Home | History | Annotate | Download | only in ppc
      1 // Copyright 2014 the V8 project authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #ifndef V8_PPC_MACRO_ASSEMBLER_PPC_H_
      6 #define V8_PPC_MACRO_ASSEMBLER_PPC_H_
      7 
      8 #include "src/assembler.h"
      9 #include "src/bailout-reason.h"
     10 #include "src/frames.h"
     11 #include "src/globals.h"
     12 
     13 namespace v8 {
     14 namespace internal {
     15 
     16 // Give alias names to registers for calling conventions.
     17 const Register kReturnRegister0 = {Register::kCode_r3};
     18 const Register kReturnRegister1 = {Register::kCode_r4};
     19 const Register kReturnRegister2 = {Register::kCode_r5};
     20 const Register kJSFunctionRegister = {Register::kCode_r4};
     21 const Register kContextRegister = {Register::kCode_r30};
     22 const Register kAllocateSizeRegister = {Register::kCode_r4};
     23 const Register kInterpreterAccumulatorRegister = {Register::kCode_r3};
     24 const Register kInterpreterBytecodeOffsetRegister = {Register::kCode_r15};
     25 const Register kInterpreterBytecodeArrayRegister = {Register::kCode_r16};
     26 const Register kInterpreterDispatchTableRegister = {Register::kCode_r17};
     27 const Register kJavaScriptCallArgCountRegister = {Register::kCode_r3};
     28 const Register kJavaScriptCallNewTargetRegister = {Register::kCode_r6};
     29 const Register kRuntimeCallFunctionRegister = {Register::kCode_r4};
     30 const Register kRuntimeCallArgCountRegister = {Register::kCode_r3};
     31 
     32 // ----------------------------------------------------------------------------
     33 // Static helper functions
     34 
     35 // Generate a MemOperand for loading a field from an object.
     36 inline MemOperand FieldMemOperand(Register object, int offset) {
     37   return MemOperand(object, offset - kHeapObjectTag);
     38 }
     39 
     40 
     41 // Flags used for AllocateHeapNumber
     42 enum TaggingMode {
     43   // Tag the result.
     44   TAG_RESULT,
     45   // Don't tag
     46   DONT_TAG_RESULT
     47 };
     48 
     49 
     50 enum RememberedSetAction { EMIT_REMEMBERED_SET, OMIT_REMEMBERED_SET };
     51 enum SmiCheck { INLINE_SMI_CHECK, OMIT_SMI_CHECK };
     52 enum PointersToHereCheck {
     53   kPointersToHereMaybeInteresting,
     54   kPointersToHereAreAlwaysInteresting
     55 };
     56 enum LinkRegisterStatus { kLRHasNotBeenSaved, kLRHasBeenSaved };
     57 
     58 
     59 Register GetRegisterThatIsNotOneOf(Register reg1, Register reg2 = no_reg,
     60                                    Register reg3 = no_reg,
     61                                    Register reg4 = no_reg,
     62                                    Register reg5 = no_reg,
     63                                    Register reg6 = no_reg);
     64 
     65 
     66 #ifdef DEBUG
     67 bool AreAliased(Register reg1, Register reg2, Register reg3 = no_reg,
     68                 Register reg4 = no_reg, Register reg5 = no_reg,
     69                 Register reg6 = no_reg, Register reg7 = no_reg,
     70                 Register reg8 = no_reg, Register reg9 = no_reg,
     71                 Register reg10 = no_reg);
     72 #endif
     73 
     74 // These exist to provide portability between 32 and 64bit
     75 #if V8_TARGET_ARCH_PPC64
     76 #define LoadPX ldx
     77 #define LoadPUX ldux
     78 #define StorePX stdx
     79 #define StorePUX stdux
     80 #define ShiftLeftImm sldi
     81 #define ShiftRightImm srdi
     82 #define ClearLeftImm clrldi
     83 #define ClearRightImm clrrdi
     84 #define ShiftRightArithImm sradi
     85 #define ShiftLeft_ sld
     86 #define ShiftRight_ srd
     87 #define ShiftRightArith srad
     88 #define Mul mulld
     89 #define Div divd
     90 #else
     91 #define LoadPX lwzx
     92 #define LoadPUX lwzux
     93 #define StorePX stwx
     94 #define StorePUX stwux
     95 #define ShiftLeftImm slwi
     96 #define ShiftRightImm srwi
     97 #define ClearLeftImm clrlwi
     98 #define ClearRightImm clrrwi
     99 #define ShiftRightArithImm srawi
    100 #define ShiftLeft_ slw
    101 #define ShiftRight_ srw
    102 #define ShiftRightArith sraw
    103 #define Mul mullw
    104 #define Div divw
    105 #endif
    106 
    107 
    108 // MacroAssembler implements a collection of frequently used macros.
    109 class MacroAssembler : public Assembler {
    110  public:
    111   MacroAssembler(Isolate* isolate, void* buffer, int size,
    112                  CodeObjectRequired create_code_object);
    113 
    114 
    115   // Returns the size of a call in instructions. Note, the value returned is
    116   // only valid as long as no entries are added to the constant pool between
    117   // checking the call size and emitting the actual call.
    118   static int CallSize(Register target);
    119   int CallSize(Address target, RelocInfo::Mode rmode, Condition cond = al);
    120   static int CallSizeNotPredictableCodeSize(Address target,
    121                                             RelocInfo::Mode rmode,
    122                                             Condition cond = al);
    123 
    124   // Jump, Call, and Ret pseudo instructions implementing inter-working.
    125   void Jump(Register target);
    126   void JumpToJSEntry(Register target);
    127   void Jump(Address target, RelocInfo::Mode rmode, Condition cond = al,
    128             CRegister cr = cr7);
    129   void Jump(Handle<Code> code, RelocInfo::Mode rmode, Condition cond = al);
    130   void Call(Register target);
    131   void CallJSEntry(Register target);
    132   void Call(Address target, RelocInfo::Mode rmode, Condition cond = al);
    133   int CallSize(Handle<Code> code,
    134                RelocInfo::Mode rmode = RelocInfo::CODE_TARGET,
    135                TypeFeedbackId ast_id = TypeFeedbackId::None(),
    136                Condition cond = al);
    137   void Call(Handle<Code> code, RelocInfo::Mode rmode = RelocInfo::CODE_TARGET,
    138             TypeFeedbackId ast_id = TypeFeedbackId::None(),
    139             Condition cond = al);
    140   void Ret() { blr(); }
    141   void Ret(Condition cond, CRegister cr = cr7) { bclr(cond, cr); }
    142 
    143   // Emit code to discard a non-negative number of pointer-sized elements
    144   // from the stack, clobbering only the sp register.
    145   void Drop(int count);
    146   void Drop(Register count, Register scratch = r0);
    147 
    148   void Ret(int drop) {
    149     Drop(drop);
    150     blr();
    151   }
    152 
    153   void Call(Label* target);
    154 
    155   // Register move. May do nothing if the registers are identical.
    156   void Move(Register dst, Smi* smi) { LoadSmiLiteral(dst, smi); }
    157   void Move(Register dst, Handle<Object> value);
    158   void Move(Register dst, Register src, Condition cond = al);
    159   void Move(DoubleRegister dst, DoubleRegister src);
    160 
    161   void MultiPush(RegList regs, Register location = sp);
    162   void MultiPop(RegList regs, Register location = sp);
    163 
    164   void MultiPushDoubles(RegList dregs, Register location = sp);
    165   void MultiPopDoubles(RegList dregs, Register location = sp);
    166 
    167   // Load an object from the root table.
    168   void LoadRoot(Register destination, Heap::RootListIndex index,
    169                 Condition cond = al);
    170   // Store an object to the root table.
    171   void StoreRoot(Register source, Heap::RootListIndex index,
    172                  Condition cond = al);
    173 
    174   // ---------------------------------------------------------------------------
    175   // GC Support
    176 
    177   void IncrementalMarkingRecordWriteHelper(Register object, Register value,
    178                                            Register address);
    179 
    180   enum RememberedSetFinalAction { kReturnAtEnd, kFallThroughAtEnd };
    181 
    182   // Record in the remembered set the fact that we have a pointer to new space
    183   // at the address pointed to by the addr register.  Only works if addr is not
    184   // in new space.
    185   void RememberedSetHelper(Register object,  // Used for debug code.
    186                            Register addr, Register scratch,
    187                            SaveFPRegsMode save_fp,
    188                            RememberedSetFinalAction and_then);
    189 
    190   void CheckPageFlag(Register object, Register scratch, int mask, Condition cc,
    191                      Label* condition_met);
    192 
    193   // Check if object is in new space.  Jumps if the object is not in new space.
    194   // The register scratch can be object itself, but scratch will be clobbered.
    195   void JumpIfNotInNewSpace(Register object, Register scratch, Label* branch) {
    196     InNewSpace(object, scratch, eq, branch);
    197   }
    198 
    199   // Check if object is in new space.  Jumps if the object is in new space.
    200   // The register scratch can be object itself, but it will be clobbered.
    201   void JumpIfInNewSpace(Register object, Register scratch, Label* branch) {
    202     InNewSpace(object, scratch, ne, branch);
    203   }
    204 
    205   // Check if an object has a given incremental marking color.
    206   void HasColor(Register object, Register scratch0, Register scratch1,
    207                 Label* has_color, int first_bit, int second_bit);
    208 
    209   void JumpIfBlack(Register object, Register scratch0, Register scratch1,
    210                    Label* on_black);
    211 
    212   // Checks the color of an object.  If the object is white we jump to the
    213   // incremental marker.
    214   void JumpIfWhite(Register value, Register scratch1, Register scratch2,
    215                    Register scratch3, Label* value_is_white);
    216 
    217   // Notify the garbage collector that we wrote a pointer into an object.
    218   // |object| is the object being stored into, |value| is the object being
    219   // stored.  value and scratch registers are clobbered by the operation.
    220   // The offset is the offset from the start of the object, not the offset from
    221   // the tagged HeapObject pointer.  For use with FieldMemOperand(reg, off).
