Home | History | Annotate | Download | only in Scalar
      1 //===- LoopRotation.cpp - Loop Rotation Pass ------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements Loop Rotation Pass.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "llvm/Transforms/Scalar.h"
     15 #include "llvm/ADT/Statistic.h"
     16 #include "llvm/Analysis/AliasAnalysis.h"
     17 #include "llvm/Analysis/BasicAliasAnalysis.h"
     18 #include "llvm/Analysis/AssumptionCache.h"
     19 #include "llvm/Analysis/CodeMetrics.h"
     20 #include "llvm/Analysis/InstructionSimplify.h"
     21 #include "llvm/Analysis/GlobalsModRef.h"
     22 #include "llvm/Analysis/LoopPass.h"
     23 #include "llvm/Analysis/ScalarEvolution.h"
     24 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
     25 #include "llvm/Analysis/TargetTransformInfo.h"
     26 #include "llvm/Analysis/ValueTracking.h"
     27 #include "llvm/IR/CFG.h"
     28 #include "llvm/IR/Dominators.h"
     29 #include "llvm/IR/Function.h"
     30 #include "llvm/IR/IntrinsicInst.h"
     31 #include "llvm/IR/Module.h"
     32 #include "llvm/Support/CommandLine.h"
     33 #include "llvm/Support/Debug.h"
     34 #include "llvm/Support/raw_ostream.h"
     35 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
     36 #include "llvm/Transforms/Utils/Local.h"
     37 #include "llvm/Transforms/Utils/SSAUpdater.h"
     38 #include "llvm/Transforms/Utils/ValueMapper.h"
     39 using namespace llvm;
     40 
     41 #define DEBUG_TYPE "loop-rotate"
     42 
     43 static cl::opt<unsigned>
     44 DefaultRotationThreshold("rotation-max-header-size", cl::init(16), cl::Hidden,
     45        cl::desc("The default maximum header size for automatic loop rotation"));
     46 
     47 STATISTIC(NumRotated, "Number of loops rotated");
     48 
     49 /// RewriteUsesOfClonedInstructions - We just cloned the instructions from the
     50 /// old header into the preheader.  If there were uses of the values produced by
     51 /// these instruction that were outside of the loop, we have to insert PHI nodes
     52 /// to merge the two values.  Do this now.
     53 static void RewriteUsesOfClonedInstructions(BasicBlock *OrigHeader,
     54                                             BasicBlock *OrigPreheader,
     55                                             ValueToValueMapTy &ValueMap) {
     56   // Remove PHI node entries that are no longer live.
     57   BasicBlock::iterator I, E = OrigHeader->end();
     58   for (I = OrigHeader->begin(); PHINode *PN = dyn_cast<PHINode>(I); ++I)
     59     PN->removeIncomingValue(PN->getBasicBlockIndex(OrigPreheader));
     60 
     61   // Now fix up users of the instructions in OrigHeader, inserting PHI nodes
     62   // as necessary.
     63   SSAUpdater SSA;
     64   for (I = OrigHeader->begin(); I != E; ++I) {
     65     Value *OrigHeaderVal = &*I;
     66 
     67     // If there are no uses of the value (e.g. because it returns void), there
     68     // is nothing to rewrite.
     69     if (OrigHeaderVal->use_empty())
     70       continue;
     71 
     72     Value *OrigPreHeaderVal = ValueMap[OrigHeaderVal];
     73 
     74     // The value now exits in two versions: the initial value in the preheader
     75     // and the loop "next" value in the original header.
     76     SSA.Initialize(OrigHeaderVal->getType(), OrigHeaderVal->getName());
     77     SSA.AddAvailableValue(OrigHeader, OrigHeaderVal);
     78     SSA.AddAvailableValue(OrigPreheader, OrigPreHeaderVal);
     79 
     80     // Visit each use of the OrigHeader instruction.
     81     for (Value::use_iterator UI = OrigHeaderVal->use_begin(),
     82          UE = OrigHeaderVal->use_end(); UI != UE; ) {
     83       // Grab the use before incrementing the iterator.
     84       Use &U = *UI;
     85 
     86       // Increment the iterator before removing the use from the list.
