Home | History | Annotate | Download | only in MCTargetDesc
      1 //===-- AArch64AsmBackend.cpp - AArch64 Assembler Backend -----------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 
     10 #include "AArch64.h"
     11 #include "AArch64RegisterInfo.h"
     12 #include "MCTargetDesc/AArch64FixupKinds.h"
     13 #include "llvm/ADT/Triple.h"
     14 #include "llvm/MC/MCAsmBackend.h"
     15 #include "llvm/MC/MCDirectives.h"
     16 #include "llvm/MC/MCELFObjectWriter.h"
     17 #include "llvm/MC/MCFixupKindInfo.h"
     18 #include "llvm/MC/MCObjectWriter.h"
     19 #include "llvm/MC/MCSectionELF.h"
     20 #include "llvm/MC/MCSectionMachO.h"
     21 #include "llvm/MC/MCValue.h"
     22 #include "llvm/Support/ErrorHandling.h"
     23 #include "llvm/Support/MachO.h"
     24 using namespace llvm;
     25 
     26 namespace {
     27 
     28 class AArch64AsmBackend : public MCAsmBackend {
     29   static const unsigned PCRelFlagVal =
     30       MCFixupKindInfo::FKF_IsAlignedDownTo32Bits | MCFixupKindInfo::FKF_IsPCRel;
     31 
     32 public:
     33   AArch64AsmBackend(const Target &T) : MCAsmBackend() {}
     34 
     35   unsigned getNumFixupKinds() const override {
     36     return AArch64::NumTargetFixupKinds;
     37   }
     38 
     39   const MCFixupKindInfo &getFixupKindInfo(MCFixupKind Kind) const override {
     40     const static MCFixupKindInfo Infos[AArch64::NumTargetFixupKinds] = {
     41       // This table *must* be in the order that the fixup_* kinds are defined in
     42       // AArch64FixupKinds.h.
     43       //
     44       // Name                           Offset (bits) Size (bits)     Flags
     45       { "fixup_aarch64_pcrel_adr_imm21", 0, 32, PCRelFlagVal },
     46       { "fixup_aarch64_pcrel_adrp_imm21", 0, 32, PCRelFlagVal },
     47       { "fixup_aarch64_add_imm12", 10, 12, 0 },
     48       { "fixup_aarch64_ldst_imm12_scale1", 10, 12, 0 },
     49       { "fixup_aarch64_ldst_imm12_scale2", 10, 12, 0 },
     50       { "fixup_aarch64_ldst_imm12_scale4", 10, 12, 0 },
     51       { "fixup_aarch64_ldst_imm12_scale8", 10, 12, 0 },
     52       { "fixup_aarch64_ldst_imm12_scale16", 10, 12, 0 },
     53       { "fixup_aarch64_ldr_pcrel_imm19", 5, 19, PCRelFlagVal },
     54       { "fixup_aarch64_movw", 5, 16, 0 },
     55       { "fixup_aarch64_pcrel_branch14", 5, 14, PCRelFlagVal },
     56       { "fixup_aarch64_pcrel_branch19", 5, 19, PCRelFlagVal },
     57       { "fixup_aarch64_pcrel_branch26", 0, 26, PCRelFlagVal },
     58       { "fixup_aarch64_pcrel_call26", 0, 26, PCRelFlagVal },
     59       { "fixup_aarch64_tlsdesc_call", 0, 0, 0 }
     60     };
     61 
     62     if (Kind < FirstTargetFixupKind)
     63       return MCAsmBackend::getFixupKindInfo(Kind);
     64 
     65     assert(unsigned(Kind - FirstTargetFixupKind) < getNumFixupKinds() &&
     66            "Invalid kind!");
     67     return Infos[Kind - FirstTargetFixupKind];
     68   }
     69 
     70   void applyFixup(const MCFixup &Fixup, char *Data, unsigned DataSize,
     71                   uint64_t Value, bool IsPCRel) const override;
     72 
     73   bool mayNeedRelaxation(const MCInst &Inst) const override;
     74   bool fixupNeedsRelaxation(const MCFixup &Fixup, uint64_t Value,
     75                             const MCRelaxableFragment *DF,
     76                             const MCAsmLayout &Layout) const override;
     77   void relaxInstruction(const MCInst &Inst, MCInst &Res) const override;
     78   bool writeNopData(uint64_t Count, MCObjectWriter *OW) const override;
     79 
     80   void HandleAssemblerFlag(MCAssemblerFlag Flag) {}
     81 
     82   unsigned getPointerSize() const { return 8; }
     83 };
     84 
     85 } // end anonymous namespace
     86 
     87 /// \brief The number of bytes the fixup may change.
     88 static unsigned getFixupKindNumBytes(unsigned Kind) {
     89   switch (Kind) {
     90   default:
     91     llvm_unreachable("Unknown fixup kind!");
     92 
     93   case AArch64::fixup_aarch64_tlsdesc_call:
     94     return 0;
     95 
     96   case FK_Data_1:
     97     return 1;
     98 
     99   case FK_Data_2:
    100   case AArch64::fixup_aarch64_movw:
    101     return 2;
    102 
    103   case AArch64::fixup_aarch64_pcrel_branch14:
    104   case AArch64::fixup_aarch64_add_imm12:
    105   case AArch64::fixup_aarch64_ldst_imm12_scale1:
    106   case AArch64::fixup_aarch64_ldst_imm12_scale2:
    107   case AArch64::fixup_aarch64_ldst_imm12_scale4:
    108   case AArch64::fixup_aarch64_ldst_imm12_scale8:
    109   case AArch64::fixup_aarch64_ldst_imm12_scale16:
    110   case AArch64::fixup_aarch64_ldr_pcrel_imm19:
    111   case AArch64::fixup_aarch64_pcrel_branch19:
    112     return 3;
    113 
    114   case AArch64::fixup_aarch64_pcrel_adr_imm21:
    115   case AArch64::fixup_aarch64_pcrel_adrp_imm21:
    116   case AArch64::fixup_aarch64_pcrel_branch26:
    117   case AArch64::fixup_aarch64_pcrel_call26:
    118   case FK_Data_4:
    119     return 4;
    120 
    121   case FK_Data_8:
    122     return 8;
    123   }
    124 }
    125 
    126 static unsigned AdrImmBits(unsigned Value) {
    127   unsigned lo2 = Value & 0x3;
    128   unsigned hi19 = (Value & 0x1ffffc) >> 2;
    129   return (hi19 << 5) | (lo2 << 29);
    130 }
    131 
    132 static uint64_t adjustFixupValue(unsigned Kind, uint64_t Value) {
    133   int64_t SignedValue = static_cast<int64_t>(Value);
    134   switch (Kind) {
    135   default:
    136     llvm_unreachable("Unknown fixup kind!");
    137   case AArch64::fixup_aarch64_pcrel_adr_imm21:
    138     if (SignedValue > 2097151 || SignedValue < -2097152)
    139       report_fatal_error("fixup value out of range");
    140     return AdrImmBits(Value & 0x1fffffULL);
    141   case AArch64::fixup_aarch64_pcrel_adrp_imm21:
    142     return AdrImmBits((Value & 0x1fffff000ULL) >> 12);
    143   case AArch64::fixup_aarch64_ldr_pcrel_imm19:
    144   case AArch64::fixup_aarch64_pcrel_branch19:
    145     // Signed 21-bit immediate
    146     if (SignedValue > 2097151 || SignedValue < -2097152)
    147       report_fatal_error("fixup value out of range");
    148     // Low two bits are not encoded.
    149     return (Value >> 2) & 0x7ffff;
    150   case AArch64::fixup_aarch64_add_imm12:
    151   case AArch64::fixup_aarch64_ldst_imm12_scale1:
    152     // Unsigned 12-bit immediate
    153     if (Value >= 0x1000)
    154       report_fatal_error("invalid imm12 fixup value");
    155     return Value;
    156   case AArch64::fixup_aarch64_ldst_imm12_scale2:
    157     // Unsigned 12-bit immediate which gets multiplied by 2
    158     if (Value & 1 || Value >= 0x2000)
    159       report_fatal_error("invalid imm12 fixup value");
    160     return Value >> 1;
    161   case AArch64::fixup_aarch64_ldst_imm12_scale4:
    162     // Unsigned 12-bit immediate which gets multiplied by 4
    163     if (Value & 3 || Value >= 0x4000)
    164       report_fatal_error("invalid imm12 fixup value");
    165     return Value >> 2;
    166   case AArch64::fixup_aarch64_ldst_imm12_scale8:
    167     // Unsigned 12-bit immediate which gets multiplied by 8
    168     if (Value & 7 || Value >= 0x8000)
    169       report_fatal_error("invalid imm12 fixup value");
    170     return Value >> 3;
    171   case AArch64::fixup_aarch64_ldst_imm12_scale16:
    172     // Unsigned 12-bit immediate which gets multiplied by 16
    173     if (Value & 15 || Value >= 0x10000)
    174       report_fatal_error("invalid imm12 fixup value");
    175     return Value >> 4;
    176   case AArch64::fixup_aarch64_movw:
    177     report_fatal_error("no resolvable MOVZ/MOVK fixups supported yet");
    178     return Value;
    179   case AArch64::fixup_aarch64_pcrel_branch14:
    180     // Signed 16-bit immediate
    181     if (SignedValue > 32767 || SignedValue < -32768)
    182       report_fatal_error("fixup value out of range");
    183     // Low two bits are not encoded (4-byte alignment assumed).
    184     if (Value & 0x3)
    185       report_fatal_error("fixup not sufficiently aligned");
    186     return (Value >> 2) & 0x3fff;
    187   case AArch64::fixup_aarch64_pcrel_branch26:
    188   case AArch64::fixup_aarch64_pcrel_call26:
    189     // Signed 28-bit immediate
    190     if (SignedValue > 134217727 || SignedValue < -134217728)
    191       report_fatal_error("fixup value out of range");
    192     // Low two bits are not encoded (4-byte alignment assumed).
    193     if (Value & 0x3)
    194       report_fatal_error("fixup not sufficiently aligned");
    195     return (Value >> 2) & 0x3ffffff;
    196   case FK_Data_1:
    197   case FK_Data_2:
    198   case FK_Data_4:
    199   case FK_Data_8:
    200     return Value;
    201   }
    202 }
    203 
    204 void AArch64AsmBackend::applyFixup(const MCFixup &Fixup, char *Data,
    205                                    unsigned DataSize, uint64_t Value,
    206                                    bool IsPCRel) const {
    207   unsigned NumBytes = getFixupKindNumBytes(Fixup.getKind());
    208   if (!Value)
    209     return; // Doesn't change encoding.
    210   MCFixupKindInfo Info = getFixupKindInfo(Fixup.getKind());
    211   // Apply any target-specific value adjustments.
    212   Value = adjustFixupValue(Fixup.getKind(), Value);
    213 
    214   // Shift the value into position.
    215   Value <<= Info.TargetOffset;
    216 
    217   unsigned Offset = Fixup.getOffset();
    218   assert(Offset + NumBytes <= DataSize && "Invalid fixup offset!");
    219 
    220   // For each byte of the fragment that the fixup touches, mask in the
    221   // bits from the fixup value.
    222   for (unsigned i = 0; i != NumBytes; ++i)
    223     Data[Offset + i] |= uint8_t((Value >> (i * 8)) & 0xff);
    224 }
    225 
    226 bool AArch64AsmBackend::mayNeedRelaxation(const MCInst &Inst) const {
    227   return false;
    228 }
    229 
    230 bool AArch64AsmBackend::fixupNeedsRelaxation(const MCFixup &Fixup,
    231                                              uint64_t Value,
    232                                              const MCRelaxableFragment *DF,
    233                                              const MCAsmLayout &Layout) const {
    234   // FIXME:  This isn't correct for AArch64. Just moving the "generic" logic
    235   // into the targets for now.
    236   //
    237   // Relax if the value is too big for a (signed) i8.
    238   return int64_t(Value) != int64_t(int8_t(Value));
    239 }
    240 
    241 void AArch64AsmBackend::relaxInstruction(const MCInst &Inst,
    242                                          MCInst &Res) const {
    243   llvm_unreachable("AArch64AsmBackend::relaxInstruction() unimplemented");
    244 }
    245 
    246 bool AArch64AsmBackend::writeNopData(uint64_t Count, MCObjectWriter *OW) const {
    247   // If the count is not 4-byte aligned, we must be writing data into the text
    248   // section (otherwise we have unaligned instructions, and thus have far
    249   // bigger problems), so just write zeros instead.
    250   OW->WriteZeros(Count % 4);
    251 
    252   // We are properly aligned, so write NOPs as requested.
    253   Count /= 4;
    254   for (uint64_t i = 0; i != Count; ++i)
    255     OW->write32(0xd503201f);
    256   return true;
    257 }
    258 
    259 namespace {
    260 
    261 namespace CU {
    262 
    263 /// \brief Compact unwind encoding values.
    264 enum CompactUnwindEncodings {
    265   /// \brief A "frameless" leaf function, where no non-volatile registers are
    266   /// saved. The return remains in LR throughout the function.
    267   UNWIND_AArch64_MODE_FRAMELESS = 0x02000000,
    268 
    269   /// \brief No compact unwind encoding available. Instead the low 23-bits of
    270   /// the compact unwind encoding is the offset of the DWARF FDE in the
    271   /// __eh_frame section. This mode is never used in object files. It is only
    272   /// generated by the linker in final linked images, which have only DWARF info
    273   /// for a function.
    274   UNWIND_AArch64_MODE_DWARF = 0x03000000,
    275 
    276   /// \brief This is a standard arm64 prologue where FP/LR are immediately
    277   /// pushed on the stack, then SP is copied to FP. If there are any
    278   /// non-volatile register saved, they are copied into the stack fame in pairs
    279   /// in a contiguous ranger right below the saved FP/LR pair. Any subset of the
    280   /// five X pairs and four D pairs can be saved, but the memory layout must be
    281   /// in register number order.
    282   UNWIND_AArch64_MODE_FRAME = 0x04000000,
    283 
    284   /// \brief Frame register pair encodings.
    285   UNWIND_AArch64_FRAME_X19_X20_PAIR = 0x00000001,
    286   UNWIND_AArch64_FRAME_X21_X22_PAIR = 0x00000002,
    287   UNWIND_AArch64_FRAME_X23_X24_PAIR = 0x00000004,
    288   UNWIND_AArch64_FRAME_X25_X26_PAIR = 0x00000008,
    289   UNWIND_AArch64_FRAME_X27_X28_PAIR = 0x00000010,
    290   UNWIND_AArch64_FRAME_D8_D9_PAIR = 0x00000100,
    291   UNWIND_AArch64_FRAME_D10_D11_PAIR = 0x00000200,
    292   UNWIND_AArch64_FRAME_D12_D13_PAIR = 0x00000400,
    293   UNWIND_AArch64_FRAME_D14_D15_PAIR = 0x00000800
    294 };
    295 
    296 } // end CU namespace
    297 
    298 // FIXME: This should be in a separate file.
    299 class DarwinAArch64AsmBackend : public AArch64AsmBackend {
    300   const MCRegisterInfo &MRI;
    301 
    302   /// \brief Encode compact unwind stack adjustment for frameless functions.
    303   /// See UNWIND_AArch64_FRAMELESS_STACK_SIZE_MASK in compact_unwind_encoding.h.
    304   /// The stack size always needs to be 16 byte aligned.
    305   uint32_t encodeStackAdjustment(uint32_t StackSize) const {
    306     return (StackSize / 16) << 12;
    307   }
    308 
    309 public:
    310   DarwinAArch64AsmBackend(const Target &T, const MCRegisterInfo &MRI)
    311       : AArch64AsmBackend(T), MRI(MRI) {}
    312 
    313   MCObjectWriter *createObjectWriter(raw_pwrite_stream &OS) const override {
    314     return createAArch64MachObjectWriter(OS, MachO::CPU_TYPE_ARM64,
    315                                          MachO::CPU_SUBTYPE_ARM64_ALL);
    316   }
    317 
    318   /// \brief Generate the compact unwind encoding from the CFI directives.
    319   uint32_t generateCompactUnwindEncoding(
    320                              ArrayRef<MCCFIInstruction> Instrs) const override {
    321     if (Instrs.empty())
    322       return CU::UNWIND_AArch64_MODE_FRAMELESS;
    323 
    324     bool HasFP = false;
    325     unsigned StackSize = 0;
    326 
    327     uint32_t CompactUnwindEncoding = 0;
    328     for (size_t i = 0, e = Instrs.size(); i != e; ++i) {
    329       const MCCFIInstruction &Inst = Instrs[i];
    330 
    331       switch (Inst.getOperation()) {
    332       default:
    333         // Cannot handle this directive:  bail out.
    334         return CU::UNWIND_AArch64_MODE_DWARF;
    335       case MCCFIInstruction::OpDefCfa: {
    336         // Defines a frame pointer.
    337         assert(getXRegFromWReg(MRI.getLLVMRegNum(Inst.getRegister(), true)) ==
    338                    AArch64::FP &&
    339                "Invalid frame pointer!");
    340         assert(i + 2 < e && "Insufficient CFI instructions to define a frame!");
    341 
    342         const MCCFIInstruction &LRPush = Instrs[++i];
    343         assert(LRPush.getOperation() == MCCFIInstruction::OpOffset &&
    344                "Link register not pushed!");
    345         const MCCFIInstruction &FPPush = Instrs[++i];
    346         assert(FPPush.getOperation() == MCCFIInstruction::OpOffset &&
    347                "Frame pointer not pushed!");
    348 
    349         unsigned LRReg = MRI.getLLVMRegNum(LRPush.getRegister(), true);
    350         unsigned FPReg = MRI.getLLVMRegNum(FPPush.getRegister(), true);
    351 
    352         LRReg = getXRegFromWReg(LRReg);
    353         FPReg = getXRegFromWReg(FPReg);
    354 
    355         assert(LRReg == AArch64::LR && FPReg == AArch64::FP &&
    356                "Pushing invalid registers for frame!");
    357 
    358         // Indicate that the function has a frame.
    359         CompactUnwindEncoding |= CU::UNWIND_AArch64_MODE_FRAME;
    360         HasFP = true;
    361         break;
    362       }
    363       case MCCFIInstruction::OpDefCfaOffset: {
    364         assert(StackSize == 0 && "We already have the CFA offset!");
    365         StackSize = std::abs(Inst.getOffset());
    366         break;
    367       }
    368       case MCCFIInstruction::OpOffset: {
    369         // Registers are saved in pairs. We expect there to be two consecutive
    370         // `.cfi_offset' instructions with the appropriate registers specified.
    371         unsigned Reg1 = MRI.getLLVMRegNum(Inst.getRegister(), true);
    372         if (i + 1 == e)
    373           return CU::UNWIND_AArch64_MODE_DWARF;
    374 
    375         const MCCFIInstruction &Inst2 = Instrs[++i];
    376         if (Inst2.getOperation() != MCCFIInstruction::OpOffset)
    377           return CU::UNWIND_AArch64_MODE_DWARF;
    378         unsigned Reg2 = MRI.getLLVMRegNum(Inst2.getRegister(), true);
    379 
    380         // N.B. The encodings must be in register number order, and the X
    381         // registers before the D registers.
    382 
    383         // X19/X20 pair = 0x00000001,
    384         // X21/X22 pair = 0x00000002,
    385         // X23/X24 pair = 0x00000004,
    386         // X25/X26 pair = 0x00000008,
    387         // X27/X28 pair = 0x00000010
    388         Reg1 = getXRegFromWReg(Reg1);
    389         Reg2 = getXRegFromWReg(Reg2);
    390 
    391         if (Reg1 == AArch64::X19 && Reg2 == AArch64::X20 &&
    392             (CompactUnwindEncoding & 0xF1E) == 0)
    393           CompactUnwindEncoding |= CU::UNWIND_AArch64_FRAME_X19_X20_PAIR;
    394         else if (Reg1 == AArch64::X21 && Reg2 == AArch64::X22 &&
    395                  (CompactUnwindEncoding & 0xF1C) == 0)
    396           CompactUnwindEncoding |= CU::UNWIND_AArch64_FRAME_X21_X22_PAIR;
    397         else if (Reg1 == AArch64::X23 && Reg2 == AArch64::X24 &&
    398                  (CompactUnwindEncoding & 0xF18) == 0)
    399           CompactUnwindEncoding |= CU::UNWIND_AArch64_FRAME_X23_X24_PAIR;
    400         else if (Reg1 == AArch64::X25 && Reg2 == AArch64::X26 &&
    401                  (CompactUnwindEncoding & 0xF10) == 0)
    402           CompactUnwindEncoding |= CU::UNWIND_AArch64_FRAME_X25_X26_PAIR;
    403         else if (Reg1 == AArch64::X27 && Reg2 == AArch64::X28 &&
    404                  (CompactUnwindEncoding & 0xF00) == 0)
    405           CompactUnwindEncoding |= CU::UNWIND_AArch64_FRAME_X27_X28_PAIR;
    406         else {
    407           Reg1 = getDRegFromBReg(Reg1);
    408           Reg2 = getDRegFromBReg(Reg2);
    409 
    410           // D8/D9 pair   = 0x00000100,
    411           // D10/D11 pair = 0x00000200,
    412           // D12/D13 pair = 0x00000400,
    413           // D14/D15 pair = 0x00000800
    414           if (Reg1 == AArch64::D8 && Reg2 == AArch64::D9 &&
    415               (CompactUnwindEncoding & 0xE00) == 0)
    416             CompactUnwindEncoding |= CU::UNWIND_AArch64_FRAME_D8_D9_PAIR;
    417           else if (Reg1 == AArch64::D10 && Reg2 == AArch64::D11 &&
    418                    (CompactUnwindEncoding & 0xC00) == 0)
    419             CompactUnwindEncoding |= CU::UNWIND_AArch64_FRAME_D10_D11_PAIR;
    420           else if (Reg1 == AArch64::D12 && Reg2 == AArch64::D13 &&
    421                    (CompactUnwindEncoding & 0x800) == 0)
    422             CompactUnwindEncoding |= CU::UNWIND_AArch64_FRAME_D12_D13_PAIR;
    423           else if (Reg1 == AArch64::D14 && Reg2 == AArch64::D15)
    424             CompactUnwindEncoding |= CU::UNWIND_AArch64_FRAME_D14_D15_PAIR;
    425           else
    426             // A pair was pushed which we cannot handle.
    427             return CU::UNWIND_AArch64_MODE_DWARF;
    428         }
    429 
    430         break;
    431       }
    432       }
    433     }
    434 
    435     if (!HasFP) {
    436       // With compact unwind info we can only represent stack adjustments of up
    437       // to 65520 bytes.
    438       if (StackSize > 65520)
    439         return CU::UNWIND_AArch64_MODE_DWARF;
    440 
    441       CompactUnwindEncoding |= CU::UNWIND_AArch64_MODE_FRAMELESS;
    442       CompactUnwindEncoding |= encodeStackAdjustment(StackSize);
    443     }
    444 
    445     return CompactUnwindEncoding;
    446   }
    447 };
    448 
    449 } // end anonymous namespace
    450 
    451 namespace {
    452 
    453 class ELFAArch64AsmBackend : public AArch64AsmBackend {
    454 public:
    455   uint8_t OSABI;
    456   bool IsLittleEndian;
    457 
    458   ELFAArch64AsmBackend(const Target &T, uint8_t OSABI, bool IsLittleEndian)
    459     : AArch64AsmBackend(T), OSABI(OSABI), IsLittleEndian(IsLittleEndian) {}
    460 
    461   MCObjectWriter *createObjectWriter(raw_pwrite_stream &OS) const override {
    462     return createAArch64ELFObjectWriter(OS, OSABI, IsLittleEndian);
    463   }
    464 
    465   void processFixupValue(const MCAssembler &Asm, const MCAsmLayout &Layout,
    466                          const MCFixup &Fixup, const MCFragment *DF,
    467                          const MCValue &Target, uint64_t &Value,
    468                          bool &IsResolved) override;
    469 
    470   void applyFixup(const MCFixup &Fixup, char *Data, unsigned DataSize,
    471                   uint64_t Value, bool IsPCRel) const override;
    472 };
    473 
    474 void ELFAArch64AsmBackend::processFixupValue(
    475     const MCAssembler &Asm, const MCAsmLayout &Layout, const MCFixup &Fixup,
    476     const MCFragment *DF, const MCValue &Target, uint64_t &Value,
    477     bool &IsResolved) {
    478   // The ADRP instruction adds some multiple of 0x1000 to the current PC &
    479   // ~0xfff. This means that the required offset to reach a symbol can vary by
    480   // up to one step depending on where the ADRP is in memory. For example:
    481   //
    482   //     ADRP x0, there
    483   //  there:
    484   //
    485   // If the ADRP occurs at address 0xffc then "there" will be at 0x1000 and
    486   // we'll need that as an offset. At any other address "there" will be in the
    487   // same page as the ADRP and the instruction should encode 0x0. Assuming the
    488   // section isn't 0x1000-aligned, we therefore need to delegate this decision
    489   // to the linker -- a relocation!
    490   if ((uint32_t)Fixup.getKind() == AArch64::fixup_aarch64_pcrel_adrp_imm21)
    491     IsResolved = false;
    492 }
    493 
    494 // Returns whether this fixup is based on an address in the .eh_frame section,
    495 // and therefore should be byte swapped.
    496 // FIXME: Should be replaced with something more principled.
    497 static bool isByteSwappedFixup(const MCExpr *E) {
    498   MCValue Val;
    499   if (!E->evaluateAsRelocatable(Val, nullptr, nullptr))
    500     return false;
    501 
    502   if (!Val.getSymA() || Val.getSymA()->getSymbol().isUndefined())
    503     return false;
    504 
    505   const MCSectionELF *SecELF =
    506       dyn_cast<MCSectionELF>(&Val.getSymA()->getSymbol().getSection());
    507   return SecELF->getSectionName() == ".eh_frame";
    508 }
    509 
    510 void ELFAArch64AsmBackend::applyFixup(const MCFixup &Fixup, char *Data,
    511                                       unsigned DataSize, uint64_t Value,
    512                                       bool IsPCRel) const {
    513   // store fixups in .eh_frame section in big endian order
    514   if (!IsLittleEndian && Fixup.getKind() == FK_Data_4) {
    515     if (isByteSwappedFixup(Fixup.getValue()))
    516       Value = ByteSwap_32(unsigned(Value));
    517   }
    518   AArch64AsmBackend::applyFixup (Fixup, Data, DataSize, Value, IsPCRel);
    519 }
    520 }
    521 
    522 MCAsmBackend *llvm::createAArch64leAsmBackend(const Target &T,
    523                                               const MCRegisterInfo &MRI,
    524                                               const Triple &TheTriple,
    525                                               StringRef CPU) {
    526   if (TheTriple.isOSBinFormatMachO())
    527     return new DarwinAArch64AsmBackend(T, MRI);
    528 
    529   assert(TheTriple.isOSBinFormatELF() && "Expect either MachO or ELF target");
    530   uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(TheTriple.getOS());
    531   return new ELFAArch64AsmBackend(T, OSABI, /*IsLittleEndian=*/true);
    532 }
    533 
    534 MCAsmBackend *llvm::createAArch64beAsmBackend(const Target &T,
    535                                               const MCRegisterInfo &MRI,
    536                                               const Triple &TheTriple,
    537                                               StringRef CPU) {
    538   assert(TheTriple.isOSBinFormatELF() &&
    539          "Big endian is only supported for ELF targets!");
    540   uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(TheTriple.getOS());
    541   return new ELFAArch64AsmBackend(T, OSABI,
    542                                   /*IsLittleEndian=*/false);
    543 }
    544