Home | History | Annotate | Download | only in Analysis
      1 //===-- DependenceAnalysis.cpp - DA Implementation --------------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // DependenceAnalysis is an LLVM pass that analyses dependences between memory
     11 // accesses. Currently, it is an (incomplete) implementation of the approach
     12 // described in
     13 //
     14 //            Practical Dependence Testing
     15 //            Goff, Kennedy, Tseng
     16 //            PLDI 1991
     17 //
     18 // There's a single entry point that analyzes the dependence between a pair
     19 // of memory references in a function, returning either NULL, for no dependence,
     20 // or a more-or-less detailed description of the dependence between them.
     21 //
     22 // Currently, the implementation cannot propagate constraints between
     23 // coupled RDIV subscripts and lacks a multi-subscript MIV test.
     24 // Both of these are conservative weaknesses;
     25 // that is, not a source of correctness problems.
     26 //
     27 // The implementation depends on the GEP instruction to differentiate
     28 // subscripts. Since Clang linearizes some array subscripts, the dependence
     29 // analysis is using SCEV->delinearize to recover the representation of multiple
     30 // subscripts, and thus avoid the more expensive and less precise MIV tests. The
     31 // delinearization is controlled by the flag -da-delinearize.
     32 //
     33 // We should pay some careful attention to the possibility of integer overflow
     34 // in the implementation of the various tests. This could happen with Add,
     35 // Subtract, or Multiply, with both APInt's and SCEV's.
     36 //
     37 // Some non-linear subscript pairs can be handled by the GCD test
     38 // (and perhaps other tests).
     39 // Should explore how often these things occur.
     40 //
     41 // Finally, it seems like certain test cases expose weaknesses in the SCEV
     42 // simplification, especially in the handling of sign and zero extensions.
     43 // It could be useful to spend time exploring these.
     44 //
     45 // Please note that this is work in progress and the interface is subject to
     46 // change.
     47 //
     48 //===----------------------------------------------------------------------===//
     49 //                                                                            //
     50 //                   In memory of Ken Kennedy, 1945 - 2007                    //
     51 //                                                                            //
     52 //===----------------------------------------------------------------------===//
     53 
     54 #include "llvm/Analysis/DependenceAnalysis.h"
     55 #include "llvm/ADT/STLExtras.h"
     56 #include "llvm/ADT/Statistic.h"
     57 #include "llvm/Analysis/AliasAnalysis.h"
     58 #include "llvm/Analysis/LoopInfo.h"
     59 #include "llvm/Analysis/ScalarEvolution.h"
     60 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
     61 #include "llvm/Analysis/ValueTracking.h"
     62 #include "llvm/IR/InstIterator.h"
     63 #include "llvm/IR/Module.h"
     64 #include "llvm/IR/Operator.h"
     65 #include "llvm/Support/CommandLine.h"
     66 #include "llvm/Support/Debug.h"
     67 #include "llvm/Support/ErrorHandling.h"
     68 #include "llvm/Support/raw_ostream.h"
     69 
     70 using namespace llvm;
     71 
     72 #define DEBUG_TYPE "da"
     73 
     74 //===----------------------------------------------------------------------===//
     75 // statistics
     76 
     77 STATISTIC(TotalArrayPairs, "Array pairs tested");
     78 STATISTIC(SeparableSubscriptPairs, "Separable subscript pairs");
     79 STATISTIC(CoupledSubscriptPairs, "Coupled subscript pairs");
     80 STATISTIC(NonlinearSubscriptPairs, "Nonlinear subscript pairs");
     81 STATISTIC(ZIVapplications, "ZIV applications");
     82 STATISTIC(ZIVindependence, "ZIV independence");
     83 STATISTIC(StrongSIVapplications, "Strong SIV applications");
     84 STATISTIC(StrongSIVsuccesses, "Strong SIV successes");
     85 STATISTIC(StrongSIVindependence, "Strong SIV independence");
     86 STATISTIC(WeakCrossingSIVapplications, "Weak-Crossing SIV applications");
     87 STATISTIC(WeakCrossingSIVsuccesses, "Weak-Crossing SIV successes");
     88 STATISTIC(WeakCrossingSIVindependence, "Weak-Crossing SIV independence");
     89 STATISTIC(ExactSIVapplications, "Exact SIV applications");
     90 STATISTIC(ExactSIVsuccesses, "Exact SIV successes");
     91 STATISTIC(ExactSIVindependence, "Exact SIV independence");
     92 STATISTIC(WeakZeroSIVapplications, "Weak-Zero SIV applications");
     93 STATISTIC(WeakZeroSIVsuccesses, "Weak-Zero SIV successes");
     94 STATISTIC(WeakZeroSIVindependence, "Weak-Zero SIV independence");
     95 STATISTIC(ExactRDIVapplications, "Exact RDIV applications");
     96 STATISTIC(ExactRDIVindependence, "Exact RDIV independence");
     97 STATISTIC(SymbolicRDIVapplications, "Symbolic RDIV applications");
     98 STATISTIC(SymbolicRDIVindependence, "Symbolic RDIV independence");
     99 STATISTIC(DeltaApplications, "Delta applications");
    100 STATISTIC(DeltaSuccesses, "Delta successes");
    101 STATISTIC(DeltaIndependence, "Delta independence");
    102 STATISTIC(DeltaPropagations, "Delta propagations");
    103 STATISTIC(GCDapplications, "GCD applications");
    104 STATISTIC(GCDsuccesses, "GCD successes");
    105 STATISTIC(GCDindependence, "GCD independence");
    106 STATISTIC(BanerjeeApplications, "Banerjee applications");
    107 STATISTIC(BanerjeeIndependence, "Banerjee independence");
    108 STATISTIC(BanerjeeSuccesses, "Banerjee successes");
    109 
    110 static cl::opt<bool>
    111 Delinearize("da-delinearize", cl::init(false), cl::Hidden, cl::ZeroOrMore,
    112             cl::desc("Try to delinearize array references."));
    113 
    114 //===----------------------------------------------------------------------===//
    115 // basics
    116 
    117 INITIALIZE_PASS_BEGIN(DependenceAnalysis, "da",
    118                       "Dependence Analysis", true, true)
    119 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
    120 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
    121 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
    122 INITIALIZE_PASS_END(DependenceAnalysis, "da",
    123                     "Dependence Analysis", true, true)
    124 
    125 char DependenceAnalysis::ID = 0;
    126 
    127 
    128 FunctionPass *llvm::createDependenceAnalysisPass() {
    129   return new DependenceAnalysis();
    130 }
    131 
    132 
    133 bool DependenceAnalysis::runOnFunction(Function &F) {
    134   this->F = &F;
    135   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
    136   SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
    137   LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
    138   return false;
    139 }
    140 
    141 
    142 void DependenceAnalysis::releaseMemory() {
    143 }
    144 
    145 
    146 void DependenceAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
    147   AU.setPreservesAll();
    148   AU.addRequiredTransitive<AAResultsWrapperPass>();
    149   AU.addRequiredTransitive<ScalarEvolutionWrapperPass>();
    150   AU.addRequiredTransitive<LoopInfoWrapperPass>();
    151 }
    152 
    153 
    154 // Used to test the dependence analyzer.
    155 // Looks through the function, noting loads and stores.
    156 // Calls depends() on every possible pair and prints out the result.
    157 // Ignores all other instructions.
    158 static
    159 void dumpExampleDependence(raw_ostream &OS, Function *F,
    160                            DependenceAnalysis *DA) {
    161   for (inst_iterator SrcI = inst_begin(F), SrcE = inst_end(F);
    162        SrcI != SrcE; ++SrcI) {
    163     if (isa<StoreInst>(*SrcI) || isa<LoadInst>(*SrcI)) {
    164       for (inst_iterator DstI = SrcI, DstE = inst_end(F);
    165            DstI != DstE; ++DstI) {
    166         if (isa<StoreInst>(*DstI) || isa<LoadInst>(*DstI)) {
    167           OS << "da analyze - ";
    168           if (auto D = DA->depends(&*SrcI, &*DstI, true)) {
    169             D->dump(OS);
    170             for (unsigned Level = 1; Level <= D->getLevels(); Level++) {
    171               if (D->isSplitable(Level)) {
    172                 OS << "da analyze - split level = " << Level;
    173                 OS << ", iteration = " << *DA->getSplitIteration(*D, Level);
    174                 OS << "!\n";
    175               }
    176             }
    177           }
    178           else
    179             OS << "none!\n";
    180         }
    181       }
    182     }
    183   }
    184 }
    185 
    186 
    187 void DependenceAnalysis::print(raw_ostream &OS, const Module*) const {
    188   dumpExampleDependence(OS, F, const_cast<DependenceAnalysis *>(this));
    189 }
    190 
    191 //===----------------------------------------------------------------------===//
    192 // Dependence methods
    193 
    194 // Returns true if this is an input dependence.
    195 bool Dependence::isInput() const {
    196   return Src->mayReadFromMemory() && Dst->mayReadFromMemory();
    197 }
    198 
    199 
    200 // Returns true if this is an output dependence.
    201 bool Dependence::isOutput() const {
    202   return Src->mayWriteToMemory() && Dst->mayWriteToMemory();
    203 }
    204 
    205 
    206 // Returns true if this is an flow (aka true)  dependence.
    207 bool Dependence::isFlow() const {
    208   return Src->mayWriteToMemory() && Dst->mayReadFromMemory();
    209 }
    210 
    211 
    212 // Returns true if this is an anti dependence.
    213 bool Dependence::isAnti() const {
    214   return Src->mayReadFromMemory() && Dst->mayWriteToMemory();
    215 }
    216 
    217 
    218 // Returns true if a particular level is scalar; that is,
    219 // if no subscript in the source or destination mention the induction
    220 // variable associated with the loop at this level.
    221 // Leave this out of line, so it will serve as a virtual method anchor
    222 bool Dependence::isScalar(unsigned level) const {
    223   return false;
    224 }
    225 
    226 
    227 //===----------------------------------------------------------------------===//
    228 // FullDependence methods
    229 
    230 FullDependence::FullDependence(Instruction *Source, Instruction *Destination,
    231                                bool PossiblyLoopIndependent,
    232                                unsigned CommonLevels)
    233     : Dependence(Source, Destination), Levels(CommonLevels),
    234       LoopIndependent(PossiblyLoopIndependent) {
    235   Consistent = true;
    236   if (CommonLevels)
    237     DV = make_unique<DVEntry[]>(CommonLevels);
    238 }
    239 
    240 // The rest are simple getters that hide the implementation.
    241 
    242 // getDirection - Returns the direction associated with a particular level.
    243 unsigned FullDependence::getDirection(unsigned Level) const {
    244   assert(0 < Level && Level <= Levels && "Level out of range");
    245   return DV[Level - 1].Direction;
    246 }
    247 
    248 
    249 // Returns the distance (or NULL) associated with a particular level.
    250 const SCEV *FullDependence::getDistance(unsigned Level) const {
    251   assert(0 < Level && Level <= Levels && "Level out of range");
    252   return DV[Level - 1].Distance;
    253 }
    254 
    255 
    256 // Returns true if a particular level is scalar; that is,
    257 // if no subscript in the source or destination mention the induction
    258 // variable associated with the loop at this level.
    259 bool FullDependence::isScalar(unsigned Level) const {
    260   assert(0 < Level && Level <= Levels && "Level out of range");
    261   return DV[Level - 1].Scalar;
    262 }
    263 
    264 
    265 // Returns true if peeling the first iteration from this loop
    266 // will break this dependence.
    267 bool FullDependence::isPeelFirst(unsigned Level) const {
    268   assert(0 < Level && Level <= Levels && "Level out of range");
    269   return DV[Level - 1].PeelFirst;
    270 }
    271 
    272 
    273 // Returns true if peeling the last iteration from this loop
    274 // will break this dependence.
    275 bool FullDependence::isPeelLast(unsigned Level) const {
    276   assert(0 < Level && Level <= Levels && "Level out of range");
    277   return DV[Level - 1].PeelLast;
    278 }
    279 
    280 
    281 // Returns true if splitting this loop will break the dependence.
    282 bool FullDependence::isSplitable(unsigned Level) const {
    283   assert(0 < Level && Level <= Levels && "Level out of range");
    284   return DV[Level - 1].Splitable;
    285 }
    286 
    287 
    288 //===----------------------------------------------------------------------===//
    289 // DependenceAnalysis::Constraint methods
    290 
    291 // If constraint is a point <X, Y>, returns X.
    292 // Otherwise assert.
    293 const SCEV *DependenceAnalysis::Constraint::getX() const {
    294   assert(Kind == Point && "Kind should be Point");
    295   return A;
    296 }
    297 
    298 
    299 // If constraint is a point <X, Y>, returns Y.
    300 // Otherwise assert.
    301 const SCEV *DependenceAnalysis::Constraint::getY() const {
    302   assert(Kind == Point && "Kind should be Point");
    303   return B;
    304 }
    305 
    306 
    307 // If constraint is a line AX + BY = C, returns A.
    308 // Otherwise assert.
    309 const SCEV *DependenceAnalysis::Constraint::getA() const {
    310   assert((Kind == Line || Kind == Distance) &&
    311          "Kind should be Line (or Distance)");
    312   return A;
    313 }
    314 
    315 
    316 // If constraint is a line AX + BY = C, returns B.
    317 // Otherwise assert.
    318 const SCEV *DependenceAnalysis::Constraint::getB() const {
    319   assert((Kind == Line || Kind == Distance) &&
    320          "Kind should be Line (or Distance)");
    321   return B;
    322 }
    323 
    324 
    325 // If constraint is a line AX + BY = C, returns C.
    326 // Otherwise assert.
    327 const SCEV *DependenceAnalysis::Constraint::getC() const {
    328   assert((Kind == Line || Kind == Distance) &&
    329          "Kind should be Line (or Distance)");
    330   return C;
    331 }
    332 
    333 
    334 // If constraint is a distance, returns D.
    335 // Otherwise assert.
    336 const SCEV *DependenceAnalysis::Constraint::getD() const {
    337   assert(Kind == Distance && "Kind should be Distance");
    338   return SE->getNegativeSCEV(C);
    339 }
    340 
    341 
    342 // Returns the loop associated with this constraint.
    343 const Loop *DependenceAnalysis::Constraint::getAssociatedLoop() const {
    344   assert((Kind == Distance || Kind == Line || Kind == Point) &&
    345          "Kind should be Distance, Line, or Point");
    346   return AssociatedLoop;
    347 }
    348 
    349 
    350 void DependenceAnalysis::Constraint::setPoint(const SCEV *X,
    351                                               const SCEV *Y,
    352                                               const Loop *CurLoop) {
    353   Kind = Point;
    354   A = X;
    355   B = Y;
    356   AssociatedLoop = CurLoop;
    357 }
    358 
    359 
    360 void DependenceAnalysis::Constraint::setLine(const SCEV *AA,
    361                                              const SCEV *BB,
    362                                              const SCEV *CC,
    363                                              const Loop *CurLoop) {
    364   Kind = Line;
    365   A = AA;
    366   B = BB;
    367   C = CC;
    368   AssociatedLoop = CurLoop;
    369 }
    370 
    371 
    372 void DependenceAnalysis::Constraint::setDistance(const SCEV *D,
    373                                                  const Loop *CurLoop) {
    374   Kind = Distance;
    375   A = SE->getOne(D->getType());
    376   B = SE->getNegativeSCEV(A);
    377   C = SE->getNegativeSCEV(D);
    378   AssociatedLoop = CurLoop;
    379 }
    380 
    381 
    382 void DependenceAnalysis::Constraint::setEmpty() {
    383   Kind = Empty;
    384 }
    385 
    386 
    387 void DependenceAnalysis::Constraint::setAny(ScalarEvolution *NewSE) {
    388   SE = NewSE;
    389   Kind = Any;
    390 }
    391 
    392 
    393 // For debugging purposes. Dumps the constraint out to OS.
    394 void DependenceAnalysis::Constraint::dump(raw_ostream &OS) const {
    395   if (isEmpty())
    396     OS << " Empty\n";
    397   else if (isAny())
    398     OS << " Any\n";
    399   else if (isPoint())
    400     OS << " Point is <" << *getX() << ", " << *getY() << ">\n";
    401   else if (isDistance())
    402     OS << " Distance is " << *getD() <<
    403       " (" << *getA() << "*X + " << *getB() << "*Y = " << *getC() << ")\n";
    404   else if (isLine())
    405     OS << " Line is " << *getA() << "*X + " <<
    406       *getB() << "*Y = " << *getC() << "\n";
    407   else
    408     llvm_unreachable("unknown constraint type in Constraint::dump");
    409 }
    410 
    411 
    412 // Updates X with the intersection
    413 // of the Constraints X and Y. Returns true if X has changed.
    414 // Corresponds to Figure 4 from the paper
    415 //
    416 //            Practical Dependence Testing
    417 //            Goff, Kennedy, Tseng
    418 //            PLDI 1991
    419 bool DependenceAnalysis::intersectConstraints(Constraint *X,
    420                                               const Constraint *Y) {
    421   ++DeltaApplications;
    422   DEBUG(dbgs() << "\tintersect constraints\n");
    423   DEBUG(dbgs() << "\t    X ="; X->dump(dbgs()));
    424   DEBUG(dbgs() << "\t    Y ="; Y->dump(dbgs()));
    425   assert(!Y->isPoint() && "Y must not be a Point");
    426   if (X->isAny()) {
    427     if (Y->isAny())
    428       return false;
    429     *X = *Y;
    430     return true;
    431   }
    432   if (X->isEmpty())
    433     return false;
    434   if (Y->isEmpty()) {
    435     X->setEmpty();
    436     return true;
    437   }
    438 
    439   if (X->isDistance() && Y->isDistance()) {
    440     DEBUG(dbgs() << "\t    intersect 2 distances\n");
    441     if (isKnownPredicate(CmpInst::ICMP_EQ, X->getD(), Y->getD()))
    442       return false;
    443     if (isKnownPredicate(CmpInst::ICMP_NE, X->getD(), Y->getD())) {
    444       X->setEmpty();
    445       ++DeltaSuccesses;
    446       return true;
    447     }
    448     // Hmmm, interesting situation.
    449     // I guess if either is constant, keep it and ignore the other.
    450     if (isa<SCEVConstant>(Y->getD())) {
    451       *X = *Y;
    452       return true;
    453     }
    454     return false;
    455   }
    456 
    457   // At this point, the pseudo-code in Figure 4 of the paper
    458   // checks if (X->isPoint() && Y->isPoint()).
    459   // This case can't occur in our implementation,
    460   // since a Point can only arise as the result of intersecting
    461   // two Line constraints, and the right-hand value, Y, is never
    462   // the result of an intersection.
    463   assert(!(X->isPoint() && Y->isPoint()) &&
    464          "We shouldn't ever see X->isPoint() && Y->isPoint()");
    465 
    466   if (X->isLine() && Y->isLine()) {
    467     DEBUG(dbgs() << "\t    intersect 2 lines\n");
    468     const SCEV *Prod1 = SE->getMulExpr(X->getA(), Y->getB());
    469     const SCEV *Prod2 = SE->getMulExpr(X->getB(), Y->getA());
    470     if (isKnownPredicate(CmpInst::ICMP_EQ, Prod1, Prod2)) {
    471       // slopes are equal, so lines are parallel
    472       DEBUG(dbgs() << "\t\tsame slope\n");
    473       Prod1 = SE->getMulExpr(X->getC(), Y->getB());
    474       Prod2 = SE->getMulExpr(X->getB(), Y->getC());
    475       if (isKnownPredicate(CmpInst::ICMP_EQ, Prod1, Prod2))
    476         return false;
    477       if (isKnownPredicate(CmpInst::ICMP_NE, Prod1, Prod2)) {
    478         X->setEmpty();
    479         ++DeltaSuccesses;
    480         return true;
    481       }
    482       return false;
    483     }
    484     if (isKnownPredicate(CmpInst::ICMP_NE, Prod1, Prod2)) {
    485       // slopes differ, so lines intersect
    486       DEBUG(dbgs() << "\t\tdifferent slopes\n");
    487       const SCEV *C1B2 = SE->getMulExpr(X->getC(), Y->getB());
    488       const SCEV *C1A2 = SE->getMulExpr(X->getC(), Y->getA());
    489       const SCEV *C2B1 = SE->getMulExpr(Y->getC(), X->getB());
    490       const SCEV *C2A1 = SE->getMulExpr(Y->getC(), X->getA());
    491       const SCEV *A1B2 = SE->getMulExpr(X->getA(), Y->getB());
    492       const SCEV *A2B1 = SE->getMulExpr(Y->getA(), X->getB());
    493       const SCEVConstant *C1A2_C2A1 =
    494         dyn_cast<SCEVConstant>(SE->getMinusSCEV(C1A2, C2A1));
    495       const SCEVConstant *C1B2_C2B1 =
    496         dyn_cast<SCEVConstant>(SE->getMinusSCEV(C1B2, C2B1));
    497       const SCEVConstant *A1B2_A2B1 =
    498         dyn_cast<SCEVConstant>(SE->getMinusSCEV(A1B2, A2B1));
    499       const SCEVConstant *A2B1_A1B2 =
    500         dyn_cast<SCEVConstant>(SE->getMinusSCEV(A2B1, A1B2));
    501       if (!C1B2_C2B1 || !C1A2_C2A1 ||
    502           !A1B2_A2B1 || !A2B1_A1B2)
    503         return false;
    504       APInt Xtop = C1B2_C2B1->getAPInt();
    505       APInt Xbot = A1B2_A2B1->getAPInt();
    506       APInt Ytop = C1A2_C2A1->getAPInt();
    507       APInt Ybot = A2B1_A1B2->getAPInt();
    508       DEBUG(dbgs() << "\t\tXtop = " << Xtop << "\n");
    509       DEBUG(dbgs() << "\t\tXbot = " << Xbot << "\n");
    510       DEBUG(dbgs() << "\t\tYtop = " << Ytop << "\n");
    511       DEBUG(dbgs() << "\t\tYbot = " << Ybot << "\n");
    512       APInt Xq = Xtop; // these need to be initialized, even
    513       APInt Xr = Xtop; // though they're just going to be overwritten
    514       APInt::sdivrem(Xtop, Xbot, Xq, Xr);
    515       APInt Yq = Ytop;
    516       APInt Yr = Ytop;
    517       APInt::sdivrem(Ytop, Ybot, Yq, Yr);
    518       if (Xr != 0 || Yr != 0) {
    519         X->setEmpty();
    520         ++DeltaSuccesses;
    521         return true;
    522       }
    523       DEBUG(dbgs() << "\t\tX = " << Xq << ", Y = " << Yq << "\n");
    524       if (Xq.slt(0) || Yq.slt(0)) {
    525         X->setEmpty();
    526         ++DeltaSuccesses;
    527         return true;
    528       }
    529       if (const SCEVConstant *CUB =
    530           collectConstantUpperBound(X->getAssociatedLoop(), Prod1->getType())) {
    531         APInt UpperBound = CUB->getAPInt();
    532         DEBUG(dbgs() << "\t\tupper bound = " << UpperBound << "\n");
    533         if (Xq.sgt(UpperBound) || Yq.sgt(UpperBound)) {
    534           X->setEmpty();
    535           ++DeltaSuccesses;
    536           return true;
    537         }
    538       }
    539       X->setPoint(SE->getConstant(Xq),
    540                   SE->getConstant(Yq),
    541                   X->getAssociatedLoop());
    542       ++DeltaSuccesses;
    543       return true;
    544     }
    545     return false;
    546   }
    547 
    548   // if (X->isLine() && Y->isPoint()) This case can't occur.
    549   assert(!(X->isLine() && Y->isPoint()) && "This case should never occur");
    550 
    551   if (X->isPoint() && Y->isLine()) {
    552     DEBUG(dbgs() << "\t    intersect Point and Line\n");
    553     const SCEV *A1X1 = SE->getMulExpr(Y->getA(), X->getX());
    554     const SCEV *B1Y1 = SE->getMulExpr(Y->getB(), X->getY());
    555     const SCEV *Sum = SE->getAddExpr(A1X1, B1Y1);
    556     if (isKnownPredicate(CmpInst::ICMP_EQ, Sum, Y->getC()))
    557       return false;
    558     if (isKnownPredicate(CmpInst::ICMP_NE, Sum, Y->getC())) {
    559       X->setEmpty();
    560       ++DeltaSuccesses;
    561       return true;
    562     }
    563     return false;
    564   }
    565 
    566   llvm_unreachable("shouldn't reach the end of Constraint intersection");
    567   return false;
    568 }
    569 
    570 
    571 //===----------------------------------------------------------------------===//
    572 // DependenceAnalysis methods
    573 
    574 // For debugging purposes. Dumps a dependence to OS.