     87       ++UI;
     88 
     89       // SSAUpdater can't handle a non-PHI use in the same block as an
     90       // earlier def. We can easily handle those cases manually.
     91       Instruction *UserInst = cast<Instruction>(U.getUser());
     92       if (!isa<PHINode>(UserInst)) {
     93         BasicBlock *UserBB = UserInst->getParent();
     94 
     95         // The original users in the OrigHeader are already using the
     96         // original definitions.
     97         if (UserBB == OrigHeader)
     98           continue;
     99 
    100         // Users in the OrigPreHeader need to use the value to which the
    101         // original definitions are mapped.
    102         if (UserBB == OrigPreheader) {
    103           U = OrigPreHeaderVal;
    104           continue;
    105         }
    106       }
    107 
    108       // Anything else can be handled by SSAUpdater.
    109       SSA.RewriteUse(U);
    110     }
    111   }
    112 }
    113 
    114 /// Rotate loop LP. Return true if the loop is rotated.
    115 ///
    116 /// \param SimplifiedLatch is true if the latch was just folded into the final
    117 /// loop exit. In this case we may want to rotate even though the new latch is
    118 /// now an exiting branch. This rotation would have happened had the latch not
    119 /// been simplified. However, if SimplifiedLatch is false, then we avoid
    120 /// rotating loops in which the latch exits to avoid excessive or endless
    121 /// rotation. LoopRotate should be repeatable and converge to a canonical
    122 /// form. This property is satisfied because simplifying the loop latch can only
    123 /// happen once across multiple invocations of the LoopRotate pass.
    124 static bool rotateLoop(Loop *L, unsigned MaxHeaderSize, LoopInfo *LI,
    125                        const TargetTransformInfo *TTI, AssumptionCache *AC,
    126                        DominatorTree *DT, ScalarEvolution *SE,
    127                        bool SimplifiedLatch) {
    128   // If the loop has only one block then there is not much to rotate.
    129   if (L->getBlocks().size() == 1)
    130     return false;
    131 
    132   BasicBlock *OrigHeader = L->getHeader();
    133   BasicBlock *OrigLatch = L->getLoopLatch();
    134 
    135   BranchInst *BI = dyn_cast<BranchInst>(OrigHeader->getTerminator());
    136   if (!BI || BI->isUnconditional())
    137     return false;
    138 
    139   // If the loop header is not one of the loop exiting blocks then
    140   // either this loop is already rotated or it is not
    141   // suitable for loop rotation transformations.
    142   if (!L->isLoopExiting(OrigHeader))
    143     return false;
    144 
    145   // If the loop latch already contains a branch that leaves the loop then the
    146   // loop is already rotated.
    147   if (!OrigLatch)
    148     return false;
    149 
    150   // Rotate if either the loop latch does *not* exit the loop, or if the loop
    151   // latch was just simplified.
    152   if (L->isLoopExiting(OrigLatch) && !SimplifiedLatch)
    153     return false;
    154 
    155   // Check size of original header and reject loop if it is very big or we can't
    156   // duplicate blocks inside it.
    157   {
    158     SmallPtrSet<const Value *, 32> EphValues;
    159     CodeMetrics::collectEphemeralValues(L, AC, EphValues);
    160 
    161     CodeMetrics Metrics;
    162     Metrics.analyzeBasicBlock(OrigHeader, *TTI, EphValues);
    163     if (Metrics.notDuplicatable) {
    164       DEBUG(dbgs() << "LoopRotation: NOT rotating - contains non-duplicatable"
    165             << " instructions: "; L->dump());
    166       return false;
    167     }
    168     if (Metrics.NumInsts > MaxHeaderSize)
    169       return false;
    170   }
    171 
    172   // Now, this loop is suitable for rotation.
    173   BasicBlock *OrigPreheader = L->getLoopPreheader();
    174 
    175   // If the loop could not be converted to canonical form, it must have an
    176   // indirectbr in it, just give up.
    177   if (!OrigPreheader)
    178     return false;
    179 
    180   // Anything ScalarEvolution may know about this loop or the PHI nodes
    181   // in its header will soon be invalidated.
    182   if (SE)
    183     SE->forgetLoop(L);
    184 
    185   DEBUG(dbgs() << "LoopRotation: rotating "; L->dump());
    186 
    187   // Find new Loop header. NewHeader is a Header's one and only successor
    188   // that is inside loop.  Header's other successor is outside the
    189   // loop.  Otherwise loop is not suitable for rotation.
