Home | History | Annotate | Download | only in mips64
      1 // Copyright 2012 the V8 project authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #if V8_TARGET_ARCH_MIPS64
      6 
      7 #include "src/code-stubs.h"
      8 #include "src/api-arguments.h"
      9 #include "src/bootstrapper.h"
     10 #include "src/codegen.h"
     11 #include "src/ic/handler-compiler.h"
     12 #include "src/ic/ic.h"
     13 #include "src/ic/stub-cache.h"
     14 #include "src/isolate.h"
     15 #include "src/mips64/code-stubs-mips64.h"
     16 #include "src/regexp/jsregexp.h"
     17 #include "src/regexp/regexp-macro-assembler.h"
     18 #include "src/runtime/runtime.h"
     19 
     20 namespace v8 {
     21 namespace internal {
     22 
     23 #define __ ACCESS_MASM(masm)
     24 
     25 void ArrayNArgumentsConstructorStub::Generate(MacroAssembler* masm) {
     26   __ dsll(t9, a0, kPointerSizeLog2);
     27   __ Daddu(t9, sp, t9);
     28   __ sd(a1, MemOperand(t9, 0));
     29   __ Push(a1);
     30   __ Push(a2);
     31   __ Daddu(a0, a0, 3);
     32   __ TailCallRuntime(Runtime::kNewArray);
     33 }
     34 
     35 void FastArrayPushStub::InitializeDescriptor(CodeStubDescriptor* descriptor) {
     36   Address deopt_handler = Runtime::FunctionForId(Runtime::kArrayPush)->entry;
     37   descriptor->Initialize(a0, deopt_handler, -1, JS_FUNCTION_STUB_MODE);
     38 }
     39 
     40 void FastFunctionBindStub::InitializeDescriptor(
     41     CodeStubDescriptor* descriptor) {
     42   Address deopt_handler = Runtime::FunctionForId(Runtime::kFunctionBind)->entry;
     43   descriptor->Initialize(a0, deopt_handler, -1, JS_FUNCTION_STUB_MODE);
     44 }
     45 
     46 static void EmitIdenticalObjectComparison(MacroAssembler* masm, Label* slow,
     47                                           Condition cc);
     48 static void EmitSmiNonsmiComparison(MacroAssembler* masm,
     49                                     Register lhs,
     50                                     Register rhs,
     51                                     Label* rhs_not_nan,
     52                                     Label* slow,
     53                                     bool strict);
     54 static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm,
     55                                            Register lhs,
     56                                            Register rhs);
     57 
     58 
     59 void HydrogenCodeStub::GenerateLightweightMiss(MacroAssembler* masm,
     60                                                ExternalReference miss) {
     61   // Update the static counter each time a new code stub is generated.
     62   isolate()->counters()->code_stubs()->Increment();
     63 
     64   CallInterfaceDescriptor descriptor = GetCallInterfaceDescriptor();
     65   int param_count = descriptor.GetRegisterParameterCount();
     66   {
     67     // Call the runtime system in a fresh internal frame.
     68     FrameScope scope(masm, StackFrame::INTERNAL);
     69     DCHECK((param_count == 0) ||
     70            a0.is(descriptor.GetRegisterParameter(param_count - 1)));
     71     // Push arguments, adjust sp.
     72     __ Dsubu(sp, sp, Operand(param_count * kPointerSize));
     73     for (int i = 0; i < param_count; ++i) {
     74       // Store argument to stack.
     75       __ sd(descriptor.GetRegisterParameter(i),
     76             MemOperand(sp, (param_count - 1 - i) * kPointerSize));
     77     }
     78     __ CallExternalReference(miss, param_count);
     79   }
     80 
     81   __ Ret();
     82 }
     83 
     84 
     85 void DoubleToIStub::Generate(MacroAssembler* masm) {
     86   Label out_of_range, only_low, negate, done;
     87   Register input_reg = source();
     88   Register result_reg = destination();
     89 
     90   int double_offset = offset();
     91   // Account for saved regs if input is sp.
     92   if (input_reg.is(sp)) double_offset += 3 * kPointerSize;
     93 
     94   Register scratch =
     95       GetRegisterThatIsNotOneOf(input_reg, result_reg);
     96   Register scratch2 =
     97       GetRegisterThatIsNotOneOf(input_reg, result_reg, scratch);
     98   Register scratch3 =
     99       GetRegisterThatIsNotOneOf(input_reg, result_reg, scratch, scratch2);
    100   DoubleRegister double_scratch = kLithiumScratchDouble;
    101 
    102   __ Push(scratch, scratch2, scratch3);
    103   if (!skip_fastpath()) {
    104     // Load double input.
    105     __ ldc1(double_scratch, MemOperand(input_reg, double_offset));
    106 
    107     // Clear cumulative exception flags and save the FCSR.
    108     __ cfc1(scratch2, FCSR);
    109     __ ctc1(zero_reg, FCSR);
    110 
    111     // Try a conversion to a signed integer.
    112     __ Trunc_w_d(double_scratch, double_scratch);
    113     // Move the converted value into the result register.
    114     __ mfc1(scratch3, double_scratch);
    115 
    116     // Retrieve and restore the FCSR.
    117     __ cfc1(scratch, FCSR);
    118     __ ctc1(scratch2, FCSR);
    119 
    120     // Check for overflow and NaNs.
    121     __ And(
    122         scratch, scratch,
    123         kFCSROverflowFlagMask | kFCSRUnderflowFlagMask
    124            | kFCSRInvalidOpFlagMask);
    125     // If we had no exceptions then set result_reg and we are done.
    126     Label error;
    127     __ Branch(&error, ne, scratch, Operand(zero_reg));
    128     __ Move(result_reg, scratch3);
    129     __ Branch(&done);
    130     __ bind(&error);
    131   }
    132 
    133   // Load the double value and perform a manual truncation.
    134   Register input_high = scratch2;
    135   Register input_low = scratch3;
    136 
    137   __ lw(input_low,
    138         MemOperand(input_reg, double_offset + Register::kMantissaOffset));
    139   __ lw(input_high,
    140         MemOperand(input_reg, double_offset + Register::kExponentOffset));
    141 
    142   Label normal_exponent, restore_sign;
    143   // Extract the biased exponent in result.
    144   __ Ext(result_reg,
    145          input_high,
    146          HeapNumber::kExponentShift,
    147          HeapNumber::kExponentBits);
    148 
    149   // Check for Infinity and NaNs, which should return 0.
    150   __ Subu(scratch, result_reg, HeapNumber::kExponentMask);
    151   __ Movz(result_reg, zero_reg, scratch);
    152   __ Branch(&done, eq, scratch, Operand(zero_reg));
    153 
    154   // Express exponent as delta to (number of mantissa bits + 31).
    155   __ Subu(result_reg,
    156           result_reg,
    157           Operand(HeapNumber::kExponentBias + HeapNumber::kMantissaBits + 31));
    158 
    159   // If the delta is strictly positive, all bits would be shifted away,
    160   // which means that we can return 0.
    161   __ Branch(&normal_exponent, le, result_reg, Operand(zero_reg));
    162   __ mov(result_reg, zero_reg);
    163   __ Branch(&done);
    164 
    165   __ bind(&normal_exponent);
    166   const int kShiftBase = HeapNumber::kNonMantissaBitsInTopWord - 1;
    167   // Calculate shift.
    168   __ Addu(scratch, result_reg, Operand(kShiftBase + HeapNumber::kMantissaBits));
    169 
    170   // Save the sign.
    171   Register sign = result_reg;
    172   result_reg = no_reg;
    173   __ And(sign, input_high, Operand(HeapNumber::kSignMask));
    174 
    175   // On ARM shifts > 31 bits are valid and will result in zero. On MIPS we need
    176   // to check for this specific case.
    177   Label high_shift_needed, high_shift_done;
    178   __ Branch(&high_shift_needed, lt, scratch, Operand(32));
    179   __ mov(input_high, zero_reg);
    180   __ Branch(&high_shift_done);
    181   __ bind(&high_shift_needed);
    182 
    183   // Set the implicit 1 before the mantissa part in input_high.
    184   __ Or(input_high,
    185         input_high,
    186         Operand(1 << HeapNumber::kMantissaBitsInTopWord));
    187   // Shift the mantissa bits to the correct position.
    188   // We don't need to clear non-mantissa bits as they will be shifted away.
    189   // If they weren't, it would mean that the answer is in the 32bit range.
    190   __ sllv(input_high, input_high, scratch);
    191 
    192   __ bind(&high_shift_done);
    193 
    194   // Replace the shifted bits with bits from the lower mantissa word.
    195   Label pos_shift, shift_done;
    196   __ li(at, 32);
    197   __ subu(scratch, at, scratch);
    198   __ Branch(&pos_shift, ge, scratch, Operand(zero_reg));
    199 
    200   // Negate scratch.
    201   __ Subu(scratch, zero_reg, scratch);
    202   __ sllv(input_low, input_low, scratch);
    203   __ Branch(&shift_done);
    204 
    205   __ bind(&pos_shift);
    206   __ srlv(input_low, input_low, scratch);
    207 
    208   __ bind(&shift_done);
    209   __ Or(input_high, input_high, Operand(input_low));
    210   // Restore sign if necessary.
    211   __ mov(scratch, sign);
    212   result_reg = sign;
    213   sign = no_reg;
    214   __ Subu(result_reg, zero_reg, input_high);
    215   __ Movz(result_reg, input_high, scratch);
    216 
    217   __ bind(&done);
    218 
    219   __ Pop(scratch, scratch2, scratch3);
    220   __ Ret();
    221 }
    222 
    223 
    224 // Handle the case where the lhs and rhs are the same object.
    225 // Equality is almost reflexive (everything but NaN), so this is a test
    226 // for "identity and not NaN".
    227 static void EmitIdenticalObjectComparison(MacroAssembler* masm, Label* slow,
    228                                           Condition cc) {
    229   Label not_identical;
    230   Label heap_number, return_equal;
    231   Register exp_mask_reg = t1;
    232 
    233   __ Branch(&not_identical, ne, a0, Operand(a1));
    234 
    235   __ li(exp_mask_reg, Operand(HeapNumber::kExponentMask));
    236 
    237   // Test for NaN. Sadly, we can't just compare to Factory::nan_value(),
    238   // so we do the second best thing - test it ourselves.
    239   // They are both equal and they are not both Smis so both of them are not
    240   // Smis. If it's not a heap number, then return equal.
    241   __ GetObjectType(a0, t0, t0);
    242   if (cc == less || cc == greater) {
    243     // Call runtime on identical JSObjects.
    244     __ Branch(slow, greater, t0, Operand(FIRST_JS_RECEIVER_TYPE));
    245     // Call runtime on identical symbols since we need to throw a TypeError.
    246     __ Branch(slow, eq, t0, Operand(SYMBOL_TYPE));
    247     // Call runtime on identical SIMD values since we must throw a TypeError.
    248     __ Branch(slow, eq, t0, Operand(SIMD128_VALUE_TYPE));
    249   } else {
    250     __ Branch(&heap_number, eq, t0, Operand(HEAP_NUMBER_TYPE));
    251     // Comparing JS objects with <=, >= is complicated.
    252     if (cc != eq) {
    253       __ Branch(slow, greater, t0, Operand(FIRST_JS_RECEIVER_TYPE));
    254       // Call runtime on identical symbols since we need to throw a TypeError.
    255       __ Branch(slow, eq, t0, Operand(SYMBOL_TYPE));
    256       // Call runtime on identical SIMD values since we must throw a TypeError.
    257       __ Branch(slow, eq, t0, Operand(SIMD128_VALUE_TYPE));
    258       // Normally here we fall through to return_equal, but undefined is
    259       // special: (undefined == undefined) == true, but
    260       // (undefined <= undefined) == false!  See ECMAScript 11.8.5.
    261       if (cc == less_equal || cc == greater_equal) {
    262         __ Branch(&return_equal, ne, t0, Operand(ODDBALL_TYPE));
    263         __ LoadRoot(a6, Heap::kUndefinedValueRootIndex);
    264         __ Branch(&return_equal, ne, a0, Operand(a6));
    265         DCHECK(is_int16(GREATER) && is_int16(LESS));
    266         __ Ret(USE_DELAY_SLOT);
    267         if (cc == le) {
    268           // undefined <= undefined should fail.
    269           __ li(v0, Operand(GREATER));
    270         } else  {
    271           // undefined >= undefined should fail.
    272           __ li(v0, Operand(LESS));
    273         }
    274       }
    275     }
    276   }
    277 
    278   __ bind(&return_equal);
    279   DCHECK(is_int16(GREATER) && is_int16(LESS));
    280   __ Ret(USE_DELAY_SLOT);
    281   if (cc == less) {
    282     __ li(v0, Operand(GREATER));  // Things aren't less than themselves.
    283   } else if (cc == greater) {
    284     __ li(v0, Operand(LESS));     // Things aren't greater than themselves.
    285   } else {
    286     __ mov(v0, zero_reg);         // Things are <=, >=, ==, === themselves.
    287   }
    288   // For less and greater we don't have to check for NaN since the result of
    289   // x < x is false regardless.  For the others here is some code to check
    290   // for NaN.
    291   if (cc != lt && cc != gt) {
    292     __ bind(&heap_number);
    293     // It is a heap number, so return non-equal if it's NaN and equal if it's
    294     // not NaN.
    295 
    296     // The representation of NaN values has all exponent bits (52..62) set,
    297     // and not all mantissa bits (0..51) clear.
    298     // Read top bits of double representation (second word of value).
    299     __ lwu(a6, FieldMemOperand(a0, HeapNumber::kExponentOffset));
    300     // Test that exponent bits are all set.
    301     __ And(a7, a6, Operand(exp_mask_reg));
    302     // If all bits not set (ne cond), then not a NaN, objects are equal.
    303     __ Branch(&return_equal, ne, a7, Operand(exp_mask_reg));
    304 
    305     // Shift out flag and all exponent bits, retaining only mantissa.
    306     __ sll(a6, a6, HeapNumber::kNonMantissaBitsInTopWord);
    307     // Or with all low-bits of mantissa.
    308     __ lwu(a7, FieldMemOperand(a0, HeapNumber::kMantissaOffset));
    309     __ Or(v0, a7, Operand(a6));
    310     // For equal we already have the right value in v0:  Return zero (equal)
    311     // if all bits in mantissa are zero (it's an Infinity) and non-zero if
    312     // not (it's a NaN).  For <= and >= we need to load v0 with the failing
    313     // value if it's a NaN.
    314     if (cc != eq) {
    315       // All-zero means Infinity means equal.
    316       __ Ret(eq, v0, Operand(zero_reg));
    317       DCHECK(is_int16(GREATER) && is_int16(LESS));
    318       __ Ret(USE_DELAY_SLOT);
    319       if (cc == le) {
    320         __ li(v0, Operand(GREATER));  // NaN <= NaN should fail.
    321       } else {
    322         __ li(v0, Operand(LESS));     // NaN >= NaN should fail.
    323       }
    324     }
    325   }
    326   // No fall through here.
    327 
    328   __ bind(&not_identical);
    329 }
    330 
    331 
    332 static void EmitSmiNonsmiComparison(MacroAssembler* masm,
    333                                     Register lhs,
    334                                     Register rhs,
    335                                     Label* both_loaded_as_doubles,
    336                                     Label* slow,
    337                                     bool strict) {
    338   DCHECK((lhs.is(a0) && rhs.is(a1)) ||
    339          (lhs.is(a1) && rhs.is(a0)));
    340 
    341   Label lhs_is_smi;
    342   __ JumpIfSmi(lhs, &lhs_is_smi);
    343   // Rhs is a Smi.
    344   // Check whether the non-smi is a heap number.
    345   __ GetObjectType(lhs, t0, t0);
    346   if (strict) {
    347     // If lhs was not a number and rhs was a Smi then strict equality cannot
    348     // succeed. Return non-equal (lhs is already not zero).
    349     __ Ret(USE_DELAY_SLOT, ne, t0, Operand(HEAP_NUMBER_TYPE));
    350     __ mov(v0, lhs);
    351   } else {
    352     // Smi compared non-strictly with a non-Smi non-heap-number. Call
    353     // the runtime.
    354     __ Branch(slow, ne, t0, Operand(HEAP_NUMBER_TYPE));
    355   }
    356   // Rhs is a smi, lhs is a number.
    357   // Convert smi rhs to double.
    358   __ SmiUntag(at, rhs);
    359   __ mtc1(at, f14);
    360   __ cvt_d_w(f14, f14);
    361   __ ldc1(f12, FieldMemOperand(lhs, HeapNumber::kValueOffset));
    362 
    363   // We now have both loaded as doubles.
    364   __ jmp(both_loaded_as_doubles);
    365 
    366   __ bind(&lhs_is_smi);
    367   // Lhs is a Smi.  Check whether the non-smi is a heap number.
    368   __ GetObjectType(rhs, t0, t0);
    369   if (strict) {
    370     // If lhs was not a number and rhs was a Smi then strict equality cannot
    371     // succeed. Return non-equal.
    372     __ Ret(USE_DELAY_SLOT, ne, t0, Operand(HEAP_NUMBER_TYPE));
    373     __ li(v0, Operand(1));
    374   } else {
    375     // Smi compared non-strictly with a non-Smi non-heap-number. Call
    376     // the runtime.
    377     __ Branch(slow, ne, t0, Operand(HEAP_NUMBER_TYPE));
    378   }
    379 
    380   // Lhs is a smi, rhs is a number.
    381   // Convert smi lhs to double.
    382   __ SmiUntag(at, lhs);
    383   __ mtc1(at, f12);
    384   __ cvt_d_w(f12, f12);
    385   __ ldc1(f14, FieldMemOperand(rhs, HeapNumber::kValueOffset));
    386   // Fall through to both_loaded_as_doubles.
    387 }
    388 
    389 
    390 static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm,
    391                                            Register lhs,
    392                                            Register rhs) {
    393     // If either operand is a JS object or an oddball value, then they are
    394     // not equal since their pointers are different.
    395     // There is no test for undetectability in strict equality.
    396     STATIC_ASSERT(LAST_TYPE == LAST_JS_RECEIVER_TYPE);
    397     Label first_non_object;
    398     // Get the type of the first operand into a2 and compare it with
    399     // FIRST_JS_RECEIVER_TYPE.
    400     __ GetObjectType(lhs, a2, a2);
    401     __ Branch(&first_non_object, less, a2, Operand(FIRST_JS_RECEIVER_TYPE));
    402 
    403     // Return non-zero.
    404     Label return_not_equal;
    405     __ bind(&return_not_equal);
    406     __ Ret(USE_DELAY_SLOT);
    407     __ li(v0, Operand(1));
    408 
    409     __ bind(&first_non_object);
    410     // Check for oddballs: true, false, null, undefined.
    411     __ Branch(&return_not_equal, eq, a2, Operand(ODDBALL_TYPE));
    412 
    413     __ GetObjectType(rhs, a3, a3);
    414     __ Branch(&return_not_equal, greater, a3, Operand(FIRST_JS_RECEIVER_TYPE));
    415 
    416     // Check for oddballs: true, false, null, undefined.
    417     __ Branch(&return_not_equal, eq, a3, Operand(ODDBALL_TYPE));
    418 
    419     // Now that we have the types we might as well check for
    420     // internalized-internalized.
    421     STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
    422     __ Or(a2, a2, Operand(a3));
    423     __ And(at, a2, Operand(kIsNotStringMask | kIsNotInternalizedMask));
    424     __ Branch(&return_not_equal, eq, at, Operand(zero_reg));
    425 }
    426 
    427 
    428 static void EmitCheckForTwoHeapNumbers(MacroAssembler* masm,
    429                                        Register lhs,
    430                                        Register rhs,
    431                                        Label* both_loaded_as_doubles,
    432                                        Label* not_heap_numbers,
    433                                        Label* slow) {
    434   __ GetObjectType(lhs, a3, a2);
    435   __ Branch(not_heap_numbers, ne, a2, Operand(HEAP_NUMBER_TYPE));
    436   __ ld(a2, FieldMemOperand(rhs, HeapObject::kMapOffset));
    437   // If first was a heap number & second wasn't, go to slow case.
    438   __ Branch(slow, ne, a3, Operand(a2));
    439 
    440   // Both are heap numbers. Load them up then jump to the code we have
    441   // for that.
    442   __ ldc1(f12, FieldMemOperand(lhs, HeapNumber::kValueOffset));
    443   __ ldc1(f14, FieldMemOperand(rhs, HeapNumber::kValueOffset));
    444 
    445   __ jmp(both_loaded_as_doubles);
    446 }
    447 
    448 
    449 // Fast negative check for internalized-to-internalized equality.
    450 static void EmitCheckForInternalizedStringsOrObjects(MacroAssembler* masm,
    451                                                      Register lhs, Register rhs,
    452                                                      Label* possible_strings,
    453                                                      Label* runtime_call) {
    454   DCHECK((lhs.is(a0) && rhs.is(a1)) ||
    455          (lhs.is(a1) && rhs.is(a0)));
    456 
    457   // a2 is object type of rhs.
    458   Label object_test, return_equal, return_unequal, undetectable;
    459   STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
    460   __ And(at, a2, Operand(kIsNotStringMask));
    461   __ Branch(&object_test, ne, at, Operand(zero_reg));
    462   __ And(at, a2, Operand(kIsNotInternalizedMask));
    463   __ Branch(possible_strings, ne, at, Operand(zero_reg));
    464   __ GetObjectType(rhs, a3, a3);
    465   __ Branch(runtime_call, ge, a3, Operand(FIRST_NONSTRING_TYPE));
    466   __ And(at, a3, Operand(kIsNotInternalizedMask));
    467   __ Branch(possible_strings, ne, at, Operand(zero_reg));
    468 
    469   // Both are internalized. We already checked they weren't the same pointer so
    470   // they are not equal. Return non-equal by returning the non-zero object
    471   // pointer in v0.
    472   __ Ret(USE_DELAY_SLOT);
    473   __ mov(v0, a0);  // In delay slot.
    474 
    475   __ bind(&object_test);
    476   __ ld(a2, FieldMemOperand(lhs, HeapObject::kMapOffset));
    477   __ ld(a3, FieldMemOperand(rhs, HeapObject::kMapOffset));
    478   __ lbu(t0, FieldMemOperand(a2, Map::kBitFieldOffset));
    479   __ lbu(t1, FieldMemOperand(a3, Map::kBitFieldOffset));
    480   __ And(at, t0, Operand(1 << Map::kIsUndetectable));
    481   __ Branch(&undetectable, ne, at, Operand(zero_reg));
    482   __ And(at, t1, Operand(1 << Map::kIsUndetectable));
    483   __ Branch(&return_unequal, ne, at, Operand(zero_reg));
    484 
    485   __ GetInstanceType(a2, a2);
    486   __ Branch(runtime_call, lt, a2, Operand(FIRST_JS_RECEIVER_TYPE));
    487   __ GetInstanceType(a3, a3);
    488   __ Branch(runtime_call, lt, a3, Operand(FIRST_JS_RECEIVER_TYPE));
    489 
    490   __ bind(&return_unequal);
    491   // Return non-equal by returning the non-zero object pointer in v0.
    492   __ Ret(USE_DELAY_SLOT);
    493   __ mov(v0, a0);  // In delay slot.
    494 
    495   __ bind(&undetectable);
    496   __ And(at, t1, Operand(1 << Map::kIsUndetectable));
    497   __ Branch(&return_unequal, eq, at, Operand(zero_reg));
    498 
    499   // If both sides are JSReceivers, then the result is false according to
    500   // the HTML specification, which says that only comparisons with null or
    501   // undefined are affected by special casing for document.all.
    502   __ GetInstanceType(a2, a2);
    503   __ Branch(&return_equal, eq, a2, Operand(ODDBALL_TYPE));
    504   __ GetInstanceType(a3, a3);
    505   __ Branch(&return_unequal, ne, a3, Operand(ODDBALL_TYPE));
    506 
    507   __ bind(&return_equal);
    508   __ Ret(USE_DELAY_SLOT);
    509   __ li(v0, Operand(EQUAL));  // In delay slot.
    510 }
    511 
    512 
    513 static void CompareICStub_CheckInputType(MacroAssembler* masm, Register input,
    514                                          Register scratch,
    515                                          CompareICState::State expected,
    516                                          Label* fail) {
    517   Label ok;
    518   if (expected == CompareICState::SMI) {
    519     __ JumpIfNotSmi(input, fail);
    520   } else if (expected == CompareICState::NUMBER) {
    521     __ JumpIfSmi(input, &ok);
    522     __ CheckMap(input, scratch, Heap::kHeapNumberMapRootIndex, fail,
    523                 DONT_DO_SMI_CHECK);
    524   }
    525   // We could be strict about internalized/string here, but as long as
    526   // hydrogen doesn't care, the stub doesn't have to care either.
    527   __ bind(&ok);
    528 }
    529 
    530 
    531 // On entry a1 and a2 are the values to be compared.
    532 // On exit a0 is 0, positive or negative to indicate the result of
    533 // the comparison.
    534 void CompareICStub::GenerateGeneric(MacroAssembler* masm) {
    535   Register lhs = a1;
    536   Register rhs = a0;
    537   Condition cc = GetCondition();
    538 
    539   Label miss;
    540   CompareICStub_CheckInputType(masm, lhs, a2, left(), &miss);
    541   CompareICStub_CheckInputType(masm, rhs, a3, right(), &miss);
    542 
    543   Label slow;  // Call builtin.
    544   Label not_smis, both_loaded_as_doubles;
    545 
    546   Label not_two_smis, smi_done;
    547   __ Or(a2, a1, a0);
    548   __ JumpIfNotSmi(a2, &not_two_smis);
    549   __ SmiUntag(a1);
    550   __ SmiUntag(a0);
    551 
    552   __ Ret(USE_DELAY_SLOT);
    553   __ dsubu(v0, a1, a0);
    554   __ bind(&not_two_smis);
    555 
    556   // NOTICE! This code is only reached after a smi-fast-case check, so
    557   // it is certain that at least one operand isn't a smi.
    558 
    559   // Handle the case where the objects are identical.  Either returns the answer
    560   // or goes to slow.  Only falls through if the objects were not identical.
    561   EmitIdenticalObjectComparison(masm, &slow, cc);
    562 
    563   // If either is a Smi (we know that not both are), then they can only
    564   // be strictly equal if the other is a HeapNumber.
    565   STATIC_ASSERT(kSmiTag == 0);
    566   DCHECK_EQ(static_cast<Smi*>(0), Smi::FromInt(0));
    567   __ And(a6, lhs, Operand(rhs));
    568   __ JumpIfNotSmi(a6, &not_smis, a4);
    569   // One operand is a smi. EmitSmiNonsmiComparison generates code that can:
    570   // 1) Return the answer.
    571   // 2) Go to slow.
    572   // 3) Fall through to both_loaded_as_doubles.
    573   // 4) Jump to rhs_not_nan.
    574   // In cases 3 and 4 we have found out we were dealing with a number-number
    575   // comparison and the numbers have been loaded into f12 and f14 as doubles,
    576   // or in GP registers (a0, a1, a2, a3) depending on the presence of the FPU.
    577   EmitSmiNonsmiComparison(masm, lhs, rhs,
    578                           &both_loaded_as_doubles, &slow, strict());
    579 
    580   __ bind(&both_loaded_as_doubles);
    581   // f12, f14 are the double representations of the left hand side
    582   // and the right hand side if we have FPU. Otherwise a2, a3 represent
    583   // left hand side and a0, a1 represent right hand side.
    584 
    585   Label nan;
    586   __ li(a4, Operand(LESS));
    587   __ li(a5, Operand(GREATER));
    588   __ li(a6, Operand(EQUAL));
    589 
    590   // Check if either rhs or lhs is NaN.
    591   __ BranchF(NULL, &nan, eq, f12, f14);
    592 
    593   // Check if LESS condition is satisfied. If true, move conditionally
    594   // result to v0.
    595   if (kArchVariant != kMips64r6) {
    596     __ c(OLT, D, f12, f14);
    597     __ Movt(v0, a4);
    598     // Use previous check to store conditionally to v0 oposite condition
    599     // (GREATER). If rhs is equal to lhs, this will be corrected in next
    600     // check.
    601     __ Movf(v0, a5);
    602     // Check if EQUAL condition is satisfied. If true, move conditionally
    603     // result to v0.
    604     __ c(EQ, D, f12, f14);
    605     __ Movt(v0, a6);
    606   } else {
    607     Label skip;
    608     __ BranchF(USE_DELAY_SLOT, &skip, NULL, lt, f12, f14);
    609     __ mov(v0, a4);  // Return LESS as result.
    610 
    611     __ BranchF(USE_DELAY_SLOT, &skip, NULL, eq, f12, f14);
    612     __ mov(v0, a6);  // Return EQUAL as result.
    613 
    614     __ mov(v0, a5);  // Return GREATER as result.
    615     __ bind(&skip);
    616   }
    617   __ Ret();
    618 
    619   __ bind(&nan);
    620   // NaN comparisons always fail.
    621   // Load whatever we need in v0 to make the comparison fail.
    622   DCHECK(is_int16(GREATER) && is_int16(LESS));
    623   __ Ret(USE_DELAY_SLOT);
    624   if (cc == lt || cc == le) {
    625     __ li(v0, Operand(GREATER));
    626   } else {
    627     __ li(v0, Operand(LESS));
    628   }
    629 
    630 
    631   __ bind(&not_smis);
    632   // At this point we know we are dealing with two different objects,
    633   // and neither of them is a Smi. The objects are in lhs_ and rhs_.
    634   if (strict()) {
    635     // This returns non-equal for some object types, or falls through if it
    636     // was not lucky.
    637     EmitStrictTwoHeapObjectCompare(masm, lhs, rhs);
    638   }
    639 
    640   Label check_for_internalized_strings;
    641   Label flat_string_check;
    642   // Check for heap-number-heap-number comparison. Can jump to slow case,
    643   // or load both doubles and jump to the code that handles
    644   // that case. If the inputs are not doubles then jumps to
    645   // check_for_internalized_strings.
    646   // In this case a2 will contain the type of lhs_.
    647   EmitCheckForTwoHeapNumbers(masm,
    648                              lhs,
    649                              rhs,
    650                              &both_loaded_as_doubles,
    651                              &check_for_internalized_strings,
    652                              &flat_string_check);
    653 
    654   __ bind(&check_for_internalized_strings);
    655   if (cc == eq && !strict()) {
    656     // Returns an answer for two internalized strings or two
    657     // detectable objects.
    658     // Otherwise jumps to string case or not both strings case.
    659     // Assumes that a2 is the type of lhs_ on entry.
    660     EmitCheckForInternalizedStringsOrObjects(
    661         masm, lhs, rhs, &flat_string_check, &slow);
    662   }
    663 
    664   // Check for both being sequential one-byte strings,
    665   // and inline if that is the case.
    666   __ bind(&flat_string_check);
    667 
    668   __ JumpIfNonSmisNotBothSequentialOneByteStrings(lhs, rhs, a2, a3, &slow);
    669 
    670   __ IncrementCounter(isolate()->counters()->string_compare_native(), 1, a2,
    671                       a3);
    672   if (cc == eq) {
    673     StringHelper::GenerateFlatOneByteStringEquals(masm, lhs, rhs, a2, a3, a4);
    674   } else {
    675     StringHelper::GenerateCompareFlatOneByteStrings(masm, lhs, rhs, a2, a3, a4,
    676                                                     a5);
    677   }
    678   // Never falls through to here.
    679 
    680   __ bind(&slow);
    681   if (cc == eq) {
    682     {
    683       FrameScope scope(masm, StackFrame::INTERNAL);
    684       __ Push(lhs, rhs);
    685       __ CallRuntime(strict() ? Runtime::kStrictEqual : Runtime::kEqual);
    686     }
    687     // Turn true into 0 and false into some non-zero value.
    688     STATIC_ASSERT(EQUAL == 0);
    689     __ LoadRoot(a0, Heap::kTrueValueRootIndex);
    690     __ Ret(USE_DELAY_SLOT);
    691     __ subu(v0, v0, a0);  // In delay slot.
    692   } else {
    693     // Prepare for call to builtin. Push object pointers, a0 (lhs) first,
    694     // a1 (rhs) second.
    695     __ Push(lhs, rhs);
    696     int ncr;  // NaN compare result.
    697     if (cc == lt || cc == le) {
    698       ncr = GREATER;
    699     } else {
    700       DCHECK(cc == gt || cc == ge);  // Remaining cases.
    701       ncr = LESS;
    702     }
    703     __ li(a0, Operand(Smi::FromInt(ncr)));
    704     __ push(a0);
    705 
    706     // Call the native; it returns -1 (less), 0 (equal), or 1 (greater)
    707     // tagged as a small integer.
    708     __ TailCallRuntime(Runtime::kCompare);
    709   }
    710 
    711   __ bind(&miss);
    712   GenerateMiss(masm);
    713 }
    714 
    715 
    716 void StoreRegistersStateStub::Generate(MacroAssembler* masm) {
    717   __ mov(t9, ra);
    718   __ pop(ra);
    719   __ PushSafepointRegisters();
    720   __ Jump(t9);
    721 }
    722 
    723 
    724 void RestoreRegistersStateStub::Generate(MacroAssembler* masm) {
    725   __ mov(t9, ra);
    726   __ pop(ra);
    727   __ PopSafepointRegisters();
    728   __ Jump(t9);
    729 }
    730 
    731 
    732 void StoreBufferOverflowStub::Generate(MacroAssembler* masm) {
    733   // We don't allow a GC during a store buffer overflow so there is no need to
    734   // store the registers in any particular way, but we do have to store and
    735   // restore them.
    736   __ MultiPush(kJSCallerSaved | ra.bit());
    737   if (save_doubles()) {
    738     __ MultiPushFPU(kCallerSavedFPU);
    739   }
    740   const int argument_count = 1;
    741   const int fp_argument_count = 0;
    742   const Register scratch = a1;
    743 
    744   AllowExternalCallThatCantCauseGC scope(masm);
    745   __ PrepareCallCFunction(argument_count, fp_argument_count, scratch);
    746   __ li(a0, Operand(ExternalReference::isolate_address(isolate())));
    747   __ CallCFunction(
    748       ExternalReference::store_buffer_overflow_function(isolate()),
    749       argument_count);
    750   if (save_doubles()) {
    751     __ MultiPopFPU(kCallerSavedFPU);
    752   }
    753 
    754   __ MultiPop(kJSCallerSaved | ra.bit());
    755   __ Ret();
    756 }
    757 
    758 
    759 void MathPowStub::Generate(MacroAssembler* masm) {
    760   const Register base = a1;
    761   const Register exponent = MathPowTaggedDescriptor::exponent();
    762   DCHECK(exponent.is(a2));
    763   const Register heapnumbermap = a5;
    764   const Register heapnumber = v0;
    765   const DoubleRegister double_base = f2;
    766   const DoubleRegister double_exponent = f4;
    767   const DoubleRegister double_result = f0;
    768   const DoubleRegister double_scratch = f6;
    769   const FPURegister single_scratch = f8;
    770   const Register scratch = t1;
    771   const Register scratch2 = a7;
    772 
    773   Label call_runtime, done, int_exponent;
    774   if (exponent_type() == ON_STACK) {
    775     Label base_is_smi, unpack_exponent;
    776     // The exponent and base are supplied as arguments on the stack.
    777     // This can only happen if the stub is called from non-optimized code.
    778     // Load input parameters from stack to double registers.
    779     __ ld(base, MemOperand(sp, 1 * kPointerSize));
    780     __ ld(exponent, MemOperand(sp, 0 * kPointerSize));
    781 
    782     __ LoadRoot(heapnumbermap, Heap::kHeapNumberMapRootIndex);
    783 
    784     __ UntagAndJumpIfSmi(scratch, base, &base_is_smi);
    785     __ ld(scratch, FieldMemOperand(base, JSObject::kMapOffset));
    786     __ Branch(&call_runtime, ne, scratch, Operand(heapnumbermap));
    787 
    788     __ ldc1(double_base, FieldMemOperand(base, HeapNumber::kValueOffset));
    789     __ jmp(&unpack_exponent);
    790 
    791     __ bind(&base_is_smi);
    792     __ mtc1(scratch, single_scratch);
    793     __ cvt_d_w(double_base, single_scratch);
    794     __ bind(&unpack_exponent);
    795 
    796     __ UntagAndJumpIfSmi(scratch, exponent, &int_exponent);
    797 
    798     __ ld(scratch, FieldMemOperand(exponent, JSObject::kMapOffset));
    799     __ Branch(&call_runtime, ne, scratch, Operand(heapnumbermap));
    800     __ ldc1(double_exponent,
    801             FieldMemOperand(exponent, HeapNumber::kValueOffset));
    802   } else if (exponent_type() == TAGGED) {
    803     // Base is already in double_base.
    804     __ UntagAndJumpIfSmi(scratch, exponent, &int_exponent);
    805 
    806     __ ldc1(double_exponent,
    807             FieldMemOperand(exponent, HeapNumber::kValueOffset));
    808   }
    809 
    810   if (exponent_type() != INTEGER) {
    811     Label int_exponent_convert;
    812     // Detect integer exponents stored as double.
    813     __ EmitFPUTruncate(kRoundToMinusInf,
    814                        scratch,
    815                        double_exponent,
    816                        at,
    817                        double_scratch,
    818                        scratch2,
    819                        kCheckForInexactConversion);
    820     // scratch2 == 0 means there was no conversion error.
    821     __ Branch(&int_exponent_convert, eq, scratch2, Operand(zero_reg));
    822 
    823     if (exponent_type() == ON_STACK) {
    824       // Detect square root case.  Crankshaft detects constant +/-0.5 at
    825       // compile time and uses DoMathPowHalf instead.  We then skip this check
    826       // for non-constant cases of +/-0.5 as these hardly occur.
    827       Label not_plus_half;
    828 
    829       // Test for 0.5.
    830       __ Move(double_scratch, 0.5);
    831       __ BranchF(USE_DELAY_SLOT,
    832                  &not_plus_half,
    833                  NULL,
    834                  ne,
    835                  double_exponent,
    836                  double_scratch);
    837       // double_scratch can be overwritten in the delay slot.
    838       // Calculates square root of base.  Check for the special case of
    839       // Math.pow(-Infinity, 0.5) == Infinity (ECMA spec, 15.8.2.13).
    840       __ Move(double_scratch, static_cast<double>(-V8_INFINITY));
    841       __ BranchF(USE_DELAY_SLOT, &done, NULL, eq, double_base, double_scratch);
    842       __ neg_d(double_result, double_scratch);
    843 
    844       // Add +0 to convert -0 to +0.
    845       __ add_d(double_scratch, double_base, kDoubleRegZero);
    846       __ sqrt_d(double_result, double_scratch);
    847       __ jmp(&done);
    848 
    849       __ bind(&not_plus_half);
    850       __ Move(double_scratch, -0.5);
    851       __ BranchF(USE_DELAY_SLOT,
    852                  &call_runtime,
    853                  NULL,
    854                  ne,
    855                  double_exponent,
    856                  double_scratch);
    857       // double_scratch can be overwritten in the delay slot.
    858       // Calculates square root of base.  Check for the special case of
    859       // Math.pow(-Infinity, -0.5) == 0 (ECMA spec, 15.8.2.13).
    860       __ Move(double_scratch, static_cast<double>(-V8_INFINITY));
    861       __ BranchF(USE_DELAY_SLOT, &done, NULL, eq, double_base, double_scratch);
    862       __ Move(double_result, kDoubleRegZero);
    863 
    864       // Add +0 to convert -0 to +0.
    865       __ add_d(double_scratch, double_base, kDoubleRegZero);
    866       __ Move(double_result, 1.);
    867       __ sqrt_d(double_scratch, double_scratch);
    868       __ div_d(double_result, double_result, double_scratch);
    869       __ jmp(&done);
    870     }
    871 
    872     __ push(ra);
    873     {
    874       AllowExternalCallThatCantCauseGC scope(masm);
    875       __ PrepareCallCFunction(0, 2, scratch2);
    876       __ MovToFloatParameters(double_base, double_exponent);
    877       __ CallCFunction(
    878           ExternalReference::power_double_double_function(isolate()),
    879           0, 2);
    880     }
    881     __ pop(ra);
    882     __ MovFromFloatResult(double_result);
    883     __ jmp(&done);
    884 
    885     __ bind(&int_exponent_convert);
    886   }
    887 
    888   // Calculate power with integer exponent.
    889   __ bind(&int_exponent);
    890 
    891   // Get two copies of exponent in the registers scratch and exponent.
    892   if (exponent_type() == INTEGER) {
    893     __ mov(scratch, exponent);
    894   } else {
    895     // Exponent has previously been stored into scratch as untagged integer.
    896     __ mov(exponent, scratch);
    897   }
    898 
    899   __ mov_d(double_scratch, double_base);  // Back up base.
    900   __ Move(double_result, 1.0);
    901 
    902   // Get absolute value of exponent.
    903   Label positive_exponent;
    904   __ Branch(&positive_exponent, ge, scratch, Operand(zero_reg));
    905   __ Dsubu(scratch, zero_reg, scratch);
    906   __ bind(&positive_exponent);
    907 
    908   Label while_true, no_carry, loop_end;
    909   __ bind(&while_true);
    910 
    911   __ And(scratch2, scratch, 1);
    912 
    913   __ Branch(&no_carry, eq, scratch2, Operand(zero_reg));
    914   __ mul_d(double_result, double_result, double_scratch);
    915   __ bind(&no_carry);
    916 
    917   __ dsra(scratch, scratch, 1);
    918 
    919   __ Branch(&loop_end, eq, scratch, Operand(zero_reg));
    920   __ mul_d(double_scratch, double_scratch, double_scratch);
    921 
    922   __ Branch(&while_true);
    923 
    924   __ bind(&loop_end);
    925 
    926   __ Branch(&done, ge, exponent, Operand(zero_reg));
    927   __ Move(double_scratch, 1.0);
    928   __ div_d(double_result, double_scratch, double_result);
    929   // Test whether result is zero.  Bail out to check for subnormal result.
    930   // Due to subnormals, x^-y == (1/x)^y does not hold in all cases.
    931   __ BranchF(&done, NULL, ne, double_result, kDoubleRegZero);
    932 
    933   // double_exponent may not contain the exponent value if the input was a
    934   // smi.  We set it with exponent value before bailing out.
    935   __ mtc1(exponent, single_scratch);
    936   __ cvt_d_w(double_exponent, single_scratch);
    937 
    938   // Returning or bailing out.
    939   if (exponent_type() == ON_STACK) {
    940     // The arguments are still on the stack.
    941     __ bind(&call_runtime);
    942     __ TailCallRuntime(Runtime::kMathPowRT);
    943 
    944     // The stub is called from non-optimized code, which expects the result
    945     // as heap number in exponent.
    946     __ bind(&done);
    947     __ AllocateHeapNumber(
    948         heapnumber, scratch, scratch2, heapnumbermap, &call_runtime);
    949     __ sdc1(double_result,
    950             FieldMemOperand(heapnumber, HeapNumber::kValueOffset));
    951     DCHECK(heapnumber.is(v0));
    952     __ DropAndRet(2);
    953   } else {
    954     __ push(ra);
    955     {
    956       AllowExternalCallThatCantCauseGC scope(masm);
    957       __ PrepareCallCFunction(0, 2, scratch);
    958       __ MovToFloatParameters(double_base, double_exponent);
    959       __ CallCFunction(
    960           ExternalReference::power_double_double_function(isolate()),
    961           0, 2);
    962     }
    963     __ pop(ra);
    964     __ MovFromFloatResult(double_result);
    965 
    966     __ bind(&done);
    967     __ Ret();
    968   }
    969 }
    970 
    971 
    972 bool CEntryStub::NeedsImmovableCode() {
    973   return true;
    974 }
    975 
    976 
    977 void CodeStub::GenerateStubsAheadOfTime(Isolate* isolate) {
    978   CEntryStub::GenerateAheadOfTime(isolate);
    979   StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(isolate);
    980   StubFailureTrampolineStub::GenerateAheadOfTime(isolate);
    981   CommonArrayConstructorStub::GenerateStubsAheadOfTime(isolate);
    982   CreateAllocationSiteStub::GenerateAheadOfTime(isolate);
    983   CreateWeakCellStub::GenerateAheadOfTime(isolate);
    984   BinaryOpICStub::GenerateAheadOfTime(isolate);
    985   StoreRegistersStateStub::GenerateAheadOfTime(isolate);
    986   RestoreRegistersStateStub::GenerateAheadOfTime(isolate);
    987   BinaryOpICWithAllocationSiteStub::GenerateAheadOfTime(isolate);
    988   StoreFastElementStub::GenerateAheadOfTime(isolate);
    989   TypeofStub::GenerateAheadOfTime(isolate);
    990 }
    991 
    992 
    993 void StoreRegistersStateStub::GenerateAheadOfTime(Isolate* isolate) {
    994   StoreRegistersStateStub stub(isolate);
    995   stub.GetCode();
    996 }
    997 
    998 
    999 void RestoreRegistersStateStub::GenerateAheadOfTime(Isolate* isolate) {
   1000   RestoreRegistersStateStub stub(isolate);
   1001   stub.GetCode();
   1002 }
   1003 
   1004 
   1005 void CodeStub::GenerateFPStubs(Isolate* isolate) {
   1006   // Generate if not already in cache.
   1007   SaveFPRegsMode mode = kSaveFPRegs;
   1008   CEntryStub(isolate, 1, mode).GetCode();
   1009   StoreBufferOverflowStub(isolate, mode).GetCode();
   1010   isolate->set_fp_stubs_generated(true);
   1011 }
   1012 
   1013 
   1014 void CEntryStub::GenerateAheadOfTime(Isolate* isolate) {
   1015   CEntryStub stub(isolate, 1, kDontSaveFPRegs);
   1016   stub.GetCode();
   1017 }
   1018 
   1019 
   1020 void CEntryStub::Generate(MacroAssembler* masm) {
   1021   // Called from JavaScript; parameters are on stack as if calling JS function
   1022   // a0: number of arguments including receiver
   1023   // a1: pointer to builtin function
   1024   // fp: frame pointer    (restored after C call)
   1025   // sp: stack pointer    (restored as callee's sp after C call)
   1026   // cp: current context  (C callee-saved)
   1027   //
   1028   // If argv_in_register():
   1029   // a2: pointer to the first argument
   1030 
   1031   ProfileEntryHookStub::MaybeCallEntryHook(masm);
   1032 
   1033   if (argv_in_register()) {
   1034     // Move argv into the correct register.
   1035     __ mov(s1, a2);
   1036   } else {
   1037     // Compute the argv pointer in a callee-saved register.
   1038     __ Dlsa(s1, sp, a0, kPointerSizeLog2);
   1039     __ Dsubu(s1, s1, kPointerSize);
   1040   }
   1041 
   1042   // Enter the exit frame that transitions from JavaScript to C++.
   1043   FrameScope scope(masm, StackFrame::MANUAL);
   1044   __ EnterExitFrame(save_doubles());
   1045 
   1046   // s0: number of arguments  including receiver (C callee-saved)
   1047   // s1: pointer to first argument (C callee-saved)
   1048   // s2: pointer to builtin function (C callee-saved)
   1049 
   1050   // Prepare arguments for C routine.
   1051   // a0 = argc
   1052   __ mov(s0, a0);
   1053   __ mov(s2, a1);
   1054 
   1055   // We are calling compiled C/C++ code. a0 and a1 hold our two arguments. We
   1056   // also need to reserve the 4 argument slots on the stack.
   1057 
   1058   __ AssertStackIsAligned();
   1059 
   1060   int frame_alignment = MacroAssembler::ActivationFrameAlignment();
   1061   int frame_alignment_mask = frame_alignment - 1;
   1062   int result_stack_size;
   1063   if (result_size() <= 2) {
   1064     // a0 = argc, a1 = argv, a2 = isolate
   1065     __ li(a2, Operand(ExternalReference::isolate_address(isolate())));
   1066     __ mov(a1, s1);
   1067     result_stack_size = 0;
   1068   } else {
   1069     DCHECK_EQ(3, result_size());
   1070     // Allocate additional space for the result.
   1071     result_stack_size =
   1072         ((result_size() * kPointerSize) + frame_alignment_mask) &
   1073         ~frame_alignment_mask;
   1074     __ Dsubu(sp, sp, Operand(result_stack_size));
   1075 
   1076     // a0 = hidden result argument, a1 = argc, a2 = argv, a3 = isolate.
   1077     __ li(a3, Operand(ExternalReference::isolate_address(isolate())));
   1078     __ mov(a2, s1);
   1079     __ mov(a1, a0);
   1080     __ mov(a0, sp);
   1081   }
   1082 
   1083   // To let the GC traverse the return address of the exit frames, we need to
   1084   // know where the return address is. The CEntryStub is unmovable, so
   1085   // we can store the address on the stack to be able to find it again and
   1086   // we never have to restore it, because it will not change.
   1087   { Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm);
   1088     int kNumInstructionsToJump = 4;
   1089     Label find_ra;
   1090     // Adjust the value in ra to point to the correct return location, 2nd
   1091     // instruction past the real call into C code (the jalr(t9)), and push it.
   1092     // This is the return address of the exit frame.
   1093     if (kArchVariant >= kMips64r6) {
   1094       __ addiupc(ra, kNumInstructionsToJump + 1);
   1095     } else {
   1096       // This branch-and-link sequence is needed to find the current PC on mips
   1097       // before r6, saved to the ra register.
   1098       __ bal(&find_ra);  // bal exposes branch delay slot.
   1099       __ Daddu(ra, ra, kNumInstructionsToJump * Instruction::kInstrSize);
   1100     }
   1101     __ bind(&find_ra);
   1102 
   1103     // This spot was reserved in EnterExitFrame.
   1104     __ sd(ra, MemOperand(sp, result_stack_size));
   1105     // Stack space reservation moved to the branch delay slot below.
   1106     // Stack is still aligned.
   1107 
   1108     // Call the C routine.
   1109     __ mov(t9, s2);  // Function pointer to t9 to conform to ABI for PIC.
   1110     __ jalr(t9);
   1111     // Set up sp in the delay slot.
   1112     __ daddiu(sp, sp, -kCArgsSlotsSize);
   1113     // Make sure the stored 'ra' points to this position.
   1114     DCHECK_EQ(kNumInstructionsToJump,
   1115               masm->InstructionsGeneratedSince(&find_ra));
   1116   }
   1117   if (result_size() > 2) {
   1118     DCHECK_EQ(3, result_size());
   1119     // Read result values stored on stack.
   1120     __ ld(a0, MemOperand(v0, 2 * kPointerSize));
   1121     __ ld(v1, MemOperand(v0, 1 * kPointerSize));
   1122     __ ld(v0, MemOperand(v0, 0 * kPointerSize));
   1123   }
   1124   // Result returned in v0, v1:v0 or a0:v1:v0 - do not destroy these registers!
   1125 
   1126   // Check result for exception sentinel.
   1127   Label exception_returned;
   1128   __ LoadRoot(a4, Heap::kExceptionRootIndex);
   1129   __ Branch(&exception_returned, eq, a4, Operand(v0));
   1130 
   1131   // Check that there is no pending exception, otherwise we
   1132   // should have returned the exception sentinel.
   1133   if (FLAG_debug_code) {
   1134     Label okay;
   1135     ExternalReference pending_exception_address(
   1136         Isolate::kPendingExceptionAddress, isolate());
   1137     __ li(a2, Operand(pending_exception_address));
   1138     __ ld(a2, MemOperand(a2));
   1139     __ LoadRoot(a4, Heap::kTheHoleValueRootIndex);
   1140     // Cannot use check here as it attempts to generate call into runtime.
   1141     __ Branch(&okay, eq, a4, Operand(a2));
   1142     __ stop("Unexpected pending exception");
   1143     __ bind(&okay);
   1144   }
   1145 
   1146   // Exit C frame and return.
   1147   // v0:v1: result
   1148   // sp: stack pointer
   1149   // fp: frame pointer
   1150   Register argc;
   1151   if (argv_in_register()) {
   1152     // We don't want to pop arguments so set argc to no_reg.
   1153     argc = no_reg;
   1154   } else {
   1155     // s0: still holds argc (callee-saved).
   1156     argc = s0;
   1157   }
   1158   __ LeaveExitFrame(save_doubles(), argc, true, EMIT_RETURN);
   1159 
   1160   // Handling of exception.
   1161   __ bind(&exception_returned);
   1162 
   1163   ExternalReference pending_handler_context_address(
   1164       Isolate::kPendingHandlerContextAddress, isolate());
   1165   ExternalReference pending_handler_code_address(
   1166       Isolate::kPendingHandlerCodeAddress, isolate());
   1167   ExternalReference pending_handler_offset_address(
   1168       Isolate::kPendingHandlerOffsetAddress, isolate());
   1169   ExternalReference pending_handler_fp_address(
   1170       Isolate::kPendingHandlerFPAddress, isolate());
   1171   ExternalReference pending_handler_sp_address(
   1172       Isolate::kPendingHandlerSPAddress, isolate());
   1173 
   1174   // Ask the runtime for help to determine the handler. This will set v0 to
   1175   // contain the current pending exception, don't clobber it.
   1176   ExternalReference find_handler(Runtime::kUnwindAndFindExceptionHandler,
   1177                                  isolate());
   1178   {
   1179     FrameScope scope(masm, StackFrame::MANUAL);
   1180     __ PrepareCallCFunction(3, 0, a0);
   1181     __ mov(a0, zero_reg);
   1182     __ mov(a1, zero_reg);
   1183     __ li(a2, Operand(ExternalReference::isolate_address(isolate())));
   1184     __ CallCFunction(find_handler, 3);
   1185   }
   1186 
   1187   // Retrieve the handler context, SP and FP.
   1188   __ li(cp, Operand(pending_handler_context_address));
   1189   __ ld(cp, MemOperand(cp));
   1190   __ li(sp, Operand(pending_handler_sp_address));
   1191   __ ld(sp, MemOperand(sp));
   1192   __ li(fp, Operand(pending_handler_fp_address));
   1193   __ ld(fp, MemOperand(fp));
   1194 
   1195   // If the handler is a JS frame, restore the context to the frame. Note that
   1196   // the context will be set to (cp == 0) for non-JS frames.
   1197   Label zero;
   1198   __ Branch(&zero, eq, cp, Operand(zero_reg));
   1199   __ sd(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
   1200   __ bind(&zero);
   1201 
   1202   // Compute the handler entry address and jump to it.
   1203   __ li(a1, Operand(pending_handler_code_address));
   1204   __ ld(a1, MemOperand(a1));
   1205   __ li(a2, Operand(pending_handler_offset_address));
   1206   __ ld(a2, MemOperand(a2));
   1207   __ Daddu(a1, a1, Operand(Code::kHeaderSize - kHeapObjectTag));
   1208   __ Daddu(t9, a1, a2);
   1209   __ Jump(t9);
   1210 }
   1211 
   1212 
   1213 void JSEntryStub::Generate(MacroAssembler* masm) {
   1214   Label invoke, handler_entry, exit;
   1215   Isolate* isolate = masm->isolate();
   1216 
   1217   // TODO(plind): unify the ABI description here.
   1218   // Registers:
   1219   // a0: entry address
   1220   // a1: function
   1221   // a2: receiver
   1222   // a3: argc
   1223   // a4 (a4): on mips64
   1224 
   1225   // Stack:
   1226   // 0 arg slots on mips64 (4 args slots on mips)
   1227   // args -- in a4/a4 on mips64, on stack on mips
   1228 
   1229   ProfileEntryHookStub::MaybeCallEntryHook(masm);
   1230 
   1231   // Save callee saved registers on the stack.
   1232   __ MultiPush(kCalleeSaved | ra.bit());
   1233 
   1234   // Save callee-saved FPU registers.
   1235   __ MultiPushFPU(kCalleeSavedFPU);
   1236   // Set up the reserved register for 0.0.
   1237   __ Move(kDoubleRegZero, 0.0);
   1238 
   1239   // Load argv in s0 register.
   1240   __ mov(s0, a4);  // 5th parameter in mips64 a4 (a4) register.
   1241 
   1242   __ InitializeRootRegister();
   1243 
   1244   // We build an EntryFrame.
   1245   __ li(a7, Operand(-1));  // Push a bad frame pointer to fail if it is used.
   1246   int marker = type();
   1247   __ li(a6, Operand(Smi::FromInt(marker)));
   1248   __ li(a5, Operand(Smi::FromInt(marker)));
   1249   ExternalReference c_entry_fp(Isolate::kCEntryFPAddress, isolate);
   1250   __ li(a4, Operand(c_entry_fp));
   1251   __ ld(a4, MemOperand(a4));
   1252   __ Push(a7, a6, a5, a4);
   1253   // Set up frame pointer for the frame to be pushed.
   1254   __ daddiu(fp, sp, -EntryFrameConstants::kCallerFPOffset);
   1255 
   1256   // Registers:
   1257   // a0: entry_address
   1258   // a1: function
   1259   // a2: receiver_pointer
   1260   // a3: argc
   1261   // s0: argv
   1262   //
   1263   // Stack:
   1264   // caller fp          |
   1265   // function slot      | entry frame
   1266   // context slot       |
   1267   // bad fp (0xff...f)  |
   1268   // callee saved registers + ra
   1269   // [ O32: 4 args slots]
   1270   // args
   1271 
   1272   // If this is the outermost JS call, set js_entry_sp value.
   1273   Label non_outermost_js;
   1274   ExternalReference js_entry_sp(Isolate::kJSEntrySPAddress, isolate);
   1275   __ li(a5, Operand(ExternalReference(js_entry_sp)));
   1276   __ ld(a6, MemOperand(a5));
   1277   __ Branch(&non_outermost_js, ne, a6, Operand(zero_reg));
   1278   __ sd(fp, MemOperand(a5));
   1279   __ li(a4, Operand(Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME)));
   1280   Label cont;
   1281   __ b(&cont);
   1282   __ nop();   // Branch delay slot nop.
   1283   __ bind(&non_outermost_js);
   1284   __ li(a4, Operand(Smi::FromInt(StackFrame::INNER_JSENTRY_FRAME)));
   1285   __ bind(&cont);
   1286   __ push(a4);
   1287 
   1288   // Jump to a faked try block that does the invoke, with a faked catch
   1289   // block that sets the pending exception.
   1290   __ jmp(&invoke);
   1291   __ bind(&handler_entry);
   1292   handler_offset_ = handler_entry.pos();
   1293   // Caught exception: Store result (exception) in the pending exception
   1294   // field in the JSEnv and return a failure sentinel.  Coming in here the
   1295   // fp will be invalid because the PushStackHandler below sets it to 0 to
   1296   // signal the existence of the JSEntry frame.
   1297   __ li(a4, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
   1298                                       isolate)));
   1299   __ sd(v0, MemOperand(a4));  // We come back from 'invoke'. result is in v0.
   1300   __ LoadRoot(v0, Heap::kExceptionRootIndex);
   1301   __ b(&exit);  // b exposes branch delay slot.
   1302   __ nop();   // Branch delay slot nop.
   1303 
   1304   // Invoke: Link this frame into the handler chain.
   1305   __ bind(&invoke);
   1306   __ PushStackHandler();
   1307   // If an exception not caught by another handler occurs, this handler
   1308   // returns control to the code after the bal(&invoke) above, which
   1309   // restores all kCalleeSaved registers (including cp and fp) to their
   1310   // saved values before returning a failure to C.
   1311 
   1312   // Clear any pending exceptions.
   1313   __ LoadRoot(a5, Heap::kTheHoleValueRootIndex);
   1314   __ li(a4, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
   1315                                       isolate)));
   1316   __ sd(a5, MemOperand(a4));
   1317 
   1318   // Invoke the function by calling through JS entry trampoline builtin.
   1319   // Notice that we cannot store a reference to the trampoline code directly in
   1320   // this stub, because runtime stubs are not traversed when doing GC.
   1321 
   1322   // Registers:
   1323   // a0: entry_address
   1324   // a1: function
   1325   // a2: receiver_pointer
   1326   // a3: argc
   1327   // s0: argv
   1328   //
   1329   // Stack:
   1330   // handler frame
   1331   // entry frame
   1332   // callee saved registers + ra
   1333   // [ O32: 4 args slots]
   1334   // args
   1335 
   1336   if (type() == StackFrame::ENTRY_CONSTRUCT) {
   1337     ExternalReference construct_entry(Builtins::kJSConstructEntryTrampoline,
   1338                                       isolate);
   1339     __ li(a4, Operand(construct_entry));
   1340   } else {
   1341     ExternalReference entry(Builtins::kJSEntryTrampoline, masm->isolate());
   1342     __ li(a4, Operand(entry));
   1343   }
   1344   __ ld(t9, MemOperand(a4));  // Deref address.
   1345   // Call JSEntryTrampoline.
   1346   __ daddiu(t9, t9, Code::kHeaderSize - kHeapObjectTag);
   1347   __ Call(t9);
   1348 
   1349   // Unlink this frame from the handler chain.
   1350   __ PopStackHandler();
   1351 
   1352   __ bind(&exit);  // v0 holds result
   1353   // Check if the current stack frame is marked as the outermost JS frame.
   1354   Label non_outermost_js_2;
   1355   __ pop(a5);
   1356   __ Branch(&non_outermost_js_2,
   1357             ne,
   1358             a5,
   1359             Operand(Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME)));
   1360   __ li(a5, Operand(ExternalReference(js_entry_sp)));
   1361   __ sd(zero_reg, MemOperand(a5));
   1362   __ bind(&non_outermost_js_2);
   1363 
   1364   // Restore the top frame descriptors from the stack.
   1365   __ pop(a5);
   1366   __ li(a4, Operand(ExternalReference(Isolate::kCEntryFPAddress,
   1367                                       isolate)));
   1368   __ sd(a5, MemOperand(a4));
   1369 
   1370   // Reset the stack to the callee saved registers.
   1371   __ daddiu(sp, sp, -EntryFrameConstants::kCallerFPOffset);
   1372 
   1373   // Restore callee-saved fpu registers.
   1374   __ MultiPopFPU(kCalleeSavedFPU);
   1375 
   1376   // Restore callee saved registers from the stack.
   1377   __ MultiPop(kCalleeSaved | ra.bit());
   1378   // Return.
   1379   __ Jump(ra);
   1380 }
   1381 
   1382 
   1383 void LoadIndexedStringStub::Generate(MacroAssembler* masm) {
   1384   // Return address is in ra.
   1385   Label miss;
   1386 
   1387   Register receiver = LoadDescriptor::ReceiverRegister();
   1388   Register index = LoadDescriptor::NameRegister();
   1389   Register scratch = a5;
   1390   Register result = v0;
   1391   DCHECK(!scratch.is(receiver) && !scratch.is(index));
   1392   DCHECK(!scratch.is(LoadWithVectorDescriptor::VectorRegister()));
   1393 
   1394   StringCharAtGenerator char_at_generator(receiver, index, scratch, result,
   1395                                           &miss,  // When not a string.
   1396                                           &miss,  // When not a number.
   1397                                           &miss,  // When index out of range.
   1398                                           RECEIVER_IS_STRING);
   1399   char_at_generator.GenerateFast(masm);
   1400   __ Ret();
   1401 
   1402   StubRuntimeCallHelper call_helper;
   1403   char_at_generator.GenerateSlow(masm, PART_OF_IC_HANDLER, call_helper);
   1404 
   1405   __ bind(&miss);
   1406   PropertyAccessCompiler::TailCallBuiltin(
   1407       masm, PropertyAccessCompiler::MissBuiltin(Code::KEYED_LOAD_IC));
   1408 }
   1409 
   1410 
   1411 void FunctionPrototypeStub::Generate(MacroAssembler* masm) {
   1412   Label miss;
   1413   Register receiver = LoadDescriptor::ReceiverRegister();
   1414   // Ensure that the vector and slot registers won't be clobbered before
   1415   // calling the miss handler.
   1416   DCHECK(!AreAliased(a4, a5, LoadWithVectorDescriptor::VectorRegister(),
   1417                      LoadWithVectorDescriptor::SlotRegister()));
   1418 
   1419   NamedLoadHandlerCompiler::GenerateLoadFunctionPrototype(masm, receiver, a4,
   1420                                                           a5, &miss);
   1421   __ bind(&miss);
   1422   PropertyAccessCompiler::TailCallBuiltin(
   1423       masm, PropertyAccessCompiler::MissBuiltin(Code::LOAD_IC));
   1424 }
   1425 
   1426 
   1427 void RegExpExecStub::Generate(MacroAssembler* masm) {
   1428   // Just jump directly to runtime if native RegExp is not selected at compile
   1429   // time or if regexp entry in generated code is turned off runtime switch or
   1430   // at compilation.
   1431 #ifdef V8_INTERPRETED_REGEXP
   1432   __ TailCallRuntime(Runtime::kRegExpExec);
   1433 #else  // V8_INTERPRETED_REGEXP
   1434 
   1435   // Stack frame on entry.
   1436   //  sp[0]: last_match_info (expected JSArray)
   1437   //  sp[4]: previous index
   1438   //  sp[8]: subject string
   1439   //  sp[12]: JSRegExp object
   1440 
   1441   const int kLastMatchInfoOffset = 0 * kPointerSize;
   1442   const int kPreviousIndexOffset = 1 * kPointerSize;
   1443   const int kSubjectOffset = 2 * kPointerSize;
   1444   const int kJSRegExpOffset = 3 * kPointerSize;
   1445 
   1446   Label runtime;
   1447   // Allocation of registers for this function. These are in callee save
   1448   // registers and will be preserved by the call to the native RegExp code, as
   1449   // this code is called using the normal C calling convention. When calling
   1450   // directly from generated code the native RegExp code will not do a GC and
   1451   // therefore the content of these registers are safe to use after the call.
   1452   // MIPS - using s0..s2, since we are not using CEntry Stub.
   1453   Register subject = s0;
   1454   Register regexp_data = s1;
   1455   Register last_match_info_elements = s2;
   1456 
   1457   // Ensure that a RegExp stack is allocated.
   1458   ExternalReference address_of_regexp_stack_memory_address =
   1459       ExternalReference::address_of_regexp_stack_memory_address(
   1460           isolate());
   1461   ExternalReference address_of_regexp_stack_memory_size =
   1462       ExternalReference::address_of_regexp_stack_memory_size(isolate());
   1463   __ li(a0, Operand(address_of_regexp_stack_memory_size));
   1464   __ ld(a0, MemOperand(a0, 0));
   1465   __ Branch(&runtime, eq, a0, Operand(zero_reg));
   1466 
   1467   // Check that the first argument is a JSRegExp object.
   1468   __ ld(a0, MemOperand(sp, kJSRegExpOffset));
   1469   STATIC_ASSERT(kSmiTag == 0);
   1470   __ JumpIfSmi(a0, &runtime);
   1471   __ GetObjectType(a0, a1, a1);
   1472   __ Branch(&runtime, ne, a1, Operand(JS_REGEXP_TYPE));
   1473 
   1474   // Check that the RegExp has been compiled (data contains a fixed array).
   1475   __ ld(regexp_data, FieldMemOperand(a0, JSRegExp::kDataOffset));
   1476   if (FLAG_debug_code) {
   1477     __ SmiTst(regexp_data, a4);
   1478     __ Check(nz,
   1479              kUnexpectedTypeForRegExpDataFixedArrayExpected,
   1480              a4,
   1481              Operand(zero_reg));
   1482     __ GetObjectType(regexp_data, a0, a0);
   1483     __ Check(eq,
   1484              kUnexpectedTypeForRegExpDataFixedArrayExpected,
   1485              a0,
   1486              Operand(FIXED_ARRAY_TYPE));
   1487   }
   1488 
   1489   // regexp_data: RegExp data (FixedArray)
   1490   // Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP.
   1491   __ ld(a0, FieldMemOperand(regexp_data, JSRegExp::kDataTagOffset));
   1492   __ Branch(&runtime, ne, a0, Operand(Smi::FromInt(JSRegExp::IRREGEXP)));
   1493 
   1494   // regexp_data: RegExp data (FixedArray)
   1495   // Check that the number of captures fit in the static offsets vector buffer.
   1496   __ ld(a2,
   1497          FieldMemOperand(regexp_data, JSRegExp::kIrregexpCaptureCountOffset));
   1498   // Check (number_of_captures + 1) * 2 <= offsets vector size
   1499   // Or          number_of_captures * 2 <= offsets vector size - 2
   1500   // Or          number_of_captures     <= offsets vector size / 2 - 1
   1501   // Multiplying by 2 comes for free since a2 is smi-tagged.
   1502   STATIC_ASSERT(Isolate::kJSRegexpStaticOffsetsVectorSize >= 2);
   1503   int temp = Isolate::kJSRegexpStaticOffsetsVectorSize / 2 - 1;
   1504   __ Branch(&runtime, hi, a2, Operand(Smi::FromInt(temp)));
   1505 
   1506   // Reset offset for possibly sliced string.
   1507   __ mov(t0, zero_reg);
   1508   __ ld(subject, MemOperand(sp, kSubjectOffset));
   1509   __ JumpIfSmi(subject, &runtime);
   1510   __ mov(a3, subject);  // Make a copy of the original subject string.
   1511 
   1512   // subject: subject string
   1513   // a3: subject string
   1514   // regexp_data: RegExp data (FixedArray)
   1515   // Handle subject string according to its encoding and representation:
   1516   // (1) Sequential string?  If yes, go to (4).
   1517   // (2) Sequential or cons?  If not, go to (5).
   1518   // (3) Cons string.  If the string is flat, replace subject with first string
   1519   //     and go to (1). Otherwise bail out to runtime.
   1520   // (4) Sequential string.  Load regexp code according to encoding.
   1521   // (E) Carry on.
   1522   /// [...]
   1523 
   1524   // Deferred code at the end of the stub:
   1525   // (5) Long external string?  If not, go to (7).
   1526   // (6) External string.  Make it, offset-wise, look like a sequential string.
   1527   //     Go to (4).
   1528   // (7) Short external string or not a string?  If yes, bail out to runtime.
   1529   // (8) Sliced string.  Replace subject with parent.  Go to (1).
   1530 
   1531   Label check_underlying;   // (1)
   1532   Label seq_string;         // (4)
   1533   Label not_seq_nor_cons;   // (5)
   1534   Label external_string;    // (6)
   1535   Label not_long_external;  // (7)
   1536 
   1537   __ bind(&check_underlying);
   1538   __ ld(a2, FieldMemOperand(subject, HeapObject::kMapOffset));
   1539   __ lbu(a0, FieldMemOperand(a2, Map::kInstanceTypeOffset));
   1540 
   1541   // (1) Sequential string?  If yes, go to (4).
   1542   __ And(a1,
   1543          a0,
   1544          Operand(kIsNotStringMask |
   1545                  kStringRepresentationMask |
   1546                  kShortExternalStringMask));
   1547   STATIC_ASSERT((kStringTag | kSeqStringTag) == 0);
   1548   __ Branch(&seq_string, eq, a1, Operand(zero_reg));  // Go to (4).
   1549 
   1550   // (2) Sequential or cons?  If not, go to (5).
   1551   STATIC_ASSERT(kConsStringTag < kExternalStringTag);
   1552   STATIC_ASSERT(kSlicedStringTag > kExternalStringTag);
   1553   STATIC_ASSERT(kIsNotStringMask > kExternalStringTag);
   1554   STATIC_ASSERT(kShortExternalStringTag > kExternalStringTag);
   1555   // Go to (5).
   1556   __ Branch(&not_seq_nor_cons, ge, a1, Operand(kExternalStringTag));
   1557 
   1558   // (3) Cons string.  Check that it's flat.
   1559   // Replace subject with first string and reload instance type.
   1560   __ ld(a0, FieldMemOperand(subject, ConsString::kSecondOffset));
   1561   __ LoadRoot(a1, Heap::kempty_stringRootIndex);
   1562   __ Branch(&runtime, ne, a0, Operand(a1));
   1563   __ ld(subject, FieldMemOperand(subject, ConsString::kFirstOffset));
   1564   __ jmp(&check_underlying);
   1565 
   1566   // (4) Sequential string.  Load regexp code according to encoding.
   1567   __ bind(&seq_string);
   1568   // subject: sequential subject string (or look-alike, external string)
   1569   // a3: original subject string
   1570   // Load previous index and check range before a3 is overwritten.  We have to
   1571   // use a3 instead of subject here because subject might have been only made
   1572   // to look like a sequential string when it actually is an external string.
   1573   __ ld(a1, MemOperand(sp, kPreviousIndexOffset));
   1574   __ JumpIfNotSmi(a1, &runtime);
   1575   __ ld(a3, FieldMemOperand(a3, String::kLengthOffset));
   1576   __ Branch(&runtime, ls, a3, Operand(a1));
   1577   __ SmiUntag(a1);
   1578 
   1579   STATIC_ASSERT(kStringEncodingMask == 4);
   1580   STATIC_ASSERT(kOneByteStringTag == 4);
   1581   STATIC_ASSERT(kTwoByteStringTag == 0);
   1582   __ And(a0, a0, Operand(kStringEncodingMask));  // Non-zero for one_byte.
   1583   __ ld(t9, FieldMemOperand(regexp_data, JSRegExp::kDataOneByteCodeOffset));
   1584   __ dsra(a3, a0, 2);  // a3 is 1 for one_byte, 0 for UC16 (used below).
   1585   __ ld(a5, FieldMemOperand(regexp_data, JSRegExp::kDataUC16CodeOffset));
   1586   __ Movz(t9, a5, a0);  // If UC16 (a0 is 0), replace t9 w/kDataUC16CodeOffset.
   1587 
   1588   // (E) Carry on.  String handling is done.
   1589   // t9: irregexp code
   1590   // Check that the irregexp code has been generated for the actual string
   1591   // encoding. If it has, the field contains a code object otherwise it contains
   1592   // a smi (code flushing support).
   1593   __ JumpIfSmi(t9, &runtime);
   1594 
   1595   // a1: previous index
   1596   // a3: encoding of subject string (1 if one_byte, 0 if two_byte);
   1597   // t9: code
   1598   // subject: Subject string
   1599   // regexp_data: RegExp data (FixedArray)
   1600   // All checks done. Now push arguments for native regexp code.
   1601   __ IncrementCounter(isolate()->counters()->regexp_entry_native(),
   1602                       1, a0, a2);
   1603 
   1604   // Isolates: note we add an additional parameter here (isolate pointer).
   1605   const int kRegExpExecuteArguments = 9;
   1606   const int kParameterRegisters = 8;
   1607   __ EnterExitFrame(false, kRegExpExecuteArguments - kParameterRegisters);
   1608 
   1609   // Stack pointer now points to cell where return address is to be written.
   1610   // Arguments are before that on the stack or in registers, meaning we
   1611   // treat the return address as argument 5. Thus every argument after that
   1612   // needs to be shifted back by 1. Since DirectCEntryStub will handle
   1613   // allocating space for the c argument slots, we don't need to calculate
   1614   // that into the argument positions on the stack. This is how the stack will
   1615   // look (sp meaning the value of sp at this moment):
   1616   // Abi n64:
   1617   //   [sp + 1] - Argument 9
   1618   //   [sp + 0] - saved ra
   1619   // Abi O32:
   1620   //   [sp + 5] - Argument 9
   1621   //   [sp + 4] - Argument 8
   1622   //   [sp + 3] - Argument 7
   1623   //   [sp + 2] - Argument 6
   1624   //   [sp + 1] - Argument 5
   1625   //   [sp + 0] - saved ra
   1626 
   1627   // Argument 9: Pass current isolate address.
   1628   __ li(a0, Operand(ExternalReference::isolate_address(isolate())));
   1629   __ sd(a0, MemOperand(sp, 1 * kPointerSize));
   1630 
   1631   // Argument 8: Indicate that this is a direct call from JavaScript.
   1632   __ li(a7, Operand(1));
   1633 
   1634   // Argument 7: Start (high end) of backtracking stack memory area.
   1635   __ li(a0, Operand(address_of_regexp_stack_memory_address));
   1636   __ ld(a0, MemOperand(a0, 0));
   1637   __ li(a2, Operand(address_of_regexp_stack_memory_size));
   1638   __ ld(a2, MemOperand(a2, 0));
   1639   __ daddu(a6, a0, a2);
   1640 
   1641   // Argument 6: Set the number of capture registers to zero to force global
   1642   // regexps to behave as non-global. This does not affect non-global regexps.
   1643   __ mov(a5, zero_reg);
   1644 
   1645   // Argument 5: static offsets vector buffer.
   1646   __ li(
   1647       a4,
   1648       Operand(ExternalReference::address_of_static_offsets_vector(isolate())));
   1649 
   1650   // For arguments 4 and 3 get string length, calculate start of string data
   1651   // and calculate the shift of the index (0 for one_byte and 1 for two byte).
   1652   __ Daddu(t2, subject, Operand(SeqString::kHeaderSize - kHeapObjectTag));
   1653   __ Xor(a3, a3, Operand(1));  // 1 for 2-byte str, 0 for 1-byte.
   1654   // Load the length from the original subject string from the previous stack
   1655   // frame. Therefore we have to use fp, which points exactly to two pointer
   1656   // sizes below the previous sp. (Because creating a new stack frame pushes
   1657   // the previous fp onto the stack and moves up sp by 2 * kPointerSize.)
   1658   __ ld(subject, MemOperand(fp, kSubjectOffset + 2 * kPointerSize));
   1659   // If slice offset is not 0, load the length from the original sliced string.
   1660   // Argument 4, a3: End of string data
   1661   // Argument 3, a2: Start of string data
   1662   // Prepare start and end index of the input.
   1663   __ dsllv(t1, t0, a3);
   1664   __ daddu(t0, t2, t1);
   1665   __ dsllv(t1, a1, a3);
   1666   __ daddu(a2, t0, t1);
   1667 
   1668   __ ld(t2, FieldMemOperand(subject, String::kLengthOffset));
   1669 
   1670   __ SmiUntag(t2);
   1671   __ dsllv(t1, t2, a3);
   1672   __ daddu(a3, t0, t1);
   1673   // Argument 2 (a1): Previous index.
   1674   // Already there
   1675 
   1676   // Argument 1 (a0): Subject string.
   1677   __ mov(a0, subject);
   1678 
   1679   // Locate the code entry and call it.
   1680   __ Daddu(t9, t9, Operand(Code::kHeaderSize - kHeapObjectTag));
   1681   DirectCEntryStub stub(isolate());
   1682   stub.GenerateCall(masm, t9);
   1683 
   1684   __ LeaveExitFrame(false, no_reg, true);
   1685 
   1686   // v0: result
   1687   // subject: subject string (callee saved)
   1688   // regexp_data: RegExp data (callee saved)
   1689   // last_match_info_elements: Last match info elements (callee saved)
   1690   // Check the result.
   1691   Label success;
   1692   __ Branch(&success, eq, v0, Operand(1));
   1693   // We expect exactly one result since we force the called regexp to behave
   1694   // as non-global.
   1695   Label failure;
   1696   __ Branch(&failure, eq, v0, Operand(NativeRegExpMacroAssembler::FAILURE));
   1697   // If not exception it can only be retry. Handle that in the runtime system.
   1698   __ Branch(&runtime, ne, v0, Operand(NativeRegExpMacroAssembler::EXCEPTION));
   1699   // Result must now be exception. If there is no pending exception already a
   1700   // stack overflow (on the backtrack stack) was detected in RegExp code but
   1701   // haven't created the exception yet. Handle that in the runtime system.
   1702   // TODO(592): Rerunning the RegExp to get the stack overflow exception.
   1703   __ li(a1, Operand(isolate()->factory()->the_hole_value()));
   1704   __ li(a2, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
   1705                                       isolate())));
   1706   __ ld(v0, MemOperand(a2, 0));
   1707   __ Branch(&runtime, eq, v0, Operand(a1));
   1708 
   1709   // For exception, throw the exception again.
   1710   __ TailCallRuntime(Runtime::kRegExpExecReThrow);
   1711 
   1712   __ bind(&failure);
   1713   // For failure and exception return null.
   1714   __ li(v0, Operand(isolate()->factory()->null_value()));
   1715   __ DropAndRet(4);
   1716 
   1717   // Process the result from the native regexp code.
   1718   __ bind(&success);
   1719 
   1720   __ lw(a1, UntagSmiFieldMemOperand(
   1721       regexp_data, JSRegExp::kIrregexpCaptureCountOffset));
   1722   // Calculate number of capture registers (number_of_captures + 1) * 2.
   1723   __ Daddu(a1, a1, Operand(1));
   1724   __ dsll(a1, a1, 1);  // Multiply by 2.
   1725 
   1726   __ ld(a0, MemOperand(sp, kLastMatchInfoOffset));
   1727   __ JumpIfSmi(a0, &runtime);
   1728   __ GetObjectType(a0, a2, a2);
   1729   __ Branch(&runtime, ne, a2, Operand(JS_ARRAY_TYPE));
   1730   // Check that the JSArray is in fast case.
   1731   __ ld(last_match_info_elements,
   1732         FieldMemOperand(a0, JSArray::kElementsOffset));
   1733   __ ld(a0, FieldMemOperand(last_match_info_elements, HeapObject::kMapOffset));
   1734   __ LoadRoot(at, Heap::kFixedArrayMapRootIndex);
   1735   __ Branch(&runtime, ne, a0, Operand(at));
   1736   // Check that the last match info has space for the capture registers and the
   1737   // additional information.
   1738   __ ld(a0,
   1739         FieldMemOperand(last_match_info_elements, FixedArray::kLengthOffset));
   1740   __ Daddu(a2, a1, Operand(RegExpImpl::kLastMatchOverhead));
   1741 
   1742   __ SmiUntag(at, a0);
   1743   __ Branch(&runtime, gt, a2, Operand(at));
   1744 
   1745   // a1: number of capture registers
   1746   // subject: subject string
   1747   // Store the capture count.
   1748   __ SmiTag(a2, a1);  // To smi.
   1749   __ sd(a2, FieldMemOperand(last_match_info_elements,
   1750                              RegExpImpl::kLastCaptureCountOffset));
   1751   // Store last subject and last input.
   1752   __ sd(subject,
   1753          FieldMemOperand(last_match_info_elements,
   1754                          RegExpImpl::kLastSubjectOffset));
   1755   __ mov(a2, subject);
   1756   __ RecordWriteField(last_match_info_elements,
   1757                       RegExpImpl::kLastSubjectOffset,
   1758                       subject,
   1759                       a7,
   1760                       kRAHasNotBeenSaved,
   1761                       kDontSaveFPRegs);
   1762   __ mov(subject, a2);
   1763   __ sd(subject,
   1764          FieldMemOperand(last_match_info_elements,
   1765                          RegExpImpl::kLastInputOffset));
   1766   __ RecordWriteField(last_match_info_elements,
   1767                       RegExpImpl::kLastInputOffset,
   1768                       subject,
   1769                       a7,
   1770                       kRAHasNotBeenSaved,
   1771                       kDontSaveFPRegs);
   1772 
   1773   // Get the static offsets vector filled by the native regexp code.
   1774   ExternalReference address_of_static_offsets_vector =
   1775       ExternalReference::address_of_static_offsets_vector(isolate());
   1776   __ li(a2, Operand(address_of_static_offsets_vector));
   1777 
   1778   // a1: number of capture registers
   1779   // a2: offsets vector
   1780   Label next_capture, done;
   1781   // Capture register counter starts from number of capture registers and
   1782   // counts down until wrapping after zero.
   1783   __ Daddu(a0,
   1784          last_match_info_elements,
   1785          Operand(RegExpImpl::kFirstCaptureOffset - kHeapObjectTag));
   1786   __ bind(&next_capture);
   1787   __ Dsubu(a1, a1, Operand(1));
   1788   __ Branch(&done, lt, a1, Operand(zero_reg));
   1789   // Read the value from the static offsets vector buffer.
   1790   __ lw(a3, MemOperand(a2, 0));
   1791   __ daddiu(a2, a2, kIntSize);
   1792   // Store the smi value in the last match info.
   1793   __ SmiTag(a3);
   1794   __ sd(a3, MemOperand(a0, 0));
   1795   __ Branch(&next_capture, USE_DELAY_SLOT);
   1796   __ daddiu(a0, a0, kPointerSize);  // In branch delay slot.
   1797 
   1798   __ bind(&done);
   1799 
   1800   // Return last match info.
   1801   __ ld(v0, MemOperand(sp, kLastMatchInfoOffset));
   1802   __ DropAndRet(4);
   1803 
   1804   // Do the runtime call to execute the regexp.
   1805   __ bind(&runtime);
   1806   __ TailCallRuntime(Runtime::kRegExpExec);
   1807 
   1808   // Deferred code for string handling.
   1809   // (5) Long external string?  If not, go to (7).
   1810   __ bind(&not_seq_nor_cons);
   1811   // Go to (7).
   1812   __ Branch(&not_long_external, gt, a1, Operand(kExternalStringTag));
   1813 
   1814   // (6) External string.  Make it, offset-wise, look like a sequential string.
   1815   __ bind(&external_string);
   1816   __ ld(a0, FieldMemOperand(subject, HeapObject::kMapOffset));
   1817   __ lbu(a0, FieldMemOperand(a0, Map::kInstanceTypeOffset));
   1818   if (FLAG_debug_code) {
   1819     // Assert that we do not have a cons or slice (indirect strings) here.
   1820     // Sequential strings have already been ruled out.
   1821     __ And(at, a0, Operand(kIsIndirectStringMask));
   1822     __ Assert(eq,
   1823               kExternalStringExpectedButNotFound,
   1824               at,
   1825               Operand(zero_reg));
   1826   }
   1827   __ ld(subject,
   1828         FieldMemOperand(subject, ExternalString::kResourceDataOffset));
   1829   // Move the pointer so that offset-wise, it looks like a sequential string.
   1830   STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize);
   1831   __ Dsubu(subject,
   1832           subject,
   1833           SeqTwoByteString::kHeaderSize - kHeapObjectTag);
   1834   __ jmp(&seq_string);  // Go to (4).
   1835 
   1836   // (7) Short external string or not a string?  If yes, bail out to runtime.
   1837   __ bind(&not_long_external);
   1838   STATIC_ASSERT(kNotStringTag != 0 && kShortExternalStringTag !=0);
   1839   __ And(at, a1, Operand(kIsNotStringMask | kShortExternalStringMask));
   1840   __ Branch(&runtime, ne, at, Operand(zero_reg));
   1841 
   1842   // (8) Sliced string.  Replace subject with parent.  Go to (4).
   1843   // Load offset into t0 and replace subject string with parent.
   1844   __ ld(t0, FieldMemOperand(subject, SlicedString::kOffsetOffset));
   1845   __ SmiUntag(t0);
   1846   __ ld(subject, FieldMemOperand(subject, SlicedString::kParentOffset));
   1847   __ jmp(&check_underlying);  // Go to (1).
   1848 #endif  // V8_INTERPRETED_REGEXP
   1849 }
   1850 
   1851 
   1852 static void CallStubInRecordCallTarget(MacroAssembler* masm, CodeStub* stub) {
   1853   // a0 : number of arguments to the construct function
   1854   // a2 : feedback vector
   1855   // a3 : slot in feedback vector (Smi)
   1856   // a1 : the function to call
   1857   FrameScope scope(masm, StackFrame::INTERNAL);
   1858   const RegList kSavedRegs = 1 << 4 |  // a0
   1859                              1 << 5 |  // a1
   1860                              1 << 6 |  // a2
   1861                              1 << 7;   // a3
   1862 
   1863 
   1864   // Number-of-arguments register must be smi-tagged to call out.
   1865   __ SmiTag(a0);
   1866   __ MultiPush(kSavedRegs);
   1867 
   1868   __ CallStub(stub);
   1869 
   1870   __ MultiPop(kSavedRegs);
   1871   __ SmiUntag(a0);
   1872 }
   1873 
   1874 
   1875 static void GenerateRecordCallTarget(MacroAssembler* masm) {
   1876   // Cache the called function in a feedback vector slot.  Cache states
   1877   // are uninitialized, monomorphic (indicated by a JSFunction), and
   1878   // megamorphic.
   1879   // a0 : number of arguments to the construct function
   1880   // a1 : the function to call
   1881   // a2 : feedback vector
   1882   // a3 : slot in feedback vector (Smi)
   1883   Label initialize, done, miss, megamorphic, not_array_function;
   1884   Label done_initialize_count, done_increment_count;
   1885 
   1886   DCHECK_EQ(*TypeFeedbackVector::MegamorphicSentinel(masm->isolate()),
   1887             masm->isolate()->heap()->megamorphic_symbol());
   1888   DCHECK_EQ(*TypeFeedbackVector::UninitializedSentinel(masm->isolate()),
   1889             masm->isolate()->heap()->uninitialized_symbol());
   1890 
   1891   // Load the cache state into a5.
   1892   __ dsrl(a5, a3, 32 - kPointerSizeLog2);
   1893   __ Daddu(a5, a2, Operand(a5));
   1894   __ ld(a5, FieldMemOperand(a5, FixedArray::kHeaderSize));
   1895 
   1896   // A monomorphic cache hit or an already megamorphic state: invoke the
   1897   // function without changing the state.
   1898   // We don't know if a5 is a WeakCell or a Symbol, but it's harmless to read at
   1899   // this position in a symbol (see static asserts in type-feedback-vector.h).
   1900   Label check_allocation_site;
   1901   Register feedback_map = a6;
   1902   Register weak_value = t0;
   1903   __ ld(weak_value, FieldMemOperand(a5, WeakCell::kValueOffset));
   1904   __ Branch(&done_increment_count, eq, a1, Operand(weak_value));
   1905   __ LoadRoot(at, Heap::kmegamorphic_symbolRootIndex);
   1906   __ Branch(&done, eq, a5, Operand(at));
   1907   __ ld(feedback_map, FieldMemOperand(a5, HeapObject::kMapOffset));
   1908   __ LoadRoot(at, Heap::kWeakCellMapRootIndex);
   1909   __ Branch(&check_allocation_site, ne, feedback_map, Operand(at));
   1910 
   1911   // If the weak cell is cleared, we have a new chance to become monomorphic.
   1912   __ JumpIfSmi(weak_value, &initialize);
   1913   __ jmp(&megamorphic);
   1914 
   1915   __ bind(&check_allocation_site);
   1916   // If we came here, we need to see if we are the array function.
   1917   // If we didn't have a matching function, and we didn't find the megamorph
   1918   // sentinel, then we have in the slot either some other function or an
   1919   // AllocationSite.
   1920   __ LoadRoot(at, Heap::kAllocationSiteMapRootIndex);
   1921   __ Branch(&miss, ne, feedback_map, Operand(at));
   1922 
   1923   // Make sure the function is the Array() function
   1924   __ LoadNativeContextSlot(Context::ARRAY_FUNCTION_INDEX, a5);
   1925   __ Branch(&megamorphic, ne, a1, Operand(a5));
   1926   __ jmp(&done_increment_count);
   1927 
   1928   __ bind(&miss);
   1929 
   1930   // A monomorphic miss (i.e, here the cache is not uninitialized) goes
   1931   // megamorphic.
   1932   __ LoadRoot(at, Heap::kuninitialized_symbolRootIndex);
   1933   __ Branch(&initialize, eq, a5, Operand(at));
   1934   // MegamorphicSentinel is an immortal immovable object (undefined) so no
   1935   // write-barrier is needed.
   1936   __ bind(&megamorphic);
   1937   __ dsrl(a5, a3, 32 - kPointerSizeLog2);
   1938   __ Daddu(a5, a2, Operand(a5));
   1939   __ LoadRoot(at, Heap::kmegamorphic_symbolRootIndex);
   1940   __ sd(at, FieldMemOperand(a5, FixedArray::kHeaderSize));
   1941   __ jmp(&done);
   1942 
   1943   // An uninitialized cache is patched with the function.
   1944   __ bind(&initialize);
   1945   // Make sure the function is the Array() function.
   1946   __ LoadNativeContextSlot(Context::ARRAY_FUNCTION_INDEX, a5);
   1947   __ Branch(&not_array_function, ne, a1, Operand(a5));
   1948 
   1949   // The target function is the Array constructor,
   1950   // Create an AllocationSite if we don't already have it, store it in the
   1951   // slot.
   1952   CreateAllocationSiteStub create_stub(masm->isolate());
   1953   CallStubInRecordCallTarget(masm, &create_stub);
   1954   __ Branch(&done_initialize_count);
   1955 
   1956   __ bind(&not_array_function);
   1957 
   1958   CreateWeakCellStub weak_cell_stub(masm->isolate());
   1959   CallStubInRecordCallTarget(masm, &weak_cell_stub);
   1960 
   1961   __ bind(&done_initialize_count);
   1962   // Initialize the call counter.
   1963 
   1964   __ SmiScale(a4, a3, kPointerSizeLog2);
   1965   __ Daddu(a4, a2, Operand(a4));
   1966   __ li(a5, Operand(Smi::FromInt(1)));
   1967   __ Branch(USE_DELAY_SLOT, &done);
   1968   __ sd(a5, FieldMemOperand(a4, FixedArray::kHeaderSize + kPointerSize));
   1969 
   1970   __ bind(&done_increment_count);
   1971 
   1972   // Increment the call count for monomorphic function calls.
   1973   __ SmiScale(a4, a3, kPointerSizeLog2);
   1974   __ Daddu(a5, a2, Operand(a4));
   1975   __ ld(a4, FieldMemOperand(a5, FixedArray::kHeaderSize + kPointerSize));
   1976   __ Daddu(a4, a4, Operand(Smi::FromInt(1)));
   1977   __ sd(a4, FieldMemOperand(a5, FixedArray::kHeaderSize + kPointerSize));
   1978 
   1979   __ bind(&done);
   1980 }
   1981 
   1982 
   1983 void CallConstructStub::Generate(MacroAssembler* masm) {
   1984   // a0 : number of arguments
   1985   // a1 : the function to call
   1986   // a2 : feedback vector
   1987   // a3 : slot in feedback vector (Smi, for RecordCallTarget)
   1988 
   1989   Label non_function;
   1990   // Check that the function is not a smi.
   1991   __ JumpIfSmi(a1, &non_function);
   1992   // Check that the function is a JSFunction.
   1993   __ GetObjectType(a1, a5, a5);
   1994   __ Branch(&non_function, ne, a5, Operand(JS_FUNCTION_TYPE));
   1995 
   1996   GenerateRecordCallTarget(masm);
   1997 
   1998   __ dsrl(at, a3, 32 - kPointerSizeLog2);
   1999   __ Daddu(a5, a2, at);
   2000   Label feedback_register_initialized;
   2001   // Put the AllocationSite from the feedback vector into a2, or undefined.
   2002   __ ld(a2, FieldMemOperand(a5, FixedArray::kHeaderSize));
   2003   __ ld(a5, FieldMemOperand(a2, AllocationSite::kMapOffset));
   2004   __ LoadRoot(at, Heap::kAllocationSiteMapRootIndex);
   2005   __ Branch(&feedback_register_initialized, eq, a5, Operand(at));
   2006   __ LoadRoot(a2, Heap::kUndefinedValueRootIndex);
   2007   __ bind(&feedback_register_initialized);
   2008 
   2009   __ AssertUndefinedOrAllocationSite(a2, a5);
   2010 
   2011   // Pass function as new target.
   2012   __ mov(a3, a1);
   2013 
   2014   // Tail call to the function-specific construct stub (still in the caller
   2015   // context at this point).
   2016   __ ld(a4, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset));
   2017   __ ld(a4, FieldMemOperand(a4, SharedFunctionInfo::kConstructStubOffset));
   2018   __ Daddu(at, a4, Operand(Code::kHeaderSize - kHeapObjectTag));
   2019   __ Jump(at);
   2020 
   2021   __ bind(&non_function);
   2022   __ mov(a3, a1);
   2023   __ Jump(isolate()->builtins()->Construct(), RelocInfo::CODE_TARGET);
   2024 }
   2025 
   2026 
   2027 // StringCharCodeAtGenerator.
   2028 void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) {
   2029   DCHECK(!a4.is(index_));
   2030   DCHECK(!a4.is(result_));
   2031   DCHECK(!a4.is(object_));
   2032 
   2033   // If the receiver is a smi trigger the non-string case.
   2034   if (check_mode_ == RECEIVER_IS_UNKNOWN) {
   2035     __ JumpIfSmi(object_, receiver_not_string_);
   2036 
   2037     // Fetch the instance type of the receiver into result register.
   2038     __ ld(result_, FieldMemOperand(object_, HeapObject::kMapOffset));
   2039     __ lbu(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset));
   2040     // If the receiver is not a string trigger the non-string case.
   2041     __ And(a4, result_, Operand(kIsNotStringMask));
   2042     __ Branch(receiver_not_string_, ne, a4, Operand(zero_reg));
   2043   }
   2044 
   2045   // If the index is non-smi trigger the non-smi case.
   2046   __ JumpIfNotSmi(index_, &index_not_smi_);
   2047 
   2048   __ bind(&got_smi_index_);
   2049 
   2050   // Check for index out of range.
   2051   __ ld(a4, FieldMemOperand(object_, String::kLengthOffset));
   2052   __ Branch(index_out_of_range_, ls, a4, Operand(index_));
   2053 
   2054   __ SmiUntag(index_);
   2055 
   2056   StringCharLoadGenerator::Generate(masm,
   2057                                     object_,
   2058                                     index_,
   2059                                     result_,
   2060                                     &call_runtime_);
   2061 
   2062   __ SmiTag(result_);
   2063   __ bind(&exit_);
   2064 }
   2065 
   2066 
   2067 void CallICStub::HandleArrayCase(MacroAssembler* masm, Label* miss) {
   2068   // a1 - function
   2069   // a3 - slot id
   2070   // a2 - vector
   2071   // a4 - allocation site (loaded from vector[slot])
   2072   __ LoadNativeContextSlot(Context::ARRAY_FUNCTION_INDEX, at);
   2073   __ Branch(miss, ne, a1, Operand(at));
   2074 
   2075   __ li(a0, Operand(arg_count()));
   2076 
   2077   // Increment the call count for monomorphic function calls.
   2078   __ dsrl(t0, a3, 32 - kPointerSizeLog2);
   2079   __ Daddu(a3, a2, Operand(t0));
   2080   __ ld(t0, FieldMemOperand(a3, FixedArray::kHeaderSize + kPointerSize));
   2081   __ Daddu(t0, t0, Operand(Smi::FromInt(1)));
   2082   __ sd(t0, FieldMemOperand(a3, FixedArray::kHeaderSize + kPointerSize));
   2083 
   2084   __ mov(a2, a4);
   2085   __ mov(a3, a1);
   2086   ArrayConstructorStub stub(masm->isolate(), arg_count());
   2087   __ TailCallStub(&stub);
   2088 }
   2089 
   2090 
   2091 void CallICStub::Generate(MacroAssembler* masm) {
   2092   // a1 - function
   2093   // a3 - slot id (Smi)
   2094   // a2 - vector
   2095   Label extra_checks_or_miss, call, call_function;
   2096   int argc = arg_count();
   2097   ParameterCount actual(argc);
   2098 
   2099   // The checks. First, does r1 match the recorded monomorphic target?
   2100   __ dsrl(a4, a3, 32 - kPointerSizeLog2);
   2101   __ Daddu(a4, a2, Operand(a4));
   2102   __ ld(a4, FieldMemOperand(a4, FixedArray::kHeaderSize));
   2103 
   2104   // We don't know that we have a weak cell. We might have a private symbol
   2105   // or an AllocationSite, but the memory is safe to examine.
   2106   // AllocationSite::kTransitionInfoOffset - contains a Smi or pointer to
   2107   // FixedArray.
   2108   // WeakCell::kValueOffset - contains a JSFunction or Smi(0)
   2109   // Symbol::kHashFieldSlot - if the low bit is 1, then the hash is not
   2110   // computed, meaning that it can't appear to be a pointer. If the low bit is
   2111   // 0, then hash is computed, but the 0 bit prevents the field from appearing
   2112   // to be a pointer.
   2113   STATIC_ASSERT(WeakCell::kSize >= kPointerSize);
   2114   STATIC_ASSERT(AllocationSite::kTransitionInfoOffset ==
   2115                     WeakCell::kValueOffset &&
   2116                 WeakCell::kValueOffset == Symbol::kHashFieldSlot);
   2117 
   2118   __ ld(a5, FieldMemOperand(a4, WeakCell::kValueOffset));
   2119   __ Branch(&extra_checks_or_miss, ne, a1, Operand(a5));
   2120 
   2121   // The compare above could have been a SMI/SMI comparison. Guard against this
   2122   // convincing us that we have a monomorphic JSFunction.
   2123   __ JumpIfSmi(a1, &extra_checks_or_miss);
   2124 
   2125   // Increment the call count for monomorphic function calls.
   2126   __ dsrl(t0, a3, 32 - kPointerSizeLog2);
   2127   __ Daddu(a3, a2, Operand(t0));
   2128   __ ld(t0, FieldMemOperand(a3, FixedArray::kHeaderSize + kPointerSize));
   2129   __ Daddu(t0, t0, Operand(Smi::FromInt(1)));
   2130   __ sd(t0, FieldMemOperand(a3, FixedArray::kHeaderSize + kPointerSize));
   2131 
   2132   __ bind(&call_function);
   2133   __ Jump(masm->isolate()->builtins()->CallFunction(convert_mode(),
   2134                                                     tail_call_mode()),
   2135           RelocInfo::CODE_TARGET, al, zero_reg, Operand(zero_reg),
   2136           USE_DELAY_SLOT);
   2137   __ li(a0, Operand(argc));  // In delay slot.
   2138 
   2139   __ bind(&extra_checks_or_miss);
   2140   Label uninitialized, miss, not_allocation_site;
   2141 
   2142   __ LoadRoot(at, Heap::kmegamorphic_symbolRootIndex);
   2143   __ Branch(&call, eq, a4, Operand(at));
   2144 
   2145   // Verify that a4 contains an AllocationSite
   2146   __ ld(a5, FieldMemOperand(a4, HeapObject::kMapOffset));
   2147   __ LoadRoot(at, Heap::kAllocationSiteMapRootIndex);
   2148   __ Branch(&not_allocation_site, ne, a5, Operand(at));
   2149 
   2150   HandleArrayCase(masm, &miss);
   2151 
   2152   __ bind(&not_allocation_site);
   2153 
   2154   // The following cases attempt to handle MISS cases without going to the
   2155   // runtime.
   2156   if (FLAG_trace_ic) {
   2157     __ Branch(&miss);
   2158   }
   2159 
   2160   __ LoadRoot(at, Heap::kuninitialized_symbolRootIndex);
   2161   __ Branch(&uninitialized, eq, a4, Operand(at));
   2162 
   2163   // We are going megamorphic. If the feedback is a JSFunction, it is fine
   2164   // to handle it here. More complex cases are dealt with in the runtime.
   2165   __ AssertNotSmi(a4);
   2166   __ GetObjectType(a4, a5, a5);
   2167   __ Branch(&miss, ne, a5, Operand(JS_FUNCTION_TYPE));
   2168   __ dsrl(a4, a3, 32 - kPointerSizeLog2);
   2169   __ Daddu(a4, a2, Operand(a4));
   2170   __ LoadRoot(at, Heap::kmegamorphic_symbolRootIndex);
   2171   __ sd(at, FieldMemOperand(a4, FixedArray::kHeaderSize));
   2172 
   2173   __ bind(&call);
   2174   __ Jump(masm->isolate()->builtins()->Call(convert_mode(), tail_call_mode()),
   2175           RelocInfo::CODE_TARGET, al, zero_reg, Operand(zero_reg),
   2176           USE_DELAY_SLOT);
   2177   __ li(a0, Operand(argc));  // In delay slot.
   2178 
   2179   __ bind(&uninitialized);
   2180 
   2181   // We are going monomorphic, provided we actually have a JSFunction.
   2182   __ JumpIfSmi(a1, &miss);
   2183 
   2184   // Goto miss case if we do not have a function.
   2185   __ GetObjectType(a1, a4, a4);
   2186   __ Branch(&miss, ne, a4, Operand(JS_FUNCTION_TYPE));
   2187 
   2188   // Make sure the function is not the Array() function, which requires special
   2189   // behavior on MISS.
   2190   __ LoadNativeContextSlot(Context::ARRAY_FUNCTION_INDEX, a4);
   2191   __ Branch(&miss, eq, a1, Operand(a4));
   2192 
   2193   // Make sure the function belongs to the same native context.
   2194   __ ld(t0, FieldMemOperand(a1, JSFunction::kContextOffset));
   2195   __ ld(t0, ContextMemOperand(t0, Context::NATIVE_CONTEXT_INDEX));
   2196   __ ld(t1, NativeContextMemOperand());
   2197   __ Branch(&miss, ne, t0, Operand(t1));
   2198 
   2199   // Initialize the call counter.
   2200   __ dsrl(at, a3, 32 - kPointerSizeLog2);
   2201   __ Daddu(at, a2, Operand(at));
   2202   __ li(t0, Operand(Smi::FromInt(1)));
   2203   __ sd(t0, FieldMemOperand(at, FixedArray::kHeaderSize + kPointerSize));
   2204 
   2205   // Store the function. Use a stub since we need a frame for allocation.
   2206   // a2 - vector
   2207   // a3 - slot
   2208   // a1 - function
   2209   {
   2210     FrameScope scope(masm, StackFrame::INTERNAL);
   2211     CreateWeakCellStub create_stub(masm->isolate());
   2212     __ Push(a1);
   2213     __ CallStub(&create_stub);
   2214     __ Pop(a1);
   2215   }
   2216 
   2217   __ Branch(&call_function);
   2218 
   2219   // We are here because tracing is on or we encountered a MISS case we can't
   2220   // handle here.
   2221   __ bind(&miss);
   2222   GenerateMiss(masm);
   2223 
   2224   __ Branch(&call);
   2225 }
   2226 
   2227 
   2228 void CallICStub::GenerateMiss(MacroAssembler* masm) {
   2229   FrameScope scope(masm, StackFrame::INTERNAL);
   2230 
   2231   // Push the receiver and the function and feedback info.
   2232   __ Push(a1, a2, a3);
   2233 
   2234   // Call the entry.
   2235   __ CallRuntime(Runtime::kCallIC_Miss);
   2236 
   2237   // Move result to a1 and exit the internal frame.
   2238   __ mov(a1, v0);
   2239 }
   2240 
   2241 
   2242 void StringCharCodeAtGenerator::GenerateSlow(
   2243     MacroAssembler* masm, EmbedMode embed_mode,
   2244     const RuntimeCallHelper& call_helper) {
   2245   __ Abort(kUnexpectedFallthroughToCharCodeAtSlowCase);
   2246 
   2247   // Index is not a smi.
   2248   __ bind(&index_not_smi_);
   2249   // If index is a heap number, try converting it to an integer.
   2250   __ CheckMap(index_,
   2251               result_,
   2252               Heap::kHeapNumberMapRootIndex,
   2253               index_not_number_,
   2254               DONT_DO_SMI_CHECK);
   2255   call_helper.BeforeCall(masm);
   2256   // Consumed by runtime conversion function:
   2257   if (embed_mode == PART_OF_IC_HANDLER) {
   2258     __ Push(LoadWithVectorDescriptor::VectorRegister(),
   2259             LoadWithVectorDescriptor::SlotRegister(), object_, index_);
   2260   } else {
   2261     __ Push(object_, index_);
   2262   }
   2263   __ CallRuntime(Runtime::kNumberToSmi);
   2264 
   2265   // Save the conversion result before the pop instructions below
   2266   // have a chance to overwrite it.
   2267 
   2268   __ Move(index_, v0);
   2269   if (embed_mode == PART_OF_IC_HANDLER) {
   2270     __ Pop(LoadWithVectorDescriptor::VectorRegister(),
   2271            LoadWithVectorDescriptor::SlotRegister(), object_);
   2272   } else {
   2273     __ pop(object_);
   2274   }
   2275   // Reload the instance type.
   2276   __ ld(result_, FieldMemOperand(object_, HeapObject::kMapOffset));
   2277   __ lbu(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset));
   2278   call_helper.AfterCall(masm);
   2279   // If index is still not a smi, it must be out of range.
   2280   __ JumpIfNotSmi(index_, index_out_of_range_);
   2281   // Otherwise, return to the fast path.
   2282   __ Branch(&got_smi_index_);
   2283 
   2284   // Call runtime. We get here when the receiver is a string and the
   2285   // index is a number, but the code of getting the actual character
   2286   // is too complex (e.g., when the string needs to be flattened).
   2287   __ bind(&call_runtime_);
   2288   call_helper.BeforeCall(masm);
   2289   __ SmiTag(index_);
   2290   __ Push(object_, index_);
   2291   __ CallRuntime(Runtime::kStringCharCodeAtRT);
   2292 
   2293   __ Move(result_, v0);
   2294 
   2295   call_helper.AfterCall(masm);
   2296   __ jmp(&exit_);
   2297 
   2298   __ Abort(kUnexpectedFallthroughFromCharCodeAtSlowCase);
   2299 }
   2300 
   2301 
   2302 // -------------------------------------------------------------------------
   2303 // StringCharFromCodeGenerator
   2304 
   2305 void StringCharFromCodeGenerator::GenerateFast(MacroAssembler* masm) {
   2306   // Fast case of Heap::LookupSingleCharacterStringFromCode.
   2307   __ JumpIfNotSmi(code_, &slow_case_);
   2308   __ Branch(&slow_case_, hi, code_,
   2309             Operand(Smi::FromInt(String::kMaxOneByteCharCode)));
   2310 
   2311   __ LoadRoot(result_, Heap::kSingleCharacterStringCacheRootIndex);
   2312   // At this point code register contains smi tagged one_byte char code.
   2313   __ SmiScale(at, code_, kPointerSizeLog2);
   2314   __ Daddu(result_, result_, at);
   2315   __ ld(result_, FieldMemOperand(result_, FixedArray::kHeaderSize));
   2316   __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
   2317   __ Branch(&slow_case_, eq, result_, Operand(at));
   2318   __ bind(&exit_);
   2319 }
   2320 
   2321 
   2322 void StringCharFromCodeGenerator::GenerateSlow(
   2323     MacroAssembler* masm,
   2324     const RuntimeCallHelper& call_helper) {
   2325   __ Abort(kUnexpectedFallthroughToCharFromCodeSlowCase);
   2326 
   2327   __ bind(&slow_case_);
   2328   call_helper.BeforeCall(masm);
   2329   __ push(code_);
   2330   __ CallRuntime(Runtime::kStringCharFromCode);
   2331   __ Move(result_, v0);
   2332 
   2333   call_helper.AfterCall(masm);
   2334   __ Branch(&exit_);
   2335 
   2336   __ Abort(kUnexpectedFallthroughFromCharFromCodeSlowCase);
   2337 }
   2338 
   2339 
   2340 enum CopyCharactersFlags { COPY_ONE_BYTE = 1, DEST_ALWAYS_ALIGNED = 2 };
   2341 
   2342 
   2343 void StringHelper::GenerateCopyCharacters(MacroAssembler* masm,
   2344                                           Register dest,
   2345                                           Register src,
   2346                                           Register count,
   2347                                           Register scratch,
   2348                                           String::Encoding encoding) {
   2349   if (FLAG_debug_code) {
   2350     // Check that destination is word aligned.
   2351     __ And(scratch, dest, Operand(kPointerAlignmentMask));
   2352     __ Check(eq,
   2353              kDestinationOfCopyNotAligned,
   2354              scratch,
   2355              Operand(zero_reg));
   2356   }
   2357 
   2358   // Assumes word reads and writes are little endian.
   2359   // Nothing to do for zero characters.
   2360   Label done;
   2361 
   2362   if (encoding == String::TWO_BYTE_ENCODING) {
   2363     __ Daddu(count, count, count);
   2364   }
   2365 
   2366   Register limit = count;  // Read until dest equals this.
   2367   __ Daddu(limit, dest, Operand(count));
   2368 
   2369   Label loop_entry, loop;
   2370   // Copy bytes from src to dest until dest hits limit.
   2371   __ Branch(&loop_entry);
   2372   __ bind(&loop);
   2373   __ lbu(scratch, MemOperand(src));
   2374   __ daddiu(src, src, 1);
   2375   __ sb(scratch, MemOperand(dest));
   2376   __ daddiu(dest, dest, 1);
   2377   __ bind(&loop_entry);
   2378   __ Branch(&loop, lt, dest, Operand(limit));
   2379 
   2380   __ bind(&done);
   2381 }
   2382 
   2383 
   2384 void SubStringStub::Generate(MacroAssembler* masm) {
   2385   Label runtime;
   2386   // Stack frame on entry.
   2387   //  ra: return address
   2388   //  sp[0]: to
   2389   //  sp[4]: from
   2390   //  sp[8]: string
   2391 
   2392   // This stub is called from the native-call %_SubString(...), so
   2393   // nothing can be assumed about the arguments. It is tested that:
   2394   //  "string" is a sequential string,
   2395   //  both "from" and "to" are smis, and
   2396   //  0 <= from <= to <= string.length.
   2397   // If any of these assumptions fail, we call the runtime system.
   2398 
   2399   const int kToOffset = 0 * kPointerSize;
   2400   const int kFromOffset = 1 * kPointerSize;
   2401   const int kStringOffset = 2 * kPointerSize;
   2402 
   2403   __ ld(a2, MemOperand(sp, kToOffset));
   2404   __ ld(a3, MemOperand(sp, kFromOffset));
   2405 
   2406   STATIC_ASSERT(kSmiTag == 0);
   2407 
   2408   // Utilize delay slots. SmiUntag doesn't emit a jump, everything else is
   2409   // safe in this case.
   2410   __ JumpIfNotSmi(a2, &runtime);
   2411   __ JumpIfNotSmi(a3, &runtime);
   2412   // Both a2 and a3 are untagged integers.
   2413 
   2414   __ SmiUntag(a2, a2);
   2415   __ SmiUntag(a3, a3);
   2416   __ Branch(&runtime, lt, a3, Operand(zero_reg));  // From < 0.
   2417 
   2418   __ Branch(&runtime, gt, a3, Operand(a2));  // Fail if from > to.
   2419   __ Dsubu(a2, a2, a3);
   2420 
   2421   // Make sure first argument is a string.
   2422   __ ld(v0, MemOperand(sp, kStringOffset));
   2423   __ JumpIfSmi(v0, &runtime);
   2424   __ ld(a1, FieldMemOperand(v0, HeapObject::kMapOffset));
   2425   __ lbu(a1, FieldMemOperand(a1, Map::kInstanceTypeOffset));
   2426   __ And(a4, a1, Operand(kIsNotStringMask));
   2427 
   2428   __ Branch(&runtime, ne, a4, Operand(zero_reg));
   2429 
   2430   Label single_char;
   2431   __ Branch(&single_char, eq, a2, Operand(1));
   2432 
   2433   // Short-cut for the case of trivial substring.
   2434   Label return_v0;
   2435   // v0: original string
   2436   // a2: result string length
   2437   __ ld(a4, FieldMemOperand(v0, String::kLengthOffset));
   2438   __ SmiUntag(a4);
   2439   // Return original string.
   2440   __ Branch(&return_v0, eq, a2, Operand(a4));
   2441   // Longer than original string's length or negative: unsafe arguments.
   2442   __ Branch(&runtime, hi, a2, Operand(a4));
   2443   // Shorter than original string's length: an actual substring.
   2444 
   2445   // Deal with different string types: update the index if necessary
   2446   // and put the underlying string into a5.
   2447   // v0: original string
   2448   // a1: instance type
   2449   // a2: length
   2450   // a3: from index (untagged)
   2451   Label underlying_unpacked, sliced_string, seq_or_external_string;
   2452   // If the string is not indirect, it can only be sequential or external.
   2453   STATIC_ASSERT(kIsIndirectStringMask == (kSlicedStringTag & kConsStringTag));
   2454   STATIC_ASSERT(kIsIndirectStringMask != 0);
   2455   __ And(a4, a1, Operand(kIsIndirectStringMask));
   2456   __ Branch(USE_DELAY_SLOT, &seq_or_external_string, eq, a4, Operand(zero_reg));
   2457   // a4 is used as a scratch register and can be overwritten in either case.
   2458   __ And(a4, a1, Operand(kSlicedNotConsMask));
   2459   __ Branch(&sliced_string, ne, a4, Operand(zero_reg));
   2460   // Cons string.  Check whether it is flat, then fetch first part.
   2461   __ ld(a5, FieldMemOperand(v0, ConsString::kSecondOffset));
   2462   __ LoadRoot(a4, Heap::kempty_stringRootIndex);
   2463   __ Branch(&runtime, ne, a5, Operand(a4));
   2464   __ ld(a5, FieldMemOperand(v0, ConsString::kFirstOffset));
   2465   // Update instance type.
   2466   __ ld(a1, FieldMemOperand(a5, HeapObject::kMapOffset));
   2467   __ lbu(a1, FieldMemOperand(a1, Map::kInstanceTypeOffset));
   2468   __ jmp(&underlying_unpacked);
   2469 
   2470   __ bind(&sliced_string);
   2471   // Sliced string.  Fetch parent and correct start index by offset.
   2472   __ ld(a5, FieldMemOperand(v0, SlicedString::kParentOffset));
   2473   __ ld(a4, FieldMemOperand(v0, SlicedString::kOffsetOffset));
   2474   __ SmiUntag(a4);  // Add offset to index.
   2475   __ Daddu(a3, a3, a4);
   2476   // Update instance type.
   2477   __ ld(a1, FieldMemOperand(a5, HeapObject::kMapOffset));
   2478   __ lbu(a1, FieldMemOperand(a1, Map::kInstanceTypeOffset));
   2479   __ jmp(&underlying_unpacked);
   2480 
   2481   __ bind(&seq_or_external_string);
   2482   // Sequential or external string.  Just move string to the expected register.
   2483   __ mov(a5, v0);
   2484 
   2485   __ bind(&underlying_unpacked);
   2486 
   2487   if (FLAG_string_slices) {
   2488     Label copy_routine;
   2489     // a5: underlying subject string
   2490     // a1: instance type of underlying subject string
   2491     // a2: length
   2492     // a3: adjusted start index (untagged)
   2493     // Short slice.  Copy instead of slicing.
   2494     __ Branch(&copy_routine, lt, a2, Operand(SlicedString::kMinLength));
   2495     // Allocate new sliced string.  At this point we do not reload the instance
   2496     // type including the string encoding because we simply rely on the info
   2497     // provided by the original string.  It does not matter if the original
   2498     // string's encoding is wrong because we always have to recheck encoding of
   2499     // the newly created string's parent anyways due to externalized strings.
   2500     Label two_byte_slice, set_slice_header;
   2501     STATIC_ASSERT((kStringEncodingMask & kOneByteStringTag) != 0);
   2502     STATIC_ASSERT((kStringEncodingMask & kTwoByteStringTag) == 0);
   2503     __ And(a4, a1, Operand(kStringEncodingMask));
   2504     __ Branch(&two_byte_slice, eq, a4, Operand(zero_reg));
   2505     __ AllocateOneByteSlicedString(v0, a2, a6, a7, &runtime);
   2506     __ jmp(&set_slice_header);
   2507     __ bind(&two_byte_slice);
   2508     __ AllocateTwoByteSlicedString(v0, a2, a6, a7, &runtime);
   2509     __ bind(&set_slice_header);
   2510     __ SmiTag(a3);
   2511     __ sd(a5, FieldMemOperand(v0, SlicedString::kParentOffset));
   2512     __ sd(a3, FieldMemOperand(v0, SlicedString::kOffsetOffset));
   2513     __ jmp(&return_v0);
   2514 
   2515     __ bind(&copy_routine);
   2516   }
   2517 
   2518   // a5: underlying subject string
   2519   // a1: instance type of underlying subject string
   2520   // a2: length
   2521   // a3: adjusted start index (untagged)
   2522   Label two_byte_sequential, sequential_string, allocate_result;
   2523   STATIC_ASSERT(kExternalStringTag != 0);
   2524   STATIC_ASSERT(kSeqStringTag == 0);
   2525   __ And(a4, a1, Operand(kExternalStringTag));
   2526   __ Branch(&sequential_string, eq, a4, Operand(zero_reg));
   2527 
   2528   // Handle external string.
   2529   // Rule out short external strings.
   2530   STATIC_ASSERT(kShortExternalStringTag != 0);
   2531   __ And(a4, a1, Operand(kShortExternalStringTag));
   2532   __ Branch(&runtime, ne, a4, Operand(zero_reg));
   2533   __ ld(a5, FieldMemOperand(a5, ExternalString::kResourceDataOffset));
   2534   // a5 already points to the first character of underlying string.
   2535   __ jmp(&allocate_result);
   2536 
   2537   __ bind(&sequential_string);
   2538   // Locate first character of underlying subject string.
   2539   STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize);
   2540   __ Daddu(a5, a5, Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
   2541 
   2542   __ bind(&allocate_result);
   2543   // Sequential acii string.  Allocate the result.
   2544   STATIC_ASSERT((kOneByteStringTag & kStringEncodingMask) != 0);
   2545   __ And(a4, a1, Operand(kStringEncodingMask));
   2546   __ Branch(&two_byte_sequential, eq, a4, Operand(zero_reg));
   2547 
   2548   // Allocate and copy the resulting one_byte string.
   2549   __ AllocateOneByteString(v0, a2, a4, a6, a7, &runtime);
   2550 
   2551   // Locate first character of substring to copy.
   2552   __ Daddu(a5, a5, a3);
   2553 
   2554   // Locate first character of result.
   2555   __ Daddu(a1, v0, Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
   2556 
   2557   // v0: result string
   2558   // a1: first character of result string
   2559   // a2: result string length
   2560   // a5: first character of substring to copy
   2561   STATIC_ASSERT((SeqOneByteString::kHeaderSize & kObjectAlignmentMask) == 0);
   2562   StringHelper::GenerateCopyCharacters(
   2563       masm, a1, a5, a2, a3, String::ONE_BYTE_ENCODING);
   2564   __ jmp(&return_v0);
   2565 
   2566   // Allocate and copy the resulting two-byte string.
   2567   __ bind(&two_byte_sequential);
   2568   __ AllocateTwoByteString(v0, a2, a4, a6, a7, &runtime);
   2569 
   2570   // Locate first character of substring to copy.
   2571   STATIC_ASSERT(kSmiTagSize == 1 && kSmiTag == 0);
   2572   __ Dlsa(a5, a5, a3, 1);
   2573   // Locate first character of result.
   2574   __ Daddu(a1, v0, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
   2575 
   2576   // v0: result string.
   2577   // a1: first character of result.
   2578   // a2: result length.
   2579   // a5: first character of substring to copy.
   2580   STATIC_ASSERT((SeqTwoByteString::kHeaderSize & kObjectAlignmentMask) == 0);
   2581   StringHelper::GenerateCopyCharacters(
   2582       masm, a1, a5, a2, a3, String::TWO_BYTE_ENCODING);
   2583 
   2584   __ bind(&return_v0);
   2585   Counters* counters = isolate()->counters();
   2586   __ IncrementCounter(counters->sub_string_native(), 1, a3, a4);
   2587   __ DropAndRet(3);
   2588 
   2589   // Just jump to runtime to create the sub string.
   2590   __ bind(&runtime);
   2591   __ TailCallRuntime(Runtime::kSubString);
   2592 
   2593   __ bind(&single_char);
   2594   // v0: original string
   2595   // a1: instance type
   2596   // a2: length
   2597   // a3: from index (untagged)
   2598   __ SmiTag(a3);
   2599   StringCharAtGenerator generator(v0, a3, a2, v0, &runtime, &runtime, &runtime,
   2600                                   RECEIVER_IS_STRING);
   2601   generator.GenerateFast(masm);
   2602   __ DropAndRet(3);
   2603   generator.SkipSlow(masm, &runtime);
   2604 }
   2605 
   2606 void ToStringStub::Generate(MacroAssembler* masm) {
   2607   // The ToString stub takes on argument in a0.
   2608   Label is_number;
   2609   __ JumpIfSmi(a0, &is_number);
   2610 
   2611   Label not_string;
   2612   __ GetObjectType(a0, a1, a1);
   2613   // a0: receiver
   2614   // a1: receiver instance type
   2615   __ Branch(&not_string, ge, a1, Operand(FIRST_NONSTRING_TYPE));
   2616   __ Ret(USE_DELAY_SLOT);
   2617   __ mov(v0, a0);
   2618   __ bind(&not_string);
   2619 
   2620   Label not_heap_number;
   2621   __ Branch(&not_heap_number, ne, a1, Operand(HEAP_NUMBER_TYPE));
   2622   __ bind(&is_number);
   2623   NumberToStringStub stub(isolate());
   2624   __ TailCallStub(&stub);
   2625   __ bind(&not_heap_number);
   2626 
   2627   Label not_oddball;
   2628   __ Branch(&not_oddball, ne, a1, Operand(ODDBALL_TYPE));
   2629   __ Ret(USE_DELAY_SLOT);
   2630   __ ld(v0, FieldMemOperand(a0, Oddball::kToStringOffset));
   2631   __ bind(&not_oddball);
   2632 
   2633   __ push(a0);  // Push argument.
   2634   __ TailCallRuntime(Runtime::kToString);
   2635 }
   2636 
   2637 
   2638 void ToNameStub::Generate(MacroAssembler* masm) {
   2639   // The ToName stub takes on argument in a0.
   2640   Label is_number;
   2641   __ JumpIfSmi(a0, &is_number);
   2642 
   2643   Label not_name;
   2644   STATIC_ASSERT(FIRST_NAME_TYPE == FIRST_TYPE);
   2645   __ GetObjectType(a0, a1, a1);
   2646   // a0: receiver
   2647   // a1: receiver instance type
   2648   __ Branch(&not_name, gt, a1, Operand(LAST_NAME_TYPE));
   2649   __ Ret(USE_DELAY_SLOT);
   2650   __ mov(v0, a0);
   2651   __ bind(&not_name);
   2652 
   2653   Label not_heap_number;
   2654   __ Branch(&not_heap_number, ne, a1, Operand(HEAP_NUMBER_TYPE));
   2655   __ bind(&is_number);
   2656   NumberToStringStub stub(isolate());
   2657   __ TailCallStub(&stub);
   2658   __ bind(&not_heap_number);
   2659 
   2660   Label not_oddball;
   2661   __ Branch(&not_oddball, ne, a1, Operand(ODDBALL_TYPE));
   2662   __ Ret(USE_DELAY_SLOT);
   2663   __ ld(v0, FieldMemOperand(a0, Oddball::kToStringOffset));
   2664   __ bind(&not_oddball);
   2665 
   2666   __ push(a0);  // Push argument.
   2667   __ TailCallRuntime(Runtime::kToName);
   2668 }
   2669 
   2670 
   2671 void StringHelper::GenerateFlatOneByteStringEquals(
   2672     MacroAssembler* masm, Register left, Register right, Register scratch1,
   2673     Register scratch2, Register scratch3) {
   2674   Register length = scratch1;
   2675 
   2676   // Compare lengths.
   2677   Label strings_not_equal, check_zero_length;
   2678   __ ld(length, FieldMemOperand(left, String::kLengthOffset));
   2679   __ ld(scratch2, FieldMemOperand(right, String::kLengthOffset));
   2680   __ Branch(&check_zero_length, eq, length, Operand(scratch2));
   2681   __ bind(&strings_not_equal);
   2682   // Can not put li in delayslot, it has multi instructions.
   2683   __ li(v0, Operand(Smi::FromInt(NOT_EQUAL)));
   2684   __ Ret();
   2685 
   2686   // Check if the length is zero.
   2687   Label compare_chars;
   2688   __ bind(&check_zero_length);
   2689   STATIC_ASSERT(kSmiTag == 0);
   2690   __ Branch(&compare_chars, ne, length, Operand(zero_reg));
   2691   DCHECK(is_int16((intptr_t)Smi::FromInt(EQUAL)));
   2692   __ Ret(USE_DELAY_SLOT);
   2693   __ li(v0, Operand(Smi::FromInt(EQUAL)));
   2694 
   2695   // Compare characters.
   2696   __ bind(&compare_chars);
   2697 
   2698   GenerateOneByteCharsCompareLoop(masm, left, right, length, scratch2, scratch3,
   2699                                   v0, &strings_not_equal);
   2700 
   2701   // Characters are equal.
   2702   __ Ret(USE_DELAY_SLOT);
   2703   __ li(v0, Operand(Smi::FromInt(EQUAL)));
   2704 }
   2705 
   2706 
   2707 void StringHelper::GenerateCompareFlatOneByteStrings(
   2708     MacroAssembler* masm, Register left, Register right, Register scratch1,
   2709     Register scratch2, Register scratch3, Register scratch4) {
   2710   Label result_not_equal, compare_lengths;
   2711   // Find minimum length and length difference.
   2712   __ ld(scratch1, FieldMemOperand(left, String::kLengthOffset));
   2713   __ ld(scratch2, FieldMemOperand(right, String::kLengthOffset));
   2714   __ Dsubu(scratch3, scratch1, Operand(scratch2));
   2715   Register length_delta = scratch3;
   2716   __ slt(scratch4, scratch2, scratch1);
   2717   __ Movn(scratch1, scratch2, scratch4);
   2718   Register min_length = scratch1;
   2719   STATIC_ASSERT(kSmiTag == 0);
   2720   __ Branch(&compare_lengths, eq, min_length, Operand(zero_reg));
   2721 
   2722   // Compare loop.
   2723   GenerateOneByteCharsCompareLoop(masm, left, right, min_length, scratch2,
   2724                                   scratch4, v0, &result_not_equal);
   2725 
   2726   // Compare lengths - strings up to min-length are equal.
   2727   __ bind(&compare_lengths);
   2728   DCHECK(Smi::FromInt(EQUAL) == static_cast<Smi*>(0));
   2729   // Use length_delta as result if it's zero.
   2730   __ mov(scratch2, length_delta);
   2731   __ mov(scratch4, zero_reg);
   2732   __ mov(v0, zero_reg);
   2733 
   2734   __ bind(&result_not_equal);
   2735   // Conditionally update the result based either on length_delta or
   2736   // the last comparion performed in the loop above.
   2737   Label ret;
   2738   __ Branch(&ret, eq, scratch2, Operand(scratch4));
   2739   __ li(v0, Operand(Smi::FromInt(GREATER)));
   2740   __ Branch(&ret, gt, scratch2, Operand(scratch4));
   2741   __ li(v0, Operand(Smi::FromInt(LESS)));
   2742   __ bind(&ret);
   2743   __ Ret();
   2744 }
   2745 
   2746 
   2747 void StringHelper::GenerateOneByteCharsCompareLoop(
   2748     MacroAssembler* masm, Register left, Register right, Register length,
   2749     Register scratch1, Register scratch2, Register scratch3,
   2750     Label* chars_not_equal) {
   2751   // Change index to run from -length to -1 by adding length to string
   2752   // start. This means that loop ends when index reaches zero, which
   2753   // doesn't need an additional compare.
   2754   __ SmiUntag(length);
   2755   __ Daddu(scratch1, length,
   2756           Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
   2757   __ Daddu(left, left, Operand(scratch1));
   2758   __ Daddu(right, right, Operand(scratch1));
   2759   __ Dsubu(length, zero_reg, length);
   2760   Register index = length;  // index = -length;
   2761 
   2762 
   2763   // Compare loop.
   2764   Label loop;
   2765   __ bind(&loop);
   2766   __ Daddu(scratch3, left, index);
   2767   __ lbu(scratch1, MemOperand(scratch3));
   2768   __ Daddu(scratch3, right, index);
   2769   __ lbu(scratch2, MemOperand(scratch3));
   2770   __ Branch(chars_not_equal, ne, scratch1, Operand(scratch2));
   2771   __ Daddu(index, index, 1);
   2772   __ Branch(&loop, ne, index, Operand(zero_reg));
   2773 }
   2774 
   2775 
   2776 void BinaryOpICWithAllocationSiteStub::Generate(MacroAssembler* masm) {
   2777   // ----------- S t a t e -------------
   2778   //  -- a1    : left
   2779   //  -- a0    : right
   2780   //  -- ra    : return address
   2781   // -----------------------------------
   2782 
   2783   // Load a2 with the allocation site. We stick an undefined dummy value here
   2784   // and replace it with the real allocation site later when we instantiate this
   2785   // stub in BinaryOpICWithAllocationSiteStub::GetCodeCopyFromTemplate().
   2786   __ li(a2, isolate()->factory()->undefined_value());
   2787 
   2788   // Make sure that we actually patched the allocation site.
   2789   if (FLAG_debug_code) {
   2790     __ And(at, a2, Operand(kSmiTagMask));
   2791     __ Assert(ne, kExpectedAllocationSite, at, Operand(zero_reg));
   2792     __ ld(a4, FieldMemOperand(a2, HeapObject::kMapOffset));
   2793     __ LoadRoot(at, Heap::kAllocationSiteMapRootIndex);
   2794     __ Assert(eq, kExpectedAllocationSite, a4, Operand(at));
   2795   }
   2796 
   2797   // Tail call into the stub that handles binary operations with allocation
   2798   // sites.
   2799   BinaryOpWithAllocationSiteStub stub(isolate(), state());
   2800   __ TailCallStub(&stub);
   2801 }
   2802 
   2803 
   2804 void CompareICStub::GenerateBooleans(MacroAssembler* masm) {
   2805   DCHECK_EQ(CompareICState::BOOLEAN, state());
   2806   Label miss;
   2807 
   2808   __ CheckMap(a1, a2, Heap::kBooleanMapRootIndex, &miss, DO_SMI_CHECK);
   2809   __ CheckMap(a0, a3, Heap::kBooleanMapRootIndex, &miss, DO_SMI_CHECK);
   2810   if (!Token::IsEqualityOp(op())) {
   2811     __ ld(a1, FieldMemOperand(a1, Oddball::kToNumberOffset));
   2812     __ AssertSmi(a1);
   2813     __ ld(a0, FieldMemOperand(a0, Oddball::kToNumberOffset));
   2814     __ AssertSmi(a0);
   2815   }
   2816   __ Ret(USE_DELAY_SLOT);
   2817   __ Dsubu(v0, a1, a0);
   2818 
   2819   __ bind(&miss);
   2820   GenerateMiss(masm);
   2821 }
   2822 
   2823 
   2824 void CompareICStub::GenerateSmis(MacroAssembler* masm) {
   2825   DCHECK(state() == CompareICState::SMI);
   2826   Label miss;
   2827   __ Or(a2, a1, a0);
   2828   __ JumpIfNotSmi(a2, &miss);
   2829 
   2830   if (GetCondition() == eq) {
   2831     // For equality we do not care about the sign of the result.
   2832     __ Ret(USE_DELAY_SLOT);
   2833     __ Dsubu(v0, a0, a1);
   2834   } else {
   2835     // Untag before subtracting to avoid handling overflow.
   2836     __ SmiUntag(a1);
   2837     __ SmiUntag(a0);
   2838     __ Ret(USE_DELAY_SLOT);
   2839     __ Dsubu(v0, a1, a0);
   2840   }
   2841 
   2842   __ bind(&miss);
   2843   GenerateMiss(masm);
   2844 }
   2845 
   2846 
   2847 void CompareICStub::GenerateNumbers(MacroAssembler* masm) {
   2848   DCHECK(state() == CompareICState::NUMBER);
   2849 
   2850   Label generic_stub;
   2851   Label unordered, maybe_undefined1, maybe_undefined2;
   2852   Label miss;
   2853 
   2854   if (left() == CompareICState::SMI) {
   2855     __ JumpIfNotSmi(a1, &miss);
   2856   }
   2857   if (right() == CompareICState::SMI) {
   2858     __ JumpIfNotSmi(a0, &miss);
   2859   }
   2860 
   2861   // Inlining the double comparison and falling back to the general compare
   2862   // stub if NaN is involved.
   2863   // Load left and right operand.
   2864   Label done, left, left_smi, right_smi;
   2865   __ JumpIfSmi(a0, &right_smi);
   2866   __ CheckMap(a0, a2, Heap::kHeapNumberMapRootIndex, &maybe_undefined1,
   2867               DONT_DO_SMI_CHECK);
   2868   __ Dsubu(a2, a0, Operand(kHeapObjectTag));
   2869   __ ldc1(f2, MemOperand(a2, HeapNumber::kValueOffset));
   2870   __ Branch(&left);
   2871   __ bind(&right_smi);
   2872   __ SmiUntag(a2, a0);  // Can't clobber a0 yet.
   2873   FPURegister single_scratch = f6;
   2874   __ mtc1(a2, single_scratch);
   2875   __ cvt_d_w(f2, single_scratch);
   2876 
   2877   __ bind(&left);
   2878   __ JumpIfSmi(a1, &left_smi);
   2879   __ CheckMap(a1, a2, Heap::kHeapNumberMapRootIndex, &maybe_undefined2,
   2880               DONT_DO_SMI_CHECK);
   2881   __ Dsubu(a2, a1, Operand(kHeapObjectTag));
   2882   __ ldc1(f0, MemOperand(a2, HeapNumber::kValueOffset));
   2883   __ Branch(&done);
   2884   __ bind(&left_smi);
   2885   __ SmiUntag(a2, a1);  // Can't clobber a1 yet.
   2886   single_scratch = f8;
   2887   __ mtc1(a2, single_scratch);
   2888   __ cvt_d_w(f0, single_scratch);
   2889 
   2890   __ bind(&done);
   2891 
   2892   // Return a result of -1, 0, or 1, or use CompareStub for NaNs.
   2893   Label fpu_eq, fpu_lt;
   2894   // Test if equal, and also handle the unordered/NaN case.
   2895   __ BranchF(&fpu_eq, &unordered, eq, f0, f2);
   2896 
   2897   // Test if less (unordered case is already handled).
   2898   __ BranchF(&fpu_lt, NULL, lt, f0, f2);
   2899 
   2900   // Otherwise it's greater, so just fall thru, and return.
   2901   DCHECK(is_int16(GREATER) && is_int16(EQUAL) && is_int16(LESS));
   2902   __ Ret(USE_DELAY_SLOT);
   2903   __ li(v0, Operand(GREATER));
   2904 
   2905   __ bind(&fpu_eq);
   2906   __ Ret(USE_DELAY_SLOT);
   2907   __ li(v0, Operand(EQUAL));
   2908 
   2909   __ bind(&fpu_lt);
   2910   __ Ret(USE_DELAY_SLOT);
   2911   __ li(v0, Operand(LESS));
   2912 
   2913   __ bind(&unordered);
   2914   __ bind(&generic_stub);
   2915   CompareICStub stub(isolate(), op(), CompareICState::GENERIC,
   2916                      CompareICState::GENERIC, CompareICState::GENERIC);
   2917   __ Jump(stub.GetCode(), RelocInfo::CODE_TARGET);
   2918 
   2919   __ bind(&maybe_undefined1);
   2920   if (Token::IsOrderedRelationalCompareOp(op())) {
   2921     __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
   2922     __ Branch(&miss, ne, a0, Operand(at));
   2923     __ JumpIfSmi(a1, &unordered);
   2924     __ GetObjectType(a1, a2, a2);
   2925     __ Branch(&maybe_undefined2, ne, a2, Operand(HEAP_NUMBER_TYPE));
   2926     __ jmp(&unordered);
   2927   }
   2928 
   2929   __ bind(&maybe_undefined2);
   2930   if (Token::IsOrderedRelationalCompareOp(op())) {
   2931     __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
   2932     __ Branch(&unordered, eq, a1, Operand(at));
   2933   }
   2934 
   2935   __ bind(&miss);
   2936   GenerateMiss(masm);
   2937 }
   2938 
   2939 
   2940 void CompareICStub::GenerateInternalizedStrings(MacroAssembler* masm) {
   2941   DCHECK(state() == CompareICState::INTERNALIZED_STRING);
   2942   Label miss;
   2943 
   2944   // Registers containing left and right operands respectively.
   2945   Register left = a1;
   2946   Register right = a0;
   2947   Register tmp1 = a2;
   2948   Register tmp2 = a3;
   2949 
   2950   // Check that both operands are heap objects.
   2951   __ JumpIfEitherSmi(left, right, &miss);
   2952 
   2953   // Check that both operands are internalized strings.
   2954   __ ld(tmp1, FieldMemOperand(left, HeapObject::kMapOffset));
   2955   __ ld(tmp2, FieldMemOperand(right, HeapObject::kMapOffset));
   2956   __ lbu(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset));
   2957   __ lbu(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset));
   2958   STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
   2959   __ Or(tmp1, tmp1, Operand(tmp2));
   2960   __ And(at, tmp1, Operand(kIsNotStringMask | kIsNotInternalizedMask));
   2961   __ Branch(&miss, ne, at, Operand(zero_reg));
   2962 
   2963   // Make sure a0 is non-zero. At this point input operands are
   2964   // guaranteed to be non-zero.
   2965   DCHECK(right.is(a0));
   2966   STATIC_ASSERT(EQUAL == 0);
   2967   STATIC_ASSERT(kSmiTag == 0);
   2968   __ mov(v0, right);
   2969   // Internalized strings are compared by identity.
   2970   __ Ret(ne, left, Operand(right));
   2971   DCHECK(is_int16(EQUAL));
   2972   __ Ret(USE_DELAY_SLOT);
   2973   __ li(v0, Operand(Smi::FromInt(EQUAL)));
   2974 
   2975   __ bind(&miss);
   2976   GenerateMiss(masm);
   2977 }
   2978 
   2979 
   2980 void CompareICStub::GenerateUniqueNames(MacroAssembler* masm) {
   2981   DCHECK(state() == CompareICState::UNIQUE_NAME);
   2982   DCHECK(GetCondition() == eq);
   2983   Label miss;
   2984 
   2985   // Registers containing left and right operands respectively.
   2986   Register left = a1;
   2987   Register right = a0;
   2988   Register tmp1 = a2;
   2989   Register tmp2 = a3;
   2990 
   2991   // Check that both operands are heap objects.
   2992   __ JumpIfEitherSmi(left, right, &miss);
   2993 
   2994   // Check that both operands are unique names. This leaves the instance
   2995   // types loaded in tmp1 and tmp2.
   2996   __ ld(tmp1, FieldMemOperand(left, HeapObject::kMapOffset));
   2997   __ ld(tmp2, FieldMemOperand(right, HeapObject::kMapOffset));
   2998   __ lbu(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset));
   2999   __ lbu(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset));
   3000 
   3001   __ JumpIfNotUniqueNameInstanceType(tmp1, &miss);
   3002   __ JumpIfNotUniqueNameInstanceType(tmp2, &miss);
   3003 
   3004   // Use a0 as result
   3005   __ mov(v0, a0);
   3006 
   3007   // Unique names are compared by identity.
   3008   Label done;
   3009   __ Branch(&done, ne, left, Operand(right));
   3010   // Make sure a0 is non-zero. At this point input operands are
   3011   // guaranteed to be non-zero.
   3012   DCHECK(right.is(a0));
   3013   STATIC_ASSERT(EQUAL == 0);
   3014   STATIC_ASSERT(kSmiTag == 0);
   3015   __ li(v0, Operand(Smi::FromInt(EQUAL)));
   3016   __ bind(&done);
   3017   __ Ret();
   3018 
   3019   __ bind(&miss);
   3020   GenerateMiss(masm);
   3021 }
   3022 
   3023 
   3024 void CompareICStub::GenerateStrings(MacroAssembler* masm) {
   3025   DCHECK(state() == CompareICState::STRING);
   3026   Label miss;
   3027 
   3028   bool equality = Token::IsEqualityOp(op());
   3029 
   3030   // Registers containing left and right operands respectively.
   3031   Register left = a1;
   3032   Register right = a0;
   3033   Register tmp1 = a2;
   3034   Register tmp2 = a3;
   3035   Register tmp3 = a4;
   3036   Register tmp4 = a5;
   3037   Register tmp5 = a6;
   3038 
   3039   // Check that both operands are heap objects.
   3040   __ JumpIfEitherSmi(left, right, &miss);
   3041 
   3042   // Check that both operands are strings. This leaves the instance
   3043   // types loaded in tmp1 and tmp2.
   3044   __ ld(tmp1, FieldMemOperand(left, HeapObject::kMapOffset));
   3045   __ ld(tmp2, FieldMemOperand(right, HeapObject::kMapOffset));
   3046   __ lbu(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset));
   3047   __ lbu(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset));
   3048   STATIC_ASSERT(kNotStringTag != 0);
   3049   __ Or(tmp3, tmp1, tmp2);
   3050   __ And(tmp5, tmp3, Operand(kIsNotStringMask));
   3051   __ Branch(&miss, ne, tmp5, Operand(zero_reg));
   3052 
   3053   // Fast check for identical strings.
   3054   Label left_ne_right;
   3055   STATIC_ASSERT(EQUAL == 0);
   3056   STATIC_ASSERT(kSmiTag == 0);
   3057   __ Branch(&left_ne_right, ne, left, Operand(right));
   3058   __ Ret(USE_DELAY_SLOT);
   3059   __ mov(v0, zero_reg);  // In the delay slot.
   3060   __ bind(&left_ne_right);
   3061 
   3062   // Handle not identical strings.
   3063 
   3064   // Check that both strings are internalized strings. If they are, we're done
   3065   // because we already know they are not identical. We know they are both
   3066   // strings.
   3067   if (equality) {
   3068     DCHECK(GetCondition() == eq);
   3069     STATIC_ASSERT(kInternalizedTag == 0);
   3070     __ Or(tmp3, tmp1, Operand(tmp2));
   3071     __ And(tmp5, tmp3, Operand(kIsNotInternalizedMask));
   3072     Label is_symbol;
   3073     __ Branch(&is_symbol, ne, tmp5, Operand(zero_reg));
   3074     // Make sure a0 is non-zero. At this point input operands are
   3075     // guaranteed to be non-zero.
   3076     DCHECK(right.is(a0));
   3077     __ Ret(USE_DELAY_SLOT);
   3078     __ mov(v0, a0);  // In the delay slot.
   3079     __ bind(&is_symbol);
   3080   }
   3081 
   3082   // Check that both strings are sequential one_byte.
   3083   Label runtime;
   3084   __ JumpIfBothInstanceTypesAreNotSequentialOneByte(tmp1, tmp2, tmp3, tmp4,
   3085                                                     &runtime);
   3086 
   3087   // Compare flat one_byte strings. Returns when done.
   3088   if (equality) {
   3089     StringHelper::GenerateFlatOneByteStringEquals(masm, left, right, tmp1, tmp2,
   3090                                                   tmp3);
   3091   } else {
   3092     StringHelper::GenerateCompareFlatOneByteStrings(masm, left, right, tmp1,
   3093                                                     tmp2, tmp3, tmp4);
   3094   }
   3095 
   3096   // Handle more complex cases in runtime.
   3097   __ bind(&runtime);
   3098   if (equality) {
   3099     {
   3100       FrameScope scope(masm, StackFrame::INTERNAL);
   3101       __ Push(left, right);
   3102       __ CallRuntime(Runtime::kStringEqual);
   3103     }
   3104     __ LoadRoot(a0, Heap::kTrueValueRootIndex);
   3105     __ Ret(USE_DELAY_SLOT);
   3106     __ Subu(v0, v0, a0);  // In delay slot.
   3107   } else {
   3108     __ Push(left, right);
   3109     __ TailCallRuntime(Runtime::kStringCompare);
   3110   }
   3111 
   3112   __ bind(&miss);
   3113   GenerateMiss(masm);
   3114 }
   3115 
   3116 
   3117 void CompareICStub::GenerateReceivers(MacroAssembler* masm) {
   3118   DCHECK_EQ(CompareICState::RECEIVER, state());
   3119   Label miss;
   3120   __ And(a2, a1, Operand(a0));
   3121   __ JumpIfSmi(a2, &miss);
   3122 
   3123   STATIC_ASSERT(LAST_TYPE == LAST_JS_RECEIVER_TYPE);
   3124   __ GetObjectType(a0, a2, a2);
   3125   __ Branch(&miss, lt, a2, Operand(FIRST_JS_RECEIVER_TYPE));
   3126   __ GetObjectType(a1, a2, a2);
   3127   __ Branch(&miss, lt, a2, Operand(FIRST_JS_RECEIVER_TYPE));
   3128 
   3129   DCHECK_EQ(eq, GetCondition());
   3130   __ Ret(USE_DELAY_SLOT);
   3131   __ dsubu(v0, a0, a1);
   3132 
   3133   __ bind(&miss);
   3134   GenerateMiss(masm);
   3135 }
   3136 
   3137 
   3138 void CompareICStub::GenerateKnownReceivers(MacroAssembler* masm) {
   3139   Label miss;
   3140   Handle<WeakCell> cell = Map::WeakCellForMap(known_map_);
   3141   __ And(a2, a1, a0);
   3142   __ JumpIfSmi(a2, &miss);
   3143   __ GetWeakValue(a4, cell);
   3144   __ ld(a2, FieldMemOperand(a0, HeapObject::kMapOffset));
   3145   __ ld(a3, FieldMemOperand(a1, HeapObject::kMapOffset));
   3146   __ Branch(&miss, ne, a2, Operand(a4));
   3147   __ Branch(&miss, ne, a3, Operand(a4));
   3148 
   3149   if (Token::IsEqualityOp(op())) {
   3150     __ Ret(USE_DELAY_SLOT);
   3151     __ dsubu(v0, a0, a1);
   3152   } else {
   3153     if (op() == Token::LT || op() == Token::LTE) {
   3154       __ li(a2, Operand(Smi::FromInt(GREATER)));
   3155     } else {
   3156       __ li(a2, Operand(Smi::FromInt(LESS)));
   3157     }
   3158     __ Push(a1, a0, a2);
   3159     __ TailCallRuntime(Runtime::kCompare);
   3160   }
   3161 
   3162   __ bind(&miss);
   3163   GenerateMiss(masm);
   3164 }
   3165 
   3166 
   3167 void CompareICStub::GenerateMiss(MacroAssembler* masm) {
   3168   {
   3169     // Call the runtime system in a fresh internal frame.
   3170     FrameScope scope(masm, StackFrame::INTERNAL);
   3171     __ Push(a1, a0);
   3172     __ Push(ra, a1, a0);
   3173     __ li(a4, Operand(Smi::FromInt(op())));
   3174     __ daddiu(sp, sp, -kPointerSize);
   3175     __ CallRuntime(Runtime::kCompareIC_Miss, 3, kDontSaveFPRegs,
   3176                    USE_DELAY_SLOT);
   3177     __ sd(a4, MemOperand(sp));  // In the delay slot.
   3178     // Compute the entry point of the rewritten stub.
   3179     __ Daddu(a2, v0, Operand(Code::kHeaderSize - kHeapObjectTag));
   3180     // Restore registers.
   3181     __ Pop(a1, a0, ra);
   3182   }
   3183   __ Jump(a2);
   3184 }
   3185 
   3186 
   3187 void DirectCEntryStub::Generate(MacroAssembler* masm) {
   3188   // Make place for arguments to fit C calling convention. Most of the callers
   3189   // of DirectCEntryStub::GenerateCall are using EnterExitFrame/LeaveExitFrame
   3190   // so they handle stack restoring and we don't have to do that here.
   3191   // Any caller of DirectCEntryStub::GenerateCall must take care of dropping
   3192   // kCArgsSlotsSize stack space after the call.
   3193   __ daddiu(sp, sp, -kCArgsSlotsSize);
   3194   // Place the return address on the stack, making the call
   3195   // GC safe. The RegExp backend also relies on this.
   3196   __ sd(ra, MemOperand(sp, kCArgsSlotsSize));
   3197   __ Call(t9);  // Call the C++ function.
   3198   __ ld(t9, MemOperand(sp, kCArgsSlotsSize));
   3199 
   3200   if (FLAG_debug_code && FLAG_enable_slow_asserts) {
   3201     // In case of an error the return address may point to a memory area
   3202     // filled with kZapValue by the GC.
   3203     // Dereference the address and check for this.
   3204     __ Uld(a4, MemOperand(t9));
   3205     __ Assert(ne, kReceivedInvalidReturnAddress, a4,
   3206         Operand(reinterpret_cast<uint64_t>(kZapValue)));
   3207   }
   3208   __ Jump(t9);
   3209 }
   3210 
   3211 
   3212 void DirectCEntryStub::GenerateCall(MacroAssembler* masm,
   3213                                     Register target) {
   3214   intptr_t loc =
   3215       reinterpret_cast<intptr_t>(GetCode().location());
   3216   __ Move(t9, target);
   3217   __ li(at, Operand(loc, RelocInfo::CODE_TARGET), CONSTANT_SIZE);
   3218   __ Call(at);
   3219 }
   3220 
   3221 
   3222 void NameDictionaryLookupStub::GenerateNegativeLookup(MacroAssembler* masm,
   3223                                                       Label* miss,
   3224                                                       Label* done,
   3225                                                       Register receiver,
   3226                                                       Register properties,
   3227                                                       Handle<Name> name,
   3228                                                       Register scratch0) {
   3229   DCHECK(name->IsUniqueName());
   3230   // If names of slots in range from 1 to kProbes - 1 for the hash value are
   3231   // not equal to the name and kProbes-th slot is not used (its name is the
   3232   // undefined value), it guarantees the hash table doesn't contain the
   3233   // property. It's true even if some slots represent deleted properties
   3234   // (their names are the hole value).
   3235   for (int i = 0; i < kInlinedProbes; i++) {
   3236     // scratch0 points to properties hash.
   3237     // Compute the masked index: (hash + i + i * i) & mask.
   3238     Register index = scratch0;
   3239     // Capacity is smi 2^n.
   3240     __ SmiLoadUntag(index, FieldMemOperand(properties, kCapacityOffset));
   3241     __ Dsubu(index, index, Operand(1));
   3242     __ And(index, index,
   3243            Operand(name->Hash() + NameDictionary::GetProbeOffset(i)));
   3244 
   3245     // Scale the index by multiplying by the entry size.
   3246     STATIC_ASSERT(NameDictionary::kEntrySize == 3);
   3247     __ Dlsa(index, index, index, 1);  // index *= 3.
   3248 
   3249     Register entity_name = scratch0;
   3250     // Having undefined at this place means the name is not contained.
   3251     STATIC_ASSERT(kSmiTagSize == 1);
   3252     Register tmp = properties;
   3253 
   3254     __ Dlsa(tmp, properties, index, kPointerSizeLog2);
   3255     __ ld(entity_name, FieldMemOperand(tmp, kElementsStartOffset));
   3256 
   3257     DCHECK(!tmp.is(entity_name));
   3258     __ LoadRoot(tmp, Heap::kUndefinedValueRootIndex);
   3259     __ Branch(done, eq, entity_name, Operand(tmp));
   3260 
   3261     // Load the hole ready for use below:
   3262     __ LoadRoot(tmp, Heap::kTheHoleValueRootIndex);
   3263 
   3264     // Stop if found the property.
   3265     __ Branch(miss, eq, entity_name, Operand(Handle<Name>(name)));
   3266 
   3267     Label good;
   3268     __ Branch(&good, eq, entity_name, Operand(tmp));
   3269 
   3270     // Check if the entry name is not a unique name.
   3271     __ ld(entity_name, FieldMemOperand(entity_name, HeapObject::kMapOffset));
   3272     __ lbu(entity_name,
   3273            FieldMemOperand(entity_name, Map::kInstanceTypeOffset));
   3274     __ JumpIfNotUniqueNameInstanceType(entity_name, miss);
   3275     __ bind(&good);
   3276 
   3277     // Restore the properties.
   3278     __ ld(properties,
   3279           FieldMemOperand(receiver, JSObject::kPropertiesOffset));
   3280   }
   3281 
   3282   const int spill_mask =
   3283       (ra.bit() | a6.bit() | a5.bit() | a4.bit() | a3.bit() |
   3284        a2.bit() | a1.bit() | a0.bit() | v0.bit());
   3285 
   3286   __ MultiPush(spill_mask);
   3287   __ ld(a0, FieldMemOperand(receiver, JSObject::kPropertiesOffset));
   3288   __ li(a1, Operand(Handle<Name>(name)));
   3289   NameDictionaryLookupStub stub(masm->isolate(), NEGATIVE_LOOKUP);
   3290   __ CallStub(&stub);
   3291   __ mov(at, v0);
   3292   __ MultiPop(spill_mask);
   3293 
   3294   __ Branch(done, eq, at, Operand(zero_reg));
   3295   __ Branch(miss, ne, at, Operand(zero_reg));
   3296 }
   3297 
   3298 
   3299 // Probe the name dictionary in the |elements| register. Jump to the
   3300 // |done| label if a property with the given name is found. Jump to
   3301 // the |miss| label otherwise.
   3302 // If lookup was successful |scratch2| will be equal to elements + 4 * index.
   3303 void NameDictionaryLookupStub::GeneratePositiveLookup(MacroAssembler* masm,
   3304                                                       Label* miss,
   3305                                                       Label* done,
   3306                                                       Register elements,
   3307                                                       Register name,
   3308                                                       Register scratch1,
   3309                                                       Register scratch2) {
   3310   DCHECK(!elements.is(scratch1));
   3311   DCHECK(!elements.is(scratch2));
   3312   DCHECK(!name.is(scratch1));
   3313   DCHECK(!name.is(scratch2));
   3314 
   3315   __ AssertName(name);
   3316 
   3317   // Compute the capacity mask.
   3318   __ ld(scratch1, FieldMemOperand(elements, kCapacityOffset));
   3319   __ SmiUntag(scratch1);
   3320   __ Dsubu(scratch1, scratch1, Operand(1));
   3321 
   3322   // Generate an unrolled loop that performs a few probes before
   3323   // giving up. Measurements done on Gmail indicate that 2 probes
   3324   // cover ~93% of loads from dictionaries.
   3325   for (int i = 0; i < kInlinedProbes; i++) {
   3326     // Compute the masked index: (hash + i + i * i) & mask.
   3327     __ lwu(scratch2, FieldMemOperand(name, Name::kHashFieldOffset));
   3328     if (i > 0) {
   3329       // Add the probe offset (i + i * i) left shifted to avoid right shifting
   3330       // the hash in a separate instruction. The value hash + i + i * i is right
   3331       // shifted in the following and instruction.
   3332       DCHECK(NameDictionary::GetProbeOffset(i) <
   3333              1 << (32 - Name::kHashFieldOffset));
   3334       __ Daddu(scratch2, scratch2, Operand(
   3335           NameDictionary::GetProbeOffset(i) << Name::kHashShift));
   3336     }
   3337     __ dsrl(scratch2, scratch2, Name::kHashShift);
   3338     __ And(scratch2, scratch1, scratch2);
   3339 
   3340     // Scale the index by multiplying by the entry size.
   3341     STATIC_ASSERT(NameDictionary::kEntrySize == 3);
   3342     // scratch2 = scratch2 * 3.
   3343     __ Dlsa(scratch2, scratch2, scratch2, 1);
   3344 
   3345     // Check if the key is identical to the name.
   3346     __ Dlsa(scratch2, elements, scratch2, kPointerSizeLog2);
   3347     __ ld(at, FieldMemOperand(scratch2, kElementsStartOffset));
   3348     __ Branch(done, eq, name, Operand(at));
   3349   }
   3350 
   3351   const int spill_mask =
   3352       (ra.bit() | a6.bit() | a5.bit() | a4.bit() |
   3353        a3.bit() | a2.bit() | a1.bit() | a0.bit() | v0.bit()) &
   3354       ~(scratch1.bit() | scratch2.bit());
   3355 
   3356   __ MultiPush(spill_mask);
   3357   if (name.is(a0)) {
   3358     DCHECK(!elements.is(a1));
   3359     __ Move(a1, name);
   3360     __ Move(a0, elements);
   3361   } else {
   3362     __ Move(a0, elements);
   3363     __ Move(a1, name);
   3364   }
   3365   NameDictionaryLookupStub stub(masm->isolate(), POSITIVE_LOOKUP);
   3366   __ CallStub(&stub);
   3367   __ mov(scratch2, a2);
   3368   __ mov(at, v0);
   3369   __ MultiPop(spill_mask);
   3370 
   3371   __ Branch(done, ne, at, Operand(zero_reg));
   3372   __ Branch(miss, eq, at, Operand(zero_reg));
   3373 }
   3374 
   3375 
   3376 void NameDictionaryLookupStub::Generate(MacroAssembler* masm) {
   3377   // This stub overrides SometimesSetsUpAFrame() to return false.  That means
   3378   // we cannot call anything that could cause a GC from this stub.
   3379   // Registers:
   3380   //  result: NameDictionary to probe
   3381   //  a1: key
   3382   //  dictionary: NameDictionary to probe.
   3383   //  index: will hold an index of entry if lookup is successful.
   3384   //         might alias with result_.
   3385   // Returns:
   3386   //  result_ is zero if lookup failed, non zero otherwise.
   3387 
   3388   Register result = v0;
   3389   Register dictionary = a0;
   3390   Register key = a1;
   3391   Register index = a2;
   3392   Register mask = a3;
   3393   Register hash = a4;
   3394   Register undefined = a5;
   3395   Register entry_key = a6;
   3396 
   3397   Label in_dictionary, maybe_in_dictionary, not_in_dictionary;
   3398 
   3399   __ ld(mask, FieldMemOperand(dictionary, kCapacityOffset));
   3400   __ SmiUntag(mask);
   3401   __ Dsubu(mask, mask, Operand(1));
   3402 
   3403   __ lwu(hash, FieldMemOperand(key, Name::kHashFieldOffset));
   3404 
   3405   __ LoadRoot(undefined, Heap::kUndefinedValueRootIndex);
   3406 
   3407   for (int i = kInlinedProbes; i < kTotalProbes; i++) {
   3408     // Compute the masked index: (hash + i + i * i) & mask.
   3409     // Capacity is smi 2^n.
   3410     if (i > 0) {
   3411       // Add the probe offset (i + i * i) left shifted to avoid right shifting
   3412       // the hash in a separate instruction. The value hash + i + i * i is right
   3413       // shifted in the following and instruction.
   3414       DCHECK(NameDictionary::GetProbeOffset(i) <
   3415              1 << (32 - Name::kHashFieldOffset));
   3416       __ Daddu(index, hash, Operand(
   3417           NameDictionary::GetProbeOffset(i) << Name::kHashShift));
   3418     } else {
   3419       __ mov(index, hash);
   3420     }
   3421     __ dsrl(index, index, Name::kHashShift);
   3422     __ And(index, mask, index);
   3423 
   3424     // Scale the index by multiplying by the entry size.
   3425     STATIC_ASSERT(NameDictionary::kEntrySize == 3);
   3426     // index *= 3.
   3427     __ Dlsa(index, index, index, 1);
   3428 
   3429     STATIC_ASSERT(kSmiTagSize == 1);
   3430     __ Dlsa(index, dictionary, index, kPointerSizeLog2);
   3431     __ ld(entry_key, FieldMemOperand(index, kElementsStartOffset));
   3432 
   3433     // Having undefined at this place means the name is not contained.
   3434     __ Branch(&not_in_dictionary, eq, entry_key, Operand(undefined));
   3435 
   3436     // Stop if found the property.
   3437     __ Branch(&in_dictionary, eq, entry_key, Operand(key));
   3438 
   3439     if (i != kTotalProbes - 1 && mode() == NEGATIVE_LOOKUP) {
   3440       // Check if the entry name is not a unique name.
   3441       __ ld(entry_key, FieldMemOperand(entry_key, HeapObject::kMapOffset));
   3442       __ lbu(entry_key,
   3443              FieldMemOperand(entry_key, Map::kInstanceTypeOffset));
   3444       __ JumpIfNotUniqueNameInstanceType(entry_key, &maybe_in_dictionary);
   3445     }
   3446   }
   3447 
   3448   __ bind(&maybe_in_dictionary);
   3449   // If we are doing negative lookup then probing failure should be
   3450   // treated as a lookup success. For positive lookup probing failure
   3451   // should be treated as lookup failure.
   3452   if (mode() == POSITIVE_LOOKUP) {
   3453     __ Ret(USE_DELAY_SLOT);
   3454     __ mov(result, zero_reg);
   3455   }
   3456 
   3457   __ bind(&in_dictionary);
   3458   __ Ret(USE_DELAY_SLOT);
   3459   __ li(result, 1);
   3460 
   3461   __ bind(&not_in_dictionary);
   3462   __ Ret(USE_DELAY_SLOT);
   3463   __ mov(result, zero_reg);
   3464 }
   3465 
   3466 
   3467 void StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(
   3468     Isolate* isolate) {
   3469   StoreBufferOverflowStub stub1(isolate, kDontSaveFPRegs);
   3470   stub1.GetCode();
   3471   // Hydrogen code stubs need stub2 at snapshot time.
   3472   StoreBufferOverflowStub stub2(isolate, kSaveFPRegs);
   3473   stub2.GetCode();
   3474 }
   3475 
   3476 
   3477 // Takes the input in 3 registers: address_ value_ and object_.  A pointer to
   3478 // the value has just been written into the object, now this stub makes sure
   3479 // we keep the GC informed.  The word in the object where the value has been
   3480 // written is in the address register.
   3481 void RecordWriteStub::Generate(MacroAssembler* masm) {
   3482   Label skip_to_incremental_noncompacting;
   3483   Label skip_to_incremental_compacting;
   3484 
   3485   // The first two branch+nop instructions are generated with labels so as to
   3486   // get the offset fixed up correctly by the bind(Label*) call.  We patch it
   3487   // back and forth between a "bne zero_reg, zero_reg, ..." (a nop in this
   3488   // position) and the "beq zero_reg, zero_reg, ..." when we start and stop
   3489   // incremental heap marking.
   3490   // See RecordWriteStub::Patch for details.
   3491   __ beq(zero_reg, zero_reg, &skip_to_incremental_noncompacting);
   3492   __ nop();
   3493   __ beq(zero_reg, zero_reg, &skip_to_incremental_compacting);
   3494   __ nop();
   3495 
   3496   if (remembered_set_action() == EMIT_REMEMBERED_SET) {
   3497     __ RememberedSetHelper(object(),
   3498                            address(),
   3499                            value(),
   3500                            save_fp_regs_mode(),
   3501                            MacroAssembler::kReturnAtEnd);
   3502   }
   3503   __ Ret();
   3504 
   3505   __ bind(&skip_to_incremental_noncompacting);
   3506   GenerateIncremental(masm, INCREMENTAL);
   3507 
   3508   __ bind(&skip_to_incremental_compacting);
   3509   GenerateIncremental(masm, INCREMENTAL_COMPACTION);
   3510 
   3511   // Initial mode of the stub is expected to be STORE_BUFFER_ONLY.
   3512   // Will be checked in IncrementalMarking::ActivateGeneratedStub.
   3513 
   3514   PatchBranchIntoNop(masm, 0);
   3515   PatchBranchIntoNop(masm, 2 * Assembler::kInstrSize);
   3516 }
   3517 
   3518 
   3519 void RecordWriteStub::GenerateIncremental(MacroAssembler* masm, Mode mode) {
   3520   regs_.Save(masm);
   3521 
   3522   if (remembered_set_action() == EMIT_REMEMBERED_SET) {
   3523     Label dont_need_remembered_set;
   3524 
   3525     __ ld(regs_.scratch0(), MemOperand(regs_.address(), 0));
   3526     __ JumpIfNotInNewSpace(regs_.scratch0(),  // Value.
   3527                            regs_.scratch0(),
   3528                            &dont_need_remembered_set);
   3529 
   3530     __ JumpIfInNewSpace(regs_.object(), regs_.scratch0(),
   3531                         &dont_need_remembered_set);
   3532 
   3533     // First notify the incremental marker if necessary, then update the
   3534     // remembered set.
   3535     CheckNeedsToInformIncrementalMarker(
   3536         masm, kUpdateRememberedSetOnNoNeedToInformIncrementalMarker, mode);
   3537     InformIncrementalMarker(masm);
   3538     regs_.Restore(masm);
   3539     __ RememberedSetHelper(object(),
   3540                            address(),
   3541                            value(),
   3542                            save_fp_regs_mode(),
   3543                            MacroAssembler::kReturnAtEnd);
   3544 
   3545     __ bind(&dont_need_remembered_set);
   3546   }
   3547 
   3548   CheckNeedsToInformIncrementalMarker(
   3549       masm, kReturnOnNoNeedToInformIncrementalMarker, mode);
   3550   InformIncrementalMarker(masm);
   3551   regs_.Restore(masm);
   3552   __ Ret();
   3553 }
   3554 
   3555 
   3556 void RecordWriteStub::InformIncrementalMarker(MacroAssembler* masm) {
   3557   regs_.SaveCallerSaveRegisters(masm, save_fp_regs_mode());
   3558   int argument_count = 3;
   3559   __ PrepareCallCFunction(argument_count, regs_.scratch0());
   3560   Register address =
   3561       a0.is(regs_.address()) ? regs_.scratch0() : regs_.address();
   3562   DCHECK(!address.is(regs_.object()));
   3563   DCHECK(!address.is(a0));
   3564   __ Move(address, regs_.address());
   3565   __ Move(a0, regs_.object());
   3566   __ Move(a1, address);
   3567   __ li(a2, Operand(ExternalReference::isolate_address(isolate())));
   3568 
   3569   AllowExternalCallThatCantCauseGC scope(masm);
   3570   __ CallCFunction(
   3571       ExternalReference::incremental_marking_record_write_function(isolate()),
   3572       argument_count);
   3573   regs_.RestoreCallerSaveRegisters(masm, save_fp_regs_mode());
   3574 }
   3575 
   3576 
   3577 void RecordWriteStub::CheckNeedsToInformIncrementalMarker(
   3578     MacroAssembler* masm,
   3579     OnNoNeedToInformIncrementalMarker on_no_need,
   3580     Mode mode) {
   3581   Label on_black;
   3582   Label need_incremental;
   3583   Label need_incremental_pop_scratch;
   3584 
   3585   __ And(regs_.scratch0(), regs_.object(), Operand(~Page::kPageAlignmentMask));
   3586   __ ld(regs_.scratch1(),
   3587         MemOperand(regs_.scratch0(),
   3588                    MemoryChunk::kWriteBarrierCounterOffset));
   3589   __ Dsubu(regs_.scratch1(), regs_.scratch1(), Operand(1));
   3590   __ sd(regs_.scratch1(),
   3591          MemOperand(regs_.scratch0(),
   3592                     MemoryChunk::kWriteBarrierCounterOffset));
   3593   __ Branch(&need_incremental, lt, regs_.scratch1(), Operand(zero_reg));
   3594 
   3595   // Let's look at the color of the object:  If it is not black we don't have
   3596   // to inform the incremental marker.
   3597   __ JumpIfBlack(regs_.object(), regs_.scratch0(), regs_.scratch1(), &on_black);
   3598 
   3599   regs_.Restore(masm);
   3600   if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
   3601     __ RememberedSetHelper(object(),
   3602                            address(),
   3603                            value(),
   3604                            save_fp_regs_mode(),
   3605                            MacroAssembler::kReturnAtEnd);
   3606   } else {
   3607     __ Ret();
   3608   }
   3609 
   3610   __ bind(&on_black);
   3611 
   3612   // Get the value from the slot.
   3613   __ ld(regs_.scratch0(), MemOperand(regs_.address(), 0));
   3614 
   3615   if (mode == INCREMENTAL_COMPACTION) {
   3616     Label ensure_not_white;
   3617 
   3618     __ CheckPageFlag(regs_.scratch0(),  // Contains value.
   3619                      regs_.scratch1(),  // Scratch.
   3620                      MemoryChunk::kEvacuationCandidateMask,
   3621                      eq,
   3622                      &ensure_not_white);
   3623 
   3624     __ CheckPageFlag(regs_.object(),
   3625                      regs_.scratch1(),  // Scratch.
   3626                      MemoryChunk::kSkipEvacuationSlotsRecordingMask,
   3627                      eq,
   3628                      &need_incremental);
   3629 
   3630     __ bind(&ensure_not_white);
   3631   }
   3632 
   3633   // We need extra registers for this, so we push the object and the address
   3634   // register temporarily.
   3635   __ Push(regs_.object(), regs_.address());
   3636   __ JumpIfWhite(regs_.scratch0(),  // The value.
   3637                  regs_.scratch1(),  // Scratch.
   3638                  regs_.object(),    // Scratch.
   3639                  regs_.address(),   // Scratch.
   3640                  &need_incremental_pop_scratch);
   3641   __ Pop(regs_.object(), regs_.address());
   3642 
   3643   regs_.Restore(masm);
   3644   if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
   3645     __ RememberedSetHelper(object(),
   3646                            address(),
   3647                            value(),
   3648                            save_fp_regs_mode(),
   3649                            MacroAssembler::kReturnAtEnd);
   3650   } else {
   3651     __ Ret();
   3652   }
   3653 
   3654   __ bind(&need_incremental_pop_scratch);
   3655   __ Pop(regs_.object(), regs_.address());
   3656 
   3657   __ bind(&need_incremental);
   3658 
   3659   // Fall through when we need to inform the incremental marker.
   3660 }
   3661 
   3662 
   3663 void StubFailureTrampolineStub::Generate(MacroAssembler* masm) {
   3664   CEntryStub ces(isolate(), 1, kSaveFPRegs);
   3665   __ Call(ces.GetCode(), RelocInfo::CODE_TARGET);
   3666   int parameter_count_offset =
   3667       StubFailureTrampolineFrameConstants::kArgumentsLengthOffset;
   3668   __ ld(a1, MemOperand(fp, parameter_count_offset));
   3669   if (function_mode() == JS_FUNCTION_STUB_MODE) {
   3670     __ Daddu(a1, a1, Operand(1));
   3671   }
   3672   masm->LeaveFrame(StackFrame::STUB_FAILURE_TRAMPOLINE);
   3673   __ dsll(a1, a1, kPointerSizeLog2);
   3674   __ Ret(USE_DELAY_SLOT);
   3675   __ Daddu(sp, sp, a1);
   3676 }
   3677 
   3678 
   3679 void LoadICTrampolineStub::Generate(MacroAssembler* masm) {
   3680   __ EmitLoadTypeFeedbackVector(LoadWithVectorDescriptor::VectorRegister());
   3681   LoadICStub stub(isolate());
   3682   stub.GenerateForTrampoline(masm);
   3683 }
   3684 
   3685 
   3686 void KeyedLoadICTrampolineStub::Generate(MacroAssembler* masm) {
   3687   __ EmitLoadTypeFeedbackVector(LoadWithVectorDescriptor::VectorRegister());
   3688   KeyedLoadICStub stub(isolate());
   3689   stub.GenerateForTrampoline(masm);
   3690 }
   3691 
   3692 
   3693 void CallICTrampolineStub::Generate(MacroAssembler* masm) {
   3694   __ EmitLoadTypeFeedbackVector(a2);
   3695   CallICStub stub(isolate(), state());
   3696   __ Jump(stub.GetCode(), RelocInfo::CODE_TARGET);
   3697 }
   3698 
   3699 
   3700 void LoadICStub::Generate(MacroAssembler* masm) { GenerateImpl(masm, false); }
   3701 
   3702 
   3703 void LoadICStub::GenerateForTrampoline(MacroAssembler* masm) {
   3704   GenerateImpl(masm, true);
   3705 }
   3706 
   3707 
   3708 static void HandleArrayCases(MacroAssembler* masm, Register feedback,
   3709                              Register receiver_map, Register scratch1,
   3710                              Register scratch2, bool is_polymorphic,
   3711                              Label* miss) {
   3712   // feedback initially contains the feedback array
   3713   Label next_loop, prepare_next;
   3714   Label start_polymorphic;
   3715 
   3716   Register cached_map = scratch1;
   3717 
   3718   __ ld(cached_map,
   3719         FieldMemOperand(feedback, FixedArray::OffsetOfElementAt(0)));
   3720   __ ld(cached_map, FieldMemOperand(cached_map, WeakCell::kValueOffset));
   3721   __ Branch(&start_polymorphic, ne, receiver_map, Operand(cached_map));
   3722   // found, now call handler.
   3723   Register handler = feedback;
   3724   __ ld(handler, FieldMemOperand(feedback, FixedArray::OffsetOfElementAt(1)));
   3725   __ Daddu(t9, handler, Operand(Code::kHeaderSize - kHeapObjectTag));
   3726   __ Jump(t9);
   3727 
   3728   Register length = scratch2;
   3729   __ bind(&start_polymorphic);
   3730   __ ld(length, FieldMemOperand(feedback, FixedArray::kLengthOffset));
   3731   if (!is_polymorphic) {
   3732     // If the IC could be monomorphic we have to make sure we don't go past the
   3733     // end of the feedback array.
   3734     __ Branch(miss, eq, length, Operand(Smi::FromInt(2)));
   3735   }
   3736 
   3737   Register too_far = length;
   3738   Register pointer_reg = feedback;
   3739 
   3740   // +-----+------+------+-----+-----+ ... ----+
   3741   // | map | len  | wm0  | h0  | wm1 |      hN |
   3742   // +-----+------+------+-----+-----+ ... ----+
   3743   //                 0      1     2        len-1
   3744   //                              ^              ^
   3745   //                              |              |
   3746   //                         pointer_reg      too_far
   3747   //                         aka feedback     scratch2
   3748   // also need receiver_map
   3749   // use cached_map (scratch1) to look in the weak map values.
   3750   __ SmiScale(too_far, length, kPointerSizeLog2);
   3751   __ Daddu(too_far, feedback, Operand(too_far));
   3752   __ Daddu(too_far, too_far, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
   3753   __ Daddu(pointer_reg, feedback,
   3754            Operand(FixedArray::OffsetOfElementAt(2) - kHeapObjectTag));
   3755 
   3756   __ bind(&next_loop);
   3757   __ ld(cached_map, MemOperand(pointer_reg));
   3758   __ ld(cached_map, FieldMemOperand(cached_map, WeakCell::kValueOffset));
   3759   __ Branch(&prepare_next, ne, receiver_map, Operand(cached_map));
   3760   __ ld(handler, MemOperand(pointer_reg, kPointerSize));
   3761   __ Daddu(t9, handler, Operand(Code::kHeaderSize - kHeapObjectTag));
   3762   __ Jump(t9);
   3763 
   3764   __ bind(&prepare_next);
   3765   __ Daddu(pointer_reg, pointer_reg, Operand(kPointerSize * 2));
   3766   __ Branch(&next_loop, lt, pointer_reg, Operand(too_far));
   3767 
   3768   // We exhausted our array of map handler pairs.
   3769   __ Branch(miss);
   3770 }
   3771 
   3772 
   3773 static void HandleMonomorphicCase(MacroAssembler* masm, Register receiver,
   3774                                   Register receiver_map, Register feedback,
   3775                                   Register vector, Register slot,
   3776                                   Register scratch, Label* compare_map,
   3777                                   Label* load_smi_map, Label* try_array) {
   3778   __ JumpIfSmi(receiver, load_smi_map);
   3779   __ ld(receiver_map, FieldMemOperand(receiver, HeapObject::kMapOffset));
   3780   __ bind(compare_map);
   3781   Register cached_map = scratch;
   3782   // Move the weak map into the weak_cell register.
   3783   __ ld(cached_map, FieldMemOperand(feedback, WeakCell::kValueOffset));
   3784   __ Branch(try_array, ne, cached_map, Operand(receiver_map));
   3785   Register handler = feedback;
   3786   __ SmiScale(handler, slot, kPointerSizeLog2);
   3787   __ Daddu(handler, vector, Operand(handler));
   3788   __ ld(handler,
   3789         FieldMemOperand(handler, FixedArray::kHeaderSize + kPointerSize));
   3790   __ Daddu(t9, handler, Code::kHeaderSize - kHeapObjectTag);
   3791   __ Jump(t9);
   3792 }
   3793 
   3794 
   3795 void LoadICStub::GenerateImpl(MacroAssembler* masm, bool in_frame) {
   3796   Register receiver = LoadWithVectorDescriptor::ReceiverRegister();  // a1
   3797   Register name = LoadWithVectorDescriptor::NameRegister();          // a2
   3798   Register vector = LoadWithVectorDescriptor::VectorRegister();      // a3
   3799   Register slot = LoadWithVectorDescriptor::SlotRegister();          // a0
   3800   Register feedback = a4;
   3801   Register receiver_map = a5;
   3802   Register scratch1 = a6;
   3803 
   3804   __ SmiScale(feedback, slot, kPointerSizeLog2);
   3805   __ Daddu(feedback, vector, Operand(feedback));
   3806   __ ld(feedback, FieldMemOperand(feedback, FixedArray::kHeaderSize));
   3807 
   3808   // Try to quickly handle the monomorphic case without knowing for sure
   3809   // if we have a weak cell in feedback. We do know it's safe to look
   3810   // at WeakCell::kValueOffset.
   3811   Label try_array, load_smi_map, compare_map;
   3812   Label not_array, miss;
   3813   HandleMonomorphicCase(masm, receiver, receiver_map, feedback, vector, slot,
   3814                         scratch1, &compare_map, &load_smi_map, &try_array);
   3815 
   3816   // Is it a fixed array?
   3817   __ bind(&try_array);
   3818   __ ld(scratch1, FieldMemOperand(feedback, HeapObject::kMapOffset));
   3819   __ LoadRoot(at, Heap::kFixedArrayMapRootIndex);
   3820   __ Branch(&not_array, ne, scratch1, Operand(at));
   3821   HandleArrayCases(masm, feedback, receiver_map, scratch1, a7, true, &miss);
   3822 
   3823   __ bind(&not_array);
   3824   __ LoadRoot(at, Heap::kmegamorphic_symbolRootIndex);
   3825   __ Branch(&miss, ne, feedback, Operand(at));
   3826   Code::Flags code_flags =
   3827       Code::RemoveHolderFromFlags(Code::ComputeHandlerFlags(Code::LOAD_IC));
   3828   masm->isolate()->stub_cache()->GenerateProbe(masm, Code::LOAD_IC, code_flags,
   3829                                                receiver, name, feedback,
   3830                                                receiver_map, scratch1, a7);
   3831 
   3832   __ bind(&miss);
   3833   LoadIC::GenerateMiss(masm);
   3834 
   3835   __ bind(&load_smi_map);
   3836   __ LoadRoot(receiver_map, Heap::kHeapNumberMapRootIndex);
   3837   __ Branch(&compare_map);
   3838 }
   3839 
   3840 
   3841 void KeyedLoadICStub::Generate(MacroAssembler* masm) {
   3842   GenerateImpl(masm, false);
   3843 }
   3844 
   3845 
   3846 void KeyedLoadICStub::GenerateForTrampoline(MacroAssembler* masm) {
   3847   GenerateImpl(masm, true);
   3848 }
   3849 
   3850 
   3851 void KeyedLoadICStub::GenerateImpl(MacroAssembler* masm, bool in_frame) {
   3852   Register receiver = LoadWithVectorDescriptor::ReceiverRegister();  // a1
   3853   Register key = LoadWithVectorDescriptor::NameRegister();           // a2
   3854   Register vector = LoadWithVectorDescriptor::VectorRegister();      // a3
   3855   Register slot = LoadWithVectorDescriptor::SlotRegister();          // a0
   3856   Register feedback = a4;
   3857   Register receiver_map = a5;
   3858   Register scratch1 = a6;
   3859 
   3860   __ SmiScale(feedback, slot, kPointerSizeLog2);
   3861   __ Daddu(feedback, vector, Operand(feedback));
   3862   __ ld(feedback, FieldMemOperand(feedback, FixedArray::kHeaderSize));
   3863 
   3864   // Try to quickly handle the monomorphic case without knowing for sure
   3865   // if we have a weak cell in feedback. We do know it's safe to look
   3866   // at WeakCell::kValueOffset.
   3867   Label try_array, load_smi_map, compare_map;
   3868   Label not_array, miss;
   3869   HandleMonomorphicCase(masm, receiver, receiver_map, feedback, vector, slot,
   3870                         scratch1, &compare_map, &load_smi_map, &try_array);
   3871 
   3872   __ bind(&try_array);
   3873   // Is it a fixed array?
   3874   __ ld(scratch1, FieldMemOperand(feedback, HeapObject::kMapOffset));
   3875   __ LoadRoot(at, Heap::kFixedArrayMapRootIndex);
   3876   __ Branch(&not_array, ne, scratch1, Operand(at));
   3877   // We have a polymorphic element handler.
   3878   __ JumpIfNotSmi(key, &miss);
   3879 
   3880   Label polymorphic, try_poly_name;
   3881   __ bind(&polymorphic);
   3882   HandleArrayCases(masm, feedback, receiver_map, scratch1, a7, true, &miss);
   3883 
   3884   __ bind(&not_array);
   3885   // Is it generic?
   3886   __ LoadRoot(at, Heap::kmegamorphic_symbolRootIndex);
   3887   __ Branch(&try_poly_name, ne, feedback, Operand(at));
   3888   Handle<Code> megamorphic_stub =
   3889       KeyedLoadIC::ChooseMegamorphicStub(masm->isolate(), GetExtraICState());
   3890   __ Jump(megamorphic_stub, RelocInfo::CODE_TARGET);
   3891 
   3892   __ bind(&try_poly_name);
   3893   // We might have a name in feedback, and a fixed array in the next slot.
   3894   __ Branch(&miss, ne, key, Operand(feedback));
   3895   // If the name comparison succeeded, we know we have a fixed array with
   3896   // at least one map/handler pair.
   3897   __ SmiScale(feedback, slot, kPointerSizeLog2);
   3898   __ Daddu(feedback, vector, Operand(feedback));
   3899   __ ld(feedback,
   3900         FieldMemOperand(feedback, FixedArray::kHeaderSize + kPointerSize));
   3901   HandleArrayCases(masm, feedback, receiver_map, scratch1, a7, false, &miss);
   3902 
   3903   __ bind(&miss);
   3904   KeyedLoadIC::GenerateMiss(masm);
   3905 
   3906   __ bind(&load_smi_map);
   3907   __ LoadRoot(receiver_map, Heap::kHeapNumberMapRootIndex);
   3908   __ Branch(&compare_map);
   3909 }
   3910 
   3911 
   3912 void VectorStoreICTrampolineStub::Generate(MacroAssembler* masm) {
   3913   __ EmitLoadTypeFeedbackVector(VectorStoreICDescriptor::VectorRegister());
   3914   VectorStoreICStub stub(isolate(), state());
   3915   stub.GenerateForTrampoline(masm);
   3916 }
   3917 
   3918 
   3919 void VectorKeyedStoreICTrampolineStub::Generate(MacroAssembler* masm) {
   3920   __ EmitLoadTypeFeedbackVector(VectorStoreICDescriptor::VectorRegister());
   3921   VectorKeyedStoreICStub stub(isolate(), state());
   3922   stub.GenerateForTrampoline(masm);
   3923 }
   3924 
   3925 
   3926 void VectorStoreICStub::Generate(MacroAssembler* masm) {
   3927   GenerateImpl(masm, false);
   3928 }
   3929 
   3930 
   3931 void VectorStoreICStub::GenerateForTrampoline(MacroAssembler* masm) {
   3932   GenerateImpl(masm, true);
   3933 }
   3934 
   3935 
   3936 void VectorStoreICStub::GenerateImpl(MacroAssembler* masm, bool in_frame) {
   3937   Register receiver = VectorStoreICDescriptor::ReceiverRegister();  // a1
   3938   Register key = VectorStoreICDescriptor::NameRegister();           // a2
   3939   Register vector = VectorStoreICDescriptor::VectorRegister();      // a3
   3940   Register slot = VectorStoreICDescriptor::SlotRegister();          // a4
   3941   DCHECK(VectorStoreICDescriptor::ValueRegister().is(a0));          // a0
   3942   Register feedback = a5;
   3943   Register receiver_map = a6;
   3944   Register scratch1 = a7;
   3945 
   3946   __ SmiScale(scratch1, slot, kPointerSizeLog2);
   3947   __ Daddu(feedback, vector, Operand(scratch1));
   3948   __ ld(feedback, FieldMemOperand(feedback, FixedArray::kHeaderSize));
   3949 
   3950   // Try to quickly handle the monomorphic case without knowing for sure
   3951   // if we have a weak cell in feedback. We do know it's safe to look
   3952   // at WeakCell::kValueOffset.
   3953   Label try_array, load_smi_map, compare_map;
   3954   Label not_array, miss;
   3955   HandleMonomorphicCase(masm, receiver, receiver_map, feedback, vector, slot,
   3956                         scratch1, &compare_map, &load_smi_map, &try_array);
   3957 
   3958   // Is it a fixed array?
   3959   __ bind(&try_array);
   3960   __ ld(scratch1, FieldMemOperand(feedback, HeapObject::kMapOffset));
   3961   __ Branch(&not_array, ne, scratch1, Heap::kFixedArrayMapRootIndex);
   3962 
   3963   Register scratch2 = t0;
   3964   HandleArrayCases(masm, feedback, receiver_map, scratch1, scratch2, true,
   3965                    &miss);
   3966 
   3967   __ bind(&not_array);
   3968   __ Branch(&miss, ne, feedback, Heap::kmegamorphic_symbolRootIndex);
   3969   Code::Flags code_flags =
   3970       Code::RemoveHolderFromFlags(Code::ComputeHandlerFlags(Code::STORE_IC));
   3971   masm->isolate()->stub_cache()->GenerateProbe(
   3972       masm, Code::STORE_IC, code_flags, receiver, key, feedback, receiver_map,
   3973       scratch1, scratch2);
   3974 
   3975   __ bind(&miss);
   3976   StoreIC::GenerateMiss(masm);
   3977 
   3978   __ bind(&load_smi_map);
   3979   __ Branch(USE_DELAY_SLOT, &compare_map);
   3980   __ LoadRoot(receiver_map, Heap::kHeapNumberMapRootIndex);  // In delay slot.
   3981 }
   3982 
   3983 
   3984 void VectorKeyedStoreICStub::Generate(MacroAssembler* masm) {
   3985   GenerateImpl(masm, false);
   3986 }
   3987 
   3988 
   3989 void VectorKeyedStoreICStub::GenerateForTrampoline(MacroAssembler* masm) {
   3990   GenerateImpl(masm, true);
   3991 }
   3992 
   3993 
   3994 static void HandlePolymorphicStoreCase(MacroAssembler* masm, Register feedback,
   3995                                        Register receiver_map, Register scratch1,
   3996                                        Register scratch2, Label* miss) {
   3997   // feedback initially contains the feedback array
   3998   Label next_loop, prepare_next;
   3999   Label start_polymorphic;
   4000   Label transition_call;
   4001 
   4002   Register cached_map = scratch1;
   4003   Register too_far = scratch2;
   4004   Register pointer_reg = feedback;
   4005 
   4006   __ ld(too_far, FieldMemOperand(feedback, FixedArray::kLengthOffset));
   4007 
   4008   // +-----+------+------+-----+-----+-----+ ... ----+
   4009   // | map | len  | wm0  | wt0 | h0  | wm1 |      hN |
   4010   // +-----+------+------+-----+-----+ ----+ ... ----+
   4011   //                 0      1     2              len-1
   4012   //                 ^                                 ^
   4013   //                 |                                 |
   4014   //             pointer_reg                        too_far
   4015   //             aka feedback                       scratch2
   4016   // also need receiver_map
   4017   // use cached_map (scratch1) to look in the weak map values.
   4018   __ SmiScale(too_far, too_far, kPointerSizeLog2);
   4019   __ Daddu(too_far, feedback, Operand(too_far));
   4020   __ Daddu(too_far, too_far, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
   4021   __ Daddu(pointer_reg, feedback,
   4022            Operand(FixedArray::OffsetOfElementAt(0) - kHeapObjectTag));
   4023 
   4024   __ bind(&next_loop);
   4025   __ ld(cached_map, MemOperand(pointer_reg));
   4026   __ ld(cached_map, FieldMemOperand(cached_map, WeakCell::kValueOffset));
   4027   __ Branch(&prepare_next, ne, receiver_map, Operand(cached_map));
   4028   // Is it a transitioning store?
   4029   __ ld(too_far, MemOperand(pointer_reg, kPointerSize));
   4030   __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
   4031   __ Branch(&transition_call, ne, too_far, Operand(at));
   4032 
   4033   __ ld(pointer_reg, MemOperand(pointer_reg, kPointerSize * 2));
   4034   __ Daddu(t9, pointer_reg, Operand(Code::kHeaderSize - kHeapObjectTag));
   4035   __ Jump(t9);
   4036 
   4037   __ bind(&transition_call);
   4038   __ ld(too_far, FieldMemOperand(too_far, WeakCell::kValueOffset));
   4039   __ JumpIfSmi(too_far, miss);
   4040 
   4041   __ ld(receiver_map, MemOperand(pointer_reg, kPointerSize * 2));
   4042   // Load the map into the correct register.
   4043   DCHECK(feedback.is(VectorStoreTransitionDescriptor::MapRegister()));
   4044   __ Move(feedback, too_far);
   4045   __ Daddu(t9, receiver_map, Operand(Code::kHeaderSize - kHeapObjectTag));
   4046   __ Jump(t9);
   4047 
   4048   __ bind(&prepare_next);
   4049   __ Daddu(pointer_reg, pointer_reg, Operand(kPointerSize * 3));
   4050   __ Branch(&next_loop, lt, pointer_reg, Operand(too_far));
   4051 
   4052   // We exhausted our array of map handler pairs.
   4053   __ Branch(miss);
   4054 }
   4055 
   4056 
   4057 void VectorKeyedStoreICStub::GenerateImpl(MacroAssembler* masm, bool in_frame) {
   4058   Register receiver = VectorStoreICDescriptor::ReceiverRegister();  // a1
   4059   Register key = VectorStoreICDescriptor::NameRegister();           // a2
   4060   Register vector = VectorStoreICDescriptor::VectorRegister();      // a3
   4061   Register slot = VectorStoreICDescriptor::SlotRegister();          // a4
   4062   DCHECK(VectorStoreICDescriptor::ValueRegister().is(a0));          // a0
   4063   Register feedback = a5;
   4064   Register receiver_map = a6;
   4065   Register scratch1 = a7;
   4066 
   4067   __ SmiScale(scratch1, slot, kPointerSizeLog2);
   4068   __ Daddu(feedback, vector, Operand(scratch1));
   4069   __ ld(feedback, FieldMemOperand(feedback, FixedArray::kHeaderSize));
   4070 
   4071   // Try to quickly handle the monomorphic case without knowing for sure
   4072   // if we have a weak cell in feedback. We do know it's safe to look
   4073   // at WeakCell::kValueOffset.
   4074   Label try_array, load_smi_map, compare_map;
   4075   Label not_array, miss;
   4076   HandleMonomorphicCase(masm, receiver, receiver_map, feedback, vector, slot,
   4077                         scratch1, &compare_map, &load_smi_map, &try_array);
   4078 
   4079   __ bind(&try_array);
   4080   // Is it a fixed array?
   4081   __ ld(scratch1, FieldMemOperand(feedback, HeapObject::kMapOffset));
   4082   __ Branch(&not_array, ne, scratch1, Heap::kFixedArrayMapRootIndex);
   4083 
   4084   // We have a polymorphic element handler.
   4085   Label try_poly_name;
   4086 
   4087   Register scratch2 = t0;
   4088 
   4089   HandlePolymorphicStoreCase(masm, feedback, receiver_map, scratch1, scratch2,
   4090                              &miss);
   4091 
   4092   __ bind(&not_array);
   4093   // Is it generic?
   4094   __ Branch(&try_poly_name, ne, feedback, Heap::kmegamorphic_symbolRootIndex);
   4095   Handle<Code> megamorphic_stub =
   4096       KeyedStoreIC::ChooseMegamorphicStub(masm->isolate(), GetExtraICState());
   4097   __ Jump(megamorphic_stub, RelocInfo::CODE_TARGET);
   4098 
   4099   __ bind(&try_poly_name);
   4100   // We might have a name in feedback, and a fixed array in the next slot.
   4101   __ Branch(&miss, ne, key, Operand(feedback));
   4102   // If the name comparison succeeded, we know we have a fixed array with
   4103   // at least one map/handler pair.
   4104   __ SmiScale(scratch1, slot, kPointerSizeLog2);
   4105   __ Daddu(feedback, vector, Operand(scratch1));
   4106   __ ld(feedback,
   4107         FieldMemOperand(feedback, FixedArray::kHeaderSize + kPointerSize));
   4108   HandleArrayCases(masm, feedback, receiver_map, scratch1, scratch2, false,
   4109                    &miss);
   4110 
   4111   __ bind(&miss);
   4112   KeyedStoreIC::GenerateMiss(masm);
   4113 
   4114   __ bind(&load_smi_map);
   4115   __ Branch(USE_DELAY_SLOT, &compare_map);
   4116   __ LoadRoot(receiver_map, Heap::kHeapNumberMapRootIndex);  // In delay slot.
   4117 }
   4118 
   4119 
   4120 void ProfileEntryHookStub::MaybeCallEntryHook(MacroAssembler* masm) {
   4121   if (masm->isolate()->function_entry_hook() != NULL) {
   4122     ProfileEntryHookStub stub(masm->isolate());
   4123     __ push(ra);
   4124     __ CallStub(&stub);
   4125     __ pop(ra);
   4126   }
   4127 }
   4128 
   4129 
   4130 void ProfileEntryHookStub::Generate(MacroAssembler* masm) {
   4131   // The entry hook is a "push ra" instruction, followed by a call.
   4132   // Note: on MIPS "push" is 2 instruction
   4133   const int32_t kReturnAddressDistanceFromFunctionStart =
   4134       Assembler::kCallTargetAddressOffset + (2 * Assembler::kInstrSize);
   4135 
   4136   // This should contain all kJSCallerSaved registers.
   4137   const RegList kSavedRegs =
   4138      kJSCallerSaved |  // Caller saved registers.
   4139      s5.bit();         // Saved stack pointer.
   4140 
   4141   // We also save ra, so the count here is one higher than the mask indicates.
   4142   const int32_t kNumSavedRegs = kNumJSCallerSaved + 2;
   4143 
   4144   // Save all caller-save registers as this may be called from anywhere.
   4145   __ MultiPush(kSavedRegs | ra.bit());
   4146 
   4147   // Compute the function's address for the first argument.
   4148   __ Dsubu(a0, ra, Operand(kReturnAddressDistanceFromFunctionStart));
   4149 
   4150   // The caller's return address is above the saved temporaries.
   4151   // Grab that for the second argument to the hook.
   4152   __ Daddu(a1, sp, Operand(kNumSavedRegs * kPointerSize));
   4153 
   4154   // Align the stack if necessary.
   4155   int frame_alignment = masm->ActivationFrameAlignment();
   4156   if (frame_alignment > kPointerSize) {
   4157     __ mov(s5, sp);
   4158     DCHECK(base::bits::IsPowerOfTwo32(frame_alignment));
   4159     __ And(sp, sp, Operand(-frame_alignment));
   4160   }
   4161 
   4162   __ Dsubu(sp, sp, kCArgsSlotsSize);
   4163 #if defined(V8_HOST_ARCH_MIPS) || defined(V8_HOST_ARCH_MIPS64)
   4164   int64_t entry_hook =
   4165       reinterpret_cast<int64_t>(isolate()->function_entry_hook());
   4166   __ li(t9, Operand(entry_hook));
   4167 #else
   4168   // Under the simulator we need to indirect the entry hook through a
   4169   // trampoline function at a known address.
   4170   // It additionally takes an isolate as a third parameter.
   4171   __ li(a2, Operand(ExternalReference::isolate_address(isolate())));
   4172 
   4173   ApiFunction dispatcher(FUNCTION_ADDR(EntryHookTrampoline));
   4174   __ li(t9, Operand(ExternalReference(&dispatcher,
   4175                                       ExternalReference::BUILTIN_CALL,
   4176                                       isolate())));
   4177 #endif
   4178   // Call C function through t9 to conform ABI for PIC.
   4179   __ Call(t9);
   4180 
   4181   // Restore the stack pointer if needed.
   4182   if (frame_alignment > kPointerSize) {
   4183     __ mov(sp, s5);
   4184   } else {
   4185     __ Daddu(sp, sp, kCArgsSlotsSize);
   4186   }
   4187 
   4188   // Also pop ra to get Ret(0).
   4189   __ MultiPop(kSavedRegs | ra.bit());
   4190   __ Ret();
   4191 }
   4192 
   4193 
   4194 template<class T>
   4195 static void CreateArrayDispatch(MacroAssembler* masm,
   4196                                 AllocationSiteOverrideMode mode) {
   4197   if (mode == DISABLE_ALLOCATION_SITES) {
   4198     T stub(masm->isolate(), GetInitialFastElementsKind(), mode);
   4199     __ TailCallStub(&stub);
   4200   } else if (mode == DONT_OVERRIDE) {
   4201     int last_index = GetSequenceIndexFromFastElementsKind(
   4202         TERMINAL_FAST_ELEMENTS_KIND);
   4203     for (int i = 0; i <= last_index; ++i) {
   4204       ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
   4205       T stub(masm->isolate(), kind);
   4206       __ TailCallStub(&stub, eq, a3, Operand(kind));
   4207     }
   4208 
   4209     // If we reached this point there is a problem.
   4210     __ Abort(kUnexpectedElementsKindInArrayConstructor);
   4211   } else {
   4212     UNREACHABLE();
   4213   }
   4214 }
   4215 
   4216 
   4217 static void CreateArrayDispatchOneArgument(MacroAssembler* masm,
   4218                                            AllocationSiteOverrideMode mode) {
   4219   // a2 - allocation site (if mode != DISABLE_ALLOCATION_SITES)
   4220   // a3 - kind (if mode != DISABLE_ALLOCATION_SITES)
   4221   // a0 - number of arguments
   4222   // a1 - constructor?
   4223   // sp[0] - last argument
   4224   Label normal_sequence;
   4225   if (mode == DONT_OVERRIDE) {
   4226     STATIC_ASSERT(FAST_SMI_ELEMENTS == 0);
   4227     STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
   4228     STATIC_ASSERT(FAST_ELEMENTS == 2);
   4229     STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3);
   4230     STATIC_ASSERT(FAST_DOUBLE_ELEMENTS == 4);
   4231     STATIC_ASSERT(FAST_HOLEY_DOUBLE_ELEMENTS == 5);
   4232 
   4233     // is the low bit set? If so, we are holey and that is good.
   4234     __ And(at, a3, Operand(1));
   4235     __ Branch(&normal_sequence, ne, at, Operand(zero_reg));
   4236   }
   4237   // look at the first argument
   4238   __ ld(a5, MemOperand(sp, 0));
   4239   __ Branch(&normal_sequence, eq, a5, Operand(zero_reg));
   4240 
   4241   if (mode == DISABLE_ALLOCATION_SITES) {
   4242     ElementsKind initial = GetInitialFastElementsKind();
   4243     ElementsKind holey_initial = GetHoleyElementsKind(initial);
   4244 
   4245     ArraySingleArgumentConstructorStub stub_holey(masm->isolate(),
   4246                                                   holey_initial,
   4247                                                   DISABLE_ALLOCATION_SITES);
   4248     __ TailCallStub(&stub_holey);
   4249 
   4250     __ bind(&normal_sequence);
   4251     ArraySingleArgumentConstructorStub stub(masm->isolate(),
   4252                                             initial,
   4253                                             DISABLE_ALLOCATION_SITES);
   4254     __ TailCallStub(&stub);
   4255   } else if (mode == DONT_OVERRIDE) {
   4256     // We are going to create a holey array, but our kind is non-holey.
   4257     // Fix kind and retry (only if we have an allocation site in the slot).
   4258     __ Daddu(a3, a3, Operand(1));
   4259 
   4260     if (FLAG_debug_code) {
   4261       __ ld(a5, FieldMemOperand(a2, 0));
   4262       __ LoadRoot(at, Heap::kAllocationSiteMapRootIndex);
   4263       __ Assert(eq, kExpectedAllocationSite, a5, Operand(at));
   4264     }
   4265 
   4266     // Save the resulting elements kind in type info. We can't just store a3
   4267     // in the AllocationSite::transition_info field because elements kind is
   4268     // restricted to a portion of the field...upper bits need to be left alone.
   4269     STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0);
   4270     __ ld(a4, FieldMemOperand(a2, AllocationSite::kTransitionInfoOffset));
   4271     __ Daddu(a4, a4, Operand(Smi::FromInt(kFastElementsKindPackedToHoley)));
   4272     __ sd(a4, FieldMemOperand(a2, AllocationSite::kTransitionInfoOffset));
   4273 
   4274 
   4275     __ bind(&normal_sequence);
   4276     int last_index = GetSequenceIndexFromFastElementsKind(
   4277         TERMINAL_FAST_ELEMENTS_KIND);
   4278     for (int i = 0; i <= last_index; ++i) {
   4279       ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
   4280       ArraySingleArgumentConstructorStub stub(masm->isolate(), kind);
   4281       __ TailCallStub(&stub, eq, a3, Operand(kind));
   4282     }
   4283 
   4284     // If we reached this point there is a problem.
   4285     __ Abort(kUnexpectedElementsKindInArrayConstructor);
   4286   } else {
   4287     UNREACHABLE();
   4288   }
   4289 }
   4290 
   4291 
   4292 template<class T>
   4293 static void ArrayConstructorStubAheadOfTimeHelper(Isolate* isolate) {
   4294   int to_index = GetSequenceIndexFromFastElementsKind(
   4295       TERMINAL_FAST_ELEMENTS_KIND);
   4296   for (int i = 0; i <= to_index; ++i) {
   4297     ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
   4298     T stub(isolate, kind);
   4299     stub.GetCode();
   4300     if (AllocationSite::GetMode(kind) != DONT_TRACK_ALLOCATION_SITE) {
   4301       T stub1(isolate, kind, DISABLE_ALLOCATION_SITES);
   4302       stub1.GetCode();
   4303     }
   4304   }
   4305 }
   4306 
   4307 void CommonArrayConstructorStub::GenerateStubsAheadOfTime(Isolate* isolate) {
   4308   ArrayConstructorStubAheadOfTimeHelper<ArrayNoArgumentConstructorStub>(
   4309       isolate);
   4310   ArrayConstructorStubAheadOfTimeHelper<ArraySingleArgumentConstructorStub>(
   4311       isolate);
   4312   ArrayNArgumentsConstructorStub stub(isolate);
   4313   stub.GetCode();
   4314   ElementsKind kinds[2] = { FAST_ELEMENTS, FAST_HOLEY_ELEMENTS };
   4315   for (int i = 0; i < 2; i++) {
   4316     // For internal arrays we only need a few things.
   4317     InternalArrayNoArgumentConstructorStub stubh1(isolate, kinds[i]);
   4318     stubh1.GetCode();
   4319     InternalArraySingleArgumentConstructorStub stubh2(isolate, kinds[i]);
   4320     stubh2.GetCode();
   4321   }
   4322 }
   4323 
   4324 
   4325 void ArrayConstructorStub::GenerateDispatchToArrayStub(
   4326     MacroAssembler* masm,
   4327     AllocationSiteOverrideMode mode) {
   4328   if (argument_count() == ANY) {
   4329     Label not_zero_case, not_one_case;
   4330     __ And(at, a0, a0);
   4331     __ Branch(&not_zero_case, ne, at, Operand(zero_reg));
   4332     CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode);
   4333 
   4334     __ bind(&not_zero_case);
   4335     __ Branch(&not_one_case, gt, a0, Operand(1));
   4336     CreateArrayDispatchOneArgument(masm, mode);
   4337 
   4338     __ bind(&not_one_case);
   4339     ArrayNArgumentsConstructorStub stub(masm->isolate());
   4340     __ TailCallStub(&stub);
   4341   } else if (argument_count() == NONE) {
   4342     CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode);
   4343   } else if (argument_count() == ONE) {
   4344     CreateArrayDispatchOneArgument(masm, mode);
   4345   } else if (argument_count() == MORE_THAN_ONE) {
   4346     ArrayNArgumentsConstructorStub stub(masm->isolate());
   4347     __ TailCallStub(&stub);
   4348   } else {
   4349     UNREACHABLE();
   4350   }
   4351 }
   4352 
   4353 
   4354 void ArrayConstructorStub::Generate(MacroAssembler* masm) {
   4355   // ----------- S t a t e -------------
   4356   //  -- a0 : argc (only if argument_count() == ANY)
   4357   //  -- a1 : constructor
   4358   //  -- a2 : AllocationSite or undefined
   4359   //  -- a3 : new target
   4360   //  -- sp[0] : last argument
   4361   // -----------------------------------
   4362 
   4363   if (FLAG_debug_code) {
   4364     // The array construct code is only set for the global and natives
   4365     // builtin Array functions which always have maps.
   4366 
   4367     // Initial map for the builtin Array function should be a map.
   4368     __ ld(a4, FieldMemOperand(a1, JSFunction::kPrototypeOrInitialMapOffset));
   4369     // Will both indicate a NULL and a Smi.
   4370     __ SmiTst(a4, at);
   4371     __ Assert(ne, kUnexpectedInitialMapForArrayFunction,
   4372         at, Operand(zero_reg));
   4373     __ GetObjectType(a4, a4, a5);
   4374     __ Assert(eq, kUnexpectedInitialMapForArrayFunction,
   4375         a5, Operand(MAP_TYPE));
   4376 
   4377     // We should either have undefined in a2 or a valid AllocationSite
   4378     __ AssertUndefinedOrAllocationSite(a2, a4);
   4379   }
   4380 
   4381   // Enter the context of the Array function.
   4382   __ ld(cp, FieldMemOperand(a1, JSFunction::kContextOffset));
   4383 
   4384   Label subclassing;
   4385   __ Branch(&subclassing, ne, a1, Operand(a3));
   4386 
   4387   Label no_info;
   4388   // Get the elements kind and case on that.
   4389   __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
   4390   __ Branch(&no_info, eq, a2, Operand(at));
   4391 
   4392   __ ld(a3, FieldMemOperand(a2, AllocationSite::kTransitionInfoOffset));
   4393   __ SmiUntag(a3);
   4394   STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0);
   4395   __ And(a3, a3, Operand(AllocationSite::ElementsKindBits::kMask));
   4396   GenerateDispatchToArrayStub(masm, DONT_OVERRIDE);
   4397 
   4398   __ bind(&no_info);
   4399   GenerateDispatchToArrayStub(masm, DISABLE_ALLOCATION_SITES);
   4400 
   4401   // Subclassing.
   4402   __ bind(&subclassing);
   4403   switch (argument_count()) {
   4404     case ANY:
   4405     case MORE_THAN_ONE:
   4406       __ Dlsa(at, sp, a0, kPointerSizeLog2);
   4407       __ sd(a1, MemOperand(at));
   4408       __ li(at, Operand(3));
   4409       __ Daddu(a0, a0, at);
   4410       break;
   4411     case NONE:
   4412       __ sd(a1, MemOperand(sp, 0 * kPointerSize));
   4413       __ li(a0, Operand(3));
   4414       break;
   4415     case ONE:
   4416       __ sd(a1, MemOperand(sp, 1 * kPointerSize));
   4417       __ li(a0, Operand(4));
   4418       break;
   4419   }
   4420   __ Push(a3, a2);
   4421   __ JumpToExternalReference(ExternalReference(Runtime::kNewArray, isolate()));
   4422 }
   4423 
   4424 
   4425 void InternalArrayConstructorStub::GenerateCase(
   4426     MacroAssembler* masm, ElementsKind kind) {
   4427 
   4428   InternalArrayNoArgumentConstructorStub stub0(isolate(), kind);
   4429   __ TailCallStub(&stub0, lo, a0, Operand(1));
   4430 
   4431   ArrayNArgumentsConstructorStub stubN(isolate());
   4432   __ TailCallStub(&stubN, hi, a0, Operand(1));
   4433 
   4434   if (IsFastPackedElementsKind(kind)) {
   4435     // We might need to create a holey array
   4436     // look at the first argument.
   4437     __ ld(at, MemOperand(sp, 0));
   4438 
   4439     InternalArraySingleArgumentConstructorStub
   4440         stub1_holey(isolate(), GetHoleyElementsKind(kind));
   4441     __ TailCallStub(&stub1_holey, ne, at, Operand(zero_reg));
   4442   }
   4443 
   4444   InternalArraySingleArgumentConstructorStub stub1(isolate(), kind);
   4445   __ TailCallStub(&stub1);
   4446 }
   4447 
   4448 
   4449 void InternalArrayConstructorStub::Generate(MacroAssembler* masm) {
   4450   // ----------- S t a t e -------------
   4451   //  -- a0 : argc
   4452   //  -- a1 : constructor
   4453   //  -- sp[0] : return address
   4454   //  -- sp[4] : last argument
   4455   // -----------------------------------
   4456 
   4457   if (FLAG_debug_code) {
   4458     // The array construct code is only set for the global and natives
   4459     // builtin Array functions which always have maps.
   4460 
   4461     // Initial map for the builtin Array function should be a map.
   4462     __ ld(a3, FieldMemOperand(a1, JSFunction::kPrototypeOrInitialMapOffset));
   4463     // Will both indicate a NULL and a Smi.
   4464     __ SmiTst(a3, at);
   4465     __ Assert(ne, kUnexpectedInitialMapForArrayFunction,
   4466         at, Operand(zero_reg));
   4467     __ GetObjectType(a3, a3, a4);
   4468     __ Assert(eq, kUnexpectedInitialMapForArrayFunction,
   4469         a4, Operand(MAP_TYPE));
   4470   }
   4471 
   4472   // Figure out the right elements kind.
   4473   __ ld(a3, FieldMemOperand(a1, JSFunction::kPrototypeOrInitialMapOffset));
   4474 
   4475   // Load the map's "bit field 2" into a3. We only need the first byte,
   4476   // but the following bit field extraction takes care of that anyway.
   4477   __ lbu(a3, FieldMemOperand(a3, Map::kBitField2Offset));
   4478   // Retrieve elements_kind from bit field 2.
   4479   __ DecodeField<Map::ElementsKindBits>(a3);
   4480 
   4481   if (FLAG_debug_code) {
   4482     Label done;
   4483     __ Branch(&done, eq, a3, Operand(FAST_ELEMENTS));
   4484     __ Assert(
   4485         eq, kInvalidElementsKindForInternalArrayOrInternalPackedArray,
   4486         a3, Operand(FAST_HOLEY_ELEMENTS));
   4487     __ bind(&done);
   4488   }
   4489 
   4490   Label fast_elements_case;
   4491   __ Branch(&fast_elements_case, eq, a3, Operand(FAST_ELEMENTS));
   4492   GenerateCase(masm, FAST_HOLEY_ELEMENTS);
   4493 
   4494   __ bind(&fast_elements_case);
   4495   GenerateCase(masm, FAST_ELEMENTS);
   4496 }
   4497 
   4498 
   4499 void FastNewObjectStub::Generate(MacroAssembler* masm) {
   4500   // ----------- S t a t e -------------
   4501   //  -- a1 : target
   4502   //  -- a3 : new target
   4503   //  -- cp : context
   4504   //  -- ra : return address
   4505   // -----------------------------------
   4506   __ AssertFunction(a1);
   4507   __ AssertReceiver(a3);
   4508 
   4509   // Verify that the new target is a JSFunction.
   4510   Label new_object;
   4511   __ GetObjectType(a3, a2, a2);
   4512   __ Branch(&new_object, ne, a2, Operand(JS_FUNCTION_TYPE));
   4513 
   4514   // Load the initial map and verify that it's in fact a map.
   4515   __ ld(a2, FieldMemOperand(a3, JSFunction::kPrototypeOrInitialMapOffset));
   4516   __ JumpIfSmi(a2, &new_object);
   4517   __ GetObjectType(a2, a0, a0);
   4518   __ Branch(&new_object, ne, a0, Operand(MAP_TYPE));
   4519 
   4520   // Fall back to runtime if the target differs from the new target's
   4521   // initial map constructor.
   4522   __ ld(a0, FieldMemOperand(a2, Map::kConstructorOrBackPointerOffset));
   4523   __ Branch(&new_object, ne, a0, Operand(a1));
   4524 
   4525   // Allocate the JSObject on the heap.
   4526   Label allocate, done_allocate;
   4527   __ lbu(a4, FieldMemOperand(a2, Map::kInstanceSizeOffset));
   4528   __ Allocate(a4, v0, a5, a0, &allocate, SIZE_IN_WORDS);
   4529   __ bind(&done_allocate);
   4530 
   4531   // Initialize the JSObject fields.
   4532   __ sd(a2, FieldMemOperand(v0, JSObject::kMapOffset));
   4533   __ LoadRoot(a3, Heap::kEmptyFixedArrayRootIndex);
   4534   __ sd(a3, FieldMemOperand(v0, JSObject::kPropertiesOffset));
   4535   __ sd(a3, FieldMemOperand(v0, JSObject::kElementsOffset));
   4536   STATIC_ASSERT(JSObject::kHeaderSize == 3 * kPointerSize);
   4537   __ Daddu(a1, v0, Operand(JSObject::kHeaderSize - kHeapObjectTag));
   4538 
   4539   // ----------- S t a t e -------------
   4540   //  -- v0 : result (tagged)
   4541   //  -- a1 : result fields (untagged)
   4542   //  -- a5 : result end (untagged)
   4543   //  -- a2 : initial map
   4544   //  -- cp : context
   4545   //  -- ra : return address
   4546   // -----------------------------------
   4547 
   4548   // Perform in-object slack tracking if requested.
   4549   Label slack_tracking;
   4550   STATIC_ASSERT(Map::kNoSlackTracking == 0);
   4551   __ lwu(a3, FieldMemOperand(a2, Map::kBitField3Offset));
   4552   __ And(at, a3, Operand(Map::ConstructionCounter::kMask));
   4553   __ Branch(USE_DELAY_SLOT, &slack_tracking, ne, at, Operand(zero_reg));
   4554   __ LoadRoot(a0, Heap::kUndefinedValueRootIndex);  // In delay slot.
   4555   {
   4556     // Initialize all in-object fields with undefined.
   4557     __ InitializeFieldsWithFiller(a1, a5, a0);
   4558     __ Ret();
   4559   }
   4560   __ bind(&slack_tracking);
   4561   {
   4562     // Decrease generous allocation count.
   4563     STATIC_ASSERT(Map::ConstructionCounter::kNext == 32);
   4564     __ Subu(a3, a3, Operand(1 << Map::ConstructionCounter::kShift));
   4565     __ sw(a3, FieldMemOperand(a2, Map::kBitField3Offset));
   4566 
   4567     // Initialize the in-object fields with undefined.
   4568     __ lbu(a4, FieldMemOperand(a2, Map::kUnusedPropertyFieldsOffset));
   4569     __ dsll(a4, a4, kPointerSizeLog2);
   4570     __ Dsubu(a4, a5, a4);
   4571     __ InitializeFieldsWithFiller(a1, a4, a0);
   4572 
   4573     // Initialize the remaining (reserved) fields with one pointer filler map.
   4574     __ LoadRoot(a0, Heap::kOnePointerFillerMapRootIndex);
   4575     __ InitializeFieldsWithFiller(a1, a5, a0);
   4576 
   4577     // Check if we can finalize the instance size.
   4578     Label finalize;
   4579     STATIC_ASSERT(Map::kSlackTrackingCounterEnd == 1);
   4580     __ And(a3, a3, Operand(Map::ConstructionCounter::kMask));
   4581     __ Branch(&finalize, eq, a3, Operand(zero_reg));
   4582     __ Ret();
   4583 
   4584     // Finalize the instance size.
   4585     __ bind(&finalize);
   4586     {
   4587       FrameScope scope(masm, StackFrame::INTERNAL);
   4588       __ Push(v0, a2);
   4589       __ CallRuntime(Runtime::kFinalizeInstanceSize);
   4590       __ Pop(v0);
   4591     }
   4592     __ Ret();
   4593   }
   4594 
   4595   // Fall back to %AllocateInNewSpace.
   4596   __ bind(&allocate);
   4597   {
   4598     FrameScope scope(masm, StackFrame::INTERNAL);
   4599     STATIC_ASSERT(kSmiTag == 0);
   4600     STATIC_ASSERT(kSmiTagSize == 1);
   4601     __ dsll(a4, a4, kPointerSizeLog2 + kSmiShiftSize + kSmiTagSize);
   4602     __ SmiTag(a4);
   4603     __ Push(a2, a4);
   4604     __ CallRuntime(Runtime::kAllocateInNewSpace);
   4605     __ Pop(a2);
   4606   }
   4607   __ lbu(a5, FieldMemOperand(a2, Map::kInstanceSizeOffset));
   4608   __ Dlsa(a5, v0, a5, kPointerSizeLog2);
   4609   STATIC_ASSERT(kHeapObjectTag == 1);
   4610   __ Dsubu(a5, a5, Operand(kHeapObjectTag));
   4611   __ jmp(&done_allocate);
   4612 
   4613   // Fall back to %NewObject.
   4614   __ bind(&new_object);
   4615   __ Push(a1, a3);
   4616   __ TailCallRuntime(Runtime::kNewObject);
   4617 }
   4618 
   4619 
   4620 void FastNewRestParameterStub::Generate(MacroAssembler* masm) {
   4621   // ----------- S t a t e -------------
   4622   //  -- a1 : function
   4623   //  -- cp : context
   4624   //  -- fp : frame pointer
   4625   //  -- ra : return address
   4626   // -----------------------------------
   4627   __ AssertFunction(a1);
   4628 
   4629   // Make a2 point to the JavaScript frame.
   4630   __ mov(a2, fp);
   4631   if (skip_stub_frame()) {
   4632     // For Ignition we need to skip the handler/stub frame to reach the
   4633     // JavaScript frame for the function.
   4634     __ ld(a2, MemOperand(a2, StandardFrameConstants::kCallerFPOffset));
   4635   }
   4636   if (FLAG_debug_code) {
   4637     Label ok;
   4638     __ ld(a3, MemOperand(a2, StandardFrameConstants::kFunctionOffset));
   4639     __ Branch(&ok, eq, a1, Operand(a3));
   4640     __ Abort(kInvalidFrameForFastNewRestArgumentsStub);
   4641     __ bind(&ok);
   4642   }
   4643 
   4644   // Check if we have rest parameters (only possible if we have an
   4645   // arguments adaptor frame below the function frame).
   4646   Label no_rest_parameters;
   4647   __ ld(a2, MemOperand(a2, StandardFrameConstants::kCallerFPOffset));
   4648   __ ld(a3, MemOperand(a2, CommonFrameConstants::kContextOrFrameTypeOffset));
   4649   __ Branch(&no_rest_parameters, ne, a3,
   4650             Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
   4651 
   4652   // Check if the arguments adaptor frame contains more arguments than
   4653   // specified by the function's internal formal parameter count.
   4654   Label rest_parameters;
   4655   __ SmiLoadUntag(
   4656       a0, MemOperand(a2, ArgumentsAdaptorFrameConstants::kLengthOffset));
   4657   __ ld(a3, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset));
   4658   __ lw(a3,
   4659         FieldMemOperand(a3, SharedFunctionInfo::kFormalParameterCountOffset));
   4660   __ Dsubu(a0, a0, Operand(a3));
   4661   __ Branch(&rest_parameters, gt, a0, Operand(zero_reg));
   4662 
   4663   // Return an empty rest parameter array.
   4664   __ bind(&no_rest_parameters);
   4665   {
   4666     // ----------- S t a t e -------------
   4667     //  -- cp : context
   4668     //  -- ra : return address
   4669     // -----------------------------------
   4670 
   4671     // Allocate an empty rest parameter array.
   4672     Label allocate, done_allocate;
   4673     __ Allocate(JSArray::kSize, v0, a0, a1, &allocate, NO_ALLOCATION_FLAGS);
   4674     __ bind(&done_allocate);
   4675 
   4676     // Setup the rest parameter array in v0.
   4677     __ LoadNativeContextSlot(Context::JS_ARRAY_FAST_ELEMENTS_MAP_INDEX, a1);
   4678     __ sd(a1, FieldMemOperand(v0, JSArray::kMapOffset));
   4679     __ LoadRoot(a1, Heap::kEmptyFixedArrayRootIndex);
   4680     __ sd(a1, FieldMemOperand(v0, JSArray::kPropertiesOffset));
   4681     __ sd(a1, FieldMemOperand(v0, JSArray::kElementsOffset));
   4682     __ Move(a1, Smi::FromInt(0));
   4683     __ Ret(USE_DELAY_SLOT);
   4684     __ sd(a1, FieldMemOperand(v0, JSArray::kLengthOffset));  // In delay slot
   4685     STATIC_ASSERT(JSArray::kSize == 4 * kPointerSize);
   4686 
   4687     // Fall back to %AllocateInNewSpace.
   4688     __ bind(&allocate);
   4689     {
   4690       FrameScope scope(masm, StackFrame::INTERNAL);
   4691       __ Push(Smi::FromInt(JSArray::kSize));
   4692       __ CallRuntime(Runtime::kAllocateInNewSpace);
   4693     }
   4694     __ jmp(&done_allocate);
   4695   }
   4696 
   4697   __ bind(&rest_parameters);
   4698   {
   4699     // Compute the pointer to the first rest parameter (skippping the receiver).
   4700     __ Dlsa(a2, a2, a0, kPointerSizeLog2);
   4701     __ Daddu(a2, a2, Operand(StandardFrameConstants::kCallerSPOffset -
   4702                              1 * kPointerSize));
   4703 
   4704     // ----------- S t a t e -------------
   4705     //  -- cp : context
   4706     //  -- a0 : number of rest parameters
   4707     //  -- a1 : function
   4708     //  -- a2 : pointer to first rest parameters
   4709     //  -- ra : return address
   4710     // -----------------------------------
   4711 
   4712     // Allocate space for the rest parameter array plus the backing store.
   4713     Label allocate, done_allocate;
   4714     __ li(a5, Operand(JSArray::kSize + FixedArray::kHeaderSize));
   4715     __ Dlsa(a5, a5, a0, kPointerSizeLog2);
   4716     __ Allocate(a5, v0, a3, a4, &allocate, NO_ALLOCATION_FLAGS);
   4717     __ bind(&done_allocate);
   4718 
   4719     // Compute arguments.length in a4.
   4720     __ SmiTag(a4, a0);
   4721 
   4722     // Setup the elements array in v0.
   4723     __ LoadRoot(at, Heap::kFixedArrayMapRootIndex);
   4724     __ sd(at, FieldMemOperand(v0, FixedArray::kMapOffset));
   4725     __ sd(a4, FieldMemOperand(v0, FixedArray::kLengthOffset));
   4726     __ Daddu(a3, v0, Operand(FixedArray::kHeaderSize));
   4727     {
   4728       Label loop, done_loop;
   4729       __ Dlsa(a1, a3, a0, kPointerSizeLog2);
   4730       __ bind(&loop);
   4731       __ Branch(&done_loop, eq, a1, Operand(a3));
   4732       __ ld(at, MemOperand(a2, 0 * kPointerSize));
   4733       __ sd(at, FieldMemOperand(a3, 0 * kPointerSize));
   4734       __ Dsubu(a2, a2, Operand(1 * kPointerSize));
   4735       __ Daddu(a3, a3, Operand(1 * kPointerSize));
   4736       __ Branch(&loop);
   4737       __ bind(&done_loop);
   4738     }
   4739 
   4740     // Setup the rest parameter array in a3.
   4741     __ LoadNativeContextSlot(Context::JS_ARRAY_FAST_ELEMENTS_MAP_INDEX, at);
   4742     __ sd(at, FieldMemOperand(a3, JSArray::kMapOffset));
   4743     __ LoadRoot(at, Heap::kEmptyFixedArrayRootIndex);
   4744     __ sd(at, FieldMemOperand(a3, JSArray::kPropertiesOffset));
   4745     __ sd(v0, FieldMemOperand(a3, JSArray::kElementsOffset));
   4746     __ sd(a4, FieldMemOperand(a3, JSArray::kLengthOffset));
   4747     STATIC_ASSERT(JSArray::kSize == 4 * kPointerSize);
   4748     __ Ret(USE_DELAY_SLOT);
   4749     __ mov(v0, a3);  // In delay slot
   4750 
   4751     // Fall back to %AllocateInNewSpace (if not too big).
   4752     Label too_big_for_new_space;
   4753     __ bind(&allocate);
   4754     __ Branch(&too_big_for_new_space, gt, a5,
   4755               Operand(Page::kMaxRegularHeapObjectSize));
   4756     {
   4757       FrameScope scope(masm, StackFrame::INTERNAL);
   4758       __ SmiTag(a0);
   4759       __ SmiTag(a5);
   4760       __ Push(a0, a2, a5);
   4761       __ CallRuntime(Runtime::kAllocateInNewSpace);
   4762       __ Pop(a0, a2);
   4763       __ SmiUntag(a0);
   4764     }
   4765     __ jmp(&done_allocate);
   4766 
   4767     // Fall back to %NewStrictArguments.
   4768     __ bind(&too_big_for_new_space);
   4769     __ Push(a1);
   4770     __ TailCallRuntime(Runtime::kNewStrictArguments);
   4771   }
   4772 }
   4773 
   4774 
   4775 void FastNewSloppyArgumentsStub::Generate(MacroAssembler* masm) {
   4776   // ----------- S t a t e -------------
   4777   //  -- a1 : function
   4778   //  -- cp : context
   4779   //  -- fp : frame pointer
   4780   //  -- ra : return address
   4781   // -----------------------------------
   4782   __ AssertFunction(a1);
   4783 
   4784   // Make t0 point to the JavaScript frame.
   4785   __ mov(t0, fp);
   4786   if (skip_stub_frame()) {
   4787     // For Ignition we need to skip the handler/stub frame to reach the
   4788     // JavaScript frame for the function.
   4789     __ ld(t0, MemOperand(t0, StandardFrameConstants::kCallerFPOffset));
   4790   }
   4791   if (FLAG_debug_code) {
   4792     Label ok;
   4793     __ ld(a3, MemOperand(t0, StandardFrameConstants::kFunctionOffset));
   4794     __ Branch(&ok, eq, a1, Operand(a3));
   4795     __ Abort(kInvalidFrameForFastNewRestArgumentsStub);
   4796     __ bind(&ok);
   4797   }
   4798 
   4799   // TODO(bmeurer): Cleanup to match the FastNewStrictArgumentsStub.
   4800   __ ld(a2, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset));
   4801   __ lw(a2,
   4802          FieldMemOperand(a2, SharedFunctionInfo::kFormalParameterCountOffset));
   4803   __ Lsa(a3, t0, a2, kPointerSizeLog2);
   4804   __ Addu(a3, a3, Operand(StandardFrameConstants::kCallerSPOffset));
   4805   __ SmiTag(a2);
   4806 
   4807   // a1 : function
   4808   // a2 : number of parameters (tagged)
   4809   // a3 : parameters pointer
   4810   // t0 : Javascript frame pointer
   4811   // Registers used over whole function:
   4812   //  a5 : arguments count (tagged)
   4813   //  a6 : mapped parameter count (tagged)
   4814 
   4815   // Check if the calling frame is an arguments adaptor frame.
   4816   Label adaptor_frame, try_allocate, runtime;
   4817   __ ld(a4, MemOperand(t0, StandardFrameConstants::kCallerFPOffset));
   4818   __ ld(a0, MemOperand(a4, CommonFrameConstants::kContextOrFrameTypeOffset));
   4819   __ Branch(&adaptor_frame, eq, a0,
   4820             Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
   4821 
   4822   // No adaptor, parameter count = argument count.
   4823   __ mov(a5, a2);
   4824   __ Branch(USE_DELAY_SLOT, &try_allocate);
   4825   __ mov(a6, a2);  // In delay slot.
   4826 
   4827   // We have an adaptor frame. Patch the parameters pointer.
   4828   __ bind(&adaptor_frame);
   4829   __ ld(a5, MemOperand(a4, ArgumentsAdaptorFrameConstants::kLengthOffset));
   4830   __ SmiScale(t2, a5, kPointerSizeLog2);
   4831   __ Daddu(a4, a4, Operand(t2));
   4832   __ Daddu(a3, a4, Operand(StandardFrameConstants::kCallerSPOffset));
   4833 
   4834   // a5 = argument count (tagged)
   4835   // a6 = parameter count (tagged)
   4836   // Compute the mapped parameter count = min(a6, a5) in a6.
   4837   __ mov(a6, a2);
   4838   __ Branch(&try_allocate, le, a6, Operand(a5));
   4839   __ mov(a6, a5);
   4840 
   4841   __ bind(&try_allocate);
   4842 
   4843   // Compute the sizes of backing store, parameter map, and arguments object.
   4844   // 1. Parameter map, has 2 extra words containing context and backing store.
   4845   const int kParameterMapHeaderSize =
   4846       FixedArray::kHeaderSize + 2 * kPointerSize;
   4847   // If there are no mapped parameters, we do not need the parameter_map.
   4848   Label param_map_size;
   4849   DCHECK_EQ(static_cast<Smi*>(0), Smi::FromInt(0));
   4850   __ Branch(USE_DELAY_SLOT, &param_map_size, eq, a6, Operand(zero_reg));
   4851   __ mov(t1, zero_reg);  // In delay slot: param map size = 0 when a6 == 0.
   4852   __ SmiScale(t1, a6, kPointerSizeLog2);
   4853   __ daddiu(t1, t1, kParameterMapHeaderSize);
   4854   __ bind(&param_map_size);
   4855 
   4856   // 2. Backing store.
   4857   __ SmiScale(t2, a5, kPointerSizeLog2);
   4858   __ Daddu(t1, t1, Operand(t2));
   4859   __ Daddu(t1, t1, Operand(FixedArray::kHeaderSize));
   4860 
   4861   // 3. Arguments object.
   4862   __ Daddu(t1, t1, Operand(JSSloppyArgumentsObject::kSize));
   4863 
   4864   // Do the allocation of all three objects in one go.
   4865   __ Allocate(t1, v0, t1, a4, &runtime, NO_ALLOCATION_FLAGS);
   4866 
   4867   // v0 = address of new object(s) (tagged)
   4868   // a2 = argument count (smi-tagged)
   4869   // Get the arguments boilerplate from the current native context into a4.
   4870   const int kNormalOffset =
   4871       Context::SlotOffset(Context::SLOPPY_ARGUMENTS_MAP_INDEX);
   4872   const int kAliasedOffset =
   4873       Context::SlotOffset(Context::FAST_ALIASED_ARGUMENTS_MAP_INDEX);
   4874 
   4875   __ ld(a4, NativeContextMemOperand());
   4876   Label skip2_ne, skip2_eq;
   4877   __ Branch(&skip2_ne, ne, a6, Operand(zero_reg));
   4878   __ ld(a4, MemOperand(a4, kNormalOffset));
   4879   __ bind(&skip2_ne);
   4880 
   4881   __ Branch(&skip2_eq, eq, a6, Operand(zero_reg));
   4882   __ ld(a4, MemOperand(a4, kAliasedOffset));
   4883   __ bind(&skip2_eq);
   4884 
   4885   // v0 = address of new object (tagged)
   4886   // a2 = argument count (smi-tagged)
   4887   // a4 = address of arguments map (tagged)
   4888   // a6 = mapped parameter count (tagged)
   4889   __ sd(a4, FieldMemOperand(v0, JSObject::kMapOffset));
   4890   __ LoadRoot(t1, Heap::kEmptyFixedArrayRootIndex);
   4891   __ sd(t1, FieldMemOperand(v0, JSObject::kPropertiesOffset));
   4892   __ sd(t1, FieldMemOperand(v0, JSObject::kElementsOffset));
   4893 
   4894   // Set up the callee in-object property.
   4895   __ AssertNotSmi(a1);
   4896   __ sd(a1, FieldMemOperand(v0, JSSloppyArgumentsObject::kCalleeOffset));
   4897 
   4898   // Use the length (smi tagged) and set that as an in-object property too.
   4899   __ AssertSmi(a5);
   4900   __ sd(a5, FieldMemOperand(v0, JSSloppyArgumentsObject::kLengthOffset));
   4901 
   4902   // Set up the elements pointer in the allocated arguments object.
   4903   // If we allocated a parameter map, a4 will point there, otherwise
   4904   // it will point to the backing store.
   4905   __ Daddu(a4, v0, Operand(JSSloppyArgumentsObject::kSize));
   4906   __ sd(a4, FieldMemOperand(v0, JSObject::kElementsOffset));
   4907 
   4908   // v0 = address of new object (tagged)
   4909   // a2 = argument count (tagged)
   4910   // a4 = address of parameter map or backing store (tagged)
   4911   // a6 = mapped parameter count (tagged)
   4912   // Initialize parameter map. If there are no mapped arguments, we're done.
   4913   Label skip_parameter_map;
   4914   Label skip3;
   4915   __ Branch(&skip3, ne, a6, Operand(Smi::FromInt(0)));
   4916   // Move backing store address to a1, because it is
   4917   // expected there when filling in the unmapped arguments.
   4918   __ mov(a1, a4);
   4919   __ bind(&skip3);
   4920 
   4921   __ Branch(&skip_parameter_map, eq, a6, Operand(Smi::FromInt(0)));
   4922 
   4923   __ LoadRoot(a5, Heap::kSloppyArgumentsElementsMapRootIndex);
   4924   __ sd(a5, FieldMemOperand(a4, FixedArray::kMapOffset));
   4925   __ Daddu(a5, a6, Operand(Smi::FromInt(2)));
   4926   __ sd(a5, FieldMemOperand(a4, FixedArray::kLengthOffset));
   4927   __ sd(cp, FieldMemOperand(a4, FixedArray::kHeaderSize + 0 * kPointerSize));
   4928   __ SmiScale(t2, a6, kPointerSizeLog2);
   4929   __ Daddu(a5, a4, Operand(t2));
   4930   __ Daddu(a5, a5, Operand(kParameterMapHeaderSize));
   4931   __ sd(a5, FieldMemOperand(a4, FixedArray::kHeaderSize + 1 * kPointerSize));
   4932 
   4933   // Copy the parameter slots and the holes in the arguments.
   4934   // We need to fill in mapped_parameter_count slots. They index the context,
   4935   // where parameters are stored in reverse order, at
   4936   //   MIN_CONTEXT_SLOTS .. MIN_CONTEXT_SLOTS+parameter_count-1
   4937   // The mapped parameter thus need to get indices
   4938   //   MIN_CONTEXT_SLOTS+parameter_count-1 ..
   4939   //       MIN_CONTEXT_SLOTS+parameter_count-mapped_parameter_count
   4940   // We loop from right to left.
   4941   Label parameters_loop, parameters_test;
   4942   __ mov(a5, a6);
   4943   __ Daddu(t1, a2, Operand(Smi::FromInt(Context::MIN_CONTEXT_SLOTS)));
   4944   __ Dsubu(t1, t1, Operand(a6));
   4945   __ LoadRoot(a7, Heap::kTheHoleValueRootIndex);
   4946   __ SmiScale(t2, a5, kPointerSizeLog2);
   4947   __ Daddu(a1, a4, Operand(t2));
   4948   __ Daddu(a1, a1, Operand(kParameterMapHeaderSize));
   4949 
   4950   // a1 = address of backing store (tagged)
   4951   // a4 = address of parameter map (tagged)
   4952   // a0 = temporary scratch (a.o., for address calculation)
   4953   // t1 = loop variable (tagged)
   4954   // a7 = the hole value
   4955   __ jmp(&parameters_test);
   4956 
   4957   __ bind(&parameters_loop);
   4958   __ Dsubu(a5, a5, Operand(Smi::FromInt(1)));
   4959   __ SmiScale(a0, a5, kPointerSizeLog2);
   4960   __ Daddu(a0, a0, Operand(kParameterMapHeaderSize - kHeapObjectTag));
   4961   __ Daddu(t2, a4, a0);
   4962   __ sd(t1, MemOperand(t2));
   4963   __ Dsubu(a0, a0, Operand(kParameterMapHeaderSize - FixedArray::kHeaderSize));
   4964   __ Daddu(t2, a1, a0);
   4965   __ sd(a7, MemOperand(t2));
   4966   __ Daddu(t1, t1, Operand(Smi::FromInt(1)));
   4967   __ bind(&parameters_test);
   4968   __ Branch(&parameters_loop, ne, a5, Operand(Smi::FromInt(0)));
   4969 
   4970   // Restore t1 = argument count (tagged).
   4971   __ ld(a5, FieldMemOperand(v0, JSSloppyArgumentsObject::kLengthOffset));
   4972 
   4973   __ bind(&skip_parameter_map);
   4974   // v0 = address of new object (tagged)
   4975   // a1 = address of backing store (tagged)
   4976   // a5 = argument count (tagged)
   4977   // a6 = mapped parameter count (tagged)
   4978   // t1 = scratch
   4979   // Copy arguments header and remaining slots (if there are any).
   4980   __ LoadRoot(t1, Heap::kFixedArrayMapRootIndex);
   4981   __ sd(t1, FieldMemOperand(a1, FixedArray::kMapOffset));
   4982   __ sd(a5, FieldMemOperand(a1, FixedArray::kLengthOffset));
   4983 
   4984   Label arguments_loop, arguments_test;
   4985   __ SmiScale(t2, a6, kPointerSizeLog2);
   4986   __ Dsubu(a3, a3, Operand(t2));
   4987   __ jmp(&arguments_test);
   4988 
   4989   __ bind(&arguments_loop);
   4990   __ Dsubu(a3, a3, Operand(kPointerSize));
   4991   __ ld(a4, MemOperand(a3, 0));
   4992   __ SmiScale(t2, a6, kPointerSizeLog2);
   4993   __ Daddu(t1, a1, Operand(t2));
   4994   __ sd(a4, FieldMemOperand(t1, FixedArray::kHeaderSize));
   4995   __ Daddu(a6, a6, Operand(Smi::FromInt(1)));
   4996 
   4997   __ bind(&arguments_test);
   4998   __ Branch(&arguments_loop, lt, a6, Operand(a5));
   4999 
   5000   // Return.
   5001   __ Ret();
   5002 
   5003   // Do the runtime call to allocate the arguments object.
   5004   // a5 = argument count (tagged)
   5005   __ bind(&runtime);
   5006   __ Push(a1, a3, a5);
   5007   __ TailCallRuntime(Runtime::kNewSloppyArguments);
   5008 }
   5009 
   5010 
   5011 void FastNewStrictArgumentsStub::Generate(MacroAssembler* masm) {
   5012   // ----------- S t a t e -------------
   5013   //  -- a1 : function
   5014   //  -- cp : context
   5015   //  -- fp : frame pointer
   5016   //  -- ra : return address
   5017   // -----------------------------------
   5018   __ AssertFunction(a1);
   5019 
   5020   // Make a2 point to the JavaScript frame.
   5021   __ mov(a2, fp);
   5022   if (skip_stub_frame()) {
   5023     // For Ignition we need to skip the handler/stub frame to reach the
   5024     // JavaScript frame for the function.
   5025     __ ld(a2, MemOperand(a2, StandardFrameConstants::kCallerFPOffset));
   5026   }
   5027   if (FLAG_debug_code) {
   5028     Label ok;
   5029     __ ld(a3, MemOperand(a2, StandardFrameConstants::kFunctionOffset));
   5030     __ Branch(&ok, eq, a1, Operand(a3));
   5031     __ Abort(kInvalidFrameForFastNewRestArgumentsStub);
   5032     __ bind(&ok);
   5033   }
   5034 
   5035   // Check if we have an arguments adaptor frame below the function frame.
   5036   Label arguments_adaptor, arguments_done;
   5037   __ ld(a3, MemOperand(a2, StandardFrameConstants::kCallerFPOffset));
   5038   __ ld(a0, MemOperand(a3, CommonFrameConstants::kContextOrFrameTypeOffset));
   5039   __ Branch(&arguments_adaptor, eq, a0,
   5040             Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
   5041   {
   5042     __ ld(a4, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset));
   5043     __ lw(a0,
   5044           FieldMemOperand(a4, SharedFunctionInfo::kFormalParameterCountOffset));
   5045     __ Dlsa(a2, a2, a0, kPointerSizeLog2);
   5046     __ Daddu(a2, a2, Operand(StandardFrameConstants::kCallerSPOffset -
   5047                              1 * kPointerSize));
   5048   }
   5049   __ Branch(&arguments_done);
   5050   __ bind(&arguments_adaptor);
   5051   {
   5052     __ SmiLoadUntag(
   5053         a0, MemOperand(a3, ArgumentsAdaptorFrameConstants::kLengthOffset));
   5054     __ Dlsa(a2, a3, a0, kPointerSizeLog2);
   5055     __ Daddu(a2, a2, Operand(StandardFrameConstants::kCallerSPOffset -
   5056                              1 * kPointerSize));
   5057   }
   5058   __ bind(&arguments_done);
   5059 
   5060   // ----------- S t a t e -------------
   5061   //  -- cp : context
   5062   //  -- a0 : number of rest parameters
   5063   //  -- a1 : function
   5064   //  -- a2 : pointer to first rest parameters
   5065   //  -- ra : return address
   5066   // -----------------------------------
   5067 
   5068   // Allocate space for the rest parameter array plus the backing store.
   5069   Label allocate, done_allocate;
   5070   __ li(a5, Operand(JSStrictArgumentsObject::kSize + FixedArray::kHeaderSize));
   5071   __ Dlsa(a5, a5, a0, kPointerSizeLog2);
   5072   __ Allocate(a5, v0, a3, a4, &allocate, NO_ALLOCATION_FLAGS);
   5073   __ bind(&done_allocate);
   5074 
   5075   // Compute arguments.length in a4.
   5076   __ SmiTag(a4, a0);
   5077 
   5078   // Setup the elements array in v0.
   5079   __ LoadRoot(at, Heap::kFixedArrayMapRootIndex);
   5080   __ sd(at, FieldMemOperand(v0, FixedArray::kMapOffset));
   5081   __ sd(a4, FieldMemOperand(v0, FixedArray::kLengthOffset));
   5082   __ Daddu(a3, v0, Operand(FixedArray::kHeaderSize));
   5083   {
   5084     Label loop, done_loop;
   5085     __ Dlsa(a1, a3, a0, kPointerSizeLog2);
   5086     __ bind(&loop);
   5087     __ Branch(&done_loop, eq, a1, Operand(a3));
   5088     __ ld(at, MemOperand(a2, 0 * kPointerSize));
   5089     __ sd(at, FieldMemOperand(a3, 0 * kPointerSize));
   5090     __ Dsubu(a2, a2, Operand(1 * kPointerSize));
   5091     __ Daddu(a3, a3, Operand(1 * kPointerSize));
   5092     __ Branch(&loop);
   5093     __ bind(&done_loop);
   5094   }
   5095 
   5096   // Setup the strict arguments object in a3.
   5097   __ LoadNativeContextSlot(Context::STRICT_ARGUMENTS_MAP_INDEX, at);
   5098   __ sd(at, FieldMemOperand(a3, JSStrictArgumentsObject::kMapOffset));
   5099   __ LoadRoot(at, Heap::kEmptyFixedArrayRootIndex);
   5100   __ sd(at, FieldMemOperand(a3, JSStrictArgumentsObject::kPropertiesOffset));
   5101   __ sd(v0, FieldMemOperand(a3, JSStrictArgumentsObject::kElementsOffset));
   5102   __ sd(a4, FieldMemOperand(a3, JSStrictArgumentsObject::kLengthOffset));
   5103   STATIC_ASSERT(JSStrictArgumentsObject::kSize == 4 * kPointerSize);
   5104   __ Ret(USE_DELAY_SLOT);
   5105   __ mov(v0, a3);  // In delay slot
   5106 
   5107   // Fall back to %AllocateInNewSpace (if not too big).
   5108   Label too_big_for_new_space;
   5109   __ bind(&allocate);
   5110   __ Branch(&too_big_for_new_space, gt, a5,
   5111             Operand(Page::kMaxRegularHeapObjectSize));
   5112   {
   5113     FrameScope scope(masm, StackFrame::INTERNAL);
   5114     __ SmiTag(a0);
   5115     __ SmiTag(a5);
   5116     __ Push(a0, a2, a5);
   5117     __ CallRuntime(Runtime::kAllocateInNewSpace);
   5118     __ Pop(a0, a2);
   5119     __ SmiUntag(a0);
   5120   }
   5121   __ jmp(&done_allocate);
   5122 
   5123   // Fall back to %NewStrictArguments.
   5124   __ bind(&too_big_for_new_space);
   5125   __ Push(a1);
   5126   __ TailCallRuntime(Runtime::kNewStrictArguments);
   5127 }
   5128 
   5129 
   5130 void StoreGlobalViaContextStub::Generate(MacroAssembler* masm) {
   5131   Register context_reg = cp;
   5132   Register slot_reg = a2;
   5133   Register value_reg = a0;
   5134   Register cell_reg = a4;
   5135   Register cell_value_reg = a5;
   5136   Register cell_details_reg = a6;
   5137   Label fast_heapobject_case, fast_smi_case, slow_case;
   5138 
   5139   if (FLAG_debug_code) {
   5140     __ LoadRoot(at, Heap::kTheHoleValueRootIndex);
   5141     __ Check(ne, kUnexpectedValue, value_reg, Operand(at));
   5142   }
   5143 
   5144   // Go up context chain to the script context.
   5145   for (int i = 0; i < depth(); ++i) {
   5146     __ ld(cell_reg, ContextMemOperand(context_reg, Context::PREVIOUS_INDEX));
   5147     context_reg = cell_reg;
   5148   }
   5149 
   5150   // Load the PropertyCell at the specified slot.
   5151   __ Dlsa(at, context_reg, slot_reg, kPointerSizeLog2);
   5152   __ ld(cell_reg, ContextMemOperand(at, 0));
   5153 
   5154   // Load PropertyDetails for the cell (actually only the cell_type and kind).
   5155   __ ld(cell_details_reg,
   5156         FieldMemOperand(cell_reg, PropertyCell::kDetailsOffset));
   5157   __ SmiUntag(cell_details_reg);
   5158   __ And(cell_details_reg, cell_details_reg,
   5159          PropertyDetails::PropertyCellTypeField::kMask |
   5160              PropertyDetails::KindField::kMask |
   5161              PropertyDetails::kAttributesReadOnlyMask);
   5162 
   5163   // Check if PropertyCell holds mutable data.
   5164   Label not_mutable_data;
   5165   __ Branch(&not_mutable_data, ne, cell_details_reg,
   5166             Operand(PropertyDetails::PropertyCellTypeField::encode(
   5167                         PropertyCellType::kMutable) |
   5168                     PropertyDetails::KindField::encode(kData)));
   5169   __ JumpIfSmi(value_reg, &fast_smi_case);
   5170   __ bind(&fast_heapobject_case);
   5171   __ sd(value_reg, FieldMemOperand(cell_reg, PropertyCell::kValueOffset));
   5172   __ RecordWriteField(cell_reg, PropertyCell::kValueOffset, value_reg,
   5173                       cell_details_reg, kRAHasNotBeenSaved, kDontSaveFPRegs,
   5174                       EMIT_REMEMBERED_SET, OMIT_SMI_CHECK);
   5175   // RecordWriteField clobbers the value register, so we need to reload.
   5176   __ Ret(USE_DELAY_SLOT);
   5177   __ ld(value_reg, FieldMemOperand(cell_reg, PropertyCell::kValueOffset));
   5178   __ bind(&not_mutable_data);
   5179 
   5180   // Check if PropertyCell value matches the new value (relevant for Constant,
   5181   // ConstantType and Undefined cells).
   5182   Label not_same_value;
   5183   __ ld(cell_value_reg, FieldMemOperand(cell_reg, PropertyCell::kValueOffset));
   5184   __ Branch(&not_same_value, ne, value_reg, Operand(cell_value_reg));
   5185   // Make sure the PropertyCell is not marked READ_ONLY.
   5186   __ And(at, cell_details_reg, PropertyDetails::kAttributesReadOnlyMask);
   5187   __ Branch(&slow_case, ne, at, Operand(zero_reg));
   5188   if (FLAG_debug_code) {
   5189     Label done;
   5190     // This can only be true for Constant, ConstantType and Undefined cells,
   5191     // because we never store the_hole via this stub.
   5192     __ Branch(&done, eq, cell_details_reg,
   5193               Operand(PropertyDetails::PropertyCellTypeField::encode(
   5194                           PropertyCellType::kConstant) |
   5195                       PropertyDetails::KindField::encode(kData)));
   5196     __ Branch(&done, eq, cell_details_reg,
   5197               Operand(PropertyDetails::PropertyCellTypeField::encode(
   5198                           PropertyCellType::kConstantType) |
   5199                       PropertyDetails::KindField::encode(kData)));
   5200     __ Check(eq, kUnexpectedValue, cell_details_reg,
   5201              Operand(PropertyDetails::PropertyCellTypeField::encode(
   5202                          PropertyCellType::kUndefined) |
   5203                      PropertyDetails::KindField::encode(kData)));
   5204     __ bind(&done);
   5205   }
   5206   __ Ret();
   5207   __ bind(&not_same_value);
   5208 
   5209   // Check if PropertyCell contains data with constant type (and is not
   5210   // READ_ONLY).
   5211   __ Branch(&slow_case, ne, cell_details_reg,
   5212             Operand(PropertyDetails::PropertyCellTypeField::encode(
   5213                         PropertyCellType::kConstantType) |
   5214                     PropertyDetails::KindField::encode(kData)));
   5215 
   5216   // Now either both old and new values must be SMIs or both must be heap
   5217   // objects with same map.
   5218   Label value_is_heap_object;
   5219   __ JumpIfNotSmi(value_reg, &value_is_heap_object);
   5220   __ JumpIfNotSmi(cell_value_reg, &slow_case);
   5221   // Old and new values are SMIs, no need for a write barrier here.
   5222   __ bind(&fast_smi_case);
   5223   __ Ret(USE_DELAY_SLOT);
   5224   __ sd(value_reg, FieldMemOperand(cell_reg, PropertyCell::kValueOffset));
   5225   __ bind(&value_is_heap_object);
   5226   __ JumpIfSmi(cell_value_reg, &slow_case);
   5227   Register cell_value_map_reg = cell_value_reg;
   5228   __ ld(cell_value_map_reg,
   5229         FieldMemOperand(cell_value_reg, HeapObject::kMapOffset));
   5230   __ Branch(&fast_heapobject_case, eq, cell_value_map_reg,
   5231             FieldMemOperand(value_reg, HeapObject::kMapOffset));
   5232 
   5233   // Fallback to the runtime.
   5234   __ bind(&slow_case);
   5235   __ SmiTag(slot_reg);
   5236   __ Push(slot_reg, value_reg);
   5237   __ TailCallRuntime(is_strict(language_mode())
   5238                          ? Runtime::kStoreGlobalViaContext_Strict
   5239                          : Runtime::kStoreGlobalViaContext_Sloppy);
   5240 }
   5241 
   5242 
   5243 static int AddressOffset(ExternalReference ref0, ExternalReference ref1) {
   5244   int64_t offset = (ref0.address() - ref1.address());
   5245   DCHECK(static_cast<int>(offset) == offset);
   5246   return static_cast<int>(offset);
   5247 }
   5248 
   5249 
   5250 // Calls an API function.  Allocates HandleScope, extracts returned value
   5251 // from handle and propagates exceptions.  Restores context.  stack_space
   5252 // - space to be unwound on exit (includes the call JS arguments space and
   5253 // the additional space allocated for the fast call).
   5254 static void CallApiFunctionAndReturn(
   5255     MacroAssembler* masm, Register function_address,
   5256     ExternalReference thunk_ref, int stack_space, int32_t stack_space_offset,
   5257     MemOperand return_value_operand, MemOperand* context_restore_operand) {
   5258   Isolate* isolate = masm->isolate();
   5259   ExternalReference next_address =
   5260       ExternalReference::handle_scope_next_address(isolate);
   5261   const int kNextOffset = 0;
   5262   const int kLimitOffset = AddressOffset(
   5263       ExternalReference::handle_scope_limit_address(isolate), next_address);
   5264   const int kLevelOffset = AddressOffset(
   5265       ExternalReference::handle_scope_level_address(isolate), next_address);
   5266 
   5267   DCHECK(function_address.is(a1) || function_address.is(a2));
   5268 
   5269   Label profiler_disabled;
   5270   Label end_profiler_check;
   5271   __ li(t9, Operand(ExternalReference::is_profiling_address(isolate)));
   5272   __ lb(t9, MemOperand(t9, 0));
   5273   __ Branch(&profiler_disabled, eq, t9, Operand(zero_reg));
   5274 
   5275   // Additional parameter is the address of the actual callback.
   5276   __ li(t9, Operand(thunk_ref));
   5277   __ jmp(&end_profiler_check);
   5278 
   5279   __ bind(&profiler_disabled);
   5280   __ mov(t9, function_address);
   5281   __ bind(&end_profiler_check);
   5282 
   5283   // Allocate HandleScope in callee-save registers.
   5284   __ li(s3, Operand(next_address));
   5285   __ ld(s0, MemOperand(s3, kNextOffset));
   5286   __ ld(s1, MemOperand(s3, kLimitOffset));
   5287   __ lw(s2, MemOperand(s3, kLevelOffset));
   5288   __ Addu(s2, s2, Operand(1));
   5289   __ sw(s2, MemOperand(s3, kLevelOffset));
   5290 
   5291   if (FLAG_log_timer_events) {
   5292     FrameScope frame(masm, StackFrame::MANUAL);
   5293     __ PushSafepointRegisters();
   5294     __ PrepareCallCFunction(1, a0);
   5295     __ li(a0, Operand(ExternalReference::isolate_address(isolate)));
   5296     __ CallCFunction(ExternalReference::log_enter_external_function(isolate),
   5297                      1);
   5298     __ PopSafepointRegisters();
   5299   }
   5300 
   5301   // Native call returns to the DirectCEntry stub which redirects to the
   5302   // return address pushed on stack (could have moved after GC).
   5303   // DirectCEntry stub itself is generated early and never moves.
   5304   DirectCEntryStub stub(isolate);
   5305   stub.GenerateCall(masm, t9);
   5306 
   5307   if (FLAG_log_timer_events) {
   5308     FrameScope frame(masm, StackFrame::MANUAL);
   5309     __ PushSafepointRegisters();
   5310     __ PrepareCallCFunction(1, a0);
   5311     __ li(a0, Operand(ExternalReference::isolate_address(isolate)));
   5312     __ CallCFunction(ExternalReference::log_leave_external_function(isolate),
   5313                      1);
   5314     __ PopSafepointRegisters();
   5315   }
   5316 
   5317   Label promote_scheduled_exception;
   5318   Label delete_allocated_handles;
   5319   Label leave_exit_frame;
   5320   Label return_value_loaded;
   5321 
   5322   // Load value from ReturnValue.
   5323   __ ld(v0, return_value_operand);
   5324   __ bind(&return_value_loaded);
   5325 
   5326   // No more valid handles (the result handle was the last one). Restore
   5327   // previous handle scope.
   5328   __ sd(s0, MemOperand(s3, kNextOffset));
   5329   if (__ emit_debug_code()) {
   5330     __ lw(a1, MemOperand(s3, kLevelOffset));
   5331     __ Check(eq, kUnexpectedLevelAfterReturnFromApiCall, a1, Operand(s2));
   5332   }
   5333   __ Subu(s2, s2, Operand(1));
   5334   __ sw(s2, MemOperand(s3, kLevelOffset));
   5335   __ ld(at, MemOperand(s3, kLimitOffset));
   5336   __ Branch(&delete_allocated_handles, ne, s1, Operand(at));
   5337 
   5338   // Leave the API exit frame.
   5339   __ bind(&leave_exit_frame);
   5340 
   5341   bool restore_context = context_restore_operand != NULL;
   5342   if (restore_context) {
   5343     __ ld(cp, *context_restore_operand);
   5344   }
   5345   if (stack_space_offset != kInvalidStackOffset) {
   5346     DCHECK(kCArgsSlotsSize == 0);
   5347     __ ld(s0, MemOperand(sp, stack_space_offset));
   5348   } else {
   5349     __ li(s0, Operand(stack_space));
   5350   }
   5351   __ LeaveExitFrame(false, s0, !restore_context, NO_EMIT_RETURN,
   5352                     stack_space_offset != kInvalidStackOffset);
   5353 
   5354   // Check if the function scheduled an exception.
   5355   __ LoadRoot(a4, Heap::kTheHoleValueRootIndex);
   5356   __ li(at, Operand(ExternalReference::scheduled_exception_address(isolate)));
   5357   __ ld(a5, MemOperand(at));
   5358   __ Branch(&promote_scheduled_exception, ne, a4, Operand(a5));
   5359 
   5360   __ Ret();
   5361 
   5362   // Re-throw by promoting a scheduled exception.
   5363   __ bind(&promote_scheduled_exception);
   5364   __ TailCallRuntime(Runtime::kPromoteScheduledException);
   5365 
   5366   // HandleScope limit has changed. Delete allocated extensions.
   5367   __ bind(&delete_allocated_handles);
   5368   __ sd(s1, MemOperand(s3, kLimitOffset));
   5369   __ mov(s0, v0);
   5370   __ mov(a0, v0);
   5371   __ PrepareCallCFunction(1, s1);
   5372   __ li(a0, Operand(ExternalReference::isolate_address(isolate)));
   5373   __ CallCFunction(ExternalReference::delete_handle_scope_extensions(isolate),
   5374                    1);
   5375   __ mov(v0, s0);
   5376   __ jmp(&leave_exit_frame);
   5377 }
   5378 
   5379 void CallApiCallbackStub::Generate(MacroAssembler* masm) {
   5380   // ----------- S t a t e -------------
   5381   //  -- a0                  : callee
   5382   //  -- a4                  : call_data
   5383   //  -- a2                  : holder
   5384   //  -- a1                  : api_function_address
   5385   //  -- cp                  : context
   5386   //  --
   5387   //  -- sp[0]               : last argument
   5388   //  -- ...
   5389   //  -- sp[(argc - 1)* 8]   : first argument
   5390   //  -- sp[argc * 8]        : receiver
   5391   // -----------------------------------
   5392 
   5393   Register callee = a0;
   5394   Register call_data = a4;
   5395   Register holder = a2;
   5396   Register api_function_address = a1;
   5397   Register context = cp;
   5398 
   5399   typedef FunctionCallbackArguments FCA;
   5400 
   5401   STATIC_ASSERT(FCA::kContextSaveIndex == 6);
   5402   STATIC_ASSERT(FCA::kCalleeIndex == 5);
   5403   STATIC_ASSERT(FCA::kDataIndex == 4);
   5404   STATIC_ASSERT(FCA::kReturnValueOffset == 3);
   5405   STATIC_ASSERT(FCA::kReturnValueDefaultValueIndex == 2);
   5406   STATIC_ASSERT(FCA::kIsolateIndex == 1);
   5407   STATIC_ASSERT(FCA::kHolderIndex == 0);
   5408   STATIC_ASSERT(FCA::kNewTargetIndex == 7);
   5409   STATIC_ASSERT(FCA::kArgsLength == 8);
   5410 
   5411   // new target
   5412   __ PushRoot(Heap::kUndefinedValueRootIndex);
   5413 
   5414   // Save context, callee and call data.
   5415   __ Push(context, callee, call_data);
   5416   if (!is_lazy()) {
   5417     // Load context from callee.
   5418     __ ld(context, FieldMemOperand(callee, JSFunction::kContextOffset));
   5419   }
   5420 
   5421   Register scratch = call_data;
   5422   if (!call_data_undefined()) {
   5423     __ LoadRoot(scratch, Heap::kUndefinedValueRootIndex);
   5424   }
   5425   // Push return value and default return value.
   5426   __ Push(scratch, scratch);
   5427   __ li(scratch, Operand(ExternalReference::isolate_address(masm->isolate())));
   5428   // Push isolate and holder.
   5429   __ Push(scratch, holder);
   5430 
   5431   // Prepare arguments.
   5432   __ mov(scratch, sp);
   5433 
   5434   // Allocate the v8::Arguments structure in the arguments' space since
   5435   // it's not controlled by GC.
   5436   const int kApiStackSpace = 3;
   5437 
   5438   FrameScope frame_scope(masm, StackFrame::MANUAL);
   5439   __ EnterExitFrame(false, kApiStackSpace);
   5440 
   5441   DCHECK(!api_function_address.is(a0) && !scratch.is(a0));
   5442   // a0 = FunctionCallbackInfo&
   5443   // Arguments is after the return address.
   5444   __ Daddu(a0, sp, Operand(1 * kPointerSize));
   5445   // FunctionCallbackInfo::implicit_args_
   5446   __ sd(scratch, MemOperand(a0, 0 * kPointerSize));
   5447   // FunctionCallbackInfo::values_
   5448   __ Daddu(at, scratch,
   5449            Operand((FCA::kArgsLength - 1 + argc()) * kPointerSize));
   5450   __ sd(at, MemOperand(a0, 1 * kPointerSize));
   5451   // FunctionCallbackInfo::length_ = argc
   5452   // Stored as int field, 32-bit integers within struct on stack always left
   5453   // justified by n64 ABI.
   5454   __ li(at, Operand(argc()));
   5455   __ sw(at, MemOperand(a0, 2 * kPointerSize));
   5456 
   5457   ExternalReference thunk_ref =
   5458       ExternalReference::invoke_function_callback(masm->isolate());
   5459 
   5460   AllowExternalCallThatCantCauseGC scope(masm);
   5461   MemOperand context_restore_operand(
   5462       fp, (2 + FCA::kContextSaveIndex) * kPointerSize);
   5463   // Stores return the first js argument.
   5464   int return_value_offset = 0;
   5465   if (is_store()) {
   5466     return_value_offset = 2 + FCA::kArgsLength;
   5467   } else {
   5468     return_value_offset = 2 + FCA::kReturnValueOffset;
   5469   }
   5470   MemOperand return_value_operand(fp, return_value_offset * kPointerSize);
   5471   int stack_space = 0;
   5472   int32_t stack_space_offset = 3 * kPointerSize;
   5473   stack_space = argc() + FCA::kArgsLength + 1;
   5474   // TODO(adamk): Why are we clobbering this immediately?
   5475   stack_space_offset = kInvalidStackOffset;
   5476   CallApiFunctionAndReturn(masm, api_function_address, thunk_ref, stack_space,
   5477                            stack_space_offset, return_value_operand,
   5478                            &context_restore_operand);
   5479 }
   5480 
   5481 
   5482 void CallApiGetterStub::Generate(MacroAssembler* masm) {
   5483   // Build v8::PropertyCallbackInfo::args_ array on the stack and push property
   5484   // name below the exit frame to make GC aware of them.
   5485   STATIC_ASSERT(PropertyCallbackArguments::kShouldThrowOnErrorIndex == 0);
   5486   STATIC_ASSERT(PropertyCallbackArguments::kHolderIndex == 1);
   5487   STATIC_ASSERT(PropertyCallbackArguments::kIsolateIndex == 2);
   5488   STATIC_ASSERT(PropertyCallbackArguments::kReturnValueDefaultValueIndex == 3);
   5489   STATIC_ASSERT(PropertyCallbackArguments::kReturnValueOffset == 4);
   5490   STATIC_ASSERT(PropertyCallbackArguments::kDataIndex == 5);
   5491   STATIC_ASSERT(PropertyCallbackArguments::kThisIndex == 6);
   5492   STATIC_ASSERT(PropertyCallbackArguments::kArgsLength == 7);
   5493 
   5494   Register receiver = ApiGetterDescriptor::ReceiverRegister();
   5495   Register holder = ApiGetterDescriptor::HolderRegister();
   5496   Register callback = ApiGetterDescriptor::CallbackRegister();
   5497   Register scratch = a4;
   5498   DCHECK(!AreAliased(receiver, holder, callback, scratch));
   5499 
   5500   Register api_function_address = a2;
   5501 
   5502   // Here and below +1 is for name() pushed after the args_ array.
   5503   typedef PropertyCallbackArguments PCA;
   5504   __ Dsubu(sp, sp, (PCA::kArgsLength + 1) * kPointerSize);
   5505   __ sd(receiver, MemOperand(sp, (PCA::kThisIndex + 1) * kPointerSize));
   5506   __ ld(scratch, FieldMemOperand(callback, AccessorInfo::kDataOffset));
   5507   __ sd(scratch, MemOperand(sp, (PCA::kDataIndex + 1) * kPointerSize));
   5508   __ LoadRoot(scratch, Heap::kUndefinedValueRootIndex);
   5509   __ sd(scratch, MemOperand(sp, (PCA::kReturnValueOffset + 1) * kPointerSize));
   5510   __ sd(scratch, MemOperand(sp, (PCA::kReturnValueDefaultValueIndex + 1) *
   5511                                     kPointerSize));
   5512   __ li(scratch, Operand(ExternalReference::isolate_address(isolate())));
   5513   __ sd(scratch, MemOperand(sp, (PCA::kIsolateIndex + 1) * kPointerSize));
   5514   __ sd(holder, MemOperand(sp, (PCA::kHolderIndex + 1) * kPointerSize));
   5515   // should_throw_on_error -> false
   5516   DCHECK(Smi::FromInt(0) == nullptr);
   5517   __ sd(zero_reg,
   5518         MemOperand(sp, (PCA::kShouldThrowOnErrorIndex + 1) * kPointerSize));
   5519   __ ld(scratch, FieldMemOperand(callback, AccessorInfo::kNameOffset));
   5520   __ sd(scratch, MemOperand(sp, 0 * kPointerSize));
   5521 
   5522   // v8::PropertyCallbackInfo::args_ array and name handle.
   5523   const int kStackUnwindSpace = PropertyCallbackArguments::kArgsLength + 1;
   5524 
   5525   // Load address of v8::PropertyAccessorInfo::args_ array and name handle.
   5526   __ mov(a0, sp);                               // a0 = Handle<Name>
   5527   __ Daddu(a1, a0, Operand(1 * kPointerSize));  // a1 = v8::PCI::args_
   5528 
   5529   const int kApiStackSpace = 1;
   5530   FrameScope frame_scope(masm, StackFrame::MANUAL);
   5531   __ EnterExitFrame(false, kApiStackSpace);
   5532 
   5533   // Create v8::PropertyCallbackInfo object on the stack and initialize
   5534   // it's args_ field.
   5535   __ sd(a1, MemOperand(sp, 1 * kPointerSize));
   5536   __ Daddu(a1, sp, Operand(1 * kPointerSize));
   5537   // a1 = v8::PropertyCallbackInfo&
   5538 
   5539   ExternalReference thunk_ref =
   5540       ExternalReference::invoke_accessor_getter_callback(isolate());
   5541 
   5542   __ ld(scratch, FieldMemOperand(callback, AccessorInfo::kJsGetterOffset));
   5543   __ ld(api_function_address,
   5544         FieldMemOperand(scratch, Foreign::kForeignAddressOffset));
   5545 
   5546   // +3 is to skip prolog, return address and name handle.
   5547   MemOperand return_value_operand(
   5548       fp, (PropertyCallbackArguments::kReturnValueOffset + 3) * kPointerSize);
   5549   CallApiFunctionAndReturn(masm, api_function_address, thunk_ref,
   5550                            kStackUnwindSpace, kInvalidStackOffset,
   5551                            return_value_operand, NULL);
   5552 }
   5553 
   5554 #undef __
   5555 
   5556 }  // namespace internal
   5557 }  // namespace v8
   5558 
   5559 #endif  // V8_TARGET_ARCH_MIPS64
   5560