Home | History | Annotate | Download | only in CodeGen
      1 //===- MachineScheduler.cpp - Machine Instruction Scheduler ---------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // MachineScheduler schedules machine instructions after phi elimination. It
     11 // preserves LiveIntervals so it can be invoked before register allocation.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "llvm/CodeGen/MachineScheduler.h"
     16 #include "llvm/ADT/PriorityQueue.h"
     17 #include "llvm/Analysis/AliasAnalysis.h"
     18 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
     19 #include "llvm/CodeGen/MachineDominators.h"
     20 #include "llvm/CodeGen/MachineLoopInfo.h"
     21 #include "llvm/CodeGen/MachineRegisterInfo.h"
     22 #include "llvm/CodeGen/Passes.h"
     23 #include "llvm/CodeGen/RegisterClassInfo.h"
     24 #include "llvm/CodeGen/ScheduleDFS.h"
     25 #include "llvm/CodeGen/ScheduleHazardRecognizer.h"
     26 #include "llvm/Support/CommandLine.h"
     27 #include "llvm/Support/Debug.h"
     28 #include "llvm/Support/ErrorHandling.h"
     29 #include "llvm/Support/GraphWriter.h"
     30 #include "llvm/Support/raw_ostream.h"
     31 #include "llvm/Target/TargetInstrInfo.h"
     32 #include <queue>
     33 
     34 using namespace llvm;
     35 
     36 #define DEBUG_TYPE "misched"
     37 
     38 namespace llvm {
     39 cl::opt<bool> ForceTopDown("misched-topdown", cl::Hidden,
     40                            cl::desc("Force top-down list scheduling"));
     41 cl::opt<bool> ForceBottomUp("misched-bottomup", cl::Hidden,
     42                             cl::desc("Force bottom-up list scheduling"));
     43 cl::opt<bool>
     44 DumpCriticalPathLength("misched-dcpl", cl::Hidden,
     45                        cl::desc("Print critical path length to stdout"));
     46 }
     47 
     48 #ifndef NDEBUG
     49 static cl::opt<bool> ViewMISchedDAGs("view-misched-dags", cl::Hidden,
     50   cl::desc("Pop up a window to show MISched dags after they are processed"));
     51 
     52 /// In some situations a few uninteresting nodes depend on nearly all other
     53 /// nodes in the graph, provide a cutoff to hide them.
     54 static cl::opt<unsigned> ViewMISchedCutoff("view-misched-cutoff", cl::Hidden,
     55   cl::desc("Hide nodes with more predecessor/successor than cutoff"));
     56 
     57 static cl::opt<unsigned> MISchedCutoff("misched-cutoff", cl::Hidden,
     58   cl::desc("Stop scheduling after N instructions"), cl::init(~0U));
     59 
     60 static cl::opt<std::string> SchedOnlyFunc("misched-only-func", cl::Hidden,
     61   cl::desc("Only schedule this function"));
     62 static cl::opt<unsigned> SchedOnlyBlock("misched-only-block", cl::Hidden,
     63   cl::desc("Only schedule this MBB#"));
     64 #else
     65 static bool ViewMISchedDAGs = false;
     66 #endif // NDEBUG
     67 
     68 static cl::opt<bool> EnableRegPressure("misched-regpressure", cl::Hidden,
     69   cl::desc("Enable register pressure scheduling."), cl::init(true));
     70 
     71 static cl::opt<bool> EnableCyclicPath("misched-cyclicpath", cl::Hidden,
     72   cl::desc("Enable cyclic critical path analysis."), cl::init(true));
     73 
     74 static cl::opt<bool> EnableLoadCluster("misched-cluster", cl::Hidden,
     75   cl::desc("Enable load clustering."), cl::init(true));
     76 
     77 // Experimental heuristics
     78 static cl::opt<bool> EnableMacroFusion("misched-fusion", cl::Hidden,
     79   cl::desc("Enable scheduling for macro fusion."), cl::init(true));
     80 
     81 static cl::opt<bool> VerifyScheduling("verify-misched", cl::Hidden,
     82   cl::desc("Verify machine instrs before and after machine scheduling"));
     83 
     84 // DAG subtrees must have at least this many nodes.
     85 static const unsigned MinSubtreeSize = 8;
     86 
     87 // Pin the vtables to this file.
     88 void MachineSchedStrategy::anchor() {}
     89 void ScheduleDAGMutation::anchor() {}
     90 
     91 //===----------------------------------------------------------------------===//
     92 // Machine Instruction Scheduling Pass and Registry
     93 //===----------------------------------------------------------------------===//
     94 
     95 MachineSchedContext::MachineSchedContext():
     96     MF(nullptr), MLI(nullptr), MDT(nullptr), PassConfig(nullptr), AA(nullptr), LIS(nullptr) {
     97   RegClassInfo = new RegisterClassInfo();
     98 }
     99 
    100 MachineSchedContext::~MachineSchedContext() {
    101   delete RegClassInfo;
    102 }
    103 
    104 namespace {
    105 /// Base class for a machine scheduler class that can run at any point.
    106 class MachineSchedulerBase : public MachineSchedContext,
    107                              public MachineFunctionPass {
    108 public:
    109   MachineSchedulerBase(char &ID): MachineFunctionPass(ID) {}
    110 
    111   void print(raw_ostream &O, const Module* = nullptr) const override;
    112 
    113 protected:
    114   void scheduleRegions(ScheduleDAGInstrs &Scheduler, bool FixKillFlags);
    115 };
    116 
    117 /// MachineScheduler runs after coalescing and before register allocation.
    118 class MachineScheduler : public MachineSchedulerBase {
    119 public:
    120   MachineScheduler();
    121 
    122   void getAnalysisUsage(AnalysisUsage &AU) const override;
    123 
    124   bool runOnMachineFunction(MachineFunction&) override;
    125 
    126   static char ID; // Class identification, replacement for typeinfo
    127 
    128 protected:
    129   ScheduleDAGInstrs *createMachineScheduler();
    130 };
    131 
    132 /// PostMachineScheduler runs after shortly before code emission.
    133 class PostMachineScheduler : public MachineSchedulerBase {
    134 public:
    135   PostMachineScheduler();
    136 
    137   void getAnalysisUsage(AnalysisUsage &AU) const override;
    138 
    139   bool runOnMachineFunction(MachineFunction&) override;
    140 
    141   static char ID; // Class identification, replacement for typeinfo
    142 
    143 protected:
    144   ScheduleDAGInstrs *createPostMachineScheduler();
    145 };
    146 } // namespace
    147 
    148 char MachineScheduler::ID = 0;
    149 
    150 char &llvm::MachineSchedulerID = MachineScheduler::ID;
    151 
    152 INITIALIZE_PASS_BEGIN(MachineScheduler, "machine-scheduler",
    153                       "Machine Instruction Scheduler", false, false)
    154 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
    155 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
    156 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
    157 INITIALIZE_PASS_END(MachineScheduler, "machine-scheduler",
    158                     "Machine Instruction Scheduler", false, false)
    159 
    160 MachineScheduler::MachineScheduler()
    161 : MachineSchedulerBase(ID) {
    162   initializeMachineSchedulerPass(*PassRegistry::getPassRegistry());
    163 }
    164 
    165 void MachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const {
    166   AU.setPreservesCFG();
    167   AU.addRequiredID(MachineDominatorsID);
    168   AU.addRequired<MachineLoopInfo>();
    169   AU.addRequired<AAResultsWrapperPass>();
    170   AU.addRequired<TargetPassConfig>();
    171   AU.addRequired<SlotIndexes>();
    172   AU.addPreserved<SlotIndexes>();
    173   AU.addRequired<LiveIntervals>();
    174   AU.addPreserved<LiveIntervals>();
    175   MachineFunctionPass::getAnalysisUsage(AU);
    176 }
    177 
    178 char PostMachineScheduler::ID = 0;
    179 
    180 char &llvm::PostMachineSchedulerID = PostMachineScheduler::ID;
    181 
    182 INITIALIZE_PASS(PostMachineScheduler, "postmisched",
    183                 "PostRA Machine Instruction Scheduler", false, false)
    184 
    185 PostMachineScheduler::PostMachineScheduler()
    186 : MachineSchedulerBase(ID) {
    187   initializePostMachineSchedulerPass(*PassRegistry::getPassRegistry());
    188 }
    189 
    190 void PostMachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const {
    191   AU.setPreservesCFG();
    192   AU.addRequiredID(MachineDominatorsID);
    193   AU.addRequired<MachineLoopInfo>();
    194   AU.addRequired<TargetPassConfig>();
    195   MachineFunctionPass::getAnalysisUsage(AU);
    196 }
    197 
    198 MachinePassRegistry MachineSchedRegistry::Registry;
    199 
    200 /// A dummy default scheduler factory indicates whether the scheduler
    201 /// is overridden on the command line.
    202 static ScheduleDAGInstrs *useDefaultMachineSched(MachineSchedContext *C) {
    203   return nullptr;
    204 }
    205 
    206 /// MachineSchedOpt allows command line selection of the scheduler.
    207 static cl::opt<MachineSchedRegistry::ScheduleDAGCtor, false,
    208                RegisterPassParser<MachineSchedRegistry> >
    209 MachineSchedOpt("misched",
    210                 cl::init(&useDefaultMachineSched), cl::Hidden,
    211                 cl::desc("Machine instruction scheduler to use"));
    212 
    213 static MachineSchedRegistry
    214 DefaultSchedRegistry("default", "Use the target's default scheduler choice.",
    215                      useDefaultMachineSched);
    216 
    217 static cl::opt<bool> EnableMachineSched(
    218     "enable-misched",
    219     cl::desc("Enable the machine instruction scheduling pass."), cl::init(true),
    220     cl::Hidden);
    221 
    222 /// Forward declare the standard machine scheduler. This will be used as the
    223 /// default scheduler if the target does not set a default.
    224 static ScheduleDAGInstrs *createGenericSchedLive(MachineSchedContext *C);
    225 static ScheduleDAGInstrs *createGenericSchedPostRA(MachineSchedContext *C);
    226 
    227 /// Decrement this iterator until reaching the top or a non-debug instr.
    228 static MachineBasicBlock::const_iterator
    229 priorNonDebug(MachineBasicBlock::const_iterator I,
    230               MachineBasicBlock::const_iterator Beg) {
    231   assert(I != Beg && "reached the top of the region, cannot decrement");
    232   while (--I != Beg) {
    233     if (!I->isDebugValue())
    234       break;
    235   }
    236   return I;
    237 }
    238 
    239 /// Non-const version.
    240 static MachineBasicBlock::iterator
    241 priorNonDebug(MachineBasicBlock::iterator I,
    242               MachineBasicBlock::const_iterator Beg) {
    243   return const_cast<MachineInstr*>(
    244     &*priorNonDebug(MachineBasicBlock::const_iterator(I), Beg));
    245 }
    246 
    247 /// If this iterator is a debug value, increment until reaching the End or a
    248 /// non-debug instruction.
    249 static MachineBasicBlock::const_iterator
    250 nextIfDebug(MachineBasicBlock::const_iterator I,
    251             MachineBasicBlock::const_iterator End) {
    252   for(; I != End; ++I) {
    253     if (!I->isDebugValue())
    254       break;
    255   }
    256   return I;
    257 }
    258 
    259 /// Non-const version.
    260 static MachineBasicBlock::iterator
    261 nextIfDebug(MachineBasicBlock::iterator I,
    262             MachineBasicBlock::const_iterator End) {
    263   // Cast the return value to nonconst MachineInstr, then cast to an
    264   // instr_iterator, which does not check for null, finally return a
    265   // bundle_iterator.
    266   return MachineBasicBlock::instr_iterator(
    267     const_cast<MachineInstr*>(
    268       &*nextIfDebug(MachineBasicBlock::const_iterator(I), End)));
    269 }
    270 
    271 /// Instantiate a ScheduleDAGInstrs that will be owned by the caller.
    272 ScheduleDAGInstrs *MachineScheduler::createMachineScheduler() {
    273   // Select the scheduler, or set the default.
    274   MachineSchedRegistry::ScheduleDAGCtor Ctor = MachineSchedOpt;
    275   if (Ctor != useDefaultMachineSched)
    276     return Ctor(this);
    277 
    278   // Get the default scheduler set by the target for this function.
    279   ScheduleDAGInstrs *Scheduler = PassConfig->createMachineScheduler(this);
    280   if (Scheduler)
    281     return Scheduler;
    282 
    283   // Default to GenericScheduler.
    284   return createGenericSchedLive(this);
    285 }
    286 
    287 /// Instantiate a ScheduleDAGInstrs for PostRA scheduling that will be owned by
    288 /// the caller. We don't have a command line option to override the postRA
    289 /// scheduler. The Target must configure it.
    290 ScheduleDAGInstrs *PostMachineScheduler::createPostMachineScheduler() {
    291   // Get the postRA scheduler set by the target for this function.
    292   ScheduleDAGInstrs *Scheduler = PassConfig->createPostMachineScheduler(this);
    293   if (Scheduler)
    294     return Scheduler;
    295 
    296   // Default to GenericScheduler.
    297   return createGenericSchedPostRA(this);
    298 }
    299 
    300 /// Top-level MachineScheduler pass driver.
    301 ///
    302 /// Visit blocks in function order. Divide each block into scheduling regions
    303 /// and visit them bottom-up. Visiting regions bottom-up is not required, but is
    304 /// consistent with the DAG builder, which traverses the interior of the
    305 /// scheduling regions bottom-up.
    306 ///
    307 /// This design avoids exposing scheduling boundaries to the DAG builder,
    308 /// simplifying the DAG builder's support for "special" target instructions.
    309 /// At the same time the design allows target schedulers to operate across
    310 /// scheduling boundaries, for example to bundle the boudary instructions
    311 /// without reordering them. This creates complexity, because the target
    312 /// scheduler must update the RegionBegin and RegionEnd positions cached by
    313 /// ScheduleDAGInstrs whenever adding or removing instructions. A much simpler
    314 /// design would be to split blocks at scheduling boundaries, but LLVM has a
    315 /// general bias against block splitting purely for implementation simplicity.
    316 bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) {
    317   if (EnableMachineSched.getNumOccurrences()) {
    318     if (!EnableMachineSched)
    319       return false;
    320   } else if (!mf.getSubtarget().enableMachineScheduler())
    321     return false;
    322 
    323   DEBUG(dbgs() << "Before MISched:\n"; mf.print(dbgs()));
    324 
    325   // Initialize the context of the pass.
    326   MF = &mf;
    327   MLI = &getAnalysis<MachineLoopInfo>();
    328   MDT = &getAnalysis<MachineDominatorTree>();
    329   PassConfig = &getAnalysis<TargetPassConfig>();
    330   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
    331 
    332   LIS = &getAnalysis<LiveIntervals>();
    333 
    334   if (VerifyScheduling) {
    335     DEBUG(LIS->dump());
    336     MF->verify(this, "Before machine scheduling.");
    337   }
    338   RegClassInfo->runOnMachineFunction(*MF);
    339 
    340   // Instantiate the selected scheduler for this target, function, and
    341   // optimization level.
    342   std::unique_ptr<ScheduleDAGInstrs> Scheduler(createMachineScheduler());
    343   scheduleRegions(*Scheduler, false);
    344 
    345   DEBUG(LIS->dump());
    346   if (VerifyScheduling)
    347     MF->verify(this, "After machine scheduling.");
    348   return true;
    349 }
    350 
    351 bool PostMachineScheduler::runOnMachineFunction(MachineFunction &mf) {
    352   if (skipOptnoneFunction(*mf.getFunction()))
    353     return false;
    354 
    355   if (!mf.getSubtarget().enablePostRAScheduler()) {
    356     DEBUG(dbgs() << "Subtarget disables post-MI-sched.\n");
    357     return false;
    358   }
    359   DEBUG(dbgs() << "Before post-MI-sched:\n"; mf.print(dbgs()));
    360 
    361   // Initialize the context of the pass.
    362   MF = &mf;
    363   PassConfig = &getAnalysis<TargetPassConfig>();
    364 
    365   if (VerifyScheduling)
    366     MF->verify(this, "Before post machine scheduling.");
    367 
    368   // Instantiate the selected scheduler for this target, function, and
    369   // optimization level.
    370   std::unique_ptr<ScheduleDAGInstrs> Scheduler(createPostMachineScheduler());
    371   scheduleRegions(*Scheduler, true);
    372 
    373   if (VerifyScheduling)
    374     MF->verify(this, "After post machine scheduling.");
    375   return true;
    376 }
    377 
    378 /// Return true of the given instruction should not be included in a scheduling
    379 /// region.
    380 ///
    381 /// MachineScheduler does not currently support scheduling across calls. To
    382 /// handle calls, the DAG builder needs to be modified to create register
    383 /// anti/output dependencies on the registers clobbered by the call's regmask
    384 /// operand. In PreRA scheduling, the stack pointer adjustment already prevents
    385 /// scheduling across calls. In PostRA scheduling, we need the isCall to enforce
    386 /// the boundary, but there would be no benefit to postRA scheduling across
    387 /// calls this late anyway.
    388 static bool isSchedBoundary(MachineBasicBlock::iterator MI,
    389                             MachineBasicBlock *MBB,
    390                             MachineFunction *MF,
    391                             const TargetInstrInfo *TII) {
    392   return MI->isCall() || TII->isSchedulingBoundary(MI, MBB, *MF);
    393 }
    394 
    395 /// Main driver for both MachineScheduler and PostMachineScheduler.
    396 void MachineSchedulerBase::scheduleRegions(ScheduleDAGInstrs &Scheduler,
    397                                            bool FixKillFlags) {
    398   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
    399 
    400   // Visit all machine basic blocks.
    401   //
    402   // TODO: Visit blocks in global postorder or postorder within the bottom-up
    403   // loop tree. Then we can optionally compute global RegPressure.
    404   for (MachineFunction::iterator MBB = MF->begin(), MBBEnd = MF->end();
    405        MBB != MBBEnd; ++MBB) {
    406 
    407     Scheduler.startBlock(&*MBB);
    408 
    409 #ifndef NDEBUG
    410     if (SchedOnlyFunc.getNumOccurrences() && SchedOnlyFunc != MF->getName())
    411       continue;
    412     if (SchedOnlyBlock.getNumOccurrences()
    413         && (int)SchedOnlyBlock != MBB->getNumber())
    414       continue;
    415 #endif
    416 
    417     // Break the block into scheduling regions [I, RegionEnd), and schedule each
    418     // region as soon as it is discovered. RegionEnd points the scheduling
    419     // boundary at the bottom of the region. The DAG does not include RegionEnd,
    420     // but the region does (i.e. the next RegionEnd is above the previous
    421     // RegionBegin). If the current block has no terminator then RegionEnd ==
    422     // MBB->end() for the bottom region.
    423     //
    424     // The Scheduler may insert instructions during either schedule() or
    425     // exitRegion(), even for empty regions. So the local iterators 'I' and
    426     // 'RegionEnd' are invalid across these calls.
    427     //
    428     // MBB::size() uses instr_iterator to count. Here we need a bundle to count
    429     // as a single instruction.
    430     unsigned RemainingInstrs = std::distance(MBB->begin(), MBB->end());
    431     for(MachineBasicBlock::iterator RegionEnd = MBB->end();
    432         RegionEnd != MBB->begin(); RegionEnd = Scheduler.begin()) {
    433 
    434       // Avoid decrementing RegionEnd for blocks with no terminator.
    435       if (RegionEnd != MBB->end() ||
    436           isSchedBoundary(&*std::prev(RegionEnd), &*MBB, MF, TII)) {
    437         --RegionEnd;
    438         // Count the boundary instruction.
    439         --RemainingInstrs;
    440       }
    441 
    442       // The next region starts above the previous region. Look backward in the
    443       // instruction stream until we find the nearest boundary.
