Home | History | Annotate | Download | only in CodeGen
      1 //===- lib/CodeGen/MachineTraceMetrics.cpp ----------------------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 
     10 #include "llvm/CodeGen/MachineTraceMetrics.h"
     11 #include "llvm/ADT/PostOrderIterator.h"
     12 #include "llvm/ADT/SparseSet.h"
     13 #include "llvm/CodeGen/MachineBasicBlock.h"
     14 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
     15 #include "llvm/CodeGen/MachineLoopInfo.h"
     16 #include "llvm/CodeGen/MachineRegisterInfo.h"
     17 #include "llvm/CodeGen/Passes.h"
     18 #include "llvm/MC/MCSubtargetInfo.h"
     19 #include "llvm/Support/Debug.h"
     20 #include "llvm/Support/Format.h"
     21 #include "llvm/Support/raw_ostream.h"
     22 #include "llvm/Target/TargetInstrInfo.h"
     23 #include "llvm/Target/TargetRegisterInfo.h"
     24 #include "llvm/Target/TargetSubtargetInfo.h"
     25 
     26 using namespace llvm;
     27 
     28 #define DEBUG_TYPE "machine-trace-metrics"
     29 
     30 char MachineTraceMetrics::ID = 0;
     31 char &llvm::MachineTraceMetricsID = MachineTraceMetrics::ID;
     32 
     33 INITIALIZE_PASS_BEGIN(MachineTraceMetrics,
     34                   "machine-trace-metrics", "Machine Trace Metrics", false, true)
     35 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
     36 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
     37 INITIALIZE_PASS_END(MachineTraceMetrics,
     38                   "machine-trace-metrics", "Machine Trace Metrics", false, true)
     39 
     40 MachineTraceMetrics::MachineTraceMetrics()
     41   : MachineFunctionPass(ID), MF(nullptr), TII(nullptr), TRI(nullptr),
     42     MRI(nullptr), Loops(nullptr) {
     43   std::fill(std::begin(Ensembles), std::end(Ensembles), nullptr);
     44 }
     45 
     46 void MachineTraceMetrics::getAnalysisUsage(AnalysisUsage &AU) const {
     47   AU.setPreservesAll();
     48   AU.addRequired<MachineBranchProbabilityInfo>();
     49   AU.addRequired<MachineLoopInfo>();
     50   MachineFunctionPass::getAnalysisUsage(AU);
     51 }
     52 
     53 bool MachineTraceMetrics::runOnMachineFunction(MachineFunction &Func) {
     54   MF = &Func;
     55   const TargetSubtargetInfo &ST = MF->getSubtarget();
     56   TII = ST.getInstrInfo();
     57   TRI = ST.getRegisterInfo();
     58   MRI = &MF->getRegInfo();
     59   Loops = &getAnalysis<MachineLoopInfo>();
     60   SchedModel.init(ST.getSchedModel(), &ST, TII);
     61   BlockInfo.resize(MF->getNumBlockIDs());
     62   ProcResourceCycles.resize(MF->getNumBlockIDs() *
     63                             SchedModel.getNumProcResourceKinds());
     64   return false;
     65 }
     66 
     67 void MachineTraceMetrics::releaseMemory() {
     68   MF = nullptr;
     69   BlockInfo.clear();
     70   for (unsigned i = 0; i != TS_NumStrategies; ++i) {
     71     delete Ensembles[i];
     72     Ensembles[i] = nullptr;
     73   }
     74 }
     75 
     76 //===----------------------------------------------------------------------===//
     77 //                          Fixed block information
     78 //===----------------------------------------------------------------------===//
     79 //
     80 // The number of instructions in a basic block and the CPU resources used by
     81 // those instructions don't depend on any given trace strategy.
     82 
     83 /// Compute the resource usage in basic block MBB.
     84 const MachineTraceMetrics::FixedBlockInfo*
     85 MachineTraceMetrics::getResources(const MachineBasicBlock *MBB) {
     86   assert(MBB && "No basic block");
     87   FixedBlockInfo *FBI = &BlockInfo[MBB->getNumber()];
     88   if (FBI->hasResources())
     89     return FBI;
     90 
     91   // Compute resource usage in the block.
     92   FBI->HasCalls = false;
     93   unsigned InstrCount = 0;
     94 
     95   // Add up per-processor resource cycles as well.
     96   unsigned PRKinds = SchedModel.getNumProcResourceKinds();
     97   SmallVector<unsigned, 32> PRCycles(PRKinds);
     98 
     99   for (const auto &MI : *MBB) {
    100     if (MI.isTransient())
    101       continue;
    102     ++InstrCount;
    103     if (MI.isCall())
    104       FBI->HasCalls = true;
    105 
    106     // Count processor resources used.
    107     if (!SchedModel.hasInstrSchedModel())
    108       continue;
    109     const MCSchedClassDesc *SC = SchedModel.resolveSchedClass(&MI);
    110     if (!SC->isValid())
    111       continue;
    112 
    113     for (TargetSchedModel::ProcResIter
    114          PI = SchedModel.getWriteProcResBegin(SC),
    115          PE = SchedModel.getWriteProcResEnd(SC); PI != PE; ++PI) {
    116       assert(PI->ProcResourceIdx < PRKinds && "Bad processor resource kind");
    117       PRCycles[PI->ProcResourceIdx] += PI->Cycles;
    118     }
    119   }
    120   FBI->InstrCount = InstrCount;
    121 
    122   // Scale the resource cycles so they are comparable.
    123   unsigned PROffset = MBB->getNumber() * PRKinds;
    124   for (unsigned K = 0; K != PRKinds; ++K)
    125     ProcResourceCycles[PROffset + K] =
    126       PRCycles[K] * SchedModel.getResourceFactor(K);
    127 
    128   return FBI;
    129 }
    130 
    131 ArrayRef<unsigned>
    132 MachineTraceMetrics::getProcResourceCycles(unsigned MBBNum) const {
    133   assert(BlockInfo[MBBNum].hasResources() &&
    134          "getResources() must be called before getProcResourceCycles()");
    135   unsigned PRKinds = SchedModel.getNumProcResourceKinds();
    136   assert((MBBNum+1) * PRKinds <= ProcResourceCycles.size());
    137   return makeArrayRef(ProcResourceCycles.data() + MBBNum * PRKinds, PRKinds);
    138 }
    139 
    140 
    141 //===----------------------------------------------------------------------===//
    142 //                         Ensemble utility functions
    143 //===----------------------------------------------------------------------===//
    144 
    145 MachineTraceMetrics::Ensemble::Ensemble(MachineTraceMetrics *ct)
    146   : MTM(*ct) {
    147   BlockInfo.resize(MTM.BlockInfo.size());
    148   unsigned PRKinds = MTM.SchedModel.getNumProcResourceKinds();
    149   ProcResourceDepths.resize(MTM.BlockInfo.size() * PRKinds);
    150   ProcResourceHeights.resize(MTM.BlockInfo.size() * PRKinds);
    151 }
    152 
    153 // Virtual destructor serves as an anchor.
    154 MachineTraceMetrics::Ensemble::~Ensemble() {}
    155 
    156 const MachineLoop*
    157 MachineTraceMetrics::Ensemble::getLoopFor(const MachineBasicBlock *MBB) const {
    158   return MTM.Loops->getLoopFor(MBB);
    159 }
    160 
    161 // Update resource-related information in the TraceBlockInfo for MBB.
    162 // Only update resources related to the trace above MBB.
    163 void MachineTraceMetrics::Ensemble::
    164 computeDepthResources(const MachineBasicBlock *MBB) {
    165   TraceBlockInfo *TBI = &BlockInfo[MBB->getNumber()];
    166   unsigned PRKinds = MTM.SchedModel.getNumProcResourceKinds();
    167   unsigned PROffset = MBB->getNumber() * PRKinds;
    168 
    169   // Compute resources from trace above. The top block is simple.
    170   if (!TBI->Pred) {
    171     TBI->InstrDepth = 0;
    172     TBI->Head = MBB->getNumber();
    173     std::fill(ProcResourceDepths.begin() + PROffset,
    174               ProcResourceDepths.begin() + PROffset + PRKinds, 0);
    175     return;
    176   }
    177 
    178   // Compute from the block above. A post-order traversal ensures the
    179   // predecessor is always computed first.
