Home | History | Annotate | Download | only in x64
      1 // Copyright 2013 the V8 project authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #if V8_TARGET_ARCH_X64
      6 
      7 #include "src/code-stubs.h"
      8 #include "src/api-arguments.h"
      9 #include "src/bootstrapper.h"
     10 #include "src/codegen.h"
     11 #include "src/ic/handler-compiler.h"
     12 #include "src/ic/ic.h"
     13 #include "src/ic/stub-cache.h"
     14 #include "src/isolate.h"
     15 #include "src/regexp/jsregexp.h"
     16 #include "src/regexp/regexp-macro-assembler.h"
     17 #include "src/runtime/runtime.h"
     18 #include "src/x64/code-stubs-x64.h"
     19 
     20 namespace v8 {
     21 namespace internal {
     22 
     23 #define __ ACCESS_MASM(masm)
     24 
     25 void ArrayNArgumentsConstructorStub::Generate(MacroAssembler* masm) {
     26   __ popq(rcx);
     27   __ movq(MemOperand(rsp, rax, times_8, 0), rdi);
     28   __ pushq(rdi);
     29   __ pushq(rbx);
     30   __ pushq(rcx);
     31   __ addq(rax, Immediate(3));
     32   __ TailCallRuntime(Runtime::kNewArray);
     33 }
     34 
     35 void FastArrayPushStub::InitializeDescriptor(CodeStubDescriptor* descriptor) {
     36   Address deopt_handler = Runtime::FunctionForId(Runtime::kArrayPush)->entry;
     37   descriptor->Initialize(rax, deopt_handler, -1, JS_FUNCTION_STUB_MODE);
     38 }
     39 
     40 void FastFunctionBindStub::InitializeDescriptor(
     41     CodeStubDescriptor* descriptor) {
     42   Address deopt_handler = Runtime::FunctionForId(Runtime::kFunctionBind)->entry;
     43   descriptor->Initialize(rax, deopt_handler, -1, JS_FUNCTION_STUB_MODE);
     44 }
     45 
     46 void HydrogenCodeStub::GenerateLightweightMiss(MacroAssembler* masm,
     47                                                ExternalReference miss) {
     48   // Update the static counter each time a new code stub is generated.
     49   isolate()->counters()->code_stubs()->Increment();
     50 
     51   CallInterfaceDescriptor descriptor = GetCallInterfaceDescriptor();
     52   int param_count = descriptor.GetRegisterParameterCount();
     53   {
     54     // Call the runtime system in a fresh internal frame.
     55     FrameScope scope(masm, StackFrame::INTERNAL);
     56     DCHECK(param_count == 0 ||
     57            rax.is(descriptor.GetRegisterParameter(param_count - 1)));
     58     // Push arguments
     59     for (int i = 0; i < param_count; ++i) {
     60       __ Push(descriptor.GetRegisterParameter(i));
     61     }
     62     __ CallExternalReference(miss, param_count);
     63   }
     64 
     65   __ Ret();
     66 }
     67 
     68 
     69 void StoreBufferOverflowStub::Generate(MacroAssembler* masm) {
     70   __ PushCallerSaved(save_doubles() ? kSaveFPRegs : kDontSaveFPRegs);
     71   const int argument_count = 1;
     72   __ PrepareCallCFunction(argument_count);
     73   __ LoadAddress(arg_reg_1,
     74                  ExternalReference::isolate_address(isolate()));
     75 
     76   AllowExternalCallThatCantCauseGC scope(masm);
     77   __ CallCFunction(
     78       ExternalReference::store_buffer_overflow_function(isolate()),
     79       argument_count);
     80   __ PopCallerSaved(save_doubles() ? kSaveFPRegs : kDontSaveFPRegs);
     81   __ ret(0);
     82 }
     83 
     84 
     85 class FloatingPointHelper : public AllStatic {
     86  public:
     87   enum ConvertUndefined {
     88     CONVERT_UNDEFINED_TO_ZERO,
     89     BAILOUT_ON_UNDEFINED
     90   };
     91   // Load the operands from rdx and rax into xmm0 and xmm1, as doubles.
     92   // If the operands are not both numbers, jump to not_numbers.
     93   // Leaves rdx and rax unchanged.  SmiOperands assumes both are smis.
     94   // NumberOperands assumes both are smis or heap numbers.
     95   static void LoadSSE2UnknownOperands(MacroAssembler* masm,
     96                                       Label* not_numbers);
     97 };
     98 
     99 
    100 void DoubleToIStub::Generate(MacroAssembler* masm) {
    101     Register input_reg = this->source();
    102     Register final_result_reg = this->destination();
    103     DCHECK(is_truncating());
    104 
    105     Label check_negative, process_64_bits, done;
    106 
    107     int double_offset = offset();
    108 
    109     // Account for return address and saved regs if input is rsp.
    110     if (input_reg.is(rsp)) double_offset += 3 * kRegisterSize;
    111 
    112     MemOperand mantissa_operand(MemOperand(input_reg, double_offset));
    113     MemOperand exponent_operand(MemOperand(input_reg,
    114                                            double_offset + kDoubleSize / 2));
    115 
    116     Register scratch1;
    117     Register scratch_candidates[3] = { rbx, rdx, rdi };
    118     for (int i = 0; i < 3; i++) {
    119       scratch1 = scratch_candidates[i];
    120       if (!final_result_reg.is(scratch1) && !input_reg.is(scratch1)) break;
    121     }
    122 
    123     // Since we must use rcx for shifts below, use some other register (rax)
    124     // to calculate the result if ecx is the requested return register.
    125     Register result_reg = final_result_reg.is(rcx) ? rax : final_result_reg;
    126     // Save ecx if it isn't the return register and therefore volatile, or if it
    127     // is the return register, then save the temp register we use in its stead
    128     // for the result.
    129     Register save_reg = final_result_reg.is(rcx) ? rax : rcx;
    130     __ pushq(scratch1);
    131     __ pushq(save_reg);
    132 
    133     bool stash_exponent_copy = !input_reg.is(rsp);
    134     __ movl(scratch1, mantissa_operand);
    135     __ Movsd(kScratchDoubleReg, mantissa_operand);
    136     __ movl(rcx, exponent_operand);
    137     if (stash_exponent_copy) __ pushq(rcx);
    138 
    139     __ andl(rcx, Immediate(HeapNumber::kExponentMask));
    140     __ shrl(rcx, Immediate(HeapNumber::kExponentShift));
    141     __ leal(result_reg, MemOperand(rcx, -HeapNumber::kExponentBias));
    142     __ cmpl(result_reg, Immediate(HeapNumber::kMantissaBits));
    143     __ j(below, &process_64_bits);
    144 
    145     // Result is entirely in lower 32-bits of mantissa
    146     int delta = HeapNumber::kExponentBias + Double::kPhysicalSignificandSize;
    147     __ subl(rcx, Immediate(delta));
    148     __ xorl(result_reg, result_reg);
    149     __ cmpl(rcx, Immediate(31));
    150     __ j(above, &done);
    151     __ shll_cl(scratch1);
    152     __ jmp(&check_negative);
    153 
    154     __ bind(&process_64_bits);
    155     __ Cvttsd2siq(result_reg, kScratchDoubleReg);
    156     __ jmp(&done, Label::kNear);
    157 
    158     // If the double was negative, negate the integer result.
    159     __ bind(&check_negative);
    160     __ movl(result_reg, scratch1);
    161     __ negl(result_reg);
    162     if (stash_exponent_copy) {
    163         __ cmpl(MemOperand(rsp, 0), Immediate(0));
    164     } else {
    165         __ cmpl(exponent_operand, Immediate(0));
    166     }
    167     __ cmovl(greater, result_reg, scratch1);
    168 
    169     // Restore registers
    170     __ bind(&done);
    171     if (stash_exponent_copy) {
    172         __ addp(rsp, Immediate(kDoubleSize));
    173     }
    174     if (!final_result_reg.is(result_reg)) {
    175         DCHECK(final_result_reg.is(rcx));
    176         __ movl(final_result_reg, result_reg);
    177     }
    178     __ popq(save_reg);
    179     __ popq(scratch1);
    180     __ ret(0);
    181 }
    182 
    183 
    184 void FloatingPointHelper::LoadSSE2UnknownOperands(MacroAssembler* masm,
    185                                                   Label* not_numbers) {
    186   Label load_smi_rdx, load_nonsmi_rax, load_smi_rax, load_float_rax, done;
    187   // Load operand in rdx into xmm0, or branch to not_numbers.
    188   __ LoadRoot(rcx, Heap::kHeapNumberMapRootIndex);
    189   __ JumpIfSmi(rdx, &load_smi_rdx);
    190   __ cmpp(FieldOperand(rdx, HeapObject::kMapOffset), rcx);
    191   __ j(not_equal, not_numbers);  // Argument in rdx is not a number.
    192   __ Movsd(xmm0, FieldOperand(rdx, HeapNumber::kValueOffset));
    193   // Load operand in rax into xmm1, or branch to not_numbers.
    194   __ JumpIfSmi(rax, &load_smi_rax);
    195 
    196   __ bind(&load_nonsmi_rax);
    197   __ cmpp(FieldOperand(rax, HeapObject::kMapOffset), rcx);
    198   __ j(not_equal, not_numbers);
    199   __ Movsd(xmm1, FieldOperand(rax, HeapNumber::kValueOffset));
    200   __ jmp(&done);
    201 
    202   __ bind(&load_smi_rdx);
    203   __ SmiToInteger32(kScratchRegister, rdx);
    204   __ Cvtlsi2sd(xmm0, kScratchRegister);
    205   __ JumpIfNotSmi(rax, &load_nonsmi_rax);
    206 
    207   __ bind(&load_smi_rax);
    208   __ SmiToInteger32(kScratchRegister, rax);
    209   __ Cvtlsi2sd(xmm1, kScratchRegister);
    210   __ bind(&done);
    211 }
    212 
    213 
    214 void MathPowStub::Generate(MacroAssembler* masm) {
    215   const Register exponent = MathPowTaggedDescriptor::exponent();
    216   DCHECK(exponent.is(rdx));
    217   const Register base = rax;
    218   const Register scratch = rcx;
    219   const XMMRegister double_result = xmm3;
    220   const XMMRegister double_base = xmm2;
    221   const XMMRegister double_exponent = xmm1;
    222   const XMMRegister double_scratch = xmm4;
    223 
    224   Label call_runtime, done, exponent_not_smi, int_exponent;
    225 
    226   // Save 1 in double_result - we need this several times later on.
    227   __ movp(scratch, Immediate(1));
    228   __ Cvtlsi2sd(double_result, scratch);
    229 
    230   if (exponent_type() == ON_STACK) {
    231     Label base_is_smi, unpack_exponent;
    232     // The exponent and base are supplied as arguments on the stack.
    233     // This can only happen if the stub is called from non-optimized code.
    234     // Load input parameters from stack.
    235     StackArgumentsAccessor args(rsp, 2, ARGUMENTS_DONT_CONTAIN_RECEIVER);
    236     __ movp(base, args.GetArgumentOperand(0));
    237     __ movp(exponent, args.GetArgumentOperand(1));
    238     __ JumpIfSmi(base, &base_is_smi, Label::kNear);
    239     __ CompareRoot(FieldOperand(base, HeapObject::kMapOffset),
    240                    Heap::kHeapNumberMapRootIndex);
    241     __ j(not_equal, &call_runtime);
    242 
    243     __ Movsd(double_base, FieldOperand(base, HeapNumber::kValueOffset));
    244     __ jmp(&unpack_exponent, Label::kNear);
    245 
    246     __ bind(&base_is_smi);
    247     __ SmiToInteger32(base, base);
    248     __ Cvtlsi2sd(double_base, base);
    249     __ bind(&unpack_exponent);
    250 
    251     __ JumpIfNotSmi(exponent, &exponent_not_smi, Label::kNear);
    252     __ SmiToInteger32(exponent, exponent);
    253     __ jmp(&int_exponent);
    254 
    255     __ bind(&exponent_not_smi);
    256     __ CompareRoot(FieldOperand(exponent, HeapObject::kMapOffset),
    257                    Heap::kHeapNumberMapRootIndex);
    258     __ j(not_equal, &call_runtime);
    259     __ Movsd(double_exponent, FieldOperand(exponent, HeapNumber::kValueOffset));
    260   } else if (exponent_type() == TAGGED) {
    261     __ JumpIfNotSmi(exponent, &exponent_not_smi, Label::kNear);
    262     __ SmiToInteger32(exponent, exponent);
    263     __ jmp(&int_exponent);
    264 
    265     __ bind(&exponent_not_smi);
    266     __ Movsd(double_exponent, FieldOperand(exponent, HeapNumber::kValueOffset));
    267   }
    268 
    269   if (exponent_type() != INTEGER) {
    270     Label fast_power, try_arithmetic_simplification;
    271     // Detect integer exponents stored as double.
    272     __ DoubleToI(exponent, double_exponent, double_scratch,
    273                  TREAT_MINUS_ZERO_AS_ZERO, &try_arithmetic_simplification,
    274                  &try_arithmetic_simplification,
    275                  &try_arithmetic_simplification);
    276     __ jmp(&int_exponent);
    277 
    278     __ bind(&try_arithmetic_simplification);
    279     __ Cvttsd2si(exponent, double_exponent);
    280     // Skip to runtime if possibly NaN (indicated by the indefinite integer).
    281     __ cmpl(exponent, Immediate(0x1));
    282     __ j(overflow, &call_runtime);
    283 
    284     if (exponent_type() == ON_STACK) {
    285       // Detect square root case.  Crankshaft detects constant +/-0.5 at
    286       // compile time and uses DoMathPowHalf instead.  We then skip this check
    287       // for non-constant cases of +/-0.5 as these hardly occur.
    288       Label continue_sqrt, continue_rsqrt, not_plus_half;
    289       // Test for 0.5.
    290       // Load double_scratch with 0.5.
    291       __ movq(scratch, V8_UINT64_C(0x3FE0000000000000));
    292       __ Movq(double_scratch, scratch);
    293       // Already ruled out NaNs for exponent.
    294       __ Ucomisd(double_scratch, double_exponent);
    295       __ j(not_equal, &not_plus_half, Label::kNear);
    296 
    297       // Calculates square root of base.  Check for the special case of
    298       // Math.pow(-Infinity, 0.5) == Infinity (ECMA spec, 15.8.2.13).
    299       // According to IEEE-754, double-precision -Infinity has the highest
    300       // 12 bits set and the lowest 52 bits cleared.
    301       __ movq(scratch, V8_UINT64_C(0xFFF0000000000000));
    302       __ Movq(double_scratch, scratch);
    303       __ Ucomisd(double_scratch, double_base);
    304       // Comparing -Infinity with NaN results in "unordered", which sets the
    305       // zero flag as if both were equal.  However, it also sets the carry flag.
    306       __ j(not_equal, &continue_sqrt, Label::kNear);
    307       __ j(carry, &continue_sqrt, Label::kNear);
    308 
    309       // Set result to Infinity in the special case.
    310       __ Xorpd(double_result, double_result);
    311       __ Subsd(double_result, double_scratch);
    312       __ jmp(&done);
    313 
    314       __ bind(&continue_sqrt);
    315       // sqrtsd returns -0 when input is -0.  ECMA spec requires +0.
    316       __ Xorpd(double_scratch, double_scratch);
    317       __ Addsd(double_scratch, double_base);  // Convert -0 to 0.
    318       __ Sqrtsd(double_result, double_scratch);
    319       __ jmp(&done);
    320 
    321       // Test for -0.5.
    322       __ bind(&not_plus_half);
    323       // Load double_scratch with -0.5 by substracting 1.
    324       __ Subsd(double_scratch, double_result);
    325       // Already ruled out NaNs for exponent.
    326       __ Ucomisd(double_scratch, double_exponent);
    327       __ j(not_equal, &fast_power, Label::kNear);
    328 
    329       // Calculates reciprocal of square root of base.  Check for the special
    330       // case of Math.pow(-Infinity, -0.5) == 0 (ECMA spec, 15.8.2.13).
    331       // According to IEEE-754, double-precision -Infinity has the highest
    332       // 12 bits set and the lowest 52 bits cleared.
    333       __ movq(scratch, V8_UINT64_C(0xFFF0000000000000));
    334       __ Movq(double_scratch, scratch);
    335       __ Ucomisd(double_scratch, double_base);
    336       // Comparing -Infinity with NaN results in "unordered", which sets the
    337       // zero flag as if both were equal.  However, it also sets the carry flag.
    338       __ j(not_equal, &continue_rsqrt, Label::kNear);
    339       __ j(carry, &continue_rsqrt, Label::kNear);
    340 
    341       // Set result to 0 in the special case.
    342       __ Xorpd(double_result, double_result);
    343       __ jmp(&done);
    344 
    345       __ bind(&continue_rsqrt);
    346       // sqrtsd returns -0 when input is -0.  ECMA spec requires +0.
    347       __ Xorpd(double_exponent, double_exponent);
    348       __ Addsd(double_exponent, double_base);  // Convert -0 to +0.
    349       __ Sqrtsd(double_exponent, double_exponent);
    350       __ Divsd(double_result, double_exponent);
    351       __ jmp(&done);
    352     }
    353 
    354     // Using FPU instructions to calculate power.
    355     Label fast_power_failed;
    356     __ bind(&fast_power);
    357     __ fnclex();  // Clear flags to catch exceptions later.
    358     // Transfer (B)ase and (E)xponent onto the FPU register stack.
    359     __ subp(rsp, Immediate(kDoubleSize));
    360     __ Movsd(Operand(rsp, 0), double_exponent);
    361     __ fld_d(Operand(rsp, 0));  // E
    362     __ Movsd(Operand(rsp, 0), double_base);
    363     __ fld_d(Operand(rsp, 0));  // B, E
    364 
    365     // Exponent is in st(1) and base is in st(0)
    366     // B ^ E = (2^(E * log2(B)) - 1) + 1 = (2^X - 1) + 1 for X = E * log2(B)
    367     // FYL2X calculates st(1) * log2(st(0))
    368     __ fyl2x();    // X
    369     __ fld(0);     // X, X
    370     __ frndint();  // rnd(X), X
    371     __ fsub(1);    // rnd(X), X-rnd(X)
    372     __ fxch(1);    // X - rnd(X), rnd(X)
    373     // F2XM1 calculates 2^st(0) - 1 for -1 < st(0) < 1
    374     __ f2xm1();    // 2^(X-rnd(X)) - 1, rnd(X)
    375     __ fld1();     // 1, 2^(X-rnd(X)) - 1, rnd(X)
    376     __ faddp(1);   // 2^(X-rnd(X)), rnd(X)
    377     // FSCALE calculates st(0) * 2^st(1)
    378     __ fscale();   // 2^X, rnd(X)
    379     __ fstp(1);
    380     // Bail out to runtime in case of exceptions in the status word.
    381     __ fnstsw_ax();
    382     __ testb(rax, Immediate(0x5F));  // Check for all but precision exception.
    383     __ j(not_zero, &fast_power_failed, Label::kNear);
    384     __ fstp_d(Operand(rsp, 0));
    385     __ Movsd(double_result, Operand(rsp, 0));
    386     __ addp(rsp, Immediate(kDoubleSize));
    387     __ jmp(&done);
    388 
    389     __ bind(&fast_power_failed);
    390     __ fninit();
    391     __ addp(rsp, Immediate(kDoubleSize));
    392     __ jmp(&call_runtime);
    393   }
    394 
    395   // Calculate power with integer exponent.
    396   __ bind(&int_exponent);
    397   const XMMRegister double_scratch2 = double_exponent;
    398   // Back up exponent as we need to check if exponent is negative later.
    399   __ movp(scratch, exponent);  // Back up exponent.
    400   __ Movsd(double_scratch, double_base);     // Back up base.
    401   __ Movsd(double_scratch2, double_result);  // Load double_exponent with 1.
    402 
    403   // Get absolute value of exponent.
    404   Label no_neg, while_true, while_false;
    405   __ testl(scratch, scratch);
    406   __ j(positive, &no_neg, Label::kNear);
    407   __ negl(scratch);
    408   __ bind(&no_neg);
    409 
    410   __ j(zero, &while_false, Label::kNear);
    411   __ shrl(scratch, Immediate(1));
    412   // Above condition means CF==0 && ZF==0.  This means that the
    413   // bit that has been shifted out is 0 and the result is not 0.
    414   __ j(above, &while_true, Label::kNear);
    415   __ Movsd(double_result, double_scratch);
    416   __ j(zero, &while_false, Label::kNear);
    417 
    418   __ bind(&while_true);
    419   __ shrl(scratch, Immediate(1));
    420   __ Mulsd(double_scratch, double_scratch);
    421   __ j(above, &while_true, Label::kNear);
    422   __ Mulsd(double_result, double_scratch);
    423   __ j(not_zero, &while_true);
    424 
    425   __ bind(&while_false);
    426   // If the exponent is negative, return 1/result.
    427   __ testl(exponent, exponent);
    428   __ j(greater, &done);
    429   __ Divsd(double_scratch2, double_result);
    430   __ Movsd(double_result, double_scratch2);
    431   // Test whether result is zero.  Bail out to check for subnormal result.
    432   // Due to subnormals, x^-y == (1/x)^y does not hold in all cases.
    433   __ Xorpd(double_scratch2, double_scratch2);
    434   __ Ucomisd(double_scratch2, double_result);
    435   // double_exponent aliased as double_scratch2 has already been overwritten
    436   // and may not have contained the exponent value in the first place when the
    437   // input was a smi.  We reset it with exponent value before bailing out.
    438   __ j(not_equal, &done);
    439   __ Cvtlsi2sd(double_exponent, exponent);
    440 
    441   // Returning or bailing out.
    442   if (exponent_type() == ON_STACK) {
    443     // The arguments are still on the stack.
    444     __ bind(&call_runtime);
    445     __ TailCallRuntime(Runtime::kMathPowRT);
    446 
    447     // The stub is called from non-optimized code, which expects the result
    448     // as heap number in rax.
    449     __ bind(&done);
    450     __ AllocateHeapNumber(rax, rcx, &call_runtime);
    451     __ Movsd(FieldOperand(rax, HeapNumber::kValueOffset), double_result);
    452     __ ret(2 * kPointerSize);
    453   } else {
    454     __ bind(&call_runtime);
    455     // Move base to the correct argument register.  Exponent is already in xmm1.
    456     __ Movsd(xmm0, double_base);
    457     DCHECK(double_exponent.is(xmm1));
    458     {
    459       AllowExternalCallThatCantCauseGC scope(masm);
    460       __ PrepareCallCFunction(2);
    461       __ CallCFunction(
    462           ExternalReference::power_double_double_function(isolate()), 2);
    463     }
    464     // Return value is in xmm0.
    465     __ Movsd(double_result, xmm0);
    466 
    467     __ bind(&done);
    468     __ ret(0);
    469   }
    470 }
    471 
    472 
    473 void FunctionPrototypeStub::Generate(MacroAssembler* masm) {
    474   Label miss;
    475   Register receiver = LoadDescriptor::ReceiverRegister();
    476   // Ensure that the vector and slot registers won't be clobbered before
    477   // calling the miss handler.
    478   DCHECK(!AreAliased(r8, r9, LoadWithVectorDescriptor::VectorRegister(),
    479                      LoadDescriptor::SlotRegister()));
    480 
    481   NamedLoadHandlerCompiler::GenerateLoadFunctionPrototype(masm, receiver, r8,
    482                                                           r9, &miss);
    483   __ bind(&miss);
    484   PropertyAccessCompiler::TailCallBuiltin(
    485       masm, PropertyAccessCompiler::MissBuiltin(Code::LOAD_IC));
    486 }
    487 
    488 
    489 void LoadIndexedStringStub::Generate(MacroAssembler* masm) {
    490   // Return address is on the stack.
    491   Label miss;
    492 
    493   Register receiver = LoadDescriptor::ReceiverRegister();
    494   Register index = LoadDescriptor::NameRegister();
    495   Register scratch = rdi;
    496   Register result = rax;
    497   DCHECK(!scratch.is(receiver) && !scratch.is(index));
    498   DCHECK(!scratch.is(LoadWithVectorDescriptor::VectorRegister()) &&
    499          result.is(LoadDescriptor::SlotRegister()));
    500 
    501   // StringCharAtGenerator doesn't use the result register until it's passed
    502   // the different miss possibilities. If it did, we would have a conflict
    503   // when FLAG_vector_ics is true.
    504   StringCharAtGenerator char_at_generator(receiver, index, scratch, result,
    505                                           &miss,  // When not a string.
    506                                           &miss,  // When not a number.
    507                                           &miss,  // When index out of range.
    508                                           RECEIVER_IS_STRING);
    509   char_at_generator.GenerateFast(masm);
    510   __ ret(0);
    511 
    512   StubRuntimeCallHelper call_helper;
    513   char_at_generator.GenerateSlow(masm, PART_OF_IC_HANDLER, call_helper);
    514 
    515   __ bind(&miss);
    516   PropertyAccessCompiler::TailCallBuiltin(
    517       masm, PropertyAccessCompiler::MissBuiltin(Code::KEYED_LOAD_IC));
    518 }
    519 
    520 
    521 void RegExpExecStub::Generate(MacroAssembler* masm) {
    522   // Just jump directly to runtime if native RegExp is not selected at compile
    523   // time or if regexp entry in generated code is turned off runtime switch or
    524   // at compilation.
    525 #ifdef V8_INTERPRETED_REGEXP
    526   __ TailCallRuntime(Runtime::kRegExpExec);
    527 #else  // V8_INTERPRETED_REGEXP
    528 
    529   // Stack frame on entry.
    530   //  rsp[0]  : return address
    531   //  rsp[8]  : last_match_info (expected JSArray)
    532   //  rsp[16] : previous index
    533   //  rsp[24] : subject string
    534   //  rsp[32] : JSRegExp object
    535 
    536   enum RegExpExecStubArgumentIndices {
    537     JS_REG_EXP_OBJECT_ARGUMENT_INDEX,
    538     SUBJECT_STRING_ARGUMENT_INDEX,
    539     PREVIOUS_INDEX_ARGUMENT_INDEX,
    540     LAST_MATCH_INFO_ARGUMENT_INDEX,
    541     REG_EXP_EXEC_ARGUMENT_COUNT
    542   };
    543 
    544   StackArgumentsAccessor args(rsp, REG_EXP_EXEC_ARGUMENT_COUNT,
    545                               ARGUMENTS_DONT_CONTAIN_RECEIVER);
    546   Label runtime;
    547   // Ensure that a RegExp stack is allocated.
