3088 3089 3090 // Attempt to propagate a line 3091 // constraint into a subscript pair (Src and Dst). 3092 // Return true if some simplification occurs. 3093 // If the simplification isn't exact (that is, if it is conservative 3094 // in terms of dependence), set consistent to false. 3095 bool DependenceAnalysis::propagateLine(const SCEV *&Src, 3096 const SCEV *&Dst, 3097 Constraint &CurConstraint, 3098 bool &Consistent) { 3099 const Loop *CurLoop = CurConstraint.getAssociatedLoop(); 3100 const SCEV *A = CurConstraint.getA(); 3101 const SCEV *B = CurConstraint.getB(); 3102 const SCEV *C = CurConstraint.getC(); 3103 DEBUG(dbgs() << "\t\tA = " << *A << ", B = " << *B << ", C = " << *C << "\n"); 3104 DEBUG(dbgs() << "\t\tSrc = " << *Src << "\n"); 3105 DEBUG(dbgs() << "\t\tDst = " << *Dst << "\n"); 3106 if (A->isZero()) { 3107 const SCEVConstant *Bconst = dyn_cast<SCEVConstant>(B); 3108 const SCEVConstant *Cconst = dyn_cast<SCEVConstant>(C); 3109 if (!Bconst || !Cconst) return false; 3110 APInt Beta = Bconst->getAPInt(); 3111 APInt Charlie = Cconst->getAPInt(); 3112 APInt CdivB = Charlie.sdiv(Beta); 3113 assert(Charlie.srem(Beta) == 0 && "C should be evenly divisible by B"); 3114 const SCEV *AP_K = findCoefficient(Dst, CurLoop); 3115 // Src = SE->getAddExpr(Src, SE->getMulExpr(AP_K, SE->getConstant(CdivB))); 3116 Src = SE->getMinusSCEV(Src, SE->getMulExpr(AP_K, SE->getConstant(CdivB))); 3117 Dst = zeroCoefficient(Dst, CurLoop); 3118 if (!findCoefficient(Src, CurLoop)->isZero()) 3119 Consistent = false; 3120 } 3121 else if (B->isZero()) { 3122 const SCEVConstant *Aconst = dyn_cast<SCEVConstant>(A); 3123 const SCEVConstant *Cconst = dyn_cast<SCEVConstant>(C); 3124 if (!Aconst || !Cconst) return false; 3125 APInt Alpha = Aconst->getAPInt(); 3126 APInt Charlie = Cconst->getAPInt(); 3127 APInt CdivA = Charlie.sdiv(Alpha); 3128 assert(Charlie.srem(Alpha) == 0 && "C should be evenly divisible by A"); 3129 const SCEV *A_K = findCoefficient(Src, CurLoop); 3130 Src = SE->getAddExpr(Src, SE->getMulExpr(A_K, SE->getConstant(CdivA))); 3131 Src = zeroCoefficient(Src, CurLoop); 3132 if (!findCoefficient(Dst, CurLoop)->isZero()) 3133 Consistent = false; 3134 } 3135 else if (isKnownPredicate(CmpInst::ICMP_EQ, A, B)) { 3136 const SCEVConstant *Aconst = dyn_cast<SCEVConstant>(A); 3137 const SCEVConstant *Cconst = dyn_cast<SCEVConstant>(C); 3138 if (!Aconst || !Cconst) return false; 3139 APInt Alpha = Aconst->getAPInt(); 3140 APInt Charlie = Cconst->getAPInt(); 3141 APInt CdivA = Charlie.sdiv(Alpha); 3142 assert(Charlie.srem(Alpha) == 0 && "C should be evenly divisible by A"); 3143 const SCEV *A_K = findCoefficient(Src, CurLoop); 3144 Src = SE->getAddExpr(Src, SE->getMulExpr(A_K, SE->getConstant(CdivA))); 3145 Src = zeroCoefficient(Src, CurLoop); 3146 Dst = addToCoefficient(Dst, CurLoop, A_K); 3147 if (!findCoefficient(Dst, CurLoop)->isZero()) 3148 Consistent = false; 3149 } 3150 else { 3151 // paper is incorrect here, or perhaps just misleading 3152 const SCEV *A_K = findCoefficient(Src, CurLoop); 3153 Src = SE->getMulExpr(Src, A); 3154 Dst = SE->getMulExpr(Dst, A); 3155 Src = SE->getAddExpr(Src, SE->getMulExpr(A_K, C)); 3156 Src = zeroCoefficient(Src, CurLoop); 3157 Dst = addToCoefficient(Dst, CurLoop, SE->getMulExpr(A_K, B)); 3158 if (!findCoefficient(Dst, CurLoop)->isZero()) 3159 Consistent = false; 3160 } 3161 DEBUG(dbgs() << "\t\tnew Src = " << *Src << "\n"); 3162 DEBUG(dbgs() << "\t\tnew Dst = " << *Dst << "\n"); 3163 return true; 3164 } 3165 3166 3167 // Attempt to propagate a point 3168 // constraint into a subscript pair (Src and Dst). 3169 // Return true if some simplification occurs. 3170 bool DependenceAnalysis::propagatePoint(const SCEV *&Src, 3171 const SCEV *&Dst, 3172 Constraint &CurConstraint) { 3173 const Loop *CurLoop = CurConstraint.getAssociatedLoop(); 3174 const SCEV *A_K = findCoefficient(Src, CurLoop); 3175 const SCEV *AP_K = findCoefficient(Dst, CurLoop); 3176 const SCEV *XA_K = SE->getMulExpr(A_K, CurConstraint.getX()); 3177 const SCEV *YAP_K = SE->getMulExpr(AP_K, CurConstraint.getY()); 3178 DEBUG(dbgs() << "\t\tSrc is " << *Src << "\n"); 3179 Src = SE->getAddExpr(Src, SE->getMinusSCEV(XA_K, YAP_K)); 3180 Src = zeroCoefficient(Src, CurLoop); 3181 DEBUG(dbgs() << "\t\tnew Src is " << *Src << "\n"); 3182 DEBUG(dbgs() << "\t\tDst is " << *Dst << "\n"); 3183 Dst = zeroCoefficient(Dst, CurLoop); 3184 DEBUG(dbgs() << "\t\tnew Dst is " << *Dst << "\n"); 3185 return true; 3186 } 3187 3188 3189 // Update direction vector entry based on the current constraint. 