    190   BasicBlock *Exit = BI->getSuccessor(0);
    191   BasicBlock *NewHeader = BI->getSuccessor(1);
    192   if (L->contains(Exit))
    193     std::swap(Exit, NewHeader);
    194   assert(NewHeader && "Unable to determine new loop header");
    195   assert(L->contains(NewHeader) && !L->contains(Exit) &&
    196          "Unable to determine loop header and exit blocks");
    197 
    198   // This code assumes that the new header has exactly one predecessor.
    199   // Remove any single-entry PHI nodes in it.
    200   assert(NewHeader->getSinglePredecessor() &&
    201          "New header doesn't have one pred!");
    202   FoldSingleEntryPHINodes(NewHeader);
    203 
    204   // Begin by walking OrigHeader and populating ValueMap with an entry for
    205   // each Instruction.
    206   BasicBlock::iterator I = OrigHeader->begin(), E = OrigHeader->end();
    207   ValueToValueMapTy ValueMap;
    208 
    209   // For PHI nodes, the value available in OldPreHeader is just the
    210   // incoming value from OldPreHeader.
    211   for (; PHINode *PN = dyn_cast<PHINode>(I); ++I)
    212     ValueMap[PN] = PN->getIncomingValueForBlock(OrigPreheader);
    213 
    214   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
    215 
    216   // For the rest of the instructions, either hoist to the OrigPreheader if
    217   // possible or create a clone in the OldPreHeader if not.
    218   TerminatorInst *LoopEntryBranch = OrigPreheader->getTerminator();
    219   while (I != E) {
    220     Instruction *Inst = &*I++;
    221 
    222     // If the instruction's operands are invariant and it doesn't read or write
    223     // memory, then it is safe to hoist.  Doing this doesn't change the order of
    224     // execution in the preheader, but does prevent the instruction from
    225     // executing in each iteration of the loop.  This means it is safe to hoist
    226     // something that might trap, but isn't safe to hoist something that reads
    227     // memory (without proving that the loop doesn't write).
    228     if (L->hasLoopInvariantOperands(Inst) &&
    229         !Inst->mayReadFromMemory() && !Inst->mayWriteToMemory() &&
    230         !isa<TerminatorInst>(Inst) && !isa<DbgInfoIntrinsic>(Inst) &&
    231         !isa<AllocaInst>(Inst)) {
    232       Inst->moveBefore(LoopEntryBranch);
    233       continue;
    234     }
    235 
    236     // Otherwise, create a duplicate of the instruction.
    237     Instruction *C = Inst->clone();
    238 
    239     // Eagerly remap the operands of the instruction.
    240     RemapInstruction(C, ValueMap,
    241                      RF_NoModuleLevelChanges|RF_IgnoreMissingEntries);
    242 
    243     // With the operands remapped, see if the instruction constant folds or is
    244     // otherwise simplifyable.  This commonly occurs because the entry from PHI
    245     // nodes allows icmps and other instructions to fold.
    246     // FIXME: Provide TLI, DT, AC to SimplifyInstruction.
    247     Value *V = SimplifyInstruction(C, DL);
    248     if (V && LI->replacementPreservesLCSSAForm(C, V)) {
    249       // If so, then delete the temporary instruction and stick the folded value
    250       // in the map.
    251       delete C;
    252       ValueMap[Inst] = V;
    253     } else {
    254       // Otherwise, stick the new instruction into the new block!
    255       C->setName(Inst->getName());
    256       C->insertBefore(LoopEntryBranch);
    257       ValueMap[Inst] = C;
    258     }
    259   }
    260 
    261   // Along with all the other instructions, we just cloned OrigHeader's
    262   // terminator into OrigPreHeader. Fix up the PHI nodes in each of OrigHeader's
    263   // successors by duplicating their incoming values for OrigHeader.