    444       unsigned NumRegionInstrs = 0;
    445       MachineBasicBlock::iterator I = RegionEnd;
    446       for(;I != MBB->begin(); --I, --RemainingInstrs) {
    447         if (isSchedBoundary(&*std::prev(I), &*MBB, MF, TII))
    448           break;
    449         if (!I->isDebugValue())
    450           ++NumRegionInstrs;
    451       }
    452       // Notify the scheduler of the region, even if we may skip scheduling
    453       // it. Perhaps it still needs to be bundled.
    454       Scheduler.enterRegion(&*MBB, I, RegionEnd, NumRegionInstrs);
    455 
    456       // Skip empty scheduling regions (0 or 1 schedulable instructions).
    457       if (I == RegionEnd || I == std::prev(RegionEnd)) {
    458         // Close the current region. Bundle the terminator if needed.
    459         // This invalidates 'RegionEnd' and 'I'.
    460         Scheduler.exitRegion();
    461         continue;
    462       }
    463       DEBUG(dbgs() << "********** MI Scheduling **********\n");
    464       DEBUG(dbgs() << MF->getName()
    465             << ":BB#" << MBB->getNumber() << " " << MBB->getName()
    466             << "\n  From: " << *I << "    To: ";
    467             if (RegionEnd != MBB->end()) dbgs() << *RegionEnd;
    468             else dbgs() << "End";
    469             dbgs() << " RegionInstrs: " << NumRegionInstrs
    470             << " Remaining: " << RemainingInstrs << "\n");
    471       if (DumpCriticalPathLength) {
    472         errs() << MF->getName();
    473         errs() << ":BB# " << MBB->getNumber();
    474         errs() << " " << MBB->getName() << " \n";
    475       }
    476 
    477       // Schedule a region: possibly reorder instructions.
    478       // This invalidates 'RegionEnd' and 'I'.
    479       Scheduler.schedule();
    480 
    481       // Close the current region.
    482       Scheduler.exitRegion();
    483 
    484       // Scheduling has invalidated the current iterator 'I'. Ask the
    485       // scheduler for the top of it's scheduled region.
    486       RegionEnd = Scheduler.begin();
    487     }
    488     assert(RemainingInstrs == 0 && "Instruction count mismatch!");
    489     Scheduler.finishBlock();
    490     // FIXME: Ideally, no further passes should rely on kill flags. However,
    491     // thumb2 size reduction is currently an exception, so the PostMIScheduler
    492     // needs to do this.
    493     if (FixKillFlags)
    494         Scheduler.fixupKills(&*MBB);
    495   }
    496   Scheduler.finalizeSchedule();
    497 }
    498 
    499 void MachineSchedulerBase::print(raw_ostream &O, const Module* m) const {
    500   // unimplemented
    501 }
    502 
    503 LLVM_DUMP_METHOD
    504 void ReadyQueue::dump() {
    505   dbgs() << "Queue " << Name << ": ";
    506   for (unsigned i = 0, e = Queue.size(); i < e; ++i)
    507     dbgs() << Queue[i]->NodeNum << " ";
    508   dbgs() << "\n";
    509 }
    510 
    511 //===----------------------------------------------------------------------===//
    512 // ScheduleDAGMI - Basic machine instruction scheduling. This is
    513 // independent of PreRA/PostRA scheduling and involves no extra book-keeping for
    514 // virtual registers.
    515 // ===----------------------------------------------------------------------===/
    516 
    517 // Provide a vtable anchor.
    518 ScheduleDAGMI::~ScheduleDAGMI() {
    519 }
    520 
    521 bool ScheduleDAGMI::canAddEdge(SUnit *SuccSU, SUnit *PredSU) {
    522   return SuccSU == &ExitSU || !Topo.IsReachable(PredSU, SuccSU);
    523 }
    524 
    525 bool ScheduleDAGMI::addEdge(SUnit *SuccSU, const SDep &PredDep) {
    526   if (SuccSU != &ExitSU) {
    527     // Do not use WillCreateCycle, it assumes SD scheduling.
    528     // If Pred is reachable from Succ, then the edge creates a cycle.
    529     if (Topo.IsReachable(PredDep.getSUnit(), SuccSU))
    530       return false;
    531     Topo.AddPred(SuccSU, PredDep.getSUnit());
    532   }
    533   SuccSU->addPred(PredDep, /*Required=*/!PredDep.isArtificial());
    534   // Return true regardless of whether a new edge needed to be inserted.
    535   return true;
    536 }
    537 
    538 /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. When
    539 /// NumPredsLeft reaches zero, release the successor node.
    540 ///
    541 /// FIXME: Adjust SuccSU height based on MinLatency.
    542 void ScheduleDAGMI::releaseSucc(SUnit *SU, SDep *SuccEdge) {
    543   SUnit *SuccSU = SuccEdge->getSUnit();
    544 
    545   if (SuccEdge->isWeak()) {
    546     --SuccSU->WeakPredsLeft;
    547     if (SuccEdge->isCluster())
    548       NextClusterSucc = SuccSU;
    549     return;
    550   }
    551 #ifndef NDEBUG
    552   if (SuccSU->NumPredsLeft == 0) {
    553     dbgs() << "*** Scheduling failed! ***\n";
    554     SuccSU->dump(this);
    555     dbgs() << " has been released too many times!\n";
    556     llvm_unreachable(nullptr);
    557   }
    558 #endif
    559   // SU->TopReadyCycle was set to CurrCycle when it was scheduled. However,
    560   // CurrCycle may have advanced since then.
    561   if (SuccSU->TopReadyCycle < SU->TopReadyCycle + SuccEdge->getLatency())
    562     SuccSU->TopReadyCycle = SU->TopReadyCycle + SuccEdge->getLatency();
    563 
    564   --SuccSU->NumPredsLeft;
    565   if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU)
    566     SchedImpl->releaseTopNode(SuccSU);
    567 }
    568 
    569 /// releaseSuccessors - Call releaseSucc on each of SU's successors.
    570 void ScheduleDAGMI::releaseSuccessors(SUnit *SU) {
    571   for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
    572        I != E; ++I) {
    573     releaseSucc(SU, &*I);
    574   }
    575 }
    576 
    577 /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. When
    578 /// NumSuccsLeft reaches zero, release the predecessor node.
    579 ///
    580 /// FIXME: Adjust PredSU height based on MinLatency.
    581 void ScheduleDAGMI::releasePred(SUnit *SU, SDep *PredEdge) {
    582   SUnit *PredSU = PredEdge->getSUnit();
    583 
    584   if (PredEdge->isWeak()) {
    585     --PredSU->WeakSuccsLeft;
    586     if (PredEdge->isCluster())
    587       NextClusterPred = PredSU;
    588     return;
    589   }
    590 #ifndef NDEBUG
    591   if (PredSU->NumSuccsLeft == 0) {
    592     dbgs() << "*** Scheduling failed! ***\n";
    593     PredSU->dump(this);
    594     dbgs() << " has been released too many times!\n";
    595     llvm_unreachable(nullptr);
    596   }
    597 #endif
    598   // SU->BotReadyCycle was set to CurrCycle when it was scheduled. However,
    599   // CurrCycle may have advanced since then.
    600   if (PredSU->BotReadyCycle < SU->BotReadyCycle + PredEdge->getLatency())
    601     PredSU->BotReadyCycle = SU->BotReadyCycle + PredEdge->getLatency();
    602 
    603   --PredSU->NumSuccsLeft;
    604   if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU)
    605     SchedImpl->releaseBottomNode(PredSU);
    606 }
    607 
    608 /// releasePredecessors - Call releasePred on each of SU's predecessors.
    609 void ScheduleDAGMI::releasePredecessors(SUnit *SU) {
    610   for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
    611        I != E; ++I) {
    612     releasePred(SU, &*I);
    613   }
    614 }
    615 
    616 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after
    617 /// crossing a scheduling boundary. [begin, end) includes all instructions in
    618 /// the region, including the boundary itself and single-instruction regions
    619 /// that don't get scheduled.
    620 void ScheduleDAGMI::enterRegion(MachineBasicBlock *bb,
    621                                      MachineBasicBlock::iterator begin,
    622                                      MachineBasicBlock::iterator end,
    623                                      unsigned regioninstrs)
    624 {
    625   ScheduleDAGInstrs::enterRegion(bb, begin, end, regioninstrs);
    626 
    627   SchedImpl->initPolicy(begin, end, regioninstrs);
    628 }
    629 
    630 /// This is normally called from the main scheduler loop but may also be invoked
    631 /// by the scheduling strategy to perform additional code motion.
    632 void ScheduleDAGMI::moveInstruction(
    633   MachineInstr *MI, MachineBasicBlock::iterator InsertPos) {
    634   // Advance RegionBegin if the first instruction moves down.
    635   if (&*RegionBegin == MI)
    636     ++RegionBegin;
    637 
    638   // Update the instruction stream.
    639   BB->splice(InsertPos, BB, MI);
    640 
    641   // Update LiveIntervals
    642   if (LIS)
    643     LIS->handleMove(MI, /*UpdateFlags=*/true);
    644 
    645   // Recede RegionBegin if an instruction moves above the first.
    646   if (RegionBegin == InsertPos)
    647     RegionBegin = MI;
    648 }
    649 
    650 bool ScheduleDAGMI::checkSchedLimit() {
    651 #ifndef NDEBUG
    652   if (NumInstrsScheduled == MISchedCutoff && MISchedCutoff != ~0U) {
    653     CurrentTop = CurrentBottom;
    654     return false;
    655   }
    656   ++NumInstrsScheduled;
    657 #endif
    658   return true;
    659 }
    660 
    661 /// Per-region scheduling driver, called back from
    662 /// MachineScheduler::runOnMachineFunction. This is a simplified driver that
    663 /// does not consider liveness or register pressure. It is useful for PostRA
    664 /// scheduling and potentially other custom schedulers.
    665 void ScheduleDAGMI::schedule() {
    666   DEBUG(dbgs() << "ScheduleDAGMI::schedule starting\n");
    667   DEBUG(SchedImpl->dumpPolicy());
    668 
    669   // Build the DAG.
    670   buildSchedGraph(AA);
    671 
    672   Topo.InitDAGTopologicalSorting();
    673 
    674   postprocessDAG();
    675 
    676   SmallVector<SUnit*, 8> TopRoots, BotRoots;
    677   findRootsAndBiasEdges(TopRoots, BotRoots);
    678 
    679   // Initialize the strategy before modifying the DAG.
    680   // This may initialize a DFSResult to be used for queue priority.
    681   SchedImpl->initialize(this);
    682 
    683   DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
    684           SUnits[su].dumpAll(this));
    685   if (ViewMISchedDAGs) viewGraph();
    686 
    687   // Initialize ready queues now that the DAG and priority data are finalized.
    688   initQueues(TopRoots, BotRoots);
    689 
    690   bool IsTopNode = false;
    691   while (true) {
    692     DEBUG(dbgs() << "** ScheduleDAGMI::schedule picking next node\n");
    693     SUnit *SU = SchedImpl->pickNode(IsTopNode);
    694     if (!SU) break;
    695 
    696     assert(!SU->isScheduled && "Node already scheduled");
    697     if (!checkSchedLimit())
    698       break;
    699 
    700     MachineInstr *MI = SU->getInstr();
    701     if (IsTopNode) {
    702       assert(SU->isTopReady() && "node still has unscheduled dependencies");
    703       if (&*CurrentTop == MI)
    704         CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom);
    705       else
    706         moveInstruction(MI, CurrentTop);
    707     }
    708     else {
    709       assert(SU->isBottomReady() && "node still has unscheduled dependencies");
    710       MachineBasicBlock::iterator priorII =
    711         priorNonDebug(CurrentBottom, CurrentTop);
    712       if (&*priorII == MI)
    713         CurrentBottom = priorII;
    714       else {
    715         if (&*CurrentTop == MI)
    716           CurrentTop = nextIfDebug(++CurrentTop, priorII);
    717         moveInstruction(MI, CurrentBottom);
    718         CurrentBottom = MI;
    719       }
    720     }
    721     // Notify the scheduling strategy before updating the DAG.
    722     // This sets the scheduled node's ReadyCycle to CurrCycle. When updateQueues
    723     // runs, it can then use the accurate ReadyCycle time to determine whether
    724     // newly released nodes can move to the readyQ.
    725     SchedImpl->schedNode(SU, IsTopNode);
    726 
    727     updateQueues(SU, IsTopNode);
    728   }
    729   assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");
    730 
    731   placeDebugValues();
    732 
    733   DEBUG({
    734       unsigned BBNum = begin()->getParent()->getNumber();
    735       dbgs() << "*** Final schedule for BB#" << BBNum << " ***\n";
    736       dumpSchedule();
    737       dbgs() << '\n';
    738     });
    739 }
    740 
    741 /// Apply each ScheduleDAGMutation step in order.
    742 void ScheduleDAGMI::postprocessDAG() {
    743   for (unsigned i = 0, e = Mutations.size(); i < e; ++i) {
    744     Mutations[i]->apply(this);
    745   }
    746 }
    747 
    748 void ScheduleDAGMI::
    749 findRootsAndBiasEdges(SmallVectorImpl<SUnit*> &TopRoots,
    750                       SmallVectorImpl<SUnit*> &BotRoots) {
    751   for (std::vector<SUnit>::iterator
    752          I = SUnits.begin(), E = SUnits.end(); I != E; ++I) {
    753     SUnit *SU = &(*I);
    754     assert(!SU->isBoundaryNode() && "Boundary node should not be in SUnits");
    755 
    756     // Order predecessors so DFSResult follows the critical path.
    757     SU->biasCriticalPath();
    758 
    759     // A SUnit is ready to top schedule if it has no predecessors.
    760     if (!I->NumPredsLeft)
    761       TopRoots.push_back(SU);
    762     // A SUnit is ready to bottom schedule if it has no successors.
    763     if (!I->NumSuccsLeft)
    764       BotRoots.push_back(SU);
    765   }
    766   ExitSU.biasCriticalPath();
    767 }
    768 
    769 /// Identify DAG roots and setup scheduler queues.
    770 void ScheduleDAGMI::initQueues(ArrayRef<SUnit*> TopRoots,
    771                                ArrayRef<SUnit*> BotRoots) {
    772   NextClusterSucc = nullptr;
    773   NextClusterPred = nullptr;
    774 
    775   // Release all DAG roots for scheduling, not including EntrySU/ExitSU.
    776   //
    777   // Nodes with unreleased weak edges can still be roots.
    778   // Release top roots in forward order.
    779   for (SmallVectorImpl<SUnit*>::const_iterator
    780          I = TopRoots.begin(), E = TopRoots.end(); I != E; ++I) {
    781     SchedImpl->releaseTopNode(*I);
    782   }
    783   // Release bottom roots in reverse order so the higher priority nodes appear
    784   // first. This is more natural and slightly more efficient.
    785   for (SmallVectorImpl<SUnit*>::const_reverse_iterator
    786          I = BotRoots.rbegin(), E = BotRoots.rend(); I != E; ++I) {
    787     SchedImpl->releaseBottomNode(*I);
    788   }
    789 
    790   releaseSuccessors(&EntrySU);
    791   releasePredecessors(&ExitSU);
    792 
    793   SchedImpl->registerRoots();
    794 
    795   // Advance past initial DebugValues.
    796   CurrentTop = nextIfDebug(RegionBegin, RegionEnd);
    797   CurrentBottom = RegionEnd;
    798 }
    799 
    800 /// Update scheduler queues after scheduling an instruction.
    801 void ScheduleDAGMI::updateQueues(SUnit *SU, bool IsTopNode) {
    802   // Release dependent instructions for scheduling.
    803   if (IsTopNode)
    804     releaseSuccessors(SU);
    805   else
    806     releasePredecessors(SU);
    807 
    808   SU->isScheduled = true;
    809 }
    810 
    811 /// Reinsert any remaining debug_values, just like the PostRA scheduler.
    812 void ScheduleDAGMI::placeDebugValues() {
    813   // If first instruction was a DBG_VALUE then put it back.
    814   if (FirstDbgValue) {
    815     BB->splice(RegionBegin, BB, FirstDbgValue);
    816     RegionBegin = FirstDbgValue;
    817   }
    818 
    819   for (std::vector<std::pair<MachineInstr *, MachineInstr *> >::iterator
    820          DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) {
    821     std::pair<MachineInstr *, MachineInstr *> P = *std::prev(DI);
    822     MachineInstr *DbgValue = P.first;
    823     MachineBasicBlock::iterator OrigPrevMI = P.second;
    824     if (&*RegionBegin == DbgValue)
    825       ++RegionBegin;
    826     BB->splice(++OrigPrevMI, BB, DbgValue);
    827     if (OrigPrevMI == std::prev(RegionEnd))
    828       RegionEnd = DbgValue;
    829   }
    830   DbgValues.clear();
    831   FirstDbgValue = nullptr;
    832 }
    833 
    834 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
    835 void ScheduleDAGMI::dumpSchedule() const {
    836   for (MachineBasicBlock::iterator MI = begin(), ME = end(); MI != ME; ++MI) {
    837     if (SUnit *SU = getSUnit(&(*MI)))
    838       SU->dump(this);
    839     else
    840       dbgs() << "Missing SUnit\n";
    841   }
    842 }
    843 #endif
    844 
    845 //===----------------------------------------------------------------------===//
    846 // ScheduleDAGMILive - Base class for MachineInstr scheduling with LiveIntervals
    847 // preservation.
    848 //===----------------------------------------------------------------------===//
    849 
    850 ScheduleDAGMILive::~ScheduleDAGMILive() {
    851   delete DFSResult;
    852 }
    853 
    854 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after
    855 /// crossing a scheduling boundary. [begin, end) includes all instructions in
    856 /// the region, including the boundary itself and single-instruction regions
    857 /// that don't get scheduled.
    858 void ScheduleDAGMILive::enterRegion(MachineBasicBlock *bb,
    859                                 MachineBasicBlock::iterator begin,
    860                                 MachineBasicBlock::iterator end,
    861                                 unsigned regioninstrs)
    862 {
    863   // ScheduleDAGMI initializes SchedImpl's per-region policy.
    864   ScheduleDAGMI::enterRegion(bb, begin, end, regioninstrs);
    865 
    866   // For convenience remember the end of the liveness region.
    867   LiveRegionEnd = (RegionEnd == bb->end()) ? RegionEnd : std::next(RegionEnd);
    868 
    869   SUPressureDiffs.clear();
    870 
    871   ShouldTrackPressure = SchedImpl->shouldTrackPressure();
    872 }
    873 
    874 // Setup the register pressure trackers for the top scheduled top and bottom
    875 // scheduled regions.
    876 void ScheduleDAGMILive::initRegPressure() {
    877   TopRPTracker.init(&MF, RegClassInfo, LIS, BB, RegionBegin);
    878   BotRPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd);
    879 
    880   // Close the RPTracker to finalize live ins.
    881   RPTracker.closeRegion();
    882 
    883   DEBUG(RPTracker.dump());
    884 
    885   // Initialize the live ins and live outs.
    886   TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs);
    887   BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs);
    888 
    889   // Close one end of the tracker so we can call
    890   // getMaxUpward/DownwardPressureDelta before advancing across any
    891   // instructions. This converts currently live regs into live ins/outs.
    892   TopRPTracker.closeTop();
    893   BotRPTracker.closeBottom();
    894 
    895   BotRPTracker.initLiveThru(RPTracker);
    896   if (!BotRPTracker.getLiveThru().empty()) {
    897     TopRPTracker.initLiveThru(BotRPTracker.getLiveThru());
    898     DEBUG(dbgs() << "Live Thru: ";
    899           dumpRegSetPressure(BotRPTracker.getLiveThru(), TRI));
    900   };
    901 
    902   // For each live out vreg reduce the pressure change associated with other
    903   // uses of the same vreg below the live-out reaching def.
    904   updatePressureDiffs(RPTracker.getPressure().LiveOutRegs);
    905 
    906   // Account for liveness generated by the region boundary.
    907   if (LiveRegionEnd != RegionEnd) {
    908     SmallVector<unsigned, 8> LiveUses;
    909     BotRPTracker.recede(&LiveUses);
    910     updatePressureDiffs(LiveUses);
    911   }
    912 
    913   DEBUG(
    914     dbgs() << "Top Pressure:\n";
    915     dumpRegSetPressure(TopRPTracker.getRegSetPressureAtPos(), TRI);
    916     dbgs() << "Bottom Pressure:\n";
    917     dumpRegSetPressure(BotRPTracker.getRegSetPressureAtPos(), TRI);
    918   );
    919 
    920   assert(BotRPTracker.getPos() == RegionEnd && "Can't find the region bottom");
    921 
    922   // Cache the list of excess pressure sets in this region. This will also track
    923   // the max pressure in the scheduled code for these sets.
    924   RegionCriticalPSets.clear();
    925   const std::vector<unsigned> &RegionPressure =
    926     RPTracker.getPressure().MaxSetPressure;
    927   for (unsigned i = 0, e = RegionPressure.size(); i < e; ++i) {
    928     unsigned Limit = RegClassInfo->getRegPressureSetLimit(i);
    929     if (RegionPressure[i] > Limit) {
    930       DEBUG(dbgs() << TRI->getRegPressureSetName(i)
    931             << " Limit " << Limit
    932             << " Actual " << RegionPressure[i] << "\n");
    933       RegionCriticalPSets.push_back(PressureChange(i));
    934     }
    935   }
    936   DEBUG(dbgs() << "Excess PSets: ";
    937         for (unsigned i = 0, e = RegionCriticalPSets.size(); i != e; ++i)
    938           dbgs() << TRI->getRegPressureSetName(
    939             RegionCriticalPSets[i].getPSet()) << " ";
    940         dbgs() << "\n");
    941 }
    942 
    943 void ScheduleDAGMILive::
    944 updateScheduledPressure(const SUnit *SU,
    945                         const std::vector<unsigned> &NewMaxPressure) {
    946   const PressureDiff &PDiff = getPressureDiff(SU);
    947   unsigned CritIdx = 0, CritEnd = RegionCriticalPSets.size();
    948   for (PressureDiff::const_iterator I = PDiff.begin(), E = PDiff.end();
    949        I != E; ++I) {
    950     if (!I->isValid())
    951       break;
    952     unsigned ID = I->getPSet();
    953     while (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() < ID)
    954       ++CritIdx;
    955     if (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() == ID) {
    956       if ((int)NewMaxPressure[ID] > RegionCriticalPSets[CritIdx].getUnitInc()
    957           && NewMaxPressure[ID] <= INT16_MAX)
    958         RegionCriticalPSets[CritIdx].setUnitInc(NewMaxPressure[ID]);
    959     }
    960     unsigned Limit = RegClassInfo->getRegPressureSetLimit(ID);
    961     if (NewMaxPressure[ID] >= Limit - 2) {
    962       DEBUG(dbgs() << "  " << TRI->getRegPressureSetName(ID) << ": "
    963             << NewMaxPressure[ID]
    964             << ((NewMaxPressure[ID] > Limit) ? " > " : " <= ") << Limit
    965             << "(+ " << BotRPTracker.getLiveThru()[ID] << " livethru)\n");
    966     }
    967   }
    968 }
    969 
    970 /// Update the PressureDiff array for liveness after scheduling this
    971 /// instruction.
    972 void ScheduleDAGMILive::updatePressureDiffs(ArrayRef<unsigned> LiveUses) {
    973   for (unsigned LUIdx = 0, LUEnd = LiveUses.size(); LUIdx != LUEnd; ++LUIdx) {
    974     /// FIXME: Currently assuming single-use physregs.
    975     unsigned Reg = LiveUses[LUIdx];
    976     DEBUG(dbgs() << "  LiveReg: " << PrintVRegOrUnit(Reg, TRI) << "\n");
    977     if (!TRI->isVirtualRegister(Reg))
    978       continue;
    979 
    980     // This may be called before CurrentBottom has been initialized. However,
    981     // BotRPTracker must have a valid position. We want the value live into the
    982     // instruction or live out of the block, so ask for the previous
    983     // instruction's live-out.
    984     const LiveInterval &LI = LIS->getInterval(Reg);
    985     VNInfo *VNI;
    986     MachineBasicBlock::const_iterator I =
    987       nextIfDebug(BotRPTracker.getPos(), BB->end());
    988     if (I == BB->end())
    989       VNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB));
    990     else {
    991       LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(I));
    992       VNI = LRQ.valueIn();
    993     }
    994     // RegisterPressureTracker guarantees that readsReg is true for LiveUses.
    995     assert(VNI && "No live value at use.");
    996     for (const VReg2SUnit &V2SU
    997          : make_range(VRegUses.find(Reg), VRegUses.end())) {
    998       SUnit *SU = V2SU.SU;
    999       // If this use comes before the reaching def, it cannot be a last use, so
   1000       // descrease its pressure change.
   1001       if (!SU->isScheduled && SU != &ExitSU) {
   1002         LiveQueryResult LRQ
   1003           = LI.Query(LIS->getInstructionIndex(SU->getInstr()));
   1004         if (LRQ.valueIn() == VNI) {
   1005           PressureDiff &PDiff = getPressureDiff(SU);
   1006           PDiff.addPressureChange(Reg, true, &MRI);
   1007           DEBUG(
   1008             dbgs() << "  UpdateRegP: SU(" << SU->NodeNum << ") "
   1009                    << *SU->getInstr();
   1010             dbgs() << "              to ";
   1011             PDiff.dump(*TRI);
   1012           );
   1013         }
   1014       }
   1015     }
   1016   }
   1017 }
   1018 
   1019 /// schedule - Called back from MachineScheduler::runOnMachineFunction
   1020 /// after setting up the current scheduling region. [RegionBegin, RegionEnd)
   1021 /// only includes instructions that have DAG nodes, not scheduling boundaries.
   1022 ///
   1023 /// This is a skeletal driver, with all the functionality pushed into helpers,
   1024 /// so that it can be easily extended by experimental schedulers. Generally,
   1025 /// implementing MachineSchedStrategy should be sufficient to implement a new
   1026 /// scheduling algorithm. However, if a scheduler further subclasses
   1027 /// ScheduleDAGMILive then it will want to override this virtual method in order
   1028 /// to update any specialized state.
   1029 void ScheduleDAGMILive::schedule() {
   1030   DEBUG(dbgs() << "ScheduleDAGMILive::schedule starting\n");
   1031   DEBUG(SchedImpl->dumpPolicy());
   1032   buildDAGWithRegPressure();
   1033 
   1034   Topo.InitDAGTopologicalSorting();
   1035 
   1036   postprocessDAG();
   1037 
   1038   SmallVector<SUnit*, 8> TopRoots, BotRoots;
   1039   findRootsAndBiasEdges(TopRoots, BotRoots);
   1040 
   1041   // Initialize the strategy before modifying the DAG.
   1042   // This may initialize a DFSResult to be used for queue priority.
   1043   SchedImpl->initialize(this);
   1044 
   1045   DEBUG(
   1046     for (const SUnit &SU : SUnits) {
   1047       SU.dumpAll(this);
   1048       if (ShouldTrackPressure) {
   1049         dbgs() << "  Pressure Diff      : ";
   1050         getPressureDiff(&SU).dump(*TRI);
   1051       }
   1052       dbgs() << '\n';
   1053     }
   1054   );
   1055   if (ViewMISchedDAGs) viewGraph();
   1056 
   1057   // Initialize ready queues now that the DAG and priority data are finalized.
   1058   initQueues(TopRoots, BotRoots);
   1059 
   1060   if (ShouldTrackPressure) {
   1061     assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker");
   1062     TopRPTracker.setPos(CurrentTop);
   1063   }
   1064 
   1065   bool IsTopNode = false;
   1066   while (true) {
   1067     DEBUG(dbgs() << "** ScheduleDAGMILive::schedule picking next node\n");
   1068     SUnit *SU = SchedImpl->pickNode(IsTopNode);
   1069     if (!SU) break;
   1070 
   1071     assert(!SU->isScheduled && "Node already scheduled");
   1072     if (!checkSchedLimit())
   1073       break;
   1074 
   1075     scheduleMI(SU, IsTopNode);
   1076 
   1077     if (DFSResult) {
   1078       unsigned SubtreeID = DFSResult->getSubtreeID(SU);
   1079       if (!ScheduledTrees.test(SubtreeID)) {
   1080         ScheduledTrees.set(SubtreeID);
   1081         DFSResult->scheduleTree(SubtreeID);
   1082         SchedImpl->scheduleTree(SubtreeID);
   1083       }
   1084     }
   1085 
   1086     // Notify the scheduling strategy after updating the DAG.
   1087     SchedImpl->schedNode(SU, IsTopNode);
   1088 
   1089     updateQueues(SU, IsTopNode);
   1090   }
   1091   assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");
   1092 
   1093   placeDebugValues();
   1094 
   1095   DEBUG({
   1096       unsigned BBNum = begin()->getParent()->getNumber();
   1097       dbgs() << "*** Final schedule for BB#" << BBNum << " ***\n";
   1098       dumpSchedule();
   1099       dbgs() << '\n';
   1100     });
   1101 }
   1102 
   1103 /// Build the DAG and setup three register pressure trackers.
   1104 void ScheduleDAGMILive::buildDAGWithRegPressure() {
   1105   if (!ShouldTrackPressure) {
   1106     RPTracker.reset();
   1107     RegionCriticalPSets.clear();
   1108     buildSchedGraph(AA);
   1109     return;
   1110   }
   1111 
   1112   // Initialize the register pressure tracker used by buildSchedGraph.
   1113   RPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd,
   1114                  /*TrackUntiedDefs=*/true);
   1115 
   1116   // Account for liveness generate by the region boundary.
   1117   if (LiveRegionEnd != RegionEnd)
   1118     RPTracker.recede();
   1119 
   1120   // Build the DAG, and compute current register pressure.
   1121   buildSchedGraph(AA, &RPTracker, &SUPressureDiffs);
   1122 
   1123   // Initialize top/bottom trackers after computing region pressure.
   1124   initRegPressure();
   1125 }
   1126 
   1127 void ScheduleDAGMILive::computeDFSResult() {
   1128   if (!DFSResult)
   1129     DFSResult = new SchedDFSResult(/*BottomU*/true, MinSubtreeSize);
   1130   DFSResult->clear();
   1131   ScheduledTrees.clear();
   1132   DFSResult->resize(SUnits.size());
   1133   DFSResult->compute(SUnits);
   1134   ScheduledTrees.resize(DFSResult->getNumSubtrees());
   1135 }
   1136 
   1137 /// Compute the max cyclic critical path through the DAG. The scheduling DAG
   1138 /// only provides the critical path for single block loops. To handle loops that
   1139 /// span blocks, we could use the vreg path latencies provided by
   1140 /// MachineTraceMetrics instead. However, MachineTraceMetrics is not currently
   1141 /// available for use in the scheduler.
   1142 ///
   1143 /// The cyclic path estimation identifies a def-use pair that crosses the back
   1144 /// edge and considers the depth and height of the nodes. For example, consider
   1145 /// the following instruction sequence where each instruction has unit latency
   1146 /// and defines an epomymous virtual register:
   1147 ///
   1148 /// a->b(a,c)->c(b)->d(c)->exit
   1149 ///
   1150 /// The cyclic critical path is a two cycles: b->c->b
   1151 /// The acyclic critical path is four cycles: a->b->c->d->exit
   1152 /// LiveOutHeight = height(c) = len(c->d->exit) = 2
   1153 /// LiveOutDepth = depth(c) + 1 = len(a->b->c) + 1 = 3
   1154 /// LiveInHeight = height(b) + 1 = len(b->c->d->exit) + 1 = 4
   1155 /// LiveInDepth = depth(b) = len(a->b) = 1
   1156 ///
   1157 /// LiveOutDepth - LiveInDepth = 3 - 1 = 2
   1158 /// LiveInHeight - LiveOutHeight = 4 - 2 = 2
   1159 /// CyclicCriticalPath = min(2, 2) = 2
   1160 ///
   1161 /// This could be relevant to PostRA scheduling, but is currently implemented
   1162 /// assuming LiveIntervals.
   1163 unsigned ScheduleDAGMILive::computeCyclicCriticalPath() {
   1164   // This only applies to single block loop.
   1165   if (!BB->isSuccessor(BB))
   1166     return 0;
   1167 
   1168   unsigned MaxCyclicLatency = 0;
   1169   // Visit each live out vreg def to find def/use pairs that cross iterations.
   1170   ArrayRef<unsigned> LiveOuts = RPTracker.getPressure().LiveOutRegs;
   1171   for (ArrayRef<unsigned>::iterator RI = LiveOuts.begin(), RE = LiveOuts.end();
   1172        RI != RE; ++RI) {
   1173     unsigned Reg = *RI;
   1174     if (!TRI->isVirtualRegister(Reg))
   1175         continue;
   1176     const LiveInterval &LI = LIS->getInterval(Reg);
   1177     const VNInfo *DefVNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB));
   1178     if (!DefVNI)
   1179       continue;
   1180 
   1181     MachineInstr *DefMI = LIS->getInstructionFromIndex(DefVNI->def);
   1182     const SUnit *DefSU = getSUnit(DefMI);
   1183     if (!DefSU)
   1184       continue;
   1185 
   1186     unsigned LiveOutHeight = DefSU->getHeight();
   1187     unsigned LiveOutDepth = DefSU->getDepth() + DefSU->Latency;
   1188     // Visit all local users of the vreg def.
   1189     for (const VReg2SUnit &V2SU
   1190          : make_range(VRegUses.find(Reg), VRegUses.end())) {
   1191       SUnit *SU = V2SU.SU;
   1192       if (SU == &ExitSU)
   1193         continue;
   1194 
   1195       // Only consider uses of the phi.
   1196       LiveQueryResult LRQ =
   1197         LI.Query(LIS->getInstructionIndex(SU->getInstr()));
   1198       if (!LRQ.valueIn()->isPHIDef())
   1199         continue;
   1200 
   1201       // Assume that a path spanning two iterations is a cycle, which could
   1202       // overestimate in strange cases. This allows cyclic latency to be
   1203       // estimated as the minimum slack of the vreg's depth or height.
   1204       unsigned CyclicLatency = 0;
   1205       if (LiveOutDepth > SU->getDepth())
   1206         CyclicLatency = LiveOutDepth - SU->getDepth();
   1207 
   1208       unsigned LiveInHeight = SU->getHeight() + DefSU->Latency;
   1209       if (LiveInHeight > LiveOutHeight) {
   1210         if (LiveInHeight - LiveOutHeight < CyclicLatency)
   1211           CyclicLatency = LiveInHeight - LiveOutHeight;
   1212       }
   1213       else
   1214         CyclicLatency = 0;
   1215 
   1216       DEBUG(dbgs() << "Cyclic Path: SU(" << DefSU->NodeNum << ") -> SU("
   1217             << SU->NodeNum << ") = " << CyclicLatency << "c\n");
   1218       if (CyclicLatency > MaxCyclicLatency)
   1219         MaxCyclicLatency = CyclicLatency;
   1220     }
   1221   }
   1222   DEBUG(dbgs() << "Cyclic Critical Path: " << MaxCyclicLatency << "c\n");
   1223   return MaxCyclicLatency;
   1224 }
   1225 
   1226 /// Move an instruction and update register pressure.
   1227 void ScheduleDAGMILive::scheduleMI(SUnit *SU, bool IsTopNode) {
   1228   // Move the instruction to its new location in the instruction stream.
   1229   MachineInstr *MI = SU->getInstr();
   1230 
   1231   if (IsTopNode) {
   1232     assert(SU->isTopReady() && "node still has unscheduled dependencies");
   1233     if (&*CurrentTop == MI)
   1234       CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom);
   1235     else {
   1236       moveInstruction(MI, CurrentTop);
   1237       TopRPTracker.setPos(MI);
   1238     }
   1239 
   1240     if (ShouldTrackPressure) {
   1241       // Update top scheduled pressure.
   1242       TopRPTracker.advance();
   1243       assert(TopRPTracker.getPos() == CurrentTop && "out of sync");
   1244       DEBUG(
   1245         dbgs() << "Top Pressure:\n";
   1246         dumpRegSetPressure(TopRPTracker.getRegSetPressureAtPos(), TRI);
   1247       );
   1248 
   1249       updateScheduledPressure(SU, TopRPTracker.getPressure().MaxSetPressure);
   1250     }
   1251   }
   1252   else {
   1253     assert(SU->isBottomReady() && "node still has unscheduled dependencies");
   1254     MachineBasicBlock::iterator priorII =
   1255       priorNonDebug(CurrentBottom, CurrentTop);
   1256     if (&*priorII == MI)
   1257       CurrentBottom = priorII;
   1258     else {
   1259       if (&*CurrentTop == MI) {
   1260         CurrentTop = nextIfDebug(++CurrentTop, priorII);
   1261         TopRPTracker.setPos(CurrentTop);
   1262       }
   1263       moveInstruction(MI, CurrentBottom);
   1264       CurrentBottom = MI;
   1265     }
   1266     if (ShouldTrackPressure) {
   1267       // Update bottom scheduled pressure.
   1268       SmallVector<unsigned, 8> LiveUses;
   1269       BotRPTracker.recede(&LiveUses);
   1270       assert(BotRPTracker.getPos() == CurrentBottom && "out of sync");
   1271       DEBUG(
   1272         dbgs() << "Bottom Pressure:\n";
   1273         dumpRegSetPressure(BotRPTracker.getRegSetPressureAtPos(), TRI);
   1274       );
   1275 
   1276       updateScheduledPressure(SU, BotRPTracker.getPressure().MaxSetPressure);
   1277       updatePressureDiffs(LiveUses);
   1278     }
   1279   }
   1280 }
   1281 
   1282 //===----------------------------------------------------------------------===//
   1283 // LoadClusterMutation - DAG post-processing to cluster loads.
   1284 //===----------------------------------------------------------------------===//
   1285 
   1286 namespace {
   1287 /// \brief Post-process the DAG to create cluster edges between neighboring
   1288 /// loads.
   1289 class LoadClusterMutation : public ScheduleDAGMutation {
   1290   struct LoadInfo {
   1291     SUnit *SU;
   1292     unsigned BaseReg;
   1293     unsigned Offset;
   1294     LoadInfo(SUnit *su, unsigned reg, unsigned ofs)
   1295       : SU(su), BaseReg(reg), Offset(ofs) {}
   1296 
   1297     bool operator<(const LoadInfo &RHS) const {
   1298       return std::tie(BaseReg, Offset) < std::tie(RHS.BaseReg, RHS.Offset);
   1299     }
   1300   };
   1301 
   1302   const TargetInstrInfo *TII;
   1303   const TargetRegisterInfo *TRI;
   1304 public:
   1305   LoadClusterMutation(const TargetInstrInfo *tii,
   1306                       const TargetRegisterInfo *tri)
   1307     : TII(tii), TRI(tri) {}
   1308 
   1309   void apply(ScheduleDAGMI *DAG) override;
   1310 protected:
   1311   void clusterNeighboringLoads(ArrayRef<SUnit*> Loads, ScheduleDAGMI *DAG);
   1312 };
   1313 } // anonymous
   1314 
   1315 void LoadClusterMutation::clusterNeighboringLoads(ArrayRef<SUnit*> Loads,
   1316                                                   ScheduleDAGMI *DAG) {
   1317   SmallVector<LoadClusterMutation::LoadInfo,32> LoadRecords;
   1318   for (unsigned Idx = 0, End = Loads.size(); Idx != End; ++Idx) {
   1319     SUnit *SU = Loads[Idx];
   1320     unsigned BaseReg;
   1321     unsigned Offset;
   1322     if (TII->getMemOpBaseRegImmOfs(SU->getInstr(), BaseReg, Offset, TRI))
   1323       LoadRecords.push_back(LoadInfo(SU, BaseReg, Offset));
   1324   }
   1325   if (LoadRecords.size() < 2)
   1326     return;
   1327   std::sort(LoadRecords.begin(), LoadRecords.end());
   1328   unsigned ClusterLength = 1;
   1329   for (unsigned Idx = 0, End = LoadRecords.size(); Idx < (End - 1); ++Idx) {
   1330     if (LoadRecords[Idx].BaseReg != LoadRecords[Idx+1].BaseReg) {
   1331       ClusterLength = 1;
   1332       continue;
   1333     }
   1334 
   1335     SUnit *SUa = LoadRecords[Idx].SU;
   1336     SUnit *SUb = LoadRecords[Idx+1].SU;
   1337     if (TII->shouldClusterLoads(SUa->getInstr(), SUb->getInstr(), ClusterLength)
   1338         && DAG->addEdge(SUb, SDep(SUa, SDep::Cluster))) {
   1339 
   1340       DEBUG(dbgs() << "Cluster loads SU(" << SUa->NodeNum << ") - SU("
   1341             << SUb->NodeNum << ")\n");
   1342       // Copy successor edges from SUa to SUb. Interleaving computation
   1343       // dependent on SUa can prevent load combining due to register reuse.
   1344       // Predecessor edges do not need to be copied from SUb to SUa since nearby
   1345       // loads should have effectively the same inputs.
   1346       for (SUnit::const_succ_iterator
   1347              SI = SUa->Succs.begin(), SE = SUa->Succs.end(); SI != SE; ++SI) {
   1348         if (SI->getSUnit() == SUb)
   1349           continue;
   1350         DEBUG(dbgs() << "  Copy Succ SU(" << SI->getSUnit()->NodeNum << ")\n");
   1351         DAG->addEdge(SI->getSUnit(), SDep(SUb, SDep::Artificial));
   1352       }
   1353       ++ClusterLength;
   1354     }
   1355     else
   1356       ClusterLength = 1;
   1357   }
   1358 }
   1359 
   1360 /// \brief Callback from DAG postProcessing to create cluster edges for loads.
   1361 void LoadClusterMutation::apply(ScheduleDAGMI *DAG) {
   1362   // Map DAG NodeNum to store chain ID.
   1363   DenseMap<unsigned, unsigned> StoreChainIDs;
   1364   // Map each store chain to a set of dependent loads.
   1365   SmallVector<SmallVector<SUnit*,4>, 32> StoreChainDependents;
   1366   for (unsigned Idx = 0, End = DAG->SUnits.size(); Idx != End; ++Idx) {
   1367     SUnit *SU = &DAG->SUnits[Idx];
   1368     if (!SU->getInstr()->mayLoad())
   1369       continue;
   1370     unsigned ChainPredID = DAG->SUnits.size();
   1371     for (SUnit::const_pred_iterator
   1372            PI = SU->Preds.begin(), PE = SU->Preds.end(); PI != PE; ++PI) {
   1373       if (PI->isCtrl()) {
   1374         ChainPredID = PI->getSUnit()->NodeNum;
   1375         break;
   1376       }
   1377     }
   1378     // Check if this chain-like pred has been seen
   1379     // before. ChainPredID==MaxNodeID for loads at the top of the schedule.
   1380     unsigned NumChains = StoreChainDependents.size();
   1381     std::pair<DenseMap<unsigned, unsigned>::iterator, bool> Result =
   1382       StoreChainIDs.insert(std::make_pair(ChainPredID, NumChains));
   1383     if (Result.second)
   1384       StoreChainDependents.resize(NumChains + 1);
   1385     StoreChainDependents[Result.first->second].push_back(SU);
   1386   }
   1387   // Iterate over the store chains.
   1388   for (unsigned Idx = 0, End = StoreChainDependents.size(); Idx != End; ++Idx)
   1389     clusterNeighboringLoads(StoreChainDependents[Idx], DAG);
   1390 }
   1391 
   1392 //===----------------------------------------------------------------------===//
   1393 // MacroFusion - DAG post-processing to encourage fusion of macro ops.
   1394 //===----------------------------------------------------------------------===//
   1395 
   1396 namespace {
   1397 /// \brief Post-process the DAG to create cluster edges between instructions
   1398 /// that may be fused by the processor into a single operation.
   1399 class MacroFusion : public ScheduleDAGMutation {
   1400   const TargetInstrInfo &TII;
   1401   const TargetRegisterInfo &TRI;
   1402 public:
   1403   MacroFusion(const TargetInstrInfo &TII, const TargetRegisterInfo &TRI)
   1404     : TII(TII), TRI(TRI) {}
   1405 
   1406   void apply(ScheduleDAGMI *DAG) override;
   1407 };
   1408 } // anonymous
   1409 
   1410 /// Returns true if \p MI reads a register written by \p Other.
   1411 static bool HasDataDep(const TargetRegisterInfo &TRI, const MachineInstr &MI,
   1412                        const MachineInstr &Other) {
   1413   for (const MachineOperand &MO : MI.uses()) {
   1414     if (!MO.isReg() || !MO.readsReg())
   1415       continue;
   1416 
   1417     unsigned Reg = MO.getReg();
   1418     if (Other.modifiesRegister(Reg, &TRI))
   1419       return true;
   1420   }
   1421   return false;
   1422 }
   1423 
   1424 /// \brief Callback from DAG postProcessing to create cluster edges to encourage
   1425 /// fused operations.
   1426 void MacroFusion::apply(ScheduleDAGMI *DAG) {
   1427   // For now, assume targets can only fuse with the branch.
   1428   SUnit &ExitSU = DAG->ExitSU;
   1429   MachineInstr *Branch = ExitSU.getInstr();
   1430   if (!Branch)
   1431     return;
   1432 
   1433   for (SUnit &SU : DAG->SUnits) {
   1434     // SUnits with successors can't be schedule in front of the ExitSU.
   1435     if (!SU.Succs.empty())
   1436       continue;
   1437     // We only care if the node writes to a register that the branch reads.
   1438     MachineInstr *Pred = SU.getInstr();
   1439     if (!HasDataDep(TRI, *Branch, *Pred))
   1440       continue;
   1441 
   1442     if (!TII.shouldScheduleAdjacent(Pred, Branch))
   1443       continue;
   1444 
   1445     // Create a single weak edge from SU to ExitSU. The only effect is to cause
   1446     // bottom-up scheduling to heavily prioritize the clustered SU.  There is no
   1447     // need to copy predecessor edges from ExitSU to SU, since top-down
   1448     // scheduling cannot prioritize ExitSU anyway. To defer top-down scheduling
   1449     // of SU, we could create an artificial edge from the deepest root, but it
   1450     // hasn't been needed yet.
   1451     bool Success = DAG->addEdge(&ExitSU, SDep(&SU, SDep::Cluster));
   1452     (void)Success;
   1453     assert(Success && "No DAG nodes should be reachable from ExitSU");
   1454 
   1455     DEBUG(dbgs() << "Macro Fuse SU(" << SU.NodeNum << ")\n");
   1456     break;
   1457   }
   1458 }
   1459 
   1460 //===----------------------------------------------------------------------===//
   1461 // CopyConstrain - DAG post-processing to encourage copy elimination.
   1462 //===----------------------------------------------------------------------===//
   1463 
   1464 namespace {
   1465 /// \brief Post-process the DAG to create weak edges from all uses of a copy to
   1466 /// the one use that defines the copy's source vreg, most likely an induction
   1467 /// variable increment.
   1468 class CopyConstrain : public ScheduleDAGMutation {
   1469   // Transient state.
   1470   SlotIndex RegionBeginIdx;
   1471   // RegionEndIdx is the slot index of the last non-debug instruction in the
   1472   // scheduling region. So we may have RegionBeginIdx == RegionEndIdx.
   1473   SlotIndex RegionEndIdx;
   1474 public:
   1475   CopyConstrain(const TargetInstrInfo *, const TargetRegisterInfo *) {}
   1476 
   1477   void apply(ScheduleDAGMI *DAG) override;
   1478 
   1479 protected:
   1480   void constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG);
   1481 };
   1482 } // anonymous
   1483 
   1484 /// constrainLocalCopy handles two possibilities:
   1485 /// 1) Local src:
   1486 /// I0:     = dst
   1487 /// I1: src = ...
   1488 /// I2:     = dst
   1489 /// I3: dst = src (copy)
   1490 /// (create pred->succ edges I0->I1, I2->I1)
   1491 ///
   1492 /// 2) Local copy:
   1493 /// I0: dst = src (copy)
   1494 /// I1:     = dst
   1495 /// I2: src = ...
   1496 /// I3:     = dst
   1497 /// (create pred->succ edges I1->I2, I3->I2)
   1498 ///
   1499 /// Although the MachineScheduler is currently constrained to single blocks,
   1500 /// this algorithm should handle extended blocks. An EBB is a set of
   1501 /// contiguously numbered blocks such that the previous block in the EBB is
   1502 /// always the single predecessor.
   1503 void CopyConstrain::constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG) {
   1504   LiveIntervals *LIS = DAG->getLIS();
   1505   MachineInstr *Copy = CopySU->getInstr();
   1506 
   1507   // Check for pure vreg copies.
   1508   unsigned SrcReg = Copy->getOperand(1).getReg();
   1509   if (!TargetRegisterInfo::isVirtualRegister(SrcReg))
   1510     return;
   1511 
   1512   unsigned DstReg = Copy->getOperand(0).getReg();
   1513   if (!TargetRegisterInfo::isVirtualRegister(DstReg))
   1514     return;
   1515 
   1516   // Check if either the dest or source is local. If it's live across a back
   1517   // edge, it's not local. Note that if both vregs are live across the back
   1518   // edge, we cannot successfully contrain the copy without cyclic scheduling.
   1519   // If both the copy's source and dest are local live intervals, then we
   1520   // should treat the dest as the global for the purpose of adding
   1521   // constraints. This adds edges from source's other uses to the copy.
   1522   unsigned LocalReg = SrcReg;
   1523   unsigned GlobalReg = DstReg;
   1524   LiveInterval *LocalLI = &LIS->getInterval(LocalReg);
   1525   if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) {
   1526     LocalReg = DstReg;
   1527     GlobalReg = SrcReg;
   1528     LocalLI = &LIS->getInterval(LocalReg);
   1529     if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx))
   1530       return;
   1531   }
   1532   LiveInterval *GlobalLI = &LIS->getInterval(GlobalReg);
   1533 
   1534   // Find the global segment after the start of the local LI.
   1535   LiveInterval::iterator GlobalSegment = GlobalLI->find(LocalLI->beginIndex());
   1536   // If GlobalLI does not overlap LocalLI->start, then a copy directly feeds a
   1537   // local live range. We could create edges from other global uses to the local
   1538   // start, but the coalescer should have already eliminated these cases, so
   1539   // don't bother dealing with it.
   1540   if (GlobalSegment == GlobalLI->end())
   1541     return;
   1542 
   1543   // If GlobalSegment is killed at the LocalLI->start, the call to find()
   1544   // returned the next global segment. But if GlobalSegment overlaps with
   1545   // LocalLI->start, then advance to the next segement. If a hole in GlobalLI
   1546   // exists in LocalLI's vicinity, GlobalSegment will be the end of the hole.
   1547   if (GlobalSegment->contains(LocalLI->beginIndex()))
   1548     ++GlobalSegment;
   1549 
   1550   if (GlobalSegment == GlobalLI->end())
   1551     return;
   1552 
   1553   // Check if GlobalLI contains a hole in the vicinity of LocalLI.
   1554   if (GlobalSegment != GlobalLI->begin()) {
   1555     // Two address defs have no hole.
   1556     if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->end,
   1557                                GlobalSegment->start)) {
   1558       return;
   1559     }
   1560     // If the prior global segment may be defined by the same two-address
   1561     // instruction that also defines LocalLI, then can't make a hole here.
   1562     if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->start,
   1563                                LocalLI->beginIndex())) {
   1564       return;
   1565     }
   1566     // If GlobalLI has a prior segment, it must be live into the EBB. Otherwise
   1567     // it would be a disconnected component in the live range.
   1568     assert(std::prev(GlobalSegment)->start < LocalLI->beginIndex() &&
   1569            "Disconnected LRG within the scheduling region.");
   1570   }
   1571   MachineInstr *GlobalDef = LIS->getInstructionFromIndex(GlobalSegment->start);
   1572   if (!GlobalDef)
   1573     return;
   1574 
   1575   SUnit *GlobalSU = DAG->getSUnit(GlobalDef);
   1576   if (!GlobalSU)
   1577     return;
   1578 
   1579   // GlobalDef is the bottom of the GlobalLI hole. Open the hole by
   1580   // constraining the uses of the last local def to precede GlobalDef.
   1581   SmallVector<SUnit*,8> LocalUses;
   1582   const VNInfo *LastLocalVN = LocalLI->getVNInfoBefore(LocalLI->endIndex());
   1583   MachineInstr *LastLocalDef = LIS->getInstructionFromIndex(LastLocalVN->def);
   1584   SUnit *LastLocalSU = DAG->getSUnit(LastLocalDef);
   1585   for (SUnit::const_succ_iterator
   1586          I = LastLocalSU->Succs.begin(), E = LastLocalSU->Succs.end();
   1587        I != E; ++I) {
   1588     if (I->getKind() != SDep::Data || I->getReg() != LocalReg)
   1589       continue;
   1590     if (I->getSUnit() == GlobalSU)
   1591       continue;
   1592     if (!DAG->canAddEdge(GlobalSU, I->getSUnit()))
   1593       return;
   1594     LocalUses.push_back(I->getSUnit());
   1595   }
   1596   // Open the top of the GlobalLI hole by constraining any earlier global uses
   1597   // to precede the start of LocalLI.
   1598   SmallVector<SUnit*,8> GlobalUses;
   1599   MachineInstr *FirstLocalDef =
   1600     LIS->getInstructionFromIndex(LocalLI->beginIndex());
   1601   SUnit *FirstLocalSU = DAG->getSUnit(FirstLocalDef);
   1602   for (SUnit::const_pred_iterator
   1603          I = GlobalSU->Preds.begin(), E = GlobalSU->Preds.end(); I != E; ++I) {
   1604     if (I->getKind() != SDep::Anti || I->getReg() != GlobalReg)
   1605       continue;
   1606     if (I->getSUnit() == FirstLocalSU)
   1607       continue;
   1608     if (!DAG->canAddEdge(FirstLocalSU, I->getSUnit()))
   1609       return;
   1610     GlobalUses.push_back(I->getSUnit());
   1611   }
   1612   DEBUG(dbgs() << "Constraining copy SU(" << CopySU->NodeNum << ")\n");
   1613   // Add the weak edges.
   1614   for (SmallVectorImpl<SUnit*>::const_iterator
   1615          I = LocalUses.begin(), E = LocalUses.end(); I != E; ++I) {
   1616     DEBUG(dbgs() << "  Local use SU(" << (*I)->NodeNum << ") -> SU("
   1617           << GlobalSU->NodeNum << ")\n");
   1618     DAG->addEdge(GlobalSU, SDep(*I, SDep::Weak));
   1619   }
   1620   for (SmallVectorImpl<SUnit*>::const_iterator
   1621          I = GlobalUses.begin(), E = GlobalUses.end(); I != E; ++I) {
   1622     DEBUG(dbgs() << "  Global use SU(" << (*I)->NodeNum << ") -> SU("
   1623           << FirstLocalSU->NodeNum << ")\n");
   1624     DAG->addEdge(FirstLocalSU, SDep(*I, SDep::Weak));
   1625   }
   1626 }
   1627 
   1628 /// \brief Callback from DAG postProcessing to create weak edges to encourage
   1629 /// copy elimination.
   1630 void CopyConstrain::apply(ScheduleDAGMI *DAG) {
   1631   assert(DAG->hasVRegLiveness() && "Expect VRegs with LiveIntervals");
   1632 
   1633   MachineBasicBlock::iterator FirstPos = nextIfDebug(DAG->begin(), DAG->end());
   1634   if (FirstPos == DAG->end())
   1635     return;
   1636   RegionBeginIdx = DAG->getLIS()->getInstructionIndex(&*FirstPos);
   1637   RegionEndIdx = DAG->getLIS()->getInstructionIndex(
   1638     &*priorNonDebug(DAG->end(), DAG->begin()));
   1639 
   1640   for (unsigned Idx = 0, End = DAG->SUnits.size(); Idx != End; ++Idx) {
   1641     SUnit *SU = &DAG->SUnits[Idx];
   1642     if (!SU->getInstr()->isCopy())
   1643       continue;
   1644 
   1645     constrainLocalCopy(SU, static_cast<ScheduleDAGMILive*>(DAG));
   1646   }
   1647 }
   1648 
   1649 //===----------------------------------------------------------------------===//
   1650 // MachineSchedStrategy helpers used by GenericScheduler, GenericPostScheduler
   1651 // and possibly other custom schedulers.
   1652 //===----------------------------------------------------------------------===//
   1653 
   1654 static const unsigned InvalidCycle = ~0U;
   1655 
   1656 SchedBoundary::~SchedBoundary() { delete HazardRec; }
   1657 
   1658 void SchedBoundary::reset() {
   1659   // A new HazardRec is created for each DAG and owned by SchedBoundary.
   1660   // Destroying and reconstructing it is very expensive though. So keep
   1661   // invalid, placeholder HazardRecs.
   1662   if (HazardRec && HazardRec->isEnabled()) {
   1663     delete HazardRec;
   1664     HazardRec = nullptr;
   1665   }
   1666   Available.clear();
   1667   Pending.clear();
   1668   CheckPending = false;
   1669   NextSUs.clear();
   1670   CurrCycle = 0;
   1671   CurrMOps = 0;
   1672   MinReadyCycle = UINT_MAX;
   1673   ExpectedLatency = 0;
   1674   DependentLatency = 0;
   1675   RetiredMOps = 0;
   1676   MaxExecutedResCount = 0;
   1677   ZoneCritResIdx = 0;
   1678   IsResourceLimited = false;
   1679   ReservedCycles.clear();
   1680 #ifndef NDEBUG
   1681   // Track the maximum number of stall cycles that could arise either from the
   1682   // latency of a DAG edge or the number of cycles that a processor resource is
   1683   // reserved (SchedBoundary::ReservedCycles).
   1684   MaxObservedStall = 0;
   1685 #endif
   1686   // Reserve a zero-count for invalid CritResIdx.
   1687   ExecutedResCounts.resize(1);
   1688   assert(!ExecutedResCounts[0] && "nonzero count for bad resource");
   1689 }
   1690 
   1691 void SchedRemainder::
   1692 init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel) {
   1693   reset();
   1694   if (!SchedModel->hasInstrSchedModel())
   1695     return;
   1696   RemainingCounts.resize(SchedModel->getNumProcResourceKinds());
   1697   for (std::vector<SUnit>::iterator
   1698          I = DAG->SUnits.begin(), E = DAG->SUnits.end(); I != E; ++I) {
   1699     const MCSchedClassDesc *SC = DAG->getSchedClass(&*I);
   1700     RemIssueCount += SchedModel->getNumMicroOps(I->getInstr(), SC)
   1701       * SchedModel->getMicroOpFactor();
   1702     for (TargetSchedModel::ProcResIter
   1703            PI = SchedModel->getWriteProcResBegin(SC),
   1704            PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
   1705       unsigned PIdx = PI->ProcResourceIdx;
   1706       unsigned Factor = SchedModel->getResourceFactor(PIdx);
   1707       RemainingCounts[PIdx] += (Factor * PI->Cycles);
   1708     }
   1709   }
   1710 }
   1711 
   1712 void SchedBoundary::
   1713 init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, SchedRemainder *rem) {
   1714   reset();
   1715   DAG = dag;
   1716   SchedModel = smodel;
   1717   Rem = rem;
   1718   if (SchedModel->hasInstrSchedModel()) {
   1719     ExecutedResCounts.resize(SchedModel->getNumProcResourceKinds());
   1720     ReservedCycles.resize(SchedModel->getNumProcResourceKinds(), InvalidCycle);
   1721   }
   1722 }
   1723 
   1724 /// Compute the stall cycles based on this SUnit's ready time. Heuristics treat
   1725 /// these "soft stalls" differently than the hard stall cycles based on CPU
   1726 /// resources and computed by checkHazard(). A fully in-order model
   1727 /// (MicroOpBufferSize==0) will not make use of this since instructions are not
   1728 /// available for scheduling until they are ready. However, a weaker in-order
   1729 /// model may use this for heuristics. For example, if a processor has in-order
   1730 /// behavior when reading certain resources, this may come into play.
   1731 unsigned SchedBoundary::getLatencyStallCycles(SUnit *SU) {
   1732   if (!SU->isUnbuffered)
   1733     return 0;
   1734 
   1735   unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle);
   1736   if (ReadyCycle > CurrCycle)
   1737     return ReadyCycle - CurrCycle;
   1738   return 0;
   1739 }
   1740 
   1741 /// Compute the next cycle at which the given processor resource can be
   1742 /// scheduled.
   1743 unsigned SchedBoundary::
   1744 getNextResourceCycle(unsigned PIdx, unsigned Cycles) {
   1745   unsigned NextUnreserved = ReservedCycles[PIdx];
   1746   // If this resource has never been used, always return cycle zero.
   1747   if (NextUnreserved == InvalidCycle)
   1748     return 0;
   1749   // For bottom-up scheduling add the cycles needed for the current operation.
   1750   if (!isTop())
   1751     NextUnreserved += Cycles;
   1752   return NextUnreserved;
   1753 }
   1754 
   1755 /// Does this SU have a hazard within the current instruction group.
   1756 ///
   1757 /// The scheduler supports two modes of hazard recognition. The first is the
   1758 /// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that
   1759 /// supports highly complicated in-order reservation tables
   1760 /// (ScoreboardHazardRecognizer) and arbitraty target-specific logic.
   1761 ///
   1762 /// The second is a streamlined mechanism that checks for hazards based on
   1763 /// simple counters that the scheduler itself maintains. It explicitly checks
   1764 /// for instruction dispatch limitations, including the number of micro-ops that
   1765 /// can dispatch per cycle.
   1766 ///
   1767 /// TODO: Also check whether the SU must start a new group.
   1768 bool SchedBoundary::checkHazard(SUnit *SU) {
   1769   if (HazardRec->isEnabled()
   1770       && HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard) {
   1771     return true;
   1772   }
   1773   unsigned uops = SchedModel->getNumMicroOps(SU->getInstr());
   1774   if ((CurrMOps > 0) && (CurrMOps + uops > SchedModel->getIssueWidth())) {
   1775     DEBUG(dbgs() << "  SU(" << SU->NodeNum << ") uops="
   1776           << SchedModel->getNumMicroOps(SU->getInstr()) << '\n');
   1777     return true;
   1778   }
   1779   if (SchedModel->hasInstrSchedModel() && SU->hasReservedResource) {
   1780     const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
   1781     for (TargetSchedModel::ProcResIter
   1782            PI = SchedModel->getWriteProcResBegin(SC),
   1783            PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
   1784       unsigned NRCycle = getNextResourceCycle(PI->ProcResourceIdx, PI->Cycles);
   1785       if (NRCycle > CurrCycle) {
   1786 #ifndef NDEBUG
   1787         MaxObservedStall = std::max(PI->Cycles, MaxObservedStall);
   1788 #endif
   1789         DEBUG(dbgs() << "  SU(" << SU->NodeNum << ") "
   1790               << SchedModel->getResourceName(PI->ProcResourceIdx)
   1791               << "=" << NRCycle << "c\n");
   1792         return true;
   1793       }
   1794     }
   1795   }
   1796   return false;
   1797 }
   1798 
   1799 // Find the unscheduled node in ReadySUs with the highest latency.
   1800 unsigned SchedBoundary::
   1801 findMaxLatency(ArrayRef<SUnit*> ReadySUs) {
   1802   SUnit *LateSU = nullptr;
   1803   unsigned RemLatency = 0;
   1804   for (ArrayRef<SUnit*>::iterator I = ReadySUs.begin(), E = ReadySUs.end();
   1805        I != E; ++I) {
   1806     unsigned L = getUnscheduledLatency(*I);
   1807     if (L > RemLatency) {
   1808       RemLatency = L;
   1809       LateSU = *I;
   1810     }
   1811   }
   1812   if (LateSU) {
   1813     DEBUG(dbgs() << Available.getName() << " RemLatency SU("
   1814           << LateSU->NodeNum << ") " << RemLatency << "c\n");
   1815   }
   1816   return RemLatency;
   1817 }
   1818 
   1819 // Count resources in this zone and the remaining unscheduled
   1820 // instruction. Return the max count, scaled. Set OtherCritIdx to the critical
   1821 // resource index, or zero if the zone is issue limited.
   1822 unsigned SchedBoundary::
   1823 getOtherResourceCount(unsigned &OtherCritIdx) {
   1824   OtherCritIdx = 0;
   1825   if (!SchedModel->hasInstrSchedModel())
   1826     return 0;
   1827 
   1828   unsigned OtherCritCount = Rem->RemIssueCount
   1829     + (RetiredMOps * SchedModel->getMicroOpFactor());
   1830   DEBUG(dbgs() << "  " << Available.getName() << " + Remain MOps: "
   1831         << OtherCritCount / SchedModel->getMicroOpFactor() << '\n');
   1832   for (unsigned PIdx = 1, PEnd = SchedModel->getNumProcResourceKinds();
   1833        PIdx != PEnd; ++PIdx) {
   1834     unsigned OtherCount = getResourceCount(PIdx) + Rem->RemainingCounts[PIdx];
   1835     if (OtherCount > OtherCritCount) {
   1836       OtherCritCount = OtherCount;
   1837       OtherCritIdx = PIdx;
   1838     }
   1839   }
   1840   if (OtherCritIdx) {
   1841     DEBUG(dbgs() << "  " << Available.getName() << " + Remain CritRes: "
   1842           << OtherCritCount / SchedModel->getResourceFactor(OtherCritIdx)
   1843           << " " << SchedModel->getResourceName(OtherCritIdx) << "\n");
   1844   }
   1845   return OtherCritCount;
   1846 }
   1847 
   1848 void SchedBoundary::releaseNode(SUnit *SU, unsigned ReadyCycle) {
   1849   assert(SU->getInstr() && "Scheduled SUnit must have instr");
   1850 
   1851 #ifndef NDEBUG
   1852   // ReadyCycle was been bumped up to the CurrCycle when this node was
   1853   // scheduled, but CurrCycle may have been eagerly advanced immediately after
   1854   // scheduling, so may now be greater than ReadyCycle.
   1855   if (ReadyCycle > CurrCycle)
   1856     MaxObservedStall = std::max(ReadyCycle - CurrCycle, MaxObservedStall);
   1857 #endif
   1858 
   1859   if (ReadyCycle < MinReadyCycle)
   1860     MinReadyCycle = ReadyCycle;
   1861 
   1862   // Check for interlocks first. For the purpose of other heuristics, an
   1863   // instruction that cannot issue appears as if it's not in the ReadyQueue.
   1864   bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0;
   1865   if ((!IsBuffered && ReadyCycle > CurrCycle) || checkHazard(SU))
   1866     Pending.push(SU);
   1867   else
   1868     Available.push(SU);
   1869 
   1870   // Record this node as an immediate dependent of the scheduled node.
   1871   NextSUs.insert(SU);
   1872 }
   1873 
   1874 void SchedBoundary::releaseTopNode(SUnit *SU) {
   1875   if (SU->isScheduled)
   1876     return;
   1877 
   1878   releaseNode(SU, SU->TopReadyCycle);
   1879 }
   1880 
   1881 void SchedBoundary::releaseBottomNode(SUnit *SU) {
   1882   if (SU->isScheduled)
   1883     return;
   1884 
   1885   releaseNode(SU, SU->BotReadyCycle);
   1886 }
   1887 
   1888 /// Move the boundary of scheduled code by one cycle.
   1889 void SchedBoundary::bumpCycle(unsigned NextCycle) {
   1890   if (SchedModel->getMicroOpBufferSize() == 0) {
   1891     assert(MinReadyCycle < UINT_MAX && "MinReadyCycle uninitialized");
   1892     if (MinReadyCycle > NextCycle)
   1893       NextCycle = MinReadyCycle;
   1894   }
   1895   // Update the current micro-ops, which will issue in the next cycle.
   1896   unsigned DecMOps = SchedModel->getIssueWidth() * (NextCycle - CurrCycle);
   1897   CurrMOps = (CurrMOps <= DecMOps) ? 0 : CurrMOps - DecMOps;
   1898 
   1899   // Decrement DependentLatency based on the next cycle.
   1900   if ((NextCycle - CurrCycle) > DependentLatency)
   1901     DependentLatency = 0;
   1902   else
   1903     DependentLatency -= (NextCycle - CurrCycle);
   1904 
   1905   if (!HazardRec->isEnabled()) {
   1906     // Bypass HazardRec virtual calls.
   1907     CurrCycle = NextCycle;
   1908   }
   1909   else {
   1910     // Bypass getHazardType calls in case of long latency.
   1911     for (; CurrCycle != NextCycle; ++CurrCycle) {
   1912       if (isTop())
   1913         HazardRec->AdvanceCycle();
   1914       else
   1915         HazardRec->RecedeCycle();
   1916     }
   1917   }
   1918   CheckPending = true;
   1919   unsigned LFactor = SchedModel->getLatencyFactor();
   1920   IsResourceLimited =
   1921     (int)(getCriticalCount() - (getScheduledLatency() * LFactor))
   1922     > (int)LFactor;
   1923 
   1924   DEBUG(dbgs() << "Cycle: " << CurrCycle << ' ' << Available.getName() << '\n');
   1925 }
   1926 
   1927 void SchedBoundary::incExecutedResources(unsigned PIdx, unsigned Count) {
   1928   ExecutedResCounts[PIdx] += Count;
   1929   if (ExecutedResCounts[PIdx] > MaxExecutedResCount)
   1930     MaxExecutedResCount = ExecutedResCounts[PIdx];
   1931 }
   1932 
   1933 /// Add the given processor resource to this scheduled zone.
   1934 ///
   1935 /// \param Cycles indicates the number of consecutive (non-pipelined) cycles
   1936 /// during which this resource is consumed.
   1937 ///
   1938 /// \return the next cycle at which the instruction may execute without
   1939 /// oversubscribing resources.
   1940 unsigned SchedBoundary::
   1941 countResource(unsigned PIdx, unsigned Cycles, unsigned NextCycle) {
   1942   unsigned Factor = SchedModel->getResourceFactor(PIdx);
   1943   unsigned Count = Factor * Cycles;
   1944   DEBUG(dbgs() << "  " << SchedModel->getResourceName(PIdx)
   1945         << " +" << Cycles << "x" << Factor << "u\n");
   1946 
   1947   // Update Executed resources counts.
   1948   incExecutedResources(PIdx, Count);
   1949   assert(Rem->RemainingCounts[PIdx] >= Count && "resource double counted");
   1950   Rem->RemainingCounts[PIdx] -= Count;
   1951 
   1952   // Check if this resource exceeds the current critical resource. If so, it
   1953   // becomes the critical resource.
   1954   if (ZoneCritResIdx != PIdx && (getResourceCount(PIdx) > getCriticalCount())) {
   1955     ZoneCritResIdx = PIdx;
   1956     DEBUG(dbgs() << "  *** Critical resource "
   1957           << SchedModel->getResourceName(PIdx) << ": "
   1958           << getResourceCount(PIdx) / SchedModel->getLatencyFactor() << "c\n");
   1959   }
   1960   // For reserved resources, record the highest cycle using the resource.
   1961   unsigned NextAvailable = getNextResourceCycle(PIdx, Cycles);
   1962   if (NextAvailable > CurrCycle) {
   1963     DEBUG(dbgs() << "  Resource conflict: "
   1964           << SchedModel->getProcResource(PIdx)->Name << " reserved until @"
   1965           << NextAvailable << "\n");
   1966   }
   1967   return NextAvailable;
   1968 }
   1969 
   1970 /// Move the boundary of scheduled code by one SUnit.
   1971 void SchedBoundary::bumpNode(SUnit *SU) {
   1972   // Update the reservation table.
   1973   if (HazardRec->isEnabled()) {
   1974     if (!isTop() && SU->isCall) {
   1975       // Calls are scheduled with their preceding instructions. For bottom-up
   1976       // scheduling, clear the pipeline state before emitting.
   1977       HazardRec->Reset();
   1978     }
   1979     HazardRec->EmitInstruction(SU);
   1980   }
   1981   // checkHazard should prevent scheduling multiple instructions per cycle that
   1982   // exceed the issue width.
   1983   const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
   1984   unsigned IncMOps = SchedModel->getNumMicroOps(SU->getInstr());
   1985   assert(
   1986       (CurrMOps == 0 || (CurrMOps + IncMOps) <= SchedModel->getIssueWidth()) &&
   1987       "Cannot schedule this instruction's MicroOps in the current cycle.");
   1988 
   1989   unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle);
   1990   DEBUG(dbgs() << "  Ready @" << ReadyCycle << "c\n");
   1991 
   1992   unsigned NextCycle = CurrCycle;
   1993   switch (SchedModel->getMicroOpBufferSize()) {
   1994   case 0:
   1995     assert(ReadyCycle <= CurrCycle && "Broken PendingQueue");
   1996     break;
   1997   case 1:
   1998     if (ReadyCycle > NextCycle) {
   1999       NextCycle = ReadyCycle;
   2000       DEBUG(dbgs() << "  *** Stall until: " << ReadyCycle << "\n");
   2001     }
   2002     break;
   2003   default:
   2004     // We don't currently model the OOO reorder buffer, so consider all
   2005     // scheduled MOps to be "retired". We do loosely model in-order resource
   2006     // latency. If this instruction uses an in-order resource, account for any
   2007     // likely stall cycles.
   2008     if (SU->isUnbuffered && ReadyCycle > NextCycle)
   2009       NextCycle = ReadyCycle;
   2010     break;
   2011   }
   2012   RetiredMOps += IncMOps;
   2013 
   2014   // Update resource counts and critical resource.
   2015   if (SchedModel->hasInstrSchedModel()) {
   2016     unsigned DecRemIssue = IncMOps * SchedModel->getMicroOpFactor();
   2017     assert(Rem->RemIssueCount >= DecRemIssue && "MOps double counted");
   2018     Rem->RemIssueCount -= DecRemIssue;
   2019     if (ZoneCritResIdx) {
   2020       // Scale scheduled micro-ops for comparing with the critical resource.
   2021       unsigned ScaledMOps =
   2022         RetiredMOps * SchedModel->getMicroOpFactor();
   2023 
   2024       // If scaled micro-ops are now more than the previous critical resource by
   2025       // a full cycle, then micro-ops issue becomes critical.
   2026       if ((int)(ScaledMOps - getResourceCount(ZoneCritResIdx))
   2027           >= (int)SchedModel->getLatencyFactor()) {
   2028         ZoneCritResIdx = 0;
   2029         DEBUG(dbgs() << "  *** Critical resource NumMicroOps: "
   2030               << ScaledMOps / SchedModel->getLatencyFactor() << "c\n");
   2031       }
   2032     }
   2033     for (TargetSchedModel::ProcResIter
   2034            PI = SchedModel->getWriteProcResBegin(SC),
   2035            PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
   2036       unsigned RCycle =
   2037         countResource(PI->ProcResourceIdx, PI->Cycles, NextCycle);
   2038       if (RCycle > NextCycle)
   2039         NextCycle = RCycle;
   2040     }
   2041     if (SU->hasReservedResource) {
   2042       // For reserved resources, record the highest cycle using the resource.
   2043       // For top-down scheduling, this is the cycle in which we schedule this
   2044       // instruction plus the number of cycles the operations reserves the
   2045       // resource. For bottom-up is it simply the instruction's cycle.
   2046       for (TargetSchedModel::ProcResIter
   2047              PI = SchedModel->getWriteProcResBegin(SC),
   2048              PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
   2049         unsigned PIdx = PI->ProcResourceIdx;
   2050         if (SchedModel->getProcResource(PIdx)->BufferSize == 0) {
   2051           if (isTop()) {
   2052             ReservedCycles[PIdx] =
   2053               std::max(getNextResourceCycle(PIdx, 0), NextCycle + PI->Cycles);
   2054           }
   2055           else
   2056             ReservedCycles[PIdx] = NextCycle;
   2057         }
   2058       }
   2059     }
   2060   }
   2061   // Update ExpectedLatency and DependentLatency.
   2062   unsigned &TopLatency = isTop() ? ExpectedLatency : DependentLatency;
   2063   unsigned &BotLatency = isTop() ? DependentLatency : ExpectedLatency;
   2064   if (SU->getDepth() > TopLatency) {
   2065     TopLatency = SU->getDepth();
   2066     DEBUG(dbgs() << "  " << Available.getName()
   2067           << " TopLatency SU(" << SU->NodeNum << ") " << TopLatency << "c\n");
   2068   }
   2069   if (SU->getHeight() > BotLatency) {
   2070     BotLatency = SU->getHeight();
   2071     DEBUG(dbgs() << "  " << Available.getName()
   2072           << " BotLatency SU(" << SU->NodeNum << ") " << BotLatency << "c\n");
   2073   }
   2074   // If we stall for any reason, bump the cycle.
   2075   if (NextCycle > CurrCycle) {
   2076     bumpCycle(NextCycle);
   2077   }
   2078   else {
   2079     // After updating ZoneCritResIdx and ExpectedLatency, check if we're
   2080     // resource limited. If a stall occurred, bumpCycle does this.
   2081     unsigned LFactor = SchedModel->getLatencyFactor();
   2082     IsResourceLimited =
   2083       (int)(getCriticalCount() - (getScheduledLatency() * LFactor))
   2084       > (int)LFactor;
   2085   }
   2086   // Update CurrMOps after calling bumpCycle to handle stalls, since bumpCycle
   2087   // resets CurrMOps. Loop to handle instructions with more MOps than issue in
   2088   // one cycle.  Since we commonly reach the max MOps here, opportunistically
   2089   // bump the cycle to avoid uselessly checking everything in the readyQ.
   2090   CurrMOps += IncMOps;
   2091   while (CurrMOps >= SchedModel->getIssueWidth()) {
   2092     DEBUG(dbgs() << "  *** Max MOps " << CurrMOps
   2093           << " at cycle " << CurrCycle << '\n');
   2094     bumpCycle(++NextCycle);
   2095   }
   2096   DEBUG(dumpScheduledState());
   2097 }
   2098 
   2099 /// Release pending ready nodes in to the available queue. This makes them
   2100 /// visible to heuristics.
   2101 void SchedBoundary::releasePending() {
   2102   // If the available queue is empty, it is safe to reset MinReadyCycle.
   2103   if (Available.empty())
   2104     MinReadyCycle = UINT_MAX;
   2105 
   2106   // Check to see if any of the pending instructions are ready to issue.  If
   2107   // so, add them to the available queue.
   2108   bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0;
   2109   for (unsigned i = 0, e = Pending.size(); i != e; ++i) {
   2110     SUnit *SU = *(Pending.begin()+i);
   2111     unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle;
   2112 
   2113     if (ReadyCycle < MinReadyCycle)
   2114       MinReadyCycle = ReadyCycle;
   2115 
   2116     if (!IsBuffered && ReadyCycle > CurrCycle)
   2117       continue;
   2118 
   2119     if (checkHazard(SU))
   2120       continue;
   2121 
   2122     Available.push(SU);
   2123     Pending.remove(Pending.begin()+i);
   2124     --i; --e;
   2125   }
   2126   DEBUG(if (!Pending.empty()) Pending.dump());
   2127   CheckPending = false;
   2128 }
   2129 
   2130 /// Remove SU from the ready set for this boundary.
   2131 void SchedBoundary::removeReady(SUnit *SU) {
   2132   if (Available.isInQueue(SU))
   2133     Available.remove(Available.find(SU));
   2134   else {
   2135     assert(Pending.isInQueue(SU) && "bad ready count");
   2136     Pending.remove(Pending.find(SU));
   2137   }
   2138 }
   2139 
   2140 /// If this queue only has one ready candidate, return it. As a side effect,
   2141 /// defer any nodes that now hit a hazard, and advance the cycle until at least
   2142 /// one node is ready. If multiple instructions are ready, return NULL.
   2143 SUnit *SchedBoundary::pickOnlyChoice() {
   2144   if (CheckPending)
   2145     releasePending();
   2146 
   2147   if (CurrMOps > 0) {
   2148     // Defer any ready instrs that now have a hazard.
   2149     for (ReadyQueue::iterator I = Available.begin(); I != Available.end();) {
   2150       if (checkHazard(*I)) {
   2151         Pending.push(*I);
   2152         I = Available.remove(I);
   2153         continue;
   2154       }
   2155       ++I;
   2156     }
   2157   }
   2158   for (unsigned i = 0; Available.empty(); ++i) {
   2159 //  FIXME: Re-enable assert once PR20057 is resolved.
   2160 //    assert(i <= (HazardRec->getMaxLookAhead() + MaxObservedStall) &&
   2161 //           "permanent hazard");
   2162     (void)i;
   2163     bumpCycle(CurrCycle + 1);
   2164     releasePending();
   2165   }
   2166   if (Available.size() == 1)
   2167     return *Available.begin();
   2168   return nullptr;
   2169 }
   2170 
   2171 #ifndef NDEBUG
   2172 // This is useful information to dump after bumpNode.
   2173 // Note that the Queue contents are more useful before pickNodeFromQueue.
   2174 void SchedBoundary::dumpScheduledState() {
   2175   unsigned ResFactor;
   2176   unsigned ResCount;
   2177   if (ZoneCritResIdx) {
   2178     ResFactor = SchedModel->getResourceFactor(ZoneCritResIdx);
   2179     ResCount = getResourceCount(ZoneCritResIdx);
   2180   }
   2181   else {
   2182     ResFactor = SchedModel->getMicroOpFactor();
   2183     ResCount = RetiredMOps * SchedModel->getMicroOpFactor();
   2184   }
   2185   unsigned LFactor = SchedModel->getLatencyFactor();
   2186   dbgs() << Available.getName() << " @" << CurrCycle << "c\n"
   2187          << "  Retired: " << RetiredMOps;
   2188   dbgs() << "\n  Executed: " << getExecutedCount() / LFactor << "c";
   2189   dbgs() << "\n  Critical: " << ResCount / LFactor << "c, "
   2190          << ResCount / ResFactor << " "
   2191          << SchedModel->getResourceName(ZoneCritResIdx)
   2192          << "\n  ExpectedLatency: " << ExpectedLatency << "c\n"
   2193          << (IsResourceLimited ? "  - Resource" : "  - Latency")
   2194          << " limited.\n";
   2195 }
   2196 #endif
   2197 
   2198 //===----------------------------------------------------------------------===//
   2199 // GenericScheduler - Generic implementation of MachineSchedStrategy.
   2200 //===----------------------------------------------------------------------===//
   2201 
   2202 void GenericSchedulerBase::SchedCandidate::
   2203 initResourceDelta(const ScheduleDAGMI *DAG,
   2204                   const TargetSchedModel *SchedModel) {
   2205   if (!Policy.ReduceResIdx && !Policy.DemandResIdx)
   2206     return;
   2207 
   2208   const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
   2209   for (TargetSchedModel::ProcResIter
   2210          PI = SchedModel->getWriteProcResBegin(SC),
   2211          PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
   2212     if (PI->ProcResourceIdx == Policy.ReduceResIdx)
   2213       ResDelta.CritResources += PI->Cycles;
   2214     if (PI->ProcResourceIdx == Policy.DemandResIdx)
   2215       ResDelta.DemandedResources += PI->Cycles;
   2216   }
   2217 }
   2218 
   2219 /// Set the CandPolicy given a scheduling zone given the current resources and
   2220 /// latencies inside and outside the zone.
   2221 void GenericSchedulerBase::setPolicy(CandPolicy &Policy,
   2222                                      bool IsPostRA,
   2223                                      SchedBoundary &CurrZone,
   2224                                      SchedBoundary *OtherZone) {
   2225   // Apply preemptive heuristics based on the total latency and resources
   2226   // inside and outside this zone. Potential stalls should be considered before
   2227   // following this policy.
   2228 
   2229   // Compute remaining latency. We need this both to determine whether the
   2230   // overall schedule has become latency-limited and whether the instructions
   2231   // outside this zone are resource or latency limited.
   2232   //
   2233   // The "dependent" latency is updated incrementally during scheduling as the
   2234   // max height/depth of scheduled nodes minus the cycles since it was
   2235   // scheduled:
   2236   //   DLat = max (N.depth - (CurrCycle - N.ReadyCycle) for N in Zone
   2237   //
   2238   // The "independent" latency is the max ready queue depth:
   2239   //   ILat = max N.depth for N in Available|Pending
   2240   //
   2241   // RemainingLatency is the greater of independent and dependent latency.
   2242   unsigned RemLatency = CurrZone.getDependentLatency();
   2243   RemLatency = std::max(RemLatency,
   2244                         CurrZone.findMaxLatency(CurrZone.Available.elements()));
   2245   RemLatency = std::max(RemLatency,
   2246                         CurrZone.findMaxLatency(CurrZone.Pending.elements()));
   2247 
   2248   // Compute the critical resource outside the zone.
   2249   unsigned OtherCritIdx = 0;
   2250   unsigned OtherCount =
   2251     OtherZone ? OtherZone->getOtherResourceCount(OtherCritIdx) : 0;
   2252 
   2253   bool OtherResLimited = false;
   2254   if (SchedModel->hasInstrSchedModel()) {
   2255     unsigned LFactor = SchedModel->getLatencyFactor();
   2256     OtherResLimited = (int)(OtherCount - (RemLatency * LFactor)) > (int)LFactor;
   2257   }
   2258   // Schedule aggressively for latency in PostRA mode. We don't check for
   2259   // acyclic latency during PostRA, and highly out-of-order processors will
   2260   // skip PostRA scheduling.
   2261   if (!OtherResLimited) {
   2262     if (IsPostRA || (RemLatency + CurrZone.getCurrCycle() > Rem.CriticalPath)) {
   2263       Policy.ReduceLatency |= true;
   2264       DEBUG(dbgs() << "  " << CurrZone.Available.getName()
   2265             << " RemainingLatency " << RemLatency << " + "
   2266             << CurrZone.getCurrCycle() << "c > CritPath "
   2267             << Rem.CriticalPath << "\n");
   2268     }
   2269   }
   2270   // If the same resource is limiting inside and outside the zone, do nothing.
   2271   if (CurrZone.getZoneCritResIdx() == OtherCritIdx)
   2272     return;
   2273 
   2274   DEBUG(
   2275     if (CurrZone.isResourceLimited()) {
   2276       dbgs() << "  " << CurrZone.Available.getName() << " ResourceLimited: "
   2277              << SchedModel->getResourceName(CurrZone.getZoneCritResIdx())
   2278              << "\n";
   2279     }
   2280     if (OtherResLimited)
   2281       dbgs() << "  RemainingLimit: "
   2282              << SchedModel->getResourceName(OtherCritIdx) << "\n";
   2283     if (!CurrZone.isResourceLimited() && !OtherResLimited)
   2284       dbgs() << "  Latency limited both directions.\n");
   2285 
   2286   if (CurrZone.isResourceLimited() && !Policy.ReduceResIdx)
   2287     Policy.ReduceResIdx = CurrZone.getZoneCritResIdx();
   2288 
   2289   if (OtherResLimited)
   2290     Policy.DemandResIdx = OtherCritIdx;
   2291 }
   2292 
   2293 #ifndef NDEBUG
   2294 const char *GenericSchedulerBase::getReasonStr(
   2295   GenericSchedulerBase::CandReason Reason) {
   2296   switch (Reason) {
   2297   case NoCand:         return "NOCAND    ";
   2298   case PhysRegCopy:    return "PREG-COPY";
   2299   case RegExcess:      return "REG-EXCESS";
   2300   case RegCritical:    return "REG-CRIT  ";
   2301   case Stall:          return "STALL     ";
   2302   case Cluster:        return "CLUSTER   ";
   2303   case Weak:           return "WEAK      ";
   2304   case RegMax:         return "REG-MAX   ";
   2305   case ResourceReduce: return "RES-REDUCE";
   2306   case ResourceDemand: return "RES-DEMAND";
   2307   case TopDepthReduce: return "TOP-DEPTH ";
   2308   case TopPathReduce:  return "TOP-PATH  ";
   2309   case BotHeightReduce:return "BOT-HEIGHT";
   2310   case BotPathReduce:  return "BOT-PATH  ";
   2311   case NextDefUse:     return "DEF-USE   ";
   2312   case NodeOrder:      return "ORDER     ";
   2313   };
   2314   llvm_unreachable("Unknown reason!");
   2315 }
   2316 
   2317 void GenericSchedulerBase::traceCandidate(const SchedCandidate &Cand) {
   2318   PressureChange P;
   2319   unsigned ResIdx = 0;
   2320   unsigned Latency = 0;
   2321   switch (Cand.Reason) {
   2322   default:
   2323     break;
   2324   case RegExcess:
   2325     P = Cand.RPDelta.Excess;
   2326     break;
   2327   case RegCritical:
   2328     P = Cand.RPDelta.CriticalMax;
   2329     break;
   2330   case RegMax:
   2331     P = Cand.RPDelta.CurrentMax;
   2332     break;
   2333   case ResourceReduce:
   2334     ResIdx = Cand.Policy.ReduceResIdx;
   2335     break;
   2336   case ResourceDemand:
   2337     ResIdx = Cand.Policy.DemandResIdx;
   2338     break;
   2339   case TopDepthReduce:
   2340     Latency = Cand.SU->getDepth();
   2341     break;
   2342   case TopPathReduce:
   2343     Latency = Cand.SU->getHeight();
   2344     break;
   2345   case BotHeightReduce:
   2346     Latency = Cand.SU->getHeight();
   2347     break;
   2348   case BotPathReduce:
   2349     Latency = Cand.SU->getDepth();
   2350     break;
   2351   }
   2352   dbgs() << "  Cand SU(" << Cand.SU->NodeNum << ") " << getReasonStr(Cand.Reason);
   2353   if (P.isValid())
   2354     dbgs() << " " << TRI->getRegPressureSetName(P.getPSet())
   2355            << ":" << P.getUnitInc() << " ";
   2356   else
   2357     dbgs() << "      ";
   2358   if (ResIdx)
   2359     dbgs() << " " << SchedModel->getProcResource(ResIdx)->Name << " ";
   2360   else
   2361     dbgs() << "         ";
   2362   if (Latency)
   2363     dbgs() << " " << Latency << " cycles ";
   2364   else
   2365     dbgs() << "          ";
   2366   dbgs() << '\n';
   2367 }
   2368 #endif
   2369 
   2370 /// Return true if this heuristic determines order.
   2371 static bool tryLess(int TryVal, int CandVal,
   2372                     GenericSchedulerBase::SchedCandidate &TryCand,
   2373                     GenericSchedulerBase::SchedCandidate &Cand,
   2374                     GenericSchedulerBase::CandReason Reason) {
   2375   if (TryVal < CandVal) {
   2376     TryCand.Reason = Reason;
   2377     return true;
   2378   }
   2379   if (TryVal > CandVal) {
   2380     if (Cand.Reason > Reason)
   2381       Cand.Reason = Reason;
   2382     return true;
   2383   }
   2384   Cand.setRepeat(Reason);
   2385   return false;
   2386 }
   2387 
   2388 static bool tryGreater(int TryVal, int CandVal,
   2389                        GenericSchedulerBase::SchedCandidate &TryCand,
   2390                        GenericSchedulerBase::SchedCandidate &Cand,
   2391                        GenericSchedulerBase::CandReason Reason) {
   2392   if (TryVal > CandVal) {
   2393     TryCand.Reason = Reason;
   2394     return true;
   2395   }
   2396   if (TryVal < CandVal) {
   2397     if (Cand.Reason > Reason)
   2398       Cand.Reason = Reason;
   2399     return true;
   2400   }
   2401   Cand.setRepeat(Reason);
   2402   return false;
   2403 }
   2404 
   2405 static bool tryLatency(GenericSchedulerBase::SchedCandidate &TryCand,
   2406                        GenericSchedulerBase::SchedCandidate &Cand,
   2407                        SchedBoundary &Zone) {
   2408   if (Zone.isTop()) {
   2409     if (Cand.SU->getDepth() > Zone.getScheduledLatency()) {
   2410       if (tryLess(TryCand.SU->getDepth(), Cand.SU->getDepth(),
   2411                   TryCand, Cand, GenericSchedulerBase::TopDepthReduce))
   2412         return true;
   2413     }
   2414     if (tryGreater(TryCand.SU->getHeight(), Cand.SU->getHeight(),
   2415                    TryCand, Cand, GenericSchedulerBase::TopPathReduce))
   2416       return true;
   2417   }
   2418   else {
   2419     if (Cand.SU->getHeight() > Zone.getScheduledLatency()) {
   2420       if (tryLess(TryCand.SU->getHeight(), Cand.SU->getHeight(),
   2421                   TryCand, Cand, GenericSchedulerBase::BotHeightReduce))
   2422         return true;
   2423     }
   2424     if (tryGreater(TryCand.SU->getDepth(), Cand.SU->getDepth(),
   2425                    TryCand, Cand, GenericSchedulerBase::BotPathReduce))
   2426       return true;
   2427   }
   2428   return false;
   2429 }
   2430 
   2431 static void tracePick(const GenericSchedulerBase::SchedCandidate &Cand,
   2432                       bool IsTop) {
   2433   DEBUG(dbgs() << "Pick " << (IsTop ? "Top " : "Bot ")
   2434         << GenericSchedulerBase::getReasonStr(Cand.Reason) << '\n');
   2435 }
   2436 
   2437 void GenericScheduler::initialize(ScheduleDAGMI *dag) {
   2438   assert(dag->hasVRegLiveness() &&
   2439          "(PreRA)GenericScheduler needs vreg liveness");
   2440   DAG = static_cast<ScheduleDAGMILive*>(dag);
   2441   SchedModel = DAG->getSchedModel();
   2442   TRI = DAG->TRI;
   2443 
   2444   Rem.init(DAG, SchedModel);
   2445   Top.init(DAG, SchedModel, &Rem);
   2446   Bot.init(DAG, SchedModel, &Rem);
   2447 
   2448   // Initialize resource counts.
   2449 
   2450   // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or
   2451   // are disabled, then these HazardRecs will be disabled.
   2452   const InstrItineraryData *Itin = SchedModel->getInstrItineraries();
   2453   if (!Top.HazardRec) {
   2454     Top.HazardRec =
   2455         DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer(
   2456             Itin, DAG);
   2457   }
   2458   if (!Bot.HazardRec) {
   2459     Bot.HazardRec =
   2460         DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer(
   2461             Itin, DAG);
   2462   }
   2463 }
   2464 
   2465 /// Initialize the per-region scheduling policy.
   2466 void GenericScheduler::initPolicy(MachineBasicBlock::iterator Begin,
   2467                                   MachineBasicBlock::iterator End,
   2468                                   unsigned NumRegionInstrs) {
   2469   const MachineFunction &MF = *Begin->getParent()->getParent();
   2470   const TargetLowering *TLI = MF.getSubtarget().getTargetLowering();
   2471 
   2472   // Avoid setting up the register pressure tracker for small regions to save
   2473   // compile time. As a rough heuristic, only track pressure when the number of
   2474   // schedulable instructions exceeds half the integer register file.
   2475   RegionPolicy.ShouldTrackPressure = true;
   2476   for (unsigned VT = MVT::i32; VT > (unsigned)MVT::i1; --VT) {
   2477     MVT::SimpleValueType LegalIntVT = (MVT::SimpleValueType)VT;
   2478     if (TLI->isTypeLegal(LegalIntVT)) {
   2479       unsigned NIntRegs = Context->RegClassInfo->getNumAllocatableRegs(
   2480         TLI->getRegClassFor(LegalIntVT));
   2481       RegionPolicy.ShouldTrackPressure = NumRegionInstrs > (NIntRegs / 2);
   2482     }
   2483   }
   2484 
   2485   // For generic targets, we default to bottom-up, because it's simpler and more
   2486   // compile-time optimizations have been implemented in that direction.
   2487   RegionPolicy.OnlyBottomUp = true;
   2488 
   2489   // Allow the subtarget to override default policy.
   2490   MF.getSubtarget().overrideSchedPolicy(RegionPolicy, Begin, End,
   2491                                         NumRegionInstrs);
   2492 
   2493   // After subtarget overrides, apply command line options.
   2494   if (!EnableRegPressure)
   2495     RegionPolicy.ShouldTrackPressure = false;
   2496 
   2497   // Check -misched-topdown/bottomup can force or unforce scheduling direction.
   2498   // e.g. -misched-bottomup=false allows scheduling in both directions.
   2499   assert((!ForceTopDown || !ForceBottomUp) &&
   2500          "-misched-topdown incompatible with -misched-bottomup");
   2501   if (ForceBottomUp.getNumOccurrences() > 0) {
   2502     RegionPolicy.OnlyBottomUp = ForceBottomUp;
   2503     if (RegionPolicy.OnlyBottomUp)
   2504       RegionPolicy.OnlyTopDown = false;
   2505   }
   2506   if (ForceTopDown.getNumOccurrences() > 0) {
   2507     RegionPolicy.OnlyTopDown = ForceTopDown;
   2508     if (RegionPolicy.OnlyTopDown)
   2509       RegionPolicy.OnlyBottomUp = false;
   2510   }
   2511 }
   2512 
   2513 void GenericScheduler::dumpPolicy() {
   2514   dbgs() << "GenericScheduler RegionPolicy: "
   2515          << " ShouldTrackPressure=" << RegionPolicy.ShouldTrackPressure
   2516          << " OnlyTopDown=" << RegionPolicy.OnlyTopDown
   2517          << " OnlyBottomUp=" << RegionPolicy.OnlyBottomUp
   2518          << "\n";
   2519 }
   2520 
   2521 /// Set IsAcyclicLatencyLimited if the acyclic path is longer than the cyclic
   2522 /// critical path by more cycles than it takes to drain the instruction buffer.
   2523 /// We estimate an upper bounds on in-flight instructions as:
   2524 ///
   2525 /// CyclesPerIteration = max( CyclicPath, Loop-Resource-Height )
   2526 /// InFlightIterations = AcyclicPath / CyclesPerIteration
   2527 /// InFlightResources = InFlightIterations * LoopResources
   2528 ///
   2529 /// TODO: Check execution resources in addition to IssueCount.
   2530 void GenericScheduler::checkAcyclicLatency() {
   2531   if (Rem.CyclicCritPath == 0 || Rem.CyclicCritPath >= Rem.CriticalPath)
   2532     return;
   2533 
   2534   // Scaled number of cycles per loop iteration.
   2535   unsigned IterCount =
   2536     std::max(Rem.CyclicCritPath * SchedModel->getLatencyFactor(),
   2537              Rem.RemIssueCount);
   2538   // Scaled acyclic critical path.
   2539   unsigned AcyclicCount = Rem.CriticalPath * SchedModel->getLatencyFactor();
   2540   // InFlightCount = (AcyclicPath / IterCycles) * InstrPerLoop
   2541   unsigned InFlightCount =
   2542     (AcyclicCount * Rem.RemIssueCount + IterCount-1) / IterCount;
   2543   unsigned BufferLimit =
   2544     SchedModel->getMicroOpBufferSize() * SchedModel->getMicroOpFactor();
   2545 
   2546   Rem.IsAcyclicLatencyLimited = InFlightCount > BufferLimit;
   2547 
   2548   DEBUG(dbgs() << "IssueCycles="
   2549         << Rem.RemIssueCount / SchedModel->getLatencyFactor() << "c "
   2550         << "IterCycles=" << IterCount / SchedModel->getLatencyFactor()
   2551         << "c NumIters=" << (AcyclicCount + IterCount-1) / IterCount
   2552         << " InFlight=" << InFlightCount / SchedModel->getMicroOpFactor()
   2553         << "m BufferLim=" << SchedModel->getMicroOpBufferSize() << "m\n";
   2554         if (Rem.IsAcyclicLatencyLimited)
   2555           dbgs() << "  ACYCLIC LATENCY LIMIT\n");
   2556 }
   2557 
   2558 void GenericScheduler::registerRoots() {
   2559   Rem.CriticalPath = DAG->ExitSU.getDepth();
   2560 
   2561   // Some roots may not feed into ExitSU. Check all of them in case.
   2562   for (std::vector<SUnit*>::const_iterator
   2563          I = Bot.Available.begin(), E = Bot.Available.end(); I != E; ++I) {
   2564     if ((*I)->getDepth() > Rem.CriticalPath)
   2565       Rem.CriticalPath = (*I)->getDepth();
   2566   }
   2567   DEBUG(dbgs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << '\n');
   2568   if (DumpCriticalPathLength) {
   2569     errs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << " \n";
   2570   }
   2571 
   2572   if (EnableCyclicPath) {
   2573     Rem.CyclicCritPath = DAG->computeCyclicCriticalPath();
   2574     checkAcyclicLatency();
   2575   }
   2576 }
   2577 
   2578 static bool tryPressure(const PressureChange &TryP,
   2579                         const PressureChange &CandP,
   2580                         GenericSchedulerBase::SchedCandidate &TryCand,
   2581                         GenericSchedulerBase::SchedCandidate &Cand,
   2582                         GenericSchedulerBase::CandReason Reason,
   2583                         const TargetRegisterInfo *TRI,
   2584                         const MachineFunction &MF) {
   2585   unsigned TryPSet = TryP.getPSetOrMax();
   2586   unsigned CandPSet = CandP.getPSetOrMax();
   2587   // If both candidates affect the same set, go with the smallest increase.
   2588   if (TryPSet == CandPSet) {
   2589     return tryLess(TryP.getUnitInc(), CandP.getUnitInc(), TryCand, Cand,
   2590                    Reason);
   2591   }
   2592   // If one candidate decreases and the other increases, go with it.
   2593   // Invalid candidates have UnitInc==0.
   2594   if (tryGreater(TryP.getUnitInc() < 0, CandP.getUnitInc() < 0, TryCand, Cand,
   2595                  Reason)) {
   2596     return true;
   2597   }
   2598 
   2599   int TryRank = TryP.isValid() ? TRI->getRegPressureSetScore(MF, TryPSet) :
   2600                                  std::numeric_limits<int>::max();
   2601 
   2602   int CandRank = CandP.isValid() ? TRI->getRegPressureSetScore(MF, CandPSet) :
   2603                                    std::numeric_limits<int>::max();
   2604 
   2605   // If the candidates are decreasing pressure, reverse priority.
   2606   if (TryP.getUnitInc() < 0)
   2607     std::swap(TryRank, CandRank);
   2608   return tryGreater(TryRank, CandRank, TryCand, Cand, Reason);
   2609 }
   2610 
   2611 static unsigned getWeakLeft(const SUnit *SU, bool isTop) {
   2612   return (isTop) ? SU->WeakPredsLeft : SU->WeakSuccsLeft;
   2613 }
   2614 
   2615 /// Minimize physical register live ranges. Regalloc wants them adjacent to
   2616 /// their physreg def/use.
   2617 ///
   2618 /// FIXME: This is an unnecessary check on the critical path. Most are root/leaf
   2619 /// copies which can be prescheduled. The rest (e.g. x86 MUL) could be bundled
   2620 /// with the operation that produces or consumes the physreg. We'll do this when
   2621 /// regalloc has support for parallel copies.
   2622 static int biasPhysRegCopy(const SUnit *SU, bool isTop) {
   2623   const MachineInstr *MI = SU->getInstr();
   2624   if (!MI->isCopy())
   2625     return 0;
   2626 
   2627   unsigned ScheduledOper = isTop ? 1 : 0;
   2628   unsigned UnscheduledOper = isTop ? 0 : 1;
   2629   // If we have already scheduled the physreg produce/consumer, immediately
   2630   // schedule the copy.
   2631   if (TargetRegisterInfo::isPhysicalRegister(
   2632         MI->getOperand(ScheduledOper).getReg()))
   2633     return 1;
   2634   // If the physreg is at the boundary, defer it. Otherwise schedule it
   2635   // immediately to free the dependent. We can hoist the copy later.
   2636   bool AtBoundary = isTop ? !SU->NumSuccsLeft : !SU->NumPredsLeft;
   2637   if (TargetRegisterInfo::isPhysicalRegister(
   2638         MI->getOperand(UnscheduledOper).getReg()))
   2639     return AtBoundary ? -1 : 1;
   2640   return 0;
   2641 }
   2642 
   2643 /// Apply a set of heursitics to a new candidate. Heuristics are currently
   2644 /// hierarchical. This may be more efficient than a graduated cost model because
   2645 /// we don't need to evaluate all aspects of the model for each node in the
   2646 /// queue. But it's really done to make the heuristics easier to debug and
   2647 /// statistically analyze.
   2648 ///
   2649 /// \param Cand provides the policy and current best candidate.
   2650 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized.
   2651 /// \param Zone describes the scheduled zone that we are extending.
   2652 /// \param RPTracker describes reg pressure within the scheduled zone.
   2653 /// \param TempTracker is a scratch pressure tracker to reuse in queries.
   2654 void GenericScheduler::tryCandidate(SchedCandidate &Cand,
   2655                                     SchedCandidate &TryCand,
   2656                                     SchedBoundary &Zone,
   2657                                     const RegPressureTracker &RPTracker,
   2658                                     RegPressureTracker &TempTracker) {
   2659 
   2660   if (DAG->isTrackingPressure()) {
   2661     // Always initialize TryCand's RPDelta.
   2662     if (Zone.isTop()) {
   2663       TempTracker.getMaxDownwardPressureDelta(
   2664         TryCand.SU->getInstr(),
   2665         TryCand.RPDelta,
   2666         DAG->getRegionCriticalPSets(),
   2667         DAG->getRegPressure().MaxSetPressure);
   2668     }
   2669     else {
   2670       if (VerifyScheduling) {
   2671         TempTracker.getMaxUpwardPressureDelta(
   2672           TryCand.SU->getInstr(),
   2673           &DAG->getPressureDiff(TryCand.SU),
   2674           TryCand.RPDelta,
   2675           DAG->getRegionCriticalPSets(),
   2676           DAG->getRegPressure().MaxSetPressure);
   2677       }
   2678       else {
   2679         RPTracker.getUpwardPressureDelta(
   2680           TryCand.SU->getInstr(),
   2681           DAG->getPressureDiff(TryCand.SU),
   2682           TryCand.RPDelta,
   2683           DAG->getRegionCriticalPSets(),
   2684           DAG->getRegPressure().MaxSetPressure);
   2685       }
   2686     }
   2687   }
   2688   DEBUG(if (TryCand.RPDelta.Excess.isValid())
   2689           dbgs() << "  Try  SU(" << TryCand.SU->NodeNum << ") "
   2690                  << TRI->getRegPressureSetName(TryCand.RPDelta.Excess.getPSet())
   2691                  << ":" << TryCand.RPDelta.Excess.getUnitInc() << "\n");
   2692 
   2693   // Initialize the candidate if needed.
   2694   if (!Cand.isValid()) {
   2695     TryCand.Reason = NodeOrder;
   2696     return;
   2697   }
   2698 
   2699   if (tryGreater(biasPhysRegCopy(TryCand.SU, Zone.isTop()),
   2700                  biasPhysRegCopy(Cand.SU, Zone.isTop()),
   2701                  TryCand, Cand, PhysRegCopy))
   2702     return;
   2703 
   2704   // Avoid exceeding the target's limit.
   2705   if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.Excess,
   2706                                                Cand.RPDelta.Excess,
   2707                                                TryCand, Cand, RegExcess, TRI,
   2708                                                DAG->MF))
   2709     return;
   2710 
   2711   // Avoid increasing the max critical pressure in the scheduled region.
   2712   if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CriticalMax,
   2713                                                Cand.RPDelta.CriticalMax,
   2714                                                TryCand, Cand, RegCritical, TRI,
   2715                                                DAG->MF))
   2716     return;
   2717 
   2718   // For loops that are acyclic path limited, aggressively schedule for latency.
   2719   // This can result in very long dependence chains scheduled in sequence, so
   2720   // once every cycle (when CurrMOps == 0), switch to normal heuristics.
   2721   if (Rem.IsAcyclicLatencyLimited && !Zone.getCurrMOps()
   2722       && tryLatency(TryCand, Cand, Zone))
   2723     return;
   2724 
   2725   // Prioritize instructions that read unbuffered resources by stall cycles.
   2726   if (tryLess(Zone.getLatencyStallCycles(TryCand.SU),
   2727               Zone.getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall))
   2728     return;
   2729 
   2730   // Keep clustered nodes together to encourage downstream peephole
   2731   // optimizations which may reduce resource requirements.
   2732   //
   2733   // This is a best effort to set things up for a post-RA pass. Optimizations
   2734   // like generating loads of multiple registers should ideally be done within
   2735   // the scheduler pass by combining the loads during DAG postprocessing.
   2736   const SUnit *NextClusterSU =
   2737     Zone.isTop() ? DAG->getNextClusterSucc() : DAG->getNextClusterPred();
   2738   if (tryGreater(TryCand.SU == NextClusterSU, Cand.SU == NextClusterSU,
   2739                  TryCand, Cand, Cluster))
   2740     return;
   2741 
   2742   // Weak edges are for clustering and other constraints.
   2743   if (tryLess(getWeakLeft(TryCand.SU, Zone.isTop()),
   2744               getWeakLeft(Cand.SU, Zone.isTop()),
   2745               TryCand, Cand, Weak)) {
   2746     return;
   2747   }
   2748   // Avoid increasing the max pressure of the entire region.
   2749   if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CurrentMax,
   2750                                                Cand.RPDelta.CurrentMax,
   2751                                                TryCand, Cand, RegMax, TRI,
   2752                                                DAG->MF))
   2753     return;
   2754 
   2755   // Avoid critical resource consumption and balance the schedule.
   2756   TryCand.initResourceDelta(DAG, SchedModel);
   2757   if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources,
   2758               TryCand, Cand, ResourceReduce))
   2759     return;
   2760   if (tryGreater(TryCand.ResDelta.DemandedResources,
   2761                  Cand.ResDelta.DemandedResources,
   2762                  TryCand, Cand, ResourceDemand))
   2763     return;
   2764 
   2765   // Avoid serializing long latency dependence chains.
   2766   // For acyclic path limited loops, latency was already checked above.
   2767   if (!RegionPolicy.DisableLatencyHeuristic && Cand.Policy.ReduceLatency &&
   2768       !Rem.IsAcyclicLatencyLimited && tryLatency(TryCand, Cand, Zone)) {
   2769     return;
   2770   }
   2771 
   2772   // Prefer immediate defs/users of the last scheduled instruction. This is a
   2773   // local pressure avoidance strategy that also makes the machine code
   2774   // readable.
   2775   if (tryGreater(Zone.isNextSU(TryCand.SU), Zone.isNextSU(Cand.SU),
   2776                  TryCand, Cand, NextDefUse))
   2777     return;
   2778 
   2779   // Fall through to original instruction order.
   2780   if ((Zone.isTop() && TryCand.SU->NodeNum < Cand.SU->NodeNum)
   2781       || (!Zone.isTop() && TryCand.SU->NodeNum > Cand.SU->NodeNum)) {
   2782     TryCand.Reason = NodeOrder;
   2783   }
   2784 }
   2785 
   2786 /// Pick the best candidate from the queue.
   2787 ///
   2788 /// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during
   2789 /// DAG building. To adjust for the current scheduling location we need to
   2790 /// maintain the number of vreg uses remaining to be top-scheduled.
   2791 void GenericScheduler::pickNodeFromQueue(SchedBoundary &Zone,
   2792                                          const RegPressureTracker &RPTracker,
   2793                                          SchedCandidate &Cand) {
   2794   ReadyQueue &Q = Zone.Available;
   2795 
   2796   DEBUG(Q.dump());
   2797 
   2798   // getMaxPressureDelta temporarily modifies the tracker.
   2799   RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker);
   2800 
   2801   for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) {
   2802 
   2803     SchedCandidate TryCand(Cand.Policy);
   2804     TryCand.SU = *I;
   2805     tryCandidate(Cand, TryCand, Zone, RPTracker, TempTracker);
   2806     if (TryCand.Reason != NoCand) {
   2807       // Initialize resource delta if needed in case future heuristics query it.
   2808       if (TryCand.ResDelta == SchedResourceDelta())
   2809         TryCand.initResourceDelta(DAG, SchedModel);
   2810       Cand.setBest(TryCand);
   2811       DEBUG(traceCandidate(Cand));
   2812     }
   2813   }
   2814 }
   2815 
   2816 /// Pick the best candidate node from either the top or bottom queue.
   2817 SUnit *GenericScheduler::pickNodeBidirectional(bool &IsTopNode) {
   2818   // Schedule as far as possible in the direction of no choice. This is most
   2819   // efficient, but also provides the best heuristics for CriticalPSets.
   2820   if (SUnit *SU = Bot.pickOnlyChoice()) {
   2821     IsTopNode = false;
   2822     DEBUG(dbgs() << "Pick Bot ONLY1\n");
   2823     return SU;
   2824   }
   2825   if (SUnit *SU = Top.pickOnlyChoice()) {
   2826     IsTopNode = true;
   2827     DEBUG(dbgs() << "Pick Top ONLY1\n");
   2828     return SU;
   2829   }
   2830   CandPolicy NoPolicy;
   2831   SchedCandidate BotCand(NoPolicy);
   2832   SchedCandidate TopCand(NoPolicy);
   2833   // Set the bottom-up policy based on the state of the current bottom zone and
   2834   // the instructions outside the zone, including the top zone.
   2835   setPolicy(BotCand.Policy, /*IsPostRA=*/false, Bot, &Top);
   2836   // Set the top-down policy based on the state of the current top zone and
   2837   // the instructions outside the zone, including the bottom zone.
   2838   setPolicy(TopCand.Policy, /*IsPostRA=*/false, Top, &Bot);
   2839 
   2840   // Prefer bottom scheduling when heuristics are silent.
   2841   pickNodeFromQueue(Bot, DAG->getBotRPTracker(), BotCand);
   2842   assert(BotCand.Reason != NoCand && "failed to find the first candidate");
   2843 
   2844   // If either Q has a single candidate that provides the least increase in
   2845   // Excess pressure, we can immediately schedule from that Q.
   2846   //
   2847   // RegionCriticalPSets summarizes the pressure within the scheduled region and
   2848   // affects picking from either Q. If scheduling in one direction must
   2849   // increase pressure for one of the excess PSets, then schedule in that
   2850   // direction first to provide more freedom in the other direction.
   2851   if ((BotCand.Reason == RegExcess && !BotCand.isRepeat(RegExcess))
   2852       || (BotCand.Reason == RegCritical
   2853           && !BotCand.isRepeat(RegCritical)))
   2854   {
   2855     IsTopNode = false;
   2856     tracePick(BotCand, IsTopNode);
   2857     return BotCand.SU;
   2858   }
   2859   // Check if the top Q has a better candidate.
   2860   pickNodeFromQueue(Top, DAG->getTopRPTracker(), TopCand);
   2861   assert(TopCand.Reason != NoCand && "failed to find the first candidate");
   2862 
   2863   // Choose the queue with the most important (lowest enum) reason.
   2864   if (TopCand.Reason < BotCand.Reason) {
   2865     IsTopNode = true;
   2866     tracePick(TopCand, IsTopNode);
   2867     return TopCand.SU;
   2868   }
   2869   // Otherwise prefer the bottom candidate, in node order if all else failed.
   2870   IsTopNode = false;
   2871   tracePick(BotCand, IsTopNode);
   2872   return BotCand.SU;
   2873 }
   2874 
   2875 /// Pick the best node to balance the schedule. Implements MachineSchedStrategy.
   2876 SUnit *GenericScheduler::pickNode(bool &IsTopNode) {
   2877   if (DAG->top() == DAG->bottom()) {
   2878     assert(Top.Available.empty() && Top.Pending.empty() &&
   2879            Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage");
   2880     return nullptr;
   2881   }
   2882   SUnit *SU;
   2883   do {
   2884     if (RegionPolicy.OnlyTopDown) {
   2885       SU = Top.pickOnlyChoice();
   2886       if (!SU) {
   2887         CandPolicy NoPolicy;
   2888         SchedCandidate TopCand(NoPolicy);
   2889         pickNodeFromQueue(Top, DAG->getTopRPTracker(), TopCand);
   2890         assert(TopCand.Reason != NoCand && "failed to find a candidate");
   2891         tracePick(TopCand, true);
   2892         SU = TopCand.SU;
   2893       }
   2894       IsTopNode = true;
   2895     }
   2896     else if (RegionPolicy.OnlyBottomUp) {
   2897       SU = Bot.pickOnlyChoice();
   2898       if (!SU) {
   2899         CandPolicy NoPolicy;
   2900         SchedCandidate BotCand(NoPolicy);
   2901         pickNodeFromQueue(Bot, DAG->getBotRPTracker(), BotCand);
   2902         assert(BotCand.Reason != NoCand && "failed to find a candidate");
   2903         tracePick(BotCand, false);
   2904         SU = BotCand.SU;
   2905       }
   2906       IsTopNode = false;
   2907     }
   2908     else {
   2909       SU = pickNodeBidirectional(IsTopNode);
   2910     }
   2911   } while (SU->isScheduled);
   2912 
   2913   if (SU->isTopReady())
   2914     Top.removeReady(SU);
   2915   if (SU->isBottomReady())
   2916     Bot.removeReady(SU);
   2917 
   2918   DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " << *SU->getInstr());
   2919   return SU;
   2920 }
   2921 
   2922 void GenericScheduler::reschedulePhysRegCopies(SUnit *SU, bool isTop) {
   2923 
   2924   MachineBasicBlock::iterator InsertPos = SU->getInstr();
   2925   if (!isTop)
   2926     ++InsertPos;
   2927   SmallVectorImpl<SDep> &Deps = isTop ? SU->Preds : SU->Succs;
   2928 
   2929   // Find already scheduled copies with a single physreg dependence and move
   2930   // them just above the scheduled instruction.
   2931   for (SmallVectorImpl<SDep>::iterator I = Deps.begin(), E = Deps.end();
   2932        I != E; ++I) {
   2933     if (I->getKind() != SDep::Data || !TRI->isPhysicalRegister(I->getReg()))
   2934       continue;
   2935     SUnit *DepSU = I->getSUnit();
   2936     if (isTop ? DepSU->Succs.size() > 1 : DepSU->Preds.size() > 1)
   2937       continue;
   2938     MachineInstr *Copy = DepSU->getInstr();
   2939     if (!Copy->isCopy())
   2940       continue;
   2941     DEBUG(dbgs() << "  Rescheduling physreg copy ";
   2942           I->getSUnit()->dump(DAG));
   2943     DAG->moveInstruction(Copy, InsertPos);
   2944   }
   2945 }
   2946 
   2947 /// Update the scheduler's state after scheduling a node. This is the same node
   2948 /// that was just returned by pickNode(). However, ScheduleDAGMILive needs to
   2949 /// update it's state based on the current cycle before MachineSchedStrategy
   2950 /// does.
   2951 ///
   2952 /// FIXME: Eventually, we may bundle physreg copies rather than rescheduling
   2953 /// them here. See comments in biasPhysRegCopy.
   2954 void GenericScheduler::schedNode(SUnit *SU, bool IsTopNode) {
   2955   if (IsTopNode) {
   2956     SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle());
   2957     Top.bumpNode(SU);
   2958     if (SU->hasPhysRegUses)
   2959       reschedulePhysRegCopies(SU, true);
   2960   }
   2961   else {
   2962     SU->BotReadyCycle = std::max(SU->BotReadyCycle, Bot.getCurrCycle());
   2963     Bot.bumpNode(SU);
   2964     if (SU->hasPhysRegDefs)
   2965       reschedulePhysRegCopies(SU, false);
   2966   }
   2967 }
   2968 
   2969 /// Create the standard converging machine scheduler. This will be used as the
   2970 /// default scheduler if the target does not set a default.
   2971 static ScheduleDAGInstrs *createGenericSchedLive(MachineSchedContext *C) {
   2972   ScheduleDAGMILive *DAG = new ScheduleDAGMILive(C, make_unique<GenericScheduler>(C));
   2973   // Register DAG post-processors.
   2974   //
   2975   // FIXME: extend the mutation API to allow earlier mutations to instantiate
   2976   // data and pass it to later mutations. Have a single mutation that gathers
   2977   // the interesting nodes in one pass.
   2978   DAG->addMutation(make_unique<CopyConstrain>(DAG->TII, DAG->TRI));
   2979   if (EnableLoadCluster && DAG->TII->enableClusterLoads())
   2980     DAG->addMutation(make_unique<LoadClusterMutation>(DAG->TII, DAG->TRI));
   2981   if (EnableMacroFusion)
   2982     DAG->addMutation(make_unique<MacroFusion>(*DAG->TII, *DAG->TRI));
   2983   return DAG;
   2984 }
   2985 
   2986 static MachineSchedRegistry
   2987 GenericSchedRegistry("converge", "Standard converging scheduler.",
   2988                      createGenericSchedLive);
   2989 
   2990 //===----------------------------------------------------------------------===//
   2991 // PostGenericScheduler - Generic PostRA implementation of MachineSchedStrategy.
   2992 //===----------------------------------------------------------------------===//
   2993 
   2994 void PostGenericScheduler::initialize(ScheduleDAGMI *Dag) {
   2995   DAG = Dag;
   2996   SchedModel = DAG->getSchedModel();
   2997   TRI = DAG->TRI;
   2998 
   2999   Rem.init(DAG, SchedModel);
   3000   Top.init(DAG, SchedModel, &Rem);
   3001   BotRoots.clear();
   3002 
   3003   // Initialize the HazardRecognizers. If itineraries don't exist, are empty,
   3004   // or are disabled, then these HazardRecs will be disabled.
   3005   const InstrItineraryData *Itin = SchedModel->getInstrItineraries();
   3006   if (!Top.HazardRec) {
   3007     Top.HazardRec =
   3008         DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer(
   3009             Itin, DAG);
   3010   }
   3011 }
   3012 
   3013 
   3014 void PostGenericScheduler::registerRoots() {
   3015   Rem.CriticalPath = DAG->ExitSU.getDepth();
   3016 
   3017   // Some roots may not feed into ExitSU. Check all of them in case.
   3018   for (SmallVectorImpl<SUnit*>::const_iterator
   3019          I = BotRoots.begin(), E = BotRoots.end(); I != E; ++I) {
   3020     if ((*I)->getDepth() > Rem.CriticalPath)
   3021       Rem.CriticalPath = (*I)->getDepth();
   3022   }
   3023   DEBUG(dbgs() << "Critical Path: (PGS-RR) " << Rem.CriticalPath << '\n');
   3024   if (DumpCriticalPathLength) {
   3025     errs() << "Critical Path(PGS-RR ): " << Rem.CriticalPath << " \n";
   3026   }
   3027 }
   3028 
   3029 /// Apply a set of heursitics to a new candidate for PostRA scheduling.
   3030 ///
   3031 /// \param Cand provides the policy and current best candidate.
   3032 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized.
   3033 void PostGenericScheduler::tryCandidate(SchedCandidate &Cand,
   3034                                         SchedCandidate &TryCand) {
   3035 
   3036   // Initialize the candidate if needed.
   3037   if (!Cand.isValid()) {
   3038     TryCand.Reason = NodeOrder;
   3039     return;
   3040   }
   3041 
   3042   // Prioritize instructions that read unbuffered resources by stall cycles.
   3043   if (tryLess(Top.getLatencyStallCycles(TryCand.SU),
   3044               Top.getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall))
   3045     return;
   3046 
   3047   // Avoid critical resource consumption and balance the schedule.
   3048   if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources,
   3049               TryCand, Cand, ResourceReduce))
   3050     return;
   3051   if (tryGreater(TryCand.ResDelta.DemandedResources,
   3052                  Cand.ResDelta.DemandedResources,
   3053                  TryCand, Cand, ResourceDemand))
   3054     return;
   3055 
   3056   // Avoid serializing long latency dependence chains.
   3057   if (Cand.Policy.ReduceLatency && tryLatency(TryCand, Cand, Top)) {
   3058     return;
   3059   }
   3060 
   3061   // Fall through to original instruction order.
   3062   if (TryCand.SU->NodeNum < Cand.SU->NodeNum)
   3063     TryCand.Reason = NodeOrder;
   3064 }
   3065 
   3066 void PostGenericScheduler::pickNodeFromQueue(SchedCandidate &Cand) {
   3067   ReadyQueue &Q = Top.Available;
   3068 
   3069   DEBUG(Q.dump());
   3070 
   3071   for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) {
   3072     SchedCandidate TryCand(Cand.Policy);
   3073     TryCand.SU = *I;
   3074     TryCand.initResourceDelta(DAG, SchedModel);
   3075     tryCandidate(Cand, TryCand);
   3076     if (TryCand.Reason != NoCand) {
   3077       Cand.setBest(TryCand);
   3078       DEBUG(traceCandidate(Cand));
   3079     }
   3080   }
   3081 }
   3082 
   3083 /// Pick the next node to schedule.
   3084 SUnit *PostGenericScheduler::pickNode(bool &IsTopNode) {
   3085   if (DAG->top() == DAG->bottom()) {
   3086     assert(Top.Available.empty() && Top.Pending.empty() && "ReadyQ garbage");
   3087     return nullptr;
   3088   }
   3089   SUnit *SU;
   3090   do {
   3091     SU = Top.pickOnlyChoice();
   3092     if (!SU) {
   3093       CandPolicy NoPolicy;
   3094       SchedCandidate TopCand(NoPolicy);
   3095       // Set the top-down policy based on the state of the current top zone and
   3096       // the instructions outside the zone, including the bottom zone.
   3097       setPolicy(TopCand.Policy, /*IsPostRA=*/true, Top, nullptr);
   3098       pickNodeFromQueue(TopCand);
   3099       assert(TopCand.Reason != NoCand && "failed to find a candidate");
   3100       tracePick(TopCand, true);
   3101       SU = TopCand.SU;
   3102     }
   3103   } while (SU->isScheduled);
   3104 
   3105   IsTopNode = true;
   3106   Top.removeReady(SU);
   3107 
   3108   DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " << *SU->getInstr());
   3109   return SU;
   3110 }
   3111 
   3112 /// Called after ScheduleDAGMI has scheduled an instruction and updated
   3113 /// scheduled/remaining flags in the DAG nodes.
   3114 void PostGenericScheduler::schedNode(SUnit *SU, bool IsTopNode) {
   3115   SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle());
   3116   Top.bumpNode(SU);
   3117 }
   3118 
   3119 /// Create a generic scheduler with no vreg liveness or DAG mutation passes.
   3120 static ScheduleDAGInstrs *createGenericSchedPostRA(MachineSchedContext *C) {
   3121   return new ScheduleDAGMI(C, make_unique<PostGenericScheduler>(C), /*IsPostRA=*/true);
   3122 }
   3123 
   3124 //===----------------------------------------------------------------------===//
   3125 // ILP Scheduler. Currently for experimental analysis of heuristics.
   3126 //===----------------------------------------------------------------------===//
   3127 
   3128 namespace {
   3129 /// \brief Order nodes by the ILP metric.
   3130 struct ILPOrder {
   3131   const SchedDFSResult *DFSResult;
   3132   const BitVector *ScheduledTrees;
   3133   bool MaximizeILP;
   3134 
   3135   ILPOrder(bool MaxILP)
   3136     : DFSResult(nullptr), ScheduledTrees(nullptr), MaximizeILP(MaxILP) {}
   3137 
   3138   /// \brief Apply a less-than relation on node priority.
   3139   ///
   3140   /// (Return true if A comes after B in the Q.)
   3141   bool operator()(const SUnit *A, const SUnit *B) const {
   3142     unsigned SchedTreeA = DFSResult->getSubtreeID(A);
   3143     unsigned SchedTreeB = DFSResult->getSubtreeID(B);
   3144     if (SchedTreeA != SchedTreeB) {
   3145       // Unscheduled trees have lower priority.
   3146       if (ScheduledTrees->test(SchedTreeA) != ScheduledTrees->test(SchedTreeB))
   3147         return ScheduledTrees->test(SchedTreeB);
   3148 
   3149       // Trees with shallower connections have have lower priority.
   3150       if (DFSResult->getSubtreeLevel(SchedTreeA)
   3151           != DFSResult->getSubtreeLevel(SchedTreeB)) {
   3152         return DFSResult->getSubtreeLevel(SchedTreeA)
   3153           < DFSResult->getSubtreeLevel(SchedTreeB);
   3154       }
   3155     }
   3156     if (MaximizeILP)
   3157       return DFSResult->getILP(A) < DFSResult->getILP(B);
   3158     else
   3159       return DFSResult->getILP(A) > DFSResult->getILP(B);
   3160   }
   3161 };
   3162 
   3163 /// \brief Schedule based on the ILP metric.
   3164 class ILPScheduler : public MachineSchedStrategy {
   3165   ScheduleDAGMILive *DAG;
   3166   ILPOrder Cmp;
   3167 
   3168   std::vector<SUnit*> ReadyQ;
   3169 public:
   3170   ILPScheduler(bool MaximizeILP): DAG(nullptr), Cmp(MaximizeILP) {}
   3171 
   3172   void initialize(ScheduleDAGMI *dag) override {
   3173     assert(dag->hasVRegLiveness() && "ILPScheduler needs vreg liveness");
   3174     DAG = static_cast<ScheduleDAGMILive*>(dag);
   3175     DAG->computeDFSResult();
   3176     Cmp.DFSResult = DAG->getDFSResult();
   3177     Cmp.ScheduledTrees = &DAG->getScheduledTrees();
   3178     ReadyQ.clear();
   3179   }
   3180 
   3181   void registerRoots() override {
   3182     // Restore the heap in ReadyQ with the updated DFS results.
   3183     std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
   3184   }
   3185 
   3186   /// Implement MachineSchedStrategy interface.
   3187   /// -----------------------------------------
   3188 
   3189   /// Callback to select the highest priority node from the ready Q.
   3190   SUnit *pickNode(bool &IsTopNode) override {
   3191     if (ReadyQ.empty()) return nullptr;
   3192     std::pop_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
   3193     SUnit *SU = ReadyQ.back();
   3194     ReadyQ.pop_back();
   3195     IsTopNode = false;
   3196     DEBUG(dbgs() << "Pick node " << "SU(" << SU->NodeNum << ") "
   3197           << " ILP: " << DAG->getDFSResult()->getILP(SU)
   3198           << " Tree: " << DAG->getDFSResult()->getSubtreeID(SU) << " @"
   3199           << DAG->getDFSResult()->getSubtreeLevel(
   3200             DAG->getDFSResult()->getSubtreeID(SU)) << '\n'
   3201           << "Scheduling " << *SU->getInstr());
   3202     return SU;
   3203   }
   3204 
   3205   /// \brief Scheduler callback to notify that a new subtree is scheduled.
   3206   void scheduleTree(unsigned SubtreeID) override {
   3207     std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
   3208   }
   3209 
   3210   /// Callback after a node is scheduled. Mark a newly scheduled tree, notify
   3211   /// DFSResults, and resort the priority Q.
   3212   void schedNode(SUnit *SU, bool IsTopNode) override {
   3213     assert(!IsTopNode && "SchedDFSResult needs bottom-up");
   3214   }
   3215 
   3216   void releaseTopNode(SUnit *) override { /*only called for top roots*/ }
   3217 
   3218   void releaseBottomNode(SUnit *SU) override {
   3219     ReadyQ.push_back(SU);
   3220     std::push_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
   3221   }
   3222 };
   3223 } // namespace
   3224 
   3225 static ScheduleDAGInstrs *createILPMaxScheduler(MachineSchedContext *C) {
   3226   return new ScheduleDAGMILive(C, make_unique<ILPScheduler>(true));
   3227 }
   3228 static ScheduleDAGInstrs *createILPMinScheduler(MachineSchedContext *C) {
   3229   return new ScheduleDAGMILive(C, make_unique<ILPScheduler>(false));
   3230 }
   3231 static MachineSchedRegistry ILPMaxRegistry(
   3232   "ilpmax", "Schedule bottom-up for max ILP", createILPMaxScheduler);
   3233 static MachineSchedRegistry ILPMinRegistry(
   3234   "ilpmin", "Schedule bottom-up for min ILP", createILPMinScheduler);
   3235 
   3236 //===----------------------------------------------------------------------===//
   3237 // Machine Instruction Shuffler for Correctness Testing
   3238 //===----------------------------------------------------------------------===//
   3239 
   3240 #ifndef NDEBUG
   3241 namespace {
   3242 /// Apply a less-than relation on the node order, which corresponds to the
   3243 /// instruction order prior to scheduling. IsReverse implements greater-than.
   3244 template<bool IsReverse>
   3245 struct SUnitOrder {
   3246   bool operator()(SUnit *A, SUnit *B) const {
   3247     if (IsReverse)
   3248       return A->NodeNum > B->NodeNum;
   3249     else
   3250       return A->NodeNum < B->NodeNum;
   3251   }
   3252 };
   3253 
   3254 /// Reorder instructions as much as possible.
   3255 class InstructionShuffler : public MachineSchedStrategy {
   3256   bool IsAlternating;
   3257   bool IsTopDown;
   3258 
   3259   // Using a less-than relation (SUnitOrder<false>) for the TopQ priority
   3260   // gives nodes with a higher number higher priority causing the latest
   3261   // instructions to be scheduled first.
   3262   PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<false> >
   3263     TopQ;
   3264   // When scheduling bottom-up, use greater-than as the queue priority.
   3265   PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<true> >
   3266     BottomQ;
   3267 public:
   3268   InstructionShuffler(bool alternate, bool topdown)
   3269     : IsAlternating(alternate), IsTopDown(topdown) {}
   3270 
   3271   void initialize(ScheduleDAGMI*) override {
   3272     TopQ.clear();
   3273     BottomQ.clear();
   3274   }
   3275 
   3276   /// Implement MachineSchedStrategy interface.
   3277   /// -----------------------------------------
   3278 
   3279   SUnit *pickNode(bool &IsTopNode) override {
   3280     SUnit *SU;
   3281     if (IsTopDown) {
   3282       do {
   3283         if (TopQ.empty()) return nullptr;
   3284         SU = TopQ.top();
   3285         TopQ.pop();
   3286       } while (SU->isScheduled);
   3287       IsTopNode = true;
   3288     }
   3289     else {
   3290       do {
   3291         if (BottomQ.empty()) return nullptr;
   3292         SU = BottomQ.top();
   3293         BottomQ.pop();
   3294       } while (SU->isScheduled);
   3295       IsTopNode = false;
   3296     }
   3297     if (IsAlternating)
   3298       IsTopDown = !IsTopDown;
   3299     return SU;
   3300   }
   3301 
   3302   void schedNode(SUnit *SU, bool IsTopNode) override {}
   3303 
   3304   void releaseTopNode(SUnit *SU) override {
   3305     TopQ.push(SU);
   3306   }
   3307   void releaseBottomNode(SUnit *SU) override {
   3308     BottomQ.push(SU);
   3309   }
   3310 };
   3311 } // namespace
   3312 
   3313 static ScheduleDAGInstrs *createInstructionShuffler(MachineSchedContext *C) {
   3314   bool Alternate = !ForceTopDown && !ForceBottomUp;
   3315   bool TopDown = !ForceBottomUp;
   3316   assert((TopDown || !ForceTopDown) &&
   3317          "-misched-topdown incompatible with -misched-bottomup");
   3318   return new ScheduleDAGMILive(C, make_unique<InstructionShuffler>(Alternate, TopDown));
   3319 }
   3320 static MachineSchedRegistry ShufflerRegistry(
   3321   "shuffle", "Shuffle machine instructions alternating directions",
   3322   createInstructionShuffler);
   3323 #endif // !NDEBUG
   3324 
   3325 //===----------------------------------------------------------------------===//
   3326 // GraphWriter support for ScheduleDAGMILive.
   3327 //===----------------------------------------------------------------------===//
   3328 
   3329 #ifndef NDEBUG
   3330 namespace llvm {
   3331 
   3332 template<> struct GraphTraits<
   3333   ScheduleDAGMI*> : public GraphTraits<ScheduleDAG*> {};
   3334 
   3335 template<>
   3336 struct DOTGraphTraits<ScheduleDAGMI*> : public DefaultDOTGraphTraits {
   3337 
   3338   DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {}
   3339 
   3340   static std::string getGraphName(const ScheduleDAG *G) {
   3341     return G->MF.getName();
   3342   }
   3343 
   3344   static bool renderGraphFromBottomUp() {
   3345     return true;
   3346   }
   3347 
   3348   static bool isNodeHidden(const SUnit *Node) {
   3349     if (ViewMISchedCutoff == 0)
   3350       return false;
   3351     return (Node->Preds.size() > ViewMISchedCutoff
   3352          || Node->Succs.size() > ViewMISchedCutoff);
   3353   }
   3354 
   3355   /// If you want to override the dot attributes printed for a particular
   3356   /// edge, override this method.
   3357   static std::string getEdgeAttributes(const SUnit *Node,
   3358                                        SUnitIterator EI,
   3359                                        const ScheduleDAG *Graph) {
   3360     if (EI.isArtificialDep())
   3361       return "color=cyan,style=dashed";
   3362     if (EI.isCtrlDep())
   3363       return "color=blue,style=dashed";
   3364     return "";
   3365   }
   3366 
   3367   static std::string getNodeLabel(const SUnit *SU, const ScheduleDAG *G) {
   3368     std::string Str;
   3369     raw_string_ostream SS(Str);
   3370     const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G);
   3371     const SchedDFSResult *DFS = DAG->hasVRegLiveness() ?
   3372       static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr;
   3373     SS << "SU:" << SU->NodeNum;
   3374     if (DFS)
   3375       SS << " I:" << DFS->getNumInstrs(SU);
   3376     return SS.str();
   3377   }
   3378   static std::string getNodeDescription(const SUnit *SU, const ScheduleDAG *G) {
   3379     return G->getGraphNodeLabel(SU);
   3380   }
   3381 
   3382   static std::string getNodeAttributes(const SUnit *N, const ScheduleDAG *G) {
   3383     std::string Str("shape=Mrecord");
   3384     const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G);
   3385     const SchedDFSResult *DFS = DAG->hasVRegLiveness() ?
   3386       static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr;
   3387     if (DFS) {
   3388       Str += ",style=filled,fillcolor=\"#";
   3389       Str += DOT::getColorString(DFS->getSubtreeID(N));
   3390       Str += '"';
   3391     }
   3392     return Str;
   3393   }
   3394 };
   3395 } // namespace llvm
   3396 #endif // NDEBUG
   3397 
   3398 /// viewGraph - Pop up a ghostview window with the reachable parts of the DAG
   3399 /// rendered using 'dot'.
   3400 ///
   3401 void ScheduleDAGMI::viewGraph(const Twine &Name, const Twine &Title) {
   3402 #ifndef NDEBUG
   3403   ViewGraph(this, Name, false, Title);
   3404 #else
   3405   errs() << "ScheduleDAGMI::viewGraph is only available in debug builds on "
   3406          << "systems with Graphviz or gv!\n";
   3407 #endif  // NDEBUG
   3408 }
   3409 
   3410 /// Out-of-line implementation with no arguments is handy for gdb.
   3411 void ScheduleDAGMI::viewGraph() {
   3412   viewGraph(getDAGName(), "Scheduling-Units Graph for " + getDAGName());
   3413 }
   3414