3190 void DependenceAnalysis::updateDirection(Dependence::DVEntry &Level, 3191 const Constraint &CurConstraint 3192 ) const { 3193 DEBUG(dbgs() << "\tUpdate direction, constraint ="); 3194 DEBUG(CurConstraint.dump(dbgs())); 3195 if (CurConstraint.isAny()) 3196 ; // use defaults 3197 else if (CurConstraint.isDistance()) { 3198 // this one is consistent, the others aren't 3199 Level.Scalar = false; 3200 Level.Distance = CurConstraint.getD(); 3201 unsigned NewDirection = Dependence::DVEntry::NONE; 3202 if (!SE->isKnownNonZero(Level.Distance)) // if may be zero 3203 NewDirection = Dependence::DVEntry::EQ; 3204 if (!SE->isKnownNonPositive(Level.Distance)) // if may be positive 3205 NewDirection |= Dependence::DVEntry::LT; 3206 if (!SE->isKnownNonNegative(Level.Distance)) // if may be negative 3207 NewDirection |= Dependence::DVEntry::GT; 3208 Level.Direction &= NewDirection; 3209 } 3210 else if (CurConstraint.isLine()) { 3211 Level.Scalar = false; 3212 Level.Distance = nullptr; 3213 // direction should be accurate 3214 } 3215 else if (CurConstraint.isPoint()) { 3216 Level.Scalar = false; 3217 Level.Distance = nullptr; 3218 unsigned NewDirection = Dependence::DVEntry::NONE; 3219 if (!isKnownPredicate(CmpInst::ICMP_NE, 3220 CurConstraint.getY(), 3221 CurConstraint.getX())) 3222 // if X may be = Y 3223 NewDirection |= Dependence::DVEntry::EQ; 3224 if (!isKnownPredicate(CmpInst::ICMP_SLE, 3225 CurConstraint.getY(), 3226 CurConstraint.getX())) 3227 // if Y may be > X 3228 NewDirection |= Dependence::DVEntry::LT; 3229 if (!isKnownPredicate(CmpInst::ICMP_SGE, 3230 CurConstraint.getY(), 3231 CurConstraint.getX())) 3232 // if Y may be < X 3233 NewDirection |= Dependence::DVEntry::GT; 3234 Level.Direction &= NewDirection; 3235 } 3236 else 3237 llvm_unreachable("constraint has unexpected kind"); 3238 } 3239 3240 /// Check if we can delinearize the subscripts. If the SCEVs representing the 3241 /// source and destination array references are recurrences on a nested loop, 3242 /// this function flattens the nested recurrences into separate recurrences 3243 /// for each loop level. 3244 bool DependenceAnalysis::tryDelinearize(Instruction *Src, 3245 Instruction *Dst, 3246 SmallVectorImpl<Subscript> &Pair) 3247 { 3248 Value *SrcPtr = getPointerOperand(Src); 3249 Value *DstPtr = getPointerOperand(Dst); 3250 3251 Loop *SrcLoop = LI->getLoopFor(Src->getParent()); 3252 Loop *DstLoop = LI->getLoopFor(Dst->getParent()); 3253 3254 // Below code mimics the code in Delinearization.cpp 3255 const SCEV *SrcAccessFn = 3256 SE->getSCEVAtScope(SrcPtr, SrcLoop); 3257 const SCEV *DstAccessFn = 3258 SE->getSCEVAtScope(DstPtr, DstLoop); 3259 3260 const SCEVUnknown *SrcBase = 3261 dyn_cast<SCEVUnknown>(SE->getPointerBase(SrcAccessFn)); 3262 const SCEVUnknown *DstBase = 3263 dyn_cast<SCEVUnknown>(SE->getPointerBase(DstAccessFn)); 3264 3265 if (!SrcBase || !DstBase || SrcBase != DstBase) 3266 return false; 3267 3268 const SCEV *ElementSize = SE->getElementSize(Src); 3269 if (ElementSize != SE->getElementSize(Dst)) 3270 return false; 3271 3272 const SCEV *SrcSCEV = SE->getMinusSCEV(SrcAccessFn, SrcBase); 3273 const SCEV *DstSCEV = SE->getMinusSCEV(DstAccessFn, DstBase); 3274 3275 const SCEVAddRecExpr *SrcAR = dyn_cast<SCEVAddRecExpr>(SrcSCEV); 3276 const SCEVAddRecExpr *DstAR = dyn_cast<SCEVAddRecExpr>(DstSCEV); 3277 if (!SrcAR || !DstAR || !SrcAR->isAffine() || !DstAR->isAffine()) 3278 return false; 3279 3280 // First step: collect parametric terms in both array references. 3281 SmallVector<const SCEV *, 4> Terms; 3282 SE->collectParametricTerms(SrcAR, Terms); 3283 SE->collectParametricTerms(DstAR, Terms); 3284 3285 // Second step: find subscript sizes. 3286 SmallVector<const SCEV *, 4> Sizes; 3287 SE->findArrayDimensions(Terms, Sizes, ElementSize); 3288 3289 // Third step: compute the access functions for each subscript. 3290 SmallVector<const SCEV *, 4> SrcSubscripts, DstSubscripts; 3291 SE->computeAccessFunctions(SrcAR, SrcSubscripts, Sizes); 3292 SE->computeAccessFunctions(DstAR, DstSubscripts, Sizes); 3293 3294 // Fail when there is only a subscript: that's a linearized access function. 