    575 void Dependence::dump(raw_ostream &OS) const {
    576   bool Splitable = false;
    577   if (isConfused())
    578     OS << "confused";
    579   else {
    580     if (isConsistent())
    581       OS << "consistent ";
    582     if (isFlow())
    583       OS << "flow";
    584     else if (isOutput())
    585       OS << "output";
    586     else if (isAnti())
    587       OS << "anti";
    588     else if (isInput())
    589       OS << "input";
    590     unsigned Levels = getLevels();
    591     OS << " [";
    592     for (unsigned II = 1; II <= Levels; ++II) {
    593       if (isSplitable(II))
    594         Splitable = true;
    595       if (isPeelFirst(II))
    596         OS << 'p';
    597       const SCEV *Distance = getDistance(II);
    598       if (Distance)
    599         OS << *Distance;
    600       else if (isScalar(II))
    601         OS << "S";
    602       else {
    603         unsigned Direction = getDirection(II);
    604         if (Direction == DVEntry::ALL)
    605           OS << "*";
    606         else {
    607           if (Direction & DVEntry::LT)
    608             OS << "<";
    609           if (Direction & DVEntry::EQ)
    610             OS << "=";
    611           if (Direction & DVEntry::GT)
    612             OS << ">";
    613         }
    614       }
    615       if (isPeelLast(II))
    616         OS << 'p';
    617       if (II < Levels)
    618         OS << " ";
    619     }
    620     if (isLoopIndependent())
    621       OS << "|<";
    622     OS << "]";
    623     if (Splitable)
    624       OS << " splitable";
    625   }
    626   OS << "!\n";
    627 }
    628 
    629 static AliasResult underlyingObjectsAlias(AliasAnalysis *AA,
    630                                           const DataLayout &DL, const Value *A,
    631                                           const Value *B) {
    632   const Value *AObj = GetUnderlyingObject(A, DL);
    633   const Value *BObj = GetUnderlyingObject(B, DL);
    634   return AA->alias(AObj, DL.getTypeStoreSize(AObj->getType()),
    635                    BObj, DL.getTypeStoreSize(BObj->getType()));
    636 }
    637 
    638 
    639 // Returns true if the load or store can be analyzed. Atomic and volatile
    640 // operations have properties which this analysis does not understand.
    641 static
    642 bool isLoadOrStore(const Instruction *I) {
    643   if (const LoadInst *LI = dyn_cast<LoadInst>(I))
    644     return LI->isUnordered();
    645   else if (const StoreInst *SI = dyn_cast<StoreInst>(I))
    646     return SI->isUnordered();
    647   return false;
    648 }
    649 
    650 
    651 static
    652 Value *getPointerOperand(Instruction *I) {
    653   if (LoadInst *LI = dyn_cast<LoadInst>(I))
    654     return LI->getPointerOperand();
    655   if (StoreInst *SI = dyn_cast<StoreInst>(I))
    656     return SI->getPointerOperand();
    657   llvm_unreachable("Value is not load or store instruction");
    658   return nullptr;
    659 }
    660 
    661 
    662 // Examines the loop nesting of the Src and Dst
    663 // instructions and establishes their shared loops. Sets the variables
    664 // CommonLevels, SrcLevels, and MaxLevels.
    665 // The source and destination instructions needn't be contained in the same
    666 // loop. The routine establishNestingLevels finds the level of most deeply
    667 // nested loop that contains them both, CommonLevels. An instruction that's
    668 // not contained in a loop is at level = 0. MaxLevels is equal to the level
    669 // of the source plus the level of the destination, minus CommonLevels.
    670 // This lets us allocate vectors MaxLevels in length, with room for every
    671 // distinct loop referenced in both the source and destination subscripts.
    672 // The variable SrcLevels is the nesting depth of the source instruction.
    673 // It's used to help calculate distinct loops referenced by the destination.
    674 // Here's the map from loops to levels:
    675 //            0 - unused
    676 //            1 - outermost common loop
    677 //          ... - other common loops
    678 // CommonLevels - innermost common loop
    679 //          ... - loops containing Src but not Dst
    680 //    SrcLevels - innermost loop containing Src but not Dst
    681 //          ... - loops containing Dst but not Src
    682 //    MaxLevels - innermost loops containing Dst but not Src
    683 // Consider the follow code fragment:
    684 //   for (a = ...) {
    685 //     for (b = ...) {
    686 //       for (c = ...) {
    687 //         for (d = ...) {
    688 //           A[] = ...;
    689 //         }
    690 //       }
    691 //       for (e = ...) {
    692 //         for (f = ...) {
    693 //           for (g = ...) {
    694 //             ... = A[];
    695 //           }
    696 //         }
    697 //       }
    698 //     }
    699 //   }
    700 // If we're looking at the possibility of a dependence between the store
    701 // to A (the Src) and the load from A (the Dst), we'll note that they
    702 // have 2 loops in common, so CommonLevels will equal 2 and the direction
    703 // vector for Result will have 2 entries. SrcLevels = 4 and MaxLevels = 7.
    704 // A map from loop names to loop numbers would look like
    705 //     a - 1
    706 //     b - 2 = CommonLevels
    707 //     c - 3
    708 //     d - 4 = SrcLevels
    709 //     e - 5
    710 //     f - 6
    711 //     g - 7 = MaxLevels
    712 void DependenceAnalysis::establishNestingLevels(const Instruction *Src,
    713                                                 const Instruction *Dst) {
    714   const BasicBlock *SrcBlock = Src->getParent();
    715   const BasicBlock *DstBlock = Dst->getParent();
    716   unsigned SrcLevel = LI->getLoopDepth(SrcBlock);
    717   unsigned DstLevel = LI->getLoopDepth(DstBlock);
    718   const Loop *SrcLoop = LI->getLoopFor(SrcBlock);
    719   const Loop *DstLoop = LI->getLoopFor(DstBlock);
    720   SrcLevels = SrcLevel;
    721   MaxLevels = SrcLevel + DstLevel;
    722   while (SrcLevel > DstLevel) {
    723     SrcLoop = SrcLoop->getParentLoop();
    724     SrcLevel--;
    725   }
    726   while (DstLevel > SrcLevel) {
    727     DstLoop = DstLoop->getParentLoop();
    728     DstLevel--;
    729   }
    730   while (SrcLoop != DstLoop) {
    731     SrcLoop = SrcLoop->getParentLoop();
    732     DstLoop = DstLoop->getParentLoop();
    733     SrcLevel--;
    734   }
    735   CommonLevels = SrcLevel;
    736   MaxLevels -= CommonLevels;
    737 }
    738 
    739 
    740 // Given one of the loops containing the source, return
    741 // its level index in our numbering scheme.
    742 unsigned DependenceAnalysis::mapSrcLoop(const Loop *SrcLoop) const {
    743   return SrcLoop->getLoopDepth();
    744 }
    745 
    746 
    747 // Given one of the loops containing the destination,
    748 // return its level index in our numbering scheme.
    749 unsigned DependenceAnalysis::mapDstLoop(const Loop *DstLoop) const {
    750   unsigned D = DstLoop->getLoopDepth();
    751   if (D > CommonLevels)
    752     return D - CommonLevels + SrcLevels;
    753   else
    754     return D;
    755 }
    756 
    757 
    758 // Returns true if Expression is loop invariant in LoopNest.
    759 bool DependenceAnalysis::isLoopInvariant(const SCEV *Expression,
    760                                          const Loop *LoopNest) const {
    761   if (!LoopNest)
    762     return true;
    763   return SE->isLoopInvariant(Expression, LoopNest) &&
    764     isLoopInvariant(Expression, LoopNest->getParentLoop());
    765 }
    766 
    767 
    768 
    769 // Finds the set of loops from the LoopNest that
    770 // have a level <= CommonLevels and are referred to by the SCEV Expression.
    771 void DependenceAnalysis::collectCommonLoops(const SCEV *Expression,
    772                                             const Loop *LoopNest,
    773                                             SmallBitVector &Loops) const {
    774   while (LoopNest) {
    775     unsigned Level = LoopNest->getLoopDepth();
    776     if (Level <= CommonLevels && !SE->isLoopInvariant(Expression, LoopNest))
    777       Loops.set(Level);
    778     LoopNest = LoopNest->getParentLoop();
    779   }
    780 }
    781 
    782 void DependenceAnalysis::unifySubscriptType(ArrayRef<Subscript *> Pairs) {
    783 
    784   unsigned widestWidthSeen = 0;
    785   Type *widestType;
    786 
    787   // Go through each pair and find the widest bit to which we need
    788   // to extend all of them.
    789   for (unsigned i = 0; i < Pairs.size(); i++) {
    790     const SCEV *Src = Pairs[i]->Src;
    791     const SCEV *Dst = Pairs[i]->Dst;
    792     IntegerType *SrcTy = dyn_cast<IntegerType>(Src->getType());
    793     IntegerType *DstTy = dyn_cast<IntegerType>(Dst->getType());
    794     if (SrcTy == nullptr || DstTy == nullptr) {
    795       assert(SrcTy == DstTy && "This function only unify integer types and "
    796              "expect Src and Dst share the same type "
    797              "otherwise.");
    798       continue;
    799     }
    800     if (SrcTy->getBitWidth() > widestWidthSeen) {
    801       widestWidthSeen = SrcTy->getBitWidth();
    802       widestType = SrcTy;
    803     }
    804     if (DstTy->getBitWidth() > widestWidthSeen) {
    805       widestWidthSeen = DstTy->getBitWidth();
    806       widestType = DstTy;
    807     }
    808   }
    809 
    810 
    811   assert(widestWidthSeen > 0);
    812 
    813   // Now extend each pair to the widest seen.
    814   for (unsigned i = 0; i < Pairs.size(); i++) {
    815     const SCEV *Src = Pairs[i]->Src;
    816     const SCEV *Dst = Pairs[i]->Dst;
    817     IntegerType *SrcTy = dyn_cast<IntegerType>(Src->getType());
    818     IntegerType *DstTy = dyn_cast<IntegerType>(Dst->getType());
    819     if (SrcTy == nullptr || DstTy == nullptr) {
    820       assert(SrcTy == DstTy && "This function only unify integer types and "
    821              "expect Src and Dst share the same type "
    822              "otherwise.");
    823       continue;
    824     }
    825     if (SrcTy->getBitWidth() < widestWidthSeen)
    826       // Sign-extend Src to widestType
    827       Pairs[i]->Src = SE->getSignExtendExpr(Src, widestType);
    828     if (DstTy->getBitWidth() < widestWidthSeen) {
    829       // Sign-extend Dst to widestType
    830       Pairs[i]->Dst = SE->getSignExtendExpr(Dst, widestType);
    831     }
    832   }
    833 }
    834 
    835 // removeMatchingExtensions - Examines a subscript pair.
    836 // If the source and destination are identically sign (or zero)
    837 // extended, it strips off the extension in an effect to simplify
    838 // the actual analysis.
    839 void DependenceAnalysis::removeMatchingExtensions(Subscript *Pair) {
    840   const SCEV *Src = Pair->Src;
    841   const SCEV *Dst = Pair->Dst;
    842   if ((isa<SCEVZeroExtendExpr>(Src) && isa<SCEVZeroExtendExpr>(Dst)) ||
    843       (isa<SCEVSignExtendExpr>(Src) && isa<SCEVSignExtendExpr>(Dst))) {
    844     const SCEVCastExpr *SrcCast = cast<SCEVCastExpr>(Src);
    845     const SCEVCastExpr *DstCast = cast<SCEVCastExpr>(Dst);
    846     const SCEV *SrcCastOp = SrcCast->getOperand();
    847     const SCEV *DstCastOp = DstCast->getOperand();
    848     if (SrcCastOp->getType() == DstCastOp->getType()) {
    849       Pair->Src = SrcCastOp;
    850       Pair->Dst = DstCastOp;
    851     }
    852   }
    853 }
    854 
    855 
    856 // Examine the scev and return true iff it's linear.
    857 // Collect any loops mentioned in the set of "Loops".
    858 bool DependenceAnalysis::checkSrcSubscript(const SCEV *Src,
    859                                            const Loop *LoopNest,
    860                                            SmallBitVector &Loops) {
    861   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Src);
    862   if (!AddRec)
    863     return isLoopInvariant(Src, LoopNest);
    864   const SCEV *Start = AddRec->getStart();
    865   const SCEV *Step = AddRec->getStepRecurrence(*SE);
    866   const SCEV *UB = SE->getBackedgeTakenCount(AddRec->getLoop());
    867   if (!isa<SCEVCouldNotCompute>(UB)) {
    868     if (SE->getTypeSizeInBits(Start->getType()) <
    869         SE->getTypeSizeInBits(UB->getType())) {
    870       if (!AddRec->getNoWrapFlags())
    871         return false;
    872     }
    873   }
    874   if (!isLoopInvariant(Step, LoopNest))
    875     return false;
    876   Loops.set(mapSrcLoop(AddRec->getLoop()));
    877   return checkSrcSubscript(Start, LoopNest, Loops);
    878 }
    879 
    880 
    881 
    882 // Examine the scev and return true iff it's linear.
    883 // Collect any loops mentioned in the set of "Loops".
    884 bool DependenceAnalysis::checkDstSubscript(const SCEV *Dst,
    885                                            const Loop *LoopNest,
    886                                            SmallBitVector &Loops) {
    887   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Dst);
    888   if (!AddRec)
    889     return isLoopInvariant(Dst, LoopNest);
    890   const SCEV *Start = AddRec->getStart();
    891   const SCEV *Step = AddRec->getStepRecurrence(*SE);
    892   const SCEV *UB = SE->getBackedgeTakenCount(AddRec->getLoop());
    893   if (!isa<SCEVCouldNotCompute>(UB)) {
    894     if (SE->getTypeSizeInBits(Start->getType()) <
    895         SE->getTypeSizeInBits(UB->getType())) {
    896       if (!AddRec->getNoWrapFlags())
    897         return false;
    898     }
    899   }
    900   if (!isLoopInvariant(Step, LoopNest))
    901     return false;
    902   Loops.set(mapDstLoop(AddRec->getLoop()));
    903   return checkDstSubscript(Start, LoopNest, Loops);
    904 }
    905 
    906 
    907 // Examines the subscript pair (the Src and Dst SCEVs)
    908 // and classifies it as either ZIV, SIV, RDIV, MIV, or Nonlinear.
    909 // Collects the associated loops in a set.
    910 DependenceAnalysis::Subscript::ClassificationKind
    911 DependenceAnalysis::classifyPair(const SCEV *Src, const Loop *SrcLoopNest,
    912                                  const SCEV *Dst, const Loop *DstLoopNest,
    913                                  SmallBitVector &Loops) {
    914   SmallBitVector SrcLoops(MaxLevels + 1);
    915   SmallBitVector DstLoops(MaxLevels + 1);
    916   if (!checkSrcSubscript(Src, SrcLoopNest, SrcLoops))
    917     return Subscript::NonLinear;
    918   if (!checkDstSubscript(Dst, DstLoopNest, DstLoops))
    919     return Subscript::NonLinear;
    920   Loops = SrcLoops;
    921   Loops |= DstLoops;
    922   unsigned N = Loops.count();
    923   if (N == 0)
    924     return Subscript::ZIV;
    925   if (N == 1)
    926     return Subscript::SIV;
    927   if (N == 2 && (SrcLoops.count() == 0 ||
    928                  DstLoops.count() == 0 ||
    929                  (SrcLoops.count() == 1 && DstLoops.count() == 1)))
    930     return Subscript::RDIV;
    931   return Subscript::MIV;
    932 }
    933 
    934 
    935 // A wrapper around SCEV::isKnownPredicate.
    936 // Looks for cases where we're interested in comparing for equality.
    937 // If both X and Y have been identically sign or zero extended,
    938 // it strips off the (confusing) extensions before invoking
    939 // SCEV::isKnownPredicate. Perhaps, someday, the ScalarEvolution package
    940 // will be similarly updated.
    941 //
    942 // If SCEV::isKnownPredicate can't prove the predicate,
    943 // we try simple subtraction, which seems to help in some cases
    944 // involving symbolics.
    945 bool DependenceAnalysis::isKnownPredicate(ICmpInst::Predicate Pred,
    946                                           const SCEV *X,
    947                                           const SCEV *Y) const {
    948   if (Pred == CmpInst::ICMP_EQ ||
    949       Pred == CmpInst::ICMP_NE) {
    950     if ((isa<SCEVSignExtendExpr>(X) &&
    951          isa<SCEVSignExtendExpr>(Y)) ||
    952         (isa<SCEVZeroExtendExpr>(X) &&
    953          isa<SCEVZeroExtendExpr>(Y))) {
    954       const SCEVCastExpr *CX = cast<SCEVCastExpr>(X);
    955       const SCEVCastExpr *CY = cast<SCEVCastExpr>(Y);
    956       const SCEV *Xop = CX->getOperand();
    957       const SCEV *Yop = CY->getOperand();
    958       if (Xop->getType() == Yop->getType()) {
    959         X = Xop;
    960         Y = Yop;
    961       }
    962     }
    963   }
    964   if (SE->isKnownPredicate(Pred, X, Y))
    965     return true;
    966   // If SE->isKnownPredicate can't prove the condition,
    967   // we try the brute-force approach of subtracting
    968   // and testing the difference.
    969   // By testing with SE->isKnownPredicate first, we avoid
    970   // the possibility of overflow when the arguments are constants.
    971   const SCEV *Delta = SE->getMinusSCEV(X, Y);
    972   switch (Pred) {
    973   case CmpInst::ICMP_EQ:
    974     return Delta->isZero();
    975   case CmpInst::ICMP_NE:
    976     return SE->isKnownNonZero(Delta);
    977   case CmpInst::ICMP_SGE:
    978     return SE->isKnownNonNegative(Delta);
    979   case CmpInst::ICMP_SLE:
    980     return SE->isKnownNonPositive(Delta);
    981   case CmpInst::ICMP_SGT:
    982     return SE->isKnownPositive(Delta);
    983   case CmpInst::ICMP_SLT:
    984     return SE->isKnownNegative(Delta);
    985   default:
    986     llvm_unreachable("unexpected predicate in isKnownPredicate");
    987   }
    988 }
    989 
    990 
    991 // All subscripts are all the same type.
    992 // Loop bound may be smaller (e.g., a char).
    993 // Should zero extend loop bound, since it's always >= 0.
    994 // This routine collects upper bound and extends or truncates if needed.
    995 // Truncating is safe when subscripts are known not to wrap. Cases without
    996 // nowrap flags should have been rejected earlier.
    997 // Return null if no bound available.
    998 const SCEV *DependenceAnalysis::collectUpperBound(const Loop *L,
    999                                                   Type *T) const {
   1000   if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
   1001     const SCEV *UB = SE->getBackedgeTakenCount(L);
   1002     return SE->getTruncateOrZeroExtend(UB, T);
   1003   }
   1004   return nullptr;
   1005 }
   1006 
   1007 
   1008 // Calls collectUpperBound(), then attempts to cast it to SCEVConstant.
   1009 // If the cast fails, returns NULL.
   1010 const SCEVConstant *DependenceAnalysis::collectConstantUpperBound(const Loop *L,
   1011                                                                   Type *T
   1012                                                                   ) const {
   1013   if (const SCEV *UB = collectUpperBound(L, T))
   1014     return dyn_cast<SCEVConstant>(UB);
   1015   return nullptr;
   1016 }
   1017 
   1018 
   1019 // testZIV -
   1020 // When we have a pair of subscripts of the form [c1] and [c2],
   1021 // where c1 and c2 are both loop invariant, we attack it using
   1022 // the ZIV test. Basically, we test by comparing the two values,
   1023 // but there are actually three possible results:
   1024 // 1) the values are equal, so there's a dependence
   1025 // 2) the values are different, so there's no dependence
   1026 // 3) the values might be equal, so we have to assume a dependence.
   1027 //
   1028 // Return true if dependence disproved.
   1029 bool DependenceAnalysis::testZIV(const SCEV *Src,
   1030                                  const SCEV *Dst,
   1031                                  FullDependence &Result) const {
   1032   DEBUG(dbgs() << "    src = " << *Src << "\n");
   1033   DEBUG(dbgs() << "    dst = " << *Dst << "\n");
   1034   ++ZIVapplications;
   1035   if (isKnownPredicate(CmpInst::ICMP_EQ, Src, Dst)) {
   1036     DEBUG(dbgs() << "    provably dependent\n");
   1037     return false; // provably dependent
   1038   }
   1039   if (isKnownPredicate(CmpInst::ICMP_NE, Src, Dst)) {
   1040     DEBUG(dbgs() << "    provably independent\n");
   1041     ++ZIVindependence;
   1042     return true; // provably independent
   1043   }
   1044   DEBUG(dbgs() << "    possibly dependent\n");
   1045   Result.Consistent = false;
   1046   return false; // possibly dependent
   1047 }
   1048 
   1049 
   1050 // strongSIVtest -
   1051 // From the paper, Practical Dependence Testing, Section 4.2.1
   1052 //
   1053 // When we have a pair of subscripts of the form [c1 + a*i] and [c2 + a*i],
   1054 // where i is an induction variable, c1 and c2 are loop invariant,
   1055 //  and a is a constant, we can solve it exactly using the Strong SIV test.
   1056 //
   1057 // Can prove independence. Failing that, can compute distance (and direction).
   1058 // In the presence of symbolic terms, we can sometimes make progress.
   1059 //
   1060 // If there's a dependence,
   1061 //
   1062 //    c1 + a*i = c2 + a*i'
   1063 //
   1064 // The dependence distance is
   1065 //
   1066 //    d = i' - i = (c1 - c2)/a
   1067 //
   1068 // A dependence only exists if d is an integer and abs(d) <= U, where U is the
   1069 // loop's upper bound. If a dependence exists, the dependence direction is
   1070 // defined as
   1071 //
   1072 //                { < if d > 0
   1073 //    direction = { = if d = 0
   1074 //                { > if d < 0
   1075 //
   1076 // Return true if dependence disproved.
   1077 bool DependenceAnalysis::strongSIVtest(const SCEV *Coeff,
   1078                                        const SCEV *SrcConst,
   1079                                        const SCEV *DstConst,
   1080                                        const Loop *CurLoop,
   1081                                        unsigned Level,
   1082                                        FullDependence &Result,
   1083                                        Constraint &NewConstraint) const {
   1084   DEBUG(dbgs() << "\tStrong SIV test\n");
   1085   DEBUG(dbgs() << "\t    Coeff = " << *Coeff);
   1086   DEBUG(dbgs() << ", " << *Coeff->getType() << "\n");
   1087   DEBUG(dbgs() << "\t    SrcConst = " << *SrcConst);
   1088   DEBUG(dbgs() << ", " << *SrcConst->getType() << "\n");
   1089   DEBUG(dbgs() << "\t    DstConst = " << *DstConst);
   1090   DEBUG(dbgs() << ", " << *DstConst->getType() << "\n");
   1091   ++StrongSIVapplications;
   1092   assert(0 < Level && Level <= CommonLevels && "level out of range");
   1093   Level--;
   1094 
   1095   const SCEV *Delta = SE->getMinusSCEV(SrcConst, DstConst);
   1096   DEBUG(dbgs() << "\t    Delta = " << *Delta);
   1097   DEBUG(dbgs() << ", " << *Delta->getType() << "\n");
   1098 
   1099   // check that |Delta| < iteration count
   1100   if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) {
   1101     DEBUG(dbgs() << "\t    UpperBound = " << *UpperBound);
   1102     DEBUG(dbgs() << ", " << *UpperBound->getType() << "\n");
   1103     const SCEV *AbsDelta =
   1104       SE->isKnownNonNegative(Delta) ? Delta : SE->getNegativeSCEV(Delta);
   1105     const SCEV *AbsCoeff =
   1106       SE->isKnownNonNegative(Coeff) ? Coeff : SE->getNegativeSCEV(Coeff);
   1107     const SCEV *Product = SE->getMulExpr(UpperBound, AbsCoeff);
   1108     if (isKnownPredicate(CmpInst::ICMP_SGT, AbsDelta, Product)) {
   1109       // Distance greater than trip count - no dependence
   1110       ++StrongSIVindependence;
   1111       ++StrongSIVsuccesses;
   1112       return true;
   1113     }
   1114   }
   1115 
   1116   // Can we compute distance?