    548   ExternalReference address_of_regexp_stack_memory_address =
    549       ExternalReference::address_of_regexp_stack_memory_address(isolate());
    550   ExternalReference address_of_regexp_stack_memory_size =
    551       ExternalReference::address_of_regexp_stack_memory_size(isolate());
    552   __ Load(kScratchRegister, address_of_regexp_stack_memory_size);
    553   __ testp(kScratchRegister, kScratchRegister);
    554   __ j(zero, &runtime);
    555 
    556   // Check that the first argument is a JSRegExp object.
    557   __ movp(rax, args.GetArgumentOperand(JS_REG_EXP_OBJECT_ARGUMENT_INDEX));
    558   __ JumpIfSmi(rax, &runtime);
    559   __ CmpObjectType(rax, JS_REGEXP_TYPE, kScratchRegister);
    560   __ j(not_equal, &runtime);
    561 
    562   // Check that the RegExp has been compiled (data contains a fixed array).
    563   __ movp(rax, FieldOperand(rax, JSRegExp::kDataOffset));
    564   if (FLAG_debug_code) {
    565     Condition is_smi = masm->CheckSmi(rax);
    566     __ Check(NegateCondition(is_smi),
    567         kUnexpectedTypeForRegExpDataFixedArrayExpected);
    568     __ CmpObjectType(rax, FIXED_ARRAY_TYPE, kScratchRegister);
    569     __ Check(equal, kUnexpectedTypeForRegExpDataFixedArrayExpected);
    570   }
    571 
    572   // rax: RegExp data (FixedArray)
    573   // Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP.
    574   __ SmiToInteger32(rbx, FieldOperand(rax, JSRegExp::kDataTagOffset));
    575   __ cmpl(rbx, Immediate(JSRegExp::IRREGEXP));
    576   __ j(not_equal, &runtime);
    577 
    578   // rax: RegExp data (FixedArray)
    579   // Check that the number of captures fit in the static offsets vector buffer.
    580   __ SmiToInteger32(rdx,
    581                     FieldOperand(rax, JSRegExp::kIrregexpCaptureCountOffset));
    582   // Check (number_of_captures + 1) * 2 <= offsets vector size
    583   // Or              number_of_captures <= offsets vector size / 2 - 1
    584   STATIC_ASSERT(Isolate::kJSRegexpStaticOffsetsVectorSize >= 2);
    585   __ cmpl(rdx, Immediate(Isolate::kJSRegexpStaticOffsetsVectorSize / 2 - 1));
    586   __ j(above, &runtime);
    587 
    588   // Reset offset for possibly sliced string.
    589   __ Set(r14, 0);
    590   __ movp(rdi, args.GetArgumentOperand(SUBJECT_STRING_ARGUMENT_INDEX));
    591   __ JumpIfSmi(rdi, &runtime);
    592   __ movp(r15, rdi);  // Make a copy of the original subject string.
    593   // rax: RegExp data (FixedArray)
    594   // rdi: subject string
    595   // r15: subject string
    596   // Handle subject string according to its encoding and representation:
    597   // (1) Sequential two byte?  If yes, go to (9).
    598   // (2) Sequential one byte?  If yes, go to (5).
    599   // (3) Sequential or cons?  If not, go to (6).
    600   // (4) Cons string.  If the string is flat, replace subject with first string
    601   //     and go to (1). Otherwise bail out to runtime.
    602   // (5) One byte sequential.  Load regexp code for one byte.
    603   // (E) Carry on.
    604   /// [...]
    605 
    606   // Deferred code at the end of the stub:
    607   // (6) Long external string?  If not, go to (10).
    608   // (7) External string.  Make it, offset-wise, look like a sequential string.
    609   // (8) Is the external string one byte?  If yes, go to (5).
    610   // (9) Two byte sequential.  Load regexp code for two byte. Go to (E).
    611   // (10) Short external string or not a string?  If yes, bail out to runtime.
    612   // (11) Sliced string.  Replace subject with parent. Go to (1).
    613 
    614   Label seq_one_byte_string /* 5 */, seq_two_byte_string /* 9 */,
    615       external_string /* 7 */, check_underlying /* 1 */,
    616       not_seq_nor_cons /* 6 */, check_code /* E */, not_long_external /* 10 */;
    617 
    618   __ bind(&check_underlying);
    619   __ movp(rbx, FieldOperand(rdi, HeapObject::kMapOffset));
    620   __ movzxbl(rbx, FieldOperand(rbx, Map::kInstanceTypeOffset));
    621 
    622   // (1) Sequential two byte?  If yes, go to (9).
    623   __ andb(rbx, Immediate(kIsNotStringMask |
    624                          kStringRepresentationMask |
    625                          kStringEncodingMask |
    626                          kShortExternalStringMask));
    627   STATIC_ASSERT((kStringTag | kSeqStringTag | kTwoByteStringTag) == 0);
    628   __ j(zero, &seq_two_byte_string);  // Go to (9).
    629 
    630   // (2) Sequential one byte?  If yes, go to (5).
    631   // Any other sequential string must be one byte.
    632   __ andb(rbx, Immediate(kIsNotStringMask |
    633                          kStringRepresentationMask |
    634                          kShortExternalStringMask));
    635   __ j(zero, &seq_one_byte_string, Label::kNear);  // Go to (5).
    636 
    637   // (3) Sequential or cons?  If not, go to (6).
    638   // We check whether the subject string is a cons, since sequential strings
    639   // have already been covered.
    640   STATIC_ASSERT(kConsStringTag < kExternalStringTag);
    641   STATIC_ASSERT(kSlicedStringTag > kExternalStringTag);
    642   STATIC_ASSERT(kIsNotStringMask > kExternalStringTag);
    643   STATIC_ASSERT(kShortExternalStringTag > kExternalStringTag);
    644   __ cmpp(rbx, Immediate(kExternalStringTag));
    645   __ j(greater_equal, &not_seq_nor_cons);  // Go to (6).
    646 
    647   // (4) Cons string.  Check that it's flat.
    648   // Replace subject with first string and reload instance type.
    649   __ CompareRoot(FieldOperand(rdi, ConsString::kSecondOffset),
    650                  Heap::kempty_stringRootIndex);
    651   __ j(not_equal, &runtime);
    652   __ movp(rdi, FieldOperand(rdi, ConsString::kFirstOffset));
    653   __ jmp(&check_underlying);
    654 
    655   // (5) One byte sequential.  Load regexp code for one byte.
    656   __ bind(&seq_one_byte_string);
    657   // rax: RegExp data (FixedArray)
    658   __ movp(r11, FieldOperand(rax, JSRegExp::kDataOneByteCodeOffset));
    659   __ Set(rcx, 1);  // Type is one byte.
    660 
    661   // (E) Carry on.  String handling is done.
    662   __ bind(&check_code);
    663   // r11: irregexp code
    664   // Check that the irregexp code has been generated for the actual string
    665   // encoding. If it has, the field contains a code object otherwise it contains
    666   // smi (code flushing support)
    667   __ JumpIfSmi(r11, &runtime);
    668 
    669   // rdi: sequential subject string (or look-alike, external string)
    670   // r15: original subject string
    671   // rcx: encoding of subject string (1 if one_byte, 0 if two_byte);
    672   // r11: code
    673   // Load used arguments before starting to push arguments for call to native
    674   // RegExp code to avoid handling changing stack height.
    675   // We have to use r15 instead of rdi to load the length because rdi might
    676   // have been only made to look like a sequential string when it actually
    677   // is an external string.
    678   __ movp(rbx, args.GetArgumentOperand(PREVIOUS_INDEX_ARGUMENT_INDEX));
    679   __ JumpIfNotSmi(rbx, &runtime);
    680   __ SmiCompare(rbx, FieldOperand(r15, String::kLengthOffset));
    681   __ j(above_equal, &runtime);
    682   __ SmiToInteger64(rbx, rbx);
    683 
    684   // rdi: subject string
    685   // rbx: previous index
    686   // rcx: encoding of subject string (1 if one_byte 0 if two_byte);
    687   // r11: code
    688   // All checks done. Now push arguments for native regexp code.
    689   Counters* counters = isolate()->counters();
    690   __ IncrementCounter(counters->regexp_entry_native(), 1);
    691 
    692   // Isolates: note we add an additional parameter here (isolate pointer).
    693   static const int kRegExpExecuteArguments = 9;
    694   int argument_slots_on_stack =
    695       masm->ArgumentStackSlotsForCFunctionCall(kRegExpExecuteArguments);
    696   __ EnterApiExitFrame(argument_slots_on_stack);
    697 
    698   // Argument 9: Pass current isolate address.
    699   __ LoadAddress(kScratchRegister,
    700                  ExternalReference::isolate_address(isolate()));
    701   __ movq(Operand(rsp, (argument_slots_on_stack - 1) * kRegisterSize),
    702           kScratchRegister);
    703 
    704   // Argument 8: Indicate that this is a direct call from JavaScript.
    705   __ movq(Operand(rsp, (argument_slots_on_stack - 2) * kRegisterSize),
    706           Immediate(1));
    707 
    708   // Argument 7: Start (high end) of backtracking stack memory area.
    709   __ Move(kScratchRegister, address_of_regexp_stack_memory_address);
    710   __ movp(r9, Operand(kScratchRegister, 0));
    711   __ Move(kScratchRegister, address_of_regexp_stack_memory_size);
    712   __ addp(r9, Operand(kScratchRegister, 0));
    713   __ movq(Operand(rsp, (argument_slots_on_stack - 3) * kRegisterSize), r9);
    714 
    715   // Argument 6: Set the number of capture registers to zero to force global
    716   // regexps to behave as non-global.  This does not affect non-global regexps.
    717   // Argument 6 is passed in r9 on Linux and on the stack on Windows.
    718 #ifdef _WIN64
    719   __ movq(Operand(rsp, (argument_slots_on_stack - 4) * kRegisterSize),
    720           Immediate(0));
    721 #else
    722   __ Set(r9, 0);
    723 #endif
    724 
    725   // Argument 5: static offsets vector buffer.
    726   __ LoadAddress(
    727       r8, ExternalReference::address_of_static_offsets_vector(isolate()));
    728   // Argument 5 passed in r8 on Linux and on the stack on Windows.
    729 #ifdef _WIN64
    730   __ movq(Operand(rsp, (argument_slots_on_stack - 5) * kRegisterSize), r8);
    731 #endif
    732 
    733   // rdi: subject string
    734   // rbx: previous index
    735   // rcx: encoding of subject string (1 if one_byte 0 if two_byte);
    736   // r11: code
    737   // r14: slice offset
    738   // r15: original subject string
    739 
    740   // Argument 2: Previous index.
    741   __ movp(arg_reg_2, rbx);
    742 
    743   // Argument 4: End of string data
    744   // Argument 3: Start of string data
    745   Label setup_two_byte, setup_rest, got_length, length_not_from_slice;
    746   // Prepare start and end index of the input.
    747   // Load the length from the original sliced string if that is the case.
    748   __ addp(rbx, r14);
    749   __ SmiToInteger32(arg_reg_3, FieldOperand(r15, String::kLengthOffset));
    750   __ addp(r14, arg_reg_3);  // Using arg3 as scratch.
    751 
    752   // rbx: start index of the input
    753   // r14: end index of the input
    754   // r15: original subject string
    755   __ testb(rcx, rcx);  // Last use of rcx as encoding of subject string.
    756   __ j(zero, &setup_two_byte, Label::kNear);
    757   __ leap(arg_reg_4,
    758          FieldOperand(rdi, r14, times_1, SeqOneByteString::kHeaderSize));
    759   __ leap(arg_reg_3,
    760          FieldOperand(rdi, rbx, times_1, SeqOneByteString::kHeaderSize));
    761   __ jmp(&setup_rest, Label::kNear);
    762   __ bind(&setup_two_byte);
    763   __ leap(arg_reg_4,
    764          FieldOperand(rdi, r14, times_2, SeqTwoByteString::kHeaderSize));
    765   __ leap(arg_reg_3,
    766          FieldOperand(rdi, rbx, times_2, SeqTwoByteString::kHeaderSize));
    767   __ bind(&setup_rest);
    768 
    769   // Argument 1: Original subject string.
    770   // The original subject is in the previous stack frame. Therefore we have to
    771   // use rbp, which points exactly to one pointer size below the previous rsp.
    772   // (Because creating a new stack frame pushes the previous rbp onto the stack
    773   // and thereby moves up rsp by one kPointerSize.)
    774   __ movp(arg_reg_1, r15);
    775 
    776   // Locate the code entry and call it.
    777   __ addp(r11, Immediate(Code::kHeaderSize - kHeapObjectTag));
    778   __ call(r11);
    779 
    780   __ LeaveApiExitFrame(true);
    781 
    782   // Check the result.
    783   Label success;
    784   Label exception;
    785   __ cmpl(rax, Immediate(1));
    786   // We expect exactly one result since we force the called regexp to behave
    787   // as non-global.
    788   __ j(equal, &success, Label::kNear);
    789   __ cmpl(rax, Immediate(NativeRegExpMacroAssembler::EXCEPTION));
    790   __ j(equal, &exception);
    791   __ cmpl(rax, Immediate(NativeRegExpMacroAssembler::FAILURE));
    792   // If none of the above, it can only be retry.
    793   // Handle that in the runtime system.
    794   __ j(not_equal, &runtime);
    795 
    796   // For failure return null.
    797   __ LoadRoot(rax, Heap::kNullValueRootIndex);
    798   __ ret(REG_EXP_EXEC_ARGUMENT_COUNT * kPointerSize);
    799 
    800   // Load RegExp data.
    801   __ bind(&success);
    802   __ movp(rax, args.GetArgumentOperand(JS_REG_EXP_OBJECT_ARGUMENT_INDEX));
    803   __ movp(rcx, FieldOperand(rax, JSRegExp::kDataOffset));
    804   __ SmiToInteger32(rax,
    805                     FieldOperand(rcx, JSRegExp::kIrregexpCaptureCountOffset));
    806   // Calculate number of capture registers (number_of_captures + 1) * 2.
    807   __ leal(rdx, Operand(rax, rax, times_1, 2));
    808 
    809   // rdx: Number of capture registers
    810   // Check that the fourth object is a JSArray object.
    811   __ movp(r15, args.GetArgumentOperand(LAST_MATCH_INFO_ARGUMENT_INDEX));
    812   __ JumpIfSmi(r15, &runtime);
    813   __ CmpObjectType(r15, JS_ARRAY_TYPE, kScratchRegister);
    814   __ j(not_equal, &runtime);
    815   // Check that the JSArray is in fast case.
    816   __ movp(rbx, FieldOperand(r15, JSArray::kElementsOffset));
    817   __ movp(rax, FieldOperand(rbx, HeapObject::kMapOffset));
    818   __ CompareRoot(rax, Heap::kFixedArrayMapRootIndex);
    819   __ j(not_equal, &runtime);
    820   // Check that the last match info has space for the capture registers and the
    821   // additional information. Ensure no overflow in add.
    822   STATIC_ASSERT(FixedArray::kMaxLength < kMaxInt - FixedArray::kLengthOffset);
    823   __ SmiToInteger32(rax, FieldOperand(rbx, FixedArray::kLengthOffset));
    824   __ subl(rax, Immediate(RegExpImpl::kLastMatchOverhead));
    825   __ cmpl(rdx, rax);
    826   __ j(greater, &runtime);
    827 
    828   // rbx: last_match_info backing store (FixedArray)
    829   // rdx: number of capture registers
    830   // Store the capture count.
    831   __ Integer32ToSmi(kScratchRegister, rdx);
    832   __ movp(FieldOperand(rbx, RegExpImpl::kLastCaptureCountOffset),
    833           kScratchRegister);
    834   // Store last subject and last input.
    835   __ movp(rax, args.GetArgumentOperand(SUBJECT_STRING_ARGUMENT_INDEX));
    836   __ movp(FieldOperand(rbx, RegExpImpl::kLastSubjectOffset), rax);
    837   __ movp(rcx, rax);
    838   __ RecordWriteField(rbx,
    839                       RegExpImpl::kLastSubjectOffset,
    840                       rax,
    841                       rdi,
    842                       kDontSaveFPRegs);
    843   __ movp(rax, rcx);
    844   __ movp(FieldOperand(rbx, RegExpImpl::kLastInputOffset), rax);
    845   __ RecordWriteField(rbx,
    846                       RegExpImpl::kLastInputOffset,
    847                       rax,
    848                       rdi,
    849                       kDontSaveFPRegs);
    850 
    851   // Get the static offsets vector filled by the native regexp code.
    852   __ LoadAddress(
    853       rcx, ExternalReference::address_of_static_offsets_vector(isolate()));
    854 
    855   // rbx: last_match_info backing store (FixedArray)
    856   // rcx: offsets vector
    857   // rdx: number of capture registers
    858   Label next_capture, done;
    859   // Capture register counter starts from number of capture registers and
    860   // counts down until wraping after zero.
    861   __ bind(&next_capture);
    862   __ subp(rdx, Immediate(1));
    863   __ j(negative, &done, Label::kNear);
    864   // Read the value from the static offsets vector buffer and make it a smi.
    865   __ movl(rdi, Operand(rcx, rdx, times_int_size, 0));
    866   __ Integer32ToSmi(rdi, rdi);
    867   // Store the smi value in the last match info.
    868   __ movp(FieldOperand(rbx,
    869                        rdx,
    870                        times_pointer_size,
    871                        RegExpImpl::kFirstCaptureOffset),
    872           rdi);
    873   __ jmp(&next_capture);
    874   __ bind(&done);
    875 
    876   // Return last match info.
    877   __ movp(rax, r15);
    878   __ ret(REG_EXP_EXEC_ARGUMENT_COUNT * kPointerSize);
    879 
    880   __ bind(&exception);
    881   // Result must now be exception. If there is no pending exception already a
    882   // stack overflow (on the backtrack stack) was detected in RegExp code but
    883   // haven't created the exception yet. Handle that in the runtime system.
    884   // TODO(592): Rerunning the RegExp to get the stack overflow exception.
    885   ExternalReference pending_exception_address(
    886       Isolate::kPendingExceptionAddress, isolate());
    887   Operand pending_exception_operand =
    888       masm->ExternalOperand(pending_exception_address, rbx);
    889   __ movp(rax, pending_exception_operand);
    890   __ LoadRoot(rdx, Heap::kTheHoleValueRootIndex);
    891   __ cmpp(rax, rdx);
    892   __ j(equal, &runtime);
    893 
    894   // For exception, throw the exception again.
    895   __ TailCallRuntime(Runtime::kRegExpExecReThrow);
    896 
    897   // Do the runtime call to execute the regexp.
    898   __ bind(&runtime);
    899   __ TailCallRuntime(Runtime::kRegExpExec);
    900 
    901   // Deferred code for string handling.
    902   // (6) Long external string?  If not, go to (10).
    903   __ bind(&not_seq_nor_cons);
    904   // Compare flags are still set from (3).
    905   __ j(greater, &not_long_external, Label::kNear);  // Go to (10).
    906 
    907   // (7) External string.  Short external strings have been ruled out.
    908   __ bind(&external_string);
    909   __ movp(rbx, FieldOperand(rdi, HeapObject::kMapOffset));
    910   __ movzxbl(rbx, FieldOperand(rbx, Map::kInstanceTypeOffset));
    911   if (FLAG_debug_code) {
    912     // Assert that we do not have a cons or slice (indirect strings) here.
    913     // Sequential strings have already been ruled out.
    914     __ testb(rbx, Immediate(kIsIndirectStringMask));
    915     __ Assert(zero, kExternalStringExpectedButNotFound);
    916   }
    917   __ movp(rdi, FieldOperand(rdi, ExternalString::kResourceDataOffset));
    918   // Move the pointer so that offset-wise, it looks like a sequential string.
    919   STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize);
    920   __ subp(rdi, Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
    921   STATIC_ASSERT(kTwoByteStringTag == 0);
    922   // (8) Is the external string one byte?  If yes, go to (5).
    923   __ testb(rbx, Immediate(kStringEncodingMask));
    924   __ j(not_zero, &seq_one_byte_string);  // Go to (5).
    925 
    926   // rdi: subject string (flat two-byte)
    927   // rax: RegExp data (FixedArray)
    928   // (9) Two byte sequential.  Load regexp code for two byte.  Go to (E).
    929   __ bind(&seq_two_byte_string);
    930   __ movp(r11, FieldOperand(rax, JSRegExp::kDataUC16CodeOffset));
    931   __ Set(rcx, 0);  // Type is two byte.
    932   __ jmp(&check_code);  // Go to (E).
    933 
    934   // (10) Not a string or a short external string?  If yes, bail out to runtime.
    935   __ bind(&not_long_external);
    936   // Catch non-string subject or short external string.
    937   STATIC_ASSERT(kNotStringTag != 0 && kShortExternalStringTag !=0);
    938   __ testb(rbx, Immediate(kIsNotStringMask | kShortExternalStringMask));
    939   __ j(not_zero, &runtime);
    940 
    941   // (11) Sliced string.  Replace subject with parent. Go to (1).
    942   // Load offset into r14 and replace subject string with parent.
    943   __ SmiToInteger32(r14, FieldOperand(rdi, SlicedString::kOffsetOffset));
    944   __ movp(rdi, FieldOperand(rdi, SlicedString::kParentOffset));
    945   __ jmp(&check_underlying);
    946 #endif  // V8_INTERPRETED_REGEXP
    947 }
    948 
    949 
    950 static int NegativeComparisonResult(Condition cc) {
    951   DCHECK(cc != equal);
    952   DCHECK((cc == less) || (cc == less_equal)
    953       || (cc == greater) || (cc == greater_equal));
    954   return (cc == greater || cc == greater_equal) ? LESS : GREATER;
    955 }
    956 
    957 
    958 static void CheckInputType(MacroAssembler* masm, Register input,
    959                            CompareICState::State expected, Label* fail) {
    960   Label ok;
    961   if (expected == CompareICState::SMI) {
    962     __ JumpIfNotSmi(input, fail);
    963   } else if (expected == CompareICState::NUMBER) {
    964     __ JumpIfSmi(input, &ok);
    965     __ CompareMap(input, masm->isolate()->factory()->heap_number_map());
    966     __ j(not_equal, fail);
    967   }
    968   // We could be strict about internalized/non-internalized here, but as long as
    969   // hydrogen doesn't care, the stub doesn't have to care either.
    970   __ bind(&ok);
    971 }
    972 
    973 
    974 static void BranchIfNotInternalizedString(MacroAssembler* masm,
    975                                           Label* label,
    976                                           Register object,
    977                                           Register scratch) {
    978   __ JumpIfSmi(object, label);
    979   __ movp(scratch, FieldOperand(object, HeapObject::kMapOffset));
    980   __ movzxbp(scratch,
    981              FieldOperand(scratch, Map::kInstanceTypeOffset));
    982   STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
    983   __ testb(scratch, Immediate(kIsNotStringMask | kIsNotInternalizedMask));
    984   __ j(not_zero, label);
    985 }
    986 
    987 
    988 void CompareICStub::GenerateGeneric(MacroAssembler* masm) {
    989   Label runtime_call, check_unequal_objects, done;
    990   Condition cc = GetCondition();
    991   Factory* factory = isolate()->factory();
    992 
    993   Label miss;
    994   CheckInputType(masm, rdx, left(), &miss);
    995   CheckInputType(masm, rax, right(), &miss);
    996 
    997   // Compare two smis.
    998   Label non_smi, smi_done;
    999   __ JumpIfNotBothSmi(rax, rdx, &non_smi);
   1000   __ subp(rdx, rax);
   1001   __ j(no_overflow, &smi_done);
   1002   __ notp(rdx);  // Correct sign in case of overflow. rdx cannot be 0 here.
   1003   __ bind(&smi_done);
   1004   __ movp(rax, rdx);
   1005   __ ret(0);
   1006   __ bind(&non_smi);
   1007 
   1008   // The compare stub returns a positive, negative, or zero 64-bit integer
   1009   // value in rax, corresponding to result of comparing the two inputs.
   1010   // NOTICE! This code is only reached after a smi-fast-case check, so
   1011   // it is certain that at least one operand isn't a smi.
   1012 
   1013   // Two identical objects are equal unless they are both NaN or undefined.
   1014   {
   1015     Label not_identical;
   1016     __ cmpp(rax, rdx);
   1017     __ j(not_equal, &not_identical, Label::kNear);
   1018 
   1019     if (cc != equal) {
   1020       // Check for undefined.  undefined OP undefined is false even though
   1021       // undefined == undefined.
   1022       __ CompareRoot(rdx, Heap::kUndefinedValueRootIndex);
   1023       Label check_for_nan;
   1024       __ j(not_equal, &check_for_nan, Label::kNear);
   1025       __ Set(rax, NegativeComparisonResult(cc));
   1026       __ ret(0);
   1027       __ bind(&check_for_nan);
   1028     }
   1029 
   1030     // Test for NaN. Sadly, we can't just compare to Factory::nan_value(),
   1031     // so we do the second best thing - test it ourselves.
   1032     Label heap_number;
   1033     // If it's not a heap number, then return equal for (in)equality operator.
   1034     __ Cmp(FieldOperand(rdx, HeapObject::kMapOffset),
   1035            factory->heap_number_map());
   1036     __ j(equal, &heap_number, Label::kNear);
   1037     if (cc != equal) {
   1038       __ movp(rcx, FieldOperand(rax, HeapObject::kMapOffset));
   1039       __ movzxbl(rcx, FieldOperand(rcx, Map::kInstanceTypeOffset));
   1040       // Call runtime on identical objects.  Otherwise return equal.
