Home | History | Annotate | Download | only in src
      1 #include <iostream>
      2 #include "precomp.hpp"
      3 #include "epnp.h"
      4 
      5 namespace cv
      6 {
      7 
      8 epnp::epnp(const Mat& cameraMatrix, const Mat& opoints, const Mat& ipoints)
      9 {
     10   if (cameraMatrix.depth() == CV_32F)
     11       init_camera_parameters<float>(cameraMatrix);
     12   else
     13     init_camera_parameters<double>(cameraMatrix);
     14 
     15   number_of_correspondences = std::max(opoints.checkVector(3, CV_32F), opoints.checkVector(3, CV_64F));
     16 
     17   pws.resize(3 * number_of_correspondences);
     18   us.resize(2 * number_of_correspondences);
     19 
     20   if (opoints.depth() == ipoints.depth())
     21   {
     22     if (opoints.depth() == CV_32F)
     23       init_points<Point3f,Point2f>(opoints, ipoints);
     24     else
     25       init_points<Point3d,Point2d>(opoints, ipoints);
     26   }
     27   else if (opoints.depth() == CV_32F)
     28     init_points<Point3f,Point2d>(opoints, ipoints);
     29   else
     30     init_points<Point3d,Point2f>(opoints, ipoints);
     31 
     32   alphas.resize(4 * number_of_correspondences);
     33   pcs.resize(3 * number_of_correspondences);
     34 
     35   max_nr = 0;
     36   A1 = NULL;
     37   A2 = NULL;
     38 }
     39 
     40 epnp::~epnp()
     41 {
     42     if (A1)
     43         delete[] A1;
     44     if (A2)
     45         delete[] A2;
     46 }
     47 
     48 void epnp::choose_control_points(void)
     49 {
     50   // Take C0 as the reference points centroid:
     51   cws[0][0] = cws[0][1] = cws[0][2] = 0;
     52   for(int i = 0; i < number_of_correspondences; i++)
     53     for(int j = 0; j < 3; j++)
     54       cws[0][j] += pws[3 * i + j];
     55 
     56   for(int j = 0; j < 3; j++)
     57     cws[0][j] /= number_of_correspondences;
     58 
     59 
     60   // Take C1, C2, and C3 from PCA on the reference points:
     61   CvMat * PW0 = cvCreateMat(number_of_correspondences, 3, CV_64F);
     62 
     63   double pw0tpw0[3 * 3], dc[3], uct[3 * 3];
     64   CvMat PW0tPW0 = cvMat(3, 3, CV_64F, pw0tpw0);
     65   CvMat DC      = cvMat(3, 1, CV_64F, dc);
     66   CvMat UCt     = cvMat(3, 3, CV_64F, uct);
     67 
     68   for(int i = 0; i < number_of_correspondences; i++)
     69     for(int j = 0; j < 3; j++)
     70       PW0->data.db[3 * i + j] = pws[3 * i + j] - cws[0][j];
     71 
     72   cvMulTransposed(PW0, &PW0tPW0, 1);
     73   cvSVD(&PW0tPW0, &DC, &UCt, 0, CV_SVD_MODIFY_A | CV_SVD_U_T);
     74 
     75   cvReleaseMat(&PW0);
     76 
     77   for(int i = 1; i < 4; i++) {
     78     double k = sqrt(dc[i - 1] / number_of_correspondences);
     79     for(int j = 0; j < 3; j++)
     80       cws[i][j] = cws[0][j] + k * uct[3 * (i - 1) + j];
     81   }
     82 }
     83 
     84 void epnp::compute_barycentric_coordinates(void)
     85 {
     86   double cc[3 * 3], cc_inv[3 * 3];
     87   CvMat CC     = cvMat(3, 3, CV_64F, cc);
     88   CvMat CC_inv = cvMat(3, 3, CV_64F, cc_inv);