   1117   if (isa<SCEVConstant>(Delta) && isa<SCEVConstant>(Coeff)) {
   1118     APInt ConstDelta = cast<SCEVConstant>(Delta)->getAPInt();
   1119     APInt ConstCoeff = cast<SCEVConstant>(Coeff)->getAPInt();
   1120     APInt Distance  = ConstDelta; // these need to be initialized
   1121     APInt Remainder = ConstDelta;
   1122     APInt::sdivrem(ConstDelta, ConstCoeff, Distance, Remainder);
   1123     DEBUG(dbgs() << "\t    Distance = " << Distance << "\n");
   1124     DEBUG(dbgs() << "\t    Remainder = " << Remainder << "\n");
   1125     // Make sure Coeff divides Delta exactly
   1126     if (Remainder != 0) {
   1127       // Coeff doesn't divide Distance, no dependence
   1128       ++StrongSIVindependence;
   1129       ++StrongSIVsuccesses;
   1130       return true;
   1131     }
   1132     Result.DV[Level].Distance = SE->getConstant(Distance);
   1133     NewConstraint.setDistance(SE->getConstant(Distance), CurLoop);
   1134     if (Distance.sgt(0))
   1135       Result.DV[Level].Direction &= Dependence::DVEntry::LT;
   1136     else if (Distance.slt(0))
   1137       Result.DV[Level].Direction &= Dependence::DVEntry::GT;
   1138     else
   1139       Result.DV[Level].Direction &= Dependence::DVEntry::EQ;
   1140     ++StrongSIVsuccesses;
   1141   }
   1142   else if (Delta->isZero()) {
   1143     // since 0/X == 0
   1144     Result.DV[Level].Distance = Delta;
   1145     NewConstraint.setDistance(Delta, CurLoop);
   1146     Result.DV[Level].Direction &= Dependence::DVEntry::EQ;
   1147     ++StrongSIVsuccesses;
   1148   }
   1149   else {
   1150     if (Coeff->isOne()) {
   1151       DEBUG(dbgs() << "\t    Distance = " << *Delta << "\n");
   1152       Result.DV[Level].Distance = Delta; // since X/1 == X
   1153       NewConstraint.setDistance(Delta, CurLoop);
   1154     }
   1155     else {
   1156       Result.Consistent = false;
   1157       NewConstraint.setLine(Coeff,
   1158                             SE->getNegativeSCEV(Coeff),
   1159                             SE->getNegativeSCEV(Delta), CurLoop);
   1160     }
   1161 
   1162     // maybe we can get a useful direction
   1163     bool DeltaMaybeZero     = !SE->isKnownNonZero(Delta);
   1164     bool DeltaMaybePositive = !SE->isKnownNonPositive(Delta);
   1165     bool DeltaMaybeNegative = !SE->isKnownNonNegative(Delta);
   1166     bool CoeffMaybePositive = !SE->isKnownNonPositive(Coeff);
   1167     bool CoeffMaybeNegative = !SE->isKnownNonNegative(Coeff);
   1168     // The double negatives above are confusing.
   1169     // It helps to read !SE->isKnownNonZero(Delta)
   1170     // as "Delta might be Zero"
   1171     unsigned NewDirection = Dependence::DVEntry::NONE;
   1172     if ((DeltaMaybePositive && CoeffMaybePositive) ||
   1173         (DeltaMaybeNegative && CoeffMaybeNegative))
   1174       NewDirection = Dependence::DVEntry::LT;
   1175     if (DeltaMaybeZero)
   1176       NewDirection |= Dependence::DVEntry::EQ;
   1177     if ((DeltaMaybeNegative && CoeffMaybePositive) ||
   1178         (DeltaMaybePositive && CoeffMaybeNegative))
   1179       NewDirection |= Dependence::DVEntry::GT;
   1180     if (NewDirection < Result.DV[Level].Direction)
   1181       ++StrongSIVsuccesses;
   1182     Result.DV[Level].Direction &= NewDirection;
   1183   }
   1184   return false;
   1185 }
   1186 
   1187 
   1188 // weakCrossingSIVtest -
   1189 // From the paper, Practical Dependence Testing, Section 4.2.2
   1190 //
   1191 // When we have a pair of subscripts of the form [c1 + a*i] and [c2 - a*i],
   1192 // where i is an induction variable, c1 and c2 are loop invariant,
   1193 // and a is a constant, we can solve it exactly using the
   1194 // Weak-Crossing SIV test.
   1195 //
   1196 // Given c1 + a*i = c2 - a*i', we can look for the intersection of
   1197 // the two lines, where i = i', yielding
   1198 //
   1199 //    c1 + a*i = c2 - a*i
   1200 //    2a*i = c2 - c1
   1201 //    i = (c2 - c1)/2a
   1202 //
   1203 // If i < 0, there is no dependence.
   1204 // If i > upperbound, there is no dependence.
   1205 // If i = 0 (i.e., if c1 = c2), there's a dependence with distance = 0.
   1206 // If i = upperbound, there's a dependence with distance = 0.
   1207 // If i is integral, there's a dependence (all directions).
   1208 // If the non-integer part = 1/2, there's a dependence (<> directions).
   1209 // Otherwise, there's no dependence.
   1210 //
   1211 // Can prove independence. Failing that,
   1212 // can sometimes refine the directions.
   1213 // Can determine iteration for splitting.
   1214 //
   1215 // Return true if dependence disproved.
   1216 bool DependenceAnalysis::weakCrossingSIVtest(const SCEV *Coeff,
   1217                                              const SCEV *SrcConst,
   1218                                              const SCEV *DstConst,
   1219                                              const Loop *CurLoop,
   1220                                              unsigned Level,
   1221                                              FullDependence &Result,
   1222                                              Constraint &NewConstraint,
   1223                                              const SCEV *&SplitIter) const {
   1224   DEBUG(dbgs() << "\tWeak-Crossing SIV test\n");
   1225   DEBUG(dbgs() << "\t    Coeff = " << *Coeff << "\n");
   1226   DEBUG(dbgs() << "\t    SrcConst = " << *SrcConst << "\n");
   1227   DEBUG(dbgs() << "\t    DstConst = " << *DstConst << "\n");
   1228   ++WeakCrossingSIVapplications;
   1229   assert(0 < Level && Level <= CommonLevels && "Level out of range");
   1230   Level--;
   1231   Result.Consistent = false;
   1232   const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
   1233   DEBUG(dbgs() << "\t    Delta = " << *Delta << "\n");
   1234   NewConstraint.setLine(Coeff, Coeff, Delta, CurLoop);
   1235   if (Delta->isZero()) {
   1236     Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::LT);
   1237     Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::GT);
   1238     ++WeakCrossingSIVsuccesses;
   1239     if (!Result.DV[Level].Direction) {
   1240       ++WeakCrossingSIVindependence;
   1241       return true;
   1242     }
   1243     Result.DV[Level].Distance = Delta; // = 0
   1244     return false;
   1245   }
   1246   const SCEVConstant *ConstCoeff = dyn_cast<SCEVConstant>(Coeff);
   1247   if (!ConstCoeff)
   1248     return false;
   1249 
   1250   Result.DV[Level].Splitable = true;
   1251   if (SE->isKnownNegative(ConstCoeff)) {
   1252     ConstCoeff = dyn_cast<SCEVConstant>(SE->getNegativeSCEV(ConstCoeff));
   1253     assert(ConstCoeff &&
   1254            "dynamic cast of negative of ConstCoeff should yield constant");
   1255     Delta = SE->getNegativeSCEV(Delta);
   1256   }
   1257   assert(SE->isKnownPositive(ConstCoeff) && "ConstCoeff should be positive");
   1258 
   1259   // compute SplitIter for use by DependenceAnalysis::getSplitIteration()
   1260   SplitIter = SE->getUDivExpr(
   1261       SE->getSMaxExpr(SE->getZero(Delta->getType()), Delta),
   1262       SE->getMulExpr(SE->getConstant(Delta->getType(), 2), ConstCoeff));
   1263   DEBUG(dbgs() << "\t    Split iter = " << *SplitIter << "\n");
   1264 
   1265   const SCEVConstant *ConstDelta = dyn_cast<SCEVConstant>(Delta);
   1266   if (!ConstDelta)
   1267     return false;
   1268 
   1269   // We're certain that ConstCoeff > 0; therefore,
   1270   // if Delta < 0, then no dependence.
   1271   DEBUG(dbgs() << "\t    Delta = " << *Delta << "\n");
   1272   DEBUG(dbgs() << "\t    ConstCoeff = " << *ConstCoeff << "\n");
   1273   if (SE->isKnownNegative(Delta)) {
   1274     // No dependence, Delta < 0
   1275     ++WeakCrossingSIVindependence;
   1276     ++WeakCrossingSIVsuccesses;
   1277     return true;
   1278   }
   1279 
   1280   // We're certain that Delta > 0 and ConstCoeff > 0.
   1281   // Check Delta/(2*ConstCoeff) against upper loop bound
   1282   if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) {
   1283     DEBUG(dbgs() << "\t    UpperBound = " << *UpperBound << "\n");
   1284     const SCEV *ConstantTwo = SE->getConstant(UpperBound->getType(), 2);
   1285     const SCEV *ML = SE->getMulExpr(SE->getMulExpr(ConstCoeff, UpperBound),
   1286                                     ConstantTwo);
   1287     DEBUG(dbgs() << "\t    ML = " << *ML << "\n");
   1288     if (isKnownPredicate(CmpInst::ICMP_SGT, Delta, ML)) {
   1289       // Delta too big, no dependence
   1290       ++WeakCrossingSIVindependence;
   1291       ++WeakCrossingSIVsuccesses;
   1292       return true;
   1293     }
   1294     if (isKnownPredicate(CmpInst::ICMP_EQ, Delta, ML)) {
   1295       // i = i' = UB
   1296       Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::LT);
   1297       Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::GT);
   1298       ++WeakCrossingSIVsuccesses;
   1299       if (!Result.DV[Level].Direction) {
   1300         ++WeakCrossingSIVindependence;
   1301         return true;
   1302       }
   1303       Result.DV[Level].Splitable = false;
   1304       Result.DV[Level].Distance = SE->getZero(Delta->getType());
   1305       return false;
   1306     }
   1307   }
   1308 
   1309   // check that Coeff divides Delta
   1310   APInt APDelta = ConstDelta->getAPInt();
   1311   APInt APCoeff = ConstCoeff->getAPInt();
   1312   APInt Distance = APDelta; // these need to be initialzed
   1313   APInt Remainder = APDelta;
   1314   APInt::sdivrem(APDelta, APCoeff, Distance, Remainder);
   1315   DEBUG(dbgs() << "\t    Remainder = " << Remainder << "\n");
   1316   if (Remainder != 0) {
   1317     // Coeff doesn't divide Delta, no dependence
   1318     ++WeakCrossingSIVindependence;
   1319     ++WeakCrossingSIVsuccesses;
   1320     return true;
   1321   }
   1322   DEBUG(dbgs() << "\t    Distance = " << Distance << "\n");
   1323 
   1324   // if 2*Coeff doesn't divide Delta, then the equal direction isn't possible
   1325   APInt Two = APInt(Distance.getBitWidth(), 2, true);
   1326   Remainder = Distance.srem(Two);
   1327   DEBUG(dbgs() << "\t    Remainder = " << Remainder << "\n");
   1328   if (Remainder != 0) {
   1329     // Equal direction isn't possible
   1330     Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::EQ);
   1331     ++WeakCrossingSIVsuccesses;
   1332   }
   1333   return false;
   1334 }
   1335 
   1336 
   1337 // Kirch's algorithm, from
   1338 //
   1339 //        Optimizing Supercompilers for Supercomputers
   1340 //        Michael Wolfe
   1341 //        MIT Press, 1989
   1342 //
   1343 // Program 2.1, page 29.
   1344 // Computes the GCD of AM and BM.
   1345 // Also finds a solution to the equation ax - by = gcd(a, b).
   1346 // Returns true if dependence disproved; i.e., gcd does not divide Delta.
   1347 static
   1348 bool findGCD(unsigned Bits, APInt AM, APInt BM, APInt Delta,
   1349              APInt &G, APInt &X, APInt &Y) {
   1350   APInt A0(Bits, 1, true), A1(Bits, 0, true);
   1351   APInt B0(Bits, 0, true), B1(Bits, 1, true);
   1352   APInt G0 = AM.abs();
   1353   APInt G1 = BM.abs();
   1354   APInt Q = G0; // these need to be initialized
   1355   APInt R = G0;
   1356   APInt::sdivrem(G0, G1, Q, R);
   1357   while (R != 0) {
   1358     APInt A2 = A0 - Q*A1; A0 = A1; A1 = A2;
   1359     APInt B2 = B0 - Q*B1; B0 = B1; B1 = B2;
   1360     G0 = G1; G1 = R;
   1361     APInt::sdivrem(G0, G1, Q, R);
   1362   }
   1363   G = G1;
   1364   DEBUG(dbgs() << "\t    GCD = " << G << "\n");
   1365   X = AM.slt(0) ? -A1 : A1;
   1366   Y = BM.slt(0) ? B1 : -B1;
   1367 
   1368   // make sure gcd divides Delta
   1369   R = Delta.srem(G);
   1370   if (R != 0)
   1371     return true; // gcd doesn't divide Delta, no dependence
   1372   Q = Delta.sdiv(G);
   1373   X *= Q;
   1374   Y *= Q;
   1375   return false;
   1376 }
   1377 
   1378 
   1379 static
   1380 APInt floorOfQuotient(APInt A, APInt B) {
   1381   APInt Q = A; // these need to be initialized
   1382   APInt R = A;
   1383   APInt::sdivrem(A, B, Q, R);
   1384   if (R == 0)
   1385     return Q;
   1386   if ((A.sgt(0) && B.sgt(0)) ||
   1387       (A.slt(0) && B.slt(0)))
   1388     return Q;
   1389   else
   1390     return Q - 1;
   1391 }
   1392 
   1393 
   1394 static
   1395 APInt ceilingOfQuotient(APInt A, APInt B) {
   1396   APInt Q = A; // these need to be initialized
   1397   APInt R = A;
   1398   APInt::sdivrem(A, B, Q, R);
   1399   if (R == 0)
   1400     return Q;
   1401   if ((A.sgt(0) && B.sgt(0)) ||
   1402       (A.slt(0) && B.slt(0)))
   1403     return Q + 1;
   1404   else
   1405     return Q;
   1406 }
   1407 
   1408 
   1409 static
   1410 APInt maxAPInt(APInt A, APInt B) {
   1411   return A.sgt(B) ? A : B;
   1412 }
   1413 
   1414 
   1415 static
   1416 APInt minAPInt(APInt A, APInt B) {
   1417   return A.slt(B) ? A : B;
   1418 }
   1419 
   1420 
   1421 // exactSIVtest -
   1422 // When we have a pair of subscripts of the form [c1 + a1*i] and [c2 + a2*i],
   1423 // where i is an induction variable, c1 and c2 are loop invariant, and a1
   1424 // and a2 are constant, we can solve it exactly using an algorithm developed
   1425 // by Banerjee and Wolfe. See Section 2.5.3 in
   1426 //
   1427 //        Optimizing Supercompilers for Supercomputers
   1428 //        Michael Wolfe
   1429 //        MIT Press, 1989
   1430 //
   1431 // It's slower than the specialized tests (strong SIV, weak-zero SIV, etc),
   1432 // so use them if possible. They're also a bit better with symbolics and,
   1433 // in the case of the strong SIV test, can compute Distances.
   1434 //
   1435 // Return true if dependence disproved.
   1436 bool DependenceAnalysis::exactSIVtest(const SCEV *SrcCoeff,
   1437                                       const SCEV *DstCoeff,
   1438                                       const SCEV *SrcConst,
   1439                                       const SCEV *DstConst,
   1440                                       const Loop *CurLoop,
   1441                                       unsigned Level,
   1442                                       FullDependence &Result,
   1443                                       Constraint &NewConstraint) const {
   1444   DEBUG(dbgs() << "\tExact SIV test\n");
   1445   DEBUG(dbgs() << "\t    SrcCoeff = " << *SrcCoeff << " = AM\n");
   1446   DEBUG(dbgs() << "\t    DstCoeff = " << *DstCoeff << " = BM\n");
   1447   DEBUG(dbgs() << "\t    SrcConst = " << *SrcConst << "\n");
   1448   DEBUG(dbgs() << "\t    DstConst = " << *DstConst << "\n");
   1449   ++ExactSIVapplications;
   1450   assert(0 < Level && Level <= CommonLevels && "Level out of range");
   1451   Level--;
   1452   Result.Consistent = false;
   1453   const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
   1454   DEBUG(dbgs() << "\t    Delta = " << *Delta << "\n");
   1455   NewConstraint.setLine(SrcCoeff, SE->getNegativeSCEV(DstCoeff),
   1456                         Delta, CurLoop);
   1457   const SCEVConstant *ConstDelta = dyn_cast<SCEVConstant>(Delta);
   1458   const SCEVConstant *ConstSrcCoeff = dyn_cast<SCEVConstant>(SrcCoeff);
   1459   const SCEVConstant *ConstDstCoeff = dyn_cast<SCEVConstant>(DstCoeff);
   1460   if (!ConstDelta || !ConstSrcCoeff || !ConstDstCoeff)
   1461     return false;
   1462 
   1463   // find gcd
   1464   APInt G, X, Y;
   1465   APInt AM = ConstSrcCoeff->getAPInt();
   1466   APInt BM = ConstDstCoeff->getAPInt();
   1467   unsigned Bits = AM.getBitWidth();
   1468   if (findGCD(Bits, AM, BM, ConstDelta->getAPInt(), G, X, Y)) {
   1469     // gcd doesn't divide Delta, no dependence
   1470     ++ExactSIVindependence;
   1471     ++ExactSIVsuccesses;
   1472     return true;
   1473   }
   1474 
   1475   DEBUG(dbgs() << "\t    X = " << X << ", Y = " << Y << "\n");
   1476 
   1477   // since SCEV construction normalizes, LM = 0
   1478   APInt UM(Bits, 1, true);
   1479   bool UMvalid = false;
   1480   // UM is perhaps unavailable, let's check
   1481   if (const SCEVConstant *CUB =
   1482       collectConstantUpperBound(CurLoop, Delta->getType())) {
   1483     UM = CUB->getAPInt();
   1484     DEBUG(dbgs() << "\t    UM = " << UM << "\n");
   1485     UMvalid = true;
   1486   }
   1487 
   1488   APInt TU(APInt::getSignedMaxValue(Bits));
   1489   APInt TL(APInt::getSignedMinValue(Bits));
   1490 
   1491   // test(BM/G, LM-X) and test(-BM/G, X-UM)
   1492   APInt TMUL = BM.sdiv(G);
   1493   if (TMUL.sgt(0)) {
   1494     TL = maxAPInt(TL, ceilingOfQuotient(-X, TMUL));
   1495     DEBUG(dbgs() << "\t    TL = " << TL << "\n");
   1496     if (UMvalid) {
   1497       TU = minAPInt(TU, floorOfQuotient(UM - X, TMUL));
   1498       DEBUG(dbgs() << "\t    TU = " << TU << "\n");
   1499     }
   1500   }
   1501   else {
   1502     TU = minAPInt(TU, floorOfQuotient(-X, TMUL));
   1503     DEBUG(dbgs() << "\t    TU = " << TU << "\n");
   1504     if (UMvalid) {
   1505       TL = maxAPInt(TL, ceilingOfQuotient(UM - X, TMUL));
   1506       DEBUG(dbgs() << "\t    TL = " << TL << "\n");
   1507     }
   1508   }
   1509 
   1510   // test(AM/G, LM-Y) and test(-AM/G, Y-UM)
   1511   TMUL = AM.sdiv(G);
   1512   if (TMUL.sgt(0)) {
   1513     TL = maxAPInt(TL, ceilingOfQuotient(-Y, TMUL));
   1514     DEBUG(dbgs() << "\t    TL = " << TL << "\n");
   1515     if (UMvalid) {
   1516       TU = minAPInt(TU, floorOfQuotient(UM - Y, TMUL));
   1517       DEBUG(dbgs() << "\t    TU = " << TU << "\n");
   1518     }
   1519   }
   1520   else {
   1521     TU = minAPInt(TU, floorOfQuotient(-Y, TMUL));
   1522     DEBUG(dbgs() << "\t    TU = " << TU << "\n");
   1523     if (UMvalid) {
   1524       TL = maxAPInt(TL, ceilingOfQuotient(UM - Y, TMUL));
   1525       DEBUG(dbgs() << "\t    TL = " << TL << "\n");
   1526     }
   1527   }
   1528   if (TL.sgt(TU)) {
   1529     ++ExactSIVindependence;
   1530     ++ExactSIVsuccesses;
   1531     return true;
   1532   }
   1533 
   1534   // explore directions
   1535   unsigned NewDirection = Dependence::DVEntry::NONE;
   1536 
   1537   // less than
   1538   APInt SaveTU(TU); // save these
   1539   APInt SaveTL(TL);
   1540   DEBUG(dbgs() << "\t    exploring LT direction\n");
   1541   TMUL = AM - BM;
   1542   if (TMUL.sgt(0)) {
   1543     TL = maxAPInt(TL, ceilingOfQuotient(X - Y + 1, TMUL));
   1544     DEBUG(dbgs() << "\t\t    TL = " << TL << "\n");
   1545   }
   1546   else {
   1547     TU = minAPInt(TU, floorOfQuotient(X - Y + 1, TMUL));
   1548     DEBUG(dbgs() << "\t\t    TU = " << TU << "\n");
   1549   }
   1550   if (TL.sle(TU)) {
   1551     NewDirection |= Dependence::DVEntry::LT;
   1552     ++ExactSIVsuccesses;
   1553   }
   1554 
   1555   // equal
   1556   TU = SaveTU; // restore
   1557   TL = SaveTL;
   1558   DEBUG(dbgs() << "\t    exploring EQ direction\n");
   1559   if (TMUL.sgt(0)) {
   1560     TL = maxAPInt(TL, ceilingOfQuotient(X - Y, TMUL));
   1561     DEBUG(dbgs() << "\t\t    TL = " << TL << "\n");
   1562   }
   1563   else {
   1564     TU = minAPInt(TU, floorOfQuotient(X - Y, TMUL));
   1565     DEBUG(dbgs() << "\t\t    TU = " << TU << "\n");
   1566   }
   1567   TMUL = BM - AM;
   1568   if (TMUL.sgt(0)) {
   1569     TL = maxAPInt(TL, ceilingOfQuotient(Y - X, TMUL));
   1570     DEBUG(dbgs() << "\t\t    TL = " << TL << "\n");
   1571   }
   1572   else {
   1573     TU = minAPInt(TU, floorOfQuotient(Y - X, TMUL));
   1574     DEBUG(dbgs() << "\t\t    TU = " << TU << "\n");
   1575   }
   1576   if (TL.sle(TU)) {
   1577     NewDirection |= Dependence::DVEntry::EQ;
   1578     ++ExactSIVsuccesses;
   1579   }
   1580 
   1581   // greater than
   1582   TU = SaveTU; // restore
   1583   TL = SaveTL;
   1584   DEBUG(dbgs() << "\t    exploring GT direction\n");
   1585   if (TMUL.sgt(0)) {
   1586     TL = maxAPInt(TL, ceilingOfQuotient(Y - X + 1, TMUL));
   1587     DEBUG(dbgs() << "\t\t    TL = " << TL << "\n");
   1588   }
   1589   else {
   1590     TU = minAPInt(TU, floorOfQuotient(Y - X + 1, TMUL));
   1591     DEBUG(dbgs() << "\t\t    TU = " << TU << "\n");
   1592   }
   1593   if (TL.sle(TU)) {
   1594     NewDirection |= Dependence::DVEntry::GT;
   1595     ++ExactSIVsuccesses;
   1596   }
   1597 
   1598   // finished
   1599   Result.DV[Level].Direction &= NewDirection;
   1600   if (Result.DV[Level].Direction == Dependence::DVEntry::NONE)
   1601     ++ExactSIVindependence;
   1602   return Result.DV[Level].Direction == Dependence::DVEntry::NONE;
   1603 }
   1604 
   1605 
   1606 
   1607 // Return true if the divisor evenly divides the dividend.
   1608 static
   1609 bool isRemainderZero(const SCEVConstant *Dividend,
   1610                      const SCEVConstant *Divisor) {
   1611   APInt ConstDividend = Dividend->getAPInt();
   1612   APInt ConstDivisor = Divisor->getAPInt();
   1613   return ConstDividend.srem(ConstDivisor) == 0;
   1614 }
   1615 
   1616 
   1617 // weakZeroSrcSIVtest -
   1618 // From the paper, Practical Dependence Testing, Section 4.2.2
   1619 //
   1620 // When we have a pair of subscripts of the form [c1] and [c2 + a*i],
   1621 // where i is an induction variable, c1 and c2 are loop invariant,
   1622 // and a is a constant, we can solve it exactly using the
   1623 // Weak-Zero SIV test.
   1624 //
   1625 // Given
   1626 //
   1627 //    c1 = c2 + a*i
   1628 //
   1629 // we get
   1630 //
   1631 //    (c1 - c2)/a = i
   1632 //
   1633 // If i is not an integer, there's no dependence.
   1634 // If i < 0 or > UB, there's no dependence.
   1635 // If i = 0, the direction is <= and peeling the
   1636 // 1st iteration will break the dependence.
   1637 // If i = UB, the direction is >= and peeling the
   1638 // last iteration will break the dependence.
   1639 // Otherwise, the direction is *.
   1640 //
   1641 // Can prove independence. Failing that, we can sometimes refine
   1642 // the directions. Can sometimes show that first or last
   1643 // iteration carries all the dependences (so worth peeling).
   1644 //
   1645 // (see also weakZeroDstSIVtest)
   1646 //
   1647 // Return true if dependence disproved.
   1648 bool DependenceAnalysis::weakZeroSrcSIVtest(const SCEV *DstCoeff,
   1649                                             const SCEV *SrcConst,
   1650                                             const SCEV *DstConst,
   1651                                             const Loop *CurLoop,
   1652                                             unsigned Level,
   1653                                             FullDependence &Result,
   1654                                             Constraint &NewConstraint) const {
   1655   // For the WeakSIV test, it's possible the loop isn't common to
   1656   // the Src and Dst loops. If it isn't, then there's no need to
   1657   // record a direction.
   1658   DEBUG(dbgs() << "\tWeak-Zero (src) SIV test\n");
   1659   DEBUG(dbgs() << "\t    DstCoeff = " << *DstCoeff << "\n");
   1660   DEBUG(dbgs() << "\t    SrcConst = " << *SrcConst << "\n");
   1661   DEBUG(dbgs() << "\t    DstConst = " << *DstConst << "\n");
   1662   ++WeakZeroSIVapplications;
   1663   assert(0 < Level && Level <= MaxLevels && "Level out of range");
   1664   Level--;
   1665   Result.Consistent = false;
   1666   const SCEV *Delta = SE->getMinusSCEV(SrcConst, DstConst);
   1667   NewConstraint.setLine(SE->getZero(Delta->getType()), DstCoeff, Delta,
   1668                         CurLoop);
   1669   DEBUG(dbgs() << "\t    Delta = " << *Delta << "\n");
   1670   if (isKnownPredicate(CmpInst::ICMP_EQ, SrcConst, DstConst)) {
   1671     if (Level < CommonLevels) {
   1672       Result.DV[Level].Direction &= Dependence::DVEntry::LE;
   1673       Result.DV[Level].PeelFirst = true;
   1674       ++WeakZeroSIVsuccesses;
   1675     }
   1676     return false; // dependences caused by first iteration
   1677   }
   1678   const SCEVConstant *ConstCoeff = dyn_cast<SCEVConstant>(DstCoeff);
   1679   if (!ConstCoeff)
   1680     return false;
   1681   const SCEV *AbsCoeff =
   1682     SE->isKnownNegative(ConstCoeff) ?
   1683     SE->getNegativeSCEV(ConstCoeff) : ConstCoeff;
   1684   const SCEV *NewDelta =
   1685     SE->isKnownNegative(ConstCoeff) ? SE->getNegativeSCEV(Delta) : Delta;
   1686 
   1687   // check that Delta/SrcCoeff < iteration count
   1688   // really check NewDelta < count*AbsCoeff
   1689   if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) {
   1690     DEBUG(dbgs() << "\t    UpperBound = " << *UpperBound << "\n");
   1691     const SCEV *Product = SE->getMulExpr(AbsCoeff, UpperBound);
   1692     if (isKnownPredicate(CmpInst::ICMP_SGT, NewDelta, Product)) {
   1693       ++WeakZeroSIVindependence;
   1694       ++WeakZeroSIVsuccesses;
   1695       return true;
   1696     }
   1697     if (isKnownPredicate(CmpInst::ICMP_EQ, NewDelta, Product)) {
   1698       // dependences caused by last iteration
   1699       if (Level < CommonLevels) {
   1700         Result.DV[Level].Direction &= Dependence::DVEntry::GE;
   1701         Result.DV[Level].PeelLast = true;
   1702         ++WeakZeroSIVsuccesses;
   1703       }
   1704       return false;
   1705     }
   1706   }
   1707 
   1708   // check that Delta/SrcCoeff >= 0
   1709   // really check that NewDelta >= 0
   1710   if (SE->isKnownNegative(NewDelta)) {
   1711     // No dependence, newDelta < 0
   1712     ++WeakZeroSIVindependence;
   1713     ++WeakZeroSIVsuccesses;
   1714     return true;
   1715   }
   1716 
   1717   // if SrcCoeff doesn't divide Delta, then no dependence
   1718   if (isa<SCEVConstant>(Delta) &&
   1719       !isRemainderZero(cast<SCEVConstant>(Delta), ConstCoeff)) {
   1720     ++WeakZeroSIVindependence;
   1721     ++WeakZeroSIVsuccesses;
   1722     return true;
   1723   }
   1724   return false;
   1725 }
   1726 
   1727 
   1728 // weakZeroDstSIVtest -
   1729 // From the paper, Practical Dependence Testing, Section 4.2.2
   1730 //
   1731 // When we have a pair of subscripts of the form [c1 + a*i] and [c2],
   1732 // where i is an induction variable, c1 and c2 are loop invariant,
   1733 // and a is a constant, we can solve it exactly using the
   1734 // Weak-Zero SIV test.
   1735 //
   1736 // Given
   1737 //
   1738 //    c1 + a*i = c2
   1739 //
   1740 // we get
   1741 //
   1742 //    i = (c2 - c1)/a
   1743 //
   1744 // If i is not an integer, there's no dependence.
   1745 // If i < 0 or > UB, there's no dependence.
   1746 // If i = 0, the direction is <= and peeling the
   1747 // 1st iteration will break the dependence.
   1748 // If i = UB, the direction is >= and peeling the
   1749 // last iteration will break the dependence.
   1750 // Otherwise, the direction is *.
   1751 //
   1752 // Can prove independence. Failing that, we can sometimes refine
   1753 // the directions. Can sometimes show that first or last
   1754 // iteration carries all the dependences (so worth peeling).
   1755 //
   1756 // (see also weakZeroSrcSIVtest)
   1757 //
   1758 // Return true if dependence disproved.
   1759 bool DependenceAnalysis::weakZeroDstSIVtest(const SCEV *SrcCoeff,
   1760                                             const SCEV *SrcConst,
   1761                                             const SCEV *DstConst,
   1762                                             const Loop *CurLoop,
   1763                                             unsigned Level,
   1764                                             FullDependence &Result,
   1765                                             Constraint &NewConstraint) const {
   1766   // For the WeakSIV test, it's possible the loop isn't common to the
   1767   // Src and Dst loops. If it isn't, then there's no need to record a direction.
   1768   DEBUG(dbgs() << "\tWeak-Zero (dst) SIV test\n");
   1769   DEBUG(dbgs() << "\t    SrcCoeff = " << *SrcCoeff << "\n");
   1770   DEBUG(dbgs() << "\t    SrcConst = " << *SrcConst << "\n");
   1771   DEBUG(dbgs() << "\t    DstConst = " << *DstConst << "\n");
   1772   ++WeakZeroSIVapplications;
   1773   assert(0 < Level && Level <= SrcLevels && "Level out of range");
   1774   Level--;
   1775   Result.Consistent = false;
   1776   const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
   1777   NewConstraint.setLine(SrcCoeff, SE->getZero(Delta->getType()), Delta,
   1778                         CurLoop);
   1779   DEBUG(dbgs() << "\t    Delta = " << *Delta << "\n");
   1780   if (isKnownPredicate(CmpInst::ICMP_EQ, DstConst, SrcConst)) {
   1781     if (Level < CommonLevels) {
   1782       Result.DV[Level].Direction &= Dependence::DVEntry::LE;
   1783       Result.DV[Level].PeelFirst = true;
   1784       ++WeakZeroSIVsuccesses;
   1785     }
   1786     return false; // dependences caused by first iteration
   1787   }
   1788   const SCEVConstant *ConstCoeff = dyn_cast<SCEVConstant>(SrcCoeff);
   1789   if (!ConstCoeff)
   1790     return false;
   1791   const SCEV *AbsCoeff =
   1792     SE->isKnownNegative(ConstCoeff) ?
   1793     SE->getNegativeSCEV(ConstCoeff) : ConstCoeff;
   1794   const SCEV *NewDelta =
   1795     SE->isKnownNegative(ConstCoeff) ? SE->getNegativeSCEV(Delta) : Delta;
   1796 
   1797   // check that Delta/SrcCoeff < iteration count
   1798   // really check NewDelta < count*AbsCoeff
   1799   if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) {
   1800     DEBUG(dbgs() << "\t    UpperBound = " << *UpperBound << "\n");
   1801     const SCEV *Product = SE->getMulExpr(AbsCoeff, UpperBound);
   1802     if (isKnownPredicate(CmpInst::ICMP_SGT, NewDelta, Product)) {
   1803       ++WeakZeroSIVindependence;
   1804       ++WeakZeroSIVsuccesses;
   1805       return true;
   1806     }
   1807     if (isKnownPredicate(CmpInst::ICMP_EQ, NewDelta, Product)) {
   1808       // dependences caused by last iteration
   1809       if (Level < CommonLevels) {
   1810         Result.DV[Level].Direction &= Dependence::DVEntry::GE;
   1811         Result.DV[Level].PeelLast = true;
   1812         ++WeakZeroSIVsuccesses;
   1813       }
   1814       return false;
   1815     }
   1816   }
   1817 
   1818   // check that Delta/SrcCoeff >= 0
   1819   // really check that NewDelta >= 0
   1820   if (SE->isKnownNegative(NewDelta)) {
   1821     // No dependence, newDelta < 0
   1822     ++WeakZeroSIVindependence;
   1823     ++WeakZeroSIVsuccesses;
   1824     return true;
   1825   }
   1826 
   1827   // if SrcCoeff doesn't divide Delta, then no dependence
   1828   if (isa<SCEVConstant>(Delta) &&
   1829       !isRemainderZero(cast<SCEVConstant>(Delta), ConstCoeff)) {
   1830     ++WeakZeroSIVindependence;
   1831     ++WeakZeroSIVsuccesses;
   1832     return true;
   1833   }
   1834   return false;
   1835 }
   1836 
   1837 
   1838 // exactRDIVtest - Tests the RDIV subscript pair for dependence.
   1839 // Things of the form [c1 + a*i] and [c2 + b*j],
   1840 // where i and j are induction variable, c1 and c2 are loop invariant,
   1841 // and a and b are constants.
   1842 // Returns true if any possible dependence is disproved.
   1843 // Marks the result as inconsistent.
   1844 // Works in some cases that symbolicRDIVtest doesn't, and vice versa.
   1845 bool DependenceAnalysis::exactRDIVtest(const SCEV *SrcCoeff,
   1846                                        const SCEV *DstCoeff,
   1847                                        const SCEV *SrcConst,
   1848                                        const SCEV *DstConst,
   1849                                        const Loop *SrcLoop,
   1850                                        const Loop *DstLoop,
   1851                                        FullDependence &Result) const {
   1852   DEBUG(dbgs() << "\tExact RDIV test\n");
   1853   DEBUG(dbgs() << "\t    SrcCoeff = " << *SrcCoeff << " = AM\n");
   1854   DEBUG(dbgs() << "\t    DstCoeff = " << *DstCoeff << " = BM\n");
   1855   DEBUG(dbgs() << "\t    SrcConst = " << *SrcConst << "\n");
   1856   DEBUG(dbgs() << "\t    DstConst = " << *DstConst << "\n");
   1857   ++ExactRDIVapplications;
   1858   Result.Consistent = false;
   1859   const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
   1860   DEBUG(dbgs() << "\t    Delta = " << *Delta << "\n");
   1861   const SCEVConstant *ConstDelta = dyn_cast<SCEVConstant>(Delta);
   1862   const SCEVConstant *ConstSrcCoeff = dyn_cast<SCEVConstant>(SrcCoeff);
   1863   const SCEVConstant *ConstDstCoeff = dyn_cast<SCEVConstant>(DstCoeff);
   1864   if (!ConstDelta || !ConstSrcCoeff || !ConstDstCoeff)
   1865     return false;
   1866 
   1867   // find gcd
   1868   APInt G, X, Y;
   1869   APInt AM = ConstSrcCoeff->getAPInt();
   1870   APInt BM = ConstDstCoeff->getAPInt();
   1871   unsigned Bits = AM.getBitWidth();
   1872   if (findGCD(Bits, AM, BM, ConstDelta->getAPInt(), G, X, Y)) {
   1873     // gcd doesn't divide Delta, no dependence
   1874     ++ExactRDIVindependence;
   1875     return true;
   1876   }
   1877 
   1878   DEBUG(dbgs() << "\t    X = " << X << ", Y = " << Y << "\n");
   1879 
   1880   // since SCEV construction seems to normalize, LM = 0
   1881   APInt SrcUM(Bits, 1, true);
   1882   bool SrcUMvalid = false;
   1883   // SrcUM is perhaps unavailable, let's check
   1884   if (const SCEVConstant *UpperBound =
   1885       collectConstantUpperBound(SrcLoop, Delta->getType())) {
   1886     SrcUM = UpperBound->getAPInt();
   1887     DEBUG(dbgs() << "\t    SrcUM = " << SrcUM << "\n");
   1888     SrcUMvalid = true;
   1889   }
   1890 
   1891   APInt DstUM(Bits, 1, true);
   1892   bool DstUMvalid = false;
   1893   // UM is perhaps unavailable, let's check
   1894   if (const SCEVConstant *UpperBound =
   1895       collectConstantUpperBound(DstLoop, Delta->getType())) {
   1896     DstUM = UpperBound->getAPInt();
   1897     DEBUG(dbgs() << "\t    DstUM = " << DstUM << "\n");
   1898     DstUMvalid = true;
   1899   }
   1900 
   1901   APInt TU(APInt::getSignedMaxValue(Bits));
   1902   APInt TL(APInt::getSignedMinValue(Bits));
   1903 
   1904   // test(BM/G, LM-X) and test(-BM/G, X-UM)
   1905   APInt TMUL = BM.sdiv(G);
   1906   if (TMUL.sgt(0)) {
   1907     TL = maxAPInt(TL, ceilingOfQuotient(-X, TMUL));
   1908     DEBUG(dbgs() << "\t    TL = " << TL << "\n");
   1909     if (SrcUMvalid) {
   1910       TU = minAPInt(TU, floorOfQuotient(SrcUM - X, TMUL));
   1911       DEBUG(dbgs() << "\t    TU = " << TU << "\n");
   1912     }
   1913   }
   1914   else {
   1915     TU = minAPInt(TU, floorOfQuotient(-X, TMUL));
   1916     DEBUG(dbgs() << "\t    TU = " << TU << "\n");
   1917     if (SrcUMvalid) {
   1918       TL = maxAPInt(TL, ceilingOfQuotient(SrcUM - X, TMUL));
   1919       DEBUG(dbgs() << "\t    TL = " << TL << "\n");
   1920     }
   1921   }
   1922 
   1923   // test(AM/G, LM-Y) and test(-AM/G, Y-UM)
   1924   TMUL = AM.sdiv(G);
   1925   if (TMUL.sgt(0)) {
   1926     TL = maxAPInt(TL, ceilingOfQuotient(-Y, TMUL));
   1927     DEBUG(dbgs() << "\t    TL = " << TL << "\n");
   1928     if (DstUMvalid) {
   1929       TU = minAPInt(TU, floorOfQuotient(DstUM - Y, TMUL));
   1930       DEBUG(dbgs() << "\t    TU = " << TU << "\n");
   1931     }
   1932   }
   1933   else {
   1934     TU = minAPInt(TU, floorOfQuotient(-Y, TMUL));
   1935     DEBUG(dbgs() << "\t    TU = " << TU << "\n");
   1936     if (DstUMvalid) {
   1937       TL = maxAPInt(TL, ceilingOfQuotient(DstUM - Y, TMUL));
   1938       DEBUG(dbgs() << "\t    TL = " << TL << "\n");
   1939     }
   1940   }
   1941   if (TL.sgt(TU))
   1942     ++ExactRDIVindependence;
   1943   return TL.sgt(TU);
   1944 }
   1945 
   1946 
   1947 // symbolicRDIVtest -
   1948 // In Section 4.5 of the Practical Dependence Testing paper,the authors
   1949 // introduce a special case of Banerjee's Inequalities (also called the
   1950 // Extreme-Value Test) that can handle some of the SIV and RDIV cases,
   1951 // particularly cases with symbolics. Since it's only able to disprove
   1952 // dependence (not compute distances or directions), we'll use it as a
   1953 // fall back for the other tests.
   1954 //
   1955 // When we have a pair of subscripts of the form [c1 + a1*i] and [c2 + a2*j]
   1956 // where i and j are induction variables and c1 and c2 are loop invariants,
   1957 // we can use the symbolic tests to disprove some dependences, serving as a
   1958 // backup for the RDIV test. Note that i and j can be the same variable,
   1959 // letting this test serve as a backup for the various SIV tests.
   1960 //
   1961 // For a dependence to exist, c1 + a1*i must equal c2 + a2*j for some
   1962 //  0 <= i <= N1 and some 0 <= j <= N2, where N1 and N2 are the (normalized)
   1963 // loop bounds for the i and j loops, respectively. So, ...
   1964 //
   1965 // c1 + a1*i = c2 + a2*j
   1966 // a1*i - a2*j = c2 - c1
   1967 //
   1968 // To test for a dependence, we compute c2 - c1 and make sure it's in the
   1969 // range of the maximum and minimum possible values of a1*i - a2*j.
   1970 // Considering the signs of a1 and a2, we have 4 possible cases:
   1971 //
   1972 // 1) If a1 >= 0 and a2 >= 0, then
   1973 //        a1*0 - a2*N2 <= c2 - c1 <= a1*N1 - a2*0
   1974 //              -a2*N2 <= c2 - c1 <= a1*N1
   1975 //
   1976 // 2) If a1 >= 0 and a2 <= 0, then
   1977 //        a1*0 - a2*0 <= c2 - c1 <= a1*N1 - a2*N2
   1978 //                  0 <= c2 - c1 <= a1*N1 - a2*N2
   1979 //
   1980 // 3) If a1 <= 0 and a2 >= 0, then
   1981 //        a1*N1 - a2*N2 <= c2 - c1 <= a1*0 - a2*0
   1982 //        a1*N1 - a2*N2 <= c2 - c1 <= 0
   1983 //
   1984 // 4) If a1 <= 0 and a2 <= 0, then
   1985 //        a1*N1 - a2*0  <= c2 - c1 <= a1*0 - a2*N2
   1986 //        a1*N1         <= c2 - c1 <=       -a2*N2
   1987 //
   1988 // return true if dependence disproved
   1989 bool DependenceAnalysis::symbolicRDIVtest(const SCEV *A1,
   1990                                           const SCEV *A2,
   1991                                           const SCEV *C1,
   1992                                           const SCEV *C2,
   1993                                           const Loop *Loop1,
   1994                                           const Loop *Loop2) const {
   1995   ++SymbolicRDIVapplications;
   1996   DEBUG(dbgs() << "\ttry symbolic RDIV test\n");
   1997   DEBUG(dbgs() << "\t    A1 = " << *A1);
   1998   DEBUG(dbgs() << ", type = " << *A1->getType() << "\n");
   1999   DEBUG(dbgs() << "\t    A2 = " << *A2 << "\n");
   2000   DEBUG(dbgs() << "\t    C1 = " << *C1 << "\n");
   2001   DEBUG(dbgs() << "\t    C2 = " << *C2 << "\n");
   2002   const SCEV *N1 = collectUpperBound(Loop1, A1->getType());
   2003   const SCEV *N2 = collectUpperBound(Loop2, A1->getType());
   2004   DEBUG(if (N1) dbgs() << "\t    N1 = " << *N1 << "\n");
   2005   DEBUG(if (N2) dbgs() << "\t    N2 = " << *N2 << "\n");
   2006   const SCEV *C2_C1 = SE->getMinusSCEV(C2, C1);
   2007   const SCEV *C1_C2 = SE->getMinusSCEV(C1, C2);
   2008   DEBUG(dbgs() << "\t    C2 - C1 = " << *C2_C1 << "\n");
   2009   DEBUG(dbgs() << "\t    C1 - C2 = " << *C1_C2 << "\n");
   2010   if (SE->isKnownNonNegative(A1)) {
   2011     if (SE->isKnownNonNegative(A2)) {
   2012       // A1 >= 0 && A2 >= 0
   2013       if (N1) {
   2014         // make sure that c2 - c1 <= a1*N1
   2015         const SCEV *A1N1 = SE->getMulExpr(A1, N1);
   2016         DEBUG(dbgs() << "\t    A1*N1 = " << *A1N1 << "\n");
   2017         if (isKnownPredicate(CmpInst::ICMP_SGT, C2_C1, A1N1)) {
   2018           ++SymbolicRDIVindependence;
   2019           return true;
   2020         }
   2021       }
   2022       if (N2) {
   2023         // make sure that -a2*N2 <= c2 - c1, or a2*N2 >= c1 - c2
   2024         const SCEV *A2N2 = SE->getMulExpr(A2, N2);
   2025         DEBUG(dbgs() << "\t    A2*N2 = " << *A2N2 << "\n");
   2026         if (isKnownPredicate(CmpInst::ICMP_SLT, A2N2, C1_C2)) {
   2027           ++SymbolicRDIVindependence;
   2028           return true;
   2029         }
   2030       }
   2031     }
   2032     else if (SE->isKnownNonPositive(A2)) {
   2033       // a1 >= 0 && a2 <= 0
   2034       if (N1 && N2) {
   2035         // make sure that c2 - c1 <= a1*N1 - a2*N2
   2036         const SCEV *A1N1 = SE->getMulExpr(A1, N1);
   2037         const SCEV *A2N2 = SE->getMulExpr(A2, N2);
   2038         const SCEV *A1N1_A2N2 = SE->getMinusSCEV(A1N1, A2N2);
   2039         DEBUG(dbgs() << "\t    A1*N1 - A2*N2 = " << *A1N1_A2N2 << "\n");
   2040         if (isKnownPredicate(CmpInst::ICMP_SGT, C2_C1, A1N1_A2N2)) {
   2041           ++SymbolicRDIVindependence;
   2042           return true;
   2043         }
   2044       }
   2045       // make sure that 0 <= c2 - c1
   2046       if (SE->isKnownNegative(C2_C1)) {
   2047         ++SymbolicRDIVindependence;
   2048         return true;
   2049       }
   2050     }
   2051   }
   2052   else if (SE->isKnownNonPositive(A1)) {
   2053     if (SE->isKnownNonNegative(A2)) {
   2054       // a1 <= 0 && a2 >= 0
   2055       if (N1 && N2) {
   2056         // make sure that a1*N1 - a2*N2 <= c2 - c1
   2057         const SCEV *A1N1 = SE->getMulExpr(A1, N1);
   2058         const SCEV *A2N2 = SE->getMulExpr(A2, N2);
   2059         const SCEV *A1N1_A2N2 = SE->getMinusSCEV(A1N1, A2N2);
   2060         DEBUG(dbgs() << "\t    A1*N1 - A2*N2 = " << *A1N1_A2N2 << "\n");
   2061         if (isKnownPredicate(CmpInst::ICMP_SGT, A1N1_A2N2, C2_C1)) {
   2062           ++SymbolicRDIVindependence;
   2063           return true;
   2064         }
   2065       }
   2066       // make sure that c2 - c1 <= 0
   2067       if (SE->isKnownPositive(C2_C1)) {
   2068         ++SymbolicRDIVindependence;
   2069         return true;
   2070       }
   2071     }
   2072     else if (SE->isKnownNonPositive(A2)) {
   2073       // a1 <= 0 && a2 <= 0
   2074       if (N1) {
   2075         // make sure that a1*N1 <= c2 - c1
   2076         const SCEV *A1N1 = SE->getMulExpr(A1, N1);
   2077         DEBUG(dbgs() << "\t    A1*N1 = " << *A1N1 << "\n");
   2078         if (isKnownPredicate(CmpInst::ICMP_SGT, A1N1, C2_C1)) {
   2079           ++SymbolicRDIVindependence;
   2080           return true;
   2081         }
   2082       }
   2083       if (N2) {
   2084         // make sure that c2 - c1 <= -a2*N2, or c1 - c2 >= a2*N2
   2085         const SCEV *A2N2 = SE->getMulExpr(A2, N2);
   2086         DEBUG(dbgs() << "\t    A2*N2 = " << *A2N2 << "\n");
   2087         if (isKnownPredicate(CmpInst::ICMP_SLT, C1_C2, A2N2)) {
   2088           ++SymbolicRDIVindependence;
   2089           return true;
   2090         }
   2091       }
   2092     }
   2093   }
   2094   return false;
   2095 }
   2096 
   2097 
   2098 // testSIV -
   2099 // When we have a pair of subscripts of the form [c1 + a1*i] and [c2 - a2*i]
   2100 // where i is an induction variable, c1 and c2 are loop invariant, and a1 and
   2101 // a2 are constant, we attack it with an SIV test. While they can all be
   2102 // solved with the Exact SIV test, it's worthwhile to use simpler tests when
   2103 // they apply; they're cheaper and sometimes more precise.
   2104 //
   2105 // Return true if dependence disproved.
   2106 bool DependenceAnalysis::testSIV(const SCEV *Src,
   2107                                  const SCEV *Dst,
   2108                                  unsigned &Level,
   2109                                  FullDependence &Result,
   2110                                  Constraint &NewConstraint,
   2111                                  const SCEV *&SplitIter) const {
   2112   DEBUG(dbgs() << "    src = " << *Src << "\n");
   2113   DEBUG(dbgs() << "    dst = " << *Dst << "\n");
   2114   const SCEVAddRecExpr *SrcAddRec = dyn_cast<SCEVAddRecExpr>(Src);
   2115   const SCEVAddRecExpr *DstAddRec = dyn_cast<SCEVAddRecExpr>(Dst);
   2116   if (SrcAddRec && DstAddRec) {
   2117     const SCEV *SrcConst = SrcAddRec->getStart();
   2118     const SCEV *DstConst = DstAddRec->getStart();
   2119     const SCEV *SrcCoeff = SrcAddRec->getStepRecurrence(*SE);
   2120     const SCEV *DstCoeff = DstAddRec->getStepRecurrence(*SE);
   2121     const Loop *CurLoop = SrcAddRec->getLoop();
   2122     assert(CurLoop == DstAddRec->getLoop() &&
   2123            "both loops in SIV should be same");
   2124     Level = mapSrcLoop(CurLoop);
   2125     bool disproven;
   2126     if (SrcCoeff == DstCoeff)
   2127       disproven = strongSIVtest(SrcCoeff, SrcConst, DstConst, CurLoop,
   2128                                 Level, Result, NewConstraint);
   2129     else if (SrcCoeff == SE->getNegativeSCEV(DstCoeff))
   2130       disproven = weakCrossingSIVtest(SrcCoeff, SrcConst, DstConst, CurLoop,
   2131                                       Level, Result, NewConstraint, SplitIter);
   2132     else
   2133       disproven = exactSIVtest(SrcCoeff, DstCoeff, SrcConst, DstConst, CurLoop,
   2134                                Level, Result, NewConstraint);
   2135     return disproven ||
   2136       gcdMIVtest(Src, Dst, Result) ||
   2137       symbolicRDIVtest(SrcCoeff, DstCoeff, SrcConst, DstConst, CurLoop, CurLoop);
   2138   }
   2139   if (SrcAddRec) {
   2140     const SCEV *SrcConst = SrcAddRec->getStart();
   2141     const SCEV *SrcCoeff = SrcAddRec->getStepRecurrence(*SE);
   2142     const SCEV *DstConst = Dst;
   2143     const Loop *CurLoop = SrcAddRec->getLoop();
   2144     Level = mapSrcLoop(CurLoop);
   2145     return weakZeroDstSIVtest(SrcCoeff, SrcConst, DstConst, CurLoop,
   2146                               Level, Result, NewConstraint) ||
   2147       gcdMIVtest(Src, Dst, Result);
   2148   }
   2149   if (DstAddRec) {
   2150     const SCEV *DstConst = DstAddRec->getStart();
   2151     const SCEV *DstCoeff = DstAddRec->getStepRecurrence(*SE);
   2152     const SCEV *SrcConst = Src;
   2153     const Loop *CurLoop = DstAddRec->getLoop();
   2154     Level = mapDstLoop(CurLoop);
   2155     return weakZeroSrcSIVtest(DstCoeff, SrcConst, DstConst,
   2156                               CurLoop, Level, Result, NewConstraint) ||
   2157       gcdMIVtest(Src, Dst, Result);
   2158   }
   2159   llvm_unreachable("SIV test expected at least one AddRec");
   2160   return false;
   2161 }
   2162 
   2163 
   2164 // testRDIV -
   2165 // When we have a pair of subscripts of the form [c1 + a1*i] and [c2 + a2*j]
   2166 // where i and j are induction variables, c1 and c2 are loop invariant,
   2167 // and a1 and a2 are constant, we can solve it exactly with an easy adaptation
   2168 // of the Exact SIV test, the Restricted Double Index Variable (RDIV) test.
   2169 // It doesn't make sense to talk about distance or direction in this case,
   2170 // so there's no point in making special versions of the Strong SIV test or
   2171 // the Weak-crossing SIV test.
   2172 //
   2173 // With minor algebra, this test can also be used for things like
   2174 // [c1 + a1*i + a2*j][c2].
   2175 //
   2176 // Return true if dependence disproved.
   2177 bool DependenceAnalysis::testRDIV(const SCEV *Src,
   2178                                   const SCEV *Dst,
   2179                                   FullDependence &Result) const {
   2180   // we have 3 possible situations here:
   2181   //   1) [a*i + b] and [c*j + d]
   2182   //   2) [a*i + c*j + b] and [d]
   2183   //   3) [b] and [a*i + c*j + d]
   2184   // We need to find what we've got and get organized
   2185 
   2186   const SCEV *SrcConst, *DstConst;
   2187   const SCEV *SrcCoeff, *DstCoeff;
   2188   const Loop *SrcLoop, *DstLoop;
   2189 
   2190   DEBUG(dbgs() << "    src = " << *Src << "\n");
   2191   DEBUG(dbgs() << "    dst = " << *Dst << "\n");
   2192   const SCEVAddRecExpr *SrcAddRec = dyn_cast<SCEVAddRecExpr>(Src);
   2193   const SCEVAddRecExpr *DstAddRec = dyn_cast<SCEVAddRecExpr>(Dst);
   2194   if (SrcAddRec && DstAddRec) {
   2195     SrcConst = SrcAddRec->getStart();
   2196     SrcCoeff = SrcAddRec->getStepRecurrence(*SE);
   2197     SrcLoop = SrcAddRec->getLoop();
   2198     DstConst = DstAddRec->getStart();
   2199     DstCoeff = DstAddRec->getStepRecurrence(*SE);
   2200     DstLoop = DstAddRec->getLoop();
   2201   }
   2202   else if (SrcAddRec) {
   2203     if (const SCEVAddRecExpr *tmpAddRec =
   2204         dyn_cast<SCEVAddRecExpr>(SrcAddRec->getStart())) {
   2205       SrcConst = tmpAddRec->getStart();
   2206       SrcCoeff = tmpAddRec->getStepRecurrence(*SE);
   2207       SrcLoop = tmpAddRec->getLoop();
   2208       DstConst = Dst;
   2209       DstCoeff = SE->getNegativeSCEV(SrcAddRec->getStepRecurrence(*SE));
   2210       DstLoop = SrcAddRec->getLoop();
   2211     }
   2212     else
   2213       llvm_unreachable("RDIV reached by surprising SCEVs");
   2214   }
   2215   else if (DstAddRec) {
   2216     if (const SCEVAddRecExpr *tmpAddRec =
   2217         dyn_cast<SCEVAddRecExpr>(DstAddRec->getStart())) {
   2218       DstConst = tmpAddRec->getStart();
   2219       DstCoeff = tmpAddRec->getStepRecurrence(*SE);
   2220       DstLoop = tmpAddRec->getLoop();
   2221       SrcConst = Src;
   2222       SrcCoeff = SE->getNegativeSCEV(DstAddRec->getStepRecurrence(*SE));
   2223       SrcLoop = DstAddRec->getLoop();
   2224     }
   2225     else
   2226       llvm_unreachable("RDIV reached by surprising SCEVs");
   2227   }
   2228   else
   2229     llvm_unreachable("RDIV expected at least one AddRec");
   2230   return exactRDIVtest(SrcCoeff, DstCoeff,
   2231                        SrcConst, DstConst,
   2232                        SrcLoop, DstLoop,
   2233                        Result) ||
   2234     gcdMIVtest(Src, Dst, Result) ||
   2235     symbolicRDIVtest(SrcCoeff, DstCoeff,
   2236                      SrcConst, DstConst,
   2237                      SrcLoop, DstLoop);
   2238 }
   2239 
   2240 
   2241 // Tests the single-subscript MIV pair (Src and Dst) for dependence.
   2242 // Return true if dependence disproved.
   2243 // Can sometimes refine direction vectors.
   2244 bool DependenceAnalysis::testMIV(const SCEV *Src,
   2245                                  const SCEV *Dst,
   2246                                  const SmallBitVector &Loops,
   2247                                  FullDependence &Result) const {
   2248   DEBUG(dbgs() << "    src = " << *Src << "\n");
   2249   DEBUG(dbgs() << "    dst = " << *Dst << "\n");
   2250   Result.Consistent = false;
   2251   return gcdMIVtest(Src, Dst, Result) ||
   2252     banerjeeMIVtest(Src, Dst, Loops, Result);
   2253 }
   2254 
   2255 
   2256 // Given a product, e.g., 10*X*Y, returns the first constant operand,
   2257 // in this case 10. If there is no constant part, returns NULL.
   2258 static
   2259 const SCEVConstant *getConstantPart(const SCEVMulExpr *Product) {
   2260   for (unsigned Op = 0, Ops = Product->getNumOperands(); Op < Ops; Op++) {
   2261     if (const SCEVConstant *Constant = dyn_cast<SCEVConstant>(Product->getOperand(Op)))
   2262       return Constant;
   2263   }
   2264   return nullptr;
   2265 }
   2266 
   2267 
   2268 //===----------------------------------------------------------------------===//
   2269 // gcdMIVtest -
   2270 // Tests an MIV subscript pair for dependence.
   2271 // Returns true if any possible dependence is disproved.
   2272 // Marks the result as inconsistent.
   2273 // Can sometimes disprove the equal direction for 1 or more loops,
   2274 // as discussed in Michael Wolfe's book,
   2275 // High Performance Compilers for Parallel Computing, page 235.
   2276 //
   2277 // We spend some effort (code!) to handle cases like
   2278 // [10*i + 5*N*j + 15*M + 6], where i and j are induction variables,
   2279 // but M and N are just loop-invariant variables.
   2280 // This should help us handle linearized subscripts;
   2281 // also makes this test a useful backup to the various SIV tests.
   2282 //
   2283 // It occurs to me that the presence of loop-invariant variables
   2284 // changes the nature of the test from "greatest common divisor"
   2285 // to "a common divisor".
   2286 bool DependenceAnalysis::gcdMIVtest(const SCEV *Src,
   2287                                     const SCEV *Dst,
   2288                                     FullDependence &Result) const {
   2289   DEBUG(dbgs() << "starting gcd\n");
   2290   ++GCDapplications;
   2291   unsigned BitWidth = SE->getTypeSizeInBits(Src->getType());
   2292   APInt RunningGCD = APInt::getNullValue(BitWidth);
   2293 
   2294   // Examine Src coefficients.
   2295   // Compute running GCD and record source constant.
   2296   // Because we're looking for the constant at the end of the chain,
   2297   // we can't quit the loop just because the GCD == 1.
   2298   const SCEV *Coefficients = Src;
   2299   while (const SCEVAddRecExpr *AddRec =
   2300          dyn_cast<SCEVAddRecExpr>(Coefficients)) {
   2301     const SCEV *Coeff = AddRec->getStepRecurrence(*SE);
   2302     const SCEVConstant *Constant = dyn_cast<SCEVConstant>(Coeff);
   2303     if (const SCEVMulExpr *Product = dyn_cast<SCEVMulExpr>(Coeff))
   2304       // If the coefficient is the product of a constant and other stuff,
   2305       // we can use the constant in the GCD computation.
   2306       Constant = getConstantPart(Product);
   2307     if (!Constant)
   2308       return false;
   2309     APInt ConstCoeff = Constant->getAPInt();
   2310     RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
   2311     Coefficients = AddRec->getStart();
   2312   }
   2313   const SCEV *SrcConst = Coefficients;
   2314 
   2315   // Examine Dst coefficients.
   2316   // Compute running GCD and record destination constant.
   2317   // Because we're looking for the constant at the end of the chain,
   2318   // we can't quit the loop just because the GCD == 1.
   2319   Coefficients = Dst;
   2320   while (const SCEVAddRecExpr *AddRec =
   2321          dyn_cast<SCEVAddRecExpr>(Coefficients)) {
   2322     const SCEV *Coeff = AddRec->getStepRecurrence(*SE);
   2323     const SCEVConstant *Constant = dyn_cast<SCEVConstant>(Coeff);
   2324     if (const SCEVMulExpr *Product = dyn_cast<SCEVMulExpr>(Coeff))
   2325       // If the coefficient is the product of a constant and other stuff,
   2326       // we can use the constant in the GCD computation.
   2327       Constant = getConstantPart(Product);
   2328     if (!Constant)
   2329       return false;
   2330     APInt ConstCoeff = Constant->getAPInt();
   2331     RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
   2332     Coefficients = AddRec->getStart();
   2333   }
   2334   const SCEV *DstConst = Coefficients;
   2335 
   2336   APInt ExtraGCD = APInt::getNullValue(BitWidth);
   2337   const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
   2338   DEBUG(dbgs() << "    Delta = " << *Delta << "\n");
   2339   const SCEVConstant *Constant = dyn_cast<SCEVConstant>(Delta);
   2340   if (const SCEVAddExpr *Sum = dyn_cast<SCEVAddExpr>(Delta)) {
   2341     // If Delta is a sum of products, we may be able to make further progress.
   2342     for (unsigned Op = 0, Ops = Sum->getNumOperands(); Op < Ops; Op++) {
   2343       const SCEV *Operand = Sum->getOperand(Op);
   2344       if (isa<SCEVConstant>(Operand)) {
   2345         assert(!Constant && "Surprised to find multiple constants");
   2346         Constant = cast<SCEVConstant>(Operand);
   2347       }
   2348       else if (const SCEVMulExpr *Product = dyn_cast<SCEVMulExpr>(Operand)) {
   2349         // Search for constant operand to participate in GCD;
   2350         // If none found; return false.
   2351         const SCEVConstant *ConstOp = getConstantPart(Product);
   2352         if (!ConstOp)
   2353           return false;
   2354         APInt ConstOpValue = ConstOp->getAPInt();
   2355         ExtraGCD = APIntOps::GreatestCommonDivisor(ExtraGCD,
   2356                                                    ConstOpValue.abs());
   2357       }
   2358       else
   2359         return false;
   2360     }
   2361   }
   2362   if (!Constant)
   2363     return false;
   2364   APInt ConstDelta = cast<SCEVConstant>(Constant)->getAPInt();
   2365   DEBUG(dbgs() << "    ConstDelta = " << ConstDelta << "\n");
   2366   if (ConstDelta == 0)
   2367     return false;
   2368   RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ExtraGCD);
   2369   DEBUG(dbgs() << "    RunningGCD = " << RunningGCD << "\n");
   2370   APInt Remainder = ConstDelta.srem(RunningGCD);
   2371   if (Remainder != 0) {
   2372     ++GCDindependence;
   2373     return true;
   2374   }
   2375 
   2376   // Try to disprove equal directions.
   2377   // For example, given a subscript pair [3*i + 2*j] and [i' + 2*j' - 1],
   2378   // the code above can't disprove the dependence because the GCD = 1.
   2379   // So we consider what happen if i = i' and what happens if j = j'.
   2380   // If i = i', we can simplify the subscript to [2*i + 2*j] and [2*j' - 1],
   2381   // which is infeasible, so we can disallow the = direction for the i level.
   2382   // Setting j = j' doesn't help matters, so we end up with a direction vector
   2383   // of [<>, *]
   2384   //
   2385   // Given A[5*i + 10*j*M + 9*M*N] and A[15*i + 20*j*M - 21*N*M + 5],
   2386   // we need to remember that the constant part is 5 and the RunningGCD should
   2387   // be initialized to ExtraGCD = 30.
   2388   DEBUG(dbgs() << "    ExtraGCD = " << ExtraGCD << '\n');
   2389 
   2390   bool Improved = false;
   2391   Coefficients = Src;
   2392   while (const SCEVAddRecExpr *AddRec =
   2393          dyn_cast<SCEVAddRecExpr>(Coefficients)) {
   2394     Coefficients = AddRec->getStart();
   2395     const Loop *CurLoop = AddRec->getLoop();
   2396     RunningGCD = ExtraGCD;
   2397     const SCEV *SrcCoeff = AddRec->getStepRecurrence(*SE);
   2398     const SCEV *DstCoeff = SE->getMinusSCEV(SrcCoeff, SrcCoeff);
   2399     const SCEV *Inner = Src;
   2400     while (RunningGCD != 1 && isa<SCEVAddRecExpr>(Inner)) {
   2401       AddRec = cast<SCEVAddRecExpr>(Inner);
   2402       const SCEV *Coeff = AddRec->getStepRecurrence(*SE);
   2403       if (CurLoop == AddRec->getLoop())
   2404         ; // SrcCoeff == Coeff
   2405       else {
   2406         if (const SCEVMulExpr *Product = dyn_cast<SCEVMulExpr>(Coeff))
   2407           // If the coefficient is the product of a constant and other stuff,
   2408           // we can use the constant in the GCD computation.
   2409           Constant = getConstantPart(Product);
   2410         else
   2411           Constant = cast<SCEVConstant>(Coeff);
   2412         APInt ConstCoeff = Constant->getAPInt();
   2413         RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
   2414       }
   2415       Inner = AddRec->getStart();
   2416     }
   2417     Inner = Dst;
   2418     while (RunningGCD != 1 && isa<SCEVAddRecExpr>(Inner)) {
   2419       AddRec = cast<SCEVAddRecExpr>(Inner);
   2420       const SCEV *Coeff = AddRec->getStepRecurrence(*SE);
   2421       if (CurLoop == AddRec->getLoop())
   2422         DstCoeff = Coeff;
   2423       else {
   2424         if (const SCEVMulExpr *Product = dyn_cast<SCEVMulExpr>(Coeff))
   2425           // If the coefficient is the product of a constant and other stuff,
   2426           // we can use the constant in the GCD computation.
   2427           Constant = getConstantPart(Product);
   2428         else
   2429           Constant = cast<SCEVConstant>(Coeff);
   2430         APInt ConstCoeff = Constant->getAPInt();
   2431         RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
   2432       }
   2433       Inner = AddRec->getStart();
   2434     }
   2435     Delta = SE->getMinusSCEV(SrcCoeff, DstCoeff);
   2436     if (const SCEVMulExpr *Product = dyn_cast<SCEVMulExpr>(Delta))
   2437       // If the coefficient is the product of a constant and other stuff,
   2438       // we can use the constant in the GCD computation.
   2439       Constant = getConstantPart(Product);
   2440     else if (isa<SCEVConstant>(Delta))
   2441       Constant = cast<SCEVConstant>(Delta);
   2442     else {
   2443       // The difference of the two coefficients might not be a product
   2444       // or constant, in which case we give up on this direction.
   2445       continue;
   2446     }
   2447     APInt ConstCoeff = Constant->getAPInt();
   2448     RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
   2449     DEBUG(dbgs() << "\tRunningGCD = " << RunningGCD << "\n");
   2450     if (RunningGCD != 0) {
   2451       Remainder = ConstDelta.srem(RunningGCD);
   2452       DEBUG(dbgs() << "\tRemainder = " << Remainder << "\n");
   2453       if (Remainder != 0) {
   2454         unsigned Level = mapSrcLoop(CurLoop);
   2455         Result.DV[Level - 1].Direction &= unsigned(~Dependence::DVEntry::EQ);
   2456         Improved = true;
   2457       }
   2458     }
   2459   }
   2460   if (Improved)
   2461     ++GCDsuccesses;
   2462   DEBUG(dbgs() << "all done\n");
   2463   return false;
   2464 }
   2465 
   2466 
   2467 //===----------------------------------------------------------------------===//
   2468 // banerjeeMIVtest -
   2469 // Use Banerjee's Inequalities to test an MIV subscript pair.
   2470 // (Wolfe, in the race-car book, calls this the Extreme Value Test.)
   2471 // Generally follows the discussion in Section 2.5.2 of
   2472 //
   2473 //    Optimizing Supercompilers for Supercomputers
   2474 //    Michael Wolfe
   2475 //
   2476 // The inequalities given on page 25 are simplified in that loops are
   2477 // normalized so that the lower bound is always 0 and the stride is always 1.
   2478 // For example, Wolfe gives
   2479 //
   2480 //     LB^<_k = (A^-_k - B_k)^- (U_k - L_k - N_k) + (A_k - B_k)L_k - B_k N_k
   2481 //
   2482 // where A_k is the coefficient of the kth index in the source subscript,
   2483 // B_k is the coefficient of the kth index in the destination subscript,
   2484 // U_k is the upper bound of the kth index, L_k is the lower bound of the Kth
   2485 // index, and N_k is the stride of the kth index. Since all loops are normalized
   2486 // by the SCEV package, N_k = 1 and L_k = 0, allowing us to simplify the
   2487 // equation to
   2488 //
   2489 //     LB^<_k = (A^-_k - B_k)^- (U_k - 0 - 1) + (A_k - B_k)0 - B_k 1
   2490 //            = (A^-_k - B_k)^- (U_k - 1)  - B_k
   2491 //
   2492 // Similar simplifications are possible for the other equations.
   2493 //
   2494 // When we can't determine the number of iterations for a loop,
   2495 // we use NULL as an indicator for the worst case, infinity.
   2496 // When computing the upper bound, NULL denotes +inf;
   2497 // for the lower bound, NULL denotes -inf.
   2498 //
   2499 // Return true if dependence disproved.
   2500 bool DependenceAnalysis::banerjeeMIVtest(const SCEV *Src,
   2501                                          const SCEV *Dst,
   2502                                          const SmallBitVector &Loops,
   2503                                          FullDependence &Result) const {
   2504   DEBUG(dbgs() << "starting Banerjee\n");
   2505   ++BanerjeeApplications;
   2506   DEBUG(dbgs() << "    Src = " << *Src << '\n');
   2507   const SCEV *A0;
   2508   CoefficientInfo *A = collectCoeffInfo(Src, true, A0);
   2509   DEBUG(dbgs() << "    Dst = " << *Dst << '\n');
   2510   const SCEV *B0;
   2511   CoefficientInfo *B = collectCoeffInfo(Dst, false, B0);
   2512   BoundInfo *Bound = new BoundInfo[MaxLevels + 1];
   2513   const SCEV *Delta = SE->getMinusSCEV(B0, A0);
   2514   DEBUG(dbgs() << "\tDelta = " << *Delta << '\n');
   2515 
   2516   // Compute bounds for all the * directions.
   2517   DEBUG(dbgs() << "\tBounds[*]\n");
   2518   for (unsigned K = 1; K <= MaxLevels; ++K) {
   2519     Bound[K].Iterations = A[K].Iterations ? A[K].Iterations : B[K].Iterations;
   2520     Bound[K].Direction = Dependence::DVEntry::ALL;
   2521     Bound[K].DirSet = Dependence::DVEntry::NONE;
   2522     findBoundsALL(A, B, Bound, K);
   2523 #ifndef NDEBUG
   2524     DEBUG(dbgs() << "\t    " << K << '\t');
   2525     if (Bound[K].Lower[Dependence::DVEntry::ALL])
   2526       DEBUG(dbgs() << *Bound[K].Lower[Dependence::DVEntry::ALL] << '\t');
   2527     else
   2528       DEBUG(dbgs() << "-inf\t");
   2529     if (Bound[K].Upper[Dependence::DVEntry::ALL])
   2530       DEBUG(dbgs() << *Bound[K].Upper[Dependence::DVEntry::ALL] << '\n');
   2531     else
   2532       DEBUG(dbgs() << "+inf\n");
   2533 #endif
   2534   }
   2535 
   2536   // Test the *, *, *, ... case.
   2537   bool Disproved = false;
   2538   if (testBounds(Dependence::DVEntry::ALL, 0, Bound, Delta)) {
   2539     // Explore the direction vector hierarchy.
   2540     unsigned DepthExpanded = 0;
   2541     unsigned NewDeps = exploreDirections(1, A, B, Bound,
   2542                                          Loops, DepthExpanded, Delta);
   2543     if (NewDeps > 0) {
   2544       bool Improved = false;
   2545       for (unsigned K = 1; K <= CommonLevels; ++K) {
   2546         if (Loops[K]) {
   2547           unsigned Old = Result.DV[K - 1].Direction;
   2548           Result.DV[K - 1].Direction = Old & Bound[K].DirSet;
   2549           Improved |= Old != Result.DV[K - 1].Direction;
   2550           if (!Result.DV[K - 1].Direction) {
   2551             Improved = false;
   2552             Disproved = true;
   2553             break;
   2554           }
   2555         }
   2556       }
   2557       if (Improved)
   2558         ++BanerjeeSuccesses;
   2559     }
   2560     else {
   2561       ++BanerjeeIndependence;
   2562       Disproved = true;
   2563     }
   2564   }
   2565   else {
   2566     ++BanerjeeIndependence;
   2567     Disproved = true;
   2568   }
   2569   delete [] Bound;
   2570   delete [] A;
   2571   delete [] B;
   2572   return Disproved;
   2573 }
   2574 
   2575 
   2576 // Hierarchically expands the direction vector
   2577 // search space, combining the directions of discovered dependences
   2578 // in the DirSet field of Bound. Returns the number of distinct
   2579 // dependences discovered. If the dependence is disproved,
   2580 // it will return 0.
   2581 unsigned DependenceAnalysis::exploreDirections(unsigned Level,
   2582                                                CoefficientInfo *A,
   2583                                                CoefficientInfo *B,
   2584                                                BoundInfo *Bound,
   2585                                                const SmallBitVector &Loops,
   2586                                                unsigned &DepthExpanded,
   2587                                                const SCEV *Delta) const {
   2588   if (Level > CommonLevels) {
   2589     // record result
   2590     DEBUG(dbgs() << "\t[");
   2591     for (unsigned K = 1; K <= CommonLevels; ++K) {
   2592       if (Loops[K]) {
   2593         Bound[K].DirSet |= Bound[K].Direction;
   2594 #ifndef NDEBUG
   2595         switch (Bound[K].Direction) {
   2596         case Dependence::DVEntry::LT:
   2597           DEBUG(dbgs() << " <");
   2598           break;
   2599         case Dependence::DVEntry::EQ:
   2600           DEBUG(dbgs() << " =");
   2601           break;
   2602         case Dependence::DVEntry::GT:
   2603           DEBUG(dbgs() << " >");
   2604           break;
   2605         case Dependence::DVEntry::ALL:
   2606           DEBUG(dbgs() << " *");
   2607           break;
   2608         default:
   2609           llvm_unreachable("unexpected Bound[K].Direction");
   2610         }
   2611 #endif
   2612       }
   2613     }
   2614     DEBUG(dbgs() << " ]\n");
   2615     return 1;
   2616   }
   2617   if (Loops[Level]) {
   2618     if (Level > DepthExpanded) {
   2619       DepthExpanded = Level;
   2620       // compute bounds for <, =, > at current level
   2621       findBoundsLT(A, B, Bound, Level);
   2622       findBoundsGT(A, B, Bound, Level);
   2623       findBoundsEQ(A, B, Bound, Level);
   2624 #ifndef NDEBUG
   2625       DEBUG(dbgs() << "\tBound for level = " << Level << '\n');
   2626       DEBUG(dbgs() << "\t    <\t");
   2627       if (Bound[Level].Lower[Dependence::DVEntry::LT])
   2628         DEBUG(dbgs() << *Bound[Level].Lower[Dependence::DVEntry::LT] << '\t');
   2629       else
   2630         DEBUG(dbgs() << "-inf\t");
   2631       if (Bound[Level].Upper[Dependence::DVEntry::LT])
   2632         DEBUG(dbgs() << *Bound[Level].Upper[Dependence::DVEntry::LT] << '\n');
   2633       else
   2634         DEBUG(dbgs() << "+inf\n");
   2635       DEBUG(dbgs() << "\t    =\t");
   2636       if (Bound[Level].Lower[Dependence::DVEntry::EQ])
   2637         DEBUG(dbgs() << *Bound[Level].Lower[Dependence::DVEntry::EQ] << '\t');
   2638       else
   2639         DEBUG(dbgs() << "-inf\t");
   2640       if (Bound[Level].Upper[Dependence::DVEntry::EQ])
   2641         DEBUG(dbgs() << *Bound[Level].Upper[Dependence::DVEntry::EQ] << '\n');
   2642       else
   2643         DEBUG(dbgs() << "+inf\n");
   2644       DEBUG(dbgs() << "\t    >\t");
   2645       if (Bound[Level].Lower[Dependence::DVEntry::GT])
   2646         DEBUG(dbgs() << *Bound[Level].Lower[Dependence::DVEntry::GT] << '\t');
   2647       else
   2648         DEBUG(dbgs() << "-inf\t");
   2649       if (Bound[Level].Upper[Dependence::DVEntry::GT])
   2650         DEBUG(dbgs() << *Bound[Level].Upper[Dependence::DVEntry::GT] << '\n');
   2651       else
   2652         DEBUG(dbgs() << "+inf\n");
   2653 #endif
   2654     }
   2655 
   2656     unsigned NewDeps = 0;
   2657 
   2658     // test bounds for <, *, *, ...
   2659     if (testBounds(Dependence::DVEntry::LT, Level, Bound, Delta))
   2660       NewDeps += exploreDirections(Level + 1, A, B, Bound,
   2661                                    Loops, DepthExpanded, Delta);
   2662 
   2663     // Test bounds for =, *, *, ...
   2664     if (testBounds(Dependence::DVEntry::EQ, Level, Bound, Delta))
   2665       NewDeps += exploreDirections(Level + 1, A, B, Bound,
   2666                                    Loops, DepthExpanded, Delta);
   2667 
   2668     // test bounds for >, *, *, ...
   2669     if (testBounds(Dependence::DVEntry::GT, Level, Bound, Delta))
   2670       NewDeps += exploreDirections(Level + 1, A, B, Bound,
   2671                                    Loops, DepthExpanded, Delta);
   2672 
   2673     Bound[Level].Direction = Dependence::DVEntry::ALL;
   2674     return NewDeps;
   2675   }
   2676   else
   2677     return exploreDirections(Level + 1, A, B, Bound, Loops, DepthExpanded, Delta);
   2678 }
   2679 
   2680 
   2681 // Returns true iff the current bounds are plausible.
   2682 bool DependenceAnalysis::testBounds(unsigned char DirKind,
   2683                                     unsigned Level,
   2684                                     BoundInfo *Bound,
   2685                                     const SCEV *Delta) const {
   2686   Bound[Level].Direction = DirKind;
   2687   if (const SCEV *LowerBound = getLowerBound(Bound))
   2688     if (isKnownPredicate(CmpInst::ICMP_SGT, LowerBound, Delta))
   2689       return false;
   2690   if (const SCEV *UpperBound = getUpperBound(Bound))
   2691     if (isKnownPredicate(CmpInst::ICMP_SGT, Delta, UpperBound))
   2692       return false;
   2693   return true;
   2694 }
   2695 
   2696 
   2697 // Computes the upper and lower bounds for level K
   2698 // using the * direction. Records them in Bound.
   2699 // Wolfe gives the equations
   2700 //
   2701 //    LB^*_k = (A^-_k - B^+_k)(U_k - L_k) + (A_k - B_k)L_k
   2702 //    UB^*_k = (A^+_k - B^-_k)(U_k - L_k) + (A_k - B_k)L_k
   2703 //
   2704 // Since we normalize loops, we can simplify these equations to
   2705 //
   2706 //    LB^*_k = (A^-_k - B^+_k)U_k
   2707 //    UB^*_k = (A^+_k - B^-_k)U_k
   2708 //
   2709 // We must be careful to handle the case where the upper bound is unknown.
   2710 // Note that the lower bound is always <= 0
   2711 // and the upper bound is always >= 0.
   2712 void DependenceAnalysis::findBoundsALL(CoefficientInfo *A,
   2713                                        CoefficientInfo *B,
   2714                                        BoundInfo *Bound,
   2715                                        unsigned K) const {
   2716   Bound[K].Lower[Dependence::DVEntry::ALL] = nullptr; // Default value = -infinity.
   2717   Bound[K].Upper[Dependence::DVEntry::ALL] = nullptr; // Default value = +infinity.
   2718   if (Bound[K].Iterations) {
   2719     Bound[K].Lower[Dependence::DVEntry::ALL] =
   2720       SE->getMulExpr(SE->getMinusSCEV(A[K].NegPart, B[K].PosPart),
   2721                      Bound[K].Iterations);
   2722     Bound[K].Upper[Dependence::DVEntry::ALL] =
   2723       SE->getMulExpr(SE->getMinusSCEV(A[K].PosPart, B[K].NegPart),
   2724                      Bound[K].Iterations);
   2725   }
   2726   else {
   2727     // If the difference is 0, we won't need to know the number of iterations.
   2728     if (isKnownPredicate(CmpInst::ICMP_EQ, A[K].NegPart, B[K].PosPart))
   2729       Bound[K].Lower[Dependence::DVEntry::ALL] =
   2730           SE->getZero(A[K].Coeff->getType());
   2731     if (isKnownPredicate(CmpInst::ICMP_EQ, A[K].PosPart, B[K].NegPart))
   2732       Bound[K].Upper[Dependence::DVEntry::ALL] =
   2733           SE->getZero(A[K].Coeff->getType());
   2734   }
   2735 }
   2736 
   2737 
   2738 // Computes the upper and lower bounds for level K
   2739 // using the = direction. Records them in Bound.
   2740 // Wolfe gives the equations
   2741 //
   2742 //    LB^=_k = (A_k - B_k)^- (U_k - L_k) + (A_k - B_k)L_k
   2743 //    UB^=_k = (A_k - B_k)^+ (U_k - L_k) + (A_k - B_k)L_k
   2744 //
   2745 // Since we normalize loops, we can simplify these equations to
   2746 //
   2747 //    LB^=_k = (A_k - B_k)^- U_k
   2748 //    UB^=_k = (A_k - B_k)^+ U_k
   2749 //
   2750 // We must be careful to handle the case where the upper bound is unknown.
   2751 // Note that the lower bound is always <= 0
   2752 // and the upper bound is always >= 0.
   2753 void DependenceAnalysis::findBoundsEQ(CoefficientInfo *A,
   2754                                       CoefficientInfo *B,
   2755                                       BoundInfo *Bound,
   2756                                       unsigned K) const {
   2757   Bound[K].Lower[Dependence::DVEntry::EQ] = nullptr; // Default value = -infinity.
   2758   Bound[K].Upper[Dependence::DVEntry::EQ] = nullptr; // Default value = +infinity.
   2759   if (Bound[K].Iterations) {
   2760     const SCEV *Delta = SE->getMinusSCEV(A[K].Coeff, B[K].Coeff);
   2761     const SCEV *NegativePart = getNegativePart(Delta);
   2762     Bound[K].Lower[Dependence::DVEntry::EQ] =
   2763       SE->getMulExpr(NegativePart, Bound[K].Iterations);
   2764     const SCEV *PositivePart = getPositivePart(Delta);
   2765     Bound[K].Upper[Dependence::DVEntry::EQ] =
   2766       SE->getMulExpr(PositivePart, Bound[K].Iterations);
   2767   }
   2768   else {
   2769     // If the positive/negative part of the difference is 0,
   2770     // we won't need to know the number of iterations.
   2771     const SCEV *Delta = SE->getMinusSCEV(A[K].Coeff, B[K].Coeff);
   2772     const SCEV *NegativePart = getNegativePart(Delta);
   2773     if (NegativePart->isZero())
   2774       Bound[K].Lower[Dependence::DVEntry::EQ] = NegativePart; // Zero
   2775     const SCEV *PositivePart = getPositivePart(Delta);
   2776     if (PositivePart->isZero())
   2777       Bound[K].Upper[Dependence::DVEntry::EQ] = PositivePart; // Zero
   2778   }
   2779 }
   2780 
   2781 
   2782 // Computes the upper and lower bounds for level K
   2783 // using the < direction. Records them in Bound.
   2784 // Wolfe gives the equations
   2785 //
   2786 //    LB^<_k = (A^-_k - B_k)^- (U_k - L_k - N_k) + (A_k - B_k)L_k - B_k N_k
   2787 //    UB^<_k = (A^+_k - B_k)^+ (U_k - L_k - N_k) + (A_k - B_k)L_k - B_k N_k
   2788 //
   2789 // Since we normalize loops, we can simplify these equations to
   2790 //
   2791 //    LB^<_k = (A^-_k - B_k)^- (U_k - 1) - B_k
   2792 //    UB^<_k = (A^+_k - B_k)^+ (U_k - 1) - B_k
   2793 //
   2794 // We must be careful to handle the case where the upper bound is unknown.
   2795 void DependenceAnalysis::findBoundsLT(CoefficientInfo *A,
   2796                                       CoefficientInfo *B,
   2797                                       BoundInfo *Bound,
   2798                                       unsigned K) const {
   2799   Bound[K].Lower[Dependence::DVEntry::LT] = nullptr; // Default value = -infinity.
   2800   Bound[K].Upper[Dependence::DVEntry::LT] = nullptr; // Default value = +infinity.
   2801   if (Bound[K].Iterations) {
   2802     const SCEV *Iter_1 = SE->getMinusSCEV(
   2803         Bound[K].Iterations, SE->getOne(Bound[K].Iterations->getType()));
   2804     const SCEV *NegPart =
   2805       getNegativePart(SE->getMinusSCEV(A[K].NegPart, B[K].Coeff));
   2806     Bound[K].Lower[Dependence::DVEntry::LT] =
   2807       SE->getMinusSCEV(SE->getMulExpr(NegPart, Iter_1), B[K].Coeff);
   2808     const SCEV *PosPart =
   2809       getPositivePart(SE->getMinusSCEV(A[K].PosPart, B[K].Coeff));
   2810     Bound[K].Upper[Dependence::DVEntry::LT] =
   2811       SE->getMinusSCEV(SE->getMulExpr(PosPart, Iter_1), B[K].Coeff);
   2812   }
   2813   else {
   2814     // If the positive/negative part of the difference is 0,
   2815     // we won't need to know the number of iterations.
   2816     const SCEV *NegPart =
   2817       getNegativePart(SE->getMinusSCEV(A[K].NegPart, B[K].Coeff));
   2818     if (NegPart->isZero())
   2819       Bound[K].Lower[Dependence::DVEntry::LT] = SE->getNegativeSCEV(B[K].Coeff);
   2820     const SCEV *PosPart =
   2821       getPositivePart(SE->getMinusSCEV(A[K].PosPart, B[K].Coeff));
   2822     if (PosPart->isZero())
   2823       Bound[K].Upper[Dependence::DVEntry::LT] = SE->getNegativeSCEV(B[K].Coeff);
   2824   }
   2825 }
   2826 
   2827 
   2828 // Computes the upper and lower bounds for level K
   2829 // using the > direction. Records them in Bound.
   2830 // Wolfe gives the equations
   2831 //
   2832 //    LB^>_k = (A_k - B^+_k)^- (U_k - L_k - N_k) + (A_k - B_k)L_k + A_k N_k
   2833 //    UB^>_k = (A_k - B^-_k)^+ (U_k - L_k - N_k) + (A_k - B_k)L_k + A_k N_k
   2834 //
   2835 // Since we normalize loops, we can simplify these equations to
   2836 //
   2837 //    LB^>_k = (A_k - B^+_k)^- (U_k - 1) + A_k
   2838 //    UB^>_k = (A_k - B^-_k)^+ (U_k - 1) + A_k
   2839 //
   2840 // We must be careful to handle the case where the upper bound is unknown.
   2841 void DependenceAnalysis::findBoundsGT(CoefficientInfo *A,
   2842                                       CoefficientInfo *B,
   2843                                       BoundInfo *Bound,
   2844                                       unsigned K) const {
   2845   Bound[K].Lower[Dependence::DVEntry::GT] = nullptr; // Default value = -infinity.
   2846   Bound[K].Upper[Dependence::DVEntry::GT] = nullptr; // Default value = +infinity.
   2847   if (Bound[K].Iterations) {
   2848     const SCEV *Iter_1 = SE->getMinusSCEV(
   2849         Bound[K].Iterations, SE->getOne(Bound[K].Iterations->getType()));
   2850     const SCEV *NegPart =
   2851       getNegativePart(SE->getMinusSCEV(A[K].Coeff, B[K].PosPart));
   2852     Bound[K].Lower[Dependence::DVEntry::GT] =
   2853       SE->getAddExpr(SE->getMulExpr(NegPart, Iter_1), A[K].Coeff);
   2854     const SCEV *PosPart =
   2855       getPositivePart(SE->getMinusSCEV(A[K].Coeff, B[K].NegPart));
   2856     Bound[K].Upper[Dependence::DVEntry::GT] =
   2857       SE->getAddExpr(SE->getMulExpr(PosPart, Iter_1), A[K].Coeff);
   2858   }
   2859   else {
   2860     // If the positive/negative part of the difference is 0,
   2861     // we won't need to know the number of iterations.
   2862     const SCEV *NegPart = getNegativePart(SE->getMinusSCEV(A[K].Coeff, B[K].PosPart));
   2863     if (NegPart->isZero())
   2864       Bound[K].Lower[Dependence::DVEntry::GT] = A[K].Coeff;
   2865     const SCEV *PosPart = getPositivePart(SE->getMinusSCEV(A[K].Coeff, B[K].NegPart));
   2866     if (PosPart->isZero())
   2867       Bound[K].Upper[Dependence::DVEntry::GT] = A[K].Coeff;
   2868   }
   2869 }
   2870 
   2871 
   2872 // X^+ = max(X, 0)
   2873 const SCEV *DependenceAnalysis::getPositivePart(const SCEV *X) const {
   2874   return SE->getSMaxExpr(X, SE->getZero(X->getType()));
   2875 }
   2876 
   2877 
   2878 // X^- = min(X, 0)
   2879 const SCEV *DependenceAnalysis::getNegativePart(const SCEV *X) const {
   2880   return SE->getSMinExpr(X, SE->getZero(X->getType()));
   2881 }
   2882 
   2883 
   2884 // Walks through the subscript,
   2885 // collecting each coefficient, the associated loop bounds,
   2886 // and recording its positive and negative parts for later use.
   2887 DependenceAnalysis::CoefficientInfo *
   2888 DependenceAnalysis::collectCoeffInfo(const SCEV *Subscript,
   2889                                      bool SrcFlag,
   2890                                      const SCEV *&Constant) const {
   2891   const SCEV *Zero = SE->getZero(Subscript->getType());
   2892   CoefficientInfo *CI = new CoefficientInfo[MaxLevels + 1];
   2893   for (unsigned K = 1; K <= MaxLevels; ++K) {
   2894     CI[K].Coeff = Zero;
   2895     CI[K].PosPart = Zero;
   2896     CI[K].NegPart = Zero;
   2897     CI[K].Iterations = nullptr;
   2898   }
   2899   while (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Subscript)) {
   2900     const Loop *L = AddRec->getLoop();
   2901     unsigned K = SrcFlag ? mapSrcLoop(L) : mapDstLoop(L);
   2902     CI[K].Coeff = AddRec->getStepRecurrence(*SE);
   2903     CI[K].PosPart = getPositivePart(CI[K].Coeff);
   2904     CI[K].NegPart = getNegativePart(CI[K].Coeff);
   2905     CI[K].Iterations = collectUpperBound(L, Subscript->getType());
   2906     Subscript = AddRec->getStart();
   2907   }
   2908   Constant = Subscript;
   2909 #ifndef NDEBUG
   2910   DEBUG(dbgs() << "\tCoefficient Info\n");
   2911   for (unsigned K = 1; K <= MaxLevels; ++K) {
   2912     DEBUG(dbgs() << "\t    " << K << "\t" << *CI[K].Coeff);
   2913     DEBUG(dbgs() << "\tPos Part = ");
   2914     DEBUG(dbgs() << *CI[K].PosPart);
   2915     DEBUG(dbgs() << "\tNeg Part = ");
   2916     DEBUG(dbgs() << *CI[K].NegPart);
   2917     DEBUG(dbgs() << "\tUpper Bound = ");
   2918     if (CI[K].Iterations)
   2919       DEBUG(dbgs() << *CI[K].Iterations);
   2920     else
   2921       DEBUG(dbgs() << "+inf");
   2922     DEBUG(dbgs() << '\n');
   2923   }
   2924   DEBUG(dbgs() << "\t    Constant = " << *Subscript << '\n');
   2925 #endif
   2926   return CI;
   2927 }
   2928 
   2929 
   2930 // Looks through all the bounds info and
   2931 // computes the lower bound given the current direction settings
   2932 // at each level. If the lower bound for any level is -inf,
   2933 // the result is -inf.
   2934 const SCEV *DependenceAnalysis::getLowerBound(BoundInfo *Bound) const {
   2935   const SCEV *Sum = Bound[1].Lower[Bound[1].Direction];
   2936   for (unsigned K = 2; Sum && K <= MaxLevels; ++K) {
   2937     if (Bound[K].Lower[Bound[K].Direction])
   2938       Sum = SE->getAddExpr(Sum, Bound[K].Lower[Bound[K].Direction]);
   2939     else
   2940       Sum = nullptr;
   2941   }
   2942   return Sum;
   2943 }
   2944 
   2945 
   2946 // Looks through all the bounds info and
   2947 // computes the upper bound given the current direction settings
   2948 // at each level. If the upper bound at any level is +inf,
   2949 // the result is +inf.
   2950 const SCEV *DependenceAnalysis::getUpperBound(BoundInfo *Bound) const {
   2951   const SCEV *Sum = Bound[1].Upper[Bound[1].Direction];
   2952   for (unsigned K = 2; Sum && K <= MaxLevels; ++K) {
   2953     if (Bound[K].Upper[Bound[K].Direction])
   2954       Sum = SE->getAddExpr(Sum, Bound[K].Upper[Bound[K].Direction]);
   2955     else
   2956       Sum = nullptr;
   2957   }
   2958   return Sum;
   2959 }
   2960 
   2961 
   2962 //===----------------------------------------------------------------------===//
   2963 // Constraint manipulation for Delta test.
   2964 
   2965 // Given a linear SCEV,
   2966 // return the coefficient (the step)
   2967 // corresponding to the specified loop.
   2968 // If there isn't one, return 0.
   2969 // For example, given a*i + b*j + c*k, finding the coefficient
   2970 // corresponding to the j loop would yield b.
   2971 const SCEV *DependenceAnalysis::findCoefficient(const SCEV *Expr,
   2972                                                 const Loop *TargetLoop)  const {
   2973   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Expr);
   2974   if (!AddRec)
   2975     return SE->getZero(Expr->getType());
   2976   if (AddRec->getLoop() == TargetLoop)
   2977     return AddRec->getStepRecurrence(*SE);
   2978   return findCoefficient(AddRec->getStart(), TargetLoop);
   2979 }
   2980 
   2981 
   2982 // Given a linear SCEV,
   2983 // return the SCEV given by zeroing out the coefficient
   2984 // corresponding to the specified loop.
   2985 // For example, given a*i + b*j + c*k, zeroing the coefficient
   2986 // corresponding to the j loop would yield a*i + c*k.
   2987 const SCEV *DependenceAnalysis::zeroCoefficient(const SCEV *Expr,
   2988                                                 const Loop *TargetLoop)  const {
   2989   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Expr);
   2990   if (!AddRec)
   2991     return Expr; // ignore
   2992   if (AddRec->getLoop() == TargetLoop)
   2993     return AddRec->getStart();
   2994   return SE->getAddRecExpr(zeroCoefficient(AddRec->getStart(), TargetLoop),
   2995                            AddRec->getStepRecurrence(*SE),
   2996                            AddRec->getLoop(),
   2997                            AddRec->getNoWrapFlags());
   2998 }
   2999 
   3000 
   3001 // Given a linear SCEV Expr,
   3002 // return the SCEV given by adding some Value to the
   3003 // coefficient corresponding to the specified TargetLoop.
   3004 // For example, given a*i + b*j + c*k, adding 1 to the coefficient
   3005 // corresponding to the j loop would yield a*i + (b+1)*j + c*k.
   3006 const SCEV *DependenceAnalysis::addToCoefficient(const SCEV *Expr,
   3007                                                  const Loop *TargetLoop,
   3008                                                  const SCEV *Value)  const {
   3009   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Expr);
   3010   if (!AddRec) // create a new addRec
   3011     return SE->getAddRecExpr(Expr,
   3012                              Value,
   3013                              TargetLoop,
   3014                              SCEV::FlagAnyWrap); // Worst case, with no info.
   3015   if (AddRec->getLoop() == TargetLoop) {
   3016     const SCEV *Sum = SE->getAddExpr(AddRec->getStepRecurrence(*SE), Value);
   3017     if (Sum->isZero())
   3018       return AddRec->getStart();
   3019     return SE->getAddRecExpr(AddRec->getStart(),
   3020                              Sum,
   3021                              AddRec->getLoop(),
   3022                              AddRec->getNoWrapFlags());
   3023   }
   3024   if (SE->isLoopInvariant(AddRec, TargetLoop))
   3025     return SE->getAddRecExpr(AddRec, Value, TargetLoop, SCEV::FlagAnyWrap);
   3026   return SE->getAddRecExpr(
   3027       addToCoefficient(AddRec->getStart(), TargetLoop, Value),
   3028       AddRec->getStepRecurrence(*SE), AddRec->getLoop(),
   3029       AddRec->getNoWrapFlags());
   3030 }
   3031 
   3032 
   3033 // Review the constraints, looking for opportunities
   3034 // to simplify a subscript pair (Src and Dst).
   3035 // Return true if some simplification occurs.
   3036 // If the simplification isn't exact (that is, if it is conservative
   3037 // in terms of dependence), set consistent to false.
   3038 // Corresponds to Figure 5 from the paper
   3039 //
   3040 //            Practical Dependence Testing
   3041 //            Goff, Kennedy, Tseng
   3042 //            PLDI 1991
   3043 bool DependenceAnalysis::propagate(const SCEV *&Src,
   3044                                    const SCEV *&Dst,
   3045                                    SmallBitVector &Loops,
   3046                                    SmallVectorImpl<Constraint> &Constraints,
   3047                                    bool &Consistent) {
   3048   bool Result = false;
   3049   for (int LI = Loops.find_first(); LI >= 0; LI = Loops.find_next(LI)) {
   3050     DEBUG(dbgs() << "\t    Constraint[" << LI << "] is");
   3051     DEBUG(Constraints[LI].dump(dbgs()));
   3052     if (Constraints[LI].isDistance())
   3053       Result |= propagateDistance(Src, Dst, Constraints[LI], Consistent);
   3054     else if (Constraints[LI].isLine())
   3055       Result |= propagateLine(Src, Dst, Constraints[LI], Consistent);
   3056     else if (Constraints[LI].isPoint())
   3057       Result |= propagatePoint(Src, Dst, Constraints[LI]);
   3058   }
   3059   return Result;
   3060 }
   3061 
   3062 
   3063 // Attempt to propagate a distance
   3064 // constraint into a subscript pair (Src and Dst).
   3065 // Return true if some simplification occurs.
   3066 // If the simplification isn't exact (that is, if it is conservative
   3067 // in terms of dependence), set consistent to false.
   3068 bool DependenceAnalysis::propagateDistance(const SCEV *&Src,
   3069                                            const SCEV *&Dst,
   3070                                            Constraint &CurConstraint,
   3071                                            bool &Consistent) {
   3072   const Loop *CurLoop = CurConstraint.getAssociatedLoop();
   3073   DEBUG(dbgs() << "\t\tSrc is " << *Src << "\n");
   3074   const SCEV *A_K = findCoefficient(Src, CurLoop);
   3075   if (A_K->isZero())
   3076     return false;
   3077   const SCEV *DA_K = SE->getMulExpr(A_K, CurConstraint.getD());
   3078   Src = SE->getMinusSCEV(Src, DA_K);
   3079   Src = zeroCoefficient(Src, CurLoop);
   3080   DEBUG(dbgs() << "\t\tnew Src is " << *Src << "\n");
   3081   DEBUG(dbgs() << "\t\tDst is " << *Dst << "\n");
   3082   Dst = addToCoefficient(Dst, CurLoop, SE->getNegativeSCEV(A_K));
   3083   DEBUG(dbgs() << "\t\tnew Dst is " << *Dst << "\n");
   3084   if (!findCoefficient(Dst, CurLoop)->isZero())
   3085     Consistent = false;
   3086   return true;
   3087 }
   3088 
   3089 
   3090 // Attempt to propagate a line
   3091 // constraint into a subscript pair (Src and Dst).
   3092 // Return true if some simplification occurs.
   3093 // If the simplification isn't exact (that is, if it is conservative
   3094 // in terms of dependence), set consistent to false.
   3095 bool DependenceAnalysis::propagateLine(const SCEV *&Src,
   3096                                        const SCEV *&Dst,
   3097                                        Constraint &CurConstraint,
   3098                                        bool &Consistent) {
   3099   const Loop *CurLoop = CurConstraint.getAssociatedLoop();
   3100   const SCEV *A = CurConstraint.getA();
   3101   const SCEV *B = CurConstraint.getB();
   3102   const SCEV *C = CurConstraint.getC();
   3103   DEBUG(dbgs() << "\t\tA = " << *A << ", B = " << *B << ", C = " << *C << "\n");
   3104   DEBUG(dbgs() << "\t\tSrc = " << *Src << "\n");
   3105   DEBUG(dbgs() << "\t\tDst = " << *Dst << "\n");
   3106   if (A->isZero()) {
   3107     const SCEVConstant *Bconst = dyn_cast<SCEVConstant>(B);
   3108     const SCEVConstant *Cconst = dyn_cast<SCEVConstant>(C);
   3109     if (!Bconst || !Cconst) return false;
   3110     APInt Beta = Bconst->getAPInt();
   3111     APInt Charlie = Cconst->getAPInt();
   3112     APInt CdivB = Charlie.sdiv(Beta);
   3113     assert(Charlie.srem(Beta) == 0 && "C should be evenly divisible by B");
   3114     const SCEV *AP_K = findCoefficient(Dst, CurLoop);
   3115     //    Src = SE->getAddExpr(Src, SE->getMulExpr(AP_K, SE->getConstant(CdivB)));
   3116     Src = SE->getMinusSCEV(Src, SE->getMulExpr(AP_K, SE->getConstant(CdivB)));
   3117     Dst = zeroCoefficient(Dst, CurLoop);
   3118     if (!findCoefficient(Src, CurLoop)->isZero())
   3119       Consistent = false;
   3120   }
   3121   else if (B->isZero()) {
   3122     const SCEVConstant *Aconst = dyn_cast<SCEVConstant>(A);
   3123     const SCEVConstant *Cconst = dyn_cast<SCEVConstant>(C);
   3124     if (!Aconst || !Cconst) return false;
   3125     APInt Alpha = Aconst->getAPInt();
   3126     APInt Charlie = Cconst->getAPInt();
   3127     APInt CdivA = Charlie.sdiv(Alpha);
   3128     assert(Charlie.srem(Alpha) == 0 && "C should be evenly divisible by A");
   3129     const SCEV *A_K = findCoefficient(Src, CurLoop);
   3130     Src = SE->getAddExpr(Src, SE->getMulExpr(A_K, SE->getConstant(CdivA)));
   3131     Src = zeroCoefficient(Src, CurLoop);
   3132     if (!findCoefficient(Dst, CurLoop)->isZero())
   3133       Consistent = false;
   3134   }
   3135   else if (isKnownPredicate(CmpInst::ICMP_EQ, A, B)) {
   3136     const SCEVConstant *Aconst = dyn_cast<SCEVConstant>(A);
   3137     const SCEVConstant *Cconst = dyn_cast<SCEVConstant>(C);
   3138     if (!Aconst || !Cconst) return false;
   3139     APInt Alpha = Aconst->getAPInt();
   3140     APInt Charlie = Cconst->getAPInt();
   3141     APInt CdivA = Charlie.sdiv(Alpha);
   3142     assert(Charlie.srem(Alpha) == 0 && "C should be evenly divisible by A");
   3143     const SCEV *A_K = findCoefficient(Src, CurLoop);
   3144     Src = SE->getAddExpr(Src, SE->getMulExpr(A_K, SE->getConstant(CdivA)));
   3145     Src = zeroCoefficient(Src, CurLoop);
   3146     Dst = addToCoefficient(Dst, CurLoop, A_K);
   3147     if (!findCoefficient(Dst, CurLoop)->isZero())
   3148       Consistent = false;
   3149   }
   3150   else {
   3151     // paper is incorrect here, or perhaps just misleading
   3152     const SCEV *A_K = findCoefficient(Src, CurLoop);
   3153     Src = SE->getMulExpr(Src, A);
   3154     Dst = SE->getMulExpr(Dst, A);
   3155     Src = SE->getAddExpr(Src, SE->getMulExpr(A_K, C));
   3156     Src = zeroCoefficient(Src, CurLoop);
   3157     Dst = addToCoefficient(Dst, CurLoop, SE->getMulExpr(A_K, B));
   3158     if (!findCoefficient(Dst, CurLoop)->isZero())
   3159       Consistent = false;
   3160   }
   3161   DEBUG(dbgs() << "\t\tnew Src = " << *Src << "\n");
   3162   DEBUG(dbgs() << "\t\tnew Dst = " << *Dst << "\n");
   3163   return true;
   3164 }
   3165 
   3166 
   3167 // Attempt to propagate a point
   3168 // constraint into a subscript pair (Src and Dst).
   3169 // Return true if some simplification occurs.
   3170 bool DependenceAnalysis::propagatePoint(const SCEV *&Src,
   3171                                         const SCEV *&Dst,
   3172                                         Constraint &CurConstraint) {
   3173   const Loop *CurLoop = CurConstraint.getAssociatedLoop();
   3174   const SCEV *A_K = findCoefficient(Src, CurLoop);
   3175   const SCEV *AP_K = findCoefficient(Dst, CurLoop);
   3176   const SCEV *XA_K = SE->getMulExpr(A_K, CurConstraint.getX());
   3177   const SCEV *YAP_K = SE->getMulExpr(AP_K, CurConstraint.getY());
   3178   DEBUG(dbgs() << "\t\tSrc is " << *Src << "\n");
   3179   Src = SE->getAddExpr(Src, SE->getMinusSCEV(XA_K, YAP_K));
   3180   Src = zeroCoefficient(Src, CurLoop);
   3181   DEBUG(dbgs() << "\t\tnew Src is " << *Src << "\n");
   3182   DEBUG(dbgs() << "\t\tDst is " << *Dst << "\n");
   3183   Dst = zeroCoefficient(Dst, CurLoop);
   3184   DEBUG(dbgs() << "\t\tnew Dst is " << *Dst << "\n");
   3185   return true;
   3186 }
   3187 
   3188 
   3189 // Update direction vector entry based on the current constraint.
   3190 void DependenceAnalysis::updateDirection(Dependence::DVEntry &Level,
   3191                                          const Constraint &CurConstraint
   3192                                          ) const {
   3193   DEBUG(dbgs() << "\tUpdate direction, constraint =");
   3194   DEBUG(CurConstraint.dump(dbgs()));
   3195   if (CurConstraint.isAny())
   3196     ; // use defaults
   3197   else if (CurConstraint.isDistance()) {
   3198     // this one is consistent, the others aren't
   3199     Level.Scalar = false;
   3200     Level.Distance = CurConstraint.getD();
   3201     unsigned NewDirection = Dependence::DVEntry::NONE;
   3202     if (!SE->isKnownNonZero(Level.Distance)) // if may be zero
   3203       NewDirection = Dependence::DVEntry::EQ;
   3204     if (!SE->isKnownNonPositive(Level.Distance)) // if may be positive
   3205       NewDirection |= Dependence::DVEntry::LT;
   3206     if (!SE->isKnownNonNegative(Level.Distance)) // if may be negative
   3207       NewDirection |= Dependence::DVEntry::GT;
   3208     Level.Direction &= NewDirection;
   3209   }
   3210   else if (CurConstraint.isLine()) {
   3211     Level.Scalar = false;
   3212     Level.Distance = nullptr;
   3213     // direction should be accurate
   3214   }
   3215   else if (CurConstraint.isPoint()) {
   3216     Level.Scalar = false;
   3217     Level.Distance = nullptr;
   3218     unsigned NewDirection = Dependence::DVEntry::NONE;
   3219     if (!isKnownPredicate(CmpInst::ICMP_NE,
   3220                           CurConstraint.getY(),
   3221                           CurConstraint.getX()))
   3222       // if X may be = Y
   3223       NewDirection |= Dependence::DVEntry::EQ;
   3224     if (!isKnownPredicate(CmpInst::ICMP_SLE,
   3225                           CurConstraint.getY(),
   3226                           CurConstraint.getX()))
   3227       // if Y may be > X
   3228       NewDirection |= Dependence::DVEntry::LT;
   3229     if (!isKnownPredicate(CmpInst::ICMP_SGE,
   3230                           CurConstraint.getY(),
   3231                           CurConstraint.getX()))
   3232       // if Y may be < X
   3233       NewDirection |= Dependence::DVEntry::GT;
   3234     Level.Direction &= NewDirection;
   3235   }
   3236   else
   3237     llvm_unreachable("constraint has unexpected kind");
   3238 }
   3239 
   3240 /// Check if we can delinearize the subscripts. If the SCEVs representing the
   3241 /// source and destination array references are recurrences on a nested loop,
   3242 /// this function flattens the nested recurrences into separate recurrences
   3243 /// for each loop level.
   3244 bool DependenceAnalysis::tryDelinearize(Instruction *Src,
   3245                                         Instruction *Dst,
   3246                                         SmallVectorImpl<Subscript> &Pair)
   3247 {
   3248   Value *SrcPtr = getPointerOperand(Src);
   3249   Value *DstPtr = getPointerOperand(Dst);
   3250 
   3251   Loop *SrcLoop = LI->getLoopFor(Src->getParent());
   3252   Loop *DstLoop = LI->getLoopFor(Dst->getParent());
   3253 
   3254   // Below code mimics the code in Delinearization.cpp
   3255   const SCEV *SrcAccessFn =
   3256     SE->getSCEVAtScope(SrcPtr, SrcLoop);
   3257   const SCEV *DstAccessFn =
   3258     SE->getSCEVAtScope(DstPtr, DstLoop);
   3259 
   3260   const SCEVUnknown *SrcBase =
   3261       dyn_cast<SCEVUnknown>(SE->getPointerBase(SrcAccessFn));
   3262   const SCEVUnknown *DstBase =
   3263       dyn_cast<SCEVUnknown>(SE->getPointerBase(DstAccessFn));
   3264 
   3265   if (!SrcBase || !DstBase || SrcBase != DstBase)
   3266     return false;
   3267 
   3268   const SCEV *ElementSize = SE->getElementSize(Src);
   3269   if (ElementSize != SE->getElementSize(Dst))
   3270     return false;
   3271 
   3272   const SCEV *SrcSCEV = SE->getMinusSCEV(SrcAccessFn, SrcBase);
   3273   const SCEV *DstSCEV = SE->getMinusSCEV(DstAccessFn, DstBase);
   3274 
   3275   const SCEVAddRecExpr *SrcAR = dyn_cast<SCEVAddRecExpr>(SrcSCEV);
   3276   const SCEVAddRecExpr *DstAR = dyn_cast<SCEVAddRecExpr>(DstSCEV);
   3277   if (!SrcAR || !DstAR || !SrcAR->isAffine() || !DstAR->isAffine())
   3278     return false;
   3279 
   3280   // First step: collect parametric terms in both array references.
   3281   SmallVector<const SCEV *, 4> Terms;
   3282   SE->collectParametricTerms(SrcAR, Terms);
   3283   SE->collectParametricTerms(DstAR, Terms);
   3284 
   3285   // Second step: find subscript sizes.
   3286   SmallVector<const SCEV *, 4> Sizes;
   3287   SE->findArrayDimensions(Terms, Sizes, ElementSize);
   3288 
   3289   // Third step: compute the access functions for each subscript.
   3290   SmallVector<const SCEV *, 4> SrcSubscripts, DstSubscripts;
   3291   SE->computeAccessFunctions(SrcAR, SrcSubscripts, Sizes);
   3292   SE->computeAccessFunctions(DstAR, DstSubscripts, Sizes);
   3293 
   3294   // Fail when there is only a subscript: that's a linearized access function.
   3295   if (SrcSubscripts.size() < 2 || DstSubscripts.size() < 2 ||
   3296       SrcSubscripts.size() != DstSubscripts.size())
   3297     return false;
   3298 
   3299   int size = SrcSubscripts.size();
   3300 
   3301   DEBUG({
   3302       dbgs() << "\nSrcSubscripts: ";
   3303     for (int i = 0; i < size; i++)
   3304       dbgs() << *SrcSubscripts[i];
   3305     dbgs() << "\nDstSubscripts: ";
   3306     for (int i = 0; i < size; i++)
   3307       dbgs() << *DstSubscripts[i];
   3308     });
   3309 
   3310   // The delinearization transforms a single-subscript MIV dependence test into
   3311   // a multi-subscript SIV dependence test that is easier to compute. So we
   3312   // resize Pair to contain as many pairs of subscripts as the delinearization
   3313   // has found, and then initialize the pairs following the delinearization.
   3314   Pair.resize(size);
   3315   for (int i = 0; i < size; ++i) {
   3316     Pair[i].Src = SrcSubscripts[i];
   3317     Pair[i].Dst = DstSubscripts[i];
   3318     unifySubscriptType(&Pair[i]);
   3319 
   3320     // FIXME: we should record the bounds SrcSizes[i] and DstSizes[i] that the
   3321     // delinearization has found, and add these constraints to the dependence
   3322     // check to avoid memory accesses overflow from one dimension into another.
   3323     // This is related to the problem of determining the existence of data
   3324     // dependences in array accesses using a different number of subscripts: in
   3325     // C one can access an array A[100][100]; as A[0][9999], *A[9999], etc.
   3326   }
   3327 
   3328   return true;
   3329 }
   3330 
   3331 //===----------------------------------------------------------------------===//
   3332 
   3333 #ifndef NDEBUG
   3334 // For debugging purposes, dump a small bit vector to dbgs().
   3335 static void dumpSmallBitVector(SmallBitVector &BV) {
   3336   dbgs() << "{";
   3337   for (int VI = BV.find_first(); VI >= 0; VI = BV.find_next(VI)) {
   3338     dbgs() << VI;
   3339     if (BV.find_next(VI) >= 0)
   3340       dbgs() << ' ';
   3341   }
   3342   dbgs() << "}\n";
   3343 }
   3344 #endif
   3345 
   3346 // depends -
   3347 // Returns NULL if there is no dependence.
   3348 // Otherwise, return a Dependence with as many details as possible.
   3349 // Corresponds to Section 3.1 in the paper
   3350 //
   3351 //            Practical Dependence Testing
   3352 //            Goff, Kennedy, Tseng
   3353 //            PLDI 1991
   3354 //
   3355 // Care is required to keep the routine below, getSplitIteration(),
   3356 // up to date with respect to this routine.
   3357 std::unique_ptr<Dependence>
   3358 DependenceAnalysis::depends(Instruction *Src, Instruction *Dst,
   3359                             bool PossiblyLoopIndependent) {
   3360   if (Src == Dst)
   3361     PossiblyLoopIndependent = false;
   3362 
   3363   if ((!Src->mayReadFromMemory() && !Src->mayWriteToMemory()) ||
   3364       (!Dst->mayReadFromMemory() && !Dst->mayWriteToMemory()))
   3365     // if both instructions don't reference memory, there's no dependence
   3366     return nullptr;
   3367 
   3368   if (!isLoadOrStore(Src) || !isLoadOrStore(Dst)) {
   3369     // can only analyze simple loads and stores, i.e., no calls, invokes, etc.
   3370     DEBUG(dbgs() << "can only handle simple loads and stores\n");
   3371     return make_unique<Dependence>(Src, Dst);
   3372   }
   3373 
   3374   Value *SrcPtr = getPointerOperand(Src);
   3375   Value *DstPtr = getPointerOperand(Dst);
   3376 
   3377   switch (underlyingObjectsAlias(AA, F->getParent()->getDataLayout(), DstPtr,
   3378                                  SrcPtr)) {
   3379   case MayAlias:
   3380   case PartialAlias:
   3381     // cannot analyse objects if we don't understand their aliasing.
   3382     DEBUG(dbgs() << "can't analyze may or partial alias\n");
   3383     return make_unique<Dependence>(Src, Dst);
   3384   case NoAlias:
   3385     // If the objects noalias, they are distinct, accesses are independent.
   3386     DEBUG(dbgs() << "no alias\n");
   3387     return nullptr;
   3388   case MustAlias:
   3389     break; // The underlying objects alias; test accesses for dependence.
   3390   }
   3391 
   3392   // establish loop nesting levels
   3393   establishNestingLevels(Src, Dst);
   3394   DEBUG(dbgs() << "    common nesting levels = " << CommonLevels << "\n");
   3395   DEBUG(dbgs() << "    maximum nesting levels = " << MaxLevels << "\n");
   3396 
   3397   FullDependence Result(Src, Dst, PossiblyLoopIndependent, CommonLevels);
   3398   ++TotalArrayPairs;
   3399 
   3400   // See if there are GEPs we can use.
   3401   bool UsefulGEP = false;
   3402   GEPOperator *SrcGEP = dyn_cast<GEPOperator>(SrcPtr);
   3403   GEPOperator *DstGEP = dyn_cast<GEPOperator>(DstPtr);
   3404   if (SrcGEP && DstGEP &&
   3405       SrcGEP->getPointerOperandType() == DstGEP->getPointerOperandType()) {
   3406     const SCEV *SrcPtrSCEV = SE->getSCEV(SrcGEP->getPointerOperand());
   3407     const SCEV *DstPtrSCEV = SE->getSCEV(DstGEP->getPointerOperand());
   3408     DEBUG(dbgs() << "    SrcPtrSCEV = " << *SrcPtrSCEV << "\n");
   3409     DEBUG(dbgs() << "    DstPtrSCEV = " << *DstPtrSCEV << "\n");
   3410 
   3411     UsefulGEP = isLoopInvariant(SrcPtrSCEV, LI->getLoopFor(Src->getParent())) &&
   3412                 isLoopInvariant(DstPtrSCEV, LI->getLoopFor(Dst->getParent())) &&
   3413                 (SrcGEP->getNumOperands() == DstGEP->getNumOperands());
   3414   }
   3415   unsigned Pairs = UsefulGEP ? SrcGEP->idx_end() - SrcGEP->idx_begin() : 1;
   3416   SmallVector<Subscript, 4> Pair(Pairs);
   3417   if (UsefulGEP) {
   3418     DEBUG(dbgs() << "    using GEPs\n");
   3419     unsigned P = 0;
   3420     for (GEPOperator::const_op_iterator SrcIdx = SrcGEP->idx_begin(),
   3421            SrcEnd = SrcGEP->idx_end(),
   3422            DstIdx = DstGEP->idx_begin();
   3423          SrcIdx != SrcEnd;
   3424          ++SrcIdx, ++DstIdx, ++P) {
   3425       Pair[P].Src = SE->getSCEV(*SrcIdx);
   3426       Pair[P].Dst = SE->getSCEV(*DstIdx);
   3427       unifySubscriptType(&Pair[P]);
   3428     }
   3429   }
   3430   else {
   3431     DEBUG(dbgs() << "    ignoring GEPs\n");
   3432     const SCEV *SrcSCEV = SE->getSCEV(SrcPtr);
   3433     const SCEV *DstSCEV = SE->getSCEV(DstPtr);
   3434     DEBUG(dbgs() << "    SrcSCEV = " << *SrcSCEV << "\n");
   3435     DEBUG(dbgs() << "    DstSCEV = " << *DstSCEV << "\n");
   3436     Pair[0].Src = SrcSCEV;
   3437     Pair[0].Dst = DstSCEV;
   3438   }
   3439 
   3440   if (Delinearize && CommonLevels > 1) {
   3441     if (tryDelinearize(Src, Dst, Pair)) {
   3442       DEBUG(dbgs() << "    delinerized GEP\n");
   3443       Pairs = Pair.size();
   3444     }
   3445   }
   3446 
   3447   for (unsigned P = 0; P < Pairs; ++P) {
   3448     Pair[P].Loops.resize(MaxLevels + 1);
   3449     Pair[P].GroupLoops.resize(MaxLevels + 1);
   3450     Pair[P].Group.resize(Pairs);
   3451     removeMatchingExtensions(&Pair[P]);
   3452     Pair[P].Classification =
   3453       classifyPair(Pair[P].Src, LI->getLoopFor(Src->getParent()),
   3454                    Pair[P].Dst, LI->getLoopFor(Dst->getParent()),
   3455                    Pair[P].Loops);
   3456     Pair[P].GroupLoops = Pair[P].Loops;
   3457     Pair[P].Group.set(P);
   3458     DEBUG(dbgs() << "    subscript " << P << "\n");
   3459     DEBUG(dbgs() << "\tsrc = " << *Pair[P].Src << "\n");
   3460     DEBUG(dbgs() << "\tdst = " << *Pair[P].Dst << "\n");
   3461     DEBUG(dbgs() << "\tclass = " << Pair[P].Classification << "\n");
   3462     DEBUG(dbgs() << "\tloops = ");
   3463     DEBUG(dumpSmallBitVector(Pair[P].Loops));
   3464   }
   3465 
   3466   SmallBitVector Separable(Pairs);
   3467   SmallBitVector Coupled(Pairs);
   3468 
   3469   // Partition subscripts into separable and minimally-coupled groups
   3470   // Algorithm in paper is algorithmically better;
   3471   // this may be faster in practice. Check someday.
   3472   //
   3473   // Here's an example of how it works. Consider this code:
   3474   //
   3475   //   for (i = ...) {
   3476   //     for (j = ...) {
   3477   //       for (k = ...) {
   3478   //         for (l = ...) {
   3479   //           for (m = ...) {
   3480   //             A[i][j][k][m] = ...;
   3481   //             ... = A[0][j][l][i + j];
   3482   //           }
   3483   //         }
   3484   //       }
   3485   //     }
   3486   //   }
   3487   //
   3488   // There are 4 subscripts here:
   3489   //    0 [i] and [0]
   3490   //    1 [j] and [j]
   3491   //    2 [k] and [l]
   3492   //    3 [m] and [i + j]
   3493   //
   3494   // We've already classified each subscript pair as ZIV, SIV, etc.,
   3495   // and collected all the loops mentioned by pair P in Pair[P].Loops.
   3496   // In addition, we've initialized Pair[P].GroupLoops to Pair[P].Loops
   3497   // and set Pair[P].Group = {P}.
   3498   //
   3499   //      Src Dst    Classification Loops  GroupLoops Group
   3500   //    0 [i] [0]         SIV       {1}      {1}        {0}
   3501   //    1 [j] [j]         SIV       {2}      {2}        {1}
   3502   //    2 [k] [l]         RDIV      {3,4}    {3,4}      {2}
   3503   //    3 [m] [i + j]     MIV       {1,2,5}  {1,2,5}    {3}
   3504   //
   3505   // For each subscript SI 0 .. 3, we consider each remaining subscript, SJ.