   1041       __ cmpb(rcx, Immediate(static_cast<uint8_t>(FIRST_JS_RECEIVER_TYPE)));
   1042       __ j(above_equal, &runtime_call, Label::kFar);
   1043       // Call runtime on identical symbols since we need to throw a TypeError.
   1044       __ cmpb(rcx, Immediate(static_cast<uint8_t>(SYMBOL_TYPE)));
   1045       __ j(equal, &runtime_call, Label::kFar);
   1046       // Call runtime on identical SIMD values since we must throw a TypeError.
   1047       __ cmpb(rcx, Immediate(static_cast<uint8_t>(SIMD128_VALUE_TYPE)));
   1048       __ j(equal, &runtime_call, Label::kFar);
   1049     }
   1050     __ Set(rax, EQUAL);
   1051     __ ret(0);
   1052 
   1053     __ bind(&heap_number);
   1054     // It is a heap number, so return  equal if it's not NaN.
   1055     // For NaN, return 1 for every condition except greater and
   1056     // greater-equal.  Return -1 for them, so the comparison yields
   1057     // false for all conditions except not-equal.
   1058     __ Set(rax, EQUAL);
   1059     __ Movsd(xmm0, FieldOperand(rdx, HeapNumber::kValueOffset));
   1060     __ Ucomisd(xmm0, xmm0);
   1061     __ setcc(parity_even, rax);
   1062     // rax is 0 for equal non-NaN heapnumbers, 1 for NaNs.
   1063     if (cc == greater_equal || cc == greater) {
   1064       __ negp(rax);
   1065     }
   1066     __ ret(0);
   1067 
   1068     __ bind(&not_identical);
   1069   }
   1070 
   1071   if (cc == equal) {  // Both strict and non-strict.
   1072     Label slow;  // Fallthrough label.
   1073 
   1074     // If we're doing a strict equality comparison, we don't have to do
   1075     // type conversion, so we generate code to do fast comparison for objects
   1076     // and oddballs. Non-smi numbers and strings still go through the usual
   1077     // slow-case code.
   1078     if (strict()) {
   1079       // If either is a Smi (we know that not both are), then they can only
   1080       // be equal if the other is a HeapNumber. If so, use the slow case.
   1081       {
   1082         Label not_smis;
   1083         __ SelectNonSmi(rbx, rax, rdx, &not_smis);
   1084 
   1085         // Check if the non-smi operand is a heap number.
   1086         __ Cmp(FieldOperand(rbx, HeapObject::kMapOffset),
   1087                factory->heap_number_map());
   1088         // If heap number, handle it in the slow case.
   1089         __ j(equal, &slow);
   1090         // Return non-equal.  ebx (the lower half of rbx) is not zero.
   1091         __ movp(rax, rbx);
   1092         __ ret(0);
   1093 
   1094         __ bind(&not_smis);
   1095       }
   1096 
   1097       // If either operand is a JSObject or an oddball value, then they are not
   1098       // equal since their pointers are different
   1099       // There is no test for undetectability in strict equality.
   1100 
   1101       // If the first object is a JS object, we have done pointer comparison.
   1102       STATIC_ASSERT(LAST_TYPE == LAST_JS_RECEIVER_TYPE);
   1103       Label first_non_object;
   1104       __ CmpObjectType(rax, FIRST_JS_RECEIVER_TYPE, rcx);
   1105       __ j(below, &first_non_object, Label::kNear);
   1106       // Return non-zero (rax (not rax) is not zero)
   1107       Label return_not_equal;
   1108       STATIC_ASSERT(kHeapObjectTag != 0);
   1109       __ bind(&return_not_equal);
   1110       __ ret(0);
   1111 
   1112       __ bind(&first_non_object);
   1113       // Check for oddballs: true, false, null, undefined.
   1114       __ CmpInstanceType(rcx, ODDBALL_TYPE);
   1115       __ j(equal, &return_not_equal);
   1116 
   1117       __ CmpObjectType(rdx, FIRST_JS_RECEIVER_TYPE, rcx);
   1118       __ j(above_equal, &return_not_equal);
   1119 
   1120       // Check for oddballs: true, false, null, undefined.
   1121       __ CmpInstanceType(rcx, ODDBALL_TYPE);
   1122       __ j(equal, &return_not_equal);
   1123 
   1124       // Fall through to the general case.
   1125     }
   1126     __ bind(&slow);
   1127   }
   1128 
   1129   // Generate the number comparison code.
   1130   Label non_number_comparison;
   1131   Label unordered;
   1132   FloatingPointHelper::LoadSSE2UnknownOperands(masm, &non_number_comparison);
   1133   __ xorl(rax, rax);
   1134   __ xorl(rcx, rcx);
   1135   __ Ucomisd(xmm0, xmm1);
   1136 
   1137   // Don't base result on EFLAGS when a NaN is involved.
   1138   __ j(parity_even, &unordered, Label::kNear);
   1139   // Return a result of -1, 0, or 1, based on EFLAGS.
   1140   __ setcc(above, rax);
   1141   __ setcc(below, rcx);
   1142   __ subp(rax, rcx);
   1143   __ ret(0);
   1144 
   1145   // If one of the numbers was NaN, then the result is always false.
   1146   // The cc is never not-equal.
   1147   __ bind(&unordered);
   1148   DCHECK(cc != not_equal);
   1149   if (cc == less || cc == less_equal) {
   1150     __ Set(rax, 1);
   1151   } else {
   1152     __ Set(rax, -1);
   1153   }
   1154   __ ret(0);
   1155 
   1156   // The number comparison code did not provide a valid result.
   1157   __ bind(&non_number_comparison);
   1158 
   1159   // Fast negative check for internalized-to-internalized equality.
   1160   Label check_for_strings;
   1161   if (cc == equal) {
   1162     BranchIfNotInternalizedString(
   1163         masm, &check_for_strings, rax, kScratchRegister);
   1164     BranchIfNotInternalizedString(
   1165         masm, &check_for_strings, rdx, kScratchRegister);
   1166 
   1167     // We've already checked for object identity, so if both operands are
   1168     // internalized strings they aren't equal. Register rax (not rax) already
   1169     // holds a non-zero value, which indicates not equal, so just return.
   1170     __ ret(0);
   1171   }
   1172 
   1173   __ bind(&check_for_strings);
   1174 
   1175   __ JumpIfNotBothSequentialOneByteStrings(rdx, rax, rcx, rbx,
   1176                                            &check_unequal_objects);
   1177 
   1178   // Inline comparison of one-byte strings.
   1179   if (cc == equal) {
   1180     StringHelper::GenerateFlatOneByteStringEquals(masm, rdx, rax, rcx, rbx);
   1181   } else {
   1182     StringHelper::GenerateCompareFlatOneByteStrings(masm, rdx, rax, rcx, rbx,
   1183                                                     rdi, r8);
   1184   }
   1185 
   1186 #ifdef DEBUG
   1187   __ Abort(kUnexpectedFallThroughFromStringComparison);
   1188 #endif
   1189 
   1190   __ bind(&check_unequal_objects);
   1191   if (cc == equal && !strict()) {
   1192     // Not strict equality.  Objects are unequal if
   1193     // they are both JSObjects and not undetectable,
   1194     // and their pointers are different.
   1195     Label return_equal, return_unequal, undetectable;
   1196     // At most one is a smi, so we can test for smi by adding the two.
   1197     // A smi plus a heap object has the low bit set, a heap object plus
   1198     // a heap object has the low bit clear.
   1199     STATIC_ASSERT(kSmiTag == 0);
   1200     STATIC_ASSERT(kSmiTagMask == 1);
   1201     __ leap(rcx, Operand(rax, rdx, times_1, 0));
   1202     __ testb(rcx, Immediate(kSmiTagMask));
   1203     __ j(not_zero, &runtime_call, Label::kNear);
   1204 
   1205     __ movp(rbx, FieldOperand(rax, HeapObject::kMapOffset));
   1206     __ movp(rcx, FieldOperand(rdx, HeapObject::kMapOffset));
   1207     __ testb(FieldOperand(rbx, Map::kBitFieldOffset),
   1208              Immediate(1 << Map::kIsUndetectable));
   1209     __ j(not_zero, &undetectable, Label::kNear);
   1210     __ testb(FieldOperand(rcx, Map::kBitFieldOffset),
   1211              Immediate(1 << Map::kIsUndetectable));
   1212     __ j(not_zero, &return_unequal, Label::kNear);
   1213 
   1214     __ CmpInstanceType(rbx, FIRST_JS_RECEIVER_TYPE);
   1215     __ j(below, &runtime_call, Label::kNear);
   1216     __ CmpInstanceType(rcx, FIRST_JS_RECEIVER_TYPE);
   1217     __ j(below, &runtime_call, Label::kNear);
   1218 
   1219     __ bind(&return_unequal);
   1220     // Return non-equal by returning the non-zero object pointer in rax.
   1221     __ ret(0);
   1222 
   1223     __ bind(&undetectable);
   1224     __ testb(FieldOperand(rcx, Map::kBitFieldOffset),
   1225              Immediate(1 << Map::kIsUndetectable));
   1226     __ j(zero, &return_unequal, Label::kNear);
   1227 
   1228     // If both sides are JSReceivers, then the result is false according to
   1229     // the HTML specification, which says that only comparisons with null or
   1230     // undefined are affected by special casing for document.all.
   1231     __ CmpInstanceType(rbx, ODDBALL_TYPE);
   1232     __ j(zero, &return_equal, Label::kNear);
   1233     __ CmpInstanceType(rcx, ODDBALL_TYPE);
   1234     __ j(not_zero, &return_unequal, Label::kNear);
   1235 
   1236     __ bind(&return_equal);
   1237     __ Set(rax, EQUAL);
   1238     __ ret(0);
   1239   }
   1240   __ bind(&runtime_call);
   1241 
   1242   if (cc == equal) {
   1243     {
   1244       FrameScope scope(masm, StackFrame::INTERNAL);
   1245       __ Push(rdx);
   1246       __ Push(rax);
   1247       __ CallRuntime(strict() ? Runtime::kStrictEqual : Runtime::kEqual);
   1248     }
   1249     // Turn true into 0 and false into some non-zero value.
   1250     STATIC_ASSERT(EQUAL == 0);
   1251     __ LoadRoot(rdx, Heap::kTrueValueRootIndex);
   1252     __ subp(rax, rdx);
   1253     __ Ret();
   1254   } else {
   1255     // Push arguments below the return address to prepare jump to builtin.
   1256     __ PopReturnAddressTo(rcx);
   1257     __ Push(rdx);
   1258     __ Push(rax);
   1259     __ Push(Smi::FromInt(NegativeComparisonResult(cc)));
   1260     __ PushReturnAddressFrom(rcx);
   1261     __ TailCallRuntime(Runtime::kCompare);
   1262   }
   1263 
   1264   __ bind(&miss);
   1265   GenerateMiss(masm);
   1266 }
   1267 
   1268 
   1269 static void CallStubInRecordCallTarget(MacroAssembler* masm, CodeStub* stub) {
   1270   // rax : number of arguments to the construct function
   1271   // rbx : feedback vector
   1272   // rdx : slot in feedback vector (Smi)
   1273   // rdi : the function to call
   1274   FrameScope scope(masm, StackFrame::INTERNAL);
   1275 
   1276   // Number-of-arguments register must be smi-tagged to call out.
   1277   __ Integer32ToSmi(rax, rax);
   1278   __ Push(rax);
   1279   __ Push(rdi);
   1280   __ Integer32ToSmi(rdx, rdx);
   1281   __ Push(rdx);
   1282   __ Push(rbx);
   1283 
   1284   __ CallStub(stub);
   1285 
   1286   __ Pop(rbx);
   1287   __ Pop(rdx);
   1288   __ Pop(rdi);
   1289   __ Pop(rax);
   1290   __ SmiToInteger32(rax, rax);
   1291 }
   1292 
   1293 
   1294 static void GenerateRecordCallTarget(MacroAssembler* masm) {
   1295   // Cache the called function in a feedback vector slot.  Cache states
   1296   // are uninitialized, monomorphic (indicated by a JSFunction), and
   1297   // megamorphic.
   1298   // rax : number of arguments to the construct function
   1299   // rbx : feedback vector
   1300   // rdx : slot in feedback vector (Smi)
   1301   // rdi : the function to call
   1302   Isolate* isolate = masm->isolate();
   1303   Label initialize, done, miss, megamorphic, not_array_function;
   1304   Label done_initialize_count, done_increment_count;
   1305 
   1306   // Load the cache state into r11.
   1307   __ SmiToInteger32(rdx, rdx);
   1308   __ movp(r11,
   1309           FieldOperand(rbx, rdx, times_pointer_size, FixedArray::kHeaderSize));
   1310 
   1311   // A monomorphic cache hit or an already megamorphic state: invoke the
   1312   // function without changing the state.
   1313   // We don't know if r11 is a WeakCell or a Symbol, but it's harmless to read
   1314   // at this position in a symbol (see static asserts in
   1315   // type-feedback-vector.h).
   1316   Label check_allocation_site;
   1317   __ cmpp(rdi, FieldOperand(r11, WeakCell::kValueOffset));
   1318   __ j(equal, &done_increment_count, Label::kFar);
   1319   __ CompareRoot(r11, Heap::kmegamorphic_symbolRootIndex);
   1320   __ j(equal, &done, Label::kFar);
   1321   __ CompareRoot(FieldOperand(r11, HeapObject::kMapOffset),
   1322                  Heap::kWeakCellMapRootIndex);
   1323   __ j(not_equal, &check_allocation_site);
   1324 
   1325   // If the weak cell is cleared, we have a new chance to become monomorphic.
   1326   __ CheckSmi(FieldOperand(r11, WeakCell::kValueOffset));
   1327   __ j(equal, &initialize);
   1328   __ jmp(&megamorphic);
   1329 
   1330   __ bind(&check_allocation_site);
   1331   // If we came here, we need to see if we are the array function.
   1332   // If we didn't have a matching function, and we didn't find the megamorph
   1333   // sentinel, then we have in the slot either some other function or an
   1334   // AllocationSite.
   1335   __ CompareRoot(FieldOperand(r11, 0), Heap::kAllocationSiteMapRootIndex);
   1336   __ j(not_equal, &miss);
   1337 
   1338   // Make sure the function is the Array() function
   1339   __ LoadNativeContextSlot(Context::ARRAY_FUNCTION_INDEX, r11);
   1340   __ cmpp(rdi, r11);
   1341   __ j(not_equal, &megamorphic);
   1342   __ jmp(&done_increment_count);
   1343 
   1344   __ bind(&miss);
   1345 
   1346   // A monomorphic miss (i.e, here the cache is not uninitialized) goes
   1347   // megamorphic.
   1348   __ CompareRoot(r11, Heap::kuninitialized_symbolRootIndex);
   1349   __ j(equal, &initialize);
   1350   // MegamorphicSentinel is an immortal immovable object (undefined) so no
   1351   // write-barrier is needed.
   1352   __ bind(&megamorphic);
   1353   __ Move(FieldOperand(rbx, rdx, times_pointer_size, FixedArray::kHeaderSize),
   1354           TypeFeedbackVector::MegamorphicSentinel(isolate));
   1355   __ jmp(&done);
   1356 
   1357   // An uninitialized cache is patched with the function or sentinel to
   1358   // indicate the ElementsKind if function is the Array constructor.
   1359   __ bind(&initialize);
   1360 
   1361   // Make sure the function is the Array() function
   1362   __ LoadNativeContextSlot(Context::ARRAY_FUNCTION_INDEX, r11);
   1363   __ cmpp(rdi, r11);
   1364   __ j(not_equal, &not_array_function);
   1365 
   1366   CreateAllocationSiteStub create_stub(isolate);
   1367   CallStubInRecordCallTarget(masm, &create_stub);
   1368   __ jmp(&done_initialize_count);
   1369 
   1370   __ bind(&not_array_function);
   1371   CreateWeakCellStub weak_cell_stub(isolate);
   1372   CallStubInRecordCallTarget(masm, &weak_cell_stub);
   1373 
   1374   __ bind(&done_initialize_count);
   1375   // Initialize the call counter.
   1376   __ SmiToInteger32(rdx, rdx);
   1377   __ Move(FieldOperand(rbx, rdx, times_pointer_size,
   1378                        FixedArray::kHeaderSize + kPointerSize),
   1379           Smi::FromInt(1));
   1380   __ jmp(&done);
   1381 
   1382   __ bind(&done_increment_count);
   1383 
   1384   // Increment the call count for monomorphic function calls.
   1385   __ SmiAddConstant(FieldOperand(rbx, rdx, times_pointer_size,
   1386                                  FixedArray::kHeaderSize + kPointerSize),
   1387                     Smi::FromInt(1));
   1388 
   1389   __ bind(&done);
   1390   __ Integer32ToSmi(rdx, rdx);
   1391 }
   1392 
   1393 
   1394 void CallConstructStub::Generate(MacroAssembler* masm) {
   1395   // rax : number of arguments
   1396   // rbx : feedback vector
   1397   // rdx : slot in feedback vector (Smi)
   1398   // rdi : constructor function
   1399 
   1400   Label non_function;
   1401   // Check that the constructor is not a smi.
   1402   __ JumpIfSmi(rdi, &non_function);
   1403   // Check that constructor is a JSFunction.
   1404   __ CmpObjectType(rdi, JS_FUNCTION_TYPE, r11);
   1405   __ j(not_equal, &non_function);
   1406 
   1407   GenerateRecordCallTarget(masm);
   1408 
   1409   __ SmiToInteger32(rdx, rdx);
   1410   Label feedback_register_initialized;
   1411   // Put the AllocationSite from the feedback vector into rbx, or undefined.
   1412   __ movp(rbx,
   1413           FieldOperand(rbx, rdx, times_pointer_size, FixedArray::kHeaderSize));
   1414   __ CompareRoot(FieldOperand(rbx, 0), Heap::kAllocationSiteMapRootIndex);
   1415   __ j(equal, &feedback_register_initialized, Label::kNear);
   1416   __ LoadRoot(rbx, Heap::kUndefinedValueRootIndex);
   1417   __ bind(&feedback_register_initialized);
   1418 
   1419   __ AssertUndefinedOrAllocationSite(rbx);
   1420 
   1421   // Pass new target to construct stub.
   1422   __ movp(rdx, rdi);
   1423 
   1424   // Tail call to the function-specific construct stub (still in the caller
   1425   // context at this point).
   1426   __ movp(rcx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset));
   1427   __ movp(rcx, FieldOperand(rcx, SharedFunctionInfo::kConstructStubOffset));
   1428   __ leap(rcx, FieldOperand(rcx, Code::kHeaderSize));
   1429   __ jmp(rcx);
   1430 
   1431   __ bind(&non_function);
   1432   __ movp(rdx, rdi);
   1433   __ Jump(isolate()->builtins()->Construct(), RelocInfo::CODE_TARGET);
   1434 }
   1435 
   1436 
   1437 void CallICStub::HandleArrayCase(MacroAssembler* masm, Label* miss) {
   1438   // rdi - function
   1439   // rdx - slot id
   1440   // rbx - vector
   1441   // rcx - allocation site (loaded from vector[slot]).
   1442   __ LoadNativeContextSlot(Context::ARRAY_FUNCTION_INDEX, r8);
   1443   __ cmpp(rdi, r8);
   1444   __ j(not_equal, miss);
   1445 
   1446   __ movp(rax, Immediate(arg_count()));
   1447 
   1448   // Increment the call count for monomorphic function calls.
   1449   __ SmiAddConstant(FieldOperand(rbx, rdx, times_pointer_size,
   1450                                  FixedArray::kHeaderSize + kPointerSize),
   1451                     Smi::FromInt(1));
   1452 
   1453   __ movp(rbx, rcx);
   1454   __ movp(rdx, rdi);
   1455   ArrayConstructorStub stub(masm->isolate(), arg_count());
   1456   __ TailCallStub(&stub);
   1457 }
   1458 
   1459 
   1460 void CallICStub::Generate(MacroAssembler* masm) {
   1461   // ----------- S t a t e -------------
   1462   // -- rdi - function
   1463   // -- rdx - slot id
   1464   // -- rbx - vector
   1465   // -----------------------------------
   1466   Isolate* isolate = masm->isolate();
   1467   Label extra_checks_or_miss, call, call_function;
   1468   int argc = arg_count();
   1469   StackArgumentsAccessor args(rsp, argc);
   1470   ParameterCount actual(argc);
   1471 
   1472   // The checks. First, does rdi match the recorded monomorphic target?
   1473   __ SmiToInteger32(rdx, rdx);
   1474   __ movp(rcx,
   1475           FieldOperand(rbx, rdx, times_pointer_size, FixedArray::kHeaderSize));
   1476 
   1477   // We don't know that we have a weak cell. We might have a private symbol
   1478   // or an AllocationSite, but the memory is safe to examine.
   1479   // AllocationSite::kTransitionInfoOffset - contains a Smi or pointer to
   1480   // FixedArray.
   1481   // WeakCell::kValueOffset - contains a JSFunction or Smi(0)
   1482   // Symbol::kHashFieldSlot - if the low bit is 1, then the hash is not
   1483   // computed, meaning that it can't appear to be a pointer. If the low bit is
   1484   // 0, then hash is computed, but the 0 bit prevents the field from appearing
   1485   // to be a pointer.
   1486   STATIC_ASSERT(WeakCell::kSize >= kPointerSize);
   1487   STATIC_ASSERT(AllocationSite::kTransitionInfoOffset ==
   1488                     WeakCell::kValueOffset &&
   1489                 WeakCell::kValueOffset == Symbol::kHashFieldSlot);
   1490 
   1491   __ cmpp(rdi, FieldOperand(rcx, WeakCell::kValueOffset));
   1492   __ j(not_equal, &extra_checks_or_miss);
   1493 
   1494   // The compare above could have been a SMI/SMI comparison. Guard against this
   1495   // convincing us that we have a monomorphic JSFunction.
   1496   __ JumpIfSmi(rdi, &extra_checks_or_miss);
   1497 
   1498   // Increment the call count for monomorphic function calls.
   1499   __ SmiAddConstant(FieldOperand(rbx, rdx, times_pointer_size,
   1500                                  FixedArray::kHeaderSize + kPointerSize),
   1501                     Smi::FromInt(1));
   1502 
   1503   __ bind(&call_function);
   1504   __ Set(rax, argc);
   1505   __ Jump(masm->isolate()->builtins()->CallFunction(convert_mode(),
   1506                                                     tail_call_mode()),
   1507           RelocInfo::CODE_TARGET);
   1508 
   1509   __ bind(&extra_checks_or_miss);
   1510   Label uninitialized, miss, not_allocation_site;
   1511 
   1512   __ Cmp(rcx, TypeFeedbackVector::MegamorphicSentinel(isolate));
   1513   __ j(equal, &call);
   1514 
   1515   // Check if we have an allocation site.
   1516   __ CompareRoot(FieldOperand(rcx, HeapObject::kMapOffset),
   1517                  Heap::kAllocationSiteMapRootIndex);
   1518   __ j(not_equal, &not_allocation_site);
   1519 
   1520   // We have an allocation site.
   1521   HandleArrayCase(masm, &miss);
   1522 
   1523   __ bind(&not_allocation_site);
   1524 
   1525   // The following cases attempt to handle MISS cases without going to the
   1526   // runtime.
   1527   if (FLAG_trace_ic) {
   1528     __ jmp(&miss);
   1529   }
   1530 
   1531   __ Cmp(rcx, TypeFeedbackVector::UninitializedSentinel(isolate));
   1532   __ j(equal, &uninitialized);
   1533 
   1534   // We are going megamorphic. If the feedback is a JSFunction, it is fine
   1535   // to handle it here. More complex cases are dealt with in the runtime.
   1536   __ AssertNotSmi(rcx);
   1537   __ CmpObjectType(rcx, JS_FUNCTION_TYPE, rcx);
   1538   __ j(not_equal, &miss);
   1539   __ Move(FieldOperand(rbx, rdx, times_pointer_size, FixedArray::kHeaderSize),
   1540           TypeFeedbackVector::MegamorphicSentinel(isolate));
   1541 
   1542   __ bind(&call);
   1543   __ Set(rax, argc);
   1544   __ Jump(masm->isolate()->builtins()->Call(convert_mode(), tail_call_mode()),
   1545           RelocInfo::CODE_TARGET);
   1546 
   1547   __ bind(&uninitialized);
   1548 
   1549   // We are going monomorphic, provided we actually have a JSFunction.
   1550   __ JumpIfSmi(rdi, &miss);
   1551 
   1552   // Goto miss case if we do not have a function.
   1553   __ CmpObjectType(rdi, JS_FUNCTION_TYPE, rcx);
   1554   __ j(not_equal, &miss);
   1555 
   1556   // Make sure the function is not the Array() function, which requires special
   1557   // behavior on MISS.
   1558   __ LoadNativeContextSlot(Context::ARRAY_FUNCTION_INDEX, rcx);
   1559   __ cmpp(rdi, rcx);
   1560   __ j(equal, &miss);
   1561 
   1562   // Make sure the function belongs to the same native context.
   1563   __ movp(rcx, FieldOperand(rdi, JSFunction::kContextOffset));
   1564   __ movp(rcx, ContextOperand(rcx, Context::NATIVE_CONTEXT_INDEX));
   1565   __ cmpp(rcx, NativeContextOperand());
   1566   __ j(not_equal, &miss);
   1567 
   1568   // Initialize the call counter.
   1569   __ Move(FieldOperand(rbx, rdx, times_pointer_size,
   1570                        FixedArray::kHeaderSize + kPointerSize),
   1571           Smi::FromInt(1));
   1572 
   1573   // Store the function. Use a stub since we need a frame for allocation.
   1574   // rbx - vector
   1575   // rdx - slot (needs to be in smi form)
   1576   // rdi - function
   1577   {
   1578     FrameScope scope(masm, StackFrame::INTERNAL);
   1579     CreateWeakCellStub create_stub(isolate);
   1580 
   1581     __ Integer32ToSmi(rdx, rdx);
   1582     __ Push(rdi);
   1583     __ CallStub(&create_stub);
   1584     __ Pop(rdi);
   1585   }
   1586 
   1587   __ jmp(&call_function);
   1588 
   1589   // We are here because tracing is on or we encountered a MISS case we can't
   1590   // handle here.