     89 
     90   for(int i = 0; i < 3; i++)
     91     for(int j = 1; j < 4; j++)
     92       cc[3 * i + j - 1] = cws[j][i] - cws[0][i];
     93 
     94   cvInvert(&CC, &CC_inv, CV_SVD);
     95   double * ci = cc_inv;
     96   for(int i = 0; i < number_of_correspondences; i++) {
     97     double * pi = &pws[0] + 3 * i;
     98     double * a = &alphas[0] + 4 * i;
     99 
    100     for(int j = 0; j < 3; j++)
    101       a[1 + j] =
    102   ci[3 * j    ] * (pi[0] - cws[0][0]) +
    103   ci[3 * j + 1] * (pi[1] - cws[0][1]) +
    104   ci[3 * j + 2] * (pi[2] - cws[0][2]);
    105     a[0] = 1.0f - a[1] - a[2] - a[3];
    106   }
    107 }
    108 
    109 void epnp::fill_M(CvMat * M,
    110       const int row, const double * as, const double u, const double v)
    111 {
    112   double * M1 = M->data.db + row * 12;
    113   double * M2 = M1 + 12;
    114 
    115   for(int i = 0; i < 4; i++) {
    116     M1[3 * i    ] = as[i] * fu;
    117     M1[3 * i + 1] = 0.0;
    118     M1[3 * i + 2] = as[i] * (uc - u);
    119 
    120     M2[3 * i    ] = 0.0;
    121     M2[3 * i + 1] = as[i] * fv;
    122     M2[3 * i + 2] = as[i] * (vc - v);
    123   }
    124 }
    125 
    126 void epnp::compute_ccs(const double * betas, const double * ut)
    127 {
    128   for(int i = 0; i < 4; i++)
    129     ccs[i][0] = ccs[i][1] = ccs[i][2] = 0.0f;
    130 
    131   for(int i = 0; i < 4; i++) {
    132     const double * v = ut + 12 * (11 - i);
    133     for(int j = 0; j < 4; j++)
    134       for(int k = 0; k < 3; k++)
    135   ccs[j][k] += betas[i] * v[3 * j + k];
    136   }
    137 }
    138 
    139 void epnp::compute_pcs(void)
    140 {
    141   for(int i = 0; i < number_of_correspondences; i++) {
    142     double * a = &alphas[0] + 4 * i;
    143     double * pc = &pcs[0] + 3 * i;
    144 
    145     for(int j = 0; j < 3; j++)
    146       pc[j] = a[0] * ccs[0][j] + a[1] * ccs[1][j] + a[2] * ccs[2][j] + a[3] * ccs[3][j];
    147   }
    148 }
    149 
    150 void epnp::compute_pose(Mat& R, Mat& t)
    151 {
    152   choose_control_points();
    153   compute_barycentric_coordinates();
    154 
    155   CvMat * M = cvCreateMat(2 * number_of_correspondences, 12, CV_64F);
    156 
    157   for(int i = 0; i < number_of_correspondences; i++)
    158     fill_M(M, 2 * i, &alphas[0] + 4 * i, us[2 * i], us[2 * i + 1]);
    159 
    160   double mtm[12 * 12], d[12], ut[12 * 12];
    161   CvMat MtM = cvMat(12, 12, CV_64F, mtm);
    162   CvMat D   = cvMat(12,  1, CV_64F, d);
    163   CvMat Ut  = cvMat(12, 12, CV_64F, ut);
    164 
    165   cvMulTransposed(M, &MtM, 1);
    166   cvSVD(&MtM, &D, &Ut, 0, CV_SVD_MODIFY_A | CV_SVD_U_T);
    167   cvReleaseMat(&M);
    168 
    169   double l_6x10[6 * 10], rho[6];
    170   CvMat L_6x10 = cvMat(6, 10, CV_64F, l_6x10);
    171   CvMat Rho    = cvMat(6,  1, CV_64F, rho);
    172 
    173   compute_L_6x10(ut, l_6x10);
    174   compute_rho(rho);
    175 
    176   double Betas[4][4], rep_errors[4];
    177   double Rs[4][3][3], ts[4][3];