    222   void RecordWriteField(
    223       Register object, int offset, Register value, Register scratch,
    224       LinkRegisterStatus lr_status, SaveFPRegsMode save_fp,
    225       RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
    226       SmiCheck smi_check = INLINE_SMI_CHECK,
    227       PointersToHereCheck pointers_to_here_check_for_value =
    228           kPointersToHereMaybeInteresting);
    229 
    230   // As above, but the offset has the tag presubtracted.  For use with
    231   // MemOperand(reg, off).
    232   inline void RecordWriteContextSlot(
    233       Register context, int offset, Register value, Register scratch,
    234       LinkRegisterStatus lr_status, SaveFPRegsMode save_fp,
    235       RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
    236       SmiCheck smi_check = INLINE_SMI_CHECK,
    237       PointersToHereCheck pointers_to_here_check_for_value =
    238           kPointersToHereMaybeInteresting) {
    239     RecordWriteField(context, offset + kHeapObjectTag, value, scratch,
    240                      lr_status, save_fp, remembered_set_action, smi_check,
    241                      pointers_to_here_check_for_value);
    242   }
    243 
    244   // Notify the garbage collector that we wrote a code entry into a
    245   // JSFunction. Only scratch is clobbered by the operation.
    246   void RecordWriteCodeEntryField(Register js_function, Register code_entry,
    247                                  Register scratch);
    248 
    249   void RecordWriteForMap(Register object, Register map, Register dst,
    250                          LinkRegisterStatus lr_status, SaveFPRegsMode save_fp);
    251 
    252   // For a given |object| notify the garbage collector that the slot |address|
    253   // has been written.  |value| is the object being stored. The value and
    254   // address registers are clobbered by the operation.
    255   void RecordWrite(
    256       Register object, Register address, Register value,
    257       LinkRegisterStatus lr_status, SaveFPRegsMode save_fp,
    258       RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
    259       SmiCheck smi_check = INLINE_SMI_CHECK,
    260       PointersToHereCheck pointers_to_here_check_for_value =
    261           kPointersToHereMaybeInteresting);
    262 
    263   void Push(Register src) { push(src); }
    264 
    265   // Push a handle.
    266   void Push(Handle<Object> handle);
    267   void Push(Smi* smi) { Push(Handle<Smi>(smi, isolate())); }
    268 
    269   // Push two registers.  Pushes leftmost register first (to highest address).
    270   void Push(Register src1, Register src2) {
    271     StorePU(src2, MemOperand(sp, -2 * kPointerSize));
    272     StoreP(src1, MemOperand(sp, kPointerSize));
    273   }
    274 
    275   // Push three registers.  Pushes leftmost register first (to highest address).
    276   void Push(Register src1, Register src2, Register src3) {
    277     StorePU(src3, MemOperand(sp, -3 * kPointerSize));
    278     StoreP(src2, MemOperand(sp, kPointerSize));
    279     StoreP(src1, MemOperand(sp, 2 * kPointerSize));
    280   }
    281 
    282   // Push four registers.  Pushes leftmost register first (to highest address).
    283   void Push(Register src1, Register src2, Register src3, Register src4) {
    284     StorePU(src4, MemOperand(sp, -4 * kPointerSize));
    285     StoreP(src3, MemOperand(sp, kPointerSize));
    286     StoreP(src2, MemOperand(sp, 2 * kPointerSize));
    287     StoreP(src1, MemOperand(sp, 3 * kPointerSize));
    288   }
    289 
    290   // Push five registers.  Pushes leftmost register first (to highest address).
    291   void Push(Register src1, Register src2, Register src3, Register src4,
    292             Register src5) {
    293     StorePU(src5, MemOperand(sp, -5 * kPointerSize));
    294     StoreP(src4, MemOperand(sp, kPointerSize));
    295     StoreP(src3, MemOperand(sp, 2 * kPointerSize));
    296     StoreP(src2, MemOperand(sp, 3 * kPointerSize));
    297     StoreP(src1, MemOperand(sp, 4 * kPointerSize));
    298   }
    299 
    300   void Pop(Register dst) { pop(dst); }
    301 
    302   // Pop two registers. Pops rightmost register first (from lower address).
    303   void Pop(Register src1, Register src2) {
    304     LoadP(src2, MemOperand(sp, 0));
    305     LoadP(src1, MemOperand(sp, kPointerSize));
    306     addi(sp, sp, Operand(2 * kPointerSize));
    307   }
    308 
    309   // Pop three registers.  Pops rightmost register first (from lower address).
    310   void Pop(Register src1, Register src2, Register src3) {
    311     LoadP(src3, MemOperand(sp, 0));
    312     LoadP(src2, MemOperand(sp, kPointerSize));
    313     LoadP(src1, MemOperand(sp, 2 * kPointerSize));
    314     addi(sp, sp, Operand(3 * kPointerSize));
    315   }
    316 
    317   // Pop four registers.  Pops rightmost register first (from lower address).
    318   void Pop(Register src1, Register src2, Register src3, Register src4) {
    319     LoadP(src4, MemOperand(sp, 0));
    320     LoadP(src3, MemOperand(sp, kPointerSize));
    321     LoadP(src2, MemOperand(sp, 2 * kPointerSize));
    322     LoadP(src1, MemOperand(sp, 3 * kPointerSize));
    323     addi(sp, sp, Operand(4 * kPointerSize));
    324   }
    325 
    326   // Pop five registers.  Pops rightmost register first (from lower address).
    327   void Pop(Register src1, Register src2, Register src3, Register src4,
    328            Register src5) {
    329     LoadP(src5, MemOperand(sp, 0));
    330     LoadP(src4, MemOperand(sp, kPointerSize));
    331     LoadP(src3, MemOperand(sp, 2 * kPointerSize));
    332     LoadP(src2, MemOperand(sp, 3 * kPointerSize));
    333     LoadP(src1, MemOperand(sp, 4 * kPointerSize));
    334     addi(sp, sp, Operand(5 * kPointerSize));
    335   }
    336 
    337   // Push a fixed frame, consisting of lr, fp, constant pool.
    338   void PushCommonFrame(Register marker_reg = no_reg);
    339 
    340   // Push a standard frame, consisting of lr, fp, constant pool,
    341   // context and JS function
    342   void PushStandardFrame(Register function_reg);
    343 
    344   void PopCommonFrame(Register marker_reg = no_reg);
    345 
    346   // Restore caller's frame pointer and return address prior to being
    347   // overwritten by tail call stack preparation.
    348   void RestoreFrameStateForTailCall();
    349 
    350   // Push and pop the registers that can hold pointers, as defined by the
    351   // RegList constant kSafepointSavedRegisters.
    352   void PushSafepointRegisters();
    353   void PopSafepointRegisters();
    354   // Store value in register src in the safepoint stack slot for
    355   // register dst.
    356   void StoreToSafepointRegisterSlot(Register src, Register dst);
    357   // Load the value of the src register from its safepoint stack slot
    358   // into register dst.
    359   void LoadFromSafepointRegisterSlot(Register dst, Register src);
    360 
    361   // Flush the I-cache from asm code. You should use CpuFeatures::FlushICache
    362   // from C.
    363   // Does not handle errors.
    364   void FlushICache(Register address, size_t size, Register scratch);
    365 
    366   // If the value is a NaN, canonicalize the value else, do nothing.
    367   void CanonicalizeNaN(const DoubleRegister dst, const DoubleRegister src);
    368   void CanonicalizeNaN(const DoubleRegister value) {
    369     CanonicalizeNaN(value, value);
    370   }
    371 
    372   // Converts the integer (untagged smi) in |src| to a double, storing
    373   // the result to |dst|
    374   void ConvertIntToDouble(Register src, DoubleRegister dst);
    375 
    376   // Converts the unsigned integer (untagged smi) in |src| to
    377   // a double, storing the result to |dst|
    378   void ConvertUnsignedIntToDouble(Register src, DoubleRegister dst);
    379 
    380   // Converts the integer (untagged smi) in |src| to
    381   // a float, storing the result in |dst|
    382   void ConvertIntToFloat(Register src, DoubleRegister dst);
    383 
    384   // Converts the unsigned integer (untagged smi) in |src| to
    385   // a float, storing the result in |dst|
    386   void ConvertUnsignedIntToFloat(Register src, DoubleRegister dst);
    387 
    388 #if V8_TARGET_ARCH_PPC64
    389   void ConvertInt64ToFloat(Register src, DoubleRegister double_dst);
    390   void ConvertInt64ToDouble(Register src, DoubleRegister double_dst);
    391   void ConvertUnsignedInt64ToFloat(Register src, DoubleRegister double_dst);
    392   void ConvertUnsignedInt64ToDouble(Register src, DoubleRegister double_dst);
    393 #endif
    394 
    395   // Converts the double_input to an integer.  Note that, upon return,
    396   // the contents of double_dst will also hold the fixed point representation.
    397   void ConvertDoubleToInt64(const DoubleRegister double_input,
    398 #if !V8_TARGET_ARCH_PPC64
    399                             const Register dst_hi,
    400 #endif
    401                             const Register dst, const DoubleRegister double_dst,
    402                             FPRoundingMode rounding_mode = kRoundToZero);
    403 
    404 #if V8_TARGET_ARCH_PPC64
    405   // Converts the double_input to an unsigned integer.  Note that, upon return,
    406   // the contents of double_dst will also hold the fixed point representation.
    407   void ConvertDoubleToUnsignedInt64(
    408       const DoubleRegister double_input, const Register dst,
    409       const DoubleRegister double_dst,
    410       FPRoundingMode rounding_mode = kRoundToZero);
    411 #endif
    412 
    413 #if !V8_TARGET_ARCH_PPC64
    414   void ShiftLeftPair(Register dst_low, Register dst_high, Register src_low,
    415                      Register src_high, Register scratch, Register shift);
    416   void ShiftLeftPair(Register dst_low, Register dst_high, Register src_low,
    417                      Register src_high, uint32_t shift);
    418   void ShiftRightPair(Register dst_low, Register dst_high, Register src_low,
    419                       Register src_high, Register scratch, Register shift);
    420   void ShiftRightPair(Register dst_low, Register dst_high, Register src_low,
    421                       Register src_high, uint32_t shift);
    422   void ShiftRightAlgPair(Register dst_low, Register dst_high, Register src_low,
    423                          Register src_high, Register scratch, Register shift);
    424   void ShiftRightAlgPair(Register dst_low, Register dst_high, Register src_low,
    425                          Register src_high, uint32_t shift);
    426 #endif
    427 
    428   // Generates function and stub prologue code.
