Home | History | Annotate | Download | only in SystemZ
      1 //===-- SystemZTargetMachine.cpp - Define TargetMachine for SystemZ -------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 
     10 #include "SystemZTargetMachine.h"
     11 #include "SystemZTargetTransformInfo.h"
     12 #include "llvm/CodeGen/Passes.h"
     13 #include "llvm/Support/TargetRegistry.h"
     14 #include "llvm/Transforms/Scalar.h"
     15 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
     16 
     17 using namespace llvm;
     18 
     19 extern cl::opt<bool> MISchedPostRA;
     20 extern "C" void LLVMInitializeSystemZTarget() {
     21   // Register the target.
     22   RegisterTargetMachine<SystemZTargetMachine> X(TheSystemZTarget);
     23 }
     24 
     25 // Determine whether we use the vector ABI.
     26 static bool UsesVectorABI(StringRef CPU, StringRef FS) {
     27   // We use the vector ABI whenever the vector facility is avaiable.
     28   // This is the case by default if CPU is z13 or later, and can be
     29   // overridden via "[+-]vector" feature string elements.
     30   bool VectorABI = true;
     31   if (CPU.empty() || CPU == "generic" ||
     32       CPU == "z10" || CPU == "z196" || CPU == "zEC12")
     33     VectorABI = false;
     34 
     35   SmallVector<StringRef, 3> Features;
     36   FS.split(Features, ',', -1, false /* KeepEmpty */);
     37   for (auto &Feature : Features) {
     38     if (Feature == "vector" || Feature == "+vector")
     39       VectorABI = true;
     40     if (Feature == "-vector")
     41       VectorABI = false;
     42   }
     43 
     44   return VectorABI;
     45 }
     46 
     47 static std::string computeDataLayout(const Triple &TT, StringRef CPU,
     48                                      StringRef FS) {
     49   bool VectorABI = UsesVectorABI(CPU, FS);
     50   std::string Ret = "";
     51 
     52   // Big endian.
     53   Ret += "E";
     54 
     55   // Data mangling.
     56   Ret += DataLayout::getManglingComponent(TT);
     57 
     58   // Make sure that global data has at least 16 bits of alignment by
     59   // default, so that we can refer to it using LARL.  We don't have any
     60   // special requirements for stack variables though.
     61   Ret += "-i1:8:16-i8:8:16";
     62 
     63   // 64-bit integers are naturally aligned.
     64   Ret += "-i64:64";
     65 
     66   // 128-bit floats are aligned only to 64 bits.
     67   Ret += "-f128:64";
     68 
     69   // When using the vector ABI, 128-bit vectors are also aligned to 64 bits.
     70   if (VectorABI)
     71     Ret += "-v128:64";
     72 
     73   // We prefer 16 bits of aligned for all globals; see above.
     74   Ret += "-a:8:16";
     75 
     76   // Integer registers are 32 or 64 bits.
     77   Ret += "-n32:64";
     78 
     79   return Ret;
     80 }
     81 
     82 SystemZTargetMachine::SystemZTargetMachine(const Target &T, const Triple &TT,
     83                                            StringRef CPU, StringRef FS,
     84                                            const TargetOptions &Options,
     85                                            Reloc::Model RM, CodeModel::Model CM,
     86                                            CodeGenOpt::Level OL)
     87     : LLVMTargetMachine(T, computeDataLayout(TT, CPU, FS), TT, CPU, FS, Options,
     88                         RM, CM, OL),
     89       TLOF(make_unique<TargetLoweringObjectFileELF>()),
     90       Subtarget(TT, CPU, FS, *this) {
     91   initAsmInfo();
     92 }
     93 
     94 SystemZTargetMachine::~SystemZTargetMachine() {}
     95 
     96 namespace {
     97 /// SystemZ Code Generator Pass Configuration Options.