    178 
    179   find_betas_approx_1(&L_6x10, &Rho, Betas[1]);
    180   gauss_newton(&L_6x10, &Rho, Betas[1]);
    181   rep_errors[1] = compute_R_and_t(ut, Betas[1], Rs[1], ts[1]);
    182 
    183   find_betas_approx_2(&L_6x10, &Rho, Betas[2]);
    184   gauss_newton(&L_6x10, &Rho, Betas[2]);
    185   rep_errors[2] = compute_R_and_t(ut, Betas[2], Rs[2], ts[2]);
    186 
    187   find_betas_approx_3(&L_6x10, &Rho, Betas[3]);
    188   gauss_newton(&L_6x10, &Rho, Betas[3]);
    189   rep_errors[3] = compute_R_and_t(ut, Betas[3], Rs[3], ts[3]);
    190 
    191   int N = 1;
    192   if (rep_errors[2] < rep_errors[1]) N = 2;
    193   if (rep_errors[3] < rep_errors[N]) N = 3;
    194 
    195   Mat(3, 1, CV_64F, ts[N]).copyTo(t);
    196   Mat(3, 3, CV_64F, Rs[N]).copyTo(R);
    197 }
    198 
    199 void epnp::copy_R_and_t(const double R_src[3][3], const double t_src[3],
    200       double R_dst[3][3], double t_dst[3])
    201 {
    202   for(int i = 0; i < 3; i++) {
    203     for(int j = 0; j < 3; j++)
    204       R_dst[i][j] = R_src[i][j];
    205     t_dst[i] = t_src[i];
    206   }
    207 }
    208 
    209 double epnp::dist2(const double * p1, const double * p2)
    210 {
    211   return
    212     (p1[0] - p2[0]) * (p1[0] - p2[0]) +
    213     (p1[1] - p2[1]) * (p1[1] - p2[1]) +
    214     (p1[2] - p2[2]) * (p1[2] - p2[2]);
    215 }
    216 
    217 double epnp::dot(const double * v1, const double * v2)
    218 {
    219   return v1[0] * v2[0] + v1[1] * v2[1] + v1[2] * v2[2];
    220 }
    221 
    222 void epnp::estimate_R_and_t(double R[3][3], double t[3])
    223 {
    224   double pc0[3], pw0[3];
    225 
    226   pc0[0] = pc0[1] = pc0[2] = 0.0;
    227   pw0[0] = pw0[1] = pw0[2] = 0.0;
    228 
    229   for(int i = 0; i < number_of_correspondences; i++) {
    230     const double * pc = &pcs[3 * i];
    231     const double * pw = &pws[3 * i];
    232 
    233     for(int j = 0; j < 3; j++) {
    234       pc0[j] += pc[j];
    235       pw0[j] += pw[j];
    236     }
    237   }
    238   for(int j = 0; j < 3; j++) {
    239     pc0[j] /= number_of_correspondences;
    240     pw0[j] /= number_of_correspondences;
    241   }
    242 
    243   double abt[3 * 3], abt_d[3], abt_u[3 * 3], abt_v[3 * 3];
    244   CvMat ABt   = cvMat(3, 3, CV_64F, abt);
    245   CvMat ABt_D = cvMat(3, 1, CV_64F, abt_d);
    246   CvMat ABt_U = cvMat(3, 3, CV_64F, abt_u);
    247   CvMat ABt_V = cvMat(3, 3, CV_64F, abt_v);
    248 
    249   cvSetZero(&ABt);
    250   for(int i = 0; i < number_of_correspondences; i++) {
    251     double * pc = &pcs[3 * i];
    252     double * pw = &pws[3 * i];
    253 
    254     for(int j = 0; j < 3; j++) {
    255       abt[3 * j    ] += (pc[j] - pc0[j]) * (pw[0] - pw0[0]);
    256       abt[3 * j + 1] += (pc[j] - pc0[j]) * (pw[1] - pw0[1]);
    257       abt[3 * j + 2] += (pc[j] - pc0[j]) * (pw[2] - pw0[2]);
    258     }
    259   }
    260 
    261   cvSVD(&ABt, &ABt_D, &ABt_U, &ABt_V, CV_SVD_MODIFY_A);
    262 
    263   for(int i = 0; i < 3; i++)