    429   void StubPrologue(StackFrame::Type type, Register base = no_reg,
    430                     int prologue_offset = 0);
    431   void Prologue(bool code_pre_aging, Register base, int prologue_offset = 0);
    432 
    433   // Enter exit frame.
    434   // stack_space - extra stack space, used for parameters before call to C.
    435   // At least one slot (for the return address) should be provided.
    436   void EnterExitFrame(bool save_doubles, int stack_space = 1);
    437 
    438   // Leave the current exit frame. Expects the return value in r0.
    439   // Expect the number of values, pushed prior to the exit frame, to
    440   // remove in a register (or no_reg, if there is nothing to remove).
    441   void LeaveExitFrame(bool save_doubles, Register argument_count,
    442                       bool restore_context,
    443                       bool argument_count_is_length = false);
    444 
    445   // Get the actual activation frame alignment for target environment.
    446   static int ActivationFrameAlignment();
    447 
    448   void LoadContext(Register dst, int context_chain_length);
    449 
    450   // Load the global object from the current context.
    451   void LoadGlobalObject(Register dst) {
    452     LoadNativeContextSlot(Context::EXTENSION_INDEX, dst);
    453   }
    454 
    455   // Load the global proxy from the current context.
    456   void LoadGlobalProxy(Register dst) {
    457     LoadNativeContextSlot(Context::GLOBAL_PROXY_INDEX, dst);
    458   }
    459 
    460   // Conditionally load the cached Array transitioned map of type
    461   // transitioned_kind from the native context if the map in register
    462   // map_in_out is the cached Array map in the native context of
    463   // expected_kind.
    464   void LoadTransitionedArrayMapConditional(ElementsKind expected_kind,
    465                                            ElementsKind transitioned_kind,
    466                                            Register map_in_out,
    467                                            Register scratch,
    468                                            Label* no_map_match);
    469 
    470   void LoadNativeContextSlot(int index, Register dst);
    471 
    472   // Load the initial map from the global function. The registers
    473   // function and map can be the same, function is then overwritten.
    474   void LoadGlobalFunctionInitialMap(Register function, Register map,
    475                                     Register scratch);
    476 
    477   void InitializeRootRegister() {
    478     ExternalReference roots_array_start =
    479         ExternalReference::roots_array_start(isolate());
    480     mov(kRootRegister, Operand(roots_array_start));
    481   }
    482 
    483   // ----------------------------------------------------------------
    484   // new PPC macro-assembler interfaces that are slightly higher level
    485   // than assembler-ppc and may generate variable length sequences
    486 
    487   // load a literal signed int value <value> to GPR <dst>
    488   void LoadIntLiteral(Register dst, int value);
    489 
    490   // load an SMI value <value> to GPR <dst>
    491   void LoadSmiLiteral(Register dst, Smi* smi);
    492 
    493   // load a literal double value <value> to FPR <result>
    494   void LoadDoubleLiteral(DoubleRegister result, double value, Register scratch);
    495 
    496   void LoadWord(Register dst, const MemOperand& mem, Register scratch);
    497   void LoadWordArith(Register dst, const MemOperand& mem,
    498                      Register scratch = no_reg);
    499   void StoreWord(Register src, const MemOperand& mem, Register scratch);
    500 
    501   void LoadHalfWord(Register dst, const MemOperand& mem, Register scratch);
    502   void LoadHalfWordArith(Register dst, const MemOperand& mem,
    503                          Register scratch = no_reg);
    504   void StoreHalfWord(Register src, const MemOperand& mem, Register scratch);
    505 
    506   void LoadByte(Register dst, const MemOperand& mem, Register scratch);
    507   void StoreByte(Register src, const MemOperand& mem, Register scratch);
    508 
    509   void LoadRepresentation(Register dst, const MemOperand& mem, Representation r,
    510                           Register scratch = no_reg);
    511   void StoreRepresentation(Register src, const MemOperand& mem,
    512                            Representation r, Register scratch = no_reg);
    513 
    514   void LoadDouble(DoubleRegister dst, const MemOperand& mem,
    515                   Register scratch = no_reg);
    516   void LoadDoubleU(DoubleRegister dst, const MemOperand& mem,
    517                   Register scratch = no_reg);
    518 
    519   void LoadSingle(DoubleRegister dst, const MemOperand& mem,
    520                   Register scratch = no_reg);
    521   void LoadSingleU(DoubleRegister dst, const MemOperand& mem,
    522                    Register scratch = no_reg);
    523 
    524   void StoreDouble(DoubleRegister src, const MemOperand& mem,
    525                    Register scratch = no_reg);
    526   void StoreDoubleU(DoubleRegister src, const MemOperand& mem,
    527                    Register scratch = no_reg);
    528 
    529   void StoreSingle(DoubleRegister src, const MemOperand& mem,
    530                    Register scratch = no_reg);
    531   void StoreSingleU(DoubleRegister src, const MemOperand& mem,
    532                     Register scratch = no_reg);
    533 
    534   // Move values between integer and floating point registers.
    535   void MovIntToDouble(DoubleRegister dst, Register src, Register scratch);
    536   void MovUnsignedIntToDouble(DoubleRegister dst, Register src,
    537                               Register scratch);
    538   void MovInt64ToDouble(DoubleRegister dst,
    539 #if !V8_TARGET_ARCH_PPC64
    540                         Register src_hi,
    541 #endif
    542                         Register src);
    543 #if V8_TARGET_ARCH_PPC64
    544   void MovInt64ComponentsToDouble(DoubleRegister dst, Register src_hi,
    545                                   Register src_lo, Register scratch);
    546 #endif
    547   void InsertDoubleLow(DoubleRegister dst, Register src, Register scratch);
    548   void InsertDoubleHigh(DoubleRegister dst, Register src, Register scratch);
    549   void MovDoubleLowToInt(Register dst, DoubleRegister src);
    550   void MovDoubleHighToInt(Register dst, DoubleRegister src);
    551   void MovDoubleToInt64(
    552 #if !V8_TARGET_ARCH_PPC64
    553       Register dst_hi,
    554 #endif
    555       Register dst, DoubleRegister src);
    556   void MovIntToFloat(DoubleRegister dst, Register src);
    557   void MovFloatToInt(Register dst, DoubleRegister src);
    558 
    559   void Add(Register dst, Register src, intptr_t value, Register scratch);
    560   void Cmpi(Register src1, const Operand& src2, Register scratch,
    561             CRegister cr = cr7);
    562   void Cmpli(Register src1, const Operand& src2, Register scratch,
    563              CRegister cr = cr7);
    564   void Cmpwi(Register src1, const Operand& src2, Register scratch,
    565              CRegister cr = cr7);
    566   void Cmplwi(Register src1, const Operand& src2, Register scratch,
    567               CRegister cr = cr7);
    568   void And(Register ra, Register rs, const Operand& rb, RCBit rc = LeaveRC);
    569   void Or(Register ra, Register rs, const Operand& rb, RCBit rc = LeaveRC);
    570   void Xor(Register ra, Register rs, const Operand& rb, RCBit rc = LeaveRC);
    571 
    572   void AddSmiLiteral(Register dst, Register src, Smi* smi, Register scratch);
    573   void SubSmiLiteral(Register dst, Register src, Smi* smi, Register scratch);
    574   void CmpSmiLiteral(Register src1, Smi* smi, Register scratch,
    575                      CRegister cr = cr7);
    576   void CmplSmiLiteral(Register src1, Smi* smi, Register scratch,
    577                       CRegister cr = cr7);
    578   void AndSmiLiteral(Register dst, Register src, Smi* smi, Register scratch,
    579                      RCBit rc = LeaveRC);
    580 
    581   // Set new rounding mode RN to FPSCR
    582   void SetRoundingMode(FPRoundingMode RN);
    583 
    584   // reset rounding mode to default (kRoundToNearest)
    585   void ResetRoundingMode();
    586 
    587   // These exist to provide portability between 32 and 64bit
    588   void LoadP(Register dst, const MemOperand& mem, Register scratch = no_reg);
    589   void LoadPU(Register dst, const MemOperand& mem, Register scratch = no_reg);
    590   void StoreP(Register src, const MemOperand& mem, Register scratch = no_reg);
    591   void StorePU(Register src, const MemOperand& mem, Register scratch = no_reg);
    592 
    593   // ---------------------------------------------------------------------------
    594   // JavaScript invokes
    595 
    596   // Removes current frame and its arguments from the stack preserving
    597   // the arguments and a return address pushed to the stack for the next call.
    598   // Both |callee_args_count| and |caller_args_count_reg| do not include
    599   // receiver. |callee_args_count| is not modified, |caller_args_count_reg|
    600   // is trashed.
    601   void PrepareForTailCall(const ParameterCount& callee_args_count,
    602                           Register caller_args_count_reg, Register scratch0,
    603                           Register scratch1);
    604 
    605   // Invoke the JavaScript function code by either calling or jumping.
    606   void InvokeFunctionCode(Register function, Register new_target,
    607                           const ParameterCount& expected,
    608                           const ParameterCount& actual, InvokeFlag flag,
    609                           const CallWrapper& call_wrapper);
    610 
    611   void FloodFunctionIfStepping(Register fun, Register new_target,
    612                                const ParameterCount& expected,
    613                                const ParameterCount& actual);
    614 
    615   // Invoke the JavaScript function in the given register. Changes the
    616   // current context to the context in the function before invoking.