     98 class SystemZPassConfig : public TargetPassConfig {
     99 public:
    100   SystemZPassConfig(SystemZTargetMachine *TM, PassManagerBase &PM)
    101     : TargetPassConfig(TM, PM) {}
    102 
    103   SystemZTargetMachine &getSystemZTargetMachine() const {
    104     return getTM<SystemZTargetMachine>();
    105   }
    106 
    107   void addIRPasses() override;
    108   bool addInstSelector() override;
    109   void addPreSched2() override;
    110   void addPreEmitPass() override;
    111 };
    112 } // end anonymous namespace
    113 
    114 void SystemZPassConfig::addIRPasses() {
    115   TargetPassConfig::addIRPasses();
    116 }
    117 
    118 bool SystemZPassConfig::addInstSelector() {
    119   addPass(createSystemZISelDag(getSystemZTargetMachine(), getOptLevel()));
    120 
    121  if (getOptLevel() != CodeGenOpt::None)
    122     addPass(createSystemZLDCleanupPass(getSystemZTargetMachine()));
    123 
    124   return false;
    125 }
    126 
    127 void SystemZPassConfig::addPreSched2() {
    128   if (getOptLevel() != CodeGenOpt::None &&
    129       getSystemZTargetMachine().getSubtargetImpl()->hasLoadStoreOnCond())
    130     addPass(&IfConverterID);
    131 }
    132 
    133 void SystemZPassConfig::addPreEmitPass() {
    134 
    135   // Do instruction shortening before compare elimination because some
    136   // vector instructions will be shortened into opcodes that compare
    137   // elimination recognizes.
    138   if (getOptLevel() != CodeGenOpt::None)
    139     addPass(createSystemZShortenInstPass(getSystemZTargetMachine()), false);
    140 
    141   // We eliminate comparisons here rather than earlier because some
    142   // transformations can change the set of available CC values and we
    143   // generally want those transformations to have priority.  This is
    144   // especially true in the commonest case where the result of the comparison
    145   // is used by a single in-range branch instruction, since we will then
    146   // be able to fuse the compare and the branch instead.
    147   //
    148   // For example, two-address NILF can sometimes be converted into
    149   // three-address RISBLG.  NILF produces a CC value that indicates whether
    150   // the low word is zero, but RISBLG does not modify CC at all.  On the
    151   // other hand, 64-bit ANDs like NILL can sometimes be converted to RISBG.
    152   // The CC value produced by NILL isn't useful for our purposes, but the
    153   // value produced by RISBG can be used for any comparison with zero
    154   // (not just equality).  So there are some transformations that lose
    155   // CC values (while still being worthwhile) and others that happen to make
    156   // the CC result more useful than it was originally.
    157   //
    158   // Another reason is that we only want to use BRANCH ON COUNT in cases
    159   // where we know that the count register is not going to be spilled.
    160   //
    161   // Doing it so late makes it more likely that a register will be reused
    162   // between the comparison and the branch, but it isn't clear whether
    163   // preventing that would be a win or not.
    164   if (getOptLevel() != CodeGenOpt::None)
    165     addPass(createSystemZElimComparePass(getSystemZTargetMachine()), false);
    166   addPass(createSystemZLongBranchPass(getSystemZTargetMachine()));
    167 
    168   // Do final scheduling after all other optimizations, to get an
    169   // optimal input for the decoder (branch relaxation must happen
    170   // after block placement).
    171   if (getOptLevel() != CodeGenOpt::None) {
    172     if (MISchedPostRA)
    173       addPass(&PostMachineSchedulerID);
    174     else
    175       addPass(&PostRASchedulerID);
    176   }
    177 }
    178 
    179 TargetPassConfig *SystemZTargetMachine::createPassConfig(PassManagerBase &PM) {
    180   return new SystemZPassConfig(this, PM);
    181 }
    182 
    183 TargetIRAnalysis SystemZTargetMachine::getTargetIRAnalysis() {
    184   return TargetIRAnalysis([this](const Function &F) {
    185     return TargetTransformInfo(SystemZTTIImpl(this, F));
    186   });
    187 }
    188