3295 if (SrcSubscripts.size() < 2 || DstSubscripts.size() < 2 || 3296 SrcSubscripts.size() != DstSubscripts.size()) 3297 return false; 3298 3299 int size = SrcSubscripts.size(); 3300 3301 DEBUG({ 3302 dbgs() << "\nSrcSubscripts: "; 3303 for (int i = 0; i < size; i++) 3304 dbgs() << *SrcSubscripts[i]; 3305 dbgs() << "\nDstSubscripts: "; 3306 for (int i = 0; i < size; i++) 3307 dbgs() << *DstSubscripts[i]; 3308 }); 3309 3310 // The delinearization transforms a single-subscript MIV dependence test into 3311 // a multi-subscript SIV dependence test that is easier to compute. So we 3312 // resize Pair to contain as many pairs of subscripts as the delinearization 3313 // has found, and then initialize the pairs following the delinearization. 3314 Pair.resize(size); 3315 for (int i = 0; i < size; ++i) { 3316 Pair[i].Src = SrcSubscripts[i]; 3317 Pair[i].Dst = DstSubscripts[i]; 3318 unifySubscriptType(&Pair[i]); 3319 3320 // FIXME: we should record the bounds SrcSizes[i] and DstSizes[i] that the 3321 // delinearization has found, and add these constraints to the dependence 3322 // check to avoid memory accesses overflow from one dimension into another. 3323 // This is related to the problem of determining the existence of data 3324 // dependences in array accesses using a different number of subscripts: in 3325 // C one can access an array A[100][100]; as A[0][9999], *A[9999], etc. 3326 } 3327 3328 return true; 3329 } 3330 3331 //===----------------------------------------------------------------------===// 3332 3333 #ifndef NDEBUG 3334 // For debugging purposes, dump a small bit vector to dbgs(). 3335 static void dumpSmallBitVector(SmallBitVector &BV) { 3336 dbgs() << "{"; 3337 for (int VI = BV.find_first(); VI >= 0; VI = BV.find_next(VI)) { 3338 dbgs() << VI; 3339 if (BV.find_next(VI) >= 0) 3340 dbgs() << ' '; 3341 } 3342 dbgs() << "}\n"; 3343 } 3344 #endif 3345 3346 // depends - 3347 // Returns NULL if there is no dependence. 3348 // Otherwise, return a Dependence with as many details as possible. 3349 // Corresponds to Section 3.1 in the paper 3350 // 3351 // Practical Dependence Testing 3352 // Goff, Kennedy, Tseng 3353 // PLDI 1991 3354 // 3355 // Care is required to keep the routine below, getSplitIteration(), 3356 // up to date with respect to this routine. 3357 std::unique_ptr<Dependence> 3358 DependenceAnalysis::depends(Instruction *Src, Instruction *Dst, 3359 bool PossiblyLoopIndependent) { 3360 if (Src == Dst) 3361 PossiblyLoopIndependent = false; 3362 3363 if ((!Src->mayReadFromMemory() && !Src->mayWriteToMemory()) || 3364 (!Dst->mayReadFromMemory() && !Dst->mayWriteToMemory())) 3365 // if both instructions don't reference memory, there's no dependence 3366 return nullptr; 3367 3368 if (!isLoadOrStore(Src) || !isLoadOrStore(Dst)) { 3369 // can only analyze simple loads and stores, i.e., no calls, invokes, etc. 3370 DEBUG(dbgs() << "can only handle simple loads and stores\n"); 3371 return make_unique<Dependence>(Src, Dst); 3372 } 3373 3374 Value *SrcPtr = getPointerOperand(Src); 3375 Value *DstPtr = getPointerOperand(Dst); 3376 3377 switch (underlyingObjectsAlias(AA, F->getParent()->getDataLayout(), DstPtr, 3378 SrcPtr)) { 3379 case MayAlias: 3380 case PartialAlias: 3381 // cannot analyse objects if we don't understand their aliasing. 3382 DEBUG(dbgs() << "can't analyze may or partial alias\n"); 3383 return make_unique<Dependence>(Src, Dst); 3384 case NoAlias: 3385 // If the objects noalias, they are distinct, accesses are independent. 3386 DEBUG(dbgs() << "no alias\n"); 3387 return nullptr; 3388 case MustAlias: 3389 break; // The underlying objects alias; test accesses for dependence. 3390 } 3391 3392 // establish loop nesting levels 3393 establishNestingLevels(Src, Dst); 3394 DEBUG(dbgs() << " common nesting levels = " << CommonLevels << "\n"); 3395 DEBUG(dbgs() << " maximum nesting levels = " << MaxLevels << "\n"); 3396 3397 FullDependence Result(Src, Dst, PossiblyLoopIndependent, CommonLevels); 3398 ++TotalArrayPairs; 3399 3400 // See if there are GEPs we can use. 3401 bool UsefulGEP = false; 3402 GEPOperator *SrcGEP = dyn_cast<GEPOperator>(SrcPtr); 3403 GEPOperator *DstGEP = dyn_cast<GEPOperator>(DstPtr); 3404 if (SrcGEP && DstGEP && 3405 SrcGEP->getPointerOperandType() == DstGEP->getPointerOperandType()) { 3406 const SCEV *SrcPtrSCEV = SE->getSCEV(SrcGEP->getPointerOperand()); 3407 const SCEV *DstPtrSCEV = SE->getSCEV(DstGEP->getPointerOperand()); 3408 DEBUG(dbgs() << " SrcPtrSCEV = " << *SrcPtrSCEV << "\n"); 3409 DEBUG(dbgs() << " DstPtrSCEV = " << *DstPtrSCEV << "\n"); 3410 3411 UsefulGEP = isLoopInvariant(SrcPtrSCEV, LI->getLoopFor(Src->getParent())) && 3412 isLoopInvariant(DstPtrSCEV, LI->getLoopFor(Dst->getParent())) && 3413 (SrcGEP->getNumOperands() == DstGEP->getNumOperands()); 3414 } 3415 unsigned Pairs = UsefulGEP ? SrcGEP->idx_end() - SrcGEP->idx_begin() : 1; 3416 SmallVector<Subscript, 4> Pair(Pairs); 3417 if (UsefulGEP) { 3418 DEBUG(dbgs() << " using GEPs\n"); 3419 unsigned P = 0; 3420 for (GEPOperator::const_op_iterator SrcIdx = SrcGEP->idx_begin(), 3421 SrcEnd = SrcGEP->idx_end(), 3422 DstIdx = DstGEP->idx_begin(); 3423 SrcIdx != SrcEnd; 3424 ++SrcIdx, ++DstIdx, ++P) { 3425 Pair[P].Src = SE->getSCEV(*SrcIdx); 3426 Pair[P].Dst = SE->getSCEV(*DstIdx); 3427 unifySubscriptType(&Pair[P]); 3428 } 3429 } 3430 else { 3431 DEBUG(dbgs() << " ignoring GEPs\n"); 3432 const SCEV *SrcSCEV = SE->getSCEV(SrcPtr); 3433 const SCEV *DstSCEV = SE->getSCEV(DstPtr); 3434 DEBUG(dbgs() << " SrcSCEV = " << *SrcSCEV << "\n"); 3435 DEBUG(dbgs() << " DstSCEV = " << *DstSCEV << "\n"); 3436 Pair[0].Src = SrcSCEV; 3437 Pair[0].Dst = DstSCEV; 3438 } 3439 3440 if (Delinearize && CommonLevels > 1) { 3441 if (tryDelinearize(Src, Dst, Pair)) { 3442 DEBUG(dbgs() << " delinerized GEP\n"); 3443 Pairs = Pair.size(); 3444 } 3445 } 3446 3447 for (unsigned P = 0; P < Pairs; ++P) { 3448 Pair[P].Loops.resize(MaxLevels + 1); 3449 Pair[P].GroupLoops.resize(MaxLevels + 1); 3450 Pair[P].Group.resize(Pairs); 3451 removeMatchingExtensions(&Pair[P]); 3452 Pair[P].Classification = 3453 classifyPair(Pair[P].Src, LI->getLoopFor(Src->getParent()), 3454 Pair[P].Dst, LI->getLoopFor(Dst->getParent()), 3455 Pair[P].Loops); 3456 Pair[P].GroupLoops = Pair[P].Loops; 3457 Pair[P].Group.set(P); 3458 DEBUG(dbgs() << " subscript " << P << "\n"); 3459 DEBUG(dbgs() << "\tsrc = " << *Pair[P].Src << "\n"); 3460 DEBUG(dbgs() << "\tdst = " << *Pair[P].Dst << "\n"); 3461 DEBUG(dbgs() << "\tclass = " << Pair[P].Classification << "\n"); 3462 DEBUG(dbgs() << "\tloops = "); 3463 DEBUG(dumpSmallBitVector(Pair[P].Loops)); 3464 } 3465 3466 SmallBitVector Separable(Pairs); 3467 SmallBitVector Coupled(Pairs); 3468 3469 // Partition subscripts into separable and minimally-coupled groups 3470 // Algorithm in paper is algorithmically better; 3471 // this may be faster in practice. Check someday. 3472 // 3473 // Here's an example of how it works. Consider this code: 3474 // 3475 // for (i = ...) { 3476 // for (j = ...) { 3477 // for (k = ...) { 3478 // for (l = ...) { 3479 // for (m = ...) { 3480 // A[i][j][k][m] = ...; 3481 // ... = A[0][j][l][i + j]; 3482 // } 3483 // } 3484 // } 3485 // } 3486 // } 3487 // 3488 // There are 4 subscripts here: 3489 // 0 [i] and [0] 3490 // 1 [j] and [j] 3491 // 2 [k] and [l] 3492 // 3 [m] and [i + j] 3493 // 3494 // We've already classified each subscript pair as ZIV, SIV, etc., 3495 // and collected all the loops mentioned by pair P in Pair[P].Loops. 3496 // In addition, we've initialized Pair[P].GroupLoops to Pair[P].Loops 3497 // and set Pair[P].Group = {P}. 3498 // 3499 // Src Dst Classification Loops GroupLoops Group 3500 // 0 [i] [0] SIV {1} {1} {0} 3501 // 1 [j] [j] SIV {2} {2} {1} 3502 // 2 [k] [l] RDIV {3,4} {3,4} {2} 3503 // 3 [m] [i + j] MIV {1,2,5} {1,2,5} {3} 3504 // 3505 // For each subscript SI 0 .. 3, we consider each remaining subscript, SJ. 3506 // So, 0 is compared against 1, 2, and 3; 1 is compared against 2 and 3, etc. 3507 // 3508 // We begin by comparing 0 and 1. The intersection of the GroupLoops is empty. 3509 // Next, 0 and 2. Again, the intersection of their GroupLoops is empty. 3510 // Next 0 and 3. The intersection of their GroupLoop = {1}, not empty, 3511 // so Pair[3].Group = {0,3} and Done = false (that is, 0 will not be added 3512 // to either Separable or Coupled). 3513 // 3514 // Next, we consider 1 and 2. The intersection of the GroupLoops is empty. 3515 // Next, 1 and 3. The intersectionof their GroupLoops = {2}, not empty, 3516 // so Pair[3].Group = {0, 1, 3} and Done = false. 3517 // 3518 // Next, we compare 2 against 3. The intersection of the GroupLoops is empty. 