    264     for(int j = 0; j < 3; j++)
    265       R[i][j] = dot(abt_u + 3 * i, abt_v + 3 * j);
    266 
    267   const double det =
    268     R[0][0] * R[1][1] * R[2][2] + R[0][1] * R[1][2] * R[2][0] + R[0][2] * R[1][0] * R[2][1] -
    269     R[0][2] * R[1][1] * R[2][0] - R[0][1] * R[1][0] * R[2][2] - R[0][0] * R[1][2] * R[2][1];
    270 
    271   if (det < 0) {
    272     R[2][0] = -R[2][0];
    273     R[2][1] = -R[2][1];
    274     R[2][2] = -R[2][2];
    275   }
    276 
    277   t[0] = pc0[0] - dot(R[0], pw0);
    278   t[1] = pc0[1] - dot(R[1], pw0);
    279   t[2] = pc0[2] - dot(R[2], pw0);
    280 }
    281 
    282 void epnp::solve_for_sign(void)
    283 {
    284   if (pcs[2] < 0.0) {
    285     for(int i = 0; i < 4; i++)
    286       for(int j = 0; j < 3; j++)
    287   ccs[i][j] = -ccs[i][j];
    288 
    289     for(int i = 0; i < number_of_correspondences; i++) {
    290       pcs[3 * i    ] = -pcs[3 * i];
    291       pcs[3 * i + 1] = -pcs[3 * i + 1];
    292       pcs[3 * i + 2] = -pcs[3 * i + 2];
    293     }
    294   }
    295 }
    296 
    297 double epnp::compute_R_and_t(const double * ut, const double * betas,
    298            double R[3][3], double t[3])
    299 {
    300   compute_ccs(betas, ut);
    301   compute_pcs();
    302 
    303   solve_for_sign();
    304 
    305   estimate_R_and_t(R, t);
    306 
    307   return reprojection_error(R, t);
    308 }
    309 
    310 double epnp::reprojection_error(const double R[3][3], const double t[3])
    311 {
    312   double sum2 = 0.0;
    313 
    314   for(int i = 0; i < number_of_correspondences; i++) {
    315     double * pw = &pws[3 * i];
    316     double Xc = dot(R[0], pw) + t[0];
    317     double Yc = dot(R[1], pw) + t[1];
    318     double inv_Zc = 1.0 / (dot(R[2], pw) + t[2]);
    319     double ue = uc + fu * Xc * inv_Zc;
    320     double ve = vc + fv * Yc * inv_Zc;
    321     double u = us[2 * i], v = us[2 * i + 1];
    322 
    323     sum2 += sqrt( (u - ue) * (u - ue) + (v - ve) * (v - ve) );
    324   }
    325 
    326   return sum2 / number_of_correspondences;
    327 }
    328 
    329 // betas10        = [B11 B12 B22 B13 B23 B33 B14 B24 B34 B44]
    330 // betas_approx_1 = [B11 B12     B13         B14]
    331 
    332 void epnp::find_betas_approx_1(const CvMat * L_6x10, const CvMat * Rho,
    333              double * betas)
    334 {
    335   double l_6x4[6 * 4], b4[4];
    336   CvMat L_6x4 = cvMat(6, 4, CV_64F, l_6x4);
    337   CvMat B4    = cvMat(4, 1, CV_64F, b4);
    338 
    339   for(int i = 0; i < 6; i++) {
    340     cvmSet(&L_6x4, i, 0, cvmGet(L_6x10, i, 0));
    341     cvmSet(&L_6x4, i, 1, cvmGet(L_6x10, i, 1));
    342     cvmSet(&L_6x4, i, 2, cvmGet(L_6x10, i, 3));
    343     cvmSet(&L_6x4, i, 3, cvmGet(L_6x10, i, 6));
    344   }
    345 
    346   cvSolve(&L_6x4, Rho, &B4, CV_SVD);
    347 
    348   if (b4[0] < 0) {
    349     betas[0] = sqrt(-b4[0]);
    350     betas[1] = -b4[1] / betas[0];
    351     betas[2] = -b4[2] / betas[0];
    352     betas[3] = -b4[3] / betas[0];
