1 //===-- AtomicExpandPass.cpp - Expand atomic instructions -------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains a pass (at IR level) to replace atomic instructions with 11 // target specific instruction which implement the same semantics in a way 12 // which better fits the target backend. This can include the use of either 13 // (intrinsic-based) load-linked/store-conditional loops, AtomicCmpXchg, or 14 // type coercions. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "llvm/CodeGen/AtomicExpandUtils.h" 19 #include "llvm/CodeGen/Passes.h" 20 #include "llvm/IR/Function.h" 21 #include "llvm/IR/IRBuilder.h" 22 #include "llvm/IR/InstIterator.h" 23 #include "llvm/IR/Instructions.h" 24 #include "llvm/IR/Intrinsics.h" 25 #include "llvm/IR/Module.h" 26 #include "llvm/Support/Debug.h" 27 #include "llvm/Support/raw_ostream.h" 28 #include "llvm/Target/TargetLowering.h" 29 #include "llvm/Target/TargetMachine.h" 30 #include "llvm/Target/TargetSubtargetInfo.h" 31 32 using namespace llvm; 33 34 #define DEBUG_TYPE "atomic-expand" 35 36 namespace { 37 class AtomicExpand: public FunctionPass { 38 const TargetMachine *TM; 39 const TargetLowering *TLI; 40 public: 41 static char ID; // Pass identification, replacement for typeid 42 explicit AtomicExpand(const TargetMachine *TM = nullptr) 43 : FunctionPass(ID), TM(TM), TLI(nullptr) { 44 initializeAtomicExpandPass(*PassRegistry::getPassRegistry()); 45 } 46 47 bool runOnFunction(Function &F) override; 48 49 private: 50 bool bracketInstWithFences(Instruction *I, AtomicOrdering Order, 51 bool IsStore, bool IsLoad); 52 IntegerType *getCorrespondingIntegerType(Type *T, const DataLayout &DL); 53 LoadInst *convertAtomicLoadToIntegerType(LoadInst *LI); 54 bool tryExpandAtomicLoad(LoadInst *LI); 55 bool expandAtomicLoadToLL(LoadInst *LI); 56 bool expandAtomicLoadToCmpXchg(LoadInst *LI); 57 StoreInst *convertAtomicStoreToIntegerType(StoreInst *SI); 58 bool expandAtomicStore(StoreInst *SI); 59 bool tryExpandAtomicRMW(AtomicRMWInst *AI); 60 bool expandAtomicOpToLLSC( 61 Instruction *I, Value *Addr, AtomicOrdering MemOpOrder, 62 std::function<Value *(IRBuilder<> &, Value *)> PerformOp); 63 bool expandAtomicCmpXchg(AtomicCmpXchgInst *CI); 64 bool isIdempotentRMW(AtomicRMWInst *AI); 65 bool simplifyIdempotentRMW(AtomicRMWInst *AI); 66 }; 67 } 68 69 char AtomicExpand::ID = 0; 70 char &llvm::AtomicExpandID = AtomicExpand::ID; 71 INITIALIZE_TM_PASS(AtomicExpand, "atomic-expand", 72 "Expand Atomic calls in terms of either load-linked & store-conditional or cmpxchg", 73 false, false) 74 75 FunctionPass *llvm::createAtomicExpandPass(const TargetMachine *TM) { 76 return new AtomicExpand(TM); 77 } 78 79 bool AtomicExpand::runOnFunction(Function &F) { 80 if (!TM || !TM->getSubtargetImpl(F)->enableAtomicExpand()) 81 return false; 82 TLI = TM->getSubtargetImpl(F)->getTargetLowering(); 83 84 SmallVector<Instruction *, 1> AtomicInsts; 85 86 // Changing control-flow while iterating through it is a bad idea, so gather a 87 // list of all atomic instructions before we start. 