3519 // Since Done remains true, we add 2 to the set of Separable pairs. 3520 // 3521 // Finally, we consider 3. There's nothing to compare it with, 3522 // so Done remains true and we add it to the Coupled set. 3523 // Pair[3].Group = {0, 1, 3} and GroupLoops = {1, 2, 5}. 3524 // 3525 // In the end, we've got 1 separable subscript and 1 coupled group. 3526 for (unsigned SI = 0; SI < Pairs; ++SI) { 3527 if (Pair[SI].Classification == Subscript::NonLinear) { 3528 // ignore these, but collect loops for later 3529 ++NonlinearSubscriptPairs; 3530 collectCommonLoops(Pair[SI].Src, 3531 LI->getLoopFor(Src->getParent()), 3532 Pair[SI].Loops); 3533 collectCommonLoops(Pair[SI].Dst, 3534 LI->getLoopFor(Dst->getParent()), 3535 Pair[SI].Loops); 3536 Result.Consistent = false; 3537 } else if (Pair[SI].Classification == Subscript::ZIV) { 3538 // always separable 3539 Separable.set(SI); 3540 } 3541 else { 3542 // SIV, RDIV, or MIV, so check for coupled group 3543 bool Done = true; 3544 for (unsigned SJ = SI + 1; SJ < Pairs; ++SJ) { 3545 SmallBitVector Intersection = Pair[SI].GroupLoops; 3546 Intersection &= Pair[SJ].GroupLoops; 3547 if (Intersection.any()) { 3548 // accumulate set of all the loops in group 3549 Pair[SJ].GroupLoops |= Pair[SI].GroupLoops; 3550 // accumulate set of all subscripts in group 3551 Pair[SJ].Group |= Pair[SI].Group; 3552 Done = false; 3553 } 3554 } 3555 if (Done) { 3556 if (Pair[SI].Group.count() == 1) { 3557 Separable.set(SI); 3558 ++SeparableSubscriptPairs; 3559 } 3560 else { 3561 Coupled.set(SI); 3562 ++CoupledSubscriptPairs; 3563 } 3564 } 3565 } 3566 } 3567 3568 DEBUG(dbgs() << " Separable = "); 3569 DEBUG(dumpSmallBitVector(Separable)); 3570 DEBUG(dbgs() << " Coupled = "); 3571 DEBUG(dumpSmallBitVector(Coupled)); 3572 3573 Constraint NewConstraint; 3574 NewConstraint.setAny(SE); 3575 3576 // test separable subscripts 3577 for (int SI = Separable.find_first(); SI >= 0; SI = Separable.find_next(SI)) { 3578 DEBUG(dbgs() << "testing subscript " << SI); 3579 switch (Pair[SI].Classification) { 3580 case Subscript::ZIV: 3581 DEBUG(dbgs() << ", ZIV\n"); 3582 if (testZIV(Pair[SI].Src, Pair[SI].Dst, Result)) 3583 return nullptr; 3584 break; 3585 case Subscript::SIV: { 3586 DEBUG(dbgs() << ", SIV\n"); 3587 unsigned Level; 3588 const SCEV *SplitIter = nullptr; 3589 if (testSIV(Pair[SI].Src, Pair[SI].Dst, Level, Result, NewConstraint, 3590 SplitIter)) 3591 return nullptr; 3592 break; 3593 } 3594 case Subscript::RDIV: 3595 DEBUG(dbgs() << ", RDIV\n"); 3596 if (testRDIV(Pair[SI].Src, Pair[SI].Dst, Result)) 3597 return nullptr; 3598 break; 3599 case Subscript::MIV: 3600 DEBUG(dbgs() << ", MIV\n"); 3601 if (testMIV(Pair[SI].Src, Pair[SI].Dst, Pair[SI].Loops, Result)) 3602 return nullptr; 3603 break; 3604 default: 3605 llvm_unreachable("subscript has unexpected classification"); 3606 } 3607 } 3608 3609 if (Coupled.count()) { 3610 // test coupled subscript groups 3611 DEBUG(dbgs() << "starting on coupled subscripts\n"); 3612 DEBUG(dbgs() << "MaxLevels + 1 = " << MaxLevels + 1 << "\n"); 3613 SmallVector<Constraint, 4> Constraints(MaxLevels + 1); 3614 for (unsigned II = 0; II <= MaxLevels; ++II) 3615 Constraints[II].setAny(SE); 3616 for (int SI = Coupled.find_first(); SI >= 0; SI = Coupled.find_next(SI)) { 3617 DEBUG(dbgs() << "testing subscript group " << SI << " { "); 3618 SmallBitVector Group(Pair[SI].Group); 3619 SmallBitVector Sivs(Pairs); 3620 SmallBitVector Mivs(Pairs); 3621 SmallBitVector ConstrainedLevels(MaxLevels + 1); 3622 SmallVector<Subscript *, 4> PairsInGroup; 3623 for (int SJ = Group.find_first(); SJ >= 0; SJ = Group.find_next(SJ)) { 3624 DEBUG(dbgs() << SJ << " "); 3625 if (Pair[SJ].Classification == Subscript::SIV) 3626 Sivs.set(SJ); 3627 else 3628 Mivs.set(SJ); 3629 PairsInGroup.push_back(&Pair[SJ]); 3630 } 3631 unifySubscriptType(PairsInGroup); 3632 DEBUG(dbgs() << "}\n"); 3633 while (Sivs.any()) { 3634 bool Changed = false; 3635 for (int SJ = Sivs.find_first(); SJ >= 0; SJ = Sivs.find_next(SJ)) { 3636 DEBUG(dbgs() << "testing subscript " << SJ << ", SIV\n"); 3637 // SJ is an SIV subscript that's part of the current coupled group 3638 unsigned Level; 3639 const SCEV *SplitIter = nullptr; 3640 DEBUG(dbgs() << "SIV\n"); 3641 if (testSIV(Pair[SJ].Src, Pair[SJ].Dst, Level, Result, NewConstraint, 3642 SplitIter)) 3643 return nullptr; 3644 