    264   TerminatorInst *TI = OrigHeader->getTerminator();
    265   for (BasicBlock *SuccBB : TI->successors())
    266     for (BasicBlock::iterator BI = SuccBB->begin();
    267          PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
    268       PN->addIncoming(PN->getIncomingValueForBlock(OrigHeader), OrigPreheader);
    269 
    270   // Now that OrigPreHeader has a clone of OrigHeader's terminator, remove
    271   // OrigPreHeader's old terminator (the original branch into the loop), and
    272   // remove the corresponding incoming values from the PHI nodes in OrigHeader.
    273   LoopEntryBranch->eraseFromParent();
    274 
    275   // If there were any uses of instructions in the duplicated block outside the
    276   // loop, update them, inserting PHI nodes as required
    277   RewriteUsesOfClonedInstructions(OrigHeader, OrigPreheader, ValueMap);
    278 
    279   // NewHeader is now the header of the loop.
    280   L->moveToHeader(NewHeader);
    281   assert(L->getHeader() == NewHeader && "Latch block is our new header");
    282 
    283 
    284   // At this point, we've finished our major CFG changes.  As part of cloning
    285   // the loop into the preheader we've simplified instructions and the
    286   // duplicated conditional branch may now be branching on a constant.  If it is
    287   // branching on a constant and if that constant means that we enter the loop,
    288   // then we fold away the cond branch to an uncond branch.  This simplifies the
    289   // loop in cases important for nested loops, and it also means we don't have
    290   // to split as many edges.
    291   BranchInst *PHBI = cast<BranchInst>(OrigPreheader->getTerminator());
    292   assert(PHBI->isConditional() && "Should be clone of BI condbr!");
    293   if (!isa<ConstantInt>(PHBI->getCondition()) ||
    294       PHBI->getSuccessor(cast<ConstantInt>(PHBI->getCondition())->isZero())
    295           != NewHeader) {
    296     // The conditional branch can't be folded, handle the general case.
    297     // Update DominatorTree to reflect the CFG change we just made.  Then split
    298     // edges as necessary to preserve LoopSimplify form.
    299     if (DT) {
    300       // Everything that was dominated by the old loop header is now dominated
    301       // by the original loop preheader. Conceptually the header was merged
    302       // into the preheader, even though we reuse the actual block as a new
    303       // loop latch.
    304       DomTreeNode *OrigHeaderNode = DT->getNode(OrigHeader);
    305       SmallVector<DomTreeNode *, 8> HeaderChildren(OrigHeaderNode->begin(),
    306                                                    OrigHeaderNode->end());
    307       DomTreeNode *OrigPreheaderNode = DT->getNode(OrigPreheader);
    308       for (unsigned I = 0, E = HeaderChildren.size(); I != E; ++I)
    309         DT->changeImmediateDominator(HeaderChildren[I], OrigPreheaderNode);
    310 
    311       assert(DT->getNode(Exit)->getIDom() == OrigPreheaderNode);
    312       assert(DT->getNode(NewHeader)->getIDom() == OrigPreheaderNode);
    313 
    314       // Update OrigHeader to be dominated by the new header block.
    315       DT->changeImmediateDominator(OrigHeader, OrigLatch);
    316     }
    317 
    318     // Right now OrigPreHeader has two successors, NewHeader and ExitBlock, and
    319     // thus is not a preheader anymore.
    320     // Split the edge to form a real preheader.
    321     BasicBlock *NewPH = SplitCriticalEdge(
    322         OrigPreheader, NewHeader,
    323         CriticalEdgeSplittingOptions(DT, LI).setPreserveLCSSA());
    324     NewPH->setName(NewHeader->getName() + ".lr.ph");
    325 
    326     // Preserve canonical loop form, which means that 'Exit' should have only
    327     // one predecessor. Note that Exit could be an exit block for multiple
    328     // nested loops, causing both of the edges to now be critical and need to
    329     // be split.
    330     SmallVector<BasicBlock *, 4> ExitPreds(pred_begin(Exit), pred_end(Exit));
    331     bool SplitLatchEdge = false;
    332     for (SmallVectorImpl<BasicBlock *>::iterator PI = ExitPreds.begin(),
    333                                                  PE = ExitPreds.end();
    334          PI != PE; ++PI) {
    335       // We only need to split loop exit edges.