88 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I) { 89 if (I->isAtomic()) 90 AtomicInsts.push_back(&*I); 91 } 92 93 bool MadeChange = false; 94 for (auto I : AtomicInsts) { 95 auto LI = dyn_cast<LoadInst>(I); 96 auto SI = dyn_cast<StoreInst>(I); 97 auto RMWI = dyn_cast<AtomicRMWInst>(I); 98 auto CASI = dyn_cast<AtomicCmpXchgInst>(I); 99 assert((LI || SI || RMWI || CASI || isa<FenceInst>(I)) && 100 "Unknown atomic instruction"); 101 102 auto FenceOrdering = Monotonic; 103 bool IsStore, IsLoad; 104 if (TLI->getInsertFencesForAtomic()) { 105 if (LI && isAtLeastAcquire(LI->getOrdering())) { 106 FenceOrdering = LI->getOrdering(); 107 LI->setOrdering(Monotonic); 108 IsStore = false; 109 IsLoad = true; 110 } else if (SI && isAtLeastRelease(SI->getOrdering())) { 111 FenceOrdering = SI->getOrdering(); 112 SI->setOrdering(Monotonic); 113 IsStore = true; 114 IsLoad = false; 115 } else if (RMWI && (isAtLeastRelease(RMWI->getOrdering()) || 116 isAtLeastAcquire(RMWI->getOrdering()))) { 117 FenceOrdering = RMWI->getOrdering(); 118 RMWI->setOrdering(Monotonic); 119 IsStore = IsLoad = true; 120 } else if (CASI && !TLI->shouldExpandAtomicCmpXchgInIR(CASI) && 121 (isAtLeastRelease(CASI->getSuccessOrdering()) || 122 isAtLeastAcquire(CASI->getSuccessOrdering()))) { 123 // If a compare and swap is lowered to LL/SC, we can do smarter fence 124 // insertion, with a stronger one on the success path than on the 125 // failure path. As a result, fence insertion is directly done by 126 // expandAtomicCmpXchg in that case. 127 FenceOrdering = CASI->getSuccessOrdering(); 128 CASI->setSuccessOrdering(Monotonic); 129 CASI->setFailureOrdering(Monotonic); 130 IsStore = IsLoad = true; 131 } 132 133 if (FenceOrdering != Monotonic) { 134 MadeChange |= bracketInstWithFences(I, FenceOrdering, IsStore, IsLoad); 135 } 136 } 137 138 if (LI) { 139 if (LI->getType()->isFloatingPointTy()) { 140 // TODO: add a TLI hook to control this so that each target can 141 // convert to lowering the original type one at a time. 142 LI = convertAtomicLoadToIntegerType(LI); 143 assert(LI->getType()->isIntegerTy() && "invariant broken"); 144 MadeChange = true; 145 } 146 147 MadeChange |= tryExpandAtomicLoad(LI); 148 } else if (SI) { 149 if (SI->getValueOperand()->getType()->isFloatingPointTy()) { 150 // TODO: add a TLI hook to control this so that each target can 151 // convert to lowering the original type one at a time. 152 SI = convertAtomicStoreToIntegerType(SI); 153 assert(SI->getValueOperand()->getType()->isIntegerTy() && 154 "invariant broken"); 155 MadeChange = true; 156 } 157 158 if (TLI->shouldExpandAtomicStoreInIR(SI)) 159 MadeChange |= expandAtomicStore(SI); 160 } else if (RMWI) { 161 // There are two different ways of expanding RMW instructions: 162 // - into a load if it is idempotent 163 // - into a Cmpxchg/LL-SC loop otherwise 164 // we try them in that order. 165 166 if (isIdempotentRMW(RMWI) && simplifyIdempotentRMW(RMWI)) { 167 MadeChange = true; 168 } else { 169 MadeChange |= tryExpandAtomicRMW(RMWI); 170 } 171 } else if (CASI && TLI->shouldExpandAtomicCmpXchgInIR(CASI)) { 172 MadeChange |= expandAtomicCmpXchg(CASI); 173 } 174 } 175 return MadeChange; 176 } 177 178 bool AtomicExpand::bracketInstWithFences(Instruction *I, AtomicOrdering Order, 179 bool IsStore, bool IsLoad) { 180 IRBuilder<> Builder(I); 181 182 auto LeadingFence = TLI->emitLeadingFence(Builder, Order, IsStore, IsLoad); 183 184 auto TrailingFence = TLI->emitTrailingFence(Builder, Order, IsStore, IsLoad); 185 // The trailing fence is emitted before the instruction instead of after 186 // because there is no easy way of setting Builder insertion point after 187 // an instruction. So we must erase it from the BB, and insert it back 188 // in the right place. 