    617   void InvokeFunction(Register function, Register new_target,
    618                       const ParameterCount& actual, InvokeFlag flag,
    619                       const CallWrapper& call_wrapper);
    620 
    621   void InvokeFunction(Register function, const ParameterCount& expected,
    622                       const ParameterCount& actual, InvokeFlag flag,
    623                       const CallWrapper& call_wrapper);
    624 
    625   void InvokeFunction(Handle<JSFunction> function,
    626                       const ParameterCount& expected,
    627                       const ParameterCount& actual, InvokeFlag flag,
    628                       const CallWrapper& call_wrapper);
    629 
    630   void IsObjectJSStringType(Register object, Register scratch, Label* fail);
    631 
    632   void IsObjectNameType(Register object, Register scratch, Label* fail);
    633 
    634   // ---------------------------------------------------------------------------
    635   // Debugger Support
    636 
    637   void DebugBreak();
    638 
    639   // ---------------------------------------------------------------------------
    640   // Exception handling
    641 
    642   // Push a new stack handler and link into stack handler chain.
    643   void PushStackHandler();
    644 
    645   // Unlink the stack handler on top of the stack from the stack handler chain.
    646   // Must preserve the result register.
    647   void PopStackHandler();
    648 
    649   // ---------------------------------------------------------------------------
    650   // Inline caching support
    651 
    652   // Generate code for checking access rights - used for security checks
    653   // on access to global objects across environments. The holder register
    654   // is left untouched, whereas both scratch registers are clobbered.
    655   void CheckAccessGlobalProxy(Register holder_reg, Register scratch,
    656                               Label* miss);
    657 
    658   void GetNumberHash(Register t0, Register scratch);
    659 
    660   void LoadFromNumberDictionary(Label* miss, Register elements, Register key,
    661                                 Register result, Register t0, Register t1,
    662                                 Register t2);
    663 
    664 
    665   inline void MarkCode(NopMarkerTypes type) { nop(type); }
    666 
    667   // Check if the given instruction is a 'type' marker.
    668   // i.e. check if is is a mov r<type>, r<type> (referenced as nop(type))
    669   // These instructions are generated to mark special location in the code,
    670   // like some special IC code.
    671   static inline bool IsMarkedCode(Instr instr, int type) {
    672     DCHECK((FIRST_IC_MARKER <= type) && (type < LAST_CODE_MARKER));
    673     return IsNop(instr, type);
    674   }
    675 
    676 
    677   static inline int GetCodeMarker(Instr instr) {
    678     int dst_reg_offset = 12;
    679     int dst_mask = 0xf << dst_reg_offset;
    680     int src_mask = 0xf;
    681     int dst_reg = (instr & dst_mask) >> dst_reg_offset;
    682     int src_reg = instr & src_mask;
    683     uint32_t non_register_mask = ~(dst_mask | src_mask);
    684     uint32_t mov_mask = al | 13 << 21;
    685 
    686     // Return <n> if we have a mov rn rn, else return -1.
    687     int type = ((instr & non_register_mask) == mov_mask) &&
    688                        (dst_reg == src_reg) && (FIRST_IC_MARKER <= dst_reg) &&
    689                        (dst_reg < LAST_CODE_MARKER)
    690                    ? src_reg
    691                    : -1;
    692     DCHECK((type == -1) ||
    693            ((FIRST_IC_MARKER <= type) && (type < LAST_CODE_MARKER)));
    694     return type;
    695   }
    696 
    697 
    698   // ---------------------------------------------------------------------------
    699   // Allocation support
    700 
    701   // Allocate an object in new space or old space. The object_size is
    702   // specified either in bytes or in words if the allocation flag SIZE_IN_WORDS
    703   // is passed. If the space is exhausted control continues at the gc_required
    704   // label. The allocated object is returned in result. If the flag
    705   // tag_allocated_object is true the result is tagged as as a heap object.
    706   // All registers are clobbered also when control continues at the gc_required
    707   // label.
    708   void Allocate(int object_size, Register result, Register scratch1,
    709                 Register scratch2, Label* gc_required, AllocationFlags flags);
    710 
    711   void Allocate(Register object_size, Register result, Register result_end,
    712                 Register scratch, Label* gc_required, AllocationFlags flags);
    713 
    714   // FastAllocate is right now only used for folded allocations. It just
    715   // increments the top pointer without checking against limit. This can only
    716   // be done if it was proved earlier that the allocation will succeed.
    717   void FastAllocate(int object_size, Register result, Register scratch1,
    718                     Register scratch2, AllocationFlags flags);
    719 
    720   void FastAllocate(Register object_size, Register result, Register result_end,
    721                     Register scratch, AllocationFlags flags);
    722 
    723   void AllocateTwoByteString(Register result, Register length,
    724                              Register scratch1, Register scratch2,
    725                              Register scratch3, Label* gc_required);
    726   void AllocateOneByteString(Register result, Register length,
    727                              Register scratch1, Register scratch2,
    728                              Register scratch3, Label* gc_required);
    729   void AllocateTwoByteConsString(Register result, Register length,
    730                                  Register scratch1, Register scratch2,
    731                                  Label* gc_required);
    732   void AllocateOneByteConsString(Register result, Register length,
    733                                  Register scratch1, Register scratch2,
    734                                  Label* gc_required);
    735   void AllocateTwoByteSlicedString(Register result, Register length,
    736                                    Register scratch1, Register scratch2,
    737                                    Label* gc_required);
    738   void AllocateOneByteSlicedString(Register result, Register length,
    739                                    Register scratch1, Register scratch2,
    740                                    Label* gc_required);
    741 
    742   // Allocates a heap number or jumps to the gc_required label if the young
    743   // space is full and a scavenge is needed. All registers are clobbered also
    744   // when control continues at the gc_required label.
    745   void AllocateHeapNumber(Register result, Register scratch1, Register scratch2,
    746                           Register heap_number_map, Label* gc_required,
    747                           MutableMode mode = IMMUTABLE);
    748   void AllocateHeapNumberWithValue(Register result, DoubleRegister value,
    749                                    Register scratch1, Register scratch2,
    750                                    Register heap_number_map,
    751                                    Label* gc_required);
    752 
    753   // Allocate and initialize a JSValue wrapper with the specified {constructor}
    754   // and {value}.
    755   void AllocateJSValue(Register result, Register constructor, Register value,
    756                        Register scratch1, Register scratch2,
    757                        Label* gc_required);
    758 
    759   // Copies a number of bytes from src to dst. All registers are clobbered. On
    760   // exit src and dst will point to the place just after where the last byte was
    761   // read or written and length will be zero.
    762   void CopyBytes(Register src, Register dst, Register length, Register scratch);
    763 
    764   // Initialize fields with filler values.  |count| fields starting at
    765   // |current_address| are overwritten with the value in |filler|.  At the end
    766   // the loop, |current_address| points at the next uninitialized field.
    767   // |count| is assumed to be non-zero.
    768   void InitializeNFieldsWithFiller(Register current_address, Register count,
    769                                    Register filler);
    770 
    771   // Initialize fields with filler values.  Fields starting at |current_address|
    772   // not including |end_address| are overwritten with the value in |filler|.  At
    773   // the end the loop, |current_address| takes the value of |end_address|.
    774   void InitializeFieldsWithFiller(Register current_address,
    775                                   Register end_address, Register filler);
    776 
    777   // ---------------------------------------------------------------------------
    778   // Support functions.
    779 
    780   // Machine code version of Map::GetConstructor().
    781   // |temp| holds |result|'s map when done, and |temp2| its instance type.
    782   void GetMapConstructor(Register result, Register map, Register temp,
    783                          Register temp2);
    784 
    785   // Try to get function prototype of a function and puts the value in
    786   // the result register. Checks that the function really is a
    787   // function and jumps to the miss label if the fast checks fail. The
    788   // function register will be untouched; the other registers may be
    789   // clobbered.
    790   void TryGetFunctionPrototype(Register function, Register result,
    791                                Register scratch, Label* miss);
    792 
    793   // Compare object type for heap object.  heap_object contains a non-Smi
    794   // whose object type should be compared with the given type.  This both
    795   // sets the flags and leaves the object type in the type_reg register.
    796   // It leaves the map in the map register (unless the type_reg and map register
    797   // are the same register).  It leaves the heap object in the heap_object
    798   // register unless the heap_object register is the same register as one of the
    799   // other registers.
    800   // Type_reg can be no_reg. In that case ip is used.
    801   void CompareObjectType(Register heap_object, Register map, Register type_reg,
    802                          InstanceType type);
    803 
    804   // Compare instance type in a map.  map contains a valid map object whose
    805   // object type should be compared with the given type.  This both
    806   // sets the flags and leaves the object type in the type_reg register.
    807   void CompareInstanceType(Register map, Register type_reg, InstanceType type);
    808 
    809 
    810   // Check if a map for a JSObject indicates that the object has fast elements.
    811   // Jump to the specified label if it does not.
    812   void CheckFastElements(Register map, Register scratch, Label* fail);
    813 
    814   // Check if a map for a JSObject indicates that the object can have both smi
    815   // and HeapObject elements.  Jump to the specified label if it does not.
    816   void CheckFastObjectElements(Register map, Register scratch, Label* fail);
    817 
    818   // Check if a map for a JSObject indicates that the object has fast smi only
    819   // elements.  Jump to the specified label if it does not.
    820   void CheckFastSmiElements(Register map, Register scratch, Label* fail);
    821 
    822   // Check to see if maybe_number can be stored as a double in
    823   // FastDoubleElements. If it can, store it at the index specified by key in
    824   // the FastDoubleElements array elements. Otherwise jump to fail.
    825   void StoreNumberToDoubleElements(Register value_reg, Register key_reg,
    826                                    Register elements_reg, Register scratch1,
    827                                    DoubleRegister double_scratch, Label* fail,
    828                                    int elements_offset = 0);
    829 
    830   // Compare an object's map with the specified map and its transitioned
    831   // elements maps if mode is ALLOW_ELEMENT_TRANSITION_MAPS. Condition flags are
    832   // set with result of map compare. If multiple map compares are required, the
    833   // compare sequences branches to early_success.
    834   void CompareMap(Register obj, Register scratch, Handle<Map> map,
    835                   Label* early_success);
    836 
    837   // As above, but the map of the object is already loaded into the register
    838   // which is preserved by the code generated.
    839   void CompareMap(Register obj_map, Handle<Map> map, Label* early_success);
    840 
    841   // Check if the map of an object is equal to a specified map and branch to
    842   // label if not. Skip the smi check if not required (object is known to be a
    843   // heap object). If mode is ALLOW_ELEMENT_TRANSITION_MAPS, then also match
    844   // against maps that are ElementsKind transition maps of the specified map.
    845   void CheckMap(Register obj, Register scratch, Handle<Map> map, Label* fail,
    846                 SmiCheckType smi_check_type);
    847 
    848 
    849   void CheckMap(Register obj, Register scratch, Heap::RootListIndex index,
    850                 Label* fail, SmiCheckType smi_check_type);
    851 
    852 
    853   // Check if the map of an object is equal to a specified weak map and branch
    854   // to a specified target if equal. Skip the smi check if not required
    855   // (object is known to be a heap object)
    856   void DispatchWeakMap(Register obj, Register scratch1, Register scratch2,
    857                        Handle<WeakCell> cell, Handle<Code> success,
    858                        SmiCheckType smi_check_type);
    859 
    860   // Compare the given value and the value of weak cell.
    861   void CmpWeakValue(Register value, Handle<WeakCell> cell, Register scratch,
    862                     CRegister cr = cr7);
    863 
    864   void GetWeakValue(Register value, Handle<WeakCell> cell);
    865 
    866   // Load the value of the weak cell in the value register. Branch to the given
    867   // miss label if the weak cell was cleared.
    868   void LoadWeakValue(Register value, Handle<WeakCell> cell, Label* miss);
    869 
    870   // Compare the object in a register to a value from the root list.
    871   // Uses the ip register as scratch.
    872   void CompareRoot(Register obj, Heap::RootListIndex index);
    873   void PushRoot(Heap::RootListIndex index) {
    874     LoadRoot(r0, index);
    875     Push(r0);
    876   }
    877 
    878   // Compare the object in a register to a value and jump if they are equal.
    879   void JumpIfRoot(Register with, Heap::RootListIndex index, Label* if_equal) {
    880     CompareRoot(with, index);
    881     beq(if_equal);
    882   }
    883 
    884   // Compare the object in a register to a value and jump if they are not equal.
    885   void JumpIfNotRoot(Register with, Heap::RootListIndex index,
    886                      Label* if_not_equal) {
    887     CompareRoot(with, index);
    888     bne(if_not_equal);
    889   }
    890 
    891   // Load and check the instance type of an object for being a string.
    892   // Loads the type into the second argument register.
    893   // Returns a condition that will be enabled if the object was a string.
    894   Condition IsObjectStringType(Register obj, Register type) {
    895     LoadP(type, FieldMemOperand(obj, HeapObject::kMapOffset));
    896     lbz(type, FieldMemOperand(type, Map::kInstanceTypeOffset));
    897     andi(r0, type, Operand(kIsNotStringMask));
    898     DCHECK_EQ(0u, kStringTag);
    899     return eq;
    900   }
    901 
    902 
    903   // Picks out an array index from the hash field.
    904   // Register use:
    905   //   hash - holds the index's hash. Clobbered.
    906   //   index - holds the overwritten index on exit.
    907   void IndexFromHash(Register hash, Register index);
    908 
    909   // Get the number of least significant bits from a register
    910   void GetLeastBitsFromSmi(Register dst, Register src, int num_least_bits);
    911   void GetLeastBitsFromInt32(Register dst, Register src, int mun_least_bits);
    912 
    913   // Load the value of a smi object into a double register.
    914   void SmiToDouble(DoubleRegister value, Register smi);
    915 
    916   // Check if a double can be exactly represented as a signed 32-bit integer.
    917   // CR_EQ in cr7 is set if true.
    918   void TestDoubleIsInt32(DoubleRegister double_input, Register scratch1,
    919                          Register scratch2, DoubleRegister double_scratch);
    920 
    921   // Check if a double is equal to -0.0.
    922   // CR_EQ in cr7 holds the result.
    923   void TestDoubleIsMinusZero(DoubleRegister input, Register scratch1,
    924                              Register scratch2);
    925 
    926   // Check the sign of a double.
    927   // CR_LT in cr7 holds the result.
    928   void TestDoubleSign(DoubleRegister input, Register scratch);
    929   void TestHeapNumberSign(Register input, Register scratch);
    930 
    931   // Try to convert a double to a signed 32-bit integer.
    932   // CR_EQ in cr7 is set and result assigned if the conversion is exact.
    933   void TryDoubleToInt32Exact(Register result, DoubleRegister double_input,
    934                              Register scratch, DoubleRegister double_scratch);
    935 
    936   // Floor a double and writes the value to the result register.
    937   // Go to exact if the conversion is exact (to be able to test -0),
    938   // fall through calling code if an overflow occurred, else go to done.
    939   // In return, input_high is loaded with high bits of input.
    940   void TryInt32Floor(Register result, DoubleRegister double_input,
    941                      Register input_high, Register scratch,
    942                      DoubleRegister double_scratch, Label* done, Label* exact);
    943 
    944   // Performs a truncating conversion of a floating point number as used by
    945   // the JS bitwise operations. See ECMA-262 9.5: ToInt32. Goes to 'done' if it
    946   // succeeds, otherwise falls through if result is saturated. On return
    947   // 'result' either holds answer, or is clobbered on fall through.
    948   //
    949   // Only public for the test code in test-code-stubs-arm.cc.
    950   void TryInlineTruncateDoubleToI(Register result, DoubleRegister input,
    951                                   Label* done);
    952 
    953   // Performs a truncating conversion of a floating point number as used by
    954   // the JS bitwise operations. See ECMA-262 9.5: ToInt32.
    955   // Exits with 'result' holding the answer.
    956   void TruncateDoubleToI(Register result, DoubleRegister double_input);
    957 
    958   // Performs a truncating conversion of a heap number as used by
    959   // the JS bitwise operations. See ECMA-262 9.5: ToInt32. 'result' and 'input'
    960   // must be different registers.  Exits with 'result' holding the answer.
    961   void TruncateHeapNumberToI(Register result, Register object);
    962 
    963   // Converts the smi or heap number in object to an int32 using the rules
    964   // for ToInt32 as described in ECMAScript 9.5.: the value is truncated
    965   // and brought into the range -2^31 .. +2^31 - 1. 'result' and 'input' must be
    966   // different registers.
    967   void TruncateNumberToI(Register object, Register result,
    968                          Register heap_number_map, Register scratch1,
    969                          Label* not_int32);
    970 
    971   // Overflow handling functions.
    972   // Usage: call the appropriate arithmetic function and then call one of the
    973   // flow control functions with the corresponding label.
    974 
    975   // Compute dst = left + right, setting condition codes. dst may be same as
    976   // either left or right (or a unique register). left and right must not be
    977   // the same register.
    978   void AddAndCheckForOverflow(Register dst, Register left, Register right,
    979                               Register overflow_dst, Register scratch = r0);
    980   void AddAndCheckForOverflow(Register dst, Register left, intptr_t right,
    981                               Register overflow_dst, Register scratch = r0);
    982 
    983   // Compute dst = left - right, setting condition codes. dst may be same as
    984   // either left or right (or a unique register). left and right must not be
    985   // the same register.
    986   void SubAndCheckForOverflow(Register dst, Register left, Register right,
    987                               Register overflow_dst, Register scratch = r0);
    988 
    989   void BranchOnOverflow(Label* label) { blt(label, cr0); }
    990 
    991   void BranchOnNoOverflow(Label* label) { bge(label, cr0); }
    992 
    993   void RetOnOverflow(void) { Ret(lt, cr0); }
    994 
    995   void RetOnNoOverflow(void) { Ret(ge, cr0); }
    996 
    997   // ---------------------------------------------------------------------------
    998   // Runtime calls
    999 
   1000   // Call a code stub.
   1001   void CallStub(CodeStub* stub, TypeFeedbackId ast_id = TypeFeedbackId::None(),
   1002                 Condition cond = al);
   1003 
   1004   // Call a code stub.
   1005   void TailCallStub(CodeStub* stub, Condition cond = al);
   1006 
   1007   // Call a runtime routine.
   1008   void CallRuntime(const Runtime::Function* f, int num_arguments,
   1009                    SaveFPRegsMode save_doubles = kDontSaveFPRegs);
   1010   void CallRuntimeSaveDoubles(Runtime::FunctionId fid) {
   1011     const Runtime::Function* function = Runtime::FunctionForId(fid);
   1012     CallRuntime(function, function->nargs, kSaveFPRegs);
   1013   }
   1014 
   1015   // Convenience function: Same as above, but takes the fid instead.
   1016   void CallRuntime(Runtime::FunctionId fid,
   1017                    SaveFPRegsMode save_doubles = kDontSaveFPRegs) {
   1018     const Runtime::Function* function = Runtime::FunctionForId(fid);
   1019     CallRuntime(function, function->nargs, save_doubles);
   1020   }
   1021 
   1022   // Convenience function: Same as above, but takes the fid instead.
   1023   void CallRuntime(Runtime::FunctionId fid, int num_arguments,
   1024                    SaveFPRegsMode save_doubles = kDontSaveFPRegs) {
   1025     CallRuntime(Runtime::FunctionForId(fid), num_arguments, save_doubles);
   1026   }
   1027 
   1028   // Convenience function: call an external reference.
   1029   void CallExternalReference(const ExternalReference& ext, int num_arguments);
   1030 
   1031   // Convenience function: tail call a runtime routine (jump).
   1032   void TailCallRuntime(Runtime::FunctionId fid);
   1033 
   1034   int CalculateStackPassedWords(int num_reg_arguments,
   1035                                 int num_double_arguments);
   1036 
   1037   // Before calling a C-function from generated code, align arguments on stack.
   1038   // After aligning the frame, non-register arguments must be stored in
   1039   // sp[0], sp[4], etc., not pushed. The argument count assumes all arguments
   1040   // are word sized. If double arguments are used, this function assumes that
   1041   // all double arguments are stored before core registers; otherwise the
   1042   // correct alignment of the double values is not guaranteed.
   1043   // Some compilers/platforms require the stack to be aligned when calling
   1044   // C++ code.
   1045   // Needs a scratch register to do some arithmetic. This register will be
   1046   // trashed.
   1047   void PrepareCallCFunction(int num_reg_arguments, int num_double_registers,
   1048                             Register scratch);
   1049   void PrepareCallCFunction(int num_reg_arguments, Register scratch);
   1050 
   1051   // There are two ways of passing double arguments on ARM, depending on
   1052   // whether soft or hard floating point ABI is used. These functions
   1053   // abstract parameter passing for the three different ways we call
   1054   // C functions from generated code.
   1055   void MovToFloatParameter(DoubleRegister src);
   1056   void MovToFloatParameters(DoubleRegister src1, DoubleRegister src2);
   1057   void MovToFloatResult(DoubleRegister src);
   1058 
   1059   // Calls a C function and cleans up the space for arguments allocated
   1060   // by PrepareCallCFunction. The called function is not allowed to trigger a
   1061   // garbage collection, since that might move the code and invalidate the
   1062   // return address (unless this is somehow accounted for by the called
   1063   // function).
   1064   void CallCFunction(ExternalReference function, int num_arguments);
   1065   void CallCFunction(Register function, int num_arguments);
   1066   void CallCFunction(ExternalReference function, int num_reg_arguments,
   1067                      int num_double_arguments);
   1068   void CallCFunction(Register function, int num_reg_arguments,
   1069                      int num_double_arguments);
   1070 
   1071   void MovFromFloatParameter(DoubleRegister dst);
   1072   void MovFromFloatResult(DoubleRegister dst);
   1073 
   1074   // Jump to a runtime routine.
   1075   void JumpToExternalReference(const ExternalReference& builtin);
   1076 
   1077   Handle<Object> CodeObject() {
   1078     DCHECK(!code_object_.is_null());
   1079     return code_object_;
   1080   }
   1081 
   1082 
   1083   // Emit code for a truncating division by a constant. The dividend register is
   1084   // unchanged and ip gets clobbered. Dividend and result must be different.
   1085   void TruncatingDiv(Register result, Register dividend, int32_t divisor);
   1086 
   1087   // ---------------------------------------------------------------------------
   1088   // StatsCounter support
   1089 
   1090   void SetCounter(StatsCounter* counter, int value, Register scratch1,
   1091                   Register scratch2);
   1092   void IncrementCounter(StatsCounter* counter, int value, Register scratch1,
   1093                         Register scratch2);
   1094   void DecrementCounter(StatsCounter* counter, int value, Register scratch1,
   1095                         Register scratch2);
   1096 
   1097 
   1098   // ---------------------------------------------------------------------------
   1099   // Debugging
   1100 
   1101   // Calls Abort(msg) if the condition cond is not satisfied.
   1102   // Use --debug_code to enable.
   1103   void Assert(Condition cond, BailoutReason reason, CRegister cr = cr7);
   1104   void AssertFastElements(Register elements);
   1105 
   1106   // Like Assert(), but always enabled.
   1107   void Check(Condition cond, BailoutReason reason, CRegister cr = cr7);
   1108 
   1109   // Print a message to stdout and abort execution.
   1110   void Abort(BailoutReason reason);
   1111 
   1112   // Verify restrictions about code generated in stubs.
   1113   void set_generating_stub(bool value) { generating_stub_ = value; }
   1114   bool generating_stub() { return generating_stub_; }
   1115   void set_has_frame(bool value) { has_frame_ = value; }
   1116   bool has_frame() { return has_frame_; }
   1117   inline bool AllowThisStubCall(CodeStub* stub);
   1118 
   1119   // ---------------------------------------------------------------------------
   1120   // Number utilities
   1121 
   1122   // Check whether the value of reg is a power of two and not zero. If not
   1123   // control continues at the label not_power_of_two. If reg is a power of two
   1124   // the register scratch contains the value of (reg - 1) when control falls
   1125   // through.
   1126   void JumpIfNotPowerOfTwoOrZero(Register reg, Register scratch,
   1127                                  Label* not_power_of_two_or_zero);
   1128   // Check whether the value of reg is a power of two and not zero.
   1129   // Control falls through if it is, with scratch containing the mask
   1130   // value (reg - 1).
   1131   // Otherwise control jumps to the 'zero_and_neg' label if the value of reg is
   1132   // zero or negative, or jumps to the 'not_power_of_two' label if the value is
   1133   // strictly positive but not a power of two.
   1134   void JumpIfNotPowerOfTwoOrZeroAndNeg(Register reg, Register scratch,
   1135                                        Label* zero_and_neg,
   1136                                        Label* not_power_of_two);
   1137 
   1138   // ---------------------------------------------------------------------------
   1139   // Bit testing/extraction
   1140   //
   1141   // Bit numbering is such that the least significant bit is bit 0
   1142   // (for consistency between 32/64-bit).
   1143 
   1144   // Extract consecutive bits (defined by rangeStart - rangeEnd) from src
   1145   // and, if !test, shift them into the least significant bits of dst.
   1146   inline void ExtractBitRange(Register dst, Register src, int rangeStart,
   1147                               int rangeEnd, RCBit rc = LeaveRC,
   1148                               bool test = false) {
   1149     DCHECK(rangeStart >= rangeEnd && rangeStart < kBitsPerPointer);
   1150     int rotate = (rangeEnd == 0) ? 0 : kBitsPerPointer - rangeEnd;
   1151     int width = rangeStart - rangeEnd + 1;
   1152     if (rc == SetRC && rangeStart < 16 && (rangeEnd == 0 || test)) {
   1153       // Prefer faster andi when applicable.
   1154       andi(dst, src, Operand(((1 << width) - 1) << rangeEnd));
   1155     } else {
   1156 #if V8_TARGET_ARCH_PPC64
   1157       rldicl(dst, src, rotate, kBitsPerPointer - width, rc);
   1158 #else
   1159       rlwinm(dst, src, rotate, kBitsPerPointer - width, kBitsPerPointer - 1,
   1160              rc);
   1161 #endif
   1162     }
   1163   }
   1164 
   1165   inline void ExtractBit(Register dst, Register src, uint32_t bitNumber,
   1166                          RCBit rc = LeaveRC, bool test = false) {
   1167     ExtractBitRange(dst, src, bitNumber, bitNumber, rc, test);
   1168   }
   1169 
   1170   // Extract consecutive bits (defined by mask) from src and place them
   1171   // into the least significant bits of dst.
   1172   inline void ExtractBitMask(Register dst, Register src, uintptr_t mask,
   1173                              RCBit rc = LeaveRC, bool test = false) {
   1174     int start = kBitsPerPointer - 1;
   1175     int end;
   1176     uintptr_t bit = (1L << start);
   1177 
   1178     while (bit && (mask & bit) == 0) {
   1179       start--;
   1180       bit >>= 1;
   1181     }
   1182     end = start;
   1183     bit >>= 1;
   1184 
   1185     while (bit && (mask & bit)) {
   1186       end--;
   1187       bit >>= 1;
   1188     }
   1189 
   1190     // 1-bits in mask must be contiguous
   1191     DCHECK(bit == 0 || (mask & ((bit << 1) - 1)) == 0);
   1192 
   1193     ExtractBitRange(dst, src, start, end, rc, test);
   1194   }
   1195 
   1196   // Test single bit in value.
   1197   inline void TestBit(Register value, int bitNumber, Register scratch = r0) {
   1198     ExtractBitRange(scratch, value, bitNumber, bitNumber, SetRC, true);
   1199   }
   1200 
   1201   // Test consecutive bit range in value.  Range is defined by
   1202   // rangeStart - rangeEnd.
   1203   inline void TestBitRange(Register value, int rangeStart, int rangeEnd,
   1204                            Register scratch = r0) {
   1205     ExtractBitRange(scratch, value, rangeStart, rangeEnd, SetRC, true);
   1206   }
   1207 
   1208   // Test consecutive bit range in value.  Range is defined by mask.
   1209   inline void TestBitMask(Register value, uintptr_t mask,
   1210                           Register scratch = r0) {
   1211     ExtractBitMask(scratch, value, mask, SetRC, true);
   1212   }
   1213 
   1214 
   1215   // ---------------------------------------------------------------------------
   1216   // Smi utilities
   1217 
   1218   // Shift left by kSmiShift
   1219   void SmiTag(Register reg, RCBit rc = LeaveRC) { SmiTag(reg, reg, rc); }
   1220   void SmiTag(Register dst, Register src, RCBit rc = LeaveRC) {
   1221     ShiftLeftImm(dst, src, Operand(kSmiShift), rc);
   1222   }
   1223 
   1224 #if !V8_TARGET_ARCH_PPC64
   1225   // Test for overflow < 0: use BranchOnOverflow() or BranchOnNoOverflow().
   1226   void SmiTagCheckOverflow(Register reg, Register overflow);
   1227   void SmiTagCheckOverflow(Register dst, Register src, Register overflow);
   1228 
   1229   inline void JumpIfNotSmiCandidate(Register value, Register scratch,
   1230                                     Label* not_smi_label) {
   1231     // High bits must be identical to fit into an Smi
   1232     STATIC_ASSERT(kSmiShift == 1);
   1233     addis(scratch, value, Operand(0x40000000u >> 16));
   1234     cmpi(scratch, Operand::Zero());
   1235     blt(not_smi_label);
   1236   }
   1237 #endif
   1238   inline void TestUnsignedSmiCandidate(Register value, Register scratch) {
   1239     // The test is different for unsigned int values. Since we need
   1240     // the value to be in the range of a positive smi, we can't
   1241     // handle any of the high bits being set in the value.