    180   unsigned PredNum = TBI->Pred->getNumber();
    181   TraceBlockInfo *PredTBI = &BlockInfo[PredNum];
    182   assert(PredTBI->hasValidDepth() && "Trace above has not been computed yet");
    183   const FixedBlockInfo *PredFBI = MTM.getResources(TBI->Pred);
    184   TBI->InstrDepth = PredTBI->InstrDepth + PredFBI->InstrCount;
    185   TBI->Head = PredTBI->Head;
    186 
    187   // Compute per-resource depths.
    188   ArrayRef<unsigned> PredPRDepths = getProcResourceDepths(PredNum);
    189   ArrayRef<unsigned> PredPRCycles = MTM.getProcResourceCycles(PredNum);
    190   for (unsigned K = 0; K != PRKinds; ++K)
    191     ProcResourceDepths[PROffset + K] = PredPRDepths[K] + PredPRCycles[K];
    192 }
    193 
    194 // Update resource-related information in the TraceBlockInfo for MBB.
    195 // Only update resources related to the trace below MBB.
    196 void MachineTraceMetrics::Ensemble::
    197 computeHeightResources(const MachineBasicBlock *MBB) {
    198   TraceBlockInfo *TBI = &BlockInfo[MBB->getNumber()];
    199   unsigned PRKinds = MTM.SchedModel.getNumProcResourceKinds();
    200   unsigned PROffset = MBB->getNumber() * PRKinds;
    201 
    202   // Compute resources for the current block.
    203   TBI->InstrHeight = MTM.getResources(MBB)->InstrCount;
    204   ArrayRef<unsigned> PRCycles = MTM.getProcResourceCycles(MBB->getNumber());
    205 
    206   // The trace tail is done.
    207   if (!TBI->Succ) {
    208     TBI->Tail = MBB->getNumber();
    209     std::copy(PRCycles.begin(), PRCycles.end(),
    210               ProcResourceHeights.begin() + PROffset);
    211     return;
    212   }
    213 
    214   // Compute from the block below. A post-order traversal ensures the
    215   // predecessor is always computed first.
    216   unsigned SuccNum = TBI->Succ->getNumber();
    217   TraceBlockInfo *SuccTBI = &BlockInfo[SuccNum];
    218   assert(SuccTBI->hasValidHeight() && "Trace below has not been computed yet");
    219   TBI->InstrHeight += SuccTBI->InstrHeight;
    220   TBI->Tail = SuccTBI->Tail;
    221 
    222   // Compute per-resource heights.
    223   ArrayRef<unsigned> SuccPRHeights = getProcResourceHeights(SuccNum);
    224   for (unsigned K = 0; K != PRKinds; ++K)
    225     ProcResourceHeights[PROffset + K] = SuccPRHeights[K] + PRCycles[K];
    226 }
    227 
    228 // Check if depth resources for MBB are valid and return the TBI.
    229 // Return NULL if the resources have been invalidated.
    230 const MachineTraceMetrics::TraceBlockInfo*
    231 MachineTraceMetrics::Ensemble::
    232 getDepthResources(const MachineBasicBlock *MBB) const {
    233   const TraceBlockInfo *TBI = &BlockInfo[MBB->getNumber()];
    234   return TBI->hasValidDepth() ? TBI : nullptr;
    235 }
    236 
    237 // Check if height resources for MBB are valid and return the TBI.
    238 // Return NULL if the resources have been invalidated.
    239 const MachineTraceMetrics::TraceBlockInfo*
    240 MachineTraceMetrics::Ensemble::
    241 getHeightResources(const MachineBasicBlock *MBB) const {
    242   const TraceBlockInfo *TBI = &BlockInfo[MBB->getNumber()];
    243   return TBI->hasValidHeight() ? TBI : nullptr;
    244 }
    245 
    246 /// Get an array of processor resource depths for MBB. Indexed by processor
    247 /// resource kind, this array contains the scaled processor resources consumed
    248 /// by all blocks preceding MBB in its trace. It does not include instructions
    249 /// in MBB.
    250 ///
    251 /// Compare TraceBlockInfo::InstrDepth.
    252 ArrayRef<unsigned>
    253 MachineTraceMetrics::Ensemble::
    254 getProcResourceDepths(unsigned MBBNum) const {
    255   unsigned PRKinds = MTM.SchedModel.getNumProcResourceKinds();
    256   assert((MBBNum+1) * PRKinds <= ProcResourceDepths.size());
    257   return makeArrayRef(ProcResourceDepths.data() + MBBNum * PRKinds, PRKinds);
    258 }
    259 
    260 /// Get an array of processor resource heights for MBB. Indexed by processor
    261 /// resource kind, this array contains the scaled processor resources consumed
    262 /// by this block and all blocks following it in its trace.
    263 ///
    264 /// Compare TraceBlockInfo::InstrHeight.
    265 ArrayRef<unsigned>
    266 MachineTraceMetrics::Ensemble::
    267 getProcResourceHeights(unsigned MBBNum) const {
    268   unsigned PRKinds = MTM.SchedModel.getNumProcResourceKinds();
    269   assert((MBBNum+1) * PRKinds <= ProcResourceHeights.size());
    270   return makeArrayRef(ProcResourceHeights.data() + MBBNum * PRKinds, PRKinds);
    271 }
    272 
    273 //===----------------------------------------------------------------------===//
    274 //                         Trace Selection Strategies
    275 //===----------------------------------------------------------------------===//
    276 //
    277 // A trace selection strategy is implemented as a sub-class of Ensemble. The
    278 // trace through a block B is computed by two DFS traversals of the CFG
    279 // starting from B. One upwards, and one downwards. During the upwards DFS,
    280 // pickTracePred() is called on the post-ordered blocks. During the downwards
    281 // DFS, pickTraceSucc() is called in a post-order.
    282 //
    283 
    284 // We never allow traces that leave loops, but we do allow traces to enter
    285 // nested loops. We also never allow traces to contain back-edges.
    286 //
    287 // This means that a loop header can never appear above the center block of a
    288 // trace, except as the trace head. Below the center block, loop exiting edges
    289 // are banned.
    290 //
    291 // Return true if an edge from the From loop to the To loop is leaving a loop.
    292 // Either of To and From can be null.
    293 static bool isExitingLoop(const MachineLoop *From, const MachineLoop *To) {
    294   return From && !From->contains(To);
    295 }
    296 
    297 // MinInstrCountEnsemble - Pick the trace that executes the least number of
    298 // instructions.
    299 namespace {
    300 class MinInstrCountEnsemble : public MachineTraceMetrics::Ensemble {
    301   const char *getName() const override { return "MinInstr"; }
    302   const MachineBasicBlock *pickTracePred(const MachineBasicBlock*) override;
    303   const MachineBasicBlock *pickTraceSucc(const MachineBasicBlock*) override;
    304 
    305 public:
    306   MinInstrCountEnsemble(MachineTraceMetrics *mtm)
    307     : MachineTraceMetrics::Ensemble(mtm) {}
    308 };
    309 }
    310 
    311 // Select the preferred predecessor for MBB.
    312 const MachineBasicBlock*
    313 MinInstrCountEnsemble::pickTracePred(const MachineBasicBlock *MBB) {
    314   if (MBB->pred_empty())
    315     return nullptr;
    316   const MachineLoop *CurLoop = getLoopFor(MBB);
    317   // Don't leave loops, and never follow back-edges.
    318   if (CurLoop && MBB == CurLoop->getHeader())
    319     return nullptr;
    320   unsigned CurCount = MTM.getResources(MBB)->InstrCount;
    321   const MachineBasicBlock *Best = nullptr;
    322   unsigned BestDepth = 0;
    323   for (const MachineBasicBlock *Pred : MBB->predecessors()) {
    324     const MachineTraceMetrics::TraceBlockInfo *PredTBI =
    325       getDepthResources(Pred);
    326     // Ignore cycles that aren't natural loops.
    327     if (!PredTBI)
    328       continue;
    329     // Pick the predecessor that would give this block the smallest InstrDepth.
    330     unsigned Depth = PredTBI->InstrDepth + CurCount;
    331     if (!Best || Depth < BestDepth)
    332       Best = Pred, BestDepth = Depth;
    333   }
    334   return Best;
    335 }
    336 
    337 // Select the preferred successor for MBB.
    338 const MachineBasicBlock*
    339 MinInstrCountEnsemble::pickTraceSucc(const MachineBasicBlock *MBB) {
    340   if (MBB->pred_empty())
    341     return nullptr;
    342   const MachineLoop *CurLoop = getLoopFor(MBB);
    343   const MachineBasicBlock *Best = nullptr;
    344   unsigned BestHeight = 0;
    345   for (const MachineBasicBlock *Succ : MBB->successors()) {
    346     // Don't consider back-edges.
    347     if (CurLoop && Succ == CurLoop->getHeader())
    348       continue;
    349     // Don't consider successors exiting CurLoop.
    350     if (isExitingLoop(CurLoop, getLoopFor(Succ)))
    351       continue;
    352     const MachineTraceMetrics::TraceBlockInfo *SuccTBI =
    353       getHeightResources(Succ);
    354     // Ignore cycles that aren't natural loops.
    355     if (!SuccTBI)
    356       continue;
    357     // Pick the successor that would give this block the smallest InstrHeight.
    358     unsigned Height = SuccTBI->InstrHeight;
    359     if (!Best || Height < BestHeight)
    360       Best = Succ, BestHeight = Height;
    361   }
    362   return Best;
    363 }
    364 
    365 // Get an Ensemble sub-class for the requested trace strategy.
    366 MachineTraceMetrics::Ensemble *
    367 MachineTraceMetrics::getEnsemble(MachineTraceMetrics::Strategy strategy) {
    368   assert(strategy < TS_NumStrategies && "Invalid trace strategy enum");
    369   Ensemble *&E = Ensembles[strategy];
    370   if (E)
    371     return E;
    372 
    373   // Allocate new Ensemble on demand.
    374   switch (strategy) {
    375   case TS_MinInstrCount: return (E = new MinInstrCountEnsemble(this));
    376   default: llvm_unreachable("Invalid trace strategy enum");
    377   }
    378 }
    379 
    380 void MachineTraceMetrics::invalidate(const MachineBasicBlock *MBB) {
    381   DEBUG(dbgs() << "Invalidate traces through BB#" << MBB->getNumber() << '\n');
    382   BlockInfo[MBB->getNumber()].invalidate();
    383   for (unsigned i = 0; i != TS_NumStrategies; ++i)
    384     if (Ensembles[i])
    385       Ensembles[i]->invalidate(MBB);
    386 }
    387 
    388 void MachineTraceMetrics::verifyAnalysis() const {
    389   if (!MF)
    390     return;
    391 #ifndef NDEBUG
    392   assert(BlockInfo.size() == MF->getNumBlockIDs() && "Outdated BlockInfo size");
    393   for (unsigned i = 0; i != TS_NumStrategies; ++i)
    394     if (Ensembles[i])
    395       Ensembles[i]->verify();
    396 #endif
    397 }
    398 
    399 //===----------------------------------------------------------------------===//
    400 //                               Trace building
    401 //===----------------------------------------------------------------------===//
    402 //
    403 // Traces are built by two CFG traversals. To avoid recomputing too much, use a
    404 // set abstraction that confines the search to the current loop, and doesn't
    405 // revisit blocks.
    406 
    407 namespace {
    408 struct LoopBounds {
    409   MutableArrayRef<MachineTraceMetrics::TraceBlockInfo> Blocks;
    410   SmallPtrSet<const MachineBasicBlock*, 8> Visited;
    411   const MachineLoopInfo *Loops;
    412   bool Downward;
    413   LoopBounds(MutableArrayRef<MachineTraceMetrics::TraceBlockInfo> blocks,
    414              const MachineLoopInfo *loops)
    415     : Blocks(blocks), Loops(loops), Downward(false) {}
    416 };
    417 }
    418 
    419 // Specialize po_iterator_storage in order to prune the post-order traversal so
    420 // it is limited to the current loop and doesn't traverse the loop back edges.
    421 namespace llvm {
    422 template<>
    423 class po_iterator_storage<LoopBounds, true> {
    424   LoopBounds &LB;
    425 public:
    426   po_iterator_storage(LoopBounds &lb) : LB(lb) {}
    427   void finishPostorder(const MachineBasicBlock*) {}
    428 
    429   bool insertEdge(const MachineBasicBlock *From, const MachineBasicBlock *To) {
    430     // Skip already visited To blocks.
    431     MachineTraceMetrics::TraceBlockInfo &TBI = LB.Blocks[To->getNumber()];
    432     if (LB.Downward ? TBI.hasValidHeight() : TBI.hasValidDepth())
    433       return false;
    434     // From is null once when To is the trace center block.
    435     if (From) {
    436       if (const MachineLoop *FromLoop = LB.Loops->getLoopFor(From)) {
    437         // Don't follow backedges, don't leave FromLoop when going upwards.
    438         if ((LB.Downward ? To : From) == FromLoop->getHeader())
    439           return false;
    440         // Don't leave FromLoop.
    441         if (isExitingLoop(FromLoop, LB.Loops->getLoopFor(To)))
    442           return false;
    443       }
    444     }
    445     // To is a new block. Mark the block as visited in case the CFG has cycles
    446     // that MachineLoopInfo didn't recognize as a natural loop.
    447     return LB.Visited.insert(To).second;
    448   }
    449 };
    450 }
    451 
    452 /// Compute the trace through MBB.
    453 void MachineTraceMetrics::Ensemble::computeTrace(const MachineBasicBlock *MBB) {
    454   DEBUG(dbgs() << "Computing " << getName() << " trace through BB#"
    455                << MBB->getNumber() << '\n');
    456   // Set up loop bounds for the backwards post-order traversal.
    457   LoopBounds Bounds(BlockInfo, MTM.Loops);
    458 
    459   // Run an upwards post-order search for the trace start.
    460   Bounds.Downward = false;
    461   Bounds.Visited.clear();
    462   for (auto I : inverse_post_order_ext(MBB, Bounds)) {
    463     DEBUG(dbgs() << "  pred for BB#" << I->getNumber() << ": ");
    464     TraceBlockInfo &TBI = BlockInfo[I->getNumber()];
    465     // All the predecessors have been visited, pick the preferred one.
    466     TBI.Pred = pickTracePred(I);
    467     DEBUG({
    468       if (TBI.Pred)
    469         dbgs() << "BB#" << TBI.Pred->getNumber() << '\n';
    470       else
    471         dbgs() << "null\n";
    472     });
    473     // The trace leading to I is now known, compute the depth resources.
    474     computeDepthResources(I);
    475   }
    476 
    477   // Run a downwards post-order search for the trace end.
    478   Bounds.Downward = true;
    479   Bounds.Visited.clear();
    480   for (auto I : post_order_ext(MBB, Bounds)) {
    481     DEBUG(dbgs() << "  succ for BB#" << I->getNumber() << ": ");
    482     TraceBlockInfo &TBI = BlockInfo[I->getNumber()];
    483     // All the successors have been visited, pick the preferred one.
    484     TBI.Succ = pickTraceSucc(I);
    485     DEBUG({
    486       if (TBI.Succ)
    487         dbgs() << "BB#" << TBI.Succ->getNumber() << '\n';
    488       else
    489         dbgs() << "null\n";
    490     });
    491     // The trace leaving I is now known, compute the height resources.
    492     computeHeightResources(I);
    493   }
    494 }
    495 
    496 /// Invalidate traces through BadMBB.
    497 void
    498 MachineTraceMetrics::Ensemble::invalidate(const MachineBasicBlock *BadMBB) {
    499   SmallVector<const MachineBasicBlock*, 16> WorkList;
    500   TraceBlockInfo &BadTBI = BlockInfo[BadMBB->getNumber()];
    501 
    502   // Invalidate height resources of blocks above MBB.
    503   if (BadTBI.hasValidHeight()) {
    504     BadTBI.invalidateHeight();
    505     WorkList.push_back(BadMBB);
    506     do {
    507       const MachineBasicBlock *MBB = WorkList.pop_back_val();
    508       DEBUG(dbgs() << "Invalidate BB#" << MBB->getNumber() << ' ' << getName()
    509             << " height.\n");
    510       // Find any MBB predecessors that have MBB as their preferred successor.
    511       // They are the only ones that need to be invalidated.
    512       for (const MachineBasicBlock *Pred : MBB->predecessors()) {
    513         TraceBlockInfo &TBI = BlockInfo[Pred->getNumber()];
    514         if (!TBI.hasValidHeight())
    515           continue;
    516         if (TBI.Succ == MBB) {
    517           TBI.invalidateHeight();
    518           WorkList.push_back(Pred);
    519           continue;
    520         }
    521         // Verify that TBI.Succ is actually a *I successor.
    522         assert((!TBI.Succ || Pred->isSuccessor(TBI.Succ)) && "CFG changed");
    523       }
    524     } while (!WorkList.empty());
    525   }
    526 
    527   // Invalidate depth resources of blocks below MBB.
    528   if (BadTBI.hasValidDepth()) {
    529     BadTBI.invalidateDepth();
    530     WorkList.push_back(BadMBB);
    531     do {
    532       const MachineBasicBlock *MBB = WorkList.pop_back_val();
    533       DEBUG(dbgs() << "Invalidate BB#" << MBB->getNumber() << ' ' << getName()
    534             << " depth.\n");
    535       // Find any MBB successors that have MBB as their preferred predecessor.
    536       // They are the only ones that need to be invalidated.
    537       for (const MachineBasicBlock *Succ : MBB->successors()) {
    538         TraceBlockInfo &TBI = BlockInfo[Succ->getNumber()];
    539         if (!TBI.hasValidDepth())
    540           continue;
    541         if (TBI.Pred == MBB) {
    542           TBI.invalidateDepth();
    543           WorkList.push_back(Succ);
    544           continue;
    545         }
    546         // Verify that TBI.Pred is actually a *I predecessor.
    547         assert((!TBI.Pred || Succ->isPredecessor(TBI.Pred)) && "CFG changed");
    548       }
    549     } while (!WorkList.empty());
    550   }
    551 
    552   // Clear any per-instruction data. We only have to do this for BadMBB itself
    553   // because the instructions in that block may change. Other blocks may be
    554   // invalidated, but their instructions will stay the same, so there is no
    555   // need to erase the Cycle entries. They will be overwritten when we
    556   // recompute.
    557   for (const auto &I : *BadMBB)
    558     Cycles.erase(&I);
    559 }
    560 
    561 void MachineTraceMetrics::Ensemble::verify() const {
    562 #ifndef NDEBUG
    563   assert(BlockInfo.size() == MTM.MF->getNumBlockIDs() &&
    564          "Outdated BlockInfo size");
    565   for (unsigned Num = 0, e = BlockInfo.size(); Num != e; ++Num) {
    566     const TraceBlockInfo &TBI = BlockInfo[Num];
    567     if (TBI.hasValidDepth() && TBI.Pred) {
    568       const MachineBasicBlock *MBB = MTM.MF->getBlockNumbered(Num);
    569       assert(MBB->isPredecessor(TBI.Pred) && "CFG doesn't match trace");
    570       assert(BlockInfo[TBI.Pred->getNumber()].hasValidDepth() &&
    571              "Trace is broken, depth should have been invalidated.");
    572       const MachineLoop *Loop = getLoopFor(MBB);
    573       assert(!(Loop && MBB == Loop->getHeader()) && "Trace contains backedge");
    574     }
    575     if (TBI.hasValidHeight() && TBI.Succ) {
    576       const MachineBasicBlock *MBB = MTM.MF->getBlockNumbered(Num);
    577       assert(MBB->isSuccessor(TBI.Succ) && "CFG doesn't match trace");
    578       assert(BlockInfo[TBI.Succ->getNumber()].hasValidHeight() &&
    579              "Trace is broken, height should have been invalidated.");
    580       const MachineLoop *Loop = getLoopFor(MBB);
    581       const MachineLoop *SuccLoop = getLoopFor(TBI.Succ);
    582       assert(!(Loop && Loop == SuccLoop && TBI.Succ == Loop->getHeader()) &&
    583              "Trace contains backedge");
    584     }
    585   }
    586 #endif
    587 }
    588 
    589 //===----------------------------------------------------------------------===//
    590 //                             Data Dependencies
    591 //===----------------------------------------------------------------------===//
    592 //
    593 // Compute the depth and height of each instruction based on data dependencies
    594 // and instruction latencies. These cycle numbers assume that the CPU can issue
    595 // an infinite number of instructions per cycle as long as their dependencies
    596 // are ready.
    597 
    598 // A data dependency is represented as a defining MI and operand numbers on the
    599 // defining and using MI.
    600 namespace {
    601 struct DataDep {
    602   const MachineInstr *DefMI;
    603   unsigned DefOp;
    604   unsigned UseOp;
    605 
    606   DataDep(const MachineInstr *DefMI, unsigned DefOp, unsigned UseOp)
    607     : DefMI(DefMI), DefOp(DefOp), UseOp(UseOp) {}
    608 
    609   /// Create a DataDep from an SSA form virtual register.
    610   DataDep(const MachineRegisterInfo *MRI, unsigned VirtReg, unsigned UseOp)
    611     : UseOp(UseOp) {
    612     assert(TargetRegisterInfo::isVirtualRegister(VirtReg));
    613     MachineRegisterInfo::def_iterator DefI = MRI->def_begin(VirtReg);
    614     assert(!DefI.atEnd() && "Register has no defs");
    615     DefMI = DefI->getParent();
    616     DefOp = DefI.getOperandNo();
    617     assert((++DefI).atEnd() && "Register has multiple defs");
    618   }
    619 };
    620 }
    621 
    622 // Get the input data dependencies that must be ready before UseMI can issue.
    623 // Return true if UseMI has any physreg operands.
    624 static bool getDataDeps(const MachineInstr *UseMI,
    625                         SmallVectorImpl<DataDep> &Deps,
    626                         const MachineRegisterInfo *MRI) {
    627   // Debug values should not be included in any calculations.
    628   if (UseMI->isDebugValue())
    629     return false;
    630 
    631   bool HasPhysRegs = false;
    632   for (MachineInstr::const_mop_iterator I = UseMI->operands_begin(),
    633        E = UseMI->operands_end(); I != E; ++I) {
    634     const MachineOperand &MO = *I;
    635     if (!MO.isReg())
    636       continue;
    637     unsigned Reg = MO.getReg();
    638     if (!Reg)
    639       continue;
    640     if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
    641       HasPhysRegs = true;
    642       continue;
    643     }
    644     // Collect virtual register reads.
    645     if (MO.readsReg())
    646       Deps.push_back(DataDep(MRI, Reg, UseMI->getOperandNo(I)));
    647   }
    648   return HasPhysRegs;
    649 }
    650 
    651 // Get the input data dependencies of a PHI instruction, using Pred as the
    652 // preferred predecessor.
    653 // This will add at most one dependency to Deps.
    654 static void getPHIDeps(const MachineInstr *UseMI,
    655                        SmallVectorImpl<DataDep> &Deps,
    656                        const MachineBasicBlock *Pred,
    657                        const MachineRegisterInfo *MRI) {
    658   // No predecessor at the beginning of a trace. Ignore dependencies.
    659   if (!Pred)
    660     return;
    661   assert(UseMI->isPHI() && UseMI->getNumOperands() % 2 && "Bad PHI");
    662   for (unsigned i = 1; i != UseMI->getNumOperands(); i += 2) {
    663     if (UseMI->getOperand(i + 1).getMBB() == Pred) {
    664       unsigned Reg = UseMI->getOperand(i).getReg();
    665       Deps.push_back(DataDep(MRI, Reg, i));
    666       return;
    667     }
    668   }
    669 }
    670 
    671 // Keep track of physreg data dependencies by recording each live register unit.
    672 // Associate each regunit with an instruction operand. Depending on the
    673 // direction instructions are scanned, it could be the operand that defined the
    674 // regunit, or the highest operand to read the regunit.
    675 namespace {
    676 struct LiveRegUnit {
    677   unsigned RegUnit;
    678   unsigned Cycle;
    679   const MachineInstr *MI;
    680   unsigned Op;
    681 
    682   unsigned getSparseSetIndex() const { return RegUnit; }
    683 
    684   LiveRegUnit(unsigned RU) : RegUnit(RU), Cycle(0), MI(nullptr), Op(0) {}
    685 };
    686 }
    687 
    688 // Identify physreg dependencies for UseMI, and update the live regunit
    689 // tracking set when scanning instructions downwards.
    690 static void updatePhysDepsDownwards(const MachineInstr *UseMI,
    691                                     SmallVectorImpl<DataDep> &Deps,
    692                                     SparseSet<LiveRegUnit> &RegUnits,
    693                                     const TargetRegisterInfo *TRI) {
    694   SmallVector<unsigned, 8> Kills;
    695   SmallVector<unsigned, 8> LiveDefOps;
    696 
    697   for (MachineInstr::const_mop_iterator MI = UseMI->operands_begin(),
    698        ME = UseMI->operands_end(); MI != ME; ++MI) {
    699     const MachineOperand &MO = *MI;
    700     if (!MO.isReg())
    701       continue;
    702     unsigned Reg = MO.getReg();
    703     if (!TargetRegisterInfo::isPhysicalRegister(Reg))
    704       continue;
    705     // Track live defs and kills for updating RegUnits.
    706     if (MO.isDef()) {
    707       if (MO.isDead())
    708         Kills.push_back(Reg);
    709       else
    710         LiveDefOps.push_back(UseMI->getOperandNo(MI));
    711     } else if (MO.isKill())
    712       Kills.push_back(Reg);
    713     // Identify dependencies.
    714     if (!MO.readsReg())
    715       continue;
    716     for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) {
    717       SparseSet<LiveRegUnit>::iterator I = RegUnits.find(*Units);
    718       if (I == RegUnits.end())
    719         continue;
    720       Deps.push_back(DataDep(I->MI, I->Op, UseMI->getOperandNo(MI)));
    721       break;
    722     }
    723   }
    724 
    725   // Update RegUnits to reflect live registers after UseMI.
    726   // First kills.
    727   for (unsigned Kill : Kills)
    728     for (MCRegUnitIterator Units(Kill, TRI); Units.isValid(); ++Units)
    729       RegUnits.erase(*Units);
    730 
    731   // Second, live defs.
    732   for (unsigned DefOp : LiveDefOps) {
    733     for (MCRegUnitIterator Units(UseMI->getOperand(DefOp).getReg(), TRI);
    734          Units.isValid(); ++Units) {
    735       LiveRegUnit &LRU = RegUnits[*Units];
    736       LRU.MI = UseMI;
    737       LRU.Op = DefOp;
    738     }
    739   }
    740 }
    741 
    742 /// The length of the critical path through a trace is the maximum of two path
    743 /// lengths:
    744 ///
    745 /// 1. The maximum height+depth over all instructions in the trace center block.
    746 ///
    747 /// 2. The longest cross-block dependency chain. For small blocks, it is
    748 ///    possible that the critical path through the trace doesn't include any
    749 ///    instructions in the block.
    750 ///
    751 /// This function computes the second number from the live-in list of the
    752 /// center block.
    753 unsigned MachineTraceMetrics::Ensemble::
    754 computeCrossBlockCriticalPath(const TraceBlockInfo &TBI) {
    755   assert(TBI.HasValidInstrDepths && "Missing depth info");
    756   assert(TBI.HasValidInstrHeights && "Missing height info");
    757   unsigned MaxLen = 0;
    758   for (const LiveInReg &LIR : TBI.LiveIns) {
    759     if (!TargetRegisterInfo::isVirtualRegister(LIR.Reg))
    760       continue;
    761     const MachineInstr *DefMI = MTM.MRI->getVRegDef(LIR.Reg);
    762     // Ignore dependencies outside the current trace.
    763     const TraceBlockInfo &DefTBI = BlockInfo[DefMI->getParent()->getNumber()];
    764     if (!DefTBI.isUsefulDominator(TBI))
    765       continue;
    766     unsigned Len = LIR.Height + Cycles[DefMI].Depth;
    767     MaxLen = std::max(MaxLen, Len);
    768   }
    769   return MaxLen;
    770 }
    771 
    772 /// Compute instruction depths for all instructions above or in MBB in its
    773 /// trace. This assumes that the trace through MBB has already been computed.
    774 void MachineTraceMetrics::Ensemble::
    775 computeInstrDepths(const MachineBasicBlock *MBB) {
    776   // The top of the trace may already be computed, and HasValidInstrDepths
    777   // implies Head->HasValidInstrDepths, so we only need to start from the first
    778   // block in the trace that needs to be recomputed.
    779   SmallVector<const MachineBasicBlock*, 8> Stack;
    780   do {
    781     TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()];
    782     assert(TBI.hasValidDepth() && "Incomplete trace");
    783     if (TBI.HasValidInstrDepths)
    784       break;
    785     Stack.push_back(MBB);
    786     MBB = TBI.Pred;
    787   } while (MBB);
    788 
    789   // FIXME: If MBB is non-null at this point, it is the last pre-computed block
    790   // in the trace. We should track any live-out physregs that were defined in
    791   // the trace. This is quite rare in SSA form, typically created by CSE
    792   // hoisting a compare.
    793   SparseSet<LiveRegUnit> RegUnits;
    794   RegUnits.setUniverse(MTM.TRI->getNumRegUnits());
    795 
    796   // Go through trace blocks in top-down order, stopping after the center block.
    797   SmallVector<DataDep, 8> Deps;
    798   while (!Stack.empty()) {
    799     MBB = Stack.pop_back_val();
    800     DEBUG(dbgs() << "\nDepths for BB#" << MBB->getNumber() << ":\n");
    801     TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()];
    802     TBI.HasValidInstrDepths = true;
    803     TBI.CriticalPath = 0;
    804 
    805     // Print out resource depths here as well.
    806     DEBUG({
    807       dbgs() << format("%7u Instructions\n", TBI.InstrDepth);
    808       ArrayRef<unsigned> PRDepths = getProcResourceDepths(MBB->getNumber());
    809       for (unsigned K = 0; K != PRDepths.size(); ++K)
    810         if (PRDepths[K]) {
    811           unsigned Factor = MTM.SchedModel.getResourceFactor(K);
    812           dbgs() << format("%6uc @ ", MTM.getCycles(PRDepths[K]))
    813                  << MTM.SchedModel.getProcResource(K)->Name << " ("
    814                  << PRDepths[K]/Factor << " ops x" << Factor << ")\n";
    815         }
    816     });
    817 
    818     // Also compute the critical path length through MBB when possible.
    819     if (TBI.HasValidInstrHeights)
    820       TBI.CriticalPath = computeCrossBlockCriticalPath(TBI);
    821 
    822     for (const auto &UseMI : *MBB) {
    823       // Collect all data dependencies.
    824       Deps.clear();
    825       if (UseMI.isPHI())
    826         getPHIDeps(&UseMI, Deps, TBI.Pred, MTM.MRI);
    827       else if (getDataDeps(&UseMI, Deps, MTM.MRI))
    828         updatePhysDepsDownwards(&UseMI, Deps, RegUnits, MTM.TRI);
    829 
    830       // Filter and process dependencies, computing the earliest issue cycle.
    831       unsigned Cycle = 0;
    832       for (const DataDep &Dep : Deps) {
    833         const TraceBlockInfo&DepTBI =
    834           BlockInfo[Dep.DefMI->getParent()->getNumber()];
    835         // Ignore dependencies from outside the current trace.
    836         if (!DepTBI.isUsefulDominator(TBI))
    837           continue;
    838         assert(DepTBI.HasValidInstrDepths && "Inconsistent dependency");
    839         unsigned DepCycle = Cycles.lookup(Dep.DefMI).Depth;
    840         // Add latency if DefMI is a real instruction. Transients get latency 0.
    841         if (!Dep.DefMI->isTransient())
    842           DepCycle += MTM.SchedModel
    843             .computeOperandLatency(Dep.DefMI, Dep.DefOp, &UseMI, Dep.UseOp);
    844         Cycle = std::max(Cycle, DepCycle);
    845       }
    846       // Remember the instruction depth.
    847       InstrCycles &MICycles = Cycles[&UseMI];
    848       MICycles.Depth = Cycle;
    849 
    850       if (!TBI.HasValidInstrHeights) {
    851         DEBUG(dbgs() << Cycle << '\t' << UseMI);
    852         continue;
    853       }
    854       // Update critical path length.
    855       TBI.CriticalPath = std::max(TBI.CriticalPath, Cycle + MICycles.Height);
    856       DEBUG(dbgs() << TBI.CriticalPath << '\t' << Cycle << '\t' << UseMI);
    857     }
    858   }
    859 }
    860 
    861 // Identify physreg dependencies for MI when scanning instructions upwards.
    862 // Return the issue height of MI after considering any live regunits.
    863 // Height is the issue height computed from virtual register dependencies alone.
    864 static unsigned updatePhysDepsUpwards(const MachineInstr *MI, unsigned Height,
    865                                       SparseSet<LiveRegUnit> &RegUnits,
    866                                       const TargetSchedModel &SchedModel,
    867                                       const TargetInstrInfo *TII,
    868                                       const TargetRegisterInfo *TRI) {
    869   SmallVector<unsigned, 8> ReadOps;
    870 
    871   for (MachineInstr::const_mop_iterator MOI = MI->operands_begin(),
    872        MOE = MI->operands_end(); MOI != MOE; ++MOI) {
    873     const MachineOperand &MO = *MOI;
    874     if (!MO.isReg())
    875       continue;
    876     unsigned Reg = MO.getReg();
    877     if (!TargetRegisterInfo::isPhysicalRegister(Reg))
    878       continue;
    879     if (MO.readsReg())
    880       ReadOps.push_back(MI->getOperandNo(MOI));
    881     if (!MO.isDef())
    882       continue;
    883     // This is a def of Reg. Remove corresponding entries from RegUnits, and
    884     // update MI Height to consider the physreg dependencies.
    885     for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) {
    886       SparseSet<LiveRegUnit>::iterator I = RegUnits.find(*Units);
    887       if (I == RegUnits.end())
    888         continue;
    889       unsigned DepHeight = I->Cycle;
    890       if (!MI->isTransient()) {
    891         // We may not know the UseMI of this dependency, if it came from the
    892         // live-in list. SchedModel can handle a NULL UseMI.
    893         DepHeight += SchedModel
    894           .computeOperandLatency(MI, MI->getOperandNo(MOI), I->MI, I->Op);
    895       }
    896       Height = std::max(Height, DepHeight);
    897       // This regunit is dead above MI.
    898       RegUnits.erase(I);
    899     }
    900   }
    901 
    902   // Now we know the height of MI. Update any regunits read.
    903   for (unsigned i = 0, e = ReadOps.size(); i != e; ++i) {
    904     unsigned Reg = MI->getOperand(ReadOps[i]).getReg();
    905     for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) {
    906       LiveRegUnit &LRU = RegUnits[*Units];
    907       // Set the height to the highest reader of the unit.
    908       if (LRU.Cycle <= Height && LRU.MI != MI) {
    909         LRU.Cycle = Height;
    910         LRU.MI = MI;
    911         LRU.Op = ReadOps[i];
    912       }
    913     }
    914   }
    915 
    916   return Height;
    917 }
    918 
    919 
    920 typedef DenseMap<const MachineInstr *, unsigned> MIHeightMap;
    921 
    922 // Push the height of DefMI upwards if required to match UseMI.
    923 // Return true if this is the first time DefMI was seen.
    924 static bool pushDepHeight(const DataDep &Dep,
    925                           const MachineInstr *UseMI, unsigned UseHeight,
    926                           MIHeightMap &Heights,
    927                           const TargetSchedModel &SchedModel,
    928                           const TargetInstrInfo *TII) {
    929   // Adjust height by Dep.DefMI latency.
    930   if (!Dep.DefMI->isTransient())
    931     UseHeight += SchedModel.computeOperandLatency(Dep.DefMI, Dep.DefOp,
    932                                                   UseMI, Dep.UseOp);
    933 
    934   // Update Heights[DefMI] to be the maximum height seen.
    935   MIHeightMap::iterator I;
    936   bool New;
    937   std::tie(I, New) = Heights.insert(std::make_pair(Dep.DefMI, UseHeight));
    938   if (New)
    939     return true;
    940 
    941   // DefMI has been pushed before. Give it the max height.
    942   if (I->second < UseHeight)
    943     I->second = UseHeight;
    944   return false;
    945 }
    946 
    947 /// Assuming that the virtual register defined by DefMI:DefOp was used by
    948 /// Trace.back(), add it to the live-in lists of all the blocks in Trace. Stop
    949 /// when reaching the block that contains DefMI.
    950 void MachineTraceMetrics::Ensemble::
    951 addLiveIns(const MachineInstr *DefMI, unsigned DefOp,
    952            ArrayRef<const MachineBasicBlock*> Trace) {
    953   assert(!Trace.empty() && "Trace should contain at least one block");
    954   unsigned Reg = DefMI->getOperand(DefOp).getReg();
    955   assert(TargetRegisterInfo::isVirtualRegister(Reg));
    956   const MachineBasicBlock *DefMBB = DefMI->getParent();
    957 
    958   // Reg is live-in to all blocks in Trace that follow DefMBB.
    959   for (unsigned i = Trace.size(); i; --i) {
    960     const MachineBasicBlock *MBB = Trace[i-1];
    961     if (MBB == DefMBB)
    962       return;
    963     TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()];
    964     // Just add the register. The height will be updated later.
    965     TBI.LiveIns.push_back(Reg);
    966   }
    967 }
    968 
    969 /// Compute instruction heights in the trace through MBB. This updates MBB and
    970 /// the blocks below it in the trace. It is assumed that the trace has already
    971 /// been computed.
    972 void MachineTraceMetrics::Ensemble::
    973 computeInstrHeights(const MachineBasicBlock *MBB) {
    974   // The bottom of the trace may already be computed.
    975   // Find the blocks that need updating.
    976   SmallVector<const MachineBasicBlock*, 8> Stack;
    977   do {
    978     TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()];
    979     assert(TBI.hasValidHeight() && "Incomplete trace");
    980     if (TBI.HasValidInstrHeights)
    981       break;
    982     Stack.push_back(MBB);
    983     TBI.LiveIns.clear();
    984     MBB = TBI.Succ;
    985   } while (MBB);
    986 
    987   // As we move upwards in the trace, keep track of instructions that are
    988   // required by deeper trace instructions. Map MI -> height required so far.
    989   MIHeightMap Heights;
    990 
    991   // For physregs, the def isn't known when we see the use.
    992   // Instead, keep track of the highest use of each regunit.
    993   SparseSet<LiveRegUnit> RegUnits;
    994   RegUnits.setUniverse(MTM.TRI->getNumRegUnits());
    995 
    996   // If the bottom of the trace was already precomputed, initialize heights
    997   // from its live-in list.
    998   // MBB is the highest precomputed block in the trace.
    999   if (MBB) {
   1000     TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()];
   1001     for (LiveInReg &LI : TBI.LiveIns) {
   1002       if (TargetRegisterInfo::isVirtualRegister(LI.Reg)) {
   1003         // For virtual registers, the def latency is included.
   1004         unsigned &Height = Heights[MTM.MRI->getVRegDef(LI.Reg)];
   1005         if (Height < LI.Height)
   1006           Height = LI.Height;
   1007       } else {
   1008         // For register units, the def latency is not included because we don't
   1009         // know the def yet.
   1010         RegUnits[LI.Reg].Cycle = LI.Height;
   1011       }
   1012     }
   1013   }
   1014 
   1015   // Go through the trace blocks in bottom-up order.
   1016   SmallVector<DataDep, 8> Deps;
   1017   for (;!Stack.empty(); Stack.pop_back()) {
   1018     MBB = Stack.back();
   1019     DEBUG(dbgs() << "Heights for BB#" << MBB->getNumber() << ":\n");
   1020     TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()];
   1021     TBI.HasValidInstrHeights = true;
   1022     TBI.CriticalPath = 0;
   1023 
   1024     DEBUG({
   1025       dbgs() << format("%7u Instructions\n", TBI.InstrHeight);
   1026       ArrayRef<unsigned> PRHeights = getProcResourceHeights(MBB->getNumber());
   1027       for (unsigned K = 0; K != PRHeights.size(); ++K)
   1028         if (PRHeights[K]) {
   1029           unsigned Factor = MTM.SchedModel.getResourceFactor(K);
   1030           dbgs() << format("%6uc @ ", MTM.getCycles(PRHeights[K]))
   1031                  << MTM.SchedModel.getProcResource(K)->Name << " ("
   1032                  << PRHeights[K]/Factor << " ops x" << Factor << ")\n";
   1033         }
   1034     });
   1035 
   1036     // Get dependencies from PHIs in the trace successor.
   1037     const MachineBasicBlock *Succ = TBI.Succ;
   1038     // If MBB is the last block in the trace, and it has a back-edge to the
   1039     // loop header, get loop-carried dependencies from PHIs in the header. For
   1040     // that purpose, pretend that all the loop header PHIs have height 0.
   1041     if (!Succ)
   1042       if (const MachineLoop *Loop = getLoopFor(MBB))
   1043         if (MBB->isSuccessor(Loop->getHeader()))
   1044           Succ = Loop->getHeader();
   1045 
   1046     if (Succ) {
   1047       for (const auto &PHI : *Succ) {
   1048         if (!PHI.isPHI())
   1049           break;
   1050         Deps.clear();
   1051         getPHIDeps(&PHI, Deps, MBB, MTM.MRI);
   1052         if (!Deps.empty()) {
   1053           // Loop header PHI heights are all 0.
   1054           unsigned Height = TBI.Succ ? Cycles.lookup(&PHI).Height : 0;
   1055           DEBUG(dbgs() << "pred\t" << Height << '\t' << PHI);
   1056           if (pushDepHeight(Deps.front(), &PHI, Height,
   1057                             Heights, MTM.SchedModel, MTM.TII))
   1058             addLiveIns(Deps.front().DefMI, Deps.front().DefOp, Stack);
   1059         }
   1060       }
   1061     }
   1062 
   1063     // Go through the block backwards.
   1064     for (MachineBasicBlock::const_iterator BI = MBB->end(), BB = MBB->begin();
   1065          BI != BB;) {
   1066       const MachineInstr *MI = --BI;
   1067 
   1068       // Find the MI height as determined by virtual register uses in the
   1069       // trace below.
   1070       unsigned Cycle = 0;
   1071       MIHeightMap::iterator HeightI = Heights.find(MI);
   1072       if (HeightI != Heights.end()) {
   1073         Cycle = HeightI->second;
   1074         // We won't be seeing any more MI uses.
   1075         Heights.erase(HeightI);
   1076       }
   1077 
   1078       // Don't process PHI deps. They depend on the specific predecessor, and
   1079       // we'll get them when visiting the predecessor.
   1080       Deps.clear();
   1081       bool HasPhysRegs = !MI->isPHI() && getDataDeps(MI, Deps, MTM.MRI);
   1082 
   1083       // There may also be regunit dependencies to include in the height.
   1084       if (HasPhysRegs)
   1085         Cycle = updatePhysDepsUpwards(MI, Cycle, RegUnits,
   1086                                       MTM.SchedModel, MTM.TII, MTM.TRI);
   1087 
   1088       // Update the required height of any virtual registers read by MI.
   1089       for (const DataDep &Dep : Deps)
   1090         if (pushDepHeight(Dep, MI, Cycle, Heights, MTM.SchedModel, MTM.TII))
   1091           addLiveIns(Dep.DefMI, Dep.DefOp, Stack);
   1092 
   1093       InstrCycles &MICycles = Cycles[MI];
   1094       MICycles.Height = Cycle;
   1095       if (!TBI.HasValidInstrDepths) {
   1096         DEBUG(dbgs() << Cycle << '\t' << *MI);
   1097         continue;
   1098       }
   1099       // Update critical path length.
   1100       TBI.CriticalPath = std::max(TBI.CriticalPath, Cycle + MICycles.Depth);
   1101       DEBUG(dbgs() << TBI.CriticalPath << '\t' << Cycle << '\t' << *MI);
   1102     }
   1103 
   1104     // Update virtual live-in heights. They were added by addLiveIns() with a 0
   1105     // height because the final height isn't known until now.
   1106     DEBUG(dbgs() << "BB#" << MBB->getNumber() <<  " Live-ins:");
   1107     for (LiveInReg &LIR : TBI.LiveIns) {
   1108       const MachineInstr *DefMI = MTM.MRI->getVRegDef(LIR.Reg);
   1109       LIR.Height = Heights.lookup(DefMI);
   1110       DEBUG(dbgs() << ' ' << PrintReg(LIR.Reg) << '@' << LIR.Height);
   1111     }
   1112 
   1113     // Transfer the live regunits to the live-in list.
   1114     for (SparseSet<LiveRegUnit>::const_iterator
   1115          RI = RegUnits.begin(), RE = RegUnits.end(); RI != RE; ++RI) {
   1116       TBI.LiveIns.push_back(LiveInReg(RI->RegUnit, RI->Cycle));
   1117       DEBUG(dbgs() << ' ' << PrintRegUnit(RI->RegUnit, MTM.TRI)
   1118                    << '@' << RI->Cycle);
   1119     }
   1120     DEBUG(dbgs() << '\n');
   1121 
   1122     if (!TBI.HasValidInstrDepths)
   1123       continue;
   1124     // Add live-ins to the critical path length.
   1125     TBI.CriticalPath = std::max(TBI.CriticalPath,
   1126                                 computeCrossBlockCriticalPath(TBI));
   1127     DEBUG(dbgs() << "Critical path: " << TBI.CriticalPath << '\n');
   1128   }
   1129 }
   1130 
   1131 MachineTraceMetrics::Trace
   1132 MachineTraceMetrics::Ensemble::getTrace(const MachineBasicBlock *MBB) {
   1133   TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()];
   1134 
   1135   if (!TBI.hasValidDepth() || !TBI.hasValidHeight())
   1136     computeTrace(MBB);
   1137   if (!TBI.HasValidInstrDepths)
   1138     computeInstrDepths(MBB);
   1139   if (!TBI.HasValidInstrHeights)
   1140     computeInstrHeights(MBB);
   1141 
   1142   return Trace(*this, TBI);
   1143 }
   1144 
   1145 unsigned
   1146 MachineTraceMetrics::Trace::getInstrSlack(const MachineInstr *MI) const {
   1147   assert(MI && "Not an instruction.");
   1148   assert(getBlockNum() == unsigned(MI->getParent()->getNumber()) &&
   1149          "MI must be in the trace center block");
   1150   InstrCycles Cyc = getInstrCycles(MI);
   1151   return getCriticalPath() - (Cyc.Depth + Cyc.Height);
   1152 }
   1153 
   1154 unsigned
   1155 MachineTraceMetrics::Trace::getPHIDepth(const MachineInstr *PHI) const {
   1156   const MachineBasicBlock *MBB = TE.MTM.MF->getBlockNumbered(getBlockNum());
   1157   SmallVector<DataDep, 1> Deps;
   1158   getPHIDeps(PHI, Deps, MBB, TE.MTM.MRI);
   1159   assert(Deps.size() == 1 && "PHI doesn't have MBB as a predecessor");
   1160   DataDep &Dep = Deps.front();
   1161   unsigned DepCycle = getInstrCycles(Dep.DefMI).Depth;
   1162   // Add latency if DefMI is a real instruction. Transients get latency 0.
   1163   if (!Dep.DefMI->isTransient())
   1164     DepCycle += TE.MTM.SchedModel
   1165       .computeOperandLatency(Dep.DefMI, Dep.DefOp, PHI, Dep.UseOp);
   1166   return DepCycle;
   1167 }
   1168 
   1169 /// When bottom is set include instructions in current block in estimate.
   1170 unsigned MachineTraceMetrics::Trace::getResourceDepth(bool Bottom) const {
   1171   // Find the limiting processor resource.
   1172   // Numbers have been pre-scaled to be comparable.
   1173   unsigned PRMax = 0;
   1174   ArrayRef<unsigned> PRDepths = TE.getProcResourceDepths(getBlockNum());
   1175   if (Bottom) {
   1176     ArrayRef<unsigned> PRCycles = TE.MTM.getProcResourceCycles(getBlockNum());
   1177     for (unsigned K = 0; K != PRDepths.size(); ++K)
   1178       PRMax = std::max(PRMax, PRDepths[K] + PRCycles[K]);
   1179   } else {
   1180     for (unsigned K = 0; K != PRDepths.size(); ++K)
   1181       PRMax = std::max(PRMax, PRDepths[K]);
   1182   }
   1183   // Convert to cycle count.
   1184   PRMax = TE.MTM.getCycles(PRMax);
   1185 
   1186   /// All instructions before current block
   1187   unsigned Instrs = TBI.InstrDepth;
   1188   // plus instructions in current block
   1189   if (Bottom)
   1190     Instrs += TE.MTM.BlockInfo[getBlockNum()].InstrCount;
   1191   if (unsigned IW = TE.MTM.SchedModel.getIssueWidth())
   1192     Instrs /= IW;
   1193   // Assume issue width 1 without a schedule model.
   1194   return std::max(Instrs, PRMax);
   1195 }
   1196 
   1197 unsigned MachineTraceMetrics::Trace::getResourceLength(
   1198     ArrayRef<const MachineBasicBlock *> Extrablocks,
   1199     ArrayRef<const MCSchedClassDesc *> ExtraInstrs,
   1200     ArrayRef<const MCSchedClassDesc *> RemoveInstrs) const {
   1201   // Add up resources above and below the center block.
   1202   ArrayRef<unsigned> PRDepths = TE.getProcResourceDepths(getBlockNum());
   1203   ArrayRef<unsigned> PRHeights = TE.getProcResourceHeights(getBlockNum());
   1204   unsigned PRMax = 0;
   1205 
   1206   // Capture computing cycles from extra instructions
   1207   auto extraCycles = [this](ArrayRef<const MCSchedClassDesc *> Instrs,
   1208                             unsigned ResourceIdx)
   1209                          ->unsigned {
   1210     unsigned Cycles = 0;
   1211     for (const MCSchedClassDesc *SC : Instrs) {
   1212       if (!SC->isValid())
   1213         continue;
   1214       for (TargetSchedModel::ProcResIter
   1215                PI = TE.MTM.SchedModel.getWriteProcResBegin(SC),
   1216                PE = TE.MTM.SchedModel.getWriteProcResEnd(SC);
   1217            PI != PE; ++PI) {
   1218         if (PI->ProcResourceIdx != ResourceIdx)
   1219           continue;
   1220         Cycles +=
   1221             (PI->Cycles * TE.MTM.SchedModel.getResourceFactor(ResourceIdx));
   1222       }
   1223     }
   1224     return Cycles;
   1225   };
   1226 
   1227   for (unsigned K = 0; K != PRDepths.size(); ++K) {
   1228     unsigned PRCycles = PRDepths[K] + PRHeights[K];
   1229     for (const MachineBasicBlock *MBB : Extrablocks)
   1230       PRCycles += TE.MTM.getProcResourceCycles(MBB->getNumber())[K];
   1231     PRCycles += extraCycles(ExtraInstrs, K);
   1232     PRCycles -= extraCycles(RemoveInstrs, K);
   1233     PRMax = std::max(PRMax, PRCycles);
   1234   }
   1235   // Convert to cycle count.
   1236   PRMax = TE.MTM.getCycles(PRMax);
   1237 
   1238   // Instrs: #instructions in current trace outside current block.
   1239   unsigned Instrs = TBI.InstrDepth + TBI.InstrHeight;
   1240   // Add instruction count from the extra blocks.
   1241   for (const MachineBasicBlock *MBB : Extrablocks)
   1242     Instrs += TE.MTM.getResources(MBB)->InstrCount;
   1243   Instrs += ExtraInstrs.size();
   1244   Instrs -= RemoveInstrs.size();
   1245   if (unsigned IW = TE.MTM.SchedModel.getIssueWidth())
   1246     Instrs /= IW;
   1247   // Assume issue width 1 without a schedule model.
   1248   return std::max(Instrs, PRMax);
   1249 }
   1250 
   1251 bool MachineTraceMetrics::Trace::isDepInTrace(const MachineInstr *DefMI,
   1252                                               const MachineInstr *UseMI) const {
   1253   if (DefMI->getParent() == UseMI->getParent())
   1254     return true;
   1255 
   1256   const TraceBlockInfo &DepTBI = TE.BlockInfo[DefMI->getParent()->getNumber()];
   1257   const TraceBlockInfo &TBI = TE.BlockInfo[UseMI->getParent()->getNumber()];
   1258 
   1259   return DepTBI.isUsefulDominator(TBI);
   1260 }
   1261 
   1262 void MachineTraceMetrics::Ensemble::print(raw_ostream &OS) const {
   1263   OS << getName() << " ensemble:\n";
   1264   for (unsigned i = 0, e = BlockInfo.size(); i != e; ++i) {
   1265     OS << "  BB#" << i << '\t';
   1266     BlockInfo[i].print(OS);
   1267     OS << '\n';
   1268   }
   1269 }
   1270 
   1271 void MachineTraceMetrics::TraceBlockInfo::print(raw_ostream &OS) const {
   1272   if (hasValidDepth()) {
   1273     OS << "depth=" << InstrDepth;
   1274     if (Pred)
   1275       OS << " pred=BB#" << Pred->getNumber();
   1276     else
   1277       OS << " pred=null";
   1278     OS << " head=BB#" << Head;
   1279     if (HasValidInstrDepths)
   1280       OS << " +instrs";
   1281   } else
   1282     OS << "depth invalid";
   1283   OS << ", ";
   1284   if (hasValidHeight()) {
   1285     OS << "height=" << InstrHeight;
   1286     if (Succ)
   1287       OS << " succ=BB#" << Succ->getNumber();
   1288     else
   1289       OS << " succ=null";
   1290     OS << " tail=BB#" << Tail;
   1291     if (HasValidInstrHeights)
   1292       OS << " +instrs";
   1293   } else
   1294     OS << "height invalid";
   1295   if (HasValidInstrDepths && HasValidInstrHeights)
   1296     OS << ", crit=" << CriticalPath;
   1297 }
   1298 
   1299 void MachineTraceMetrics::Trace::print(raw_ostream &OS) const {
   1300   unsigned MBBNum = &TBI - &TE.BlockInfo[0];
   1301 
   1302   OS << TE.getName() << " trace BB#" << TBI.Head << " --> BB#" << MBBNum
   1303      << " --> BB#" << TBI.Tail << ':';
   1304   if (TBI.hasValidHeight() && TBI.hasValidDepth())
   1305     OS << ' ' << getInstrCount() << " instrs.";
   1306   if (TBI.HasValidInstrDepths && TBI.HasValidInstrHeights)
   1307     OS << ' ' << TBI.CriticalPath << " cycles.";
   1308 
   1309   const MachineTraceMetrics::TraceBlockInfo *Block = &TBI;
   1310   OS << "\nBB#" << MBBNum;
   1311   while (Block->hasValidDepth() && Block->Pred) {
   1312     unsigned Num = Block->Pred->getNumber();
   1313     OS << " <- BB#" << Num;
   1314     Block = &TE.BlockInfo[Num];
   1315   }
   1316 
   1317   Block = &TBI;
   1318   OS << "\n    ";
   1319   while (Block->hasValidHeight() && Block->Succ) {
   1320     unsigned Num = Block->Succ->getNumber();
   1321     OS << " -> BB#" << Num;
   1322     Block = &TE.BlockInfo[Num];
   1323   }
   1324   OS << '\n';
   1325 }
   1326