Home | History | Annotate | Download | only in arm
      1 // Copyright 2012 the V8 project authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #ifndef V8_ARM_MACRO_ASSEMBLER_ARM_H_
      6 #define V8_ARM_MACRO_ASSEMBLER_ARM_H_
      7 
      8 #include "src/assembler.h"
      9 #include "src/bailout-reason.h"
     10 #include "src/frames.h"
     11 #include "src/globals.h"
     12 
     13 namespace v8 {
     14 namespace internal {
     15 
     16 // Give alias names to registers for calling conventions.
     17 const Register kReturnRegister0 = {Register::kCode_r0};
     18 const Register kReturnRegister1 = {Register::kCode_r1};
     19 const Register kReturnRegister2 = {Register::kCode_r2};
     20 const Register kJSFunctionRegister = {Register::kCode_r1};
     21 const Register kContextRegister = {Register::kCode_r7};
     22 const Register kAllocateSizeRegister = {Register::kCode_r1};
     23 const Register kInterpreterAccumulatorRegister = {Register::kCode_r0};
     24 const Register kInterpreterBytecodeOffsetRegister = {Register::kCode_r5};
     25 const Register kInterpreterBytecodeArrayRegister = {Register::kCode_r6};
     26 const Register kInterpreterDispatchTableRegister = {Register::kCode_r8};
     27 const Register kJavaScriptCallArgCountRegister = {Register::kCode_r0};
     28 const Register kJavaScriptCallNewTargetRegister = {Register::kCode_r3};
     29 const Register kRuntimeCallFunctionRegister = {Register::kCode_r1};
     30 const Register kRuntimeCallArgCountRegister = {Register::kCode_r0};
     31 
     32 // ----------------------------------------------------------------------------
     33 // Static helper functions
     34 
     35 // Generate a MemOperand for loading a field from an object.
     36 inline MemOperand FieldMemOperand(Register object, int offset) {
     37   return MemOperand(object, offset - kHeapObjectTag);
     38 }
     39 
     40 
     41 // Give alias names to registers
     42 const Register cp = {Register::kCode_r7};  // JavaScript context pointer.
     43 const Register pp = {Register::kCode_r8};  // Constant pool pointer.
     44 const Register kRootRegister = {Register::kCode_r10};  // Roots array pointer.
     45 
     46 // Flags used for AllocateHeapNumber
     47 enum TaggingMode {
     48   // Tag the result.
     49   TAG_RESULT,
     50   // Don't tag
     51   DONT_TAG_RESULT
     52 };
     53 
     54 
     55 enum RememberedSetAction { EMIT_REMEMBERED_SET, OMIT_REMEMBERED_SET };
     56 enum SmiCheck { INLINE_SMI_CHECK, OMIT_SMI_CHECK };
     57 enum PointersToHereCheck {
     58   kPointersToHereMaybeInteresting,
     59   kPointersToHereAreAlwaysInteresting
     60 };
     61 enum LinkRegisterStatus { kLRHasNotBeenSaved, kLRHasBeenSaved };
     62 
     63 
     64 Register GetRegisterThatIsNotOneOf(Register reg1,
     65                                    Register reg2 = no_reg,
     66                                    Register reg3 = no_reg,
     67                                    Register reg4 = no_reg,
     68                                    Register reg5 = no_reg,
     69                                    Register reg6 = no_reg);
     70 
     71 
     72 #ifdef DEBUG
     73 bool AreAliased(Register reg1,
     74                 Register reg2,
     75                 Register reg3 = no_reg,
     76                 Register reg4 = no_reg,
     77                 Register reg5 = no_reg,
     78                 Register reg6 = no_reg,
     79                 Register reg7 = no_reg,
     80                 Register reg8 = no_reg);
     81 #endif
     82 
     83 
     84 enum TargetAddressStorageMode {
     85   CAN_INLINE_TARGET_ADDRESS,
     86   NEVER_INLINE_TARGET_ADDRESS
     87 };
     88 
     89 // MacroAssembler implements a collection of frequently used macros.
     90 class MacroAssembler: public Assembler {
     91  public:
     92   MacroAssembler(Isolate* isolate, void* buffer, int size,
     93                  CodeObjectRequired create_code_object);
     94 
     95 
     96   // Returns the size of a call in instructions. Note, the value returned is
     97   // only valid as long as no entries are added to the constant pool between
     98   // checking the call size and emitting the actual call.
     99   static int CallSize(Register target, Condition cond = al);
    100   int CallSize(Address target, RelocInfo::Mode rmode, Condition cond = al);
    101   int CallStubSize(CodeStub* stub,
    102                    TypeFeedbackId ast_id = TypeFeedbackId::None(),
    103                    Condition cond = al);
    104 
    105   // Jump, Call, and Ret pseudo instructions implementing inter-working.
    106   void Jump(Register target, Condition cond = al);
    107   void Jump(Address target, RelocInfo::Mode rmode, Condition cond = al);
    108   void Jump(Handle<Code> code, RelocInfo::Mode rmode, Condition cond = al);
    109   void Call(Register target, Condition cond = al);
    110   void Call(Address target, RelocInfo::Mode rmode,
    111             Condition cond = al,
    112             TargetAddressStorageMode mode = CAN_INLINE_TARGET_ADDRESS);
    113   void Call(Handle<Code> code, RelocInfo::Mode rmode = RelocInfo::CODE_TARGET,
    114             TypeFeedbackId ast_id = TypeFeedbackId::None(), Condition cond = al,
    115             TargetAddressStorageMode mode = CAN_INLINE_TARGET_ADDRESS);
    116   int CallSize(Handle<Code> code,
    117                RelocInfo::Mode rmode = RelocInfo::CODE_TARGET,
    118                TypeFeedbackId ast_id = TypeFeedbackId::None(),
    119                Condition cond = al);
    120   void Ret(Condition cond = al);
    121 
    122   // Used for patching in calls to the deoptimizer.
    123   void CallDeoptimizer(Address target);
    124   static int CallDeoptimizerSize();
    125 
    126   // Emit code to discard a non-negative number of pointer-sized elements
    127   // from the stack, clobbering only the sp register.
    128   void Drop(int count, Condition cond = al);
    129   void Drop(Register count, Condition cond = al);
    130 
    131   void Ret(int drop, Condition cond = al);
    132 
    133   // Swap two registers.  If the scratch register is omitted then a slightly
    134   // less efficient form using xor instead of mov is emitted.
    135   void Swap(Register reg1,
    136             Register reg2,
    137             Register scratch = no_reg,
    138             Condition cond = al);
    139 
    140   void Mls(Register dst, Register src1, Register src2, Register srcA,
    141            Condition cond = al);
    142   void And(Register dst, Register src1, const Operand& src2,
    143            Condition cond = al);
    144   void Ubfx(Register dst, Register src, int lsb, int width,
    145             Condition cond = al);
    146   void Sbfx(Register dst, Register src, int lsb, int width,
    147             Condition cond = al);
    148   // The scratch register is not used for ARMv7.
    149   // scratch can be the same register as src (in which case it is trashed), but
    150   // not the same as dst.
    151   void Bfi(Register dst,
    152            Register src,
    153            Register scratch,
    154            int lsb,
    155            int width,
    156            Condition cond = al);
    157   void Bfc(Register dst, Register src, int lsb, int width, Condition cond = al);
    158 
    159   void Call(Label* target);
    160   void Push(Register src) { push(src); }
    161   void Pop(Register dst) { pop(dst); }
    162 
    163   // Register move. May do nothing if the registers are identical.
    164   void Move(Register dst, Smi* smi) { mov(dst, Operand(smi)); }
    165   void Move(Register dst, Handle<Object> value);
    166   void Move(Register dst, Register src, Condition cond = al);
    167   void Move(Register dst, const Operand& src, SBit sbit = LeaveCC,
    168             Condition cond = al) {
    169     if (!src.is_reg() || !src.rm().is(dst) || sbit != LeaveCC) {
    170       mov(dst, src, sbit, cond);
    171     }
    172   }
    173   void Move(SwVfpRegister dst, SwVfpRegister src);
    174   void Move(DwVfpRegister dst, DwVfpRegister src);
    175 
    176   void Load(Register dst, const MemOperand& src, Representation r);
    177   void Store(Register src, const MemOperand& dst, Representation r);
    178 
    179   // Load an object from the root table.
    180   void LoadRoot(Register destination,
    181                 Heap::RootListIndex index,
    182                 Condition cond = al);
    183   // Store an object to the root table.
