Home | History | Annotate | Download | only in CollisionShapes
      1 /*
      2 Bullet Continuous Collision Detection and Physics Library
      3 Copyright (c) 2003-2009 Erwin Coumans  http://bulletphysics.org
      4 
      5 This software is provided 'as-is', without any express or implied warranty.
      6 In no event will the authors be held liable for any damages arising from the use of this software.
      7 Permission is granted to anyone to use this software for any purpose,
      8 including commercial applications, and to alter it and redistribute it freely,
      9 subject to the following restrictions:
     10 
     11 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
     12 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
     13 3. This notice may not be removed or altered from any source distribution.
     14 */
     15 
     16 #if defined (_WIN32) || defined (__i386__)
     17 #define BT_USE_SSE_IN_API
     18 #endif
     19 
     20 #include "btConvexHullShape.h"
     21 #include "BulletCollision/CollisionShapes/btCollisionMargin.h"
     22 
     23 #include "LinearMath/btQuaternion.h"
     24 #include "LinearMath/btSerializer.h"
     25 
     26 btConvexHullShape ::btConvexHullShape (const btScalar* points,int numPoints,int stride) : btPolyhedralConvexAabbCachingShape ()
     27 {
     28 	m_shapeType = CONVEX_HULL_SHAPE_PROXYTYPE;
     29 	m_unscaledPoints.resize(numPoints);
     30 
     31 	unsigned char* pointsAddress = (unsigned char*)points;
     32 
     33 	for (int i=0;i<numPoints;i++)
     34 	{
     35 		btScalar* point = (btScalar*)pointsAddress;
     36 		m_unscaledPoints[i] = btVector3(point[0], point[1], point[2]);
     37 		pointsAddress += stride;
     38 	}
     39 
     40 	recalcLocalAabb();
     41 
     42 }
     43 
     44 
     45 
     46 void btConvexHullShape::setLocalScaling(const btVector3& scaling)
     47 {
     48 	m_localScaling = scaling;
     49 	recalcLocalAabb();
     50 }
     51 
     52 void btConvexHullShape::addPoint(const btVector3& point, bool recalculateLocalAabb)
     53 {
     54 	m_unscaledPoints.push_back(point);
     55 	if (recalculateLocalAabb)
     56 		recalcLocalAabb();
     57 
     58 }
     59 
     60 btVector3	btConvexHullShape::localGetSupportingVertexWithoutMargin(const btVector3& vec)const
     61 {
     62 	btVector3 supVec(btScalar(0.),btScalar(0.),btScalar(0.));
     63 	btScalar maxDot = btScalar(-BT_LARGE_FLOAT);
     64 
     65     // Here we take advantage of dot(a, b*c) = dot(a*b, c).  Note: This is true mathematically, but not numerically.
     66     if( 0 < m_unscaledPoints.size() )
     67     {
     68         btVector3 scaled = vec * m_localScaling;
     69         int index = (int) scaled.maxDot( &m_unscaledPoints[0], m_unscaledPoints.size(), maxDot); // FIXME: may violate encapsulation of m_unscaledPoints
     70         return m_unscaledPoints[index] * m_localScaling;
     71     }
     72 
     73     return supVec;
     74 }
     75 
     76 void	btConvexHullShape::batchedUnitVectorGetSupportingVertexWithoutMargin(const btVector3* vectors,btVector3* supportVerticesOut,int numVectors) const
     77 {
     78 	btScalar newDot;
     79 	//use 'w' component of supportVerticesOut?
     80 	{
     81 		for (int i=0;i<numVectors;i++)
     82 		{
     83 			supportVerticesOut[i][3] = btScalar(-BT_LARGE_FLOAT);
     84 		}
     85 	}
     86 
     87     for (int j=0;j<numVectors;j++)
     88     {
     89         btVector3 vec = vectors[j] * m_localScaling;        // dot(a*b,c) = dot(a,b*c)
     90         if( 0 <  m_unscaledPoints.size() )
     91         {
     92             int i = (int) vec.maxDot( &m_unscaledPoints[0], m_unscaledPoints.size(), newDot);
     93             supportVerticesOut[j] = getScaledPoint(i);
     94             supportVerticesOut[j][3] = newDot;
     95         }
     96         else
     97             supportVerticesOut[j][3] = -BT_LARGE_FLOAT;
     98     }
     99 
    100 
    101 
    102 }
    103 
    104 
    105 
    106 btVector3	btConvexHullShape::localGetSupportingVertex(const btVector3& vec)const
    107 {
    108 	btVector3 supVertex = localGetSupportingVertexWithoutMargin(vec);
    109 
    110 	if ( getMargin()!=btScalar(0.) )
    111 	{
    112 		btVector3 vecnorm = vec;
    113 		if (vecnorm .length2() < (SIMD_EPSILON*SIMD_EPSILON))
    114 		{
    115 			vecnorm.setValue(btScalar(-1.),btScalar(-1.),btScalar(-1.));
    116 		}
    117 		vecnorm.normalize();
    118 		supVertex+= getMargin() * vecnorm;
    119 	}
    120 	return supVertex;
    121 }
    122 
    123 
    124 
    125 
    126 
    127 
    128 
    129 
    130 
    131 //currently just for debugging (drawing), perhaps future support for algebraic continuous collision detection
    132 //Please note that you can debug-draw btConvexHullShape with the Raytracer Demo
    133 int	btConvexHullShape::getNumVertices() const
    134 {
    135 	return m_unscaledPoints.size();
    136 }
    137 
    138 int btConvexHullShape::getNumEdges() const
    139 {
    140 	return m_unscaledPoints.size();
    141 }
    142 
    143 void btConvexHullShape::getEdge(int i,btVector3& pa,btVector3& pb) const
    144 {
    145 
    146 	int index0 = i%m_unscaledPoints.size();
    147 	int index1 = (i+1)%m_unscaledPoints.size();
    148 	pa = getScaledPoint(index0);
    149 	pb = getScaledPoint(index1);
    150 }
    151 
    152 void btConvexHullShape::getVertex(int i,btVector3& vtx) const
    153 {
    154 	vtx = getScaledPoint(i);
    155 }
    156 
    157 int	btConvexHullShape::getNumPlanes() const
    158 {
    159 	return 0;
    160 }
    161 
    162 void btConvexHullShape::getPlane(btVector3& ,btVector3& ,int ) const
    163 {
    164 
    165 	btAssert(0);
    166 }
    167 
    168 //not yet
    169 bool btConvexHullShape::isInside(const btVector3& ,btScalar ) const
    170 {
    171 	btAssert(0);
    172 	return false;
    173 }
    174 
    175 ///fills the dataBuffer and returns the struct name (and 0 on failure)
    176 const char*	btConvexHullShape::serialize(void* dataBuffer, btSerializer* serializer) const
    177 {
    178 	//int szc = sizeof(btConvexHullShapeData);
    179 	btConvexHullShapeData* shapeData = (btConvexHullShapeData*) dataBuffer;
    180 	btConvexInternalShape::serialize(&shapeData->m_convexInternalShapeData, serializer);
    181 
    182 	int numElem = m_unscaledPoints.size();
    183 	shapeData->m_numUnscaledPoints = numElem;
    184 #ifdef BT_USE_DOUBLE_PRECISION
    185 	shapeData->m_unscaledPointsFloatPtr = 0;
    186 	shapeData->m_unscaledPointsDoublePtr = numElem ? (btVector3Data*)serializer->getUniquePointer((void*)&m_unscaledPoints[0]):  0;
    187 #else
    188 	shapeData->m_unscaledPointsFloatPtr = numElem ? (btVector3Data*)serializer->getUniquePointer((void*)&m_unscaledPoints[0]):  0;
    189 	shapeData->m_unscaledPointsDoublePtr = 0;
    190 #endif
    191 
    192 	if (numElem)
    193 	{
    194 		int sz = sizeof(btVector3Data);
    195 	//	int sz2 = sizeof(btVector3DoubleData);
    196 	//	int sz3 = sizeof(btVector3FloatData);
    197 		btChunk* chunk = serializer->allocate(sz,numElem);
    198 		btVector3Data* memPtr = (btVector3Data*)chunk->m_oldPtr;
    199 		for (int i=0;i<numElem;i++,memPtr++)
    200 		{
    201 			m_unscaledPoints[i].serialize(*memPtr);
    202 		}
    203 		serializer->finalizeChunk(chunk,btVector3DataName,BT_ARRAY_CODE,(void*)&m_unscaledPoints[0]);
    204 	}
    205 
    206 	return "btConvexHullShapeData";
    207 }
    208 
    209 void btConvexHullShape::project(const btTransform& trans, const btVector3& dir, btScalar& minProj, btScalar& maxProj, btVector3& witnesPtMin,btVector3& witnesPtMax) const
    210 {
    211 #if 1
    212 	minProj = FLT_MAX;
    213 	maxProj = -FLT_MAX;
    214 
    215 	int numVerts = m_unscaledPoints.size();
    216 	for(int i=0;i<numVerts;i++)
    217 	{
    218 		btVector3 vtx = m_unscaledPoints[i] * m_localScaling;
    219 		btVector3 pt = trans * vtx;
    220 		btScalar dp = pt.dot(dir);
    221 		if(dp < minProj)
    222 		{
    223 			minProj = dp;
    224 			witnesPtMin = pt;
    225 		}
    226 		if(dp > maxProj)
    227 		{
    228 			maxProj = dp;
    229 			witnesPtMax=pt;
    230 		}
    231 	}
    232 #else
    233 	btVector3 localAxis = dir*trans.getBasis();
    234 	witnesPtMin  = trans(localGetSupportingVertex(localAxis));
    235 	witnesPtMax = trans(localGetSupportingVertex(-localAxis));
    236 
    237 	minProj = witnesPtMin.dot(dir);
    238 	maxProj = witnesPtMax.dot(dir);
    239 #endif
    240 
    241 	if(minProj>maxProj)
    242 	{
    243 		btSwap(minProj,maxProj);
    244 		btSwap(witnesPtMin,witnesPtMax);
    245 	}
    246 
    247 
    248 }
    249 
    250 
    251