189 // We have a guard here because not every atomic operation generates a 190 // trailing fence. 191 if (TrailingFence) { 192 TrailingFence->removeFromParent(); 193 TrailingFence->insertAfter(I); 194 } 195 196 return (LeadingFence || TrailingFence); 197 } 198 199 /// Get the iX type with the same bitwidth as T. 200 IntegerType *AtomicExpand::getCorrespondingIntegerType(Type *T, 201 const DataLayout &DL) { 202 EVT VT = TLI->getValueType(DL, T); 203 unsigned BitWidth = VT.getStoreSizeInBits(); 204 assert(BitWidth == VT.getSizeInBits() && "must be a power of two"); 205 return IntegerType::get(T->getContext(), BitWidth); 206 } 207 208 /// Convert an atomic load of a non-integral type to an integer load of the 209 /// equivelent bitwidth. See the function comment on 210 /// convertAtomicStoreToIntegerType for background. 211 LoadInst *AtomicExpand::convertAtomicLoadToIntegerType(LoadInst *LI) { 212 auto *M = LI->getModule(); 213 Type *NewTy = getCorrespondingIntegerType(LI->getType(), 214 M->getDataLayout()); 215 216 IRBuilder<> Builder(LI); 217 218 Value *Addr = LI->getPointerOperand(); 219 Type *PT = PointerType::get(NewTy, 220 Addr->getType()->getPointerAddressSpace()); 221 Value *NewAddr = Builder.CreateBitCast(Addr, PT); 222 223 auto *NewLI = Builder.CreateLoad(NewAddr); 224 NewLI->setAlignment(LI->getAlignment()); 225 NewLI->setVolatile(LI->isVolatile()); 226 NewLI->setAtomic(LI->getOrdering(), LI->getSynchScope()); 227 DEBUG(dbgs() << "Replaced " << *LI << " with " << *NewLI << "\n"); 228 229 Value *NewVal = Builder.CreateBitCast(NewLI, LI->getType()); 230 LI->replaceAllUsesWith(NewVal); 231 LI->eraseFromParent(); 232 return NewLI; 233 } 234 235 bool AtomicExpand::tryExpandAtomicLoad(LoadInst *LI) { 236 switch (TLI->shouldExpandAtomicLoadInIR(LI)) { 237 case TargetLoweringBase::AtomicExpansionKind::None: 238 return false; 239 case TargetLoweringBase::AtomicExpansionKind::LLSC: 240 return expandAtomicOpToLLSC( 241 LI, LI->getPointerOperand(), LI->getOrdering(), 242 [](IRBuilder<> &Builder, Value *Loaded) { return Loaded; }); 243 case TargetLoweringBase::AtomicExpansionKind::LLOnly: 244 return expandAtomicLoadToLL(LI); 245 case TargetLoweringBase::AtomicExpansionKind::CmpXChg: 246 return expandAtomicLoadToCmpXchg(LI); 247 } 248 llvm_unreachable("Unhandled case in tryExpandAtomicLoad"); 249 } 250 251 bool AtomicExpand::expandAtomicLoadToLL(LoadInst *LI) { 252 IRBuilder<> Builder(LI); 253 254 // On some architectures, load-linked instructions are atomic for larger 255 // sizes than normal loads. For example, the only 64-bit load guaranteed 256 // to be single-copy atomic by ARM is an ldrexd (A3.5.3). 