ConstrainedLevels.set(Level); 3645 if (intersectConstraints(&Constraints[Level], &NewConstraint)) { 3646 if (Constraints[Level].isEmpty()) { 3647 ++DeltaIndependence; 3648 return nullptr; 3649 } 3650 Changed = true; 3651 } 3652 Sivs.reset(SJ); 3653 } 3654 if (Changed) { 3655 // propagate, possibly creating new SIVs and ZIVs 3656 DEBUG(dbgs() << " propagating\n"); 3657 DEBUG(dbgs() << "\tMivs = "); 3658 DEBUG(dumpSmallBitVector(Mivs)); 3659 for (int SJ = Mivs.find_first(); SJ >= 0; SJ = Mivs.find_next(SJ)) { 3660 // SJ is an MIV subscript that's part of the current coupled group 3661 DEBUG(dbgs() << "\tSJ = " << SJ << "\n"); 3662 if (propagate(Pair[SJ].Src, Pair[SJ].Dst, Pair[SJ].Loops, 3663 Constraints, Result.Consistent)) { 3664 DEBUG(dbgs() << "\t Changed\n"); 3665 ++DeltaPropagations; 3666 Pair[SJ].Classification = 3667 classifyPair(Pair[SJ].Src, LI->getLoopFor(Src->getParent()), 3668 Pair[SJ].Dst, LI->getLoopFor(Dst->getParent()), 3669 Pair[SJ].Loops); 3670 switch (Pair[SJ].Classification) { 3671 case Subscript::ZIV: 3672 DEBUG(dbgs() << "ZIV\n"); 3673 if (testZIV(Pair[SJ].Src, Pair[SJ].Dst, Result)) 3674 return nullptr; 3675 Mivs.reset(SJ); 3676 break; 3677 case Subscript::SIV: 3678 Sivs.set(SJ); 3679 Mivs.reset(SJ); 3680 break; 3681 case Subscript::RDIV: 3682 case Subscript::MIV: 3683 break; 3684 default: 3685 llvm_unreachable("bad subscript classification"); 3686 } 3687 } 3688 } 3689 } 3690 } 3691 3692 // test & propagate remaining RDIVs 3693 for (int SJ = Mivs.find_first(); SJ >= 0; SJ = Mivs.find_next(SJ)) { 3694 if (Pair[SJ].Classification == Subscript::RDIV) { 3695 DEBUG(dbgs() << "RDIV test\n"); 3696 if (testRDIV(Pair[SJ].Src, Pair[SJ].Dst, Result)) 3697 return nullptr; 3698 // I don't yet understand how to propagate RDIV results 3699 Mivs.reset(SJ); 3700 } 3701 } 3702 3703 // test remaining MIVs 3704 // This code is temporary. 3705 // Better to somehow test all remaining subscripts simultaneously. 3706 for (int SJ = Mivs.find_first(); SJ >= 0; SJ = Mivs.find_next(SJ)) { 3707 if (Pair[SJ].Classification == Subscript::MIV) { 3708 DEBUG(dbgs() << "MIV test\n"); 3709 if (testMIV(Pair[SJ].Src, Pair[SJ].Dst, Pair[SJ].Loops, Result)) 3710 return nullptr; 3711 } 3712 else 3713 llvm_unreachable("expected only MIV subscripts at this point"); 3714 } 3715 3716 // update Result.DV from constraint vector 3717 DEBUG(dbgs() << " updating\n"); 3718 for (int SJ = ConstrainedLevels.find_first(); SJ >= 0; 3719 SJ = ConstrainedLevels.find_next(SJ)) { 3720 if (SJ > (int)CommonLevels) 3721 break; 3722 updateDirection(Result.DV[SJ - 1], Constraints[SJ]); 3723 if (Result.DV[SJ - 1].Direction == Dependence::DVEntry::NONE) 3724 return nullptr; 3725 } 3726 } 3727 } 3728 3729 // Make sure the Scalar flags are set correctly. 3730 SmallBitVector CompleteLoops(MaxLevels + 1); 3731 for (unsigned SI = 0; SI < Pairs; ++SI) 3732 CompleteLoops |= Pair[SI].Loops; 3733 for (unsigned II = 1; II <= CommonLevels; ++II) 3734 if (CompleteLoops[II]) 3735 Result.DV[II - 1].Scalar = false; 3736 3737 if (PossiblyLoopIndependent) { 3738 // Make sure the LoopIndependent flag is set correctly. 3739 // All directions must include equal, otherwise no 3740 // loop-independent dependence is possible. 3741 for (unsigned II = 1; II <= CommonLevels; ++II) { 3742 if (!(Result.getDirection(II) & Dependence::DVEntry::EQ)) { 3743 Result.LoopIndependent = false; 3744 break; 3745 } 3746 } 3747 } 3748 else { 3749 // On the other hand, if all directions are equal and there's no 3750 // loop-independent dependence possible, then no dependence exists. 3751 bool AllEqual = true; 3752 for (unsigned II = 1; II <= CommonLevels; ++II) { 3753 if (Result.getDirection(II) != Dependence::DVEntry::EQ) { 3754 AllEqual = false; 3755 break; 3756 } 3757 } 3758 if (AllEqual) 3759 return nullptr; 3760 } 3761 3762 return make_unique<FullDependence>(std::move(Result)); 3763 } 3764 3765 3766 3767 //===----------------------------------------------------------------------===// 3768 // getSplitIteration - 3769 // Rather than spend rarely-used space recording the splitting iteration 3770 // during the Weak-Crossing SIV test, we re-compute it on demand. 3771 // The re-computation is basically a repeat of the entire dependence test, 3772 // though simplified since we know that the dependence exists. 