    184   void StoreRoot(Register source,
    185                  Heap::RootListIndex index,
    186                  Condition cond = al);
    187 
    188   // ---------------------------------------------------------------------------
    189   // GC Support
    190 
    191   void IncrementalMarkingRecordWriteHelper(Register object,
    192                                            Register value,
    193                                            Register address);
    194 
    195   enum RememberedSetFinalAction {
    196     kReturnAtEnd,
    197     kFallThroughAtEnd
    198   };
    199 
    200   // Record in the remembered set the fact that we have a pointer to new space
    201   // at the address pointed to by the addr register.  Only works if addr is not
    202   // in new space.
    203   void RememberedSetHelper(Register object,  // Used for debug code.
    204                            Register addr,
    205                            Register scratch,
    206                            SaveFPRegsMode save_fp,
    207                            RememberedSetFinalAction and_then);
    208 
    209   void CheckPageFlag(Register object,
    210                      Register scratch,
    211                      int mask,
    212                      Condition cc,
    213                      Label* condition_met);
    214 
    215   // Check if object is in new space.  Jumps if the object is not in new space.
    216   // The register scratch can be object itself, but scratch will be clobbered.
    217   void JumpIfNotInNewSpace(Register object,
    218                            Register scratch,
    219                            Label* branch) {
    220     InNewSpace(object, scratch, eq, branch);
    221   }
    222 
    223   // Check if object is in new space.  Jumps if the object is in new space.
    224   // The register scratch can be object itself, but it will be clobbered.
    225   void JumpIfInNewSpace(Register object,
    226                         Register scratch,
    227                         Label* branch) {
    228     InNewSpace(object, scratch, ne, branch);
    229   }
    230 
    231   // Check if an object has a given incremental marking color.
    232   void HasColor(Register object,
    233                 Register scratch0,
    234                 Register scratch1,
    235                 Label* has_color,
    236                 int first_bit,
    237                 int second_bit);
    238 
    239   void JumpIfBlack(Register object,
    240                    Register scratch0,
    241                    Register scratch1,
    242                    Label* on_black);
    243 
    244   // Checks the color of an object.  If the object is white we jump to the
    245   // incremental marker.
    246   void JumpIfWhite(Register value, Register scratch1, Register scratch2,
    247                    Register scratch3, Label* value_is_white);
    248 
    249   // Notify the garbage collector that we wrote a pointer into an object.
    250   // |object| is the object being stored into, |value| is the object being
    251   // stored.  value and scratch registers are clobbered by the operation.
    252   // The offset is the offset from the start of the object, not the offset from
    253   // the tagged HeapObject pointer.  For use with FieldMemOperand(reg, off).
    254   void RecordWriteField(
    255       Register object,
    256       int offset,
    257       Register value,
    258       Register scratch,
    259       LinkRegisterStatus lr_status,
    260       SaveFPRegsMode save_fp,
    261       RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
    262       SmiCheck smi_check = INLINE_SMI_CHECK,
    263       PointersToHereCheck pointers_to_here_check_for_value =
    264           kPointersToHereMaybeInteresting);
    265 
    266   // As above, but the offset has the tag presubtracted.  For use with
    267   // MemOperand(reg, off).
    268   inline void RecordWriteContextSlot(
    269       Register context,
    270       int offset,
    271       Register value,
    272       Register scratch,
    273       LinkRegisterStatus lr_status,
    274       SaveFPRegsMode save_fp,
    275       RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
    276       SmiCheck smi_check = INLINE_SMI_CHECK,
    277       PointersToHereCheck pointers_to_here_check_for_value =
    278           kPointersToHereMaybeInteresting) {
    279     RecordWriteField(context,
    280                      offset + kHeapObjectTag,
    281                      value,
    282                      scratch,
    283                      lr_status,
    284                      save_fp,
    285                      remembered_set_action,
    286                      smi_check,
    287                      pointers_to_here_check_for_value);
    288   }
    289 
    290   // Notify the garbage collector that we wrote a code entry into a
    291   // JSFunction. Only scratch is clobbered by the operation.
    292   void RecordWriteCodeEntryField(Register js_function, Register code_entry,
    293                                  Register scratch);
    294 
    295   void RecordWriteForMap(
    296       Register object,
    297       Register map,
    298       Register dst,
    299       LinkRegisterStatus lr_status,
    300       SaveFPRegsMode save_fp);
    301 
    302   // For a given |object| notify the garbage collector that the slot |address|
    303   // has been written.  |value| is the object being stored. The value and
    304   // address registers are clobbered by the operation.
    305   void RecordWrite(
    306       Register object,
    307       Register address,
    308       Register value,
    309       LinkRegisterStatus lr_status,
    310       SaveFPRegsMode save_fp,
    311       RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
    312       SmiCheck smi_check = INLINE_SMI_CHECK,
    313       PointersToHereCheck pointers_to_here_check_for_value =
    314           kPointersToHereMaybeInteresting);
    315 
    316   // Push a handle.
    317   void Push(Handle<Object> handle);
    318   void Push(Smi* smi) { Push(Handle<Smi>(smi, isolate())); }
    319 
    320   // Push two registers.  Pushes leftmost register first (to highest address).
    321   void Push(Register src1, Register src2, Condition cond = al) {
    322     if (src1.code() > src2.code()) {
    323       stm(db_w, sp, src1.bit() | src2.bit(), cond);
    324     } else {
    325       str(src1, MemOperand(sp, 4, NegPreIndex), cond);
    326       str(src2, MemOperand(sp, 4, NegPreIndex), cond);
    327     }
    328   }
    329 
    330   // Push three registers.  Pushes leftmost register first (to highest address).
    331   void Push(Register src1, Register src2, Register src3, Condition cond = al) {
    332     if (src1.code() > src2.code()) {
    333       if (src2.code() > src3.code()) {
    334         stm(db_w, sp, src1.bit() | src2.bit() | src3.bit(), cond);
    335       } else {
    336         stm(db_w, sp, src1.bit() | src2.bit(), cond);
    337         str(src3, MemOperand(sp, 4, NegPreIndex), cond);
    338       }
    339     } else {
    340       str(src1, MemOperand(sp, 4, NegPreIndex), cond);
    341       Push(src2, src3, cond);
    342     }
    343   }
    344 
    345   // Push four registers.  Pushes leftmost register first (to highest address).
    346   void Push(Register src1,
    347             Register src2,
    348             Register src3,
    349             Register src4,
    350             Condition cond = al) {
    351     if (src1.code() > src2.code()) {
    352       if (src2.code() > src3.code()) {
    353         if (src3.code() > src4.code()) {
    354           stm(db_w,
    355               sp,
    356               src1.bit() | src2.bit() | src3.bit() | src4.bit(),
    357               cond);
    358         } else {
    359           stm(db_w, sp, src1.bit() | src2.bit() | src3.bit(), cond);
    360           str(src4, MemOperand(sp, 4, NegPreIndex), cond);
    361         }
    362       } else {
    363         stm(db_w, sp, src1.bit() | src2.bit(), cond);
    364         Push(src3, src4, cond);
    365       }
    366     } else {
    367       str(src1, MemOperand(sp, 4, NegPreIndex), cond);
    368       Push(src2, src3, src4, cond);
    369     }
    370   }
    371 
    372   // Push five registers.  Pushes leftmost register first (to highest address).
    373   void Push(Register src1, Register src2, Register src3, Register src4,
    374             Register src5, Condition cond = al) {
    375     if (src1.code() > src2.code()) {
    376       if (src2.code() > src3.code()) {
    377         if (src3.code() > src4.code()) {
    378           if (src4.code() > src5.code()) {
    379             stm(db_w, sp,
    380                 src1.bit() | src2.bit() | src3.bit() | src4.bit() | src5.bit(),
    381                 cond);
    382           } else {
    383             stm(db_w, sp, src1.bit() | src2.bit() | src3.bit() | src4.bit(),
    384                 cond);
    385             str(src5, MemOperand(sp, 4, NegPreIndex), cond);
    386           }
    387         } else {
    388           stm(db_w, sp, src1.bit() | src2.bit() | src3.bit(), cond);
    389           Push(src4, src5, cond);
    390         }
    391       } else {
    392         stm(db_w, sp, src1.bit() | src2.bit(), cond);
    393         Push(src3, src4, src5, cond);
    394       }
    395     } else {
    396       str(src1, MemOperand(sp, 4, NegPreIndex), cond);
    397       Push(src2, src3, src4, src5, cond);
    398     }
    399   }
    400 
    401   // Pop two registers. Pops rightmost register first (from lower address).