   1591   __ bind(&miss);
   1592   GenerateMiss(masm);
   1593 
   1594   __ jmp(&call);
   1595 
   1596   // Unreachable
   1597   __ int3();
   1598 }
   1599 
   1600 
   1601 void CallICStub::GenerateMiss(MacroAssembler* masm) {
   1602   FrameScope scope(masm, StackFrame::INTERNAL);
   1603 
   1604   // Push the receiver and the function and feedback info.
   1605   __ Push(rdi);
   1606   __ Push(rbx);
   1607   __ Integer32ToSmi(rdx, rdx);
   1608   __ Push(rdx);
   1609 
   1610   // Call the entry.
   1611   __ CallRuntime(Runtime::kCallIC_Miss);
   1612 
   1613   // Move result to edi and exit the internal frame.
   1614   __ movp(rdi, rax);
   1615 }
   1616 
   1617 
   1618 bool CEntryStub::NeedsImmovableCode() {
   1619   return false;
   1620 }
   1621 
   1622 
   1623 void CodeStub::GenerateStubsAheadOfTime(Isolate* isolate) {
   1624   CEntryStub::GenerateAheadOfTime(isolate);
   1625   StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(isolate);
   1626   StubFailureTrampolineStub::GenerateAheadOfTime(isolate);
   1627   // It is important that the store buffer overflow stubs are generated first.
   1628   CommonArrayConstructorStub::GenerateStubsAheadOfTime(isolate);
   1629   CreateAllocationSiteStub::GenerateAheadOfTime(isolate);
   1630   CreateWeakCellStub::GenerateAheadOfTime(isolate);
   1631   BinaryOpICStub::GenerateAheadOfTime(isolate);
   1632   BinaryOpICWithAllocationSiteStub::GenerateAheadOfTime(isolate);
   1633   StoreFastElementStub::GenerateAheadOfTime(isolate);
   1634   TypeofStub::GenerateAheadOfTime(isolate);
   1635 }
   1636 
   1637 
   1638 void CodeStub::GenerateFPStubs(Isolate* isolate) {
   1639 }
   1640 
   1641 
   1642 void CEntryStub::GenerateAheadOfTime(Isolate* isolate) {
   1643   CEntryStub stub(isolate, 1, kDontSaveFPRegs);
   1644   stub.GetCode();
   1645   CEntryStub save_doubles(isolate, 1, kSaveFPRegs);
   1646   save_doubles.GetCode();
   1647 }
   1648 
   1649 
   1650 void CEntryStub::Generate(MacroAssembler* masm) {
   1651   // rax: number of arguments including receiver
   1652   // rbx: pointer to C function  (C callee-saved)
   1653   // rbp: frame pointer of calling JS frame (restored after C call)
   1654   // rsp: stack pointer  (restored after C call)
   1655   // rsi: current context (restored)
   1656   //
   1657   // If argv_in_register():
   1658   // r15: pointer to the first argument
   1659 
   1660   ProfileEntryHookStub::MaybeCallEntryHook(masm);
   1661 
   1662 #ifdef _WIN64
   1663   // Windows 64-bit ABI passes arguments in rcx, rdx, r8, r9. It requires the
   1664   // stack to be aligned to 16 bytes. It only allows a single-word to be
   1665   // returned in register rax. Larger return sizes must be written to an address
   1666   // passed as a hidden first argument.
   1667   const Register kCCallArg0 = rcx;
   1668   const Register kCCallArg1 = rdx;
   1669   const Register kCCallArg2 = r8;
   1670   const Register kCCallArg3 = r9;
   1671   const int kArgExtraStackSpace = 2;
   1672   const int kMaxRegisterResultSize = 1;
   1673 #else
   1674   // GCC / Clang passes arguments in rdi, rsi, rdx, rcx, r8, r9. Simple results
   1675   // are returned in rax, and a struct of two pointers are returned in rax+rdx.
   1676   // Larger return sizes must be written to an address passed as a hidden first
   1677   // argument.
   1678   const Register kCCallArg0 = rdi;
   1679   const Register kCCallArg1 = rsi;
   1680   const Register kCCallArg2 = rdx;
   1681   const Register kCCallArg3 = rcx;
   1682   const int kArgExtraStackSpace = 0;
   1683   const int kMaxRegisterResultSize = 2;
   1684 #endif  // _WIN64
   1685 
   1686   // Enter the exit frame that transitions from JavaScript to C++.
   1687   int arg_stack_space =
   1688       kArgExtraStackSpace +
   1689       (result_size() <= kMaxRegisterResultSize ? 0 : result_size());
   1690   if (argv_in_register()) {
   1691     DCHECK(!save_doubles());
   1692     __ EnterApiExitFrame(arg_stack_space);
   1693     // Move argc into r14 (argv is already in r15).
   1694     __ movp(r14, rax);
   1695   } else {
   1696     __ EnterExitFrame(arg_stack_space, save_doubles());
   1697   }
   1698 
   1699   // rbx: pointer to builtin function  (C callee-saved).
   1700   // rbp: frame pointer of exit frame  (restored after C call).
   1701   // rsp: stack pointer (restored after C call).
   1702   // r14: number of arguments including receiver (C callee-saved).
   1703   // r15: argv pointer (C callee-saved).
   1704 
   1705   // Check stack alignment.
   1706   if (FLAG_debug_code) {
   1707     __ CheckStackAlignment();
   1708   }
   1709 
   1710   // Call C function. The arguments object will be created by stubs declared by
   1711   // DECLARE_RUNTIME_FUNCTION().
   1712   if (result_size() <= kMaxRegisterResultSize) {
   1713     // Pass a pointer to the Arguments object as the first argument.
   1714     // Return result in single register (rax), or a register pair (rax, rdx).
   1715     __ movp(kCCallArg0, r14);  // argc.
   1716     __ movp(kCCallArg1, r15);  // argv.
   1717     __ Move(kCCallArg2, ExternalReference::isolate_address(isolate()));
   1718   } else {
   1719     DCHECK_LE(result_size(), 3);
   1720     // Pass a pointer to the result location as the first argument.
   1721     __ leap(kCCallArg0, StackSpaceOperand(kArgExtraStackSpace));
   1722     // Pass a pointer to the Arguments object as the second argument.
   1723     __ movp(kCCallArg1, r14);  // argc.
   1724     __ movp(kCCallArg2, r15);  // argv.
   1725     __ Move(kCCallArg3, ExternalReference::isolate_address(isolate()));
   1726   }
   1727   __ call(rbx);
   1728 
   1729   if (result_size() > kMaxRegisterResultSize) {
   1730     // Read result values stored on stack. Result is stored
   1731     // above the the two Arguments object slots on Win64.
   1732     DCHECK_LE(result_size(), 3);
   1733     __ movq(kReturnRegister0, StackSpaceOperand(kArgExtraStackSpace + 0));
   1734     __ movq(kReturnRegister1, StackSpaceOperand(kArgExtraStackSpace + 1));
   1735     if (result_size() > 2) {
   1736       __ movq(kReturnRegister2, StackSpaceOperand(kArgExtraStackSpace + 2));
   1737     }
   1738   }
   1739   // Result is in rax, rdx:rax or r8:rdx:rax - do not destroy these registers!
   1740 
   1741   // Check result for exception sentinel.
   1742   Label exception_returned;
   1743   __ CompareRoot(rax, Heap::kExceptionRootIndex);
   1744   __ j(equal, &exception_returned);
   1745 
   1746   // Check that there is no pending exception, otherwise we
   1747   // should have returned the exception sentinel.
   1748   if (FLAG_debug_code) {
   1749     Label okay;
   1750     __ LoadRoot(r14, Heap::kTheHoleValueRootIndex);
   1751     ExternalReference pending_exception_address(
   1752         Isolate::kPendingExceptionAddress, isolate());
   1753     Operand pending_exception_operand =
   1754         masm->ExternalOperand(pending_exception_address);
   1755     __ cmpp(r14, pending_exception_operand);
   1756     __ j(equal, &okay, Label::kNear);
   1757     __ int3();
   1758     __ bind(&okay);
   1759   }
   1760 
   1761   // Exit the JavaScript to C++ exit frame.
   1762   __ LeaveExitFrame(save_doubles(), !argv_in_register());
   1763   __ ret(0);
   1764 
   1765   // Handling of exception.
   1766   __ bind(&exception_returned);
   1767 
   1768   ExternalReference pending_handler_context_address(
   1769       Isolate::kPendingHandlerContextAddress, isolate());
   1770   ExternalReference pending_handler_code_address(
   1771       Isolate::kPendingHandlerCodeAddress, isolate());
   1772   ExternalReference pending_handler_offset_address(
   1773       Isolate::kPendingHandlerOffsetAddress, isolate());
   1774   ExternalReference pending_handler_fp_address(
   1775       Isolate::kPendingHandlerFPAddress, isolate());
   1776   ExternalReference pending_handler_sp_address(
   1777       Isolate::kPendingHandlerSPAddress, isolate());
   1778 
   1779   // Ask the runtime for help to determine the handler. This will set rax to
   1780   // contain the current pending exception, don't clobber it.
   1781   ExternalReference find_handler(Runtime::kUnwindAndFindExceptionHandler,
   1782                                  isolate());
   1783   {
   1784     FrameScope scope(masm, StackFrame::MANUAL);
   1785     __ movp(arg_reg_1, Immediate(0));  // argc.
   1786     __ movp(arg_reg_2, Immediate(0));  // argv.
   1787     __ Move(arg_reg_3, ExternalReference::isolate_address(isolate()));
   1788     __ PrepareCallCFunction(3);
   1789     __ CallCFunction(find_handler, 3);
   1790   }
   1791 
   1792   // Retrieve the handler context, SP and FP.
   1793   __ movp(rsi, masm->ExternalOperand(pending_handler_context_address));
   1794   __ movp(rsp, masm->ExternalOperand(pending_handler_sp_address));
   1795   __ movp(rbp, masm->ExternalOperand(pending_handler_fp_address));
   1796 
   1797   // If the handler is a JS frame, restore the context to the frame. Note that
   1798   // the context will be set to (rsi == 0) for non-JS frames.
   1799   Label skip;
   1800   __ testp(rsi, rsi);
   1801   __ j(zero, &skip, Label::kNear);
   1802   __ movp(Operand(rbp, StandardFrameConstants::kContextOffset), rsi);
   1803   __ bind(&skip);
   1804 
   1805   // Compute the handler entry address and jump to it.
   1806   __ movp(rdi, masm->ExternalOperand(pending_handler_code_address));
   1807   __ movp(rdx, masm->ExternalOperand(pending_handler_offset_address));
   1808   __ leap(rdi, FieldOperand(rdi, rdx, times_1, Code::kHeaderSize));
   1809   __ jmp(rdi);
   1810 }
   1811 
   1812 
   1813 void JSEntryStub::Generate(MacroAssembler* masm) {
   1814   Label invoke, handler_entry, exit;
   1815   Label not_outermost_js, not_outermost_js_2;
   1816 
   1817   ProfileEntryHookStub::MaybeCallEntryHook(masm);
   1818 
   1819   {  // NOLINT. Scope block confuses linter.
   1820     MacroAssembler::NoRootArrayScope uninitialized_root_register(masm);
   1821     // Set up frame.
   1822     __ pushq(rbp);
   1823     __ movp(rbp, rsp);
   1824 
   1825     // Push the stack frame type.
   1826     int marker = type();
   1827     __ Push(Smi::FromInt(marker));  // context slot
   1828     ExternalReference context_address(Isolate::kContextAddress, isolate());
   1829     __ Load(kScratchRegister, context_address);
   1830     __ Push(kScratchRegister);  // context
   1831     // Save callee-saved registers (X64/X32/Win64 calling conventions).
   1832     __ pushq(r12);
   1833     __ pushq(r13);
   1834     __ pushq(r14);
   1835     __ pushq(r15);
   1836 #ifdef _WIN64
   1837     __ pushq(rdi);  // Only callee save in Win64 ABI, argument in AMD64 ABI.
   1838     __ pushq(rsi);  // Only callee save in Win64 ABI, argument in AMD64 ABI.
   1839 #endif
   1840     __ pushq(rbx);
   1841 
   1842 #ifdef _WIN64
   1843     // On Win64 XMM6-XMM15 are callee-save
   1844     __ subp(rsp, Immediate(EntryFrameConstants::kXMMRegistersBlockSize));
   1845     __ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 0), xmm6);
   1846     __ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 1), xmm7);
   1847     __ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 2), xmm8);
   1848     __ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 3), xmm9);
   1849     __ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 4), xmm10);
   1850     __ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 5), xmm11);
   1851     __ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 6), xmm12);
   1852     __ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 7), xmm13);
   1853     __ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 8), xmm14);
   1854     __ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 9), xmm15);
   1855 #endif
   1856 
   1857     // Set up the roots and smi constant registers.
   1858     // Needs to be done before any further smi loads.
   1859     __ InitializeRootRegister();
   1860   }
   1861 
   1862   // Save copies of the top frame descriptor on the stack.
   1863   ExternalReference c_entry_fp(Isolate::kCEntryFPAddress, isolate());
   1864   {
   1865     Operand c_entry_fp_operand = masm->ExternalOperand(c_entry_fp);
   1866     __ Push(c_entry_fp_operand);
   1867   }
   1868 
   1869   // If this is the outermost JS call, set js_entry_sp value.
   1870   ExternalReference js_entry_sp(Isolate::kJSEntrySPAddress, isolate());
   1871   __ Load(rax, js_entry_sp);
   1872   __ testp(rax, rax);
   1873   __ j(not_zero, &not_outermost_js);
   1874   __ Push(Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME));
   1875   __ movp(rax, rbp);
   1876   __ Store(js_entry_sp, rax);
   1877   Label cont;
   1878   __ jmp(&cont);
   1879   __ bind(&not_outermost_js);
   1880   __ Push(Smi::FromInt(StackFrame::INNER_JSENTRY_FRAME));
   1881   __ bind(&cont);
   1882 
   1883   // Jump to a faked try block that does the invoke, with a faked catch
   1884   // block that sets the pending exception.
   1885   __ jmp(&invoke);
   1886   __ bind(&handler_entry);
   1887   handler_offset_ = handler_entry.pos();
   1888   // Caught exception: Store result (exception) in the pending exception
   1889   // field in the JSEnv and return a failure sentinel.
   1890   ExternalReference pending_exception(Isolate::kPendingExceptionAddress,
   1891                                       isolate());
   1892   __ Store(pending_exception, rax);
   1893   __ LoadRoot(rax, Heap::kExceptionRootIndex);
   1894   __ jmp(&exit);
   1895 
   1896   // Invoke: Link this frame into the handler chain.
   1897   __ bind(&invoke);
   1898   __ PushStackHandler();
   1899 
   1900   // Clear any pending exceptions.
   1901   __ LoadRoot(rax, Heap::kTheHoleValueRootIndex);
   1902   __ Store(pending_exception, rax);
   1903 
   1904   // Fake a receiver (NULL).
   1905   __ Push(Immediate(0));  // receiver
   1906 
   1907   // Invoke the function by calling through JS entry trampoline builtin and
   1908   // pop the faked function when we return. We load the address from an
   1909   // external reference instead of inlining the call target address directly
   1910   // in the code, because the builtin stubs may not have been generated yet
   1911   // at the time this code is generated.
   1912   if (type() == StackFrame::ENTRY_CONSTRUCT) {
   1913     ExternalReference construct_entry(Builtins::kJSConstructEntryTrampoline,
   1914                                       isolate());
   1915     __ Load(rax, construct_entry);
   1916   } else {
   1917     ExternalReference entry(Builtins::kJSEntryTrampoline, isolate());
   1918     __ Load(rax, entry);
   1919   }
   1920   __ leap(kScratchRegister, FieldOperand(rax, Code::kHeaderSize));
   1921   __ call(kScratchRegister);
   1922 
   1923   // Unlink this frame from the handler chain.
   1924   __ PopStackHandler();
   1925 
   1926   __ bind(&exit);
   1927   // Check if the current stack frame is marked as the outermost JS frame.
   1928   __ Pop(rbx);
   1929   __ Cmp(rbx, Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME));
   1930   __ j(not_equal, &not_outermost_js_2);
   1931   __ Move(kScratchRegister, js_entry_sp);
   1932   __ movp(Operand(kScratchRegister, 0), Immediate(0));
   1933   __ bind(&not_outermost_js_2);
   1934 
   1935   // Restore the top frame descriptor from the stack.
   1936   { Operand c_entry_fp_operand = masm->ExternalOperand(c_entry_fp);
   1937     __ Pop(c_entry_fp_operand);
   1938   }
   1939 
   1940   // Restore callee-saved registers (X64 conventions).
   1941 #ifdef _WIN64
   1942   // On Win64 XMM6-XMM15 are callee-save
   1943   __ movdqu(xmm6, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 0));
   1944   __ movdqu(xmm7, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 1));
   1945   __ movdqu(xmm8, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 2));
   1946   __ movdqu(xmm9, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 3));
   1947   __ movdqu(xmm10, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 4));
   1948   __ movdqu(xmm11, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 5));
   1949   __ movdqu(xmm12, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 6));
   1950   __ movdqu(xmm13, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 7));
   1951   __ movdqu(xmm14, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 8));
   1952   __ movdqu(xmm15, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 9));
   1953   __ addp(rsp, Immediate(EntryFrameConstants::kXMMRegistersBlockSize));
   1954 #endif
   1955 
   1956   __ popq(rbx);
   1957 #ifdef _WIN64
   1958   // Callee save on in Win64 ABI, arguments/volatile in AMD64 ABI.
   1959   __ popq(rsi);
   1960   __ popq(rdi);
   1961 #endif
   1962   __ popq(r15);
   1963   __ popq(r14);
   1964   __ popq(r13);
   1965   __ popq(r12);
   1966   __ addp(rsp, Immediate(2 * kPointerSize));  // remove markers
   1967 
   1968   // Restore frame pointer and return.
   1969   __ popq(rbp);
   1970   __ ret(0);
   1971 }
   1972 
   1973 
   1974 // -------------------------------------------------------------------------
   1975 // StringCharCodeAtGenerator
   1976 
   1977 void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) {
   1978   // If the receiver is a smi trigger the non-string case.
   1979   if (check_mode_ == RECEIVER_IS_UNKNOWN) {
   1980     __ JumpIfSmi(object_, receiver_not_string_);
   1981 
   1982     // Fetch the instance type of the receiver into result register.
   1983     __ movp(result_, FieldOperand(object_, HeapObject::kMapOffset));
   1984     __ movzxbl(result_, FieldOperand(result_, Map::kInstanceTypeOffset));
   1985     // If the receiver is not a string trigger the non-string case.
   1986     __ testb(result_, Immediate(kIsNotStringMask));
   1987     __ j(not_zero, receiver_not_string_);
   1988   }
   1989 
   1990   // If the index is non-smi trigger the non-smi case.
   1991   __ JumpIfNotSmi(index_, &index_not_smi_);
   1992   __ bind(&got_smi_index_);
   1993 
   1994   // Check for index out of range.
   1995   __ SmiCompare(index_, FieldOperand(object_, String::kLengthOffset));
   1996   __ j(above_equal, index_out_of_range_);
   1997 
   1998   __ SmiToInteger32(index_, index_);
   1999 
   2000   StringCharLoadGenerator::Generate(
   2001       masm, object_, index_, result_, &call_runtime_);
   2002 
   2003   __ Integer32ToSmi(result_, result_);
   2004   __ bind(&exit_);
   2005 }
   2006 
   2007 
   2008 void StringCharCodeAtGenerator::GenerateSlow(
   2009     MacroAssembler* masm, EmbedMode embed_mode,
   2010     const RuntimeCallHelper& call_helper) {
   2011   __ Abort(kUnexpectedFallthroughToCharCodeAtSlowCase);
   2012 
   2013   Factory* factory = masm->isolate()->factory();
   2014   // Index is not a smi.
   2015   __ bind(&index_not_smi_);
   2016   // If index is a heap number, try converting it to an integer.
   2017   __ CheckMap(index_,
   2018               factory->heap_number_map(),
   2019               index_not_number_,
   2020               DONT_DO_SMI_CHECK);
   2021   call_helper.BeforeCall(masm);
   2022   if (embed_mode == PART_OF_IC_HANDLER) {
   2023     __ Push(LoadWithVectorDescriptor::VectorRegister());
   2024     __ Push(LoadDescriptor::SlotRegister());
   2025   }
   2026   __ Push(object_);
   2027   __ Push(index_);  // Consumed by runtime conversion function.
   2028   __ CallRuntime(Runtime::kNumberToSmi);
   2029   if (!index_.is(rax)) {
   2030     // Save the conversion result before the pop instructions below
   2031     // have a chance to overwrite it.
   2032     __ movp(index_, rax);
   2033   }
   2034   __ Pop(object_);
   2035   if (embed_mode == PART_OF_IC_HANDLER) {
   2036     __ Pop(LoadDescriptor::SlotRegister());
   2037     __ Pop(LoadWithVectorDescriptor::VectorRegister());
   2038   }
   2039   // Reload the instance type.
   2040   __ movp(result_, FieldOperand(object_, HeapObject::kMapOffset));
   2041   __ movzxbl(result_, FieldOperand(result_, Map::kInstanceTypeOffset));
   2042   call_helper.AfterCall(masm);
   2043   // If index is still not a smi, it must be out of range.
   2044   __ JumpIfNotSmi(index_, index_out_of_range_);
   2045   // Otherwise, return to the fast path.
   2046   __ jmp(&got_smi_index_);
   2047 
   2048   // Call runtime. We get here when the receiver is a string and the
   2049   // index is a number, but the code of getting the actual character
   2050   // is too complex (e.g., when the string needs to be flattened).
   2051   __ bind(&call_runtime_);
   2052   call_helper.BeforeCall(masm);
   2053   __ Push(object_);
   2054   __ Integer32ToSmi(index_, index_);
   2055   __ Push(index_);
   2056   __ CallRuntime(Runtime::kStringCharCodeAtRT);
   2057   if (!result_.is(rax)) {
   2058     __ movp(result_, rax);
   2059   }
   2060   call_helper.AfterCall(masm);
   2061   __ jmp(&exit_);
   2062 
   2063   __ Abort(kUnexpectedFallthroughFromCharCodeAtSlowCase);
   2064 }
   2065 
   2066 
   2067 // -------------------------------------------------------------------------
   2068 // StringCharFromCodeGenerator
   2069 
   2070 void StringCharFromCodeGenerator::GenerateFast(MacroAssembler* masm) {
   2071   // Fast case of Heap::LookupSingleCharacterStringFromCode.
   2072   __ JumpIfNotSmi(code_, &slow_case_);
   2073   __ SmiCompare(code_, Smi::FromInt(String::kMaxOneByteCharCode));
   2074   __ j(above, &slow_case_);
   2075 
   2076   __ LoadRoot(result_, Heap::kSingleCharacterStringCacheRootIndex);
   2077   SmiIndex index = masm->SmiToIndex(kScratchRegister, code_, kPointerSizeLog2);
   2078   __ movp(result_, FieldOperand(result_, index.reg, index.scale,
   2079                                 FixedArray::kHeaderSize));
   2080   __ CompareRoot(result_, Heap::kUndefinedValueRootIndex);
   2081   __ j(equal, &slow_case_);
   2082   __ bind(&exit_);
   2083 }
   2084 
   2085 
   2086 void StringCharFromCodeGenerator::GenerateSlow(
   2087     MacroAssembler* masm,
   2088     const RuntimeCallHelper& call_helper) {
   2089   __ Abort(kUnexpectedFallthroughToCharFromCodeSlowCase);
   2090 
   2091   __ bind(&slow_case_);
   2092   call_helper.BeforeCall(masm);
   2093   __ Push(code_);
   2094   __ CallRuntime(Runtime::kStringCharFromCode);
   2095   if (!result_.is(rax)) {
   2096     __ movp(result_, rax);
   2097   }
   2098   call_helper.AfterCall(masm);
   2099   __ jmp(&exit_);
   2100 
   2101   __ Abort(kUnexpectedFallthroughFromCharFromCodeSlowCase);
   2102 }
   2103 
   2104 
   2105 void StringHelper::GenerateCopyCharacters(MacroAssembler* masm,
   2106                                           Register dest,
   2107                                           Register src,
   2108                                           Register count,
   2109                                           String::Encoding encoding) {
   2110   // Nothing to do for zero characters.
   2111   Label done;
   2112   __ testl(count, count);
   2113   __ j(zero, &done, Label::kNear);
   2114 
   2115   // Make count the number of bytes to copy.
   2116   if (encoding == String::TWO_BYTE_ENCODING) {
   2117     STATIC_ASSERT(2 == sizeof(uc16));
   2118     __ addl(count, count);
   2119   }
   2120 
   2121   // Copy remaining characters.
   2122   Label loop;
   2123   __ bind(&loop);
   2124   __ movb(kScratchRegister, Operand(src, 0));
   2125   __ movb(Operand(dest, 0), kScratchRegister);
   2126   __ incp(src);
   2127   __ incp(dest);
   2128   __ decl(count);
   2129   __ j(not_zero, &loop);
   2130 
   2131   __ bind(&done);
   2132 }
   2133 
   2134 
   2135 void SubStringStub::Generate(MacroAssembler* masm) {
   2136   Label runtime;
   2137 
   2138   // Stack frame on entry.
   2139   //  rsp[0]  : return address
   2140   //  rsp[8]  : to
   2141   //  rsp[16] : from
   2142   //  rsp[24] : string
   2143 
   2144   enum SubStringStubArgumentIndices {
   2145     STRING_ARGUMENT_INDEX,
   2146     FROM_ARGUMENT_INDEX,
   2147     TO_ARGUMENT_INDEX,
   2148     SUB_STRING_ARGUMENT_COUNT
   2149   };
   2150 
   2151   StackArgumentsAccessor args(rsp, SUB_STRING_ARGUMENT_COUNT,
   2152                               ARGUMENTS_DONT_CONTAIN_RECEIVER);
   2153 
   2154   // Make sure first argument is a string.