    336       Loop *PredLoop = LI->getLoopFor(*PI);
    337       if (!PredLoop || PredLoop->contains(Exit))
    338         continue;
    339       if (isa<IndirectBrInst>((*PI)->getTerminator()))
    340         continue;
    341       SplitLatchEdge |= L->getLoopLatch() == *PI;
    342       BasicBlock *ExitSplit = SplitCriticalEdge(
    343           *PI, Exit, CriticalEdgeSplittingOptions(DT, LI).setPreserveLCSSA());
    344       ExitSplit->moveBefore(Exit);
    345     }
    346     assert(SplitLatchEdge &&
    347            "Despite splitting all preds, failed to split latch exit?");
    348   } else {
    349     // We can fold the conditional branch in the preheader, this makes things
    350     // simpler. The first step is to remove the extra edge to the Exit block.
    351     Exit->removePredecessor(OrigPreheader, true /*preserve LCSSA*/);
    352     BranchInst *NewBI = BranchInst::Create(NewHeader, PHBI);
    353     NewBI->setDebugLoc(PHBI->getDebugLoc());
    354     PHBI->eraseFromParent();
    355 
    356     // With our CFG finalized, update DomTree if it is available.
    357     if (DT) {
    358       // Update OrigHeader to be dominated by the new header block.
    359       DT->changeImmediateDominator(NewHeader, OrigPreheader);
    360       DT->changeImmediateDominator(OrigHeader, OrigLatch);
    361 
    362       // Brute force incremental dominator tree update. Call
    363       // findNearestCommonDominator on all CFG predecessors of each child of the
    364       // original header.
    365       DomTreeNode *OrigHeaderNode = DT->getNode(OrigHeader);
    366       SmallVector<DomTreeNode *, 8> HeaderChildren(OrigHeaderNode->begin(),
    367                                                    OrigHeaderNode->end());
    368       bool Changed;
    369       do {
    370         Changed = false;
    371         for (unsigned I = 0, E = HeaderChildren.size(); I != E; ++I) {
    372           DomTreeNode *Node = HeaderChildren[I];
    373           BasicBlock *BB = Node->getBlock();
    374 
    375           pred_iterator PI = pred_begin(BB);
    376           BasicBlock *NearestDom = *PI;
    377           for (pred_iterator PE = pred_end(BB); PI != PE; ++PI)
    378             NearestDom = DT->findNearestCommonDominator(NearestDom, *PI);
    379 
    380           // Remember if this changes the DomTree.
    381           if (Node->getIDom()->getBlock() != NearestDom) {
    382             DT->changeImmediateDominator(BB, NearestDom);
    383             Changed = true;
    384           }
    385         }
    386 
    387       // If the dominator changed, this may have an effect on other
    388       // predecessors, continue until we reach a fixpoint.
    389       } while (Changed);
    390     }
    391   }
    392 
    393   assert(L->getLoopPreheader() && "Invalid loop preheader after loop rotation");
    394   assert(L->getLoopLatch() && "Invalid loop latch after loop rotation");
    395 
    396   // Now that the CFG and DomTree are in a consistent state again, try to merge
    397   // the OrigHeader block into OrigLatch.  This will succeed if they are
    398   // connected by an unconditional branch.  This is just a cleanup so the
    399   // emitted code isn't too gross in this common case.
    400   MergeBlockIntoPredecessor(OrigHeader, DT, LI);
    401 
    402   DEBUG(dbgs() << "LoopRotation: into "; L->dump());
    403 
    404   ++NumRotated;
    405   return true;
    406 }
    407 
    408 /// Determine whether the instructions in this range may be safely and cheaply
    409 /// speculated. This is not an important enough situation to develop complex
    410 /// heuristics. We handle a single arithmetic instruction along with any type
    411 /// conversions.
    412 static bool shouldSpeculateInstrs(BasicBlock::iterator Begin,
    413                                   BasicBlock::iterator End, Loop *L) {
    414   bool seenIncrement = false;
    415   bool MultiExitLoop = false;
    416 
    417   if (!L->getExitingBlock())
    418     MultiExitLoop = true;
    419 
    420   for (BasicBlock::iterator I = Begin; I != End; ++I) {
    421 
    422     if (!isSafeToSpeculativelyExecute(&*I))
    423       return false;
    424 
    425     if (isa<DbgInfoIntrinsic>(I))
    426       continue;
    427 
    428     switch (I->getOpcode()) {
    429     default:
    430       return false;
    431     case Instruction::GetElementPtr:
    432       // GEPs are cheap if all indices are constant.
    433       if (!cast<GEPOperator>(I)->hasAllConstantIndices())
    434         return false;
    435       // fall-thru to increment case
    436     case Instruction::Add:
    437     case Instruction::Sub:
    438     case Instruction::And:
    439     case Instruction::Or:
    440     case Instruction::Xor:
    441     case Instruction::Shl:
    442     case Instruction::LShr:
    443     case Instruction::AShr: {
    444       Value *IVOpnd = !isa<Constant>(I->getOperand(0))
    445                           ? I->getOperand(0)
    446                           : !isa<Constant>(I->getOperand(1))
    447                                 ? I->getOperand(1)
    448                                 : nullptr;
    449       if (!IVOpnd)
    450         return false;
    451 
    452       // If increment operand is used outside of the loop, this speculation
    453       // could cause extra live range interference.
    454       if (MultiExitLoop) {
    455         for (User *UseI : IVOpnd->users()) {
    456           auto *UserInst = cast<Instruction>(UseI);
    457           if (!L->contains(UserInst))
    458             return false;
    459         }
    460       }
    461 
    462       if (seenIncrement)
    463         return false;
    464       seenIncrement = true;
    465       break;
    466     }
    467     case Instruction::Trunc:
    468     case Instruction::ZExt:
    469     case Instruction::SExt:
    470       // ignore type conversions
    471       break;
    472     }
    473   }
    474   return true;
    475 }
    476 
    477 /// Fold the loop tail into the loop exit by speculating the loop tail
    478 /// instructions. Typically, this is a single post-increment. In the case of a
    479 /// simple 2-block loop, hoisting the increment can be much better than
    480 /// duplicating the entire loop header. In the case of loops with early exits,
    481 /// rotation will not work anyway, but simplifyLoopLatch will put the loop in
    482 /// canonical form so downstream passes can handle it.
    483 ///
    484 /// I don't believe this invalidates SCEV.
    485 static bool simplifyLoopLatch(Loop *L, LoopInfo *LI, DominatorTree *DT) {
    486   BasicBlock *Latch = L->getLoopLatch();
    487   if (!Latch || Latch->hasAddressTaken())
    488     return false;
    489 
    490   BranchInst *Jmp = dyn_cast<BranchInst>(Latch->getTerminator());
    491   if (!Jmp || !Jmp->isUnconditional())
    492     return false;
    493 
    494   BasicBlock *LastExit = Latch->getSinglePredecessor();
    495   if (!LastExit || !L->isLoopExiting(LastExit))
    496     return false;
    497 
    498   BranchInst *BI = dyn_cast<BranchInst>(LastExit->getTerminator());
    499   if (!BI)
    500     return false;
    501 
    502   if (!shouldSpeculateInstrs(Latch->begin(), Jmp->getIterator(), L))
    503     return false;
    504 
    505   DEBUG(dbgs() << "Folding loop latch " << Latch->getName() << " into "
    506         << LastExit->getName() << "\n");
    507 
    508   // Hoist the instructions from Latch into LastExit.
    509   LastExit->getInstList().splice(BI->getIterator(), Latch->getInstList(),
    510                                  Latch->begin(), Jmp->getIterator());
    511 
    512   unsigned FallThruPath = BI->getSuccessor(0) == Latch ? 0 : 1;
    513   BasicBlock *Header = Jmp->getSuccessor(0);
    514   assert(Header == L->getHeader() && "expected a backward branch");
    515 
    516   // Remove Latch from the CFG so that LastExit becomes the new Latch.
    517   BI->setSuccessor(FallThruPath, Header);
    518   Latch->replaceSuccessorsPhiUsesWith(LastExit);
    519   Jmp->eraseFromParent();
    520 
    521   // Nuke the Latch block.
    522   assert(Latch->empty() && "unable to evacuate Latch");
    523   LI->removeBlock(Latch);
    524   if (DT)
    525     DT->eraseNode(Latch);
    526   Latch->eraseFromParent();
    527   return true;
    528 }
    529 
    530 /// Rotate \c L as many times as possible. Return true if the loop is rotated
    531 /// at least once.
    532 static bool iterativelyRotateLoop(Loop *L, unsigned MaxHeaderSize, LoopInfo *LI,
    533                                   const TargetTransformInfo *TTI,
    534                                   AssumptionCache *AC, DominatorTree *DT,
    535                                   ScalarEvolution *SE) {
    536   // Save the loop metadata.
    537   MDNode *LoopMD = L->getLoopID();
    538 
    539   // Simplify the loop latch before attempting to rotate the header
    540   // upward. Rotation may not be needed if the loop tail can be folded into the
    541   // loop exit.
    542   bool SimplifiedLatch = simplifyLoopLatch(L, LI, DT);
    543 
    544   // One loop can be rotated multiple times.
    545   bool MadeChange = false;
    546   while (rotateLoop(L, MaxHeaderSize, LI, TTI, AC, DT, SE, SimplifiedLatch)) {
    547     MadeChange = true;
    548     SimplifiedLatch = false;
    549   }
    550 
    551   // Restore the loop metadata.
    552   // NB! We presume LoopRotation DOESN'T ADD its own metadata.
    553   if ((MadeChange || SimplifiedLatch) && LoopMD)
    554     L->setLoopID(LoopMD);
    555 
    556   return MadeChange;
    557 }
    558 
    559 namespace {
    560 
    561 class LoopRotate : public LoopPass {
    562   unsigned MaxHeaderSize;
    563 
    564 public:
    565   static char ID; // Pass ID, replacement for typeid
    566   LoopRotate(int SpecifiedMaxHeaderSize = -1) : LoopPass(ID) {
    567     initializeLoopRotatePass(*PassRegistry::getPassRegistry());
    568     if (SpecifiedMaxHeaderSize == -1)
    569       MaxHeaderSize = DefaultRotationThreshold;
    570     else
    571       MaxHeaderSize = unsigned(SpecifiedMaxHeaderSize);
    572   }
    573 
    574   // LCSSA form makes instruction renaming easier.
    575   void getAnalysisUsage(AnalysisUsage &AU) const override {
    576     AU.addPreserved<AAResultsWrapperPass>();
    577     AU.addRequired<AssumptionCacheTracker>();
    578     AU.addPreserved<DominatorTreeWrapperPass>();
    579     AU.addRequired<LoopInfoWrapperPass>();
    580     AU.addPreserved<LoopInfoWrapperPass>();
    581     AU.addRequiredID(LoopSimplifyID);
    582     AU.addPreservedID(LoopSimplifyID);
    583     AU.addRequiredID(LCSSAID);
    584     AU.addPreservedID(LCSSAID);
    585     AU.addPreserved<ScalarEvolutionWrapperPass>();
    586     AU.addPreserved<SCEVAAWrapperPass>();
    587     AU.addRequired<TargetTransformInfoWrapperPass>();
    588     AU.addPreserved<BasicAAWrapperPass>();
    589     AU.addPreserved<GlobalsAAWrapperPass>();
    590   }
    591 
    592   bool runOnLoop(Loop *L, LPPassManager &LPM) override {
    593     if (skipOptnoneFunction(L))
    594       return false;
    595     Function &F = *L->getHeader()->getParent();
    596 
    597     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
    598     const auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
    599     auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
    600     auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
    601     auto *DT = DTWP ? &DTWP->getDomTree() : nullptr;
    602     auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
    603     auto *SE = SEWP ? &SEWP->getSE() : nullptr;
    604 
    605     return iterativelyRotateLoop(L, MaxHeaderSize, LI, TTI, AC, DT, SE);
    606   }
    607 };
    608 }
    609 
    610 char LoopRotate::ID = 0;
    611 INITIALIZE_PASS_BEGIN(LoopRotate, "loop-rotate", "Rotate Loops", false, false)
    612 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
    613 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
    614 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
    615 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
    616 INITIALIZE_PASS_DEPENDENCY(LCSSA)
    617 INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass)
    618 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
    619 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
    620 INITIALIZE_PASS_END(LoopRotate, "loop-rotate", "Rotate Loops", false, false)
    621 
    622 Pass *llvm::createLoopRotatePass(int MaxHeaderSize) {
    623   return new LoopRotate(MaxHeaderSize);
    624 }
    625