   3506   // So, 0 is compared against 1, 2, and 3; 1 is compared against 2 and 3, etc.
   3507   //
   3508   // We begin by comparing 0 and 1. The intersection of the GroupLoops is empty.
   3509   // Next, 0 and 2. Again, the intersection of their GroupLoops is empty.
   3510   // Next 0 and 3. The intersection of their GroupLoop = {1}, not empty,
   3511   // so Pair[3].Group = {0,3} and Done = false (that is, 0 will not be added
   3512   // to either Separable or Coupled).
   3513   //
   3514   // Next, we consider 1 and 2. The intersection of the GroupLoops is empty.
   3515   // Next, 1 and 3. The intersectionof their GroupLoops = {2}, not empty,
   3516   // so Pair[3].Group = {0, 1, 3} and Done = false.
   3517   //
   3518   // Next, we compare 2 against 3. The intersection of the GroupLoops is empty.
   3519   // Since Done remains true, we add 2 to the set of Separable pairs.
   3520   //
   3521   // Finally, we consider 3. There's nothing to compare it with,
   3522   // so Done remains true and we add it to the Coupled set.
   3523   // Pair[3].Group = {0, 1, 3} and GroupLoops = {1, 2, 5}.
   3524   //
   3525   // In the end, we've got 1 separable subscript and 1 coupled group.
   3526   for (unsigned SI = 0; SI < Pairs; ++SI) {
   3527     if (Pair[SI].Classification == Subscript::NonLinear) {
   3528       // ignore these, but collect loops for later
   3529       ++NonlinearSubscriptPairs;
   3530       collectCommonLoops(Pair[SI].Src,
   3531                          LI->getLoopFor(Src->getParent()),
   3532                          Pair[SI].Loops);
   3533       collectCommonLoops(Pair[SI].Dst,
   3534                          LI->getLoopFor(Dst->getParent()),
   3535                          Pair[SI].Loops);
   3536       Result.Consistent = false;
   3537     } else if (Pair[SI].Classification == Subscript::ZIV) {
   3538       // always separable
   3539       Separable.set(SI);
   3540     }
   3541     else {
   3542       // SIV, RDIV, or MIV, so check for coupled group
   3543       bool Done = true;
   3544       for (unsigned SJ = SI + 1; SJ < Pairs; ++SJ) {
   3545         SmallBitVector Intersection = Pair[SI].GroupLoops;
   3546         Intersection &= Pair[SJ].GroupLoops;
   3547         if (Intersection.any()) {
   3548           // accumulate set of all the loops in group
   3549           Pair[SJ].GroupLoops |= Pair[SI].GroupLoops;
   3550           // accumulate set of all subscripts in group
   3551           Pair[SJ].Group |= Pair[SI].Group;
   3552           Done = false;
   3553         }
   3554       }
   3555       if (Done) {
   3556         if (Pair[SI].Group.count() == 1) {
   3557           Separable.set(SI);
   3558           ++SeparableSubscriptPairs;
   3559         }
   3560         else {
   3561           Coupled.set(SI);
   3562           ++CoupledSubscriptPairs;
   3563         }
   3564       }
   3565     }
   3566   }
   3567 
   3568   DEBUG(dbgs() << "    Separable = ");
   3569   DEBUG(dumpSmallBitVector(Separable));
   3570   DEBUG(dbgs() << "    Coupled = ");
   3571   DEBUG(dumpSmallBitVector(Coupled));
   3572 
   3573   Constraint NewConstraint;
   3574   NewConstraint.setAny(SE);
   3575 
   3576   // test separable subscripts
   3577   for (int SI = Separable.find_first(); SI >= 0; SI = Separable.find_next(SI)) {
   3578     DEBUG(dbgs() << "testing subscript " << SI);
   3579     switch (Pair[SI].Classification) {
   3580     case Subscript::ZIV:
   3581       DEBUG(dbgs() << ", ZIV\n");
   3582       if (testZIV(Pair[SI].Src, Pair[SI].Dst, Result))
   3583         return nullptr;
   3584       break;
   3585     case Subscript::SIV: {
   3586       DEBUG(dbgs() << ", SIV\n");
   3587       unsigned Level;
   3588       const SCEV *SplitIter = nullptr;
   3589       if (testSIV(Pair[SI].Src, Pair[SI].Dst, Level, Result, NewConstraint,
   3590                   SplitIter))
   3591         return nullptr;
   3592       break;
   3593     }
   3594     case Subscript::RDIV:
   3595       DEBUG(dbgs() << ", RDIV\n");
   3596       if (testRDIV(Pair[SI].Src, Pair[SI].Dst, Result))
   3597         return nullptr;
   3598       break;
   3599     case Subscript::MIV:
   3600       DEBUG(dbgs() << ", MIV\n");
   3601       if (testMIV(Pair[SI].Src, Pair[SI].Dst, Pair[SI].Loops, Result))
   3602         return nullptr;
   3603       break;
   3604     default:
   3605       llvm_unreachable("subscript has unexpected classification");
   3606     }
   3607   }
   3608 
   3609   if (Coupled.count()) {
   3610     // test coupled subscript groups
   3611     DEBUG(dbgs() << "starting on coupled subscripts\n");
   3612     DEBUG(dbgs() << "MaxLevels + 1 = " << MaxLevels + 1 << "\n");
   3613     SmallVector<Constraint, 4> Constraints(MaxLevels + 1);
   3614     for (unsigned II = 0; II <= MaxLevels; ++II)
   3615       Constraints[II].setAny(SE);
   3616     for (int SI = Coupled.find_first(); SI >= 0; SI = Coupled.find_next(SI)) {
   3617       DEBUG(dbgs() << "testing subscript group " << SI << " { ");
   3618       SmallBitVector Group(Pair[SI].Group);
   3619       SmallBitVector Sivs(Pairs);
   3620       SmallBitVector Mivs(Pairs);
   3621       SmallBitVector ConstrainedLevels(MaxLevels + 1);
   3622       SmallVector<Subscript *, 4> PairsInGroup;
   3623       for (int SJ = Group.find_first(); SJ >= 0; SJ = Group.find_next(SJ)) {
   3624         DEBUG(dbgs() << SJ << " ");
   3625         if (Pair[SJ].Classification == Subscript::SIV)
   3626           Sivs.set(SJ);
   3627         else
   3628           Mivs.set(SJ);
   3629         PairsInGroup.push_back(&Pair[SJ]);
   3630       }
   3631       unifySubscriptType(PairsInGroup);
   3632       DEBUG(dbgs() << "}\n");
   3633       while (Sivs.any()) {
   3634         bool Changed = false;
   3635         for (int SJ = Sivs.find_first(); SJ >= 0; SJ = Sivs.find_next(SJ)) {
   3636           DEBUG(dbgs() << "testing subscript " << SJ << ", SIV\n");
   3637           // SJ is an SIV subscript that's part of the current coupled group
   3638           unsigned Level;
   3639           const SCEV *SplitIter = nullptr;
   3640           DEBUG(dbgs() << "SIV\n");
   3641           if (testSIV(Pair[SJ].Src, Pair[SJ].Dst, Level, Result, NewConstraint,
   3642                       SplitIter))
   3643             return nullptr;
   3644           ConstrainedLevels.set(Level);
   3645           if (intersectConstraints(&Constraints[Level], &NewConstraint)) {
   3646             if (Constraints[Level].isEmpty()) {
   3647               ++DeltaIndependence;
   3648               return nullptr;
   3649             }
   3650             Changed = true;
   3651           }
   3652           Sivs.reset(SJ);
   3653         }
   3654         if (Changed) {
   3655           // propagate, possibly creating new SIVs and ZIVs
   3656           DEBUG(dbgs() << "    propagating\n");
   3657           DEBUG(dbgs() << "\tMivs = ");
   3658           DEBUG(dumpSmallBitVector(Mivs));
   3659           for (int SJ = Mivs.find_first(); SJ >= 0; SJ = Mivs.find_next(SJ)) {
   3660             // SJ is an MIV subscript that's part of the current coupled group
   3661             DEBUG(dbgs() << "\tSJ = " << SJ << "\n");
   3662             if (propagate(Pair[SJ].Src, Pair[SJ].Dst, Pair[SJ].Loops,
   3663                           Constraints, Result.Consistent)) {
   3664               DEBUG(dbgs() << "\t    Changed\n");
   3665               ++DeltaPropagations;
   3666               Pair[SJ].Classification =
   3667                 classifyPair(Pair[SJ].Src, LI->getLoopFor(Src->getParent()),
   3668                              Pair[SJ].Dst, LI->getLoopFor(Dst->getParent()),
   3669                              Pair[SJ].Loops);
   3670               switch (Pair[SJ].Classification) {
   3671               case Subscript::ZIV:
   3672                 DEBUG(dbgs() << "ZIV\n");
   3673                 if (testZIV(Pair[SJ].Src, Pair[SJ].Dst, Result))
   3674                   return nullptr;
   3675                 Mivs.reset(SJ);
   3676                 break;
   3677               case Subscript::SIV:
   3678                 Sivs.set(SJ);
   3679                 Mivs.reset(SJ);
   3680                 break;
   3681               case Subscript::RDIV:
   3682               case Subscript::MIV:
   3683                 break;
   3684               default:
   3685                 llvm_unreachable("bad subscript classification");
   3686               }
   3687             }
   3688           }
   3689         }
   3690       }
   3691 
   3692       // test & propagate remaining RDIVs
   3693       for (int SJ = Mivs.find_first(); SJ >= 0; SJ = Mivs.find_next(SJ)) {
   3694         if (Pair[SJ].Classification == Subscript::RDIV) {
   3695           DEBUG(dbgs() << "RDIV test\n");
   3696           if (testRDIV(Pair[SJ].Src, Pair[SJ].Dst, Result))
   3697             return nullptr;
   3698           // I don't yet understand how to propagate RDIV results
   3699           Mivs.reset(SJ);
   3700         }
   3701       }
   3702 
   3703       // test remaining MIVs
   3704       // This code is temporary.
   3705       // Better to somehow test all remaining subscripts simultaneously.
   3706       for (int SJ = Mivs.find_first(); SJ >= 0; SJ = Mivs.find_next(SJ)) {
   3707         if (Pair[SJ].Classification == Subscript::MIV) {
   3708           DEBUG(dbgs() << "MIV test\n");
   3709           if (testMIV(Pair[SJ].Src, Pair[SJ].Dst, Pair[SJ].Loops, Result))
   3710             return nullptr;
   3711         }
   3712         else
   3713           llvm_unreachable("expected only MIV subscripts at this point");
   3714       }
   3715 
   3716       // update Result.DV from constraint vector
   3717       DEBUG(dbgs() << "    updating\n");
   3718       for (int SJ = ConstrainedLevels.find_first(); SJ >= 0;
   3719            SJ = ConstrainedLevels.find_next(SJ)) {
   3720         if (SJ > (int)CommonLevels)
   3721           break;
   3722         updateDirection(Result.DV[SJ - 1], Constraints[SJ]);
   3723         if (Result.DV[SJ - 1].Direction == Dependence::DVEntry::NONE)
   3724           return nullptr;
   3725       }
   3726     }
   3727   }
   3728 
   3729   // Make sure the Scalar flags are set correctly.
   3730   SmallBitVector CompleteLoops(MaxLevels + 1);
   3731   for (unsigned SI = 0; SI < Pairs; ++SI)
   3732     CompleteLoops |= Pair[SI].Loops;
   3733   for (unsigned II = 1; II <= CommonLevels; ++II)
   3734     if (CompleteLoops[II])
   3735       Result.DV[II - 1].Scalar = false;
   3736 
   3737   if (PossiblyLoopIndependent) {
   3738     // Make sure the LoopIndependent flag is set correctly.
   3739     // All directions must include equal, otherwise no
   3740     // loop-independent dependence is possible.
   3741     for (unsigned II = 1; II <= CommonLevels; ++II) {
   3742       if (!(Result.getDirection(II) & Dependence::DVEntry::EQ)) {
   3743         Result.LoopIndependent = false;
   3744         break;
   3745       }
   3746     }
   3747   }
   3748   else {
   3749     // On the other hand, if all directions are equal and there's no
   3750     // loop-independent dependence possible, then no dependence exists.
   3751     bool AllEqual = true;
   3752     for (unsigned II = 1; II <= CommonLevels; ++II) {
   3753       if (Result.getDirection(II) != Dependence::DVEntry::EQ) {
   3754         AllEqual = false;
   3755         break;
   3756       }
   3757     }
   3758     if (AllEqual)
   3759       return nullptr;
   3760   }
   3761 
   3762   return make_unique<FullDependence>(std::move(Result));
   3763 }
   3764 
   3765 
   3766 
   3767 //===----------------------------------------------------------------------===//
   3768 // getSplitIteration -
   3769 // Rather than spend rarely-used space recording the splitting iteration
   3770 // during the Weak-Crossing SIV test, we re-compute it on demand.
   3771 // The re-computation is basically a repeat of the entire dependence test,
   3772 // though simplified since we know that the dependence exists.
   3773 // It's tedious, since we must go through all propagations, etc.
   3774 //
   3775 // Care is required to keep this code up to date with respect to the routine
   3776 // above, depends().
   3777 //
   3778 // Generally, the dependence analyzer will be used to build
   3779 // a dependence graph for a function (basically a map from instructions
   3780 // to dependences). Looking for cycles in the graph shows us loops
   3781 // that cannot be trivially vectorized/parallelized.
   3782 //
   3783 // We can try to improve the situation by examining all the dependences
   3784 // that make up the cycle, looking for ones we can break.
   3785 // Sometimes, peeling the first or last iteration of a loop will break
   3786 // dependences, and we've got flags for those possibilities.
   3787 // Sometimes, splitting a loop at some other iteration will do the trick,
   3788 // and we've got a flag for that case. Rather than waste the space to
   3789 // record the exact iteration (since we rarely know), we provide
   3790 // a method that calculates the iteration. It's a drag that it must work
   3791 // from scratch, but wonderful in that it's possible.
   3792 //
   3793 // Here's an example:
   3794 //
   3795 //    for (i = 0; i < 10; i++)
   3796 //        A[i] = ...
   3797 //        ... = A[11 - i]
   3798 //
   3799 // There's a loop-carried flow dependence from the store to the load,
   3800 // found by the weak-crossing SIV test. The dependence will have a flag,
   3801 // indicating that the dependence can be broken by splitting the loop.
   3802 // Calling getSplitIteration will return 5.
   3803 // Splitting the loop breaks the dependence, like so:
   3804 //
   3805 //    for (i = 0; i <= 5; i++)
   3806 //        A[i] = ...
   3807 //        ... = A[11 - i]
   3808 //    for (i = 6; i < 10; i++)
   3809 //        A[i] = ...
   3810 //        ... = A[11 - i]
   3811 //
   3812 // breaks the dependence and allows us to vectorize/parallelize
   3813 // both loops.
   3814 const  SCEV *DependenceAnalysis::getSplitIteration(const Dependence &Dep,
   3815                                                    unsigned SplitLevel) {
   3816   assert(Dep.isSplitable(SplitLevel) &&
   3817          "Dep should be splitable at SplitLevel");
   3818   Instruction *Src = Dep.getSrc();
   3819   Instruction *Dst = Dep.getDst();
   3820   assert(Src->mayReadFromMemory() || Src->mayWriteToMemory());
   3821   assert(Dst->mayReadFromMemory() || Dst->mayWriteToMemory());
   3822   assert(isLoadOrStore(Src));
   3823   assert(isLoadOrStore(Dst));
   3824   Value *SrcPtr = getPointerOperand(Src);
   3825   Value *DstPtr = getPointerOperand(Dst);
   3826   assert(underlyingObjectsAlias(AA, F->getParent()->getDataLayout(), DstPtr,
   3827                                 SrcPtr) == MustAlias);
   3828 
   3829   // establish loop nesting levels
   3830   establishNestingLevels(Src, Dst);
   3831 
   3832   FullDependence Result(Src, Dst, false, CommonLevels);
   3833 
   3834   // See if there are GEPs we can use.
   3835   bool UsefulGEP = false;
   3836   GEPOperator *SrcGEP = dyn_cast<GEPOperator>(SrcPtr);
   3837   GEPOperator *DstGEP = dyn_cast<GEPOperator>(DstPtr);
   3838   if (SrcGEP && DstGEP &&
   3839       SrcGEP->getPointerOperandType() == DstGEP->getPointerOperandType()) {
   3840     const SCEV *SrcPtrSCEV = SE->getSCEV(SrcGEP->getPointerOperand());
   3841     const SCEV *DstPtrSCEV = SE->getSCEV(DstGEP->getPointerOperand());
   3842     UsefulGEP = isLoopInvariant(SrcPtrSCEV, LI->getLoopFor(Src->getParent())) &&
   3843                 isLoopInvariant(DstPtrSCEV, LI->getLoopFor(Dst->getParent())) &&
   3844                 (SrcGEP->getNumOperands() == DstGEP->getNumOperands());
   3845   }
   3846   unsigned Pairs = UsefulGEP ? SrcGEP->idx_end() - SrcGEP->idx_begin() : 1;
   3847   SmallVector<Subscript, 4> Pair(Pairs);
   3848   if (UsefulGEP) {
   3849     unsigned P = 0;
   3850     for (GEPOperator::const_op_iterator SrcIdx = SrcGEP->idx_begin(),
   3851            SrcEnd = SrcGEP->idx_end(),
   3852            DstIdx = DstGEP->idx_begin();
   3853          SrcIdx != SrcEnd;
   3854          ++SrcIdx, ++DstIdx, ++P) {
   3855       Pair[P].Src = SE->getSCEV(*SrcIdx);
   3856       Pair[P].Dst = SE->getSCEV(*DstIdx);
   3857     }
   3858   }
   3859   else {
   3860     const SCEV *SrcSCEV = SE->getSCEV(SrcPtr);
   3861     const SCEV *DstSCEV = SE->getSCEV(DstPtr);
   3862     Pair[0].Src = SrcSCEV;
   3863     Pair[0].Dst = DstSCEV;
   3864   }
   3865 
   3866   if (Delinearize && CommonLevels > 1) {
   3867     if (tryDelinearize(Src, Dst, Pair)) {
   3868       DEBUG(dbgs() << "    delinerized GEP\n");
   3869       Pairs = Pair.size();
   3870     }
   3871   }
   3872 
   3873   for (unsigned P = 0; P < Pairs; ++P) {
   3874     Pair[P].Loops.resize(MaxLevels + 1);
   3875     Pair[P].GroupLoops.resize(MaxLevels + 1);
   3876     Pair[P].Group.resize(Pairs);
   3877     removeMatchingExtensions(&Pair[P]);
   3878     Pair[P].Classification =
   3879       classifyPair(Pair[P].Src, LI->getLoopFor(Src->getParent()),
   3880                    Pair[P].Dst, LI->getLoopFor(Dst->getParent()),
   3881                    Pair[P].Loops);
   3882     Pair[P].GroupLoops = Pair[P].Loops;
   3883     Pair[P].Group.set(P);
   3884   }
   3885 
   3886   SmallBitVector Separable(Pairs);
   3887   SmallBitVector Coupled(Pairs);
   3888 
   3889   // partition subscripts into separable and minimally-coupled groups
   3890   for (unsigned SI = 0; SI < Pairs; ++SI) {
   3891     if (Pair[SI].Classification == Subscript::NonLinear) {
   3892       // ignore these, but collect loops for later
   3893       collectCommonLoops(Pair[SI].Src,
   3894                          LI->getLoopFor(Src->getParent()),
   3895                          Pair[SI].Loops);
   3896       collectCommonLoops(Pair[SI].Dst,
   3897                          LI->getLoopFor(Dst->getParent()),
   3898                          Pair[SI].Loops);
   3899       Result.Consistent = false;
   3900     }
   3901     else if (Pair[SI].Classification == Subscript::ZIV)
   3902       Separable.set(SI);
   3903     else {
   3904       // SIV, RDIV, or MIV, so check for coupled group
   3905       bool Done = true;
   3906       for (unsigned SJ = SI + 1; SJ < Pairs; ++SJ) {
   3907         SmallBitVector Intersection = Pair[SI].GroupLoops;
   3908         Intersection &= Pair[SJ].GroupLoops;
   3909         if (Intersection.any()) {
   3910           // accumulate set of all the loops in group
   3911           Pair[SJ].GroupLoops |= Pair[SI].GroupLoops;
   3912           // accumulate set of all subscripts in group
   3913           Pair[SJ].Group |= Pair[SI].Group;
   3914           Done = false;
   3915         }
   3916       }
   3917       if (Done) {
   3918         if (Pair[SI].Group.count() == 1)
   3919           Separable.set(SI);
   3920         else
   3921           Coupled.set(SI);
   3922       }
   3923     }
   3924   }
   3925 
   3926   Constraint NewConstraint;
   3927   NewConstraint.setAny(SE);
   3928 
   3929   // test separable subscripts
   3930   for (int SI = Separable.find_first(); SI >= 0; SI = Separable.find_next(SI)) {
   3931     switch (Pair[SI].Classification) {
   3932     case Subscript::SIV: {
   3933       unsigned Level;
   3934       const SCEV *SplitIter = nullptr;
   3935       (void) testSIV(Pair[SI].Src, Pair[SI].Dst, Level,
   3936                      Result, NewConstraint, SplitIter);
   3937       if (Level == SplitLevel) {
   3938         assert(SplitIter != nullptr);
   3939         return SplitIter;
   3940       }
   3941       break;
   3942     }
   3943     case Subscript::ZIV:
   3944     case Subscript::RDIV:
   3945     case Subscript::MIV:
   3946       break;
   3947     default:
   3948       llvm_unreachable("subscript has unexpected classification");
   3949     }
   3950   }
   3951 
   3952   if (Coupled.count()) {
   3953     // test coupled subscript groups
   3954     SmallVector<Constraint, 4> Constraints(MaxLevels + 1);
   3955     for (unsigned II = 0; II <= MaxLevels; ++II)
   3956       Constraints[II].setAny(SE);
   3957     for (int SI = Coupled.find_first(); SI >= 0; SI = Coupled.find_next(SI)) {
   3958       SmallBitVector Group(Pair[SI].Group);
   3959       SmallBitVector Sivs(Pairs);
   3960       SmallBitVector Mivs(Pairs);
   3961       SmallBitVector ConstrainedLevels(MaxLevels + 1);
   3962       for (int SJ = Group.find_first(); SJ >= 0; SJ = Group.find_next(SJ)) {
   3963         if (Pair[SJ].Classification == Subscript::SIV)
   3964           Sivs.set(SJ);
   3965         else
   3966           Mivs.set(SJ);
   3967       }
   3968       while (Sivs.any()) {
   3969         bool Changed = false;
   3970         for (int SJ = Sivs.find_first(); SJ >= 0; SJ = Sivs.find_next(SJ)) {
   3971           // SJ is an SIV subscript that's part of the current coupled group
   3972           unsigned Level;
   3973           const SCEV *SplitIter = nullptr;
   3974           (void) testSIV(Pair[SJ].Src, Pair[SJ].Dst, Level,
   3975                          Result, NewConstraint, SplitIter);
   3976           if (Level == SplitLevel && SplitIter)
   3977             return SplitIter;
   3978           ConstrainedLevels.set(Level);
   3979           if (intersectConstraints(&Constraints[Level], &NewConstraint))
   3980             Changed = true;
   3981           Sivs.reset(SJ);
   3982         }
   3983         if (Changed) {
   3984           // propagate, possibly creating new SIVs and ZIVs
   3985           for (int SJ = Mivs.find_first(); SJ >= 0; SJ = Mivs.find_next(SJ)) {
   3986             // SJ is an MIV subscript that's part of the current coupled group
   3987             if (propagate(Pair[SJ].Src, Pair[SJ].Dst,
   3988                           Pair[SJ].Loops, Constraints, Result.Consistent)) {
   3989               Pair[SJ].Classification =
   3990                 classifyPair(Pair[SJ].Src, LI->getLoopFor(Src->getParent()),
   3991                              Pair[SJ].Dst, LI->getLoopFor(Dst->getParent()),
   3992                              Pair[SJ].Loops);
   3993               switch (Pair[SJ].Classification) {
   3994               case Subscript::ZIV:
   3995                 Mivs.reset(SJ);
   3996                 break;
   3997               case Subscript::SIV:
   3998                 Sivs.set(SJ);
   3999                 Mivs.reset(SJ);
   4000                 break;
   4001               case Subscript::RDIV:
   4002               case Subscript::MIV:
   4003                 break;
   4004               default:
   4005                 llvm_unreachable("bad subscript classification");
   4006               }
   4007             }
   4008           }
   4009         }
   4010       }
   4011     }
   4012   }
   4013   llvm_unreachable("somehow reached end of routine");
   4014   return nullptr;
   4015 }
   4016