   2155   __ movp(rax, args.GetArgumentOperand(STRING_ARGUMENT_INDEX));
   2156   STATIC_ASSERT(kSmiTag == 0);
   2157   __ testl(rax, Immediate(kSmiTagMask));
   2158   __ j(zero, &runtime);
   2159   Condition is_string = masm->IsObjectStringType(rax, rbx, rbx);
   2160   __ j(NegateCondition(is_string), &runtime);
   2161 
   2162   // rax: string
   2163   // rbx: instance type
   2164   // Calculate length of sub string using the smi values.
   2165   __ movp(rcx, args.GetArgumentOperand(TO_ARGUMENT_INDEX));
   2166   __ movp(rdx, args.GetArgumentOperand(FROM_ARGUMENT_INDEX));
   2167   __ JumpUnlessBothNonNegativeSmi(rcx, rdx, &runtime);
   2168 
   2169   __ SmiSub(rcx, rcx, rdx);  // Overflow doesn't happen.
   2170   __ cmpp(rcx, FieldOperand(rax, String::kLengthOffset));
   2171   Label not_original_string;
   2172   // Shorter than original string's length: an actual substring.
   2173   __ j(below, &not_original_string, Label::kNear);
   2174   // Longer than original string's length or negative: unsafe arguments.
   2175   __ j(above, &runtime);
   2176   // Return original string.
   2177   Counters* counters = isolate()->counters();
   2178   __ IncrementCounter(counters->sub_string_native(), 1);
   2179   __ ret(SUB_STRING_ARGUMENT_COUNT * kPointerSize);
   2180   __ bind(&not_original_string);
   2181 
   2182   Label single_char;
   2183   __ SmiCompare(rcx, Smi::FromInt(1));
   2184   __ j(equal, &single_char);
   2185 
   2186   __ SmiToInteger32(rcx, rcx);
   2187 
   2188   // rax: string
   2189   // rbx: instance type
   2190   // rcx: sub string length
   2191   // rdx: from index (smi)
   2192   // Deal with different string types: update the index if necessary
   2193   // and put the underlying string into edi.
   2194   Label underlying_unpacked, sliced_string, seq_or_external_string;
   2195   // If the string is not indirect, it can only be sequential or external.
   2196   STATIC_ASSERT(kIsIndirectStringMask == (kSlicedStringTag & kConsStringTag));
   2197   STATIC_ASSERT(kIsIndirectStringMask != 0);
   2198   __ testb(rbx, Immediate(kIsIndirectStringMask));
   2199   __ j(zero, &seq_or_external_string, Label::kNear);
   2200 
   2201   __ testb(rbx, Immediate(kSlicedNotConsMask));
   2202   __ j(not_zero, &sliced_string, Label::kNear);
   2203   // Cons string.  Check whether it is flat, then fetch first part.
   2204   // Flat cons strings have an empty second part.
   2205   __ CompareRoot(FieldOperand(rax, ConsString::kSecondOffset),
   2206                  Heap::kempty_stringRootIndex);
   2207   __ j(not_equal, &runtime);
   2208   __ movp(rdi, FieldOperand(rax, ConsString::kFirstOffset));
   2209   // Update instance type.
   2210   __ movp(rbx, FieldOperand(rdi, HeapObject::kMapOffset));
   2211   __ movzxbl(rbx, FieldOperand(rbx, Map::kInstanceTypeOffset));
   2212   __ jmp(&underlying_unpacked, Label::kNear);
   2213 
   2214   __ bind(&sliced_string);
   2215   // Sliced string.  Fetch parent and correct start index by offset.
   2216   __ addp(rdx, FieldOperand(rax, SlicedString::kOffsetOffset));
   2217   __ movp(rdi, FieldOperand(rax, SlicedString::kParentOffset));
   2218   // Update instance type.
   2219   __ movp(rbx, FieldOperand(rdi, HeapObject::kMapOffset));
   2220   __ movzxbl(rbx, FieldOperand(rbx, Map::kInstanceTypeOffset));
   2221   __ jmp(&underlying_unpacked, Label::kNear);
   2222 
   2223   __ bind(&seq_or_external_string);
   2224   // Sequential or external string.  Just move string to the correct register.
   2225   __ movp(rdi, rax);
   2226 
   2227   __ bind(&underlying_unpacked);
   2228 
   2229   if (FLAG_string_slices) {
   2230     Label copy_routine;
   2231     // rdi: underlying subject string
   2232     // rbx: instance type of underlying subject string
   2233     // rdx: adjusted start index (smi)
   2234     // rcx: length
   2235     // If coming from the make_two_character_string path, the string
   2236     // is too short to be sliced anyways.
   2237     __ cmpp(rcx, Immediate(SlicedString::kMinLength));
   2238     // Short slice.  Copy instead of slicing.
   2239     __ j(less, &copy_routine);
   2240     // Allocate new sliced string.  At this point we do not reload the instance
   2241     // type including the string encoding because we simply rely on the info
   2242     // provided by the original string.  It does not matter if the original
   2243     // string's encoding is wrong because we always have to recheck encoding of
   2244     // the newly created string's parent anyways due to externalized strings.
   2245     Label two_byte_slice, set_slice_header;
   2246     STATIC_ASSERT((kStringEncodingMask & kOneByteStringTag) != 0);
   2247     STATIC_ASSERT((kStringEncodingMask & kTwoByteStringTag) == 0);
   2248     __ testb(rbx, Immediate(kStringEncodingMask));
   2249     __ j(zero, &two_byte_slice, Label::kNear);
   2250     __ AllocateOneByteSlicedString(rax, rbx, r14, &runtime);
   2251     __ jmp(&set_slice_header, Label::kNear);
   2252     __ bind(&two_byte_slice);
   2253     __ AllocateTwoByteSlicedString(rax, rbx, r14, &runtime);
   2254     __ bind(&set_slice_header);
   2255     __ Integer32ToSmi(rcx, rcx);
   2256     __ movp(FieldOperand(rax, SlicedString::kLengthOffset), rcx);
   2257     __ movp(FieldOperand(rax, SlicedString::kHashFieldOffset),
   2258            Immediate(String::kEmptyHashField));
   2259     __ movp(FieldOperand(rax, SlicedString::kParentOffset), rdi);
   2260     __ movp(FieldOperand(rax, SlicedString::kOffsetOffset), rdx);
   2261     __ IncrementCounter(counters->sub_string_native(), 1);
   2262     __ ret(3 * kPointerSize);
   2263 
   2264     __ bind(&copy_routine);
   2265   }
   2266 
   2267   // rdi: underlying subject string
   2268   // rbx: instance type of underlying subject string
   2269   // rdx: adjusted start index (smi)
   2270   // rcx: length
   2271   // The subject string can only be external or sequential string of either
   2272   // encoding at this point.
   2273   Label two_byte_sequential, sequential_string;
   2274   STATIC_ASSERT(kExternalStringTag != 0);
   2275   STATIC_ASSERT(kSeqStringTag == 0);
   2276   __ testb(rbx, Immediate(kExternalStringTag));
   2277   __ j(zero, &sequential_string);
   2278 
   2279   // Handle external string.
   2280   // Rule out short external strings.
   2281   STATIC_ASSERT(kShortExternalStringTag != 0);
   2282   __ testb(rbx, Immediate(kShortExternalStringMask));
   2283   __ j(not_zero, &runtime);
   2284   __ movp(rdi, FieldOperand(rdi, ExternalString::kResourceDataOffset));
   2285   // Move the pointer so that offset-wise, it looks like a sequential string.
   2286   STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize);
   2287   __ subp(rdi, Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
   2288 
   2289   __ bind(&sequential_string);
   2290   STATIC_ASSERT((kOneByteStringTag & kStringEncodingMask) != 0);
   2291   __ testb(rbx, Immediate(kStringEncodingMask));
   2292   __ j(zero, &two_byte_sequential);
   2293 
   2294   // Allocate the result.
   2295   __ AllocateOneByteString(rax, rcx, r11, r14, r15, &runtime);
   2296 
   2297   // rax: result string
   2298   // rcx: result string length
   2299   {  // Locate character of sub string start.
   2300     SmiIndex smi_as_index = masm->SmiToIndex(rdx, rdx, times_1);
   2301     __ leap(r14, Operand(rdi, smi_as_index.reg, smi_as_index.scale,
   2302                         SeqOneByteString::kHeaderSize - kHeapObjectTag));
   2303   }
   2304   // Locate first character of result.
   2305   __ leap(rdi, FieldOperand(rax, SeqOneByteString::kHeaderSize));
   2306 
   2307   // rax: result string
   2308   // rcx: result length
   2309   // r14: first character of result
   2310   // rsi: character of sub string start
   2311   StringHelper::GenerateCopyCharacters(
   2312       masm, rdi, r14, rcx, String::ONE_BYTE_ENCODING);
   2313   __ IncrementCounter(counters->sub_string_native(), 1);
   2314   __ ret(SUB_STRING_ARGUMENT_COUNT * kPointerSize);
   2315 
   2316   __ bind(&two_byte_sequential);
   2317   // Allocate the result.
   2318   __ AllocateTwoByteString(rax, rcx, r11, r14, r15, &runtime);
   2319 
   2320   // rax: result string
   2321   // rcx: result string length
   2322   {  // Locate character of sub string start.
   2323     SmiIndex smi_as_index = masm->SmiToIndex(rdx, rdx, times_2);
   2324     __ leap(r14, Operand(rdi, smi_as_index.reg, smi_as_index.scale,
   2325                         SeqOneByteString::kHeaderSize - kHeapObjectTag));
   2326   }
   2327   // Locate first character of result.
   2328   __ leap(rdi, FieldOperand(rax, SeqTwoByteString::kHeaderSize));
   2329 
   2330   // rax: result string
   2331   // rcx: result length
   2332   // rdi: first character of result
   2333   // r14: character of sub string start
   2334   StringHelper::GenerateCopyCharacters(
   2335       masm, rdi, r14, rcx, String::TWO_BYTE_ENCODING);
   2336   __ IncrementCounter(counters->sub_string_native(), 1);
   2337   __ ret(SUB_STRING_ARGUMENT_COUNT * kPointerSize);
   2338 
   2339   // Just jump to runtime to create the sub string.
   2340   __ bind(&runtime);
   2341   __ TailCallRuntime(Runtime::kSubString);
   2342 
   2343   __ bind(&single_char);
   2344   // rax: string
   2345   // rbx: instance type
   2346   // rcx: sub string length (smi)
   2347   // rdx: from index (smi)
   2348   StringCharAtGenerator generator(rax, rdx, rcx, rax, &runtime, &runtime,
   2349                                   &runtime, RECEIVER_IS_STRING);
   2350   generator.GenerateFast(masm);
   2351   __ ret(SUB_STRING_ARGUMENT_COUNT * kPointerSize);
   2352   generator.SkipSlow(masm, &runtime);
   2353 }
   2354 
   2355 void ToStringStub::Generate(MacroAssembler* masm) {
   2356   // The ToString stub takes one argument in rax.
   2357   Label is_number;
   2358   __ JumpIfSmi(rax, &is_number, Label::kNear);
   2359 
   2360   Label not_string;
   2361   __ CmpObjectType(rax, FIRST_NONSTRING_TYPE, rdi);
   2362   // rax: receiver
   2363   // rdi: receiver map
   2364   __ j(above_equal, &not_string, Label::kNear);
   2365   __ Ret();
   2366   __ bind(&not_string);
   2367 
   2368   Label not_heap_number;
   2369   __ CompareRoot(rdi, Heap::kHeapNumberMapRootIndex);
   2370   __ j(not_equal, &not_heap_number, Label::kNear);
   2371   __ bind(&is_number);
   2372   NumberToStringStub stub(isolate());
   2373   __ TailCallStub(&stub);
   2374   __ bind(&not_heap_number);
   2375 
   2376   Label not_oddball;
   2377   __ CmpInstanceType(rdi, ODDBALL_TYPE);
   2378   __ j(not_equal, &not_oddball, Label::kNear);
   2379   __ movp(rax, FieldOperand(rax, Oddball::kToStringOffset));
   2380   __ Ret();
   2381   __ bind(&not_oddball);
   2382 
   2383   __ PopReturnAddressTo(rcx);     // Pop return address.
   2384   __ Push(rax);                   // Push argument.
   2385   __ PushReturnAddressFrom(rcx);  // Push return address.
   2386   __ TailCallRuntime(Runtime::kToString);
   2387 }
   2388 
   2389 void ToNameStub::Generate(MacroAssembler* masm) {
   2390   // The ToName stub takes one argument in rax.
   2391   Label is_number;
   2392   __ JumpIfSmi(rax, &is_number, Label::kNear);
   2393 
   2394   Label not_name;
   2395   STATIC_ASSERT(FIRST_NAME_TYPE == FIRST_TYPE);
   2396   __ CmpObjectType(rax, LAST_NAME_TYPE, rdi);
   2397   // rax: receiver
   2398   // rdi: receiver map
   2399   __ j(above, &not_name, Label::kNear);
   2400   __ Ret();
   2401   __ bind(&not_name);
   2402 
   2403   Label not_heap_number;
   2404   __ CompareRoot(rdi, Heap::kHeapNumberMapRootIndex);
   2405   __ j(not_equal, &not_heap_number, Label::kNear);
   2406   __ bind(&is_number);
   2407   NumberToStringStub stub(isolate());
   2408   __ TailCallStub(&stub);
   2409   __ bind(&not_heap_number);
   2410 
   2411   Label not_oddball;
   2412   __ CmpInstanceType(rdi, ODDBALL_TYPE);
   2413   __ j(not_equal, &not_oddball, Label::kNear);
   2414   __ movp(rax, FieldOperand(rax, Oddball::kToStringOffset));
   2415   __ Ret();
   2416   __ bind(&not_oddball);
   2417 
   2418   __ PopReturnAddressTo(rcx);     // Pop return address.
   2419   __ Push(rax);                   // Push argument.
   2420   __ PushReturnAddressFrom(rcx);  // Push return address.
   2421   __ TailCallRuntime(Runtime::kToName);
   2422 }
   2423 
   2424 
   2425 void StringHelper::GenerateFlatOneByteStringEquals(MacroAssembler* masm,
   2426                                                    Register left,
   2427                                                    Register right,
   2428                                                    Register scratch1,
   2429                                                    Register scratch2) {
   2430   Register length = scratch1;
   2431 
   2432   // Compare lengths.
   2433   Label check_zero_length;
   2434   __ movp(length, FieldOperand(left, String::kLengthOffset));
   2435   __ SmiCompare(length, FieldOperand(right, String::kLengthOffset));
   2436   __ j(equal, &check_zero_length, Label::kNear);
   2437   __ Move(rax, Smi::FromInt(NOT_EQUAL));
   2438   __ ret(0);
   2439 
   2440   // Check if the length is zero.
   2441   Label compare_chars;
   2442   __ bind(&check_zero_length);
   2443   STATIC_ASSERT(kSmiTag == 0);
   2444   __ SmiTest(length);
   2445   __ j(not_zero, &compare_chars, Label::kNear);
   2446   __ Move(rax, Smi::FromInt(EQUAL));
   2447   __ ret(0);
   2448 
   2449   // Compare characters.
   2450   __ bind(&compare_chars);
   2451   Label strings_not_equal;
   2452   GenerateOneByteCharsCompareLoop(masm, left, right, length, scratch2,
   2453                                   &strings_not_equal, Label::kNear);
   2454 
   2455   // Characters are equal.
   2456   __ Move(rax, Smi::FromInt(EQUAL));
   2457   __ ret(0);
   2458 
   2459   // Characters are not equal.
   2460   __ bind(&strings_not_equal);
   2461   __ Move(rax, Smi::FromInt(NOT_EQUAL));
   2462   __ ret(0);
   2463 }
   2464 
   2465 
   2466 void StringHelper::GenerateCompareFlatOneByteStrings(
   2467     MacroAssembler* masm, Register left, Register right, Register scratch1,
   2468     Register scratch2, Register scratch3, Register scratch4) {
   2469   // Ensure that you can always subtract a string length from a non-negative
   2470   // number (e.g. another length).
   2471   STATIC_ASSERT(String::kMaxLength < 0x7fffffff);
   2472 
   2473   // Find minimum length and length difference.
   2474   __ movp(scratch1, FieldOperand(left, String::kLengthOffset));
   2475   __ movp(scratch4, scratch1);
   2476   __ SmiSub(scratch4,
   2477             scratch4,
   2478             FieldOperand(right, String::kLengthOffset));
   2479   // Register scratch4 now holds left.length - right.length.
   2480   const Register length_difference = scratch4;
   2481   Label left_shorter;
   2482   __ j(less, &left_shorter, Label::kNear);
   2483   // The right string isn't longer that the left one.
   2484   // Get the right string's length by subtracting the (non-negative) difference
   2485   // from the left string's length.
   2486   __ SmiSub(scratch1, scratch1, length_difference);
   2487   __ bind(&left_shorter);
   2488   // Register scratch1 now holds Min(left.length, right.length).
   2489   const Register min_length = scratch1;
   2490 
   2491   Label compare_lengths;
   2492   // If min-length is zero, go directly to comparing lengths.
   2493   __ SmiTest(min_length);
   2494   __ j(zero, &compare_lengths, Label::kNear);
   2495 
   2496   // Compare loop.
   2497   Label result_not_equal;
   2498   GenerateOneByteCharsCompareLoop(
   2499       masm, left, right, min_length, scratch2, &result_not_equal,
   2500       // In debug-code mode, SmiTest below might push
   2501       // the target label outside the near range.
   2502       Label::kFar);
   2503 
   2504   // Completed loop without finding different characters.
   2505   // Compare lengths (precomputed).
   2506   __ bind(&compare_lengths);
   2507   __ SmiTest(length_difference);
   2508   Label length_not_equal;
   2509   __ j(not_zero, &length_not_equal, Label::kNear);
   2510 
   2511   // Result is EQUAL.
   2512   __ Move(rax, Smi::FromInt(EQUAL));
   2513   __ ret(0);
   2514 
   2515   Label result_greater;
   2516   Label result_less;
   2517   __ bind(&length_not_equal);
   2518   __ j(greater, &result_greater, Label::kNear);
   2519   __ jmp(&result_less, Label::kNear);
   2520   __ bind(&result_not_equal);
   2521   // Unequal comparison of left to right, either character or length.
   2522   __ j(above, &result_greater, Label::kNear);
   2523   __ bind(&result_less);
   2524 
   2525   // Result is LESS.
   2526   __ Move(rax, Smi::FromInt(LESS));
   2527   __ ret(0);
   2528 
   2529   // Result is GREATER.
   2530   __ bind(&result_greater);
   2531   __ Move(rax, Smi::FromInt(GREATER));
   2532   __ ret(0);
   2533 }
   2534 
   2535 
   2536 void StringHelper::GenerateOneByteCharsCompareLoop(
   2537     MacroAssembler* masm, Register left, Register right, Register length,
   2538     Register scratch, Label* chars_not_equal, Label::Distance near_jump) {
   2539   // Change index to run from -length to -1 by adding length to string
   2540   // start. This means that loop ends when index reaches zero, which
   2541   // doesn't need an additional compare.
   2542   __ SmiToInteger32(length, length);
   2543   __ leap(left,
   2544          FieldOperand(left, length, times_1, SeqOneByteString::kHeaderSize));
   2545   __ leap(right,
   2546          FieldOperand(right, length, times_1, SeqOneByteString::kHeaderSize));
   2547   __ negq(length);
   2548   Register index = length;  // index = -length;
   2549 
   2550   // Compare loop.
   2551   Label loop;
   2552   __ bind(&loop);
   2553   __ movb(scratch, Operand(left, index, times_1, 0));
   2554   __ cmpb(scratch, Operand(right, index, times_1, 0));
   2555   __ j(not_equal, chars_not_equal, near_jump);
   2556   __ incq(index);
   2557   __ j(not_zero, &loop);
   2558 }
   2559 
   2560 
   2561 void BinaryOpICWithAllocationSiteStub::Generate(MacroAssembler* masm) {
   2562   // ----------- S t a t e -------------
   2563   //  -- rdx    : left
   2564   //  -- rax    : right
   2565   //  -- rsp[0] : return address
   2566   // -----------------------------------
   2567 
   2568   // Load rcx with the allocation site.  We stick an undefined dummy value here
   2569   // and replace it with the real allocation site later when we instantiate this
   2570   // stub in BinaryOpICWithAllocationSiteStub::GetCodeCopyFromTemplate().
   2571   __ Move(rcx, isolate()->factory()->undefined_value());
   2572 
   2573   // Make sure that we actually patched the allocation site.
   2574   if (FLAG_debug_code) {
   2575     __ testb(rcx, Immediate(kSmiTagMask));
   2576     __ Assert(not_equal, kExpectedAllocationSite);
   2577     __ Cmp(FieldOperand(rcx, HeapObject::kMapOffset),
   2578            isolate()->factory()->allocation_site_map());
   2579     __ Assert(equal, kExpectedAllocationSite);
   2580   }
   2581 
   2582   // Tail call into the stub that handles binary operations with allocation
   2583   // sites.
   2584   BinaryOpWithAllocationSiteStub stub(isolate(), state());
   2585   __ TailCallStub(&stub);
   2586 }
   2587 
   2588 
   2589 void CompareICStub::GenerateBooleans(MacroAssembler* masm) {
   2590   DCHECK_EQ(CompareICState::BOOLEAN, state());
   2591   Label miss;
   2592   Label::Distance const miss_distance =
   2593       masm->emit_debug_code() ? Label::kFar : Label::kNear;
   2594 
   2595   __ JumpIfSmi(rdx, &miss, miss_distance);
   2596   __ movp(rcx, FieldOperand(rdx, HeapObject::kMapOffset));
   2597   __ JumpIfSmi(rax, &miss, miss_distance);
   2598   __ movp(rbx, FieldOperand(rax, HeapObject::kMapOffset));
   2599   __ JumpIfNotRoot(rcx, Heap::kBooleanMapRootIndex, &miss, miss_distance);
   2600   __ JumpIfNotRoot(rbx, Heap::kBooleanMapRootIndex, &miss, miss_distance);
   2601   if (!Token::IsEqualityOp(op())) {
   2602     __ movp(rax, FieldOperand(rax, Oddball::kToNumberOffset));
   2603     __ AssertSmi(rax);
   2604     __ movp(rdx, FieldOperand(rdx, Oddball::kToNumberOffset));
   2605     __ AssertSmi(rdx);
   2606     __ pushq(rax);
   2607     __ movq(rax, rdx);
   2608     __ popq(rdx);
   2609   }
   2610   __ subp(rax, rdx);
   2611   __ Ret();
   2612 
   2613   __ bind(&miss);
   2614   GenerateMiss(masm);
   2615 }
   2616 
   2617 
   2618 void CompareICStub::GenerateSmis(MacroAssembler* masm) {
   2619   DCHECK(state() == CompareICState::SMI);
   2620   Label miss;
   2621   __ JumpIfNotBothSmi(rdx, rax, &miss, Label::kNear);
   2622 
   2623   if (GetCondition() == equal) {
   2624     // For equality we do not care about the sign of the result.
   2625     __ subp(rax, rdx);
   2626   } else {
   2627     Label done;
   2628     __ subp(rdx, rax);
   2629     __ j(no_overflow, &done, Label::kNear);
   2630     // Correct sign of result in case of overflow.
   2631     __ notp(rdx);
   2632     __ bind(&done);
   2633     __ movp(rax, rdx);
   2634   }
   2635   __ ret(0);
   2636 
   2637   __ bind(&miss);
   2638   GenerateMiss(masm);
   2639 }
   2640 
   2641 
   2642 void CompareICStub::GenerateNumbers(MacroAssembler* masm) {
   2643   DCHECK(state() == CompareICState::NUMBER);
   2644 
   2645   Label generic_stub;
   2646   Label unordered, maybe_undefined1, maybe_undefined2;
   2647   Label miss;
   2648 
   2649   if (left() == CompareICState::SMI) {
   2650     __ JumpIfNotSmi(rdx, &miss);
   2651   }
   2652   if (right() == CompareICState::SMI) {
   2653     __ JumpIfNotSmi(rax, &miss);
   2654   }
   2655 
   2656   // Load left and right operand.
   2657   Label done, left, left_smi, right_smi;
   2658   __ JumpIfSmi(rax, &right_smi, Label::kNear);
   2659   __ CompareMap(rax, isolate()->factory()->heap_number_map());
   2660   __ j(not_equal, &maybe_undefined1, Label::kNear);
   2661   __ Movsd(xmm1, FieldOperand(rax, HeapNumber::kValueOffset));
   2662   __ jmp(&left, Label::kNear);
   2663   __ bind(&right_smi);
   2664   __ SmiToInteger32(rcx, rax);  // Can't clobber rax yet.
   2665   __ Cvtlsi2sd(xmm1, rcx);
   2666 
   2667   __ bind(&left);
   2668   __ JumpIfSmi(rdx, &left_smi, Label::kNear);
   2669   __ CompareMap(rdx, isolate()->factory()->heap_number_map());
   2670   __ j(not_equal, &maybe_undefined2, Label::kNear);
   2671   __ Movsd(xmm0, FieldOperand(rdx, HeapNumber::kValueOffset));
   2672   __ jmp(&done);
   2673   __ bind(&left_smi);
   2674   __ SmiToInteger32(rcx, rdx);  // Can't clobber rdx yet.
   2675   __ Cvtlsi2sd(xmm0, rcx);
   2676 
   2677   __ bind(&done);
   2678   // Compare operands
   2679   __ Ucomisd(xmm0, xmm1);
   2680 
   2681   // Don't base result on EFLAGS when a NaN is involved.
   2682   __ j(parity_even, &unordered, Label::kNear);
   2683 
   2684   // Return a result of -1, 0, or 1, based on EFLAGS.
   2685   // Performing mov, because xor would destroy the flag register.
   2686   __ movl(rax, Immediate(0));
   2687   __ movl(rcx, Immediate(0));
   2688   __ setcc(above, rax);  // Add one to zero if carry clear and not equal.
   2689   __ sbbp(rax, rcx);  // Subtract one if below (aka. carry set).