    353   } else {
    354     betas[0] = sqrt(b4[0]);
    355     betas[1] = b4[1] / betas[0];
    356     betas[2] = b4[2] / betas[0];
    357     betas[3] = b4[3] / betas[0];
    358   }
    359 }
    360 
    361 // betas10        = [B11 B12 B22 B13 B23 B33 B14 B24 B34 B44]
    362 // betas_approx_2 = [B11 B12 B22                            ]
    363 
    364 void epnp::find_betas_approx_2(const CvMat * L_6x10, const CvMat * Rho,
    365              double * betas)
    366 {
    367   double l_6x3[6 * 3], b3[3];
    368   CvMat L_6x3  = cvMat(6, 3, CV_64F, l_6x3);
    369   CvMat B3     = cvMat(3, 1, CV_64F, b3);
    370 
    371   for(int i = 0; i < 6; i++) {
    372     cvmSet(&L_6x3, i, 0, cvmGet(L_6x10, i, 0));
    373     cvmSet(&L_6x3, i, 1, cvmGet(L_6x10, i, 1));
    374     cvmSet(&L_6x3, i, 2, cvmGet(L_6x10, i, 2));
    375   }
    376 
    377   cvSolve(&L_6x3, Rho, &B3, CV_SVD);
    378 
    379   if (b3[0] < 0) {
    380     betas[0] = sqrt(-b3[0]);
    381     betas[1] = (b3[2] < 0) ? sqrt(-b3[2]) : 0.0;
    382   } else {
    383     betas[0] = sqrt(b3[0]);
    384     betas[1] = (b3[2] > 0) ? sqrt(b3[2]) : 0.0;
    385   }
    386 
    387   if (b3[1] < 0) betas[0] = -betas[0];
    388 
    389   betas[2] = 0.0;
    390   betas[3] = 0.0;
    391 }
    392 
    393 // betas10        = [B11 B12 B22 B13 B23 B33 B14 B24 B34 B44]
    394 // betas_approx_3 = [B11 B12 B22 B13 B23                    ]
    395 
    396 void epnp::find_betas_approx_3(const CvMat * L_6x10, const CvMat * Rho,
    397              double * betas)
    398 {
    399   double l_6x5[6 * 5], b5[5];
    400   CvMat L_6x5 = cvMat(6, 5, CV_64F, l_6x5);
    401   CvMat B5    = cvMat(5, 1, CV_64F, b5);
    402 
    403   for(int i = 0; i < 6; i++) {
    404     cvmSet(&L_6x5, i, 0, cvmGet(L_6x10, i, 0));
    405     cvmSet(&L_6x5, i, 1, cvmGet(L_6x10, i, 1));
    406     cvmSet(&L_6x5, i, 2, cvmGet(L_6x10, i, 2));
    407     cvmSet(&L_6x5, i, 3, cvmGet(L_6x10, i, 3));
    408     cvmSet(&L_6x5, i, 4, cvmGet(L_6x10, i, 4));
    409   }
    410 
    411   cvSolve(&L_6x5, Rho, &B5, CV_SVD);
    412 
    413   if (b5[0] < 0) {
    414     betas[0] = sqrt(-b5[0]);
    415     betas[1] = (b5[2] < 0) ? sqrt(-b5[2]) : 0.0;
    416   } else {
    417     betas[0] = sqrt(b5[0]);
    418     betas[1] = (b5[2] > 0) ? sqrt(b5[2]) : 0.0;
    419   }
    420   if (b5[1] < 0) betas[0] = -betas[0];
    421   betas[2] = b5[3] / betas[0];
    422   betas[3] = 0.0;
    423 }
    424 
    425 void epnp::compute_L_6x10(const double * ut, double * l_6x10)
    426 {
    427   const double * v[4];
    428 
    429   v[0] = ut + 12 * 11;
    430   v[1] = ut + 12 * 10;
    431   v[2] = ut + 12 *  9;
    432   v[3] = ut + 12 *  8;
    433 
    434   double dv[4][6][3];
    435 
    436   for(int i = 0; i < 4; i++) {
    437     int a = 0, b = 1;
    438     for(int j = 0; j < 6; j++) {
    439       dv[i][j][0] = v[i][3 * a    ] - v[i][3 * b];
    440       dv[i][j][1] = v[i][3 * a + 1] - v[i][3 * b + 1];
    441       dv[i][j][2] = v[i][3 * a + 2] - v[i][3 * b + 2];
