Home | History | Annotate | Download | only in Hexagon
      1 //===-- HexagonCFGOptimizer.cpp - CFG optimizations -----------------------===//
      2 //                     The LLVM Compiler Infrastructure
      3 //
      4 // This file is distributed under the University of Illinois Open Source
      5 // License. See LICENSE.TXT for details.
      6 //
      7 //===----------------------------------------------------------------------===//
      8 
      9 #include "Hexagon.h"
     10 #include "HexagonMachineFunctionInfo.h"
     11 #include "HexagonSubtarget.h"
     12 #include "HexagonTargetMachine.h"
     13 #include "llvm/CodeGen/MachineDominators.h"
     14 #include "llvm/CodeGen/MachineFunctionPass.h"
     15 #include "llvm/CodeGen/MachineInstrBuilder.h"
     16 #include "llvm/CodeGen/MachineLoopInfo.h"
     17 #include "llvm/CodeGen/MachineRegisterInfo.h"
     18 #include "llvm/CodeGen/Passes.h"
     19 #include "llvm/Support/Compiler.h"
     20 #include "llvm/Support/Debug.h"
     21 #include "llvm/Support/MathExtras.h"
     22 #include "llvm/Target/TargetInstrInfo.h"
     23 #include "llvm/Target/TargetMachine.h"
     24 #include "llvm/Target/TargetRegisterInfo.h"
     25 
     26 using namespace llvm;
     27 
     28 #define DEBUG_TYPE "hexagon_cfg"
     29 
     30 namespace llvm {
     31   FunctionPass *createHexagonCFGOptimizer();
     32   void initializeHexagonCFGOptimizerPass(PassRegistry&);
     33 }
     34 
     35 
     36 namespace {
     37 
     38 class HexagonCFGOptimizer : public MachineFunctionPass {
     39 
     40 private:
     41   void InvertAndChangeJumpTarget(MachineInstr*, MachineBasicBlock*);
     42 
     43  public:
     44   static char ID;
     45   HexagonCFGOptimizer() : MachineFunctionPass(ID) {
     46     initializeHexagonCFGOptimizerPass(*PassRegistry::getPassRegistry());
     47   }
     48 
     49   const char *getPassName() const override {
     50     return "Hexagon CFG Optimizer";
     51   }
     52   bool runOnMachineFunction(MachineFunction &Fn) override;
     53 };
     54 
     55 
     56 char HexagonCFGOptimizer::ID = 0;
     57 
     58 static bool IsConditionalBranch(int Opc) {
     59   return (Opc == Hexagon::J2_jumpt) || (Opc == Hexagon::J2_jumpf)
     60     || (Opc == Hexagon::J2_jumptnewpt) || (Opc == Hexagon::J2_jumpfnewpt);
     61 }
     62 
     63 
     64 static bool IsUnconditionalJump(int Opc) {
     65   return (Opc == Hexagon::J2_jump);
     66 }
     67 
     68 
     69 void
     70 HexagonCFGOptimizer::InvertAndChangeJumpTarget(MachineInstr* MI,
     71                                                MachineBasicBlock* NewTarget) {
     72   const TargetInstrInfo *TII =
     73       MI->getParent()->getParent()->getSubtarget().getInstrInfo();
     74   int NewOpcode = 0;
     75   switch(MI->getOpcode()) {
     76   case Hexagon::J2_jumpt:
     77     NewOpcode = Hexagon::J2_jumpf;
     78     break;
     79 
     80   case Hexagon::J2_jumpf:
     81     NewOpcode = Hexagon::J2_jumpt;
     82     break;
     83 
     84   case Hexagon::J2_jumptnewpt:
     85     NewOpcode = Hexagon::J2_jumpfnewpt;
     86     break;
     87 
     88   case Hexagon::J2_jumpfnewpt:
     89     NewOpcode = Hexagon::J2_jumptnewpt;
     90     break;
     91 
     92   default:
     93     llvm_unreachable("Cannot handle this case");
     94   }
     95 
     96   MI->setDesc(TII->get(NewOpcode));
     97   MI->getOperand(1).setMBB(NewTarget);
     98 }
     99 
    100 
    101 bool HexagonCFGOptimizer::runOnMachineFunction(MachineFunction &Fn) {
    102   // Loop over all of the basic blocks.
    103   for (MachineFunction::iterator MBBb = Fn.begin(), MBBe = Fn.end();
    104        MBBb != MBBe; ++MBBb) {
    105     MachineBasicBlock *MBB = &*MBBb;
    106 
    107     // Traverse the basic block.
    108     MachineBasicBlock::iterator MII = MBB->getFirstTerminator();
    109     if (MII != MBB->end()) {
    110       MachineInstr *MI = MII;
    111       int Opc = MI->getOpcode();
    112       if (IsConditionalBranch(Opc)) {
    113 
    114         //
    115         // (Case 1) Transform the code if the following condition occurs:
    116         //   BB1: if (p0) jump BB3
    117         //   ...falls-through to BB2 ...
    118         //   BB2: jump BB4
    119         //   ...next block in layout is BB3...
    120         //   BB3: ...
    121         //
    122         //  Transform this to:
    123         //  BB1: if (!p0) jump BB4
    124         //  Remove BB2
    125         //  BB3: ...
    126         //
    127         // (Case 2) A variation occurs when BB3 contains a JMP to BB4:
    128         //   BB1: if (p0) jump BB3
    129         //   ...falls-through to BB2 ...
    130         //   BB2: jump BB4
    131         //   ...other basic blocks ...
    132         //   BB4:
    133         //   ...not a fall-thru
    134         //   BB3: ...
    135         //     jump BB4
    136         //
    137         // Transform this to:
    138         //   BB1: if (!p0) jump BB4
    139         //   Remove BB2
    140         //   BB3: ...
    141         //   BB4: ...
    142         //
    143         unsigned NumSuccs = MBB->succ_size();
    144         MachineBasicBlock::succ_iterator SI = MBB->succ_begin();
    145         MachineBasicBlock* FirstSucc = *SI;
    146         MachineBasicBlock* SecondSucc = *(++SI);
    147         MachineBasicBlock* LayoutSucc = nullptr;
    148         MachineBasicBlock* JumpAroundTarget = nullptr;
    149 
    150         if (MBB->isLayoutSuccessor(FirstSucc)) {
    151           LayoutSucc = FirstSucc;
    152           JumpAroundTarget = SecondSucc;
    153         } else if (MBB->isLayoutSuccessor(SecondSucc)) {
    154           LayoutSucc = SecondSucc;
    155           JumpAroundTarget = FirstSucc;
    156         } else {
    157           // Odd case...cannot handle.
    158         }
    159 
    160         // The target of the unconditional branch must be JumpAroundTarget.
    161         // TODO: If not, we should not invert the unconditional branch.
    162         MachineBasicBlock* CondBranchTarget = nullptr;
    163         if ((MI->getOpcode() == Hexagon::J2_jumpt) ||
    164             (MI->getOpcode() == Hexagon::J2_jumpf)) {
    165           CondBranchTarget = MI->getOperand(1).getMBB();
    166         }
    167 
    168         if (!LayoutSucc || (CondBranchTarget != JumpAroundTarget)) {
    169           continue;
    170         }
    171 
    172         if ((NumSuccs == 2) && LayoutSucc && (LayoutSucc->pred_size() == 1)) {
    173 
    174           // Ensure that BB2 has one instruction -- an unconditional jump.
    175           if ((LayoutSucc->size() == 1) &&
    176               IsUnconditionalJump(LayoutSucc->front().getOpcode())) {
    177             MachineBasicBlock* UncondTarget =
    178               LayoutSucc->front().getOperand(0).getMBB();
    179             // Check if the layout successor of BB2 is BB3.
    180             bool case1 = LayoutSucc->isLayoutSuccessor(JumpAroundTarget);
    181             bool case2 = JumpAroundTarget->isSuccessor(UncondTarget) &&
    182               JumpAroundTarget->size() >= 1 &&
    183               IsUnconditionalJump(JumpAroundTarget->back().getOpcode()) &&
    184               JumpAroundTarget->pred_size() == 1 &&
    185               JumpAroundTarget->succ_size() == 1;
    186 
    187             if (case1 || case2) {
    188               InvertAndChangeJumpTarget(MI, UncondTarget);
    189               MBB->replaceSuccessor(JumpAroundTarget, UncondTarget);
    190 
    191               // Remove the unconditional branch in LayoutSucc.
    192               LayoutSucc->erase(LayoutSucc->begin());
    193               LayoutSucc->replaceSuccessor(UncondTarget, JumpAroundTarget);
    194 
    195               // This code performs the conversion for case 2, which moves
    196               // the block to the fall-thru case (BB3 in the code above).
    197               if (case2 && !case1) {
    198                 JumpAroundTarget->moveAfter(LayoutSucc);
    199                 // only move a block if it doesn't have a fall-thru. otherwise
    200                 // the CFG will be incorrect.
    201                 if (!UncondTarget->canFallThrough()) {
    202                   UncondTarget->moveAfter(JumpAroundTarget);
    203                 }
    204               }
    205 
    206               //
    207               // Correct live-in information. Is used by post-RA scheduler
    208               // The live-in to LayoutSucc is now all values live-in to
    209               // JumpAroundTarget.
    210               //
    211               std::vector<MachineBasicBlock::RegisterMaskPair> OrigLiveIn(
    212                   LayoutSucc->livein_begin(), LayoutSucc->livein_end());
    213               std::vector<MachineBasicBlock::RegisterMaskPair> NewLiveIn(
    214                   JumpAroundTarget->livein_begin(),
    215                   JumpAroundTarget->livein_end());
    216               for (const auto &OrigLI : OrigLiveIn)
    217                 LayoutSucc->removeLiveIn(OrigLI.PhysReg);
    218               for (const auto &NewLI : NewLiveIn)
    219                 LayoutSucc->addLiveIn(NewLI);
    220             }
    221           }
    222         }
    223       }
    224     }
    225   }
    226   return true;
    227 }
    228 }
    229 
    230 
    231 //===----------------------------------------------------------------------===//
    232 //                         Public Constructor Functions
    233 //===----------------------------------------------------------------------===//
    234 
    235 static void initializePassOnce(PassRegistry &Registry) {
    236   PassInfo *PI = new PassInfo("Hexagon CFG Optimizer", "hexagon-cfg",
    237                               &HexagonCFGOptimizer::ID, nullptr, false, false);
    238   Registry.registerPass(*PI, true);
    239 }
    240 
    241 void llvm::initializeHexagonCFGOptimizerPass(PassRegistry &Registry) {
    242   CALL_ONCE_INITIALIZATION(initializePassOnce)
    243 }
    244 
    245 FunctionPass *llvm::createHexagonCFGOptimizer() {
    246   return new HexagonCFGOptimizer();
    247 }
    248