   2690   __ ret(0);
   2691 
   2692   __ bind(&unordered);
   2693   __ bind(&generic_stub);
   2694   CompareICStub stub(isolate(), op(), CompareICState::GENERIC,
   2695                      CompareICState::GENERIC, CompareICState::GENERIC);
   2696   __ jmp(stub.GetCode(), RelocInfo::CODE_TARGET);
   2697 
   2698   __ bind(&maybe_undefined1);
   2699   if (Token::IsOrderedRelationalCompareOp(op())) {
   2700     __ Cmp(rax, isolate()->factory()->undefined_value());
   2701     __ j(not_equal, &miss);
   2702     __ JumpIfSmi(rdx, &unordered);
   2703     __ CmpObjectType(rdx, HEAP_NUMBER_TYPE, rcx);
   2704     __ j(not_equal, &maybe_undefined2, Label::kNear);
   2705     __ jmp(&unordered);
   2706   }
   2707 
   2708   __ bind(&maybe_undefined2);
   2709   if (Token::IsOrderedRelationalCompareOp(op())) {
   2710     __ Cmp(rdx, isolate()->factory()->undefined_value());
   2711     __ j(equal, &unordered);
   2712   }
   2713 
   2714   __ bind(&miss);
   2715   GenerateMiss(masm);
   2716 }
   2717 
   2718 
   2719 void CompareICStub::GenerateInternalizedStrings(MacroAssembler* masm) {
   2720   DCHECK(state() == CompareICState::INTERNALIZED_STRING);
   2721   DCHECK(GetCondition() == equal);
   2722 
   2723   // Registers containing left and right operands respectively.
   2724   Register left = rdx;
   2725   Register right = rax;
   2726   Register tmp1 = rcx;
   2727   Register tmp2 = rbx;
   2728 
   2729   // Check that both operands are heap objects.
   2730   Label miss;
   2731   Condition cond = masm->CheckEitherSmi(left, right, tmp1);
   2732   __ j(cond, &miss, Label::kNear);
   2733 
   2734   // Check that both operands are internalized strings.
   2735   __ movp(tmp1, FieldOperand(left, HeapObject::kMapOffset));
   2736   __ movp(tmp2, FieldOperand(right, HeapObject::kMapOffset));
   2737   __ movzxbp(tmp1, FieldOperand(tmp1, Map::kInstanceTypeOffset));
   2738   __ movzxbp(tmp2, FieldOperand(tmp2, Map::kInstanceTypeOffset));
   2739   STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
   2740   __ orp(tmp1, tmp2);
   2741   __ testb(tmp1, Immediate(kIsNotStringMask | kIsNotInternalizedMask));
   2742   __ j(not_zero, &miss, Label::kNear);
   2743 
   2744   // Internalized strings are compared by identity.
   2745   Label done;
   2746   __ cmpp(left, right);
   2747   // Make sure rax is non-zero. At this point input operands are
   2748   // guaranteed to be non-zero.
   2749   DCHECK(right.is(rax));
   2750   __ j(not_equal, &done, Label::kNear);
   2751   STATIC_ASSERT(EQUAL == 0);
   2752   STATIC_ASSERT(kSmiTag == 0);
   2753   __ Move(rax, Smi::FromInt(EQUAL));
   2754   __ bind(&done);
   2755   __ ret(0);
   2756 
   2757   __ bind(&miss);
   2758   GenerateMiss(masm);
   2759 }
   2760 
   2761 
   2762 void CompareICStub::GenerateUniqueNames(MacroAssembler* masm) {
   2763   DCHECK(state() == CompareICState::UNIQUE_NAME);
   2764   DCHECK(GetCondition() == equal);
   2765 
   2766   // Registers containing left and right operands respectively.
   2767   Register left = rdx;
   2768   Register right = rax;
   2769   Register tmp1 = rcx;
   2770   Register tmp2 = rbx;
   2771 
   2772   // Check that both operands are heap objects.
   2773   Label miss;
   2774   Condition cond = masm->CheckEitherSmi(left, right, tmp1);
   2775   __ j(cond, &miss, Label::kNear);
   2776 
   2777   // Check that both operands are unique names. This leaves the instance
   2778   // types loaded in tmp1 and tmp2.
   2779   __ movp(tmp1, FieldOperand(left, HeapObject::kMapOffset));
   2780   __ movp(tmp2, FieldOperand(right, HeapObject::kMapOffset));
   2781   __ movzxbp(tmp1, FieldOperand(tmp1, Map::kInstanceTypeOffset));
   2782   __ movzxbp(tmp2, FieldOperand(tmp2, Map::kInstanceTypeOffset));
   2783 
   2784   __ JumpIfNotUniqueNameInstanceType(tmp1, &miss, Label::kNear);
   2785   __ JumpIfNotUniqueNameInstanceType(tmp2, &miss, Label::kNear);
   2786 
   2787   // Unique names are compared by identity.
   2788   Label done;
   2789   __ cmpp(left, right);
   2790   // Make sure rax is non-zero. At this point input operands are
   2791   // guaranteed to be non-zero.
   2792   DCHECK(right.is(rax));
   2793   __ j(not_equal, &done, Label::kNear);
   2794   STATIC_ASSERT(EQUAL == 0);
   2795   STATIC_ASSERT(kSmiTag == 0);
   2796   __ Move(rax, Smi::FromInt(EQUAL));
   2797   __ bind(&done);
   2798   __ ret(0);
   2799 
   2800   __ bind(&miss);
   2801   GenerateMiss(masm);
   2802 }
   2803 
   2804 
   2805 void CompareICStub::GenerateStrings(MacroAssembler* masm) {
   2806   DCHECK(state() == CompareICState::STRING);
   2807   Label miss;
   2808 
   2809   bool equality = Token::IsEqualityOp(op());
   2810 
   2811   // Registers containing left and right operands respectively.
   2812   Register left = rdx;
   2813   Register right = rax;
   2814   Register tmp1 = rcx;
   2815   Register tmp2 = rbx;
   2816   Register tmp3 = rdi;
   2817 
   2818   // Check that both operands are heap objects.
   2819   Condition cond = masm->CheckEitherSmi(left, right, tmp1);
   2820   __ j(cond, &miss);
   2821 
   2822   // Check that both operands are strings. This leaves the instance
   2823   // types loaded in tmp1 and tmp2.
   2824   __ movp(tmp1, FieldOperand(left, HeapObject::kMapOffset));
   2825   __ movp(tmp2, FieldOperand(right, HeapObject::kMapOffset));
   2826   __ movzxbp(tmp1, FieldOperand(tmp1, Map::kInstanceTypeOffset));
   2827   __ movzxbp(tmp2, FieldOperand(tmp2, Map::kInstanceTypeOffset));
   2828   __ movp(tmp3, tmp1);
   2829   STATIC_ASSERT(kNotStringTag != 0);
   2830   __ orp(tmp3, tmp2);
   2831   __ testb(tmp3, Immediate(kIsNotStringMask));
   2832   __ j(not_zero, &miss);
   2833 
   2834   // Fast check for identical strings.
   2835   Label not_same;
   2836   __ cmpp(left, right);
   2837   __ j(not_equal, &not_same, Label::kNear);
   2838   STATIC_ASSERT(EQUAL == 0);
   2839   STATIC_ASSERT(kSmiTag == 0);
   2840   __ Move(rax, Smi::FromInt(EQUAL));
   2841   __ ret(0);
   2842 
   2843   // Handle not identical strings.
   2844   __ bind(&not_same);
   2845 
   2846   // Check that both strings are internalized strings. If they are, we're done
   2847   // because we already know they are not identical. We also know they are both
   2848   // strings.
   2849   if (equality) {
   2850     Label do_compare;
   2851     STATIC_ASSERT(kInternalizedTag == 0);
   2852     __ orp(tmp1, tmp2);
   2853     __ testb(tmp1, Immediate(kIsNotInternalizedMask));
   2854     __ j(not_zero, &do_compare, Label::kNear);
   2855     // Make sure rax is non-zero. At this point input operands are
   2856     // guaranteed to be non-zero.
   2857     DCHECK(right.is(rax));
   2858     __ ret(0);
   2859     __ bind(&do_compare);
   2860   }
   2861 
   2862   // Check that both strings are sequential one-byte.
   2863   Label runtime;
   2864   __ JumpIfNotBothSequentialOneByteStrings(left, right, tmp1, tmp2, &runtime);
   2865 
   2866   // Compare flat one-byte strings. Returns when done.
   2867   if (equality) {
   2868     StringHelper::GenerateFlatOneByteStringEquals(masm, left, right, tmp1,
   2869                                                   tmp2);
   2870   } else {
   2871     StringHelper::GenerateCompareFlatOneByteStrings(
   2872         masm, left, right, tmp1, tmp2, tmp3, kScratchRegister);
   2873   }
   2874 
   2875   // Handle more complex cases in runtime.
   2876   __ bind(&runtime);
   2877   if (equality) {
   2878     {
   2879       FrameScope scope(masm, StackFrame::INTERNAL);
   2880       __ Push(left);
   2881       __ Push(right);
   2882       __ CallRuntime(Runtime::kStringEqual);
   2883     }
   2884     __ LoadRoot(rdx, Heap::kTrueValueRootIndex);
   2885     __ subp(rax, rdx);
   2886     __ Ret();
   2887   } else {
   2888     __ PopReturnAddressTo(tmp1);
   2889     __ Push(left);
   2890     __ Push(right);
   2891     __ PushReturnAddressFrom(tmp1);
   2892     __ TailCallRuntime(Runtime::kStringCompare);
   2893   }
   2894 
   2895   __ bind(&miss);
   2896   GenerateMiss(masm);
   2897 }
   2898 
   2899 
   2900 void CompareICStub::GenerateReceivers(MacroAssembler* masm) {
   2901   DCHECK_EQ(CompareICState::RECEIVER, state());
   2902   Label miss;
   2903   Condition either_smi = masm->CheckEitherSmi(rdx, rax);
   2904   __ j(either_smi, &miss, Label::kNear);
   2905 
   2906   STATIC_ASSERT(LAST_TYPE == LAST_JS_RECEIVER_TYPE);
   2907   __ CmpObjectType(rax, FIRST_JS_RECEIVER_TYPE, rcx);
   2908   __ j(below, &miss, Label::kNear);
   2909   __ CmpObjectType(rdx, FIRST_JS_RECEIVER_TYPE, rcx);
   2910   __ j(below, &miss, Label::kNear);
   2911 
   2912   DCHECK_EQ(equal, GetCondition());
   2913   __ subp(rax, rdx);
   2914   __ ret(0);
   2915 
   2916   __ bind(&miss);
   2917   GenerateMiss(masm);
   2918 }
   2919 
   2920 
   2921 void CompareICStub::GenerateKnownReceivers(MacroAssembler* masm) {
   2922   Label miss;
   2923   Handle<WeakCell> cell = Map::WeakCellForMap(known_map_);
   2924   Condition either_smi = masm->CheckEitherSmi(rdx, rax);
   2925   __ j(either_smi, &miss, Label::kNear);
   2926 
   2927   __ GetWeakValue(rdi, cell);
   2928   __ cmpp(FieldOperand(rdx, HeapObject::kMapOffset), rdi);
   2929   __ j(not_equal, &miss, Label::kNear);
   2930   __ cmpp(FieldOperand(rax, HeapObject::kMapOffset), rdi);
   2931   __ j(not_equal, &miss, Label::kNear);
   2932 
   2933   if (Token::IsEqualityOp(op())) {
   2934     __ subp(rax, rdx);
   2935     __ ret(0);
   2936   } else {
   2937     __ PopReturnAddressTo(rcx);
   2938     __ Push(rdx);
   2939     __ Push(rax);
   2940     __ Push(Smi::FromInt(NegativeComparisonResult(GetCondition())));
   2941     __ PushReturnAddressFrom(rcx);
   2942     __ TailCallRuntime(Runtime::kCompare);
   2943   }
   2944 
   2945   __ bind(&miss);
   2946   GenerateMiss(masm);
   2947 }
   2948 
   2949 
   2950 void CompareICStub::GenerateMiss(MacroAssembler* masm) {
   2951   {
   2952     // Call the runtime system in a fresh internal frame.
   2953     FrameScope scope(masm, StackFrame::INTERNAL);
   2954     __ Push(rdx);
   2955     __ Push(rax);
   2956     __ Push(rdx);
   2957     __ Push(rax);
   2958     __ Push(Smi::FromInt(op()));
   2959     __ CallRuntime(Runtime::kCompareIC_Miss);
   2960 
   2961     // Compute the entry point of the rewritten stub.
   2962     __ leap(rdi, FieldOperand(rax, Code::kHeaderSize));
   2963     __ Pop(rax);
   2964     __ Pop(rdx);
   2965   }
   2966 
   2967   // Do a tail call to the rewritten stub.
   2968   __ jmp(rdi);
   2969 }
   2970 
   2971 
   2972 void NameDictionaryLookupStub::GenerateNegativeLookup(MacroAssembler* masm,
   2973                                                       Label* miss,
   2974                                                       Label* done,
   2975                                                       Register properties,
   2976                                                       Handle<Name> name,
   2977                                                       Register r0) {
   2978   DCHECK(name->IsUniqueName());
   2979   // If names of slots in range from 1 to kProbes - 1 for the hash value are
   2980   // not equal to the name and kProbes-th slot is not used (its name is the
   2981   // undefined value), it guarantees the hash table doesn't contain the
   2982   // property. It's true even if some slots represent deleted properties
   2983   // (their names are the hole value).
   2984   for (int i = 0; i < kInlinedProbes; i++) {
   2985     // r0 points to properties hash.
   2986     // Compute the masked index: (hash + i + i * i) & mask.
   2987     Register index = r0;
   2988     // Capacity is smi 2^n.
   2989     __ SmiToInteger32(index, FieldOperand(properties, kCapacityOffset));
   2990     __ decl(index);
   2991     __ andp(index,
   2992             Immediate(name->Hash() + NameDictionary::GetProbeOffset(i)));
   2993 
   2994     // Scale the index by multiplying by the entry size.
   2995     STATIC_ASSERT(NameDictionary::kEntrySize == 3);
   2996     __ leap(index, Operand(index, index, times_2, 0));  // index *= 3.
   2997 
   2998     Register entity_name = r0;
   2999     // Having undefined at this place means the name is not contained.
   3000     STATIC_ASSERT(kSmiTagSize == 1);
   3001     __ movp(entity_name, Operand(properties,
   3002                                  index,
   3003                                  times_pointer_size,
   3004                                  kElementsStartOffset - kHeapObjectTag));
   3005     __ Cmp(entity_name, masm->isolate()->factory()->undefined_value());
   3006     __ j(equal, done);
   3007 
   3008     // Stop if found the property.
   3009     __ Cmp(entity_name, Handle<Name>(name));
   3010     __ j(equal, miss);
   3011 
   3012     Label good;
   3013     // Check for the hole and skip.
   3014     __ CompareRoot(entity_name, Heap::kTheHoleValueRootIndex);
   3015     __ j(equal, &good, Label::kNear);
   3016 
   3017     // Check if the entry name is not a unique name.
   3018     __ movp(entity_name, FieldOperand(entity_name, HeapObject::kMapOffset));
   3019     __ JumpIfNotUniqueNameInstanceType(
   3020         FieldOperand(entity_name, Map::kInstanceTypeOffset), miss);
   3021     __ bind(&good);
   3022   }
   3023 
   3024   NameDictionaryLookupStub stub(masm->isolate(), properties, r0, r0,
   3025                                 NEGATIVE_LOOKUP);
   3026   __ Push(Handle<Object>(name));
   3027   __ Push(Immediate(name->Hash()));
   3028   __ CallStub(&stub);
   3029   __ testp(r0, r0);
   3030   __ j(not_zero, miss);
   3031   __ jmp(done);
   3032 }
   3033 
   3034 
   3035 // Probe the name dictionary in the |elements| register. Jump to the
   3036 // |done| label if a property with the given name is found leaving the
   3037 // index into the dictionary in |r1|. Jump to the |miss| label
   3038 // otherwise.
   3039 void NameDictionaryLookupStub::GeneratePositiveLookup(MacroAssembler* masm,
   3040                                                       Label* miss,
   3041                                                       Label* done,
   3042                                                       Register elements,
   3043                                                       Register name,
   3044                                                       Register r0,
   3045                                                       Register r1) {
   3046   DCHECK(!elements.is(r0));
   3047   DCHECK(!elements.is(r1));
   3048   DCHECK(!name.is(r0));
   3049   DCHECK(!name.is(r1));
   3050 
   3051   __ AssertName(name);
   3052 
   3053   __ SmiToInteger32(r0, FieldOperand(elements, kCapacityOffset));
   3054   __ decl(r0);
   3055 
   3056   for (int i = 0; i < kInlinedProbes; i++) {
   3057     // Compute the masked index: (hash + i + i * i) & mask.
   3058     __ movl(r1, FieldOperand(name, Name::kHashFieldOffset));
   3059     __ shrl(r1, Immediate(Name::kHashShift));
   3060     if (i > 0) {
   3061       __ addl(r1, Immediate(NameDictionary::GetProbeOffset(i)));
   3062     }
   3063     __ andp(r1, r0);
   3064 
   3065     // Scale the index by multiplying by the entry size.
   3066     STATIC_ASSERT(NameDictionary::kEntrySize == 3);
   3067     __ leap(r1, Operand(r1, r1, times_2, 0));  // r1 = r1 * 3
   3068 
   3069     // Check if the key is identical to the name.
   3070     __ cmpp(name, Operand(elements, r1, times_pointer_size,
   3071                           kElementsStartOffset - kHeapObjectTag));
   3072     __ j(equal, done);
   3073   }
   3074 
   3075   NameDictionaryLookupStub stub(masm->isolate(), elements, r0, r1,
   3076                                 POSITIVE_LOOKUP);
   3077   __ Push(name);
   3078   __ movl(r0, FieldOperand(name, Name::kHashFieldOffset));
   3079   __ shrl(r0, Immediate(Name::kHashShift));
   3080   __ Push(r0);
   3081   __ CallStub(&stub);
   3082 
   3083   __ testp(r0, r0);
   3084   __ j(zero, miss);
   3085   __ jmp(done);
   3086 }
   3087 
   3088 
   3089 void NameDictionaryLookupStub::Generate(MacroAssembler* masm) {
   3090   // This stub overrides SometimesSetsUpAFrame() to return false.  That means
   3091   // we cannot call anything that could cause a GC from this stub.
   3092   // Stack frame on entry:
   3093   //  rsp[0 * kPointerSize] : return address.
   3094   //  rsp[1 * kPointerSize] : key's hash.
   3095   //  rsp[2 * kPointerSize] : key.
   3096   // Registers:
   3097   //  dictionary_: NameDictionary to probe.
   3098   //  result_: used as scratch.
   3099   //  index_: will hold an index of entry if lookup is successful.
   3100   //          might alias with result_.
   3101   // Returns:
   3102   //  result_ is zero if lookup failed, non zero otherwise.
   3103 
   3104   Label in_dictionary, maybe_in_dictionary, not_in_dictionary;
   3105 
   3106   Register scratch = result();
   3107 
   3108   __ SmiToInteger32(scratch, FieldOperand(dictionary(), kCapacityOffset));
   3109   __ decl(scratch);
   3110   __ Push(scratch);
   3111 
   3112   // If names of slots in range from 1 to kProbes - 1 for the hash value are
   3113   // not equal to the name and kProbes-th slot is not used (its name is the
   3114   // undefined value), it guarantees the hash table doesn't contain the
   3115   // property. It's true even if some slots represent deleted properties
   3116   // (their names are the null value).
   3117   StackArgumentsAccessor args(rsp, 2, ARGUMENTS_DONT_CONTAIN_RECEIVER,
   3118                               kPointerSize);
   3119   for (int i = kInlinedProbes; i < kTotalProbes; i++) {
   3120     // Compute the masked index: (hash + i + i * i) & mask.
   3121     __ movp(scratch, args.GetArgumentOperand(1));
   3122     if (i > 0) {
   3123       __ addl(scratch, Immediate(NameDictionary::GetProbeOffset(i)));
   3124     }
   3125     __ andp(scratch, Operand(rsp, 0));
   3126 
   3127     // Scale the index by multiplying by the entry size.
   3128     STATIC_ASSERT(NameDictionary::kEntrySize == 3);
   3129     __ leap(index(), Operand(scratch, scratch, times_2, 0));  // index *= 3.
   3130 
   3131     // Having undefined at this place means the name is not contained.
   3132     __ movp(scratch, Operand(dictionary(), index(), times_pointer_size,
   3133                              kElementsStartOffset - kHeapObjectTag));
   3134 
   3135     __ Cmp(scratch, isolate()->factory()->undefined_value());
   3136     __ j(equal, &not_in_dictionary);
   3137 
   3138     // Stop if found the property.
   3139     __ cmpp(scratch, args.GetArgumentOperand(0));
   3140     __ j(equal, &in_dictionary);
   3141 
   3142     if (i != kTotalProbes - 1 && mode() == NEGATIVE_LOOKUP) {
   3143       // If we hit a key that is not a unique name during negative
   3144       // lookup we have to bailout as this key might be equal to the
   3145       // key we are looking for.
   3146 
   3147       // Check if the entry name is not a unique name.
   3148       __ movp(scratch, FieldOperand(scratch, HeapObject::kMapOffset));
   3149       __ JumpIfNotUniqueNameInstanceType(
   3150           FieldOperand(scratch, Map::kInstanceTypeOffset),
   3151           &maybe_in_dictionary);
   3152     }
   3153   }
   3154 
   3155   __ bind(&maybe_in_dictionary);
   3156   // If we are doing negative lookup then probing failure should be
   3157   // treated as a lookup success. For positive lookup probing failure
   3158   // should be treated as lookup failure.
   3159   if (mode() == POSITIVE_LOOKUP) {
   3160     __ movp(scratch, Immediate(0));
   3161     __ Drop(1);
   3162     __ ret(2 * kPointerSize);
   3163   }
   3164 
   3165   __ bind(&in_dictionary);
   3166   __ movp(scratch, Immediate(1));
   3167   __ Drop(1);
   3168   __ ret(2 * kPointerSize);
   3169 
   3170   __ bind(&not_in_dictionary);
   3171   __ movp(scratch, Immediate(0));
   3172   __ Drop(1);
   3173   __ ret(2 * kPointerSize);
   3174 }
   3175 
   3176 
   3177 void StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(
   3178     Isolate* isolate) {
   3179   StoreBufferOverflowStub stub1(isolate, kDontSaveFPRegs);
   3180   stub1.GetCode();
   3181   StoreBufferOverflowStub stub2(isolate, kSaveFPRegs);
   3182   stub2.GetCode();
   3183 }
   3184 
   3185 
   3186 // Takes the input in 3 registers: address_ value_ and object_.  A pointer to
   3187 // the value has just been written into the object, now this stub makes sure
   3188 // we keep the GC informed.  The word in the object where the value has been
   3189 // written is in the address register.
   3190 void RecordWriteStub::Generate(MacroAssembler* masm) {
   3191   Label skip_to_incremental_noncompacting;
   3192   Label skip_to_incremental_compacting;
   3193 
   3194   // The first two instructions are generated with labels so as to get the
   3195   // offset fixed up correctly by the bind(Label*) call.  We patch it back and
   3196   // forth between a compare instructions (a nop in this position) and the
   3197   // real branch when we start and stop incremental heap marking.
   3198   // See RecordWriteStub::Patch for details.
   3199   __ jmp(&skip_to_incremental_noncompacting, Label::kNear);
   3200   __ jmp(&skip_to_incremental_compacting, Label::kFar);
   3201 
   3202   if (remembered_set_action() == EMIT_REMEMBERED_SET) {
   3203     __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
   3204                            MacroAssembler::kReturnAtEnd);
   3205   } else {
   3206     __ ret(0);
   3207   }
   3208 
   3209   __ bind(&skip_to_incremental_noncompacting);
   3210   GenerateIncremental(masm, INCREMENTAL);
   3211 
   3212   __ bind(&skip_to_incremental_compacting);
   3213   GenerateIncremental(masm, INCREMENTAL_COMPACTION);
   3214 
   3215   // Initial mode of the stub is expected to be STORE_BUFFER_ONLY.
   3216   // Will be checked in IncrementalMarking::ActivateGeneratedStub.
   3217   masm->set_byte_at(0, kTwoByteNopInstruction);
   3218   masm->set_byte_at(2, kFiveByteNopInstruction);
   3219 }
   3220 
   3221 
   3222 void RecordWriteStub::GenerateIncremental(MacroAssembler* masm, Mode mode) {
   3223   regs_.Save(masm);
   3224 
   3225   if (remembered_set_action() == EMIT_REMEMBERED_SET) {
   3226     Label dont_need_remembered_set;
   3227 
   3228     __ movp(regs_.scratch0(), Operand(regs_.address(), 0));
   3229     __ JumpIfNotInNewSpace(regs_.scratch0(),
   3230                            regs_.scratch0(),
   3231                            &dont_need_remembered_set);
   3232 
   3233     __ JumpIfInNewSpace(regs_.object(), regs_.scratch0(),
   3234                         &dont_need_remembered_set);
   3235 
   3236     // First notify the incremental marker if necessary, then update the
   3237     // remembered set.
   3238     CheckNeedsToInformIncrementalMarker(
   3239         masm, kUpdateRememberedSetOnNoNeedToInformIncrementalMarker, mode);
   3240     InformIncrementalMarker(masm);
   3241     regs_.Restore(masm);
   3242     __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
   3243                            MacroAssembler::kReturnAtEnd);
   3244 
   3245     __ bind(&dont_need_remembered_set);
   3246   }
   3247 
   3248   CheckNeedsToInformIncrementalMarker(
   3249       masm, kReturnOnNoNeedToInformIncrementalMarker, mode);
   3250   InformIncrementalMarker(masm);
   3251   regs_.Restore(masm);
   3252   __ ret(0);
   3253 }
   3254 
   3255 
   3256 void RecordWriteStub::InformIncrementalMarker(MacroAssembler* masm) {
   3257   regs_.SaveCallerSaveRegisters(masm, save_fp_regs_mode());
   3258   Register address =
   3259       arg_reg_1.is(regs_.address()) ? kScratchRegister : regs_.address();
   3260   DCHECK(!address.is(regs_.object()));
   3261   DCHECK(!address.is(arg_reg_1));
   3262   __ Move(address, regs_.address());
   3263   __ Move(arg_reg_1, regs_.object());
   3264   // TODO(gc) Can we just set address arg2 in the beginning?