257 Value *Val = 258 TLI->emitLoadLinked(Builder, LI->getPointerOperand(), LI->getOrdering()); 259 TLI->emitAtomicCmpXchgNoStoreLLBalance(Builder); 260 261 LI->replaceAllUsesWith(Val); 262 LI->eraseFromParent(); 263 264 return true; 265 } 266 267 bool AtomicExpand::expandAtomicLoadToCmpXchg(LoadInst *LI) { 268 IRBuilder<> Builder(LI); 269 AtomicOrdering Order = LI->getOrdering(); 270 Value *Addr = LI->getPointerOperand(); 271 Type *Ty = cast<PointerType>(Addr->getType())->getElementType(); 272 Constant *DummyVal = Constant::getNullValue(Ty); 273 274 Value *Pair = Builder.CreateAtomicCmpXchg( 275 Addr, DummyVal, DummyVal, Order, 276 AtomicCmpXchgInst::getStrongestFailureOrdering(Order)); 277 Value *Loaded = Builder.CreateExtractValue(Pair, 0, "loaded"); 278 279 LI->replaceAllUsesWith(Loaded); 280 LI->eraseFromParent(); 281 282 return true; 283 } 284 285 /// Convert an atomic store of a non-integral type to an integer store of the 286 /// equivelent bitwidth. We used to not support floating point or vector 287 /// atomics in the IR at all. The backends learned to deal with the bitcast 288 /// idiom because that was the only way of expressing the notion of a atomic 289 /// float or vector store. The long term plan is to teach each backend to 290 /// instruction select from the original atomic store, but as a migration 291 /// mechanism, we convert back to the old format which the backends understand. 292 /// Each backend will need individual work to recognize the new format. 293 StoreInst *AtomicExpand::convertAtomicStoreToIntegerType(StoreInst *SI) { 294 IRBuilder<> Builder(SI); 295 auto *M = SI->getModule(); 296 Type *NewTy = getCorrespondingIntegerType(SI->getValueOperand()->getType(), 297 M->getDataLayout()); 298 Value *NewVal = Builder.CreateBitCast(SI->getValueOperand(), NewTy); 299 300 Value *Addr = SI->getPointerOperand(); 301 Type *PT = PointerType::get(NewTy, 302 Addr->getType()->getPointerAddressSpace()); 303 Value *NewAddr = Builder.CreateBitCast(Addr, PT); 304 305 StoreInst *NewSI = Builder.CreateStore(NewVal, NewAddr); 306 NewSI->setAlignment(SI->getAlignment()); 307 NewSI->setVolatile(SI->isVolatile()); 308 NewSI->setAtomic(SI->getOrdering(), SI->getSynchScope()); 309 DEBUG(dbgs() << "Replaced " << *SI << " with " << *NewSI << "\n"); 310 SI->eraseFromParent(); 311 return NewSI; 312 } 313 314 bool AtomicExpand::expandAtomicStore(StoreInst *SI) { 315 // This function is only called on atomic stores that are too large to be 316 // atomic if implemented as a native store. So we replace them by an 317 // atomic swap, that can be implemented for example as a ldrex/strex on ARM 318 // or lock cmpxchg8/16b on X86, as these are atomic for larger sizes. 319 // It is the responsibility of the target to only signal expansion via 320 // shouldExpandAtomicRMW in cases where this is required and possible. 321 IRBuilder<> Builder(SI); 322 AtomicRMWInst *AI = 323 Builder.CreateAtomicRMW(AtomicRMWInst::Xchg, SI->getPointerOperand(), 324 SI->getValueOperand(), SI->getOrdering()); 325 SI->eraseFromParent(); 326 327 // Now we have an appropriate swap instruction, lower it as usual. 328 return tryExpandAtomicRMW(AI); 329 } 330 331 static void createCmpXchgInstFun(IRBuilder<> &Builder, Value *Addr, 332 Value *Loaded, Value *NewVal, 333 AtomicOrdering MemOpOrder, 334 Value *&Success, Value *&NewLoaded) { 335 Value* Pair = Builder.CreateAtomicCmpXchg( 336 Addr, Loaded, NewVal, MemOpOrder, 337 AtomicCmpXchgInst::getStrongestFailureOrdering(MemOpOrder)); 338 Success = Builder.CreateExtractValue(Pair, 1, "success"); 339 NewLoaded = Builder.CreateExtractValue(Pair, 0, "newloaded"); 340 } 341 342 /// Emit IR to implement the given atomicrmw operation on values in registers, 343 /// returning the new value. 344 static Value *performAtomicOp(AtomicRMWInst::BinOp Op, IRBuilder<> &Builder, 345 Value *Loaded, Value *Inc) { 346 Value *NewVal; 347 switch (Op) { 348 case AtomicRMWInst::Xchg: 349 return Inc; 350 case AtomicRMWInst::Add: 351 return Builder.CreateAdd(Loaded, Inc, "new"); 352 case AtomicRMWInst::Sub: 353 return Builder.CreateSub(Loaded, Inc, "new"); 354 case AtomicRMWInst::And: 355 return Builder.CreateAnd(Loaded, Inc, "new"); 356 case AtomicRMWInst::Nand: 357 return Builder.CreateNot(Builder.CreateAnd(Loaded, Inc), "new"); 358 case AtomicRMWInst::Or: 359 return Builder.CreateOr(Loaded, Inc, "new"); 360 case AtomicRMWInst::Xor: 361 return Builder.CreateXor(Loaded, Inc, "new"); 362 case AtomicRMWInst::Max: 363 NewVal = Builder.CreateICmpSGT(Loaded, Inc); 364 return Builder.CreateSelect(NewVal, Loaded, Inc, "new"); 365 case AtomicRMWInst::Min: 366 NewVal = Builder.CreateICmpSLE(Loaded, Inc); 367 return Builder.CreateSelect(NewVal, Loaded, Inc, "new"); 368 case AtomicRMWInst::UMax: 369 NewVal = Builder.CreateICmpUGT(Loaded, Inc); 370 return Builder.CreateSelect(NewVal, Loaded, Inc, "new"); 371 case AtomicRMWInst::UMin: 372 NewVal = Builder.CreateICmpULE(Loaded, Inc); 373 return Builder.CreateSelect(NewVal, Loaded, Inc, "new"); 374 default: 375 llvm_unreachable("Unknown atomic op"); 376 } 377 } 378 379 bool AtomicExpand::tryExpandAtomicRMW(AtomicRMWInst *AI) { 380 switch (TLI->shouldExpandAtomicRMWInIR(AI)) { 381 case TargetLoweringBase::AtomicExpansionKind::None: 382 return false; 383 case TargetLoweringBase::AtomicExpansionKind::LLSC: 384 return expandAtomicOpToLLSC(AI, AI->getPointerOperand(), AI->getOrdering(), 385 [&](IRBuilder<> &Builder, Value *Loaded) { 386 return performAtomicOp(AI->getOperation(), 387 Builder, Loaded, 388 AI->getValOperand()); 389 }); 390 case TargetLoweringBase::AtomicExpansionKind::CmpXChg: 391 return expandAtomicRMWToCmpXchg(AI, createCmpXchgInstFun); 392 default: 393 llvm_unreachable("Unhandled case in tryExpandAtomicRMW"); 394 } 395 } 396 397 bool AtomicExpand::expandAtomicOpToLLSC( 398 Instruction *I, Value *Addr, AtomicOrdering MemOpOrder, 399 std::function<Value *(IRBuilder<> &, Value *)> PerformOp) { 400 BasicBlock *BB = I->getParent(); 401 Function *F = BB->getParent(); 402 LLVMContext &Ctx = F->getContext(); 403 404 // Given: atomicrmw some_op iN* %addr, iN %incr ordering 405 // 406 // The standard expansion we produce is: 407 // [...] 408 // fence? 409 // atomicrmw.start: 410 // %loaded = @load.linked(%addr) 411 // %new = some_op iN %loaded, %incr 412 // %stored = @store_conditional(%new, %addr) 413 // %try_again = icmp i32 ne %stored, 0 414 // br i1 %try_again, label %loop, label %atomicrmw.end 415 // atomicrmw.end: 416 // fence? 417 // [...] 418 BasicBlock *ExitBB = BB->splitBasicBlock(I->getIterator(), "atomicrmw.end"); 419 BasicBlock *LoopBB = BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB); 420 421 // This grabs the DebugLoc from I. 422 IRBuilder<> Builder(I); 423 424 // The split call above "helpfully" added a branch at the end of BB (to the 425 // wrong place), but we might want a fence too. It's easiest to just remove 426 // the branch entirely. 427 std::prev(BB->end())->eraseFromParent(); 428 Builder.SetInsertPoint(BB); 429 Builder.CreateBr(LoopBB); 430 431 // Start the main loop block now that we've taken care of the preliminaries. 432 Builder.SetInsertPoint(LoopBB); 433 Value *Loaded = TLI->emitLoadLinked(Builder, Addr, MemOpOrder); 434 435 Value *NewVal = PerformOp(Builder, Loaded); 436 437 Value *StoreSuccess = 438 TLI->emitStoreConditional(Builder, NewVal, Addr, MemOpOrder); 439 Value *TryAgain = Builder.CreateICmpNE( 440 StoreSuccess, ConstantInt::get(IntegerType::get(Ctx, 32), 0), "tryagain"); 441 Builder.CreateCondBr(TryAgain, LoopBB, ExitBB); 442 443 Builder.SetInsertPoint(ExitBB, ExitBB->begin()); 444 445 I->replaceAllUsesWith(Loaded); 446 I->eraseFromParent(); 447 448 return true; 449 } 450 451 bool AtomicExpand::expandAtomicCmpXchg(AtomicCmpXchgInst *CI) { 452 AtomicOrdering SuccessOrder = CI->getSuccessOrdering(); 453 AtomicOrdering FailureOrder = CI->getFailureOrdering(); 454 Value *Addr = CI->getPointerOperand(); 455 BasicBlock *BB = CI->getParent(); 456 Function *F = BB->getParent(); 457 LLVMContext &Ctx = F->getContext(); 458 // If getInsertFencesForAtomic() returns true, then the target does not want 459 // to deal with memory orders, and emitLeading/TrailingFence should take care 460 // of everything. Otherwise, emitLeading/TrailingFence are no-op and we 461 // should preserve the ordering. 462 AtomicOrdering MemOpOrder = 463 TLI->getInsertFencesForAtomic() ? Monotonic : SuccessOrder; 464 465 // Given: cmpxchg some_op iN* %addr, iN %desired, iN %new success_ord fail_ord 466 // 467 // The full expansion we produce is: 468 // [...] 469 // fence? 470 // cmpxchg.start: 471 // %loaded = @load.linked(%addr) 472 // %should_store = icmp eq %loaded, %desired 473 // br i1 %should_store, label %cmpxchg.trystore, 474 // label %cmpxchg.nostore 475 // cmpxchg.trystore: 476 // %stored = @store_conditional(%new, %addr) 477 // %success = icmp eq i32 %stored, 0 478 // br i1 %success, label %cmpxchg.success, label %loop/%cmpxchg.failure 479 // cmpxchg.success: 480 // fence? 481 // br label %cmpxchg.end 482 // cmpxchg.nostore: 483 // @load_linked_fail_balance()? 484 // br label %cmpxchg.failure 485 // cmpxchg.failure: 486 // fence? 487 // br label %cmpxchg.end 488 // cmpxchg.end: 489 // %success = phi i1 [true, %cmpxchg.success], [false, %cmpxchg.failure] 490 // %restmp = insertvalue { iN, i1 } undef, iN %loaded, 0 491 // %res = insertvalue { iN, i1 } %restmp, i1 %success, 1 492 // [...] 493 BasicBlock *ExitBB = BB->splitBasicBlock(CI->getIterator(), "cmpxchg.end"); 494 auto FailureBB = BasicBlock::Create(Ctx, "cmpxchg.failure", F, ExitBB); 495 auto NoStoreBB = BasicBlock::Create(Ctx, "cmpxchg.nostore", F, FailureBB); 496 auto SuccessBB = BasicBlock::Create(Ctx, "cmpxchg.success", F, NoStoreBB); 497 auto TryStoreBB = BasicBlock::Create(Ctx, "cmpxchg.trystore", F, SuccessBB); 498 auto LoopBB = BasicBlock::Create(Ctx, "cmpxchg.start", F, TryStoreBB); 499 500 // This grabs the DebugLoc from CI 501 IRBuilder<> Builder(CI); 502 503 // The split call above "helpfully" added a branch at the end of BB (to the 504 // wrong place), but we might want a fence too. It's easiest to just remove 505 // the branch entirely. 506 std::prev(BB->end())->eraseFromParent(); 507 Builder.SetInsertPoint(BB); 508 TLI->emitLeadingFence(Builder, SuccessOrder, /*IsStore=*/true, 509 /*IsLoad=*/true); 510 Builder.CreateBr(LoopBB); 511 512 // Start the main loop block now that we've taken care of the preliminaries. 513 Builder.SetInsertPoint(LoopBB); 514 Value *Loaded = TLI->emitLoadLinked(Builder, Addr, MemOpOrder); 515 Value *ShouldStore = 516 Builder.CreateICmpEQ(Loaded, CI->getCompareOperand(), "should_store"); 517 518 // If the cmpxchg doesn't actually need any ordering when it fails, we can 519 // jump straight past that fence instruction (if it exists). 520 Builder.CreateCondBr(ShouldStore, TryStoreBB, NoStoreBB); 521 522 Builder.SetInsertPoint(TryStoreBB); 523 Value *StoreSuccess = TLI->emitStoreConditional( 524 Builder, CI->getNewValOperand(), Addr, MemOpOrder); 525 StoreSuccess = Builder.CreateICmpEQ( 526 StoreSuccess, ConstantInt::get(Type::getInt32Ty(Ctx), 0), "success"); 527 Builder.CreateCondBr(StoreSuccess, SuccessBB, 528 CI->isWeak() ? FailureBB : LoopBB); 529 530 // Make sure later instructions don't get reordered with a fence if necessary. 531 Builder.SetInsertPoint(SuccessBB); 532 TLI->emitTrailingFence(Builder, SuccessOrder, /*IsStore=*/true, 533 /*IsLoad=*/true); 534 Builder.CreateBr(ExitBB); 535 536 Builder.SetInsertPoint(NoStoreBB); 537 // In the failing case, where we don't execute the store-conditional, the 538 // target might want to balance out the load-linked with a dedicated 539 // instruction (e.g., on ARM, clearing the exclusive monitor). 540 TLI->emitAtomicCmpXchgNoStoreLLBalance(Builder); 541 Builder.CreateBr(FailureBB); 542 543 Builder.SetInsertPoint(FailureBB); 544 TLI->emitTrailingFence(Builder, FailureOrder, /*IsStore=*/true, 545 /*IsLoad=*/true); 546 Builder.CreateBr(ExitBB); 547 548 // Finally, we have control-flow based knowledge of whether the cmpxchg 549 // succeeded or not. We expose this to later passes by converting any 550 // subsequent "icmp eq/ne %loaded, %oldval" into a use of an appropriate PHI. 551 552 // Setup the builder so we can create any PHIs we need. 553 Builder.SetInsertPoint(ExitBB, ExitBB->begin()); 554 PHINode *Success = Builder.CreatePHI(Type::getInt1Ty(Ctx), 2); 555 Success->addIncoming(ConstantInt::getTrue(Ctx), SuccessBB); 556 Success->addIncoming(ConstantInt::getFalse(Ctx), FailureBB); 557 558 // Look for any users of the cmpxchg that are just comparing the loaded value 559 // against the desired one, and replace them with the CFG-derived version. 560 SmallVector<ExtractValueInst *, 2> PrunedInsts; 561 for (auto User : CI->users()) { 562 ExtractValueInst *EV = dyn_cast<ExtractValueInst>(User); 563 if (!EV) 564 continue; 565 566 assert(EV->getNumIndices() == 1 && EV->getIndices()[0] <= 1 && 567 "weird extraction from { iN, i1 }"); 568 569 if (EV->getIndices()[0] == 0) 570 EV->replaceAllUsesWith(Loaded); 571 else 572 EV->replaceAllUsesWith(Success); 573 574 PrunedInsts.push_back(EV); 575 } 576 577 // We can remove the instructions now we're no longer iterating through them. 578 for (auto EV : PrunedInsts) 579 EV->eraseFromParent(); 580 581 if (!CI->use_empty()) { 582 // Some use of the full struct return that we don't understand has happened, 583 // so we've got to reconstruct it properly. 584 Value *Res; 585 Res = Builder.CreateInsertValue(UndefValue::get(CI->getType()), Loaded, 0); 586 Res = Builder.CreateInsertValue(Res, Success, 1); 587 588 CI->replaceAllUsesWith(Res); 589 } 590 591 CI->eraseFromParent(); 592 return true; 593 } 594 595 bool AtomicExpand::isIdempotentRMW(AtomicRMWInst* RMWI) { 596 auto C = dyn_cast<ConstantInt>(RMWI->getValOperand()); 597 if(!C) 598 return false; 599 600 AtomicRMWInst::BinOp Op = RMWI->getOperation(); 601 switch(Op) { 602 case AtomicRMWInst::Add: 603 case AtomicRMWInst::Sub: 604 case AtomicRMWInst::Or: 605 case AtomicRMWInst::Xor: 606 return C->isZero(); 607 case AtomicRMWInst::And: 608 return C->isMinusOne(); 609 // FIXME: we could also treat Min/Max/UMin/UMax by the INT_MIN/INT_MAX/... 610 default: 611 return false; 612 } 613 } 614 615 bool AtomicExpand::simplifyIdempotentRMW(AtomicRMWInst* RMWI) { 616 if (auto ResultingLoad = TLI->lowerIdempotentRMWIntoFencedLoad(RMWI)) { 617 tryExpandAtomicLoad(ResultingLoad); 618 return true; 619 } 620 return false; 621 } 622 623 bool llvm::expandAtomicRMWToCmpXchg(AtomicRMWInst *AI, 624 CreateCmpXchgInstFun CreateCmpXchg) { 625 assert(AI); 626 627 AtomicOrdering MemOpOrder = 628 AI->getOrdering() == Unordered ? Monotonic : AI->getOrdering(); 629 Value *Addr = AI->getPointerOperand(); 630 BasicBlock *BB = AI->getParent(); 631 Function *F = BB->getParent(); 632 LLVMContext &Ctx = F->getContext(); 633 634 // Given: atomicrmw some_op iN* %addr, iN %incr ordering 635 // 636 // The standard expansion we produce is: 637 // [...] 638 // %init_loaded = load atomic iN* %addr 639 // br label %loop 640 // loop: 641 // %loaded = phi iN [ %init_loaded, %entry ], [ %new_loaded, %loop ] 642 // %new = some_op iN %loaded, %incr 643 // %pair = cmpxchg iN* %addr, iN %loaded, iN %new 644 // %new_loaded = extractvalue { iN, i1 } %pair, 0 645 // %success = extractvalue { iN, i1 } %pair, 1 646 // br i1 %success, label %atomicrmw.end, label %loop 647 // atomicrmw.end: 648 // [...] 649 BasicBlock *ExitBB = BB->splitBasicBlock(AI->getIterator(), "atomicrmw.end"); 650 BasicBlock *LoopBB = BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB); 651 652 // This grabs the DebugLoc from AI. 653 IRBuilder<> Builder(AI); 654 655 // The split call above "helpfully" added a branch at the end of BB (to the 656 // wrong place), but we want a load. It's easiest to just remove 657 // the branch entirely. 658 std::prev(BB->end())->eraseFromParent(); 659 Builder.SetInsertPoint(BB); 660 LoadInst *InitLoaded = Builder.CreateLoad(Addr); 661 // Atomics require at least natural alignment. 662 InitLoaded->setAlignment(AI->getType()->getPrimitiveSizeInBits() / 8); 663 Builder.CreateBr(LoopBB); 664 665 // Start the main loop block now that we've taken care of the preliminaries. 666 Builder.SetInsertPoint(LoopBB); 667 PHINode *Loaded = Builder.CreatePHI(AI->getType(), 2, "loaded"); 668 Loaded->addIncoming(InitLoaded, BB); 669 670 Value *NewVal = 671 performAtomicOp(AI->getOperation(), Builder, Loaded, AI->getValOperand()); 672 673 Value *NewLoaded = nullptr; 674 Value *Success = nullptr; 675 676 CreateCmpXchg(Builder, Addr, Loaded, NewVal, MemOpOrder, 677 Success, NewLoaded); 678 assert(Success && NewLoaded); 679 680 Loaded->addIncoming(NewLoaded, LoopBB); 681 682 Builder.CreateCondBr(Success, ExitBB, LoopBB); 683 684 Builder.SetInsertPoint(ExitBB, ExitBB->begin()); 685 686 AI->replaceAllUsesWith(NewLoaded); 687 AI->eraseFromParent(); 688 689 return true; 690 } 691