   1242     TestBitRange(value, kBitsPerPointer - 1, kBitsPerPointer - 1 - kSmiShift,
   1243                  scratch);
   1244   }
   1245   inline void JumpIfNotUnsignedSmiCandidate(Register value, Register scratch,
   1246                                             Label* not_smi_label) {
   1247     TestUnsignedSmiCandidate(value, scratch);
   1248     bne(not_smi_label, cr0);
   1249   }
   1250 
   1251   void SmiUntag(Register reg, RCBit rc = LeaveRC) { SmiUntag(reg, reg, rc); }
   1252 
   1253   void SmiUntag(Register dst, Register src, RCBit rc = LeaveRC) {
   1254     ShiftRightArithImm(dst, src, kSmiShift, rc);
   1255   }
   1256 
   1257   void SmiToPtrArrayOffset(Register dst, Register src) {
   1258 #if V8_TARGET_ARCH_PPC64
   1259     STATIC_ASSERT(kSmiTag == 0 && kSmiShift > kPointerSizeLog2);
   1260     ShiftRightArithImm(dst, src, kSmiShift - kPointerSizeLog2);
   1261 #else
   1262     STATIC_ASSERT(kSmiTag == 0 && kSmiShift < kPointerSizeLog2);
   1263     ShiftLeftImm(dst, src, Operand(kPointerSizeLog2 - kSmiShift));
   1264 #endif
   1265   }
   1266 
   1267   void SmiToByteArrayOffset(Register dst, Register src) { SmiUntag(dst, src); }
   1268 
   1269   void SmiToShortArrayOffset(Register dst, Register src) {
   1270 #if V8_TARGET_ARCH_PPC64
   1271     STATIC_ASSERT(kSmiTag == 0 && kSmiShift > 1);
   1272     ShiftRightArithImm(dst, src, kSmiShift - 1);
   1273 #else
   1274     STATIC_ASSERT(kSmiTag == 0 && kSmiShift == 1);
   1275     if (!dst.is(src)) {
   1276       mr(dst, src);
   1277     }
   1278 #endif
   1279   }
   1280 
   1281   void SmiToIntArrayOffset(Register dst, Register src) {
   1282 #if V8_TARGET_ARCH_PPC64
   1283     STATIC_ASSERT(kSmiTag == 0 && kSmiShift > 2);
   1284     ShiftRightArithImm(dst, src, kSmiShift - 2);
   1285 #else
   1286     STATIC_ASSERT(kSmiTag == 0 && kSmiShift < 2);
   1287     ShiftLeftImm(dst, src, Operand(2 - kSmiShift));
   1288 #endif
   1289   }
   1290 
   1291 #define SmiToFloatArrayOffset SmiToIntArrayOffset
   1292 
   1293   void SmiToDoubleArrayOffset(Register dst, Register src) {
   1294 #if V8_TARGET_ARCH_PPC64
   1295     STATIC_ASSERT(kSmiTag == 0 && kSmiShift > kDoubleSizeLog2);
   1296     ShiftRightArithImm(dst, src, kSmiShift - kDoubleSizeLog2);
   1297 #else
   1298     STATIC_ASSERT(kSmiTag == 0 && kSmiShift < kDoubleSizeLog2);
   1299     ShiftLeftImm(dst, src, Operand(kDoubleSizeLog2 - kSmiShift));
   1300 #endif
   1301   }
   1302 
   1303   void SmiToArrayOffset(Register dst, Register src, int elementSizeLog2) {
   1304     if (kSmiShift < elementSizeLog2) {
   1305       ShiftLeftImm(dst, src, Operand(elementSizeLog2 - kSmiShift));
   1306     } else if (kSmiShift > elementSizeLog2) {
   1307       ShiftRightArithImm(dst, src, kSmiShift - elementSizeLog2);
   1308     } else if (!dst.is(src)) {
   1309       mr(dst, src);
   1310     }
   1311   }
   1312 
   1313   void IndexToArrayOffset(Register dst, Register src, int elementSizeLog2,
   1314                           bool isSmi) {
   1315     if (isSmi) {
   1316       SmiToArrayOffset(dst, src, elementSizeLog2);
   1317     } else {
   1318       ShiftLeftImm(dst, src, Operand(elementSizeLog2));
   1319     }
   1320   }
   1321 
   1322   // Untag the source value into destination and jump if source is a smi.
   1323   // Souce and destination can be the same register.
   1324   void UntagAndJumpIfSmi(Register dst, Register src, Label* smi_case);
   1325 
   1326   // Untag the source value into destination and jump if source is not a smi.
   1327   // Souce and destination can be the same register.
   1328   void UntagAndJumpIfNotSmi(Register dst, Register src, Label* non_smi_case);
   1329 
   1330   inline void TestIfSmi(Register value, Register scratch) {
   1331     TestBitRange(value, kSmiTagSize - 1, 0, scratch);
   1332   }
   1333 
   1334   inline void TestIfPositiveSmi(Register value, Register scratch) {
   1335 #if V8_TARGET_ARCH_PPC64
   1336     rldicl(scratch, value, 1, kBitsPerPointer - (1 + kSmiTagSize), SetRC);
   1337 #else
   1338     rlwinm(scratch, value, 1, kBitsPerPointer - (1 + kSmiTagSize),
   1339            kBitsPerPointer - 1, SetRC);
   1340 #endif
   1341   }
   1342 
   1343   // Jump the register contains a smi.
   1344   inline void JumpIfSmi(Register value, Label* smi_label) {
   1345     TestIfSmi(value, r0);
   1346     beq(smi_label, cr0);  // branch if SMI
   1347   }
   1348   // Jump if either of the registers contain a non-smi.
   1349   inline void JumpIfNotSmi(Register value, Label* not_smi_label) {
   1350     TestIfSmi(value, r0);
   1351     bne(not_smi_label, cr0);
   1352   }
   1353   // Jump if either of the registers contain a non-smi.
   1354   void JumpIfNotBothSmi(Register reg1, Register reg2, Label* on_not_both_smi);
   1355   // Jump if either of the registers contain a smi.
   1356   void JumpIfEitherSmi(Register reg1, Register reg2, Label* on_either_smi);
   1357 
   1358   // Abort execution if argument is a number, enabled via --debug-code.
   1359   void AssertNotNumber(Register object);
   1360 
   1361   // Abort execution if argument is a smi, enabled via --debug-code.
   1362   void AssertNotSmi(Register object);
   1363   void AssertSmi(Register object);
   1364 
   1365 
   1366 #if V8_TARGET_ARCH_PPC64
   1367   inline void TestIfInt32(Register value, Register scratch,
   1368                           CRegister cr = cr7) {
   1369     // High bits must be identical to fit into an 32-bit integer
   1370     extsw(scratch, value);
   1371     cmp(scratch, value, cr);
   1372   }
   1373 #else
   1374   inline void TestIfInt32(Register hi_word, Register lo_word, Register scratch,
   1375                           CRegister cr = cr7) {
   1376     // High bits must be identical to fit into an 32-bit integer
   1377     srawi(scratch, lo_word, 31);
   1378     cmp(scratch, hi_word, cr);
   1379   }
   1380 #endif
   1381 
   1382 #if V8_TARGET_ARCH_PPC64
   1383   // Ensure it is permissable to read/write int value directly from
   1384   // upper half of the smi.
   1385   STATIC_ASSERT(kSmiTag == 0);
   1386   STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 32);
   1387 #endif
   1388 #if V8_TARGET_ARCH_PPC64 && V8_TARGET_LITTLE_ENDIAN
   1389 #define SmiWordOffset(offset) (offset + kPointerSize / 2)
   1390 #else
   1391 #define SmiWordOffset(offset) offset
   1392 #endif
   1393 
   1394   // Abort execution if argument is not a string, enabled via --debug-code.
   1395   void AssertString(Register object);
   1396 
   1397   // Abort execution if argument is not a name, enabled via --debug-code.
   1398   void AssertName(Register object);
   1399 
   1400   void AssertFunction(Register object);
   1401 
   1402   // Abort execution if argument is not a JSBoundFunction,
   1403   // enabled via --debug-code.
   1404   void AssertBoundFunction(Register object);
   1405 
   1406   // Abort execution if argument is not a JSGeneratorObject,
   1407   // enabled via --debug-code.
   1408   void AssertGeneratorObject(Register object);
   1409 
   1410   // Abort execution if argument is not a JSReceiver, enabled via --debug-code.
   1411   void AssertReceiver(Register object);
   1412 
   1413   // Abort execution if argument is not undefined or an AllocationSite, enabled
   1414   // via --debug-code.
   1415   void AssertUndefinedOrAllocationSite(Register object, Register scratch);
   1416 
   1417   // Abort execution if reg is not the root value with the given index,
   1418   // enabled via --debug-code.
   1419   void AssertIsRoot(Register reg, Heap::RootListIndex index);
   1420 
   1421   // ---------------------------------------------------------------------------
   1422   // HeapNumber utilities
   1423 
   1424   void JumpIfNotHeapNumber(Register object, Register heap_number_map,
   1425                            Register scratch, Label* on_not_heap_number);
   1426 
   1427   // ---------------------------------------------------------------------------
   1428   // String utilities
   1429 
   1430   // Checks if both objects are sequential one-byte strings and jumps to label
   1431   // if either is not. Assumes that neither object is a smi.
   1432   void JumpIfNonSmisNotBothSequentialOneByteStrings(Register object1,
   1433                                                     Register object2,
   1434                                                     Register scratch1,
   1435                                                     Register scratch2,
   1436                                                     Label* failure);
   1437 
   1438   // Checks if both objects are sequential one-byte strings and jumps to label
   1439   // if either is not.
   1440   void JumpIfNotBothSequentialOneByteStrings(Register first, Register second,
   1441                                              Register scratch1,
   1442                                              Register scratch2,
   1443                                              Label* not_flat_one_byte_strings);
   1444 
   1445   // Checks if both instance types are sequential one-byte strings and jumps to
   1446   // label if either is not.
   1447   void JumpIfBothInstanceTypesAreNotSequentialOneByte(
   1448       Register first_object_instance_type, Register second_object_instance_type,
   1449       Register scratch1, Register scratch2, Label* failure);
   1450 
   1451   // Check if instance type is sequential one-byte string and jump to label if
   1452   // it is not.
   1453   void JumpIfInstanceTypeIsNotSequentialOneByte(Register type, Register scratch,
   1454                                                 Label* failure);
   1455 
   1456   void JumpIfNotUniqueNameInstanceType(Register reg, Label* not_unique_name);
   1457 
   1458   void EmitSeqStringSetCharCheck(Register string, Register index,
   1459                                  Register value, uint32_t encoding_mask);
   1460 
   1461   // ---------------------------------------------------------------------------
   1462   // Patching helpers.
   1463 
   1464   // Decode offset from constant pool load instruction(s).
   1465   // Caller must place the instruction word at <location> in <result>.
   1466   void DecodeConstantPoolOffset(Register result, Register location);
   1467 
   1468   void ClampUint8(Register output_reg, Register input_reg);
   1469 
   1470   // Saturate a value into 8-bit unsigned integer
   1471   //   if input_value < 0, output_value is 0
   1472   //   if input_value > 255, output_value is 255
   1473   //   otherwise output_value is the (int)input_value (round to nearest)
   1474   void ClampDoubleToUint8(Register result_reg, DoubleRegister input_reg,
   1475                           DoubleRegister temp_double_reg);
   1476 
   1477 
   1478   void LoadInstanceDescriptors(Register map, Register descriptors);
   1479   void EnumLength(Register dst, Register map);
   1480   void NumberOfOwnDescriptors(Register dst, Register map);
   1481   void LoadAccessor(Register dst, Register holder, int accessor_index,
   1482                     AccessorComponent accessor);
   1483 
   1484   template <typename Field>
   1485   void DecodeField(Register dst, Register src, RCBit rc = LeaveRC) {
   1486     ExtractBitRange(dst, src, Field::kShift + Field::kSize - 1, Field::kShift,
   1487                     rc);
   1488   }
   1489 
   1490   template <typename Field>
   1491   void DecodeField(Register reg, RCBit rc = LeaveRC) {
   1492     DecodeField<Field>(reg, reg, rc);
   1493   }
   1494 
   1495   template <typename Field>
   1496   void DecodeFieldToSmi(Register dst, Register src) {
   1497 #if V8_TARGET_ARCH_PPC64
   1498     DecodeField<Field>(dst, src);
   1499     SmiTag(dst);
   1500 #else
   1501     // 32-bit can do this in one instruction:
   1502     int start = Field::kSize + kSmiShift - 1;
   1503     int end = kSmiShift;
   1504     int rotate = kSmiShift - Field::kShift;
   1505     if (rotate < 0) {
   1506       rotate += kBitsPerPointer;
   1507     }
   1508     rlwinm(dst, src, rotate, kBitsPerPointer - start - 1,
   1509            kBitsPerPointer - end - 1);
   1510 #endif
   1511   }
   1512 
   1513   template <typename Field>
   1514   void DecodeFieldToSmi(Register reg) {
   1515     DecodeFieldToSmi<Field>(reg, reg);
   1516   }
   1517 
   1518   // Load the type feedback vector from a JavaScript frame.
   1519   void EmitLoadTypeFeedbackVector(Register vector);
   1520 
   1521   // Activation support.
   1522   void EnterFrame(StackFrame::Type type,
   1523                   bool load_constant_pool_pointer_reg = false);
   1524   // Returns the pc offset at which the frame ends.
   1525   int LeaveFrame(StackFrame::Type type, int stack_adjustment = 0);
   1526 
   1527   // Expects object in r3 and returns map with validated enum cache
   1528   // in r3.  Assumes that any other register can be used as a scratch.
   1529   void CheckEnumCache(Label* call_runtime);
   1530 
   1531   // AllocationMemento support. Arrays may have an associated
   1532   // AllocationMemento object that can be checked for in order to pretransition
   1533   // to another type.
   1534   // On entry, receiver_reg should point to the array object.
   1535   // scratch_reg gets clobbered.
   1536   // If allocation info is present, condition flags are set to eq.
   1537   void TestJSArrayForAllocationMemento(Register receiver_reg,
   1538                                        Register scratch_reg,
   1539                                        Register scratch2_reg,
   1540                                        Label* no_memento_found);
   1541 
   1542   void JumpIfJSArrayHasAllocationMemento(Register receiver_reg,
   1543                                          Register scratch_reg,
   1544                                          Register scratch2_reg,
   1545                                          Label* memento_found) {
   1546     Label no_memento_found;
   1547     TestJSArrayForAllocationMemento(receiver_reg, scratch_reg, scratch2_reg,
   1548                                     &no_memento_found);
   1549     beq(memento_found);
   1550     bind(&no_memento_found);
   1551   }
   1552 
   1553   // Jumps to found label if a prototype map has dictionary elements.
   1554   void JumpIfDictionaryInPrototypeChain(Register object, Register scratch0,
   1555                                         Register scratch1, Label* found);
   1556 
   1557   // Loads the constant pool pointer (kConstantPoolRegister).
   1558   void LoadConstantPoolPointerRegisterFromCodeTargetAddress(
   1559       Register code_target_address);
   1560   void LoadConstantPoolPointerRegister();
   1561   void LoadConstantPoolPointerRegister(Register base, int code_entry_delta = 0);
   1562 
   1563   void AbortConstantPoolBuilding() {
   1564 #ifdef DEBUG
   1565     // Avoid DCHECK(!is_linked()) failure in ~Label()
   1566     bind(ConstantPoolPosition());
   1567 #endif
   1568   }
   1569 
   1570  private:
   1571   static const int kSmiShift = kSmiTagSize + kSmiShiftSize;
   1572 
   1573   void CallCFunctionHelper(Register function, int num_reg_arguments,
   1574                            int num_double_arguments);
   1575 
   1576   void Jump(intptr_t target, RelocInfo::Mode rmode, Condition cond = al,
   1577             CRegister cr = cr7);
   1578 
   1579   // Helper functions for generating invokes.
   1580   void InvokePrologue(const ParameterCount& expected,
   1581                       const ParameterCount& actual, Label* done,
   1582                       bool* definitely_mismatches, InvokeFlag flag,
   1583                       const CallWrapper& call_wrapper);
   1584 
   1585   void InitializeNewString(Register string, Register length,
   1586                            Heap::RootListIndex map_index, Register scratch1,
   1587                            Register scratch2);
   1588 
   1589   // Helper for implementing JumpIfNotInNewSpace and JumpIfInNewSpace.
   1590   void InNewSpace(Register object, Register scratch,
   1591                   Condition cond,  // eq for new space, ne otherwise.
   1592                   Label* branch);
   1593 
   1594   // Helper for finding the mark bits for an address.  Afterwards, the
   1595   // bitmap register points at the word with the mark bits and the mask
   1596   // the position of the first bit.  Leaves addr_reg unchanged.
   1597   inline void GetMarkBits(Register addr_reg, Register bitmap_reg,
   1598                           Register mask_reg);
   1599 
   1600   static const RegList kSafepointSavedRegisters;
   1601   static const int kNumSafepointSavedRegisters;
   1602 
   1603   // Compute memory operands for safepoint stack slots.
   1604   static int SafepointRegisterStackIndex(int reg_code);
   1605   MemOperand SafepointRegisterSlot(Register reg);
   1606   MemOperand SafepointRegistersAndDoublesSlot(Register reg);
   1607 
   1608   bool generating_stub_;
   1609   bool has_frame_;
   1610   // This handle will be patched with the code object on installation.
   1611   Handle<Object> code_object_;
   1612 
   1613   // Needs access to SafepointRegisterStackIndex for compiled frame
   1614   // traversal.
   1615   friend class StandardFrame;
   1616 };
   1617 
   1618 
   1619 // The code patcher is used to patch (typically) small parts of code e.g. for
   1620 // debugging and other types of instrumentation. When using the code patcher
   1621 // the exact number of bytes specified must be emitted. It is not legal to emit
   1622 // relocation information. If any of these constraints are violated it causes
   1623 // an assertion to fail.
   1624 class CodePatcher {
   1625  public:
   1626   enum FlushICache { FLUSH, DONT_FLUSH };
   1627 
   1628   CodePatcher(Isolate* isolate, byte* address, int instructions,
   1629               FlushICache flush_cache = FLUSH);
   1630   ~CodePatcher();
   1631 
   1632   // Macro assembler to emit code.
   1633   MacroAssembler* masm() { return &masm_; }
   1634 
   1635   // Emit an instruction directly.
   1636   void Emit(Instr instr);
   1637 
   1638   // Emit the condition part of an instruction leaving the rest of the current
   1639   // instruction unchanged.
   1640   void EmitCondition(Condition cond);
   1641 
   1642  private:
   1643   byte* address_;            // The address of the code being patched.
   1644   int size_;                 // Number of bytes of the expected patch size.
   1645   MacroAssembler masm_;      // Macro assembler used to generate the code.
   1646   FlushICache flush_cache_;  // Whether to flush the I cache after patching.
   1647 };
   1648 
   1649 
   1650 // -----------------------------------------------------------------------------
   1651 // Static helper functions.
   1652 
   1653 inline MemOperand ContextMemOperand(Register context, int index = 0) {
   1654   return MemOperand(context, Context::SlotOffset(index));
   1655 }
   1656 
   1657 
   1658 inline MemOperand NativeContextMemOperand() {
   1659   return ContextMemOperand(cp, Context::NATIVE_CONTEXT_INDEX);
   1660 }
   1661 
   1662 
   1663 #ifdef GENERATED_CODE_COVERAGE
   1664 #define CODE_COVERAGE_STRINGIFY(x) #x
   1665 #define CODE_COVERAGE_TOSTRING(x) CODE_COVERAGE_STRINGIFY(x)
   1666 #define __FILE_LINE__ __FILE__ ":" CODE_COVERAGE_TOSTRING(__LINE__)
   1667 #define ACCESS_MASM(masm)    \
   1668   masm->stop(__FILE_LINE__); \
   1669   masm->
   1670 #else
   1671 #define ACCESS_MASM(masm) masm->
   1672 #endif
   1673 }  // namespace internal
   1674 }  // namespace v8
   1675 
   1676 #endif  // V8_PPC_MACRO_ASSEMBLER_PPC_H_
   1677