   3265   __ Move(arg_reg_2, address);
   3266   __ LoadAddress(arg_reg_3,
   3267                  ExternalReference::isolate_address(isolate()));
   3268   int argument_count = 3;
   3269 
   3270   AllowExternalCallThatCantCauseGC scope(masm);
   3271   __ PrepareCallCFunction(argument_count);
   3272   __ CallCFunction(
   3273       ExternalReference::incremental_marking_record_write_function(isolate()),
   3274       argument_count);
   3275   regs_.RestoreCallerSaveRegisters(masm, save_fp_regs_mode());
   3276 }
   3277 
   3278 
   3279 void RecordWriteStub::CheckNeedsToInformIncrementalMarker(
   3280     MacroAssembler* masm,
   3281     OnNoNeedToInformIncrementalMarker on_no_need,
   3282     Mode mode) {
   3283   Label on_black;
   3284   Label need_incremental;
   3285   Label need_incremental_pop_object;
   3286 
   3287   __ movp(regs_.scratch0(), Immediate(~Page::kPageAlignmentMask));
   3288   __ andp(regs_.scratch0(), regs_.object());
   3289   __ movp(regs_.scratch1(),
   3290          Operand(regs_.scratch0(),
   3291                  MemoryChunk::kWriteBarrierCounterOffset));
   3292   __ subp(regs_.scratch1(), Immediate(1));
   3293   __ movp(Operand(regs_.scratch0(),
   3294                  MemoryChunk::kWriteBarrierCounterOffset),
   3295          regs_.scratch1());
   3296   __ j(negative, &need_incremental);
   3297 
   3298   // Let's look at the color of the object:  If it is not black we don't have
   3299   // to inform the incremental marker.
   3300   __ JumpIfBlack(regs_.object(),
   3301                  regs_.scratch0(),
   3302                  regs_.scratch1(),
   3303                  &on_black,
   3304                  Label::kNear);
   3305 
   3306   regs_.Restore(masm);
   3307   if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
   3308     __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
   3309                            MacroAssembler::kReturnAtEnd);
   3310   } else {
   3311     __ ret(0);
   3312   }
   3313 
   3314   __ bind(&on_black);
   3315 
   3316   // Get the value from the slot.
   3317   __ movp(regs_.scratch0(), Operand(regs_.address(), 0));
   3318 
   3319   if (mode == INCREMENTAL_COMPACTION) {
   3320     Label ensure_not_white;
   3321 
   3322     __ CheckPageFlag(regs_.scratch0(),  // Contains value.
   3323                      regs_.scratch1(),  // Scratch.
   3324                      MemoryChunk::kEvacuationCandidateMask,
   3325                      zero,
   3326                      &ensure_not_white,
   3327                      Label::kNear);
   3328 
   3329     __ CheckPageFlag(regs_.object(),
   3330                      regs_.scratch1(),  // Scratch.
   3331                      MemoryChunk::kSkipEvacuationSlotsRecordingMask,
   3332                      zero,
   3333                      &need_incremental);
   3334 
   3335     __ bind(&ensure_not_white);
   3336   }
   3337 
   3338   // We need an extra register for this, so we push the object register
   3339   // temporarily.
   3340   __ Push(regs_.object());
   3341   __ JumpIfWhite(regs_.scratch0(),  // The value.
   3342                  regs_.scratch1(),  // Scratch.
   3343                  regs_.object(),    // Scratch.
   3344                  &need_incremental_pop_object, Label::kNear);
   3345   __ Pop(regs_.object());
   3346 
   3347   regs_.Restore(masm);
   3348   if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
   3349     __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
   3350                            MacroAssembler::kReturnAtEnd);
   3351   } else {
   3352     __ ret(0);
   3353   }
   3354 
   3355   __ bind(&need_incremental_pop_object);
   3356   __ Pop(regs_.object());
   3357 
   3358   __ bind(&need_incremental);
   3359 
   3360   // Fall through when we need to inform the incremental marker.
   3361 }
   3362 
   3363 
   3364 void StubFailureTrampolineStub::Generate(MacroAssembler* masm) {
   3365   CEntryStub ces(isolate(), 1, kSaveFPRegs);
   3366   __ Call(ces.GetCode(), RelocInfo::CODE_TARGET);
   3367   int parameter_count_offset =
   3368       StubFailureTrampolineFrameConstants::kArgumentsLengthOffset;
   3369   __ movp(rbx, MemOperand(rbp, parameter_count_offset));
   3370   masm->LeaveFrame(StackFrame::STUB_FAILURE_TRAMPOLINE);
   3371   __ PopReturnAddressTo(rcx);
   3372   int additional_offset =
   3373       function_mode() == JS_FUNCTION_STUB_MODE ? kPointerSize : 0;
   3374   __ leap(rsp, MemOperand(rsp, rbx, times_pointer_size, additional_offset));
   3375   __ jmp(rcx);  // Return to IC Miss stub, continuation still on stack.
   3376 }
   3377 
   3378 
   3379 void LoadICTrampolineStub::Generate(MacroAssembler* masm) {
   3380   __ EmitLoadTypeFeedbackVector(LoadWithVectorDescriptor::VectorRegister());
   3381   LoadICStub stub(isolate());
   3382   stub.GenerateForTrampoline(masm);
   3383 }
   3384 
   3385 
   3386 void KeyedLoadICTrampolineStub::Generate(MacroAssembler* masm) {
   3387   __ EmitLoadTypeFeedbackVector(LoadWithVectorDescriptor::VectorRegister());
   3388   KeyedLoadICStub stub(isolate());
   3389   stub.GenerateForTrampoline(masm);
   3390 }
   3391 
   3392 
   3393 static void HandleArrayCases(MacroAssembler* masm, Register feedback,
   3394                              Register receiver_map, Register scratch1,
   3395                              Register scratch2, Register scratch3,
   3396                              bool is_polymorphic, Label* miss) {
   3397   // feedback initially contains the feedback array
   3398   Label next_loop, prepare_next;
   3399   Label start_polymorphic;
   3400 
   3401   Register counter = scratch1;
   3402   Register length = scratch2;
   3403   Register cached_map = scratch3;
   3404 
   3405   __ movp(cached_map, FieldOperand(feedback, FixedArray::OffsetOfElementAt(0)));
   3406   __ cmpp(receiver_map, FieldOperand(cached_map, WeakCell::kValueOffset));
   3407   __ j(not_equal, &start_polymorphic);
   3408 
   3409   // found, now call handler.
   3410   Register handler = feedback;
   3411   __ movp(handler, FieldOperand(feedback, FixedArray::OffsetOfElementAt(1)));
   3412   __ leap(handler, FieldOperand(handler, Code::kHeaderSize));
   3413   __ jmp(handler);
   3414 
   3415   // Polymorphic, we have to loop from 2 to N
   3416   __ bind(&start_polymorphic);
   3417   __ SmiToInteger32(length, FieldOperand(feedback, FixedArray::kLengthOffset));
   3418   if (!is_polymorphic) {
   3419     // If the IC could be monomorphic we have to make sure we don't go past the
   3420     // end of the feedback array.
   3421     __ cmpl(length, Immediate(2));
   3422     __ j(equal, miss);
   3423   }
   3424   __ movl(counter, Immediate(2));
   3425 
   3426   __ bind(&next_loop);
   3427   __ movp(cached_map, FieldOperand(feedback, counter, times_pointer_size,
   3428                                    FixedArray::kHeaderSize));
   3429   __ cmpp(receiver_map, FieldOperand(cached_map, WeakCell::kValueOffset));
   3430   __ j(not_equal, &prepare_next);
   3431   __ movp(handler, FieldOperand(feedback, counter, times_pointer_size,
   3432                                 FixedArray::kHeaderSize + kPointerSize));
   3433   __ leap(handler, FieldOperand(handler, Code::kHeaderSize));
   3434   __ jmp(handler);
   3435 
   3436   __ bind(&prepare_next);
   3437   __ addl(counter, Immediate(2));
   3438   __ cmpl(counter, length);
   3439   __ j(less, &next_loop);
   3440 
   3441   // We exhausted our array of map handler pairs.
   3442   __ jmp(miss);
   3443 }
   3444 
   3445 
   3446 static void HandleMonomorphicCase(MacroAssembler* masm, Register receiver,
   3447                                   Register receiver_map, Register feedback,
   3448                                   Register vector, Register integer_slot,
   3449                                   Label* compare_map, Label* load_smi_map,
   3450                                   Label* try_array) {
   3451   __ JumpIfSmi(receiver, load_smi_map);
   3452   __ movp(receiver_map, FieldOperand(receiver, 0));
   3453 
   3454   __ bind(compare_map);
   3455   __ cmpp(receiver_map, FieldOperand(feedback, WeakCell::kValueOffset));
   3456   __ j(not_equal, try_array);
   3457   Register handler = feedback;
   3458   __ movp(handler, FieldOperand(vector, integer_slot, times_pointer_size,
   3459                                 FixedArray::kHeaderSize + kPointerSize));
   3460   __ leap(handler, FieldOperand(handler, Code::kHeaderSize));
   3461   __ jmp(handler);
   3462 }
   3463 
   3464 
   3465 void LoadICStub::Generate(MacroAssembler* masm) { GenerateImpl(masm, false); }
   3466 
   3467 
   3468 void LoadICStub::GenerateForTrampoline(MacroAssembler* masm) {
   3469   GenerateImpl(masm, true);
   3470 }
   3471 
   3472 
   3473 void LoadICStub::GenerateImpl(MacroAssembler* masm, bool in_frame) {
   3474   Register receiver = LoadWithVectorDescriptor::ReceiverRegister();  // rdx
   3475   Register name = LoadWithVectorDescriptor::NameRegister();          // rcx
   3476   Register vector = LoadWithVectorDescriptor::VectorRegister();      // rbx
   3477   Register slot = LoadWithVectorDescriptor::SlotRegister();          // rax
   3478   Register feedback = rdi;
   3479   Register integer_slot = r8;
   3480   Register receiver_map = r9;
   3481 
   3482   __ SmiToInteger32(integer_slot, slot);
   3483   __ movp(feedback, FieldOperand(vector, integer_slot, times_pointer_size,
   3484                                  FixedArray::kHeaderSize));
   3485 
   3486   // Try to quickly handle the monomorphic case without knowing for sure
   3487   // if we have a weak cell in feedback. We do know it's safe to look
   3488   // at WeakCell::kValueOffset.
   3489   Label try_array, load_smi_map, compare_map;
   3490   Label not_array, miss;
   3491   HandleMonomorphicCase(masm, receiver, receiver_map, feedback, vector,
   3492                         integer_slot, &compare_map, &load_smi_map, &try_array);
   3493 
   3494   // Is it a fixed array?
   3495   __ bind(&try_array);
   3496   __ CompareRoot(FieldOperand(feedback, 0), Heap::kFixedArrayMapRootIndex);
   3497   __ j(not_equal, &not_array);
   3498   HandleArrayCases(masm, feedback, receiver_map, integer_slot, r11, r15, true,
   3499                    &miss);
   3500 
   3501   __ bind(&not_array);
   3502   __ CompareRoot(feedback, Heap::kmegamorphic_symbolRootIndex);
   3503   __ j(not_equal, &miss);
   3504   Code::Flags code_flags =
   3505       Code::RemoveHolderFromFlags(Code::ComputeHandlerFlags(Code::LOAD_IC));
   3506   masm->isolate()->stub_cache()->GenerateProbe(
   3507       masm, Code::LOAD_IC, code_flags, receiver, name, feedback, no_reg);
   3508 
   3509   __ bind(&miss);
   3510   LoadIC::GenerateMiss(masm);
   3511 
   3512   __ bind(&load_smi_map);
   3513   __ LoadRoot(receiver_map, Heap::kHeapNumberMapRootIndex);
   3514   __ jmp(&compare_map);
   3515 }
   3516 
   3517 
   3518 void KeyedLoadICStub::Generate(MacroAssembler* masm) {
   3519   GenerateImpl(masm, false);
   3520 }
   3521 
   3522 
   3523 void KeyedLoadICStub::GenerateForTrampoline(MacroAssembler* masm) {
   3524   GenerateImpl(masm, true);
   3525 }
   3526 
   3527 
   3528 void KeyedLoadICStub::GenerateImpl(MacroAssembler* masm, bool in_frame) {
   3529   Register receiver = LoadWithVectorDescriptor::ReceiverRegister();  // rdx
   3530   Register key = LoadWithVectorDescriptor::NameRegister();           // rcx
   3531   Register vector = LoadWithVectorDescriptor::VectorRegister();      // rbx
   3532   Register slot = LoadWithVectorDescriptor::SlotRegister();          // rax
   3533   Register feedback = rdi;
   3534   Register integer_slot = r8;
   3535   Register receiver_map = r9;
   3536 
   3537   __ SmiToInteger32(integer_slot, slot);
   3538   __ movp(feedback, FieldOperand(vector, integer_slot, times_pointer_size,
   3539                                  FixedArray::kHeaderSize));
   3540 
   3541   // Try to quickly handle the monomorphic case without knowing for sure
   3542   // if we have a weak cell in feedback. We do know it's safe to look
   3543   // at WeakCell::kValueOffset.
   3544   Label try_array, load_smi_map, compare_map;
   3545   Label not_array, miss;
   3546   HandleMonomorphicCase(masm, receiver, receiver_map, feedback, vector,
   3547                         integer_slot, &compare_map, &load_smi_map, &try_array);
   3548 
   3549   __ bind(&try_array);
   3550   // Is it a fixed array?
   3551   __ CompareRoot(FieldOperand(feedback, 0), Heap::kFixedArrayMapRootIndex);
   3552   __ j(not_equal, &not_array);
   3553 
   3554   // We have a polymorphic element handler.
   3555   Label polymorphic, try_poly_name;
   3556   __ bind(&polymorphic);
   3557   HandleArrayCases(masm, feedback, receiver_map, integer_slot, r11, r15, true,
   3558                    &miss);
   3559 
   3560   __ bind(&not_array);
   3561   // Is it generic?
   3562   __ CompareRoot(feedback, Heap::kmegamorphic_symbolRootIndex);
   3563   __ j(not_equal, &try_poly_name);
   3564   Handle<Code> megamorphic_stub =
   3565       KeyedLoadIC::ChooseMegamorphicStub(masm->isolate(), GetExtraICState());
   3566   __ jmp(megamorphic_stub, RelocInfo::CODE_TARGET);
   3567 
   3568   __ bind(&try_poly_name);
   3569   // We might have a name in feedback, and a fixed array in the next slot.
   3570   __ cmpp(key, feedback);
   3571   __ j(not_equal, &miss);
   3572   // If the name comparison succeeded, we know we have a fixed array with
   3573   // at least one map/handler pair.
   3574   __ movp(feedback, FieldOperand(vector, integer_slot, times_pointer_size,
   3575                                  FixedArray::kHeaderSize + kPointerSize));
   3576   HandleArrayCases(masm, feedback, receiver_map, integer_slot, r11, r15, false,
   3577                    &miss);
   3578 
   3579   __ bind(&miss);
   3580   KeyedLoadIC::GenerateMiss(masm);
   3581 
   3582   __ bind(&load_smi_map);
   3583   __ LoadRoot(receiver_map, Heap::kHeapNumberMapRootIndex);
   3584   __ jmp(&compare_map);
   3585 }
   3586 
   3587 
   3588 void VectorStoreICTrampolineStub::Generate(MacroAssembler* masm) {
   3589   __ EmitLoadTypeFeedbackVector(VectorStoreICDescriptor::VectorRegister());
   3590   VectorStoreICStub stub(isolate(), state());
   3591   stub.GenerateForTrampoline(masm);
   3592 }
   3593 
   3594 
   3595 void VectorKeyedStoreICTrampolineStub::Generate(MacroAssembler* masm) {
   3596   __ EmitLoadTypeFeedbackVector(VectorStoreICDescriptor::VectorRegister());
   3597   VectorKeyedStoreICStub stub(isolate(), state());
   3598   stub.GenerateForTrampoline(masm);
   3599 }
   3600 
   3601 
   3602 void VectorStoreICStub::Generate(MacroAssembler* masm) {
   3603   GenerateImpl(masm, false);
   3604 }
   3605 
   3606 
   3607 void VectorStoreICStub::GenerateForTrampoline(MacroAssembler* masm) {
   3608   GenerateImpl(masm, true);
   3609 }
   3610 
   3611 
   3612 void VectorStoreICStub::GenerateImpl(MacroAssembler* masm, bool in_frame) {
   3613   Register receiver = VectorStoreICDescriptor::ReceiverRegister();  // rdx
   3614   Register key = VectorStoreICDescriptor::NameRegister();           // rcx
   3615   Register vector = VectorStoreICDescriptor::VectorRegister();      // rbx
   3616   Register slot = VectorStoreICDescriptor::SlotRegister();          // rdi
   3617   DCHECK(VectorStoreICDescriptor::ValueRegister().is(rax));         // rax
   3618   Register feedback = r8;
   3619   Register integer_slot = r9;
   3620   Register receiver_map = r11;
   3621   DCHECK(!AreAliased(feedback, integer_slot, vector, slot, receiver_map));
   3622 
   3623   __ SmiToInteger32(integer_slot, slot);
   3624   __ movp(feedback, FieldOperand(vector, integer_slot, times_pointer_size,
   3625                                  FixedArray::kHeaderSize));
   3626 
   3627   // Try to quickly handle the monomorphic case without knowing for sure
   3628   // if we have a weak cell in feedback. We do know it's safe to look
   3629   // at WeakCell::kValueOffset.
   3630   Label try_array, load_smi_map, compare_map;
   3631   Label not_array, miss;
   3632   HandleMonomorphicCase(masm, receiver, receiver_map, feedback, vector,
   3633                         integer_slot, &compare_map, &load_smi_map, &try_array);
   3634 
   3635   // Is it a fixed array?
   3636   __ bind(&try_array);
   3637   __ CompareRoot(FieldOperand(feedback, 0), Heap::kFixedArrayMapRootIndex);
   3638   __ j(not_equal, &not_array);
   3639   HandleArrayCases(masm, feedback, receiver_map, integer_slot, r14, r15, true,
   3640                    &miss);
   3641 
   3642   __ bind(&not_array);
   3643   __ CompareRoot(feedback, Heap::kmegamorphic_symbolRootIndex);
   3644   __ j(not_equal, &miss);
   3645 
   3646   Code::Flags code_flags =
   3647       Code::RemoveHolderFromFlags(Code::ComputeHandlerFlags(Code::STORE_IC));
   3648   masm->isolate()->stub_cache()->GenerateProbe(masm, Code::STORE_IC, code_flags,
   3649                                                receiver, key, feedback, no_reg);
   3650 
   3651   __ bind(&miss);
   3652   StoreIC::GenerateMiss(masm);
   3653 
   3654   __ bind(&load_smi_map);
   3655   __ LoadRoot(receiver_map, Heap::kHeapNumberMapRootIndex);
   3656   __ jmp(&compare_map);
   3657 }
   3658 
   3659 
   3660 void VectorKeyedStoreICStub::Generate(MacroAssembler* masm) {
   3661   GenerateImpl(masm, false);
   3662 }
   3663 
   3664 
   3665 void VectorKeyedStoreICStub::GenerateForTrampoline(MacroAssembler* masm) {
   3666   GenerateImpl(masm, true);
   3667 }
   3668 
   3669 
   3670 static void HandlePolymorphicKeyedStoreCase(MacroAssembler* masm,
   3671                                             Register receiver_map,
   3672                                             Register feedback, Register scratch,
   3673                                             Register scratch1,
   3674                                             Register scratch2, Label* miss) {
   3675   // feedback initially contains the feedback array
   3676   Label next, next_loop, prepare_next;
   3677   Label transition_call;
   3678 
   3679   Register cached_map = scratch;
   3680   Register counter = scratch1;
   3681   Register length = scratch2;
   3682 
   3683   // Polymorphic, we have to loop from 0 to N - 1
   3684   __ movp(counter, Immediate(0));
   3685   __ movp(length, FieldOperand(feedback, FixedArray::kLengthOffset));
   3686   __ SmiToInteger32(length, length);
   3687 
   3688   __ bind(&next_loop);
   3689   __ movp(cached_map, FieldOperand(feedback, counter, times_pointer_size,
   3690                                    FixedArray::kHeaderSize));
   3691   __ cmpp(receiver_map, FieldOperand(cached_map, WeakCell::kValueOffset));
   3692   __ j(not_equal, &prepare_next);
   3693   __ movp(cached_map, FieldOperand(feedback, counter, times_pointer_size,
   3694                                    FixedArray::kHeaderSize + kPointerSize));
   3695   __ CompareRoot(cached_map, Heap::kUndefinedValueRootIndex);
   3696   __ j(not_equal, &transition_call);
   3697   __ movp(feedback, FieldOperand(feedback, counter, times_pointer_size,
   3698                                  FixedArray::kHeaderSize + 2 * kPointerSize));
   3699   __ leap(feedback, FieldOperand(feedback, Code::kHeaderSize));
   3700   __ jmp(feedback);
   3701 
   3702   __ bind(&transition_call);
   3703   DCHECK(receiver_map.is(VectorStoreTransitionDescriptor::MapRegister()));
   3704   __ movp(receiver_map, FieldOperand(cached_map, WeakCell::kValueOffset));
   3705   // The weak cell may have been cleared.
   3706   __ JumpIfSmi(receiver_map, miss);
   3707   // Get the handler in value.
   3708   __ movp(feedback, FieldOperand(feedback, counter, times_pointer_size,
   3709                                  FixedArray::kHeaderSize + 2 * kPointerSize));
   3710   __ leap(feedback, FieldOperand(feedback, Code::kHeaderSize));
   3711   __ jmp(feedback);
   3712 
   3713   __ bind(&prepare_next);
   3714   __ addl(counter, Immediate(3));
   3715   __ cmpl(counter, length);
   3716   __ j(less, &next_loop);
   3717 
   3718   // We exhausted our array of map handler pairs.
   3719   __ jmp(miss);
   3720 }
   3721 
   3722 
   3723 void VectorKeyedStoreICStub::GenerateImpl(MacroAssembler* masm, bool in_frame) {
   3724   Register receiver = VectorStoreICDescriptor::ReceiverRegister();  // rdx
   3725   Register key = VectorStoreICDescriptor::NameRegister();           // rcx
   3726   Register vector = VectorStoreICDescriptor::VectorRegister();      // rbx
   3727   Register slot = VectorStoreICDescriptor::SlotRegister();          // rdi
   3728   DCHECK(VectorStoreICDescriptor::ValueRegister().is(rax));         // rax
   3729   Register feedback = r8;
   3730   Register integer_slot = r9;
   3731   Register receiver_map = r11;
   3732   DCHECK(!AreAliased(feedback, integer_slot, vector, slot, receiver_map));
   3733 
   3734   __ SmiToInteger32(integer_slot, slot);
   3735   __ movp(feedback, FieldOperand(vector, integer_slot, times_pointer_size,
   3736                                  FixedArray::kHeaderSize));
   3737 
   3738   // Try to quickly handle the monomorphic case without knowing for sure
   3739   // if we have a weak cell in feedback. We do know it's safe to look
   3740   // at WeakCell::kValueOffset.
   3741   Label try_array, load_smi_map, compare_map;
   3742   Label not_array, miss;
   3743   HandleMonomorphicCase(masm, receiver, receiver_map, feedback, vector,
   3744                         integer_slot, &compare_map, &load_smi_map, &try_array);
   3745 
   3746   // Is it a fixed array?
   3747   __ bind(&try_array);
   3748   __ CompareRoot(FieldOperand(feedback, 0), Heap::kFixedArrayMapRootIndex);
   3749   __ j(not_equal, &not_array);
   3750   HandlePolymorphicKeyedStoreCase(masm, receiver_map, feedback, integer_slot,
   3751                                   r15, r14, &miss);
   3752 
   3753   __ bind(&not_array);
   3754   Label try_poly_name;
   3755   __ CompareRoot(feedback, Heap::kmegamorphic_symbolRootIndex);
   3756   __ j(not_equal, &try_poly_name);
   3757 
   3758   Handle<Code> megamorphic_stub =
   3759       KeyedStoreIC::ChooseMegamorphicStub(masm->isolate(), GetExtraICState());
   3760   __ jmp(megamorphic_stub, RelocInfo::CODE_TARGET);
   3761 
   3762   __ bind(&try_poly_name);
   3763   // We might have a name in feedback, and a fixed array in the next slot.
   3764   __ cmpp(key, feedback);
   3765   __ j(not_equal, &miss);
   3766   // If the name comparison succeeded, we know we have a fixed array with
   3767   // at least one map/handler pair.
   3768   __ movp(feedback, FieldOperand(vector, integer_slot, times_pointer_size,
   3769                                  FixedArray::kHeaderSize + kPointerSize));
   3770   HandleArrayCases(masm, feedback, receiver_map, integer_slot, r14, r15, false,
   3771                    &miss);
   3772 
   3773   __ bind(&miss);
   3774   KeyedStoreIC::GenerateMiss(masm);
   3775 
   3776   __ bind(&load_smi_map);
   3777   __ LoadRoot(receiver_map, Heap::kHeapNumberMapRootIndex);
   3778   __ jmp(&compare_map);
   3779 }
   3780 
   3781 
   3782 void CallICTrampolineStub::Generate(MacroAssembler* masm) {
   3783   __ EmitLoadTypeFeedbackVector(rbx);
   3784   CallICStub stub(isolate(), state());
   3785   __ jmp(stub.GetCode(), RelocInfo::CODE_TARGET);
   3786 }
   3787 
   3788 
   3789 void ProfileEntryHookStub::MaybeCallEntryHook(MacroAssembler* masm) {
   3790   if (masm->isolate()->function_entry_hook() != NULL) {
   3791     ProfileEntryHookStub stub(masm->isolate());
   3792     masm->CallStub(&stub);
   3793   }
   3794 }
   3795 
   3796 
   3797 void ProfileEntryHookStub::Generate(MacroAssembler* masm) {
   3798   // This stub can be called from essentially anywhere, so it needs to save
   3799   // all volatile and callee-save registers.