    442 
    443       b++;
    444       if (b > 3) {
    445   a++;
    446   b = a + 1;
    447       }
    448     }
    449   }
    450 
    451   for(int i = 0; i < 6; i++) {
    452     double * row = l_6x10 + 10 * i;
    453 
    454     row[0] =        dot(dv[0][i], dv[0][i]);
    455     row[1] = 2.0f * dot(dv[0][i], dv[1][i]);
    456     row[2] =        dot(dv[1][i], dv[1][i]);
    457     row[3] = 2.0f * dot(dv[0][i], dv[2][i]);
    458     row[4] = 2.0f * dot(dv[1][i], dv[2][i]);
    459     row[5] =        dot(dv[2][i], dv[2][i]);
    460     row[6] = 2.0f * dot(dv[0][i], dv[3][i]);
    461     row[7] = 2.0f * dot(dv[1][i], dv[3][i]);
    462     row[8] = 2.0f * dot(dv[2][i], dv[3][i]);
    463     row[9] =        dot(dv[3][i], dv[3][i]);
    464   }
    465 }
    466 
    467 void epnp::compute_rho(double * rho)
    468 {
    469   rho[0] = dist2(cws[0], cws[1]);
    470   rho[1] = dist2(cws[0], cws[2]);
    471   rho[2] = dist2(cws[0], cws[3]);
    472   rho[3] = dist2(cws[1], cws[2]);
    473   rho[4] = dist2(cws[1], cws[3]);
    474   rho[5] = dist2(cws[2], cws[3]);
    475 }
    476 
    477 void epnp::compute_A_and_b_gauss_newton(const double * l_6x10, const double * rho,
    478           const double betas[4], CvMat * A, CvMat * b)
    479 {
    480   for(int i = 0; i < 6; i++) {
    481     const double * rowL = l_6x10 + i * 10;
    482     double * rowA = A->data.db + i * 4;
    483 
    484     rowA[0] = 2 * rowL[0] * betas[0] +     rowL[1] * betas[1] +     rowL[3] * betas[2] +     rowL[6] * betas[3];
    485     rowA[1] =     rowL[1] * betas[0] + 2 * rowL[2] * betas[1] +     rowL[4] * betas[2] +     rowL[7] * betas[3];
    486     rowA[2] =     rowL[3] * betas[0] +     rowL[4] * betas[1] + 2 * rowL[5] * betas[2] +     rowL[8] * betas[3];
    487     rowA[3] =     rowL[6] * betas[0] +     rowL[7] * betas[1] +     rowL[8] * betas[2] + 2 * rowL[9] * betas[3];
    488 
    489     cvmSet(b, i, 0, rho[i] -
    490      (
    491       rowL[0] * betas[0] * betas[0] +
    492       rowL[1] * betas[0] * betas[1] +
    493       rowL[2] * betas[1] * betas[1] +
    494       rowL[3] * betas[0] * betas[2] +
    495       rowL[4] * betas[1] * betas[2] +
    496       rowL[5] * betas[2] * betas[2] +
    497       rowL[6] * betas[0] * betas[3] +
    498       rowL[7] * betas[1] * betas[3] +
    499       rowL[8] * betas[2] * betas[3] +
    500       rowL[9] * betas[3] * betas[3]
    501       ));
    502   }
    503 }
    504 
    505 void epnp::gauss_newton(const CvMat * L_6x10, const CvMat * Rho, double betas[4])
    506 {
    507   const int iterations_number = 5;
    508 
    509   double a[6*4], b[6], x[4];
    510   CvMat A = cvMat(6, 4, CV_64F, a);
    511   CvMat B = cvMat(6, 1, CV_64F, b);
    512   CvMat X = cvMat(4, 1, CV_64F, x);
    513 
    514   for(int k = 0; k < iterations_number; k++)
    515   {
    516     compute_A_and_b_gauss_newton(L_6x10->data.db, Rho->data.db,
    517     betas, &A, &B);
    518     qr_solve(&A, &B, &X);
    519     for(int i = 0; i < 4; i++)
    520     betas[i] += x[i];
    521   }
    522 }
    523 
    524 void epnp::qr_solve(CvMat * A, CvMat * b, CvMat * X)
    525 {
    526   const int nr = A->rows;
    527   const int nc = A->cols;
    528 
    529   if (max_nr != 0 && max_nr < nr)
    530   {
    531     delete [] A1;
    532     delete [] A2;
    533   }
    534   if (max_nr < nr)
    535   {
    536     max_nr = nr;
    537     A1 = new double[nr];
    538     A2 = new double[nr];
    539   }
    540 
    541   double * pA = A->data.db, * ppAkk = pA;
    542   for(int k = 0; k < nc; k++)
    543   {
    544     double * ppAik1 = ppAkk, eta = fabs(*ppAik1);
    545     for(int i = k + 1; i < nr; i++)
    546     {
    547       double elt = fabs(*ppAik1);
    548       if (eta < elt) eta = elt;
    549       ppAik1 += nc;
    550     }
    551     if (eta == 0)
    552     {
    553       A1[k] = A2[k] = 0.0;
    554       //cerr << "God damnit, A is singular, this shouldn't happen." << endl;
    555       return;
    556     }
    557     else
    558     {
    559       double * ppAik2 = ppAkk, sum2 = 0.0, inv_eta = 1. / eta;
    560       for(int i = k; i < nr; i++)
    561       {
    562         *ppAik2 *= inv_eta;
    563         sum2 += *ppAik2 * *ppAik2;
    564         ppAik2 += nc;
    565       }
    566       double sigma = sqrt(sum2);
    567       if (*ppAkk < 0)
    568       sigma = -sigma;
    569       *ppAkk += sigma;
    570       A1[k] = sigma * *ppAkk;
    571       A2[k] = -eta * sigma;
    572       for(int j = k + 1; j < nc; j++)
    573       {
    574         double * ppAik = ppAkk, sum = 0;
    575         for(int i = k; i < nr; i++)
    576         {
    577           sum += *ppAik * ppAik[j - k];
    578           ppAik += nc;
    579         }
    580         double tau = sum / A1[k];
    581         ppAik = ppAkk;
    582         for(int i = k; i < nr; i++)
    583         {
    584           ppAik[j - k] -= tau * *ppAik;
    585           ppAik += nc;
    586         }
    587       }
    588     }
    589     ppAkk += nc + 1;
    590   }
    591 
    592   // b <- Qt b
    593   double * ppAjj = pA, * pb = b->data.db;
    594   for(int j = 0; j < nc; j++)
    595   {
    596     double * ppAij = ppAjj, tau = 0;
    597     for(int i = j; i < nr; i++)
    598     {
    599       tau += *ppAij * pb[i];
    600       ppAij += nc;
    601     }
    602     tau /= A1[j];
    603     ppAij = ppAjj;
    604     for(int i = j; i < nr; i++)
    605     {
    606       pb[i] -= tau * *ppAij;
    607       ppAij += nc;
    608     }
    609     ppAjj += nc + 1;
    610   }
    611 
    612   // X = R-1 b
    613   double * pX = X->data.db;
    614   pX[nc - 1] = pb[nc - 1] / A2[nc - 1];
    615   for(int i = nc - 2; i >= 0; i--)
    616   {
    617     double * ppAij = pA + i * nc + (i + 1), sum = 0;
    618 
    619     for(int j = i + 1; j < nc; j++)
    620     {
    621       sum += *ppAij * pX[j];
    622       ppAij++;
    623     }
    624     pX[i] = (pb[i] - sum) / A2[i];
    625   }
    626 }
    627 
    628 }
    629