    402   void Pop(Register src1, Register src2, Condition cond = al) {
    403     DCHECK(!src1.is(src2));
    404     if (src1.code() > src2.code()) {
    405       ldm(ia_w, sp, src1.bit() | src2.bit(), cond);
    406     } else {
    407       ldr(src2, MemOperand(sp, 4, PostIndex), cond);
    408       ldr(src1, MemOperand(sp, 4, PostIndex), cond);
    409     }
    410   }
    411 
    412   // Pop three registers.  Pops rightmost register first (from lower address).
    413   void Pop(Register src1, Register src2, Register src3, Condition cond = al) {
    414     DCHECK(!AreAliased(src1, src2, src3));
    415     if (src1.code() > src2.code()) {
    416       if (src2.code() > src3.code()) {
    417         ldm(ia_w, sp, src1.bit() | src2.bit() | src3.bit(), cond);
    418       } else {
    419         ldr(src3, MemOperand(sp, 4, PostIndex), cond);
    420         ldm(ia_w, sp, src1.bit() | src2.bit(), cond);
    421       }
    422     } else {
    423       Pop(src2, src3, cond);
    424       ldr(src1, MemOperand(sp, 4, PostIndex), cond);
    425     }
    426   }
    427 
    428   // Pop four registers.  Pops rightmost register first (from lower address).
    429   void Pop(Register src1,
    430            Register src2,
    431            Register src3,
    432            Register src4,
    433            Condition cond = al) {
    434     DCHECK(!AreAliased(src1, src2, src3, src4));
    435     if (src1.code() > src2.code()) {
    436       if (src2.code() > src3.code()) {
    437         if (src3.code() > src4.code()) {
    438           ldm(ia_w,
    439               sp,
    440               src1.bit() | src2.bit() | src3.bit() | src4.bit(),
    441               cond);
    442         } else {
    443           ldr(src4, MemOperand(sp, 4, PostIndex), cond);
    444           ldm(ia_w, sp, src1.bit() | src2.bit() | src3.bit(), cond);
    445         }
    446       } else {
    447         Pop(src3, src4, cond);
    448         ldm(ia_w, sp, src1.bit() | src2.bit(), cond);
    449       }
    450     } else {
    451       Pop(src2, src3, src4, cond);
    452       ldr(src1, MemOperand(sp, 4, PostIndex), cond);
    453     }
    454   }
    455 
    456   // Push a fixed frame, consisting of lr, fp, constant pool (if
    457   // FLAG_enable_embedded_constant_pool)
    458   void PushCommonFrame(Register marker_reg = no_reg);
    459 
    460   // Push a standard frame, consisting of lr, fp, constant pool (if
    461   // FLAG_enable_embedded_constant_pool), context and JS function
    462   void PushStandardFrame(Register function_reg);
    463 
    464   void PopCommonFrame(Register marker_reg = no_reg);
    465 
    466   // Push and pop the registers that can hold pointers, as defined by the
    467   // RegList constant kSafepointSavedRegisters.
    468   void PushSafepointRegisters();
    469   void PopSafepointRegisters();
    470   // Store value in register src in the safepoint stack slot for
    471   // register dst.
    472   void StoreToSafepointRegisterSlot(Register src, Register dst);
    473   // Load the value of the src register from its safepoint stack slot
    474   // into register dst.
    475   void LoadFromSafepointRegisterSlot(Register dst, Register src);
    476 
    477   // Load two consecutive registers with two consecutive memory locations.
    478   void Ldrd(Register dst1,
    479             Register dst2,
    480             const MemOperand& src,
    481             Condition cond = al);
    482 
    483   // Store two consecutive registers to two consecutive memory locations.
    484   void Strd(Register src1,
    485             Register src2,
    486             const MemOperand& dst,
    487             Condition cond = al);
    488 
    489   // If the value is a NaN, canonicalize the value else, do nothing.
    490   void VFPCanonicalizeNaN(const DwVfpRegister dst,
    491                           const DwVfpRegister src,
    492                           const Condition cond = al);
    493   void VFPCanonicalizeNaN(const DwVfpRegister value,
    494                           const Condition cond = al) {
    495     VFPCanonicalizeNaN(value, value, cond);
    496   }
    497 
    498   // Compare single values and move the result to the normal condition flags.
    499   void VFPCompareAndSetFlags(const SwVfpRegister src1, const SwVfpRegister src2,
    500                              const Condition cond = al);
    501   void VFPCompareAndSetFlags(const SwVfpRegister src1, const float src2,
    502                              const Condition cond = al);
    503 
    504   // Compare double values and move the result to the normal condition flags.
    505   void VFPCompareAndSetFlags(const DwVfpRegister src1,
    506                              const DwVfpRegister src2,
    507                              const Condition cond = al);
    508   void VFPCompareAndSetFlags(const DwVfpRegister src1,
    509                              const double src2,
    510                              const Condition cond = al);
    511 
    512   // Compare single values and then load the fpscr flags to a register.
    513   void VFPCompareAndLoadFlags(const SwVfpRegister src1,
    514                               const SwVfpRegister src2,
    515                               const Register fpscr_flags,
    516                               const Condition cond = al);
    517   void VFPCompareAndLoadFlags(const SwVfpRegister src1, const float src2,
    518                               const Register fpscr_flags,
    519                               const Condition cond = al);
    520 
    521   // Compare double values and then load the fpscr flags to a register.
    522   void VFPCompareAndLoadFlags(const DwVfpRegister src1,
    523                               const DwVfpRegister src2,
    524                               const Register fpscr_flags,
    525                               const Condition cond = al);
    526   void VFPCompareAndLoadFlags(const DwVfpRegister src1,
    527                               const double src2,
    528                               const Register fpscr_flags,
    529                               const Condition cond = al);
    530 
    531   void Vmov(const DwVfpRegister dst,
    532             const double imm,
    533             const Register scratch = no_reg);
    534 
    535   void VmovHigh(Register dst, DwVfpRegister src);
    536   void VmovHigh(DwVfpRegister dst, Register src);
    537   void VmovLow(Register dst, DwVfpRegister src);
    538   void VmovLow(DwVfpRegister dst, Register src);
    539 
    540   void LslPair(Register dst_low, Register dst_high, Register src_low,
    541                Register src_high, Register scratch, Register shift);
    542   void LslPair(Register dst_low, Register dst_high, Register src_low,
    543                Register src_high, uint32_t shift);
    544   void LsrPair(Register dst_low, Register dst_high, Register src_low,
    545                Register src_high, Register scratch, Register shift);
    546   void LsrPair(Register dst_low, Register dst_high, Register src_low,
    547                Register src_high, uint32_t shift);
    548   void AsrPair(Register dst_low, Register dst_high, Register src_low,
    549                Register src_high, Register scratch, Register shift);
    550   void AsrPair(Register dst_low, Register dst_high, Register src_low,
    551                Register src_high, uint32_t shift);
    552 
    553   // Loads the number from object into dst register.
    554   // If |object| is neither smi nor heap number, |not_number| is jumped to
    555   // with |object| still intact.
    556   void LoadNumber(Register object,
    557                   LowDwVfpRegister dst,
    558                   Register heap_number_map,
    559                   Register scratch,
    560                   Label* not_number);
    561 
    562   // Loads the number from object into double_dst in the double format.
    563   // Control will jump to not_int32 if the value cannot be exactly represented
    564   // by a 32-bit integer.
    565   // Floating point value in the 32-bit integer range that are not exact integer
    566   // won't be loaded.
    567   void LoadNumberAsInt32Double(Register object,
    568                                DwVfpRegister double_dst,
    569                                Register heap_number_map,
    570                                Register scratch,
    571                                LowDwVfpRegister double_scratch,
    572                                Label* not_int32);
    573 
    574   // Loads the number from object into dst as a 32-bit integer.
    575   // Control will jump to not_int32 if the object cannot be exactly represented
    576   // by a 32-bit integer.
    577   // Floating point value in the 32-bit integer range that are not exact integer
    578   // won't be converted.
    579   void LoadNumberAsInt32(Register object,
    580                          Register dst,
    581                          Register heap_number_map,
    582                          Register scratch,
    583                          DwVfpRegister double_scratch0,
    584                          LowDwVfpRegister double_scratch1,
    585                          Label* not_int32);
    586 
    587   // Generates function and stub prologue code.
    588   void StubPrologue(StackFrame::Type type);
    589   void Prologue(bool code_pre_aging);
    590 
    591   // Enter exit frame.
    592   // stack_space - extra stack space, used for alignment before call to C.
    593   void EnterExitFrame(bool save_doubles, int stack_space = 0);
    594 
    595   // Leave the current exit frame. Expects the return value in r0.
    596   // Expect the number of values, pushed prior to the exit frame, to
    597   // remove in a register (or no_reg, if there is nothing to remove).
    598   void LeaveExitFrame(bool save_doubles, Register argument_count,
    599                       bool restore_context,
    600                       bool argument_count_is_length = false);
    601 
    602   // Get the actual activation frame alignment for target environment.
    603   static int ActivationFrameAlignment();
    604 
    605   void LoadContext(Register dst, int context_chain_length);
    606 
    607   // Load the global object from the current context.
    608   void LoadGlobalObject(Register dst) {
    609     LoadNativeContextSlot(Context::EXTENSION_INDEX, dst);
    610   }
    611 
    612   // Load the global proxy from the current context.
    613   void LoadGlobalProxy(Register dst) {
    614     LoadNativeContextSlot(Context::GLOBAL_PROXY_INDEX, dst);
    615   }
    616 
    617   // Conditionally load the cached Array transitioned map of type
    618   // transitioned_kind from the native context if the map in register
    619   // map_in_out is the cached Array map in the native context of
    620   // expected_kind.
    621   void LoadTransitionedArrayMapConditional(
    622       ElementsKind expected_kind,
    623       ElementsKind transitioned_kind,
    624       Register map_in_out,
    625       Register scratch,
    626       Label* no_map_match);
    627 
    628   void LoadNativeContextSlot(int index, Register dst);
    629 
    630   // Load the initial map from the global function. The registers
    631   // function and map can be the same, function is then overwritten.
    632   void LoadGlobalFunctionInitialMap(Register function,
    633                                     Register map,
    634                                     Register scratch);
    635 
    636   void InitializeRootRegister() {
    637     ExternalReference roots_array_start =
    638         ExternalReference::roots_array_start(isolate());
    639     mov(kRootRegister, Operand(roots_array_start));
    640   }
    641 
    642   // ---------------------------------------------------------------------------
    643   // JavaScript invokes
    644 
    645   // Removes current frame and its arguments from the stack preserving
    646   // the arguments and a return address pushed to the stack for the next call.
    647   // Both |callee_args_count| and |caller_args_count_reg| do not include
    648   // receiver. |callee_args_count| is not modified, |caller_args_count_reg|
    649   // is trashed.
    650   void PrepareForTailCall(const ParameterCount& callee_args_count,
    651                           Register caller_args_count_reg, Register scratch0,
    652                           Register scratch1);
    653 
    654   // Invoke the JavaScript function code by either calling or jumping.
    655   void InvokeFunctionCode(Register function, Register new_target,
    656                           const ParameterCount& expected,
    657                           const ParameterCount& actual, InvokeFlag flag,
    658                           const CallWrapper& call_wrapper);
    659 
    660   void FloodFunctionIfStepping(Register fun, Register new_target,
    661                                const ParameterCount& expected,
    662                                const ParameterCount& actual);
    663 
    664   // Invoke the JavaScript function in the given register. Changes the
    665   // current context to the context in the function before invoking.
    666   void InvokeFunction(Register function,
    667                       Register new_target,
    668                       const ParameterCount& actual,
    669                       InvokeFlag flag,
    670                       const CallWrapper& call_wrapper);
    671 
    672   void InvokeFunction(Register function,
    673                       const ParameterCount& expected,
    674                       const ParameterCount& actual,
    675                       InvokeFlag flag,
    676                       const CallWrapper& call_wrapper);
    677 
    678   void InvokeFunction(Handle<JSFunction> function,
    679                       const ParameterCount& expected,
    680                       const ParameterCount& actual,
    681                       InvokeFlag flag,
    682                       const CallWrapper& call_wrapper);
    683 
    684   void IsObjectJSStringType(Register object,
    685                             Register scratch,
    686                             Label* fail);
    687 
    688   void IsObjectNameType(Register object,
    689                         Register scratch,
    690                         Label* fail);
    691 
    692   // ---------------------------------------------------------------------------
    693   // Debugger Support
    694 
    695   void DebugBreak();
    696 
    697   // ---------------------------------------------------------------------------
    698   // Exception handling
    699 
    700   // Push a new stack handler and link into stack handler chain.
    701   void PushStackHandler();
    702 
    703   // Unlink the stack handler on top of the stack from the stack handler chain.
    704   // Must preserve the result register.
    705   void PopStackHandler();
    706 
    707   // ---------------------------------------------------------------------------
    708   // Inline caching support
    709 
    710   // Generate code for checking access rights - used for security checks
    711   // on access to global objects across environments. The holder register
    712   // is left untouched, whereas both scratch registers are clobbered.
    713   void CheckAccessGlobalProxy(Register holder_reg,
    714                               Register scratch,
    715                               Label* miss);
    716 
    717   void GetNumberHash(Register t0, Register scratch);
    718 
    719   void LoadFromNumberDictionary(Label* miss,
    720                                 Register elements,
    721                                 Register key,
    722                                 Register result,
    723                                 Register t0,
    724                                 Register t1,
    725                                 Register t2);
    726 
    727 
    728   inline void MarkCode(NopMarkerTypes type) {
    729     nop(type);
    730   }
    731 
    732   // Check if the given instruction is a 'type' marker.
    733   // i.e. check if is is a mov r<type>, r<type> (referenced as nop(type))
    734   // These instructions are generated to mark special location in the code,
    735   // like some special IC code.
    736   static inline bool IsMarkedCode(Instr instr, int type) {
    737     DCHECK((FIRST_IC_MARKER <= type) && (type < LAST_CODE_MARKER));
    738     return IsNop(instr, type);
    739   }
    740 
    741 
    742   static inline int GetCodeMarker(Instr instr) {
    743     int dst_reg_offset = 12;
    744     int dst_mask = 0xf << dst_reg_offset;
    745     int src_mask = 0xf;
    746     int dst_reg = (instr & dst_mask) >> dst_reg_offset;
    747     int src_reg = instr & src_mask;
    748     uint32_t non_register_mask = ~(dst_mask | src_mask);
    749     uint32_t mov_mask = al | 13 << 21;
    750 
    751     // Return <n> if we have a mov rn rn, else return -1.
    752     int type = ((instr & non_register_mask) == mov_mask) &&
    753                (dst_reg == src_reg) &&
    754                (FIRST_IC_MARKER <= dst_reg) && (dst_reg < LAST_CODE_MARKER)
    755                    ? src_reg
    756                    : -1;
    757     DCHECK((type == -1) ||
    758            ((FIRST_IC_MARKER <= type) && (type < LAST_CODE_MARKER)));
    759     return type;
    760   }
    761 
    762 
    763   // ---------------------------------------------------------------------------
    764   // Allocation support
    765 
    766   // Allocate an object in new space or old space. The object_size is
    767   // specified either in bytes or in words if the allocation flag SIZE_IN_WORDS
    768   // is passed. If the space is exhausted control continues at the gc_required
    769   // label. The allocated object is returned in result. If the flag
    770   // tag_allocated_object is true the result is tagged as as a heap object.
    771   // All registers are clobbered also when control continues at the gc_required
    772   // label.
    773   void Allocate(int object_size,
    774                 Register result,
    775                 Register scratch1,
    776                 Register scratch2,
    777                 Label* gc_required,
    778                 AllocationFlags flags);
    779 
    780   void Allocate(Register object_size, Register result, Register result_end,
    781                 Register scratch, Label* gc_required, AllocationFlags flags);
    782 
    783   // FastAllocate is right now only used for folded allocations. It just
    784   // increments the top pointer without checking against limit. This can only
    785   // be done if it was proved earlier that the allocation will succeed.
    786   void FastAllocate(int object_size, Register result, Register scratch1,
    787                     Register scratch2, AllocationFlags flags);
    788 
    789   void FastAllocate(Register object_size, Register result, Register result_end,
    790                     Register scratch, AllocationFlags flags);
    791 
    792   void AllocateTwoByteString(Register result,
    793                              Register length,
    794                              Register scratch1,
    795                              Register scratch2,
    796                              Register scratch3,
    797                              Label* gc_required);
    798   void AllocateOneByteString(Register result, Register length,
    799                              Register scratch1, Register scratch2,
    800                              Register scratch3, Label* gc_required);
    801   void AllocateTwoByteConsString(Register result,
    802                                  Register length,
    803                                  Register scratch1,
    804                                  Register scratch2,
    805                                  Label* gc_required);
    806   void AllocateOneByteConsString(Register result, Register length,
    807                                  Register scratch1, Register scratch2,
    808                                  Label* gc_required);
    809   void AllocateTwoByteSlicedString(Register result,
    810                                    Register length,
    811                                    Register scratch1,
    812                                    Register scratch2,
    813                                    Label* gc_required);
    814   void AllocateOneByteSlicedString(Register result, Register length,
    815                                    Register scratch1, Register scratch2,
    816                                    Label* gc_required);
    817 
    818   // Allocates a heap number or jumps to the gc_required label if the young
    819   // space is full and a scavenge is needed. All registers are clobbered also
    820   // when control continues at the gc_required label.
    821   void AllocateHeapNumber(Register result,
    822                           Register scratch1,
    823                           Register scratch2,
    824                           Register heap_number_map,
    825                           Label* gc_required,
    826                           MutableMode mode = IMMUTABLE);
    827   void AllocateHeapNumberWithValue(Register result,
    828                                    DwVfpRegister value,
    829                                    Register scratch1,
    830                                    Register scratch2,
    831                                    Register heap_number_map,
    832                                    Label* gc_required);
    833 
    834   // Allocate and initialize a JSValue wrapper with the specified {constructor}
    835   // and {value}.
    836   void AllocateJSValue(Register result, Register constructor, Register value,
    837                        Register scratch1, Register scratch2,
    838                        Label* gc_required);
    839 
    840   // Copies a number of bytes from src to dst. All registers are clobbered. On
    841   // exit src and dst will point to the place just after where the last byte was
    842   // read or written and length will be zero.
    843   void CopyBytes(Register src,
    844                  Register dst,
    845                  Register length,
    846                  Register scratch);
    847 
    848   // Initialize fields with filler values.  Fields starting at |current_address|
    849   // not including |end_address| are overwritten with the value in |filler|.  At
    850   // the end the loop, |current_address| takes the value of |end_address|.
    851   void InitializeFieldsWithFiller(Register current_address,
    852                                   Register end_address, Register filler);
    853 
    854   // ---------------------------------------------------------------------------
    855   // Support functions.
    856 
    857   // Machine code version of Map::GetConstructor().
    858   // |temp| holds |result|'s map when done, and |temp2| its instance type.
    859   void GetMapConstructor(Register result, Register map, Register temp,
    860                          Register temp2);
    861 
    862   // Try to get function prototype of a function and puts the value in
    863   // the result register. Checks that the function really is a
    864   // function and jumps to the miss label if the fast checks fail. The
    865   // function register will be untouched; the other registers may be
    866   // clobbered.
    867   void TryGetFunctionPrototype(Register function, Register result,
    868                                Register scratch, Label* miss);
    869 
    870   // Compare object type for heap object.  heap_object contains a non-Smi
    871   // whose object type should be compared with the given type.  This both
    872   // sets the flags and leaves the object type in the type_reg register.
    873   // It leaves the map in the map register (unless the type_reg and map register
    874   // are the same register).  It leaves the heap object in the heap_object
    875   // register unless the heap_object register is the same register as one of the
    876   // other registers.
    877   // Type_reg can be no_reg. In that case ip is used.
    878   void CompareObjectType(Register heap_object,
    879                          Register map,
    880                          Register type_reg,
    881                          InstanceType type);
    882 
    883   // Compare instance type in a map.  map contains a valid map object whose
    884   // object type should be compared with the given type.  This both
    885   // sets the flags and leaves the object type in the type_reg register.
    886   void CompareInstanceType(Register map,
    887                            Register type_reg,
    888                            InstanceType type);
    889 
    890 
    891   // Check if a map for a JSObject indicates that the object has fast elements.
    892   // Jump to the specified label if it does not.
    893   void CheckFastElements(Register map,
    894                          Register scratch,
    895                          Label* fail);
    896 
    897   // Check if a map for a JSObject indicates that the object can have both smi
    898   // and HeapObject elements.  Jump to the specified label if it does not.
    899   void CheckFastObjectElements(Register map,
    900                                Register scratch,
    901                                Label* fail);
    902 
    903   // Check if a map for a JSObject indicates that the object has fast smi only
    904   // elements.  Jump to the specified label if it does not.
    905   void CheckFastSmiElements(Register map,
    906                             Register scratch,
    907                             Label* fail);
    908 
    909   // Check to see if maybe_number can be stored as a double in
    910   // FastDoubleElements. If it can, store it at the index specified by key in
    911   // the FastDoubleElements array elements. Otherwise jump to fail.
    912   void StoreNumberToDoubleElements(Register value_reg,
    913                                    Register key_reg,
    914                                    Register elements_reg,
    915                                    Register scratch1,
    916                                    LowDwVfpRegister double_scratch,
    917                                    Label* fail,
    918                                    int elements_offset = 0);
    919 
    920   // Compare an object's map with the specified map and its transitioned
    921   // elements maps if mode is ALLOW_ELEMENT_TRANSITION_MAPS. Condition flags are
    922   // set with result of map compare. If multiple map compares are required, the
    923   // compare sequences branches to early_success.
    924   void CompareMap(Register obj,
    925                   Register scratch,
    926                   Handle<Map> map,
    927                   Label* early_success);
    928 
    929   // As above, but the map of the object is already loaded into the register
    930   // which is preserved by the code generated.
    931   void CompareMap(Register obj_map,
    932                   Handle<Map> map,
    933                   Label* early_success);
    934 
    935   // Check if the map of an object is equal to a specified map and branch to
    936   // label if not. Skip the smi check if not required (object is known to be a
    937   // heap object). If mode is ALLOW_ELEMENT_TRANSITION_MAPS, then also match
    938   // against maps that are ElementsKind transition maps of the specified map.
    939   void CheckMap(Register obj,
    940                 Register scratch,
    941                 Handle<Map> map,
    942                 Label* fail,
    943                 SmiCheckType smi_check_type);
    944 
    945 
    946   void CheckMap(Register obj,
    947                 Register scratch,
    948                 Heap::RootListIndex index,
    949                 Label* fail,
    950                 SmiCheckType smi_check_type);
    951 
    952 
    953   // Check if the map of an object is equal to a specified weak map and branch
    954   // to a specified target if equal. Skip the smi check if not required
    955   // (object is known to be a heap object)
    956   void DispatchWeakMap(Register obj, Register scratch1, Register scratch2,
    957                        Handle<WeakCell> cell, Handle<Code> success,
    958                        SmiCheckType smi_check_type);
    959 
    960   // Compare the given value and the value of weak cell.
    961   void CmpWeakValue(Register value, Handle<WeakCell> cell, Register scratch);
    962 
    963   void GetWeakValue(Register value, Handle<WeakCell> cell);
    964 
    965   // Load the value of the weak cell in the value register. Branch to the given
    966   // miss label if the weak cell was cleared.
    967   void LoadWeakValue(Register value, Handle<WeakCell> cell, Label* miss);
    968 
    969   // Compare the object in a register to a value from the root list.
    970   // Uses the ip register as scratch.
    971   void CompareRoot(Register obj, Heap::RootListIndex index);
    972   void PushRoot(Heap::RootListIndex index) {
    973     LoadRoot(ip, index);
    974     Push(ip);
    975   }
    976 
    977   // Compare the object in a register to a value and jump if they are equal.
    978   void JumpIfRoot(Register with, Heap::RootListIndex index, Label* if_equal) {
    979     CompareRoot(with, index);
    980     b(eq, if_equal);
    981   }
    982 
    983   // Compare the object in a register to a value and jump if they are not equal.
    984   void JumpIfNotRoot(Register with, Heap::RootListIndex index,
    985                      Label* if_not_equal) {
    986     CompareRoot(with, index);
    987     b(ne, if_not_equal);
    988   }
    989 
    990   // Load and check the instance type of an object for being a string.
    991   // Loads the type into the second argument register.
    992   // Returns a condition that will be enabled if the object was a string
    993   // and the passed-in condition passed. If the passed-in condition failed
    994   // then flags remain unchanged.
    995   Condition IsObjectStringType(Register obj,
    996                                Register type,
    997                                Condition cond = al) {
    998     ldr(type, FieldMemOperand(obj, HeapObject::kMapOffset), cond);
    999     ldrb(type, FieldMemOperand(type, Map::kInstanceTypeOffset), cond);
   1000     tst(type, Operand(kIsNotStringMask), cond);
   1001     DCHECK_EQ(0u, kStringTag);
   1002     return eq;
   1003   }
   1004 
   1005 
   1006   // Picks out an array index from the hash field.
   1007   // Register use:
   1008   //   hash - holds the index's hash. Clobbered.
   1009   //   index - holds the overwritten index on exit.
   1010   void IndexFromHash(Register hash, Register index);
   1011 
   1012   // Get the number of least significant bits from a register
   1013   void GetLeastBitsFromSmi(Register dst, Register src, int num_least_bits);
   1014   void GetLeastBitsFromInt32(Register dst, Register src, int mun_least_bits);
   1015 
   1016   // Load the value of a smi object into a double register.
   1017   // The register value must be between d0 and d15.
   1018   void SmiToDouble(LowDwVfpRegister value, Register smi);
   1019 
   1020   // Check if a double can be exactly represented as a signed 32-bit integer.
   1021   // Z flag set to one if true.
   1022   void TestDoubleIsInt32(DwVfpRegister double_input,
   1023                          LowDwVfpRegister double_scratch);
   1024 
   1025   // Try to convert a double to a signed 32-bit integer.
   1026   // Z flag set to one and result assigned if the conversion is exact.
   1027   void TryDoubleToInt32Exact(Register result,
   1028                              DwVfpRegister double_input,
   1029                              LowDwVfpRegister double_scratch);
   1030 
   1031   // Floor a double and writes the value to the result register.
   1032   // Go to exact if the conversion is exact (to be able to test -0),
   1033   // fall through calling code if an overflow occurred, else go to done.
   1034   // In return, input_high is loaded with high bits of input.
   1035   void TryInt32Floor(Register result,
   1036                      DwVfpRegister double_input,
   1037                      Register input_high,
   1038                      LowDwVfpRegister double_scratch,
   1039                      Label* done,
   1040                      Label* exact);
   1041 
   1042   // Performs a truncating conversion of a floating point number as used by
   1043   // the JS bitwise operations. See ECMA-262 9.5: ToInt32. Goes to 'done' if it
   1044   // succeeds, otherwise falls through if result is saturated. On return
   1045   // 'result' either holds answer, or is clobbered on fall through.
   1046   //
   1047   // Only public for the test code in test-code-stubs-arm.cc.
   1048   void TryInlineTruncateDoubleToI(Register result,
   1049                                   DwVfpRegister input,
   1050                                   Label* done);
   1051 
   1052   // Performs a truncating conversion of a floating point number as used by
   1053   // the JS bitwise operations. See ECMA-262 9.5: ToInt32.
   1054   // Exits with 'result' holding the answer.
   1055   void TruncateDoubleToI(Register result, DwVfpRegister double_input);
   1056 
   1057   // Performs a truncating conversion of a heap number as used by
   1058   // the JS bitwise operations. See ECMA-262 9.5: ToInt32. 'result' and 'input'
   1059   // must be different registers.  Exits with 'result' holding the answer.
   1060   void TruncateHeapNumberToI(Register result, Register object);
   1061 
   1062   // Converts the smi or heap number in object to an int32 using the rules
   1063   // for ToInt32 as described in ECMAScript 9.5.: the value is truncated
   1064   // and brought into the range -2^31 .. +2^31 - 1. 'result' and 'input' must be
   1065   // different registers.
   1066   void TruncateNumberToI(Register object,
   1067                          Register result,
   1068                          Register heap_number_map,
   1069                          Register scratch1,
   1070                          Label* not_int32);
   1071 
   1072   // Check whether d16-d31 are available on the CPU. The result is given by the
   1073   // Z condition flag: Z==0 if d16-d31 available, Z==1 otherwise.
   1074   void CheckFor32DRegs(Register scratch);
   1075 
   1076   // Does a runtime check for 16/32 FP registers. Either way, pushes 32 double
   1077   // values to location, saving [d0..(d15|d31)].
   1078   void SaveFPRegs(Register location, Register scratch);
   1079 
   1080   // Does a runtime check for 16/32 FP registers. Either way, pops 32 double
   1081   // values to location, restoring [d0..(d15|d31)].
   1082   void RestoreFPRegs(Register location, Register scratch);
   1083 
   1084   // ---------------------------------------------------------------------------
   1085   // Runtime calls
   1086 
   1087   // Call a code stub.
   1088   void CallStub(CodeStub* stub,
   1089                 TypeFeedbackId ast_id = TypeFeedbackId::None(),
   1090                 Condition cond = al);
   1091 
   1092   // Call a code stub.
   1093   void TailCallStub(CodeStub* stub, Condition cond = al);
   1094 
   1095   // Call a runtime routine.
   1096   void CallRuntime(const Runtime::Function* f,
   1097                    int num_arguments,
   1098                    SaveFPRegsMode save_doubles = kDontSaveFPRegs);
   1099   void CallRuntimeSaveDoubles(Runtime::FunctionId fid) {
   1100     const Runtime::Function* function = Runtime::FunctionForId(fid);
   1101     CallRuntime(function, function->nargs, kSaveFPRegs);
   1102   }
   1103 
   1104   // Convenience function: Same as above, but takes the fid instead.
   1105   void CallRuntime(Runtime::FunctionId fid,
   1106                    SaveFPRegsMode save_doubles = kDontSaveFPRegs) {
   1107     const Runtime::Function* function = Runtime::FunctionForId(fid);
   1108     CallRuntime(function, function->nargs, save_doubles);
   1109   }
   1110 
   1111   // Convenience function: Same as above, but takes the fid instead.
   1112   void CallRuntime(Runtime::FunctionId fid, int num_arguments,
   1113                    SaveFPRegsMode save_doubles = kDontSaveFPRegs) {
   1114     CallRuntime(Runtime::FunctionForId(fid), num_arguments, save_doubles);
   1115   }
   1116 
   1117   // Convenience function: call an external reference.
   1118   void CallExternalReference(const ExternalReference& ext,
   1119                              int num_arguments);
   1120 
   1121   // Convenience function: tail call a runtime routine (jump).
   1122   void TailCallRuntime(Runtime::FunctionId fid);
   1123 
   1124   int CalculateStackPassedWords(int num_reg_arguments,
   1125                                 int num_double_arguments);
   1126 
   1127   // Before calling a C-function from generated code, align arguments on stack.
   1128   // After aligning the frame, non-register arguments must be stored in
   1129   // sp[0], sp[4], etc., not pushed. The argument count assumes all arguments
   1130   // are word sized. If double arguments are used, this function assumes that
   1131   // all double arguments are stored before core registers; otherwise the
   1132   // correct alignment of the double values is not guaranteed.
   1133   // Some compilers/platforms require the stack to be aligned when calling
   1134   // C++ code.
   1135   // Needs a scratch register to do some arithmetic. This register will be
   1136   // trashed.
   1137   void PrepareCallCFunction(int num_reg_arguments,
   1138                             int num_double_registers,
   1139                             Register scratch);
   1140   void PrepareCallCFunction(int num_reg_arguments,
   1141                             Register scratch);
   1142 
   1143   // There are two ways of passing double arguments on ARM, depending on
   1144   // whether soft or hard floating point ABI is used. These functions
   1145   // abstract parameter passing for the three different ways we call
   1146   // C functions from generated code.
   1147   void MovToFloatParameter(DwVfpRegister src);
   1148   void MovToFloatParameters(DwVfpRegister src1, DwVfpRegister src2);
   1149   void MovToFloatResult(DwVfpRegister src);
   1150 
   1151   // Calls a C function and cleans up the space for arguments allocated
   1152   // by PrepareCallCFunction. The called function is not allowed to trigger a
   1153   // garbage collection, since that might move the code and invalidate the
   1154   // return address (unless this is somehow accounted for by the called
   1155   // function).
   1156   void CallCFunction(ExternalReference function, int num_arguments);
   1157   void CallCFunction(Register function, int num_arguments);
   1158   void CallCFunction(ExternalReference function,
   1159                      int num_reg_arguments,
   1160                      int num_double_arguments);
   1161   void CallCFunction(Register function,
   1162                      int num_reg_arguments,
   1163                      int num_double_arguments);
   1164 
   1165   void MovFromFloatParameter(DwVfpRegister dst);
   1166   void MovFromFloatResult(DwVfpRegister dst);
   1167 
   1168   // Jump to a runtime routine.
   1169   void JumpToExternalReference(const ExternalReference& builtin);
   1170 
   1171   Handle<Object> CodeObject() {
   1172     DCHECK(!code_object_.is_null());
   1173     return code_object_;
   1174   }
   1175 
   1176 
   1177   // Emit code for a truncating division by a constant. The dividend register is
   1178   // unchanged and ip gets clobbered. Dividend and result must be different.
   1179   void TruncatingDiv(Register result, Register dividend, int32_t divisor);
   1180 
   1181   // ---------------------------------------------------------------------------
   1182   // StatsCounter support
   1183 
   1184   void SetCounter(StatsCounter* counter, int value,
   1185                   Register scratch1, Register scratch2);
   1186   void IncrementCounter(StatsCounter* counter, int value,
   1187                         Register scratch1, Register scratch2);
   1188   void DecrementCounter(StatsCounter* counter, int value,
   1189                         Register scratch1, Register scratch2);
   1190 
   1191 
   1192   // ---------------------------------------------------------------------------
   1193   // Debugging
   1194 
   1195   // Calls Abort(msg) if the condition cond is not satisfied.
   1196   // Use --debug_code to enable.
   1197   void Assert(Condition cond, BailoutReason reason);
   1198   void AssertFastElements(Register elements);
   1199 
   1200   // Like Assert(), but always enabled.
   1201   void Check(Condition cond, BailoutReason reason);
   1202 
   1203   // Print a message to stdout and abort execution.
   1204   void Abort(BailoutReason msg);
   1205 
   1206   // Verify restrictions about code generated in stubs.
   1207   void set_generating_stub(bool value) { generating_stub_ = value; }
   1208   bool generating_stub() { return generating_stub_; }
   1209   void set_has_frame(bool value) { has_frame_ = value; }
   1210   bool has_frame() { return has_frame_; }
   1211   inline bool AllowThisStubCall(CodeStub* stub);
   1212 
   1213   // EABI variant for double arguments in use.
   1214   bool use_eabi_hardfloat() {
   1215 #ifdef __arm__
   1216     return base::OS::ArmUsingHardFloat();
   1217 #elif USE_EABI_HARDFLOAT
   1218     return true;
   1219 #else
   1220     return false;
   1221 #endif
   1222   }
   1223 
   1224   // ---------------------------------------------------------------------------
   1225   // Number utilities
   1226 
   1227   // Check whether the value of reg is a power of two and not zero. If not
   1228   // control continues at the label not_power_of_two. If reg is a power of two
   1229   // the register scratch contains the value of (reg - 1) when control falls
   1230   // through.
   1231   void JumpIfNotPowerOfTwoOrZero(Register reg,
   1232                                  Register scratch,
   1233                                  Label* not_power_of_two_or_zero);
   1234   // Check whether the value of reg is a power of two and not zero.
   1235   // Control falls through if it is, with scratch containing the mask
   1236   // value (reg - 1).
   1237   // Otherwise control jumps to the 'zero_and_neg' label if the value of reg is
   1238   // zero or negative, or jumps to the 'not_power_of_two' label if the value is
   1239   // strictly positive but not a power of two.
   1240   void JumpIfNotPowerOfTwoOrZeroAndNeg(Register reg,
   1241                                        Register scratch,
   1242                                        Label* zero_and_neg,
   1243                                        Label* not_power_of_two);
   1244 
   1245   // ---------------------------------------------------------------------------
   1246   // Smi utilities
   1247 
   1248   void SmiTag(Register reg, SBit s = LeaveCC) {
   1249     add(reg, reg, Operand(reg), s);
   1250   }
   1251   void SmiTag(Register dst, Register src, SBit s = LeaveCC) {
   1252     add(dst, src, Operand(src), s);
   1253   }
   1254 
   1255   // Try to convert int32 to smi. If the value is to large, preserve
   1256   // the original value and jump to not_a_smi. Destroys scratch and
   1257   // sets flags.
   1258   void TrySmiTag(Register reg, Label* not_a_smi) {
   1259     TrySmiTag(reg, reg, not_a_smi);
   1260   }
   1261   void TrySmiTag(Register reg, Register src, Label* not_a_smi) {
   1262     SmiTag(ip, src, SetCC);
   1263     b(vs, not_a_smi);
   1264     mov(reg, ip);
   1265   }
   1266 
   1267 
   1268   void SmiUntag(Register reg, SBit s = LeaveCC) {
   1269     mov(reg, Operand::SmiUntag(reg), s);
   1270   }
   1271   void SmiUntag(Register dst, Register src, SBit s = LeaveCC) {
   1272     mov(dst, Operand::SmiUntag(src), s);
   1273   }
   1274 
   1275   // Untag the source value into destination and jump if source is a smi.
   1276   // Souce and destination can be the same register.
   1277   void UntagAndJumpIfSmi(Register dst, Register src, Label* smi_case);
   1278 
   1279   // Untag the source value into destination and jump if source is not a smi.
   1280   // Souce and destination can be the same register.
   1281   void UntagAndJumpIfNotSmi(Register dst, Register src, Label* non_smi_case);
   1282 
   1283   // Test if the register contains a smi (Z == 0 (eq) if true).
   1284   inline void SmiTst(Register value) {
   1285     tst(value, Operand(kSmiTagMask));
   1286   }
   1287   inline void NonNegativeSmiTst(Register value) {
   1288     tst(value, Operand(kSmiTagMask | kSmiSignMask));
   1289   }
   1290   // Jump if the register contains a smi.
   1291   inline void JumpIfSmi(Register value, Label* smi_label) {
   1292     tst(value, Operand(kSmiTagMask));
   1293     b(eq, smi_label);
   1294   }
   1295   // Jump if either of the registers contain a non-smi.
   1296   inline void JumpIfNotSmi(Register value, Label* not_smi_label) {
   1297     tst(value, Operand(kSmiTagMask));
   1298     b(ne, not_smi_label);
   1299   }
   1300   // Jump if either of the registers contain a non-smi.
   1301   void JumpIfNotBothSmi(Register reg1, Register reg2, Label* on_not_both_smi);
   1302   // Jump if either of the registers contain a smi.
   1303   void JumpIfEitherSmi(Register reg1, Register reg2, Label* on_either_smi);
   1304 
   1305   // Abort execution if argument is a number, enabled via --debug-code.
   1306   void AssertNotNumber(Register object);
   1307 
   1308   // Abort execution if argument is a smi, enabled via --debug-code.
   1309   void AssertNotSmi(Register object);
   1310   void AssertSmi(Register object);
   1311 
   1312   // Abort execution if argument is not a string, enabled via --debug-code.
   1313   void AssertString(Register object);
   1314 
   1315   // Abort execution if argument is not a name, enabled via --debug-code.
   1316   void AssertName(Register object);
   1317 
   1318   // Abort execution if argument is not a JSFunction, enabled via --debug-code.
   1319   void AssertFunction(Register object);
   1320 
   1321   // Abort execution if argument is not a JSBoundFunction,
   1322   // enabled via --debug-code.
   1323   void AssertBoundFunction(Register object);
   1324 
   1325   // Abort execution if argument is not a JSGeneratorObject,
   1326   // enabled via --debug-code.
   1327   void AssertGeneratorObject(Register object);
   1328 
   1329   // Abort execution if argument is not a JSReceiver, enabled via --debug-code.
   1330   void AssertReceiver(Register object);
   1331 
   1332   // Abort execution if argument is not undefined or an AllocationSite, enabled
   1333   // via --debug-code.
   1334   void AssertUndefinedOrAllocationSite(Register object, Register scratch);
   1335 
   1336   // Abort execution if reg is not the root value with the given index,
   1337   // enabled via --debug-code.
   1338   void AssertIsRoot(Register reg, Heap::RootListIndex index);
   1339 
   1340   // ---------------------------------------------------------------------------
   1341   // HeapNumber utilities
   1342 
   1343   void JumpIfNotHeapNumber(Register object,
   1344                            Register heap_number_map,
   1345                            Register scratch,
   1346                            Label* on_not_heap_number);
   1347 
   1348   // ---------------------------------------------------------------------------
   1349   // String utilities
   1350 
   1351   // Checks if both objects are sequential one-byte strings and jumps to label
   1352   // if either is not. Assumes that neither object is a smi.
   1353   void JumpIfNonSmisNotBothSequentialOneByteStrings(Register object1,
   1354                                                     Register object2,
   1355                                                     Register scratch1,
   1356                                                     Register scratch2,
   1357                                                     Label* failure);
   1358 
   1359   // Checks if both objects are sequential one-byte strings and jumps to label
   1360   // if either is not.
   1361   void JumpIfNotBothSequentialOneByteStrings(Register first, Register second,
   1362                                              Register scratch1,
   1363                                              Register scratch2,
   1364                                              Label* not_flat_one_byte_strings);
   1365 
   1366   // Checks if both instance types are sequential one-byte strings and jumps to
   1367   // label if either is not.
   1368   void JumpIfBothInstanceTypesAreNotSequentialOneByte(
   1369       Register first_object_instance_type, Register second_object_instance_type,
   1370       Register scratch1, Register scratch2, Label* failure);
   1371 
   1372   // Check if instance type is sequential one-byte string and jump to label if
   1373   // it is not.
   1374   void JumpIfInstanceTypeIsNotSequentialOneByte(Register type, Register scratch,
   1375                                                 Label* failure);
   1376 
   1377   void JumpIfNotUniqueNameInstanceType(Register reg, Label* not_unique_name);
   1378 
   1379   void EmitSeqStringSetCharCheck(Register string,
   1380                                  Register index,
   1381                                  Register value,
   1382                                  uint32_t encoding_mask);
   1383 
   1384 
   1385   void ClampUint8(Register output_reg, Register input_reg);
   1386 
   1387   void ClampDoubleToUint8(Register result_reg,
   1388                           DwVfpRegister input_reg,
   1389                           LowDwVfpRegister double_scratch);
   1390 
   1391 
   1392   void LoadInstanceDescriptors(Register map, Register descriptors);
   1393   void EnumLength(Register dst, Register map);
   1394   void NumberOfOwnDescriptors(Register dst, Register map);
   1395   void LoadAccessor(Register dst, Register holder, int accessor_index,
   1396                     AccessorComponent accessor);
   1397 
   1398   template<typename Field>
   1399   void DecodeField(Register dst, Register src) {
   1400     Ubfx(dst, src, Field::kShift, Field::kSize);
   1401   }
   1402 
   1403   template<typename Field>
   1404   void DecodeField(Register reg) {
   1405     DecodeField<Field>(reg, reg);
   1406   }
   1407 
   1408   template<typename Field>
   1409   void DecodeFieldToSmi(Register dst, Register src) {
   1410     static const int shift = Field::kShift;
   1411     static const int mask = Field::kMask >> shift << kSmiTagSize;
   1412     STATIC_ASSERT((mask & (0x80000000u >> (kSmiTagSize - 1))) == 0);
   1413     STATIC_ASSERT(kSmiTag == 0);
   1414     if (shift < kSmiTagSize) {
   1415       mov(dst, Operand(src, LSL, kSmiTagSize - shift));
   1416       and_(dst, dst, Operand(mask));
   1417     } else if (shift > kSmiTagSize) {
   1418       mov(dst, Operand(src, LSR, shift - kSmiTagSize));
   1419       and_(dst, dst, Operand(mask));
   1420     } else {
   1421       and_(dst, src, Operand(mask));
   1422     }
   1423   }
   1424 
   1425   template<typename Field>
   1426   void DecodeFieldToSmi(Register reg) {
   1427     DecodeField<Field>(reg, reg);
   1428   }
   1429 
   1430   // Load the type feedback vector from a JavaScript frame.
   1431   void EmitLoadTypeFeedbackVector(Register vector);
   1432 
   1433   // Activation support.
   1434   void EnterFrame(StackFrame::Type type,
   1435                   bool load_constant_pool_pointer_reg = false);
   1436   // Returns the pc offset at which the frame ends.
   1437   int LeaveFrame(StackFrame::Type type);
   1438 
   1439   // Expects object in r0 and returns map with validated enum cache
   1440   // in r0.  Assumes that any other register can be used as a scratch.
   1441   void CheckEnumCache(Label* call_runtime);
   1442 
   1443   // AllocationMemento support. Arrays may have an associated
   1444   // AllocationMemento object that can be checked for in order to pretransition
   1445   // to another type.
   1446   // On entry, receiver_reg should point to the array object.
   1447   // scratch_reg gets clobbered.
   1448   // If allocation info is present, condition flags are set to eq.
   1449   void TestJSArrayForAllocationMemento(Register receiver_reg,
   1450                                        Register scratch_reg,
   1451                                        Label* no_memento_found);
   1452 
   1453   void JumpIfJSArrayHasAllocationMemento(Register receiver_reg,
   1454                                          Register scratch_reg,
   1455                                          Label* memento_found) {
   1456     Label no_memento_found;
   1457     TestJSArrayForAllocationMemento(receiver_reg, scratch_reg,
   1458                                     &no_memento_found);
   1459     b(eq, memento_found);
   1460     bind(&no_memento_found);
   1461   }
   1462 
   1463   // Jumps to found label if a prototype map has dictionary elements.
   1464   void JumpIfDictionaryInPrototypeChain(Register object, Register scratch0,
   1465                                         Register scratch1, Label* found);
   1466 
   1467   // Loads the constant pool pointer (pp) register.
   1468   void LoadConstantPoolPointerRegisterFromCodeTargetAddress(
   1469       Register code_target_address);
   1470   void LoadConstantPoolPointerRegister();
   1471 
   1472  private:
   1473   void CallCFunctionHelper(Register function,
   1474                            int num_reg_arguments,
   1475                            int num_double_arguments);
   1476 
   1477   void Jump(intptr_t target, RelocInfo::Mode rmode, Condition cond = al);
   1478 
   1479   // Helper functions for generating invokes.
   1480   void InvokePrologue(const ParameterCount& expected,
   1481                       const ParameterCount& actual,
   1482                       Label* done,
   1483                       bool* definitely_mismatches,
   1484                       InvokeFlag flag,
   1485                       const CallWrapper& call_wrapper);
   1486 
   1487   void InitializeNewString(Register string,
   1488                            Register length,
   1489                            Heap::RootListIndex map_index,
   1490                            Register scratch1,
   1491                            Register scratch2);
   1492 
   1493   // Helper for implementing JumpIfNotInNewSpace and JumpIfInNewSpace.
   1494   void InNewSpace(Register object,
   1495                   Register scratch,
   1496                   Condition cond,  // eq for new space, ne otherwise.
   1497                   Label* branch);
   1498 
   1499   // Helper for finding the mark bits for an address.  Afterwards, the
   1500   // bitmap register points at the word with the mark bits and the mask
   1501   // the position of the first bit.  Leaves addr_reg unchanged.
   1502   inline void GetMarkBits(Register addr_reg,
   1503                           Register bitmap_reg,
   1504                           Register mask_reg);
   1505 
   1506   // Compute memory operands for safepoint stack slots.
   1507   static int SafepointRegisterStackIndex(int reg_code);
   1508   MemOperand SafepointRegisterSlot(Register reg);
   1509   MemOperand SafepointRegistersAndDoublesSlot(Register reg);
   1510 
   1511   bool generating_stub_;
   1512   bool has_frame_;
   1513   // This handle will be patched with the code object on installation.
   1514   Handle<Object> code_object_;
   1515 
   1516   // Needs access to SafepointRegisterStackIndex for compiled frame
   1517   // traversal.
   1518   friend class StandardFrame;
   1519 };
   1520 
   1521 
   1522 // The code patcher is used to patch (typically) small parts of code e.g. for
   1523 // debugging and other types of instrumentation. When using the code patcher
   1524 // the exact number of bytes specified must be emitted. It is not legal to emit
   1525 // relocation information. If any of these constraints are violated it causes
   1526 // an assertion to fail.
   1527 class CodePatcher {
   1528  public:
   1529   enum FlushICache {
   1530     FLUSH,
   1531     DONT_FLUSH
   1532   };
   1533 
   1534   CodePatcher(Isolate* isolate, byte* address, int instructions,
   1535               FlushICache flush_cache = FLUSH);
   1536   ~CodePatcher();
   1537 
   1538   // Macro assembler to emit code.
   1539   MacroAssembler* masm() { return &masm_; }
   1540 
   1541   // Emit an instruction directly.
   1542   void Emit(Instr instr);
   1543 
   1544   // Emit an address directly.
   1545   void Emit(Address addr);
   1546 
   1547   // Emit the condition part of an instruction leaving the rest of the current
   1548   // instruction unchanged.
   1549   void EmitCondition(Condition cond);
   1550 
   1551  private:
   1552   byte* address_;  // The address of the code being patched.
   1553   int size_;  // Number of bytes of the expected patch size.
   1554   MacroAssembler masm_;  // Macro assembler used to generate the code.
   1555   FlushICache flush_cache_;  // Whether to flush the I cache after patching.
   1556 };
   1557 
   1558 
   1559 // -----------------------------------------------------------------------------
   1560 // Static helper functions.
   1561 
   1562 inline MemOperand ContextMemOperand(Register context, int index = 0) {
   1563   return MemOperand(context, Context::SlotOffset(index));
   1564 }
   1565 
   1566 
   1567 inline MemOperand NativeContextMemOperand() {
   1568   return ContextMemOperand(cp, Context::NATIVE_CONTEXT_INDEX);
   1569 }
   1570 
   1571 
   1572 #ifdef GENERATED_CODE_COVERAGE
   1573 #define CODE_COVERAGE_STRINGIFY(x) #x
   1574 #define CODE_COVERAGE_TOSTRING(x) CODE_COVERAGE_STRINGIFY(x)
   1575 #define __FILE_LINE__ __FILE__ ":" CODE_COVERAGE_TOSTRING(__LINE__)
   1576 #define ACCESS_MASM(masm) masm->stop(__FILE_LINE__); masm->
   1577 #else
   1578 #define ACCESS_MASM(masm) masm->
   1579 #endif
   1580 
   1581 
   1582 }  // namespace internal
   1583 }  // namespace v8
   1584 
   1585 #endif  // V8_ARM_MACRO_ASSEMBLER_ARM_H_
   1586