   3800   const size_t kNumSavedRegisters = 2;
   3801   __ pushq(arg_reg_1);
   3802   __ pushq(arg_reg_2);
   3803 
   3804   // Calculate the original stack pointer and store it in the second arg.
   3805   __ leap(arg_reg_2,
   3806          Operand(rsp, kNumSavedRegisters * kRegisterSize + kPCOnStackSize));
   3807 
   3808   // Calculate the function address to the first arg.
   3809   __ movp(arg_reg_1, Operand(rsp, kNumSavedRegisters * kRegisterSize));
   3810   __ subp(arg_reg_1, Immediate(Assembler::kShortCallInstructionLength));
   3811 
   3812   // Save the remainder of the volatile registers.
   3813   masm->PushCallerSaved(kSaveFPRegs, arg_reg_1, arg_reg_2);
   3814 
   3815   // Call the entry hook function.
   3816   __ Move(rax, FUNCTION_ADDR(isolate()->function_entry_hook()),
   3817           Assembler::RelocInfoNone());
   3818 
   3819   AllowExternalCallThatCantCauseGC scope(masm);
   3820 
   3821   const int kArgumentCount = 2;
   3822   __ PrepareCallCFunction(kArgumentCount);
   3823   __ CallCFunction(rax, kArgumentCount);
   3824 
   3825   // Restore volatile regs.
   3826   masm->PopCallerSaved(kSaveFPRegs, arg_reg_1, arg_reg_2);
   3827   __ popq(arg_reg_2);
   3828   __ popq(arg_reg_1);
   3829 
   3830   __ Ret();
   3831 }
   3832 
   3833 
   3834 template<class T>
   3835 static void CreateArrayDispatch(MacroAssembler* masm,
   3836                                 AllocationSiteOverrideMode mode) {
   3837   if (mode == DISABLE_ALLOCATION_SITES) {
   3838     T stub(masm->isolate(), GetInitialFastElementsKind(), mode);
   3839     __ TailCallStub(&stub);
   3840   } else if (mode == DONT_OVERRIDE) {
   3841     int last_index = GetSequenceIndexFromFastElementsKind(
   3842         TERMINAL_FAST_ELEMENTS_KIND);
   3843     for (int i = 0; i <= last_index; ++i) {
   3844       Label next;
   3845       ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
   3846       __ cmpl(rdx, Immediate(kind));
   3847       __ j(not_equal, &next);
   3848       T stub(masm->isolate(), kind);
   3849       __ TailCallStub(&stub);
   3850       __ bind(&next);
   3851     }
   3852 
   3853     // If we reached this point there is a problem.
   3854     __ Abort(kUnexpectedElementsKindInArrayConstructor);
   3855   } else {
   3856     UNREACHABLE();
   3857   }
   3858 }
   3859 
   3860 
   3861 static void CreateArrayDispatchOneArgument(MacroAssembler* masm,
   3862                                            AllocationSiteOverrideMode mode) {
   3863   // rbx - allocation site (if mode != DISABLE_ALLOCATION_SITES)
   3864   // rdx - kind (if mode != DISABLE_ALLOCATION_SITES)
   3865   // rax - number of arguments
   3866   // rdi - constructor?
   3867   // rsp[0] - return address
   3868   // rsp[8] - last argument
   3869 
   3870   Label normal_sequence;
   3871   if (mode == DONT_OVERRIDE) {
   3872     STATIC_ASSERT(FAST_SMI_ELEMENTS == 0);
   3873     STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
   3874     STATIC_ASSERT(FAST_ELEMENTS == 2);
   3875     STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3);
   3876     STATIC_ASSERT(FAST_DOUBLE_ELEMENTS == 4);
   3877     STATIC_ASSERT(FAST_HOLEY_DOUBLE_ELEMENTS == 5);
   3878 
   3879     // is the low bit set? If so, we are holey and that is good.
   3880     __ testb(rdx, Immediate(1));
   3881     __ j(not_zero, &normal_sequence);
   3882   }
   3883 
   3884   // look at the first argument
   3885   StackArgumentsAccessor args(rsp, 1, ARGUMENTS_DONT_CONTAIN_RECEIVER);
   3886   __ movp(rcx, args.GetArgumentOperand(0));
   3887   __ testp(rcx, rcx);
   3888   __ j(zero, &normal_sequence);
   3889 
   3890   if (mode == DISABLE_ALLOCATION_SITES) {
   3891     ElementsKind initial = GetInitialFastElementsKind();
   3892     ElementsKind holey_initial = GetHoleyElementsKind(initial);
   3893 
   3894     ArraySingleArgumentConstructorStub stub_holey(masm->isolate(),
   3895                                                   holey_initial,
   3896                                                   DISABLE_ALLOCATION_SITES);
   3897     __ TailCallStub(&stub_holey);
   3898 
   3899     __ bind(&normal_sequence);
   3900     ArraySingleArgumentConstructorStub stub(masm->isolate(),
   3901                                             initial,
   3902                                             DISABLE_ALLOCATION_SITES);
   3903     __ TailCallStub(&stub);
   3904   } else if (mode == DONT_OVERRIDE) {
   3905     // We are going to create a holey array, but our kind is non-holey.
   3906     // Fix kind and retry (only if we have an allocation site in the slot).
   3907     __ incl(rdx);
   3908 
   3909     if (FLAG_debug_code) {
   3910       Handle<Map> allocation_site_map =
   3911           masm->isolate()->factory()->allocation_site_map();
   3912       __ Cmp(FieldOperand(rbx, 0), allocation_site_map);
   3913       __ Assert(equal, kExpectedAllocationSite);
   3914     }
   3915 
   3916     // Save the resulting elements kind in type info. We can't just store r3
   3917     // in the AllocationSite::transition_info field because elements kind is
   3918     // restricted to a portion of the field...upper bits need to be left alone.
   3919     STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0);
   3920     __ SmiAddConstant(FieldOperand(rbx, AllocationSite::kTransitionInfoOffset),
   3921                       Smi::FromInt(kFastElementsKindPackedToHoley));
   3922 
   3923     __ bind(&normal_sequence);
   3924     int last_index = GetSequenceIndexFromFastElementsKind(
   3925         TERMINAL_FAST_ELEMENTS_KIND);
   3926     for (int i = 0; i <= last_index; ++i) {
   3927       Label next;
   3928       ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
   3929       __ cmpl(rdx, Immediate(kind));
   3930       __ j(not_equal, &next);
   3931       ArraySingleArgumentConstructorStub stub(masm->isolate(), kind);
   3932       __ TailCallStub(&stub);
   3933       __ bind(&next);
   3934     }
   3935 
   3936     // If we reached this point there is a problem.
   3937     __ Abort(kUnexpectedElementsKindInArrayConstructor);
   3938   } else {
   3939     UNREACHABLE();
   3940   }
   3941 }
   3942 
   3943 
   3944 template<class T>
   3945 static void ArrayConstructorStubAheadOfTimeHelper(Isolate* isolate) {
   3946   int to_index = GetSequenceIndexFromFastElementsKind(
   3947       TERMINAL_FAST_ELEMENTS_KIND);
   3948   for (int i = 0; i <= to_index; ++i) {
   3949     ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
   3950     T stub(isolate, kind);
   3951     stub.GetCode();
   3952     if (AllocationSite::GetMode(kind) != DONT_TRACK_ALLOCATION_SITE) {
   3953       T stub1(isolate, kind, DISABLE_ALLOCATION_SITES);
   3954       stub1.GetCode();
   3955     }
   3956   }
   3957 }
   3958 
   3959 void CommonArrayConstructorStub::GenerateStubsAheadOfTime(Isolate* isolate) {
   3960   ArrayConstructorStubAheadOfTimeHelper<ArrayNoArgumentConstructorStub>(
   3961       isolate);
   3962   ArrayConstructorStubAheadOfTimeHelper<ArraySingleArgumentConstructorStub>(
   3963       isolate);
   3964   ArrayNArgumentsConstructorStub stub(isolate);
   3965   stub.GetCode();
   3966 
   3967   ElementsKind kinds[2] = { FAST_ELEMENTS, FAST_HOLEY_ELEMENTS };
   3968   for (int i = 0; i < 2; i++) {
   3969     // For internal arrays we only need a few things
   3970     InternalArrayNoArgumentConstructorStub stubh1(isolate, kinds[i]);
   3971     stubh1.GetCode();
   3972     InternalArraySingleArgumentConstructorStub stubh2(isolate, kinds[i]);
   3973     stubh2.GetCode();
   3974   }
   3975 }
   3976 
   3977 
   3978 void ArrayConstructorStub::GenerateDispatchToArrayStub(
   3979     MacroAssembler* masm,
   3980     AllocationSiteOverrideMode mode) {
   3981   if (argument_count() == ANY) {
   3982     Label not_zero_case, not_one_case;
   3983     __ testp(rax, rax);
   3984     __ j(not_zero, &not_zero_case);
   3985     CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode);
   3986 
   3987     __ bind(&not_zero_case);
   3988     __ cmpl(rax, Immediate(1));
   3989     __ j(greater, &not_one_case);
   3990     CreateArrayDispatchOneArgument(masm, mode);
   3991 
   3992     __ bind(&not_one_case);
   3993     ArrayNArgumentsConstructorStub stub(masm->isolate());
   3994     __ TailCallStub(&stub);
   3995   } else if (argument_count() == NONE) {
   3996     CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode);
   3997   } else if (argument_count() == ONE) {
   3998     CreateArrayDispatchOneArgument(masm, mode);
   3999   } else if (argument_count() == MORE_THAN_ONE) {
   4000     ArrayNArgumentsConstructorStub stub(masm->isolate());
   4001     __ TailCallStub(&stub);
   4002   } else {
   4003     UNREACHABLE();
   4004   }
   4005 }
   4006 
   4007 
   4008 void ArrayConstructorStub::Generate(MacroAssembler* masm) {
   4009   // ----------- S t a t e -------------
   4010   //  -- rax    : argc
   4011   //  -- rbx    : AllocationSite or undefined
   4012   //  -- rdi    : constructor
   4013   //  -- rdx    : new target
   4014   //  -- rsp[0] : return address
   4015   //  -- rsp[8] : last argument
   4016   // -----------------------------------
   4017   if (FLAG_debug_code) {
   4018     // The array construct code is only set for the global and natives
   4019     // builtin Array functions which always have maps.
   4020 
   4021     // Initial map for the builtin Array function should be a map.
   4022     __ movp(rcx, FieldOperand(rdi, JSFunction::kPrototypeOrInitialMapOffset));
   4023     // Will both indicate a NULL and a Smi.
   4024     STATIC_ASSERT(kSmiTag == 0);
   4025     Condition not_smi = NegateCondition(masm->CheckSmi(rcx));
   4026     __ Check(not_smi, kUnexpectedInitialMapForArrayFunction);
   4027     __ CmpObjectType(rcx, MAP_TYPE, rcx);
   4028     __ Check(equal, kUnexpectedInitialMapForArrayFunction);
   4029 
   4030     // We should either have undefined in rbx or a valid AllocationSite
   4031     __ AssertUndefinedOrAllocationSite(rbx);
   4032   }
   4033 
   4034   // Enter the context of the Array function.
   4035   __ movp(rsi, FieldOperand(rdi, JSFunction::kContextOffset));
   4036 
   4037   Label subclassing;
   4038   __ cmpp(rdi, rdx);
   4039   __ j(not_equal, &subclassing);
   4040 
   4041   Label no_info;
   4042   // If the feedback vector is the undefined value call an array constructor
   4043   // that doesn't use AllocationSites.
   4044   __ CompareRoot(rbx, Heap::kUndefinedValueRootIndex);
   4045   __ j(equal, &no_info);
   4046 
   4047   // Only look at the lower 16 bits of the transition info.
   4048   __ movp(rdx, FieldOperand(rbx, AllocationSite::kTransitionInfoOffset));
   4049   __ SmiToInteger32(rdx, rdx);
   4050   STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0);
   4051   __ andp(rdx, Immediate(AllocationSite::ElementsKindBits::kMask));
   4052   GenerateDispatchToArrayStub(masm, DONT_OVERRIDE);
   4053 
   4054   __ bind(&no_info);
   4055   GenerateDispatchToArrayStub(masm, DISABLE_ALLOCATION_SITES);
   4056 
   4057   // Subclassing
   4058   __ bind(&subclassing);
   4059   switch (argument_count()) {
   4060     case ANY:
   4061     case MORE_THAN_ONE: {
   4062       StackArgumentsAccessor args(rsp, rax);
   4063       __ movp(args.GetReceiverOperand(), rdi);
   4064       __ addp(rax, Immediate(3));
   4065       break;
   4066     }
   4067     case NONE: {
   4068       StackArgumentsAccessor args(rsp, 0);
   4069       __ movp(args.GetReceiverOperand(), rdi);
   4070       __ Set(rax, 3);
   4071       break;
   4072     }
   4073     case ONE: {
   4074       StackArgumentsAccessor args(rsp, 1);
   4075       __ movp(args.GetReceiverOperand(), rdi);
   4076       __ Set(rax, 4);
   4077       break;
   4078     }
   4079   }
   4080   __ PopReturnAddressTo(rcx);
   4081   __ Push(rdx);
   4082   __ Push(rbx);
   4083   __ PushReturnAddressFrom(rcx);
   4084   __ JumpToExternalReference(ExternalReference(Runtime::kNewArray, isolate()));
   4085 }
   4086 
   4087 
   4088 void InternalArrayConstructorStub::GenerateCase(
   4089     MacroAssembler* masm, ElementsKind kind) {
   4090   Label not_zero_case, not_one_case;
   4091   Label normal_sequence;
   4092 
   4093   __ testp(rax, rax);
   4094   __ j(not_zero, &not_zero_case);
   4095   InternalArrayNoArgumentConstructorStub stub0(isolate(), kind);
   4096   __ TailCallStub(&stub0);
   4097 
   4098   __ bind(&not_zero_case);
   4099   __ cmpl(rax, Immediate(1));
   4100   __ j(greater, &not_one_case);
   4101 
   4102   if (IsFastPackedElementsKind(kind)) {
   4103     // We might need to create a holey array
   4104     // look at the first argument
   4105     StackArgumentsAccessor args(rsp, 1, ARGUMENTS_DONT_CONTAIN_RECEIVER);
   4106     __ movp(rcx, args.GetArgumentOperand(0));
   4107     __ testp(rcx, rcx);
   4108     __ j(zero, &normal_sequence);
   4109 
   4110     InternalArraySingleArgumentConstructorStub
   4111         stub1_holey(isolate(), GetHoleyElementsKind(kind));
   4112     __ TailCallStub(&stub1_holey);
   4113   }
   4114 
   4115   __ bind(&normal_sequence);
   4116   InternalArraySingleArgumentConstructorStub stub1(isolate(), kind);
   4117   __ TailCallStub(&stub1);
   4118 
   4119   __ bind(&not_one_case);
   4120   ArrayNArgumentsConstructorStub stubN(isolate());
   4121   __ TailCallStub(&stubN);
   4122 }
   4123 
   4124 
   4125 void InternalArrayConstructorStub::Generate(MacroAssembler* masm) {
   4126   // ----------- S t a t e -------------
   4127   //  -- rax    : argc
   4128   //  -- rdi    : constructor
   4129   //  -- rsp[0] : return address
   4130   //  -- rsp[8] : last argument
   4131   // -----------------------------------
   4132 
   4133   if (FLAG_debug_code) {
   4134     // The array construct code is only set for the global and natives
   4135     // builtin Array functions which always have maps.
   4136 
   4137     // Initial map for the builtin Array function should be a map.
   4138     __ movp(rcx, FieldOperand(rdi, JSFunction::kPrototypeOrInitialMapOffset));
   4139     // Will both indicate a NULL and a Smi.
   4140     STATIC_ASSERT(kSmiTag == 0);
   4141     Condition not_smi = NegateCondition(masm->CheckSmi(rcx));
   4142     __ Check(not_smi, kUnexpectedInitialMapForArrayFunction);
   4143     __ CmpObjectType(rcx, MAP_TYPE, rcx);
   4144     __ Check(equal, kUnexpectedInitialMapForArrayFunction);
   4145   }
   4146 
   4147   // Figure out the right elements kind
   4148   __ movp(rcx, FieldOperand(rdi, JSFunction::kPrototypeOrInitialMapOffset));
   4149 
   4150   // Load the map's "bit field 2" into |result|. We only need the first byte,
   4151   // but the following masking takes care of that anyway.
   4152   __ movzxbp(rcx, FieldOperand(rcx, Map::kBitField2Offset));
   4153   // Retrieve elements_kind from bit field 2.
   4154   __ DecodeField<Map::ElementsKindBits>(rcx);
   4155 
   4156   if (FLAG_debug_code) {
   4157     Label done;
   4158     __ cmpl(rcx, Immediate(FAST_ELEMENTS));
   4159     __ j(equal, &done);
   4160     __ cmpl(rcx, Immediate(FAST_HOLEY_ELEMENTS));
   4161     __ Assert(equal,
   4162               kInvalidElementsKindForInternalArrayOrInternalPackedArray);
   4163     __ bind(&done);
   4164   }
   4165 
   4166   Label fast_elements_case;
   4167   __ cmpl(rcx, Immediate(FAST_ELEMENTS));
   4168   __ j(equal, &fast_elements_case);
   4169   GenerateCase(masm, FAST_HOLEY_ELEMENTS);
   4170 
   4171   __ bind(&fast_elements_case);
   4172   GenerateCase(masm, FAST_ELEMENTS);
   4173 }
   4174 
   4175 
   4176 void FastNewObjectStub::Generate(MacroAssembler* masm) {
   4177   // ----------- S t a t e -------------
   4178   //  -- rdi    : target
   4179   //  -- rdx    : new target
   4180   //  -- rsi    : context
   4181   //  -- rsp[0] : return address
   4182   // -----------------------------------
   4183   __ AssertFunction(rdi);
   4184   __ AssertReceiver(rdx);
   4185 
   4186   // Verify that the new target is a JSFunction.
   4187   Label new_object;
   4188   __ CmpObjectType(rdx, JS_FUNCTION_TYPE, rbx);
   4189   __ j(not_equal, &new_object);
   4190 
   4191   // Load the initial map and verify that it's in fact a map.
   4192   __ movp(rcx, FieldOperand(rdx, JSFunction::kPrototypeOrInitialMapOffset));
   4193   __ JumpIfSmi(rcx, &new_object);
   4194   __ CmpObjectType(rcx, MAP_TYPE, rbx);
   4195   __ j(not_equal, &new_object);
   4196 
   4197   // Fall back to runtime if the target differs from the new target's
   4198   // initial map constructor.
   4199   __ cmpp(rdi, FieldOperand(rcx, Map::kConstructorOrBackPointerOffset));
   4200   __ j(not_equal, &new_object);
   4201 
   4202   // Allocate the JSObject on the heap.
   4203   Label allocate, done_allocate;
   4204   __ movzxbl(rbx, FieldOperand(rcx, Map::kInstanceSizeOffset));
   4205   __ leal(rbx, Operand(rbx, times_pointer_size, 0));
   4206   __ Allocate(rbx, rax, rdi, no_reg, &allocate, NO_ALLOCATION_FLAGS);
   4207   __ bind(&done_allocate);
   4208 
   4209   // Initialize the JSObject fields.
   4210   __ movp(FieldOperand(rax, JSObject::kMapOffset), rcx);
   4211   __ LoadRoot(rbx, Heap::kEmptyFixedArrayRootIndex);
   4212   __ movp(FieldOperand(rax, JSObject::kPropertiesOffset), rbx);
   4213   __ movp(FieldOperand(rax, JSObject::kElementsOffset), rbx);
   4214   STATIC_ASSERT(JSObject::kHeaderSize == 3 * kPointerSize);
   4215   __ leap(rbx, FieldOperand(rax, JSObject::kHeaderSize));
   4216 
   4217   // ----------- S t a t e -------------
   4218   //  -- rax    : result (tagged)
   4219   //  -- rbx    : result fields (untagged)
   4220   //  -- rdi    : result end (untagged)
   4221   //  -- rcx    : initial map
   4222   //  -- rsi    : context
   4223   //  -- rsp[0] : return address
   4224   // -----------------------------------
   4225 
   4226   // Perform in-object slack tracking if requested.
   4227   Label slack_tracking;
   4228   STATIC_ASSERT(Map::kNoSlackTracking == 0);
   4229   __ LoadRoot(r11, Heap::kUndefinedValueRootIndex);
   4230   __ testl(FieldOperand(rcx, Map::kBitField3Offset),
   4231            Immediate(Map::ConstructionCounter::kMask));
   4232   __ j(not_zero, &slack_tracking, Label::kNear);
   4233   {
   4234     // Initialize all in-object fields with undefined.
   4235     __ InitializeFieldsWithFiller(rbx, rdi, r11);
   4236     __ Ret();
   4237   }
   4238   __ bind(&slack_tracking);
   4239   {
   4240     // Decrease generous allocation count.
   4241     STATIC_ASSERT(Map::ConstructionCounter::kNext == 32);
   4242     __ subl(FieldOperand(rcx, Map::kBitField3Offset),
   4243             Immediate(1 << Map::ConstructionCounter::kShift));
   4244 
   4245     // Initialize the in-object fields with undefined.
   4246     __ movzxbl(rdx, FieldOperand(rcx, Map::kUnusedPropertyFieldsOffset));
   4247     __ negp(rdx);
   4248     __ leap(rdx, Operand(rdi, rdx, times_pointer_size, 0));
   4249     __ InitializeFieldsWithFiller(rbx, rdx, r11);
   4250 
   4251     // Initialize the remaining (reserved) fields with one pointer filler map.
   4252     __ LoadRoot(r11, Heap::kOnePointerFillerMapRootIndex);
   4253     __ InitializeFieldsWithFiller(rdx, rdi, r11);
   4254 
   4255     // Check if we can finalize the instance size.
   4256     Label finalize;
   4257     STATIC_ASSERT(Map::kSlackTrackingCounterEnd == 1);
   4258     __ testl(FieldOperand(rcx, Map::kBitField3Offset),
   4259              Immediate(Map::ConstructionCounter::kMask));
   4260     __ j(zero, &finalize, Label::kNear);
   4261     __ Ret();
   4262 
   4263     // Finalize the instance size.
   4264     __ bind(&finalize);
   4265     {
   4266       FrameScope scope(masm, StackFrame::INTERNAL);
   4267       __ Push(rax);
   4268       __ Push(rcx);
   4269       __ CallRuntime(Runtime::kFinalizeInstanceSize);
   4270       __ Pop(rax);
   4271     }
   4272     __ Ret();
   4273   }
   4274 
   4275   // Fall back to %AllocateInNewSpace.
   4276   __ bind(&allocate);
   4277   {
   4278     FrameScope scope(masm, StackFrame::INTERNAL);
   4279     __ Integer32ToSmi(rbx, rbx);
   4280     __ Push(rcx);
   4281     __ Push(rbx);
   4282     __ CallRuntime(Runtime::kAllocateInNewSpace);
   4283     __ Pop(rcx);
   4284   }
   4285   __ movzxbl(rbx, FieldOperand(rcx, Map::kInstanceSizeOffset));
   4286   __ leap(rdi, Operand(rax, rbx, times_pointer_size, 0));
   4287   STATIC_ASSERT(kHeapObjectTag == 1);
   4288   __ decp(rdi);  // Remove the tag from the end address.
   4289   __ jmp(&done_allocate);
   4290 
   4291   // Fall back to %NewObject.
   4292   __ bind(&new_object);
   4293   __ PopReturnAddressTo(rcx);
   4294   __ Push(rdi);
   4295   __ Push(rdx);
   4296   __ PushReturnAddressFrom(rcx);
   4297   __ TailCallRuntime(Runtime::kNewObject);
   4298 }
   4299 
   4300 
   4301 void FastNewRestParameterStub::Generate(MacroAssembler* masm) {
   4302   // ----------- S t a t e -------------
   4303   //  -- rdi    : function
   4304   //  -- rsi    : context
   4305   //  -- rbp    : frame pointer
   4306   //  -- rsp[0] : return address
   4307   // -----------------------------------
   4308   __ AssertFunction(rdi);
   4309 
   4310   // Make rdx point to the JavaScript frame.
   4311   __ movp(rdx, rbp);
   4312   if (skip_stub_frame()) {
   4313     // For Ignition we need to skip the handler/stub frame to reach the
   4314     // JavaScript frame for the function.
   4315     __ movp(rdx, Operand(rdx, StandardFrameConstants::kCallerFPOffset));
   4316   }
   4317   if (FLAG_debug_code) {
   4318     Label ok;
   4319     __ cmpp(rdi, Operand(rdx, StandardFrameConstants::kFunctionOffset));
   4320     __ j(equal, &ok);
   4321     __ Abort(kInvalidFrameForFastNewRestArgumentsStub);
   4322     __ bind(&ok);
   4323   }
   4324 
   4325   // Check if we have rest parameters (only possible if we have an
   4326   // arguments adaptor frame below the function frame).
   4327   Label no_rest_parameters;
   4328   __ movp(rbx, Operand(rdx, StandardFrameConstants::kCallerFPOffset));
   4329   __ Cmp(Operand(rbx, CommonFrameConstants::kContextOrFrameTypeOffset),
   4330          Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
   4331   __ j(not_equal, &no_rest_parameters, Label::kNear);
   4332 
   4333   // Check if the arguments adaptor frame contains more arguments than
   4334   // specified by the function's internal formal parameter count.
   4335   Label rest_parameters;
   4336   __ movp(rcx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset));
   4337   __ LoadSharedFunctionInfoSpecialField(
   4338       rcx, rcx, SharedFunctionInfo::kFormalParameterCountOffset);
   4339   __ SmiToInteger32(
   4340       rax, Operand(rbx, ArgumentsAdaptorFