1 /* 2 * Copyright 2011 Google Inc. 3 * 4 * Use of this source code is governed by a BSD-style license that can be 5 * found in the LICENSE file. 6 */ 7 8 #include "SkBitmapCache.h" 9 #include "SkBitmapController.h" 10 #include "SkBitmapProcState.h" 11 #include "SkColorPriv.h" 12 #include "SkFilterProc.h" 13 #include "SkPaint.h" 14 #include "SkShader.h" // for tilemodes 15 #include "SkUtilsArm.h" 16 #include "SkBitmapScaler.h" 17 #include "SkMipMap.h" 18 #include "SkPixelRef.h" 19 #include "SkImageEncoder.h" 20 #include "SkResourceCache.h" 21 22 #if !SK_ARM_NEON_IS_NONE 23 // These are defined in src/opts/SkBitmapProcState_arm_neon.cpp 24 extern const SkBitmapProcState::SampleProc32 gSkBitmapProcStateSample32_neon[]; 25 extern void S16_D16_filter_DX_neon(const SkBitmapProcState&, const uint32_t*, int, uint16_t*); 26 extern void Clamp_S16_D16_filter_DX_shaderproc_neon(const void *, int, int, uint16_t*, int); 27 extern void Repeat_S16_D16_filter_DX_shaderproc_neon(const void *, int, int, uint16_t*, int); 28 extern void SI8_opaque_D32_filter_DX_neon(const SkBitmapProcState&, const uint32_t*, int, SkPMColor*); 29 extern void SI8_opaque_D32_filter_DX_shaderproc_neon(const void *, int, int, uint32_t*, int); 30 extern void Clamp_SI8_opaque_D32_filter_DX_shaderproc_neon(const void*, int, int, uint32_t*, int); 31 #endif 32 33 extern void Clamp_S32_opaque_D32_nofilter_DX_shaderproc(const void*, int, int, uint32_t*, int); 34 35 #define NAME_WRAP(x) x 36 #include "SkBitmapProcState_filter.h" 37 #include "SkBitmapProcState_procs.h" 38 39 SkBitmapProcState::SkBitmapProcState(const SkBitmapProvider& provider, 40 SkShader::TileMode tmx, SkShader::TileMode tmy) 41 : fProvider(provider) 42 , fBMState(nullptr) 43 { 44 fTileModeX = tmx; 45 fTileModeY = tmy; 46 } 47 48 SkBitmapProcState::SkBitmapProcState(const SkBitmap& bm, 49 SkShader::TileMode tmx, SkShader::TileMode tmy) 50 : fProvider(SkBitmapProvider(bm)) 51 , fBMState(nullptr) 52 { 53 fTileModeX = tmx; 54 fTileModeY = tmy; 55 } 56 57 SkBitmapProcState::~SkBitmapProcState() { 58 SkInPlaceDeleteCheck(fBMState, fBMStateStorage.get()); 59 } 60 61 /////////////////////////////////////////////////////////////////////////////// 62 63 // true iff the matrix contains, at most, scale and translate elements 64 static bool matrix_only_scale_translate(const SkMatrix& m) { 65 return m.getType() <= (SkMatrix::kScale_Mask | SkMatrix::kTranslate_Mask); 66 } 67 68 /** 69 * For the purposes of drawing bitmaps, if a matrix is "almost" translate 70 * go ahead and treat it as if it were, so that subsequent code can go fast. 71 */ 72 static bool just_trans_clamp(const SkMatrix& matrix, const SkPixmap& pixmap) { 73 SkASSERT(matrix_only_scale_translate(matrix)); 74 75 if (matrix.getType() & SkMatrix::kScale_Mask) { 76 SkRect dst; 77 SkRect src = SkRect::Make(pixmap.bounds()); 78 79 // Can't call mapRect(), since that will fix up inverted rectangles, 80 // e.g. when scale is negative, and we don't want to return true for 81 // those. 82 matrix.mapPoints(SkTCast<SkPoint*>(&dst), 83 SkTCast<const SkPoint*>(&src), 84 2); 85 86 // Now round all 4 edges to device space, and then compare the device 87 // width/height to the original. Note: we must map all 4 and subtract 88 // rather than map the "width" and compare, since we care about the 89 // phase (in pixel space) that any translate in the matrix might impart. 90 SkIRect idst; 91 dst.round(&idst); 92 return idst.width() == pixmap.width() && idst.height() == pixmap.height(); 93 } 94 // if we got here, we're either kTranslate_Mask or identity 95 return true; 96 } 97 98 static bool just_trans_general(const SkMatrix& matrix) { 99 SkASSERT(matrix_only_scale_translate(matrix)); 100 101 if (matrix.getType() & SkMatrix::kScale_Mask) { 102 const SkScalar tol = SK_Scalar1 / 32768; 103 104 if (!SkScalarNearlyZero(matrix[SkMatrix::kMScaleX] - SK_Scalar1, tol)) { 105 return false; 106 } 107 if (!SkScalarNearlyZero(matrix[SkMatrix::kMScaleY] - SK_Scalar1, tol)) { 108 return false; 109 } 110 } 111 // if we got here, treat us as either kTranslate_Mask or identity 112 return true; 113 } 114 115 static bool valid_for_filtering(unsigned dimension) { 116 // for filtering, width and height must fit in 14bits, since we use steal 117 // 2 bits from each to store our 4bit subpixel data 118 return (dimension & ~0x3FFF) == 0; 119 } 120 121 /* 122 * Analyze filter-quality and matrix, and decide how to implement that. 123 * 124 * In general, we cascade down the request level [ High ... None ] 125 * - for a given level, if we can fulfill it, fine, else 126 * - else we downgrade to the next lower level and try again. 127 * We can always fulfill requests for Low and None 128 * - sometimes we will "ignore" Low and give None, but this is likely a legacy perf hack 129 * and may be removed. 130 */ 131 bool SkBitmapProcState::chooseProcs(const SkMatrix& inv, const SkPaint& paint) { 132 fPixmap.reset(); 133 fInvMatrix = inv; 134 fFilterLevel = paint.getFilterQuality(); 135 136 const int origW = fProvider.info().width(); 137 const int origH = fProvider.info().height(); 138 bool allow_ignore_fractional_translate = true; // historical default 139 if (kMedium_SkFilterQuality == fFilterLevel) { 140 allow_ignore_fractional_translate = false; 141 } 142 143 SkDefaultBitmapController controller; 144 fBMState = controller.requestBitmap(fProvider, inv, paint.getFilterQuality(), 145 fBMStateStorage.get(), fBMStateStorage.size()); 146 // Note : we allow the controller to return an empty (zero-dimension) result. Should we? 147 if (nullptr == fBMState || fBMState->pixmap().info().isEmpty()) { 148 return false; 149 } 150 fPixmap = fBMState->pixmap(); 151 fInvMatrix = fBMState->invMatrix(); 152 fFilterLevel = fBMState->quality(); 153 SkASSERT(fPixmap.addr()); 154 155 bool trivialMatrix = (fInvMatrix.getType() & ~SkMatrix::kTranslate_Mask) == 0; 156 bool clampClamp = SkShader::kClamp_TileMode == fTileModeX && 157 SkShader::kClamp_TileMode == fTileModeY; 158 159 // Most of the scanline procs deal with "unit" texture coordinates, as this 160 // makes it easy to perform tiling modes (repeat = (x & 0xFFFF)). To generate 161 // those, we divide the matrix by its dimensions here. 162 // 163 // We don't do this if we're either trivial (can ignore the matrix) or clamping 164 // in both X and Y since clamping to width,height is just as easy as to 0xFFFF. 165 166 if (!(clampClamp || trivialMatrix)) { 167 fInvMatrix.postIDiv(fPixmap.width(), fPixmap.height()); 168 } 169 170 // Now that all possible changes to the matrix have taken place, check 171 // to see if we're really close to a no-scale matrix. If so, explicitly 172 // set it to be so. Subsequent code may inspect this matrix to choose 173 // a faster path in this case. 174 175 // This code will only execute if the matrix has some scale component; 176 // if it's already pure translate then we won't do this inversion. 177 178 if (matrix_only_scale_translate(fInvMatrix)) { 179 SkMatrix forward; 180 if (fInvMatrix.invert(&forward)) { 181 if ((clampClamp && allow_ignore_fractional_translate) 182 ? just_trans_clamp(forward, fPixmap) 183 : just_trans_general(forward)) { 184 fInvMatrix.setTranslate(-forward.getTranslateX(), -forward.getTranslateY()); 185 } 186 } 187 } 188 189 fInvProc = fInvMatrix.getMapXYProc(); 190 fInvType = fInvMatrix.getType(); 191 fInvSx = SkScalarToFixed(fInvMatrix.getScaleX()); 192 fInvSxFractionalInt = SkScalarToFractionalInt(fInvMatrix.getScaleX()); 193 fInvKy = SkScalarToFixed(fInvMatrix.getSkewY()); 194 fInvKyFractionalInt = SkScalarToFractionalInt(fInvMatrix.getSkewY()); 195 196 fAlphaScale = SkAlpha255To256(paint.getAlpha()); 197 198 fShaderProc32 = nullptr; 199 fShaderProc16 = nullptr; 200 fSampleProc32 = nullptr; 201 202 // recompute the triviality of the matrix here because we may have 203 // changed it! 204 205 trivialMatrix = (fInvMatrix.getType() & ~SkMatrix::kTranslate_Mask) == 0; 206 207 // If our target pixmap is the same as the original, then we revert back to legacy behavior 208 // and allow the code to ignore fractional translate. 209 // 210 // The width/height check allows allow_ignore_fractional_translate to stay false if we 211 // previously set it that way (e.g. we started in kMedium). 212 // 213 if (fPixmap.width() == origW && fPixmap.height() == origH) { 214 allow_ignore_fractional_translate = true; 215 } 216 217 if (kLow_SkFilterQuality == fFilterLevel && allow_ignore_fractional_translate) { 218 // Only try bilerp if the matrix is "interesting" and 219 // the image has a suitable size. 220 221 if (fInvType <= SkMatrix::kTranslate_Mask || 222 !valid_for_filtering(fPixmap.width() | fPixmap.height())) 223 { 224 fFilterLevel = kNone_SkFilterQuality; 225 } 226 } 227 228 return this->chooseScanlineProcs(trivialMatrix, clampClamp, paint); 229 } 230 231 bool SkBitmapProcState::chooseScanlineProcs(bool trivialMatrix, bool clampClamp, 232 const SkPaint& paint) { 233 fMatrixProc = this->chooseMatrixProc(trivialMatrix); 234 // TODO(dominikg): SkASSERT(fMatrixProc) instead? chooseMatrixProc never returns nullptr. 235 if (nullptr == fMatrixProc) { 236 return false; 237 } 238 239 /////////////////////////////////////////////////////////////////////// 240 241 const SkAlphaType at = fPixmap.alphaType(); 242 243 // No need to do this if we're doing HQ sampling; if filter quality is 244 // still set to HQ by the time we get here, then we must have installed 245 // the shader procs above and can skip all this. 246 247 if (fFilterLevel < kHigh_SkFilterQuality) { 248 249 int index = 0; 250 if (fAlphaScale < 256) { // note: this distinction is not used for D16 251 index |= 1; 252 } 253 if (fInvType <= (SkMatrix::kTranslate_Mask | SkMatrix::kScale_Mask)) { 254 index |= 2; 255 } 256 if (fFilterLevel > kNone_SkFilterQuality) { 257 index |= 4; 258 } 259 // bits 3,4,5 encoding the source bitmap format 260 switch (fPixmap.colorType()) { 261 case kN32_SkColorType: 262 if (kPremul_SkAlphaType != at && kOpaque_SkAlphaType != at) { 263 return false; 264 } 265 index |= 0; 266 break; 267 case kRGB_565_SkColorType: 268 index |= 8; 269 break; 270 case kIndex_8_SkColorType: 271 if (kPremul_SkAlphaType != at && kOpaque_SkAlphaType != at) { 272 return false; 273 } 274 index |= 16; 275 break; 276 case kARGB_4444_SkColorType: 277 if (kPremul_SkAlphaType != at && kOpaque_SkAlphaType != at) { 278 return false; 279 } 280 index |= 24; 281 break; 282 case kAlpha_8_SkColorType: 283 index |= 32; 284 fPaintPMColor = SkPreMultiplyColor(paint.getColor()); 285 break; 286 case kGray_8_SkColorType: 287 index |= 40; 288 fPaintPMColor = SkPreMultiplyColor(paint.getColor()); 289 break; 290 default: 291 // TODO(dominikg): Should we ever get here? SkASSERT(false) instead? 292 return false; 293 } 294 295 #if !SK_ARM_NEON_IS_ALWAYS 296 static const SampleProc32 gSkBitmapProcStateSample32[] = { 297 S32_opaque_D32_nofilter_DXDY, 298 S32_alpha_D32_nofilter_DXDY, 299 S32_opaque_D32_nofilter_DX, 300 S32_alpha_D32_nofilter_DX, 301 S32_opaque_D32_filter_DXDY, 302 S32_alpha_D32_filter_DXDY, 303 S32_opaque_D32_filter_DX, 304 S32_alpha_D32_filter_DX, 305 306 S16_opaque_D32_nofilter_DXDY, 307 S16_alpha_D32_nofilter_DXDY, 308 S16_opaque_D32_nofilter_DX, 309 S16_alpha_D32_nofilter_DX, 310 S16_opaque_D32_filter_DXDY, 311 S16_alpha_D32_filter_DXDY, 312 S16_opaque_D32_filter_DX, 313 S16_alpha_D32_filter_DX, 314 315 SI8_opaque_D32_nofilter_DXDY, 316 SI8_alpha_D32_nofilter_DXDY, 317 SI8_opaque_D32_nofilter_DX, 318 SI8_alpha_D32_nofilter_DX, 319 SI8_opaque_D32_filter_DXDY, 320 SI8_alpha_D32_filter_DXDY, 321 SI8_opaque_D32_filter_DX, 322 SI8_alpha_D32_filter_DX, 323 324 S4444_opaque_D32_nofilter_DXDY, 325 S4444_alpha_D32_nofilter_DXDY, 326 S4444_opaque_D32_nofilter_DX, 327 S4444_alpha_D32_nofilter_DX, 328 S4444_opaque_D32_filter_DXDY, 329 S4444_alpha_D32_filter_DXDY, 330 S4444_opaque_D32_filter_DX, 331 S4444_alpha_D32_filter_DX, 332 333 // A8 treats alpha/opaque the same (equally efficient) 334 SA8_alpha_D32_nofilter_DXDY, 335 SA8_alpha_D32_nofilter_DXDY, 336 SA8_alpha_D32_nofilter_DX, 337 SA8_alpha_D32_nofilter_DX, 338 SA8_alpha_D32_filter_DXDY, 339 SA8_alpha_D32_filter_DXDY, 340 SA8_alpha_D32_filter_DX, 341 SA8_alpha_D32_filter_DX, 342 343 // todo: possibly specialize on opaqueness 344 SG8_alpha_D32_nofilter_DXDY, 345 SG8_alpha_D32_nofilter_DXDY, 346 SG8_alpha_D32_nofilter_DX, 347 SG8_alpha_D32_nofilter_DX, 348 SG8_alpha_D32_filter_DXDY, 349 SG8_alpha_D32_filter_DXDY, 350 SG8_alpha_D32_filter_DX, 351 SG8_alpha_D32_filter_DX 352 }; 353 #endif 354 355 fSampleProc32 = SK_ARM_NEON_WRAP(gSkBitmapProcStateSample32)[index]; 356 index >>= 1; // shift away any opaque/alpha distinction 357 358 // our special-case shaderprocs 359 if (SK_ARM_NEON_WRAP(SI8_opaque_D32_filter_DX) == fSampleProc32 && clampClamp) { 360 fShaderProc32 = SK_ARM_NEON_WRAP(Clamp_SI8_opaque_D32_filter_DX_shaderproc); 361 } else if (S32_opaque_D32_nofilter_DX == fSampleProc32 && clampClamp) { 362 fShaderProc32 = Clamp_S32_opaque_D32_nofilter_DX_shaderproc; 363 } 364 365 if (nullptr == fShaderProc32) { 366 fShaderProc32 = this->chooseShaderProc32(); 367 } 368 } 369 370 // see if our platform has any accelerated overrides 371 this->platformProcs(); 372 373 return true; 374 } 375 376 static void Clamp_S32_D32_nofilter_trans_shaderproc(const void* sIn, 377 int x, int y, 378 SkPMColor* SK_RESTRICT colors, 379 int count) { 380 const SkBitmapProcState& s = *static_cast<const SkBitmapProcState*>(sIn); 381 SkASSERT(((s.fInvType & ~SkMatrix::kTranslate_Mask)) == 0); 382 SkASSERT(s.fInvKy == 0); 383 SkASSERT(count > 0 && colors != nullptr); 384 SkASSERT(kNone_SkFilterQuality == s.fFilterLevel); 385 386 const int maxX = s.fPixmap.width() - 1; 387 const int maxY = s.fPixmap.height() - 1; 388 int ix = s.fFilterOneX + x; 389 int iy = SkClampMax(s.fFilterOneY + y, maxY); 390 const SkPMColor* row = s.fPixmap.addr32(0, iy); 391 392 // clamp to the left 393 if (ix < 0) { 394 int n = SkMin32(-ix, count); 395 sk_memset32(colors, row[0], n); 396 count -= n; 397 if (0 == count) { 398 return; 399 } 400 colors += n; 401 SkASSERT(-ix == n); 402 ix = 0; 403 } 404 // copy the middle 405 if (ix <= maxX) { 406 int n = SkMin32(maxX - ix + 1, count); 407 memcpy(colors, row + ix, n * sizeof(SkPMColor)); 408 count -= n; 409 if (0 == count) { 410 return; 411 } 412 colors += n; 413 } 414 SkASSERT(count > 0); 415 // clamp to the right 416 sk_memset32(colors, row[maxX], count); 417 } 418 419 static inline int sk_int_mod(int x, int n) { 420 SkASSERT(n > 0); 421 if ((unsigned)x >= (unsigned)n) { 422 if (x < 0) { 423 x = n + ~(~x % n); 424 } else { 425 x = x % n; 426 } 427 } 428 return x; 429 } 430 431 static inline int sk_int_mirror(int x, int n) { 432 x = sk_int_mod(x, 2 * n); 433 if (x >= n) { 434 x = n + ~(x - n); 435 } 436 return x; 437 } 438 439 static void Repeat_S32_D32_nofilter_trans_shaderproc(const void* sIn, 440 int x, int y, 441 SkPMColor* SK_RESTRICT colors, 442 int count) { 443 const SkBitmapProcState& s = *static_cast<const SkBitmapProcState*>(sIn); 444 SkASSERT(((s.fInvType & ~SkMatrix::kTranslate_Mask)) == 0); 445 SkASSERT(s.fInvKy == 0); 446 SkASSERT(count > 0 && colors != nullptr); 447 SkASSERT(kNone_SkFilterQuality == s.fFilterLevel); 448 449 const int stopX = s.fPixmap.width(); 450 const int stopY = s.fPixmap.height(); 451 int ix = s.fFilterOneX + x; 452 int iy = sk_int_mod(s.fFilterOneY + y, stopY); 453 const SkPMColor* row = s.fPixmap.addr32(0, iy); 454 455 ix = sk_int_mod(ix, stopX); 456 for (;;) { 457 int n = SkMin32(stopX - ix, count); 458 memcpy(colors, row + ix, n * sizeof(SkPMColor)); 459 count -= n; 460 if (0 == count) { 461 return; 462 } 463 colors += n; 464 ix = 0; 465 } 466 } 467 468 static void S32_D32_constX_shaderproc(const void* sIn, 469 int x, int y, 470 SkPMColor* SK_RESTRICT colors, 471 int count) { 472 const SkBitmapProcState& s = *static_cast<const SkBitmapProcState*>(sIn); 473 SkASSERT((s.fInvType & ~(SkMatrix::kTranslate_Mask | SkMatrix::kScale_Mask)) == 0); 474 SkASSERT(s.fInvKy == 0); 475 SkASSERT(count > 0 && colors != nullptr); 476 SkASSERT(1 == s.fPixmap.width()); 477 478 int iY0; 479 int iY1 SK_INIT_TO_AVOID_WARNING; 480 int iSubY SK_INIT_TO_AVOID_WARNING; 481 482 if (kNone_SkFilterQuality != s.fFilterLevel) { 483 SkBitmapProcState::MatrixProc mproc = s.getMatrixProc(); 484 uint32_t xy[2]; 485 486 mproc(s, xy, 1, x, y); 487 488 iY0 = xy[0] >> 18; 489 iY1 = xy[0] & 0x3FFF; 490 iSubY = (xy[0] >> 14) & 0xF; 491 } else { 492 int yTemp; 493 494 if (s.fInvType > SkMatrix::kTranslate_Mask) { 495 const SkBitmapProcStateAutoMapper mapper(s, x, y); 496 497 // When the matrix has a scale component the setup code in 498 // chooseProcs multiples the inverse matrix by the inverse of the 499 // bitmap's width and height. Since this method is going to do 500 // its own tiling and sampling we need to undo that here. 501 if (SkShader::kClamp_TileMode != s.fTileModeX || 502 SkShader::kClamp_TileMode != s.fTileModeY) { 503 yTemp = SkFractionalIntToInt(mapper.fractionalIntY() * s.fPixmap.height()); 504 } else { 505 yTemp = mapper.intY(); 506 } 507 } else { 508 yTemp = s.fFilterOneY + y; 509 } 510 511 const int stopY = s.fPixmap.height(); 512 switch (s.fTileModeY) { 513 case SkShader::kClamp_TileMode: 514 iY0 = SkClampMax(yTemp, stopY-1); 515 break; 516 case SkShader::kRepeat_TileMode: 517 iY0 = sk_int_mod(yTemp, stopY); 518 break; 519 case SkShader::kMirror_TileMode: 520 default: 521 iY0 = sk_int_mirror(yTemp, stopY); 522 break; 523 } 524 525 #ifdef SK_DEBUG 526 { 527 const SkBitmapProcStateAutoMapper mapper(s, x, y); 528 int iY2; 529 530 if (s.fInvType > SkMatrix::kTranslate_Mask && 531 (SkShader::kClamp_TileMode != s.fTileModeX || 532 SkShader::kClamp_TileMode != s.fTileModeY)) { 533 iY2 = SkFractionalIntToInt(mapper.fractionalIntY() * s.fPixmap.height()); 534 } else { 535 iY2 = mapper.intY(); 536 } 537 538 switch (s.fTileModeY) { 539 case SkShader::kClamp_TileMode: 540 iY2 = SkClampMax(iY2, stopY-1); 541 break; 542 case SkShader::kRepeat_TileMode: 543 iY2 = sk_int_mod(iY2, stopY); 544 break; 545 case SkShader::kMirror_TileMode: 546 default: 547 iY2 = sk_int_mirror(iY2, stopY); 548 break; 549 } 550 551 SkASSERT(iY0 == iY2); 552 } 553 #endif 554 } 555 556 const SkPMColor* row0 = s.fPixmap.addr32(0, iY0); 557 SkPMColor color; 558 559 if (kNone_SkFilterQuality != s.fFilterLevel) { 560 const SkPMColor* row1 = s.fPixmap.addr32(0, iY1); 561 562 if (s.fAlphaScale < 256) { 563 Filter_32_alpha(iSubY, *row0, *row1, &color, s.fAlphaScale); 564 } else { 565 Filter_32_opaque(iSubY, *row0, *row1, &color); 566 } 567 } else { 568 if (s.fAlphaScale < 256) { 569 color = SkAlphaMulQ(*row0, s.fAlphaScale); 570 } else { 571 color = *row0; 572 } 573 } 574 575 sk_memset32(colors, color, count); 576 } 577 578 static void DoNothing_shaderproc(const void*, int x, int y, 579 SkPMColor* SK_RESTRICT colors, int count) { 580 // if we get called, the matrix is too tricky, so we just draw nothing 581 sk_memset32(colors, 0, count); 582 } 583 584 bool SkBitmapProcState::setupForTranslate() { 585 SkPoint pt; 586 const SkBitmapProcStateAutoMapper mapper(*this, 0, 0, &pt); 587 588 /* 589 * if the translate is larger than our ints, we can get random results, or 590 * worse, we might get 0x80000000, which wreaks havoc on us, since we can't 591 * negate it. 592 */ 593 const SkScalar too_big = SkIntToScalar(1 << 30); 594 if (SkScalarAbs(pt.fX) > too_big || SkScalarAbs(pt.fY) > too_big) { 595 return false; 596 } 597 598 // Since we know we're not filtered, we re-purpose these fields allow 599 // us to go from device -> src coordinates w/ just an integer add, 600 // rather than running through the inverse-matrix 601 fFilterOneX = mapper.intX(); 602 fFilterOneY = mapper.intY(); 603 604 return true; 605 } 606 607 SkBitmapProcState::ShaderProc32 SkBitmapProcState::chooseShaderProc32() { 608 609 if (kN32_SkColorType != fPixmap.colorType()) { 610 return nullptr; 611 } 612 613 static const unsigned kMask = SkMatrix::kTranslate_Mask | SkMatrix::kScale_Mask; 614 615 if (1 == fPixmap.width() && 0 == (fInvType & ~kMask)) { 616 if (kNone_SkFilterQuality == fFilterLevel && 617 fInvType <= SkMatrix::kTranslate_Mask && 618 !this->setupForTranslate()) { 619 return DoNothing_shaderproc; 620 } 621 return S32_D32_constX_shaderproc; 622 } 623 624 if (fAlphaScale < 256) { 625 return nullptr; 626 } 627 if (fInvType > SkMatrix::kTranslate_Mask) { 628 return nullptr; 629 } 630 if (kNone_SkFilterQuality != fFilterLevel) { 631 return nullptr; 632 } 633 634 SkShader::TileMode tx = (SkShader::TileMode)fTileModeX; 635 SkShader::TileMode ty = (SkShader::TileMode)fTileModeY; 636 637 if (SkShader::kClamp_TileMode == tx && SkShader::kClamp_TileMode == ty) { 638 if (this->setupForTranslate()) { 639 return Clamp_S32_D32_nofilter_trans_shaderproc; 640 } 641 return DoNothing_shaderproc; 642 } 643 if (SkShader::kRepeat_TileMode == tx && SkShader::kRepeat_TileMode == ty) { 644 if (this->setupForTranslate()) { 645 return Repeat_S32_D32_nofilter_trans_shaderproc; 646 } 647 return DoNothing_shaderproc; 648 } 649 return nullptr; 650 } 651 652 /////////////////////////////////////////////////////////////////////////////// 653 654 #ifdef SK_DEBUG 655 656 static void check_scale_nofilter(uint32_t bitmapXY[], int count, 657 unsigned mx, unsigned my) { 658 unsigned y = *bitmapXY++; 659 SkASSERT(y < my); 660 661 const uint16_t* xptr = reinterpret_cast<const uint16_t*>(bitmapXY); 662 for (int i = 0; i < count; ++i) { 663 SkASSERT(xptr[i] < mx); 664 } 665 } 666 667 static void check_scale_filter(uint32_t bitmapXY[], int count, 668 unsigned mx, unsigned my) { 669 uint32_t YY = *bitmapXY++; 670 unsigned y0 = YY >> 18; 671 unsigned y1 = YY & 0x3FFF; 672 SkASSERT(y0 < my); 673 SkASSERT(y1 < my); 674 675 for (int i = 0; i < count; ++i) { 676 uint32_t XX = bitmapXY[i]; 677 unsigned x0 = XX >> 18; 678 unsigned x1 = XX & 0x3FFF; 679 SkASSERT(x0 < mx); 680 SkASSERT(x1 < mx); 681 } 682 } 683 684 static void check_affine_nofilter(uint32_t bitmapXY[], int count, 685 unsigned mx, unsigned my) { 686 for (int i = 0; i < count; ++i) { 687 uint32_t XY = bitmapXY[i]; 688 unsigned x = XY & 0xFFFF; 689 unsigned y = XY >> 16; 690 SkASSERT(x < mx); 691 SkASSERT(y < my); 692 } 693 } 694 695 static void check_affine_filter(uint32_t bitmapXY[], int count, 696 unsigned mx, unsigned my) { 697 for (int i = 0; i < count; ++i) { 698 uint32_t YY = *bitmapXY++; 699 unsigned y0 = YY >> 18; 700 unsigned y1 = YY & 0x3FFF; 701 SkASSERT(y0 < my); 702 SkASSERT(y1 < my); 703 704 uint32_t XX = *bitmapXY++; 705 unsigned x0 = XX >> 18; 706 unsigned x1 = XX & 0x3FFF; 707 SkASSERT(x0 < mx); 708 SkASSERT(x1 < mx); 709 } 710 } 711 712 void SkBitmapProcState::DebugMatrixProc(const SkBitmapProcState& state, 713 uint32_t bitmapXY[], int count, 714 int x, int y) { 715 SkASSERT(bitmapXY); 716 SkASSERT(count > 0); 717 718 state.fMatrixProc(state, bitmapXY, count, x, y); 719 720 void (*proc)(uint32_t bitmapXY[], int count, unsigned mx, unsigned my); 721 722 // There are four formats possible: 723 // scale -vs- affine 724 // filter -vs- nofilter 725 if (state.fInvType <= (SkMatrix::kTranslate_Mask | SkMatrix::kScale_Mask)) { 726 proc = state.fFilterLevel != kNone_SkFilterQuality ? check_scale_filter : check_scale_nofilter; 727 } else { 728 proc = state.fFilterLevel != kNone_SkFilterQuality ? check_affine_filter : check_affine_nofilter; 729 } 730 proc(bitmapXY, count, state.fPixmap.width(), state.fPixmap.height()); 731 } 732 733 SkBitmapProcState::MatrixProc SkBitmapProcState::getMatrixProc() const { 734 return DebugMatrixProc; 735 } 736 737 #endif 738 739 /////////////////////////////////////////////////////////////////////////////// 740 /* 741 The storage requirements for the different matrix procs are as follows, 742 where each X or Y is 2 bytes, and N is the number of pixels/elements: 743 744 scale/translate nofilter Y(4bytes) + N * X 745 affine/perspective nofilter N * (X Y) 746 scale/translate filter Y Y + N * (X X) 747 affine/perspective filter N * (Y Y X X) 748 */ 749 int SkBitmapProcState::maxCountForBufferSize(size_t bufferSize) const { 750 int32_t size = static_cast<int32_t>(bufferSize); 751 752 size &= ~3; // only care about 4-byte aligned chunks 753 if (fInvType <= (SkMatrix::kTranslate_Mask | SkMatrix::kScale_Mask)) { 754 size -= 4; // the shared Y (or YY) coordinate 755 if (size < 0) { 756 size = 0; 757 } 758 size >>= 1; 759 } else { 760 size >>= 2; 761 } 762 763 if (fFilterLevel != kNone_SkFilterQuality) { 764 size >>= 1; 765 } 766 767 return size; 768 } 769 770 /////////////////////// 771 772 void Clamp_S32_opaque_D32_nofilter_DX_shaderproc(const void* sIn, int x, int y, 773 SkPMColor* SK_RESTRICT dst, int count) { 774 const SkBitmapProcState& s = *static_cast<const SkBitmapProcState*>(sIn); 775 SkASSERT((s.fInvType & ~(SkMatrix::kTranslate_Mask | 776 SkMatrix::kScale_Mask)) == 0); 777 778 const unsigned maxX = s.fPixmap.width() - 1; 779 SkFractionalInt fx; 780 int dstY; 781 { 782 const SkBitmapProcStateAutoMapper mapper(s, x, y); 783 const unsigned maxY = s.fPixmap.height() - 1; 784 dstY = SkClampMax(mapper.intY(), maxY); 785 fx = mapper.fractionalIntX(); 786 } 787 788 const SkPMColor* SK_RESTRICT src = s.fPixmap.addr32(0, dstY); 789 const SkFractionalInt dx = s.fInvSxFractionalInt; 790 791 // Check if we're safely inside [0...maxX] so no need to clamp each computed index. 792 // 793 if ((uint64_t)SkFractionalIntToInt(fx) <= maxX && 794 (uint64_t)SkFractionalIntToInt(fx + dx * (count - 1)) <= maxX) 795 { 796 int count4 = count >> 2; 797 for (int i = 0; i < count4; ++i) { 798 SkPMColor src0 = src[SkFractionalIntToInt(fx)]; fx += dx; 799 SkPMColor src1 = src[SkFractionalIntToInt(fx)]; fx += dx; 800 SkPMColor src2 = src[SkFractionalIntToInt(fx)]; fx += dx; 801 SkPMColor src3 = src[SkFractionalIntToInt(fx)]; fx += dx; 802 dst[0] = src0; 803 dst[1] = src1; 804 dst[2] = src2; 805 dst[3] = src3; 806 dst += 4; 807 } 808 for (int i = (count4 << 2); i < count; ++i) { 809 unsigned index = SkFractionalIntToInt(fx); 810 SkASSERT(index <= maxX); 811 *dst++ = src[index]; 812 fx += dx; 813 } 814 } else { 815 for (int i = 0; i < count; ++i) { 816 dst[i] = src[SkClampMax(SkFractionalIntToInt(fx), maxX)]; 817 fx += dx; 818 } 819 } 820 } 821 822