3773 // It's tedious, since we must go through all propagations, etc. 3774 // 3775 // Care is required to keep this code up to date with respect to the routine 3776 // above, depends(). 3777 // 3778 // Generally, the dependence analyzer will be used to build 3779 // a dependence graph for a function (basically a map from instructions 3780 // to dependences). Looking for cycles in the graph shows us loops 3781 // that cannot be trivially vectorized/parallelized. 3782 // 3783 // We can try to improve the situation by examining all the dependences 3784 // that make up the cycle, looking for ones we can break. 3785 // Sometimes, peeling the first or last iteration of a loop will break 3786 // dependences, and we've got flags for those possibilities. 3787 // Sometimes, splitting a loop at some other iteration will do the trick, 3788 // and we've got a flag for that case. Rather than waste the space to 3789 // record the exact iteration (since we rarely know), we provide 3790 // a method that calculates the iteration. It's a drag that it must work 3791 // from scratch, but wonderful in that it's possible. 3792 // 3793 // Here's an example: 3794 // 3795 // for (i = 0; i < 10; i++) 3796 // A[i] = ... 3797 // ... = A[11 - i] 3798 // 3799 // There's a loop-carried flow dependence from the store to the load, 3800 // found by the weak-crossing SIV test. The dependence will have a flag, 3801 // indicating that the dependence can be broken by splitting the loop. 3802 // Calling getSplitIteration will return 5. 3803 // Splitting the loop breaks the dependence, like so: 3804 // 3805 // for (i = 0; i <= 5; i++) 3806 // A[i] = ... 3807 // ... = A[11 - i] 3808 // for (i = 6; i < 10; i++) 3809 // A[i] = ... 3810 // ... = A[11 - i] 3811 // 3812 // breaks the dependence and allows us to vectorize/parallelize 3813 // both loops. 3814 const SCEV *DependenceAnalysis::getSplitIteration(const Dependence &Dep, 3815 unsigned SplitLevel) { 3816 assert(Dep.isSplitable(SplitLevel) && 3817 "Dep should be splitable at SplitLevel"); 3818 Instruction *Src = Dep.getSrc(); 3819 Instruction *Dst = Dep.getDst(); 3820 assert(Src->mayReadFromMemory() || Src->mayWriteToMemory()); 3821 assert(Dst->mayReadFromMemory() || Dst->mayWriteToMemory()); 3822 assert(isLoadOrStore(Src)); 3823 assert(isLoadOrStore(Dst)); 3824 Value *SrcPtr = getPointerOperand(Src); 3825 Value *DstPtr = getPointerOperand(Dst); 3826 assert(underlyingObjectsAlias(AA, F->getParent()->getDataLayout(), DstPtr, 3827 SrcPtr) == MustAlias); 3828 3829 // establish loop nesting levels 3830 establishNestingLevels(Src, Dst); 3831 3832 FullDependence Result(Src, Dst, false, CommonLevels); 3833 3834 // See if there are GEPs we can use. 3835 bool UsefulGEP = false; 3836 GEPOperator *SrcGEP = dyn_cast<GEPOperator>(SrcPtr); 3837 GEPOperator *DstGEP = dyn_cast<GEPOperator>(DstPtr); 3838 if (SrcGEP && DstGEP && 3839 SrcGEP->getPointerOperandType() == DstGEP->getPointerOperandType()) { 3840 const SCEV *SrcPtrSCEV = SE->getSCEV(SrcGEP->getPointerOperand()); 3841 const SCEV *DstPtrSCEV = SE->getSCEV(DstGEP->getPointerOperand()); 3842 UsefulGEP = isLoopInvariant(SrcPtrSCEV, LI->getLoopFor(Src->getParent())) && 3843 isLoopInvariant(DstPtrSCEV, LI->getLoopFor(Dst->getParent())) && 3844 (SrcGEP->getNumOperands() == DstGEP->getNumOperands()); 3845 } 3846 unsigned Pairs = UsefulGEP ? SrcGEP->idx_end() - SrcGEP->idx_begin() : 1; 3847 SmallVector<Subscript, 4> Pair(Pairs); 3848 if (UsefulGEP) { 3849 unsigned P = 0; 3850 for (GEPOperator::const_op_iterator SrcIdx = SrcGEP->idx_begin(), 3851 SrcEnd = SrcGEP->idx_end(), 3852 DstIdx = DstGEP->idx_begin(); 3853 SrcIdx != SrcEnd; 3854 ++SrcIdx, ++DstIdx, ++P) { 3855 Pair[P].Src = SE->getSCEV(*SrcIdx); 3856 Pair[P].Dst = SE->getSCEV(*DstIdx); 3857 } 3858 } 3859 else { 3860 const SCEV *SrcSCEV = SE->getSCEV(SrcPtr); 3861 const SCEV *DstSCEV = SE->getSCEV(DstPtr); 3862 Pair[0].Src = SrcSCEV; 3863 Pair[0].Dst = DstSCEV; 3864 } 3865 3866 if (Delinearize && CommonLevels > 1) { 3867 if (tryDelinearize(Src, Dst, Pair)) { 3868 DEBUG(dbgs() << " delinerized GEP\n"); 3869 Pairs = Pair.size(); 3870 } 3871 } 3872 3873 for (unsigned P = 0; P < Pairs; ++P) { 3874 Pair[P].Loops.resize(MaxLevels + 1); 3875 Pair[P].GroupLoops.resize(MaxLevels + 1); 3876 Pair[P].Group.resize(Pairs); 3877 removeMatchingExtensions(&Pair[P]); 3878 Pair[P].Classification = 3879 classifyPair(Pair[P].Src, LI->getLoopFor(Src->getParent()), 3880 Pair[P].Dst, LI->getLoopFor(Dst->getParent()), 3881 Pair[P].Loops); 3882 Pair[P].GroupLoops = Pair[P].Loops; 3883 Pair[P].Group.set(P); 3884 } 3885 3886 SmallBitVector Separable(Pairs); 3887 SmallBitVector Coupled(Pairs); 3888 3889 // partition subscripts into separable and minimally-coupled groups 3890 for (unsigned SI = 0; SI < Pairs; ++SI) { 3891 if (Pair[SI].Classification == Subscript::NonLinear) { 3892 // ignore these, but collect loops for later 3893 collectCommonLoops(Pair[SI].Src, 3894 LI->getLoopFor(Src->getParent()), 3895 Pair[SI].Loops); 3896 collectCommonLoops(Pair[SI].Dst, 3897 LI->getLoopFor(Dst->getParent()), 3898 Pair[SI].Loops); 3899 Result.Consistent = false; 3900 } 3901 else if (Pair[SI].Classification == Subscript::ZIV) 3902 Separable.set(SI); 3903 else { 3904 // SIV, RDIV, or MIV, so check for coupled group 3905 bool Done = true; 3906 for (unsigned SJ = SI + 1; SJ < Pairs; ++SJ) { 3907 SmallBitVector Intersection = Pair[SI].GroupLoops; 3908 Intersection &= Pair[SJ].GroupLoops; 3909 if (Intersection.any()) { 3910 // accumulate set of all the loops in group 3911 Pair[SJ].GroupLoops |= Pair[SI].GroupLoops; 3912 // accumulate set of all subscripts in group 3913 Pair[SJ].Group |= Pair[SI].Group; 3914 Done = false; 3915 } 3916 } 3917 if (Done) { 3918 if (Pair[SI].Group.count() == 1) 3919 Separable.set(SI); 3920 else 3921 Coupled.set(SI); 3922 } 3923 } 3924 } 3925 3926 Constraint NewConstraint; 3927 NewConstraint.setAny(SE); 3928 3929 // test separable subscripts 3930 for (int SI = Separable.find_first(); SI >= 0; SI = Separable.find_next(SI)) { 3931 switch (Pair[SI].Classification) { 3932 case Subscript::SIV: { 3933 unsigned Level; 3934 const SCEV *SplitIter = nullptr; 3935 (void) testSIV(Pair[SI].Src, Pair[SI].Dst, Level, 3936 Result, NewConstraint, SplitIter); 3937 if (Level == SplitLevel) { 3938 assert(SplitIter != nullptr); 3939 return SplitIter; 3940 } 3941 break; 3942 } 3943 case Subscript::ZIV: 3944 case Subscript::RDIV: 3945 case Subscript::MIV: 3946 break; 3947 default: 3948 llvm_unreachable("subscript has unexpected classification"); 3949 } 3950 } 3951 3952 if (Coupled.count()) { 3953 // test coupled subscript groups 3954 SmallVector<Constraint, 4> Constraints(MaxLevels + 1); 3955 for (unsigned II = 0; II <= MaxLevels; ++II) 3956 Constraints[II].setAny(SE); 3957 for (int SI = Coupled.find_first(); SI >= 0; SI = Coupled.find_next(SI)) { 3958 SmallBitVector Group(Pair[SI].Group); 3959 SmallBitVector Sivs(Pairs); 3960 SmallBitVector Mivs(Pairs); 3961 SmallBitVector ConstrainedLevels(MaxLevels + 1); 3962 for (int SJ = Group.find_first(); SJ >= 0; SJ = Group.find_next(SJ)) { 3963 if (Pair[SJ].Classification == Subscript::SIV) 3964 Sivs.set(SJ); 3965 else 3966 Mivs.set(SJ); 3967 } 3968 while (Sivs.any()) { 3969 bool Changed = false; 3970 for (int SJ = Sivs.find_first(); SJ >= 0; SJ = Sivs.find_next(SJ)) { 3971 // SJ is an SIV subscript that's part of the current coupled group 3972 unsigned Level; 3973 const SCEV *SplitIter = nullptr; 3974 (void) testSIV(Pair[SJ].Src, Pair[SJ].Dst, Level, 3975 Result, NewConstraint, SplitIter); 3976 if (Level == SplitLevel && SplitIter) 3977 return SplitIter; 3978 ConstrainedLevels.set(Level); 3979 if (intersectConstraints(&Constraints[Level], &NewConstraint)) 3980 Changed = true; 3981 Sivs.reset(SJ); 3982 } 3983 if (Changed) { 3984 // propagate, possibly creating new SIVs and ZIVs 3985 for (int SJ = Mivs.find_first(); SJ >= 0; SJ = Mivs.find_next(SJ)) { 3986 // SJ is an MIV subscript that's part of the current coupled group 3987 if (propagate(Pair[SJ].Src, Pair[SJ].Dst, 3988 Pair[SJ].Loops, Constraints, Result.Consistent)) { 3989 Pair[SJ].Classification = 3990 classifyPair(Pair[SJ].Src, LI->getLoopFor(Src->getParent()), 3991 Pair[SJ].Dst, LI->getLoopFor(Dst->getParent()), 3992 Pair[SJ].Loops); 3993 switch (Pair[SJ].Classification) { 3994 case Subscript::ZIV: 3995 Mivs.reset(SJ); 3996 break; 3997 case Subscript::SIV: 3998 Sivs.set(SJ); 3999 Mivs.reset(SJ); 4000 break; 4001 case Subscript::RDIV: 4002 case Subscript::MIV: 4003 break; 4004 default: 4005 llvm_unreachable("bad subscript classification"); 4006 } 4007 } 4008 } 4009 } 4010 } 4011 } 4012 } 4013 llvm_unreachable("somehow reached end of routine"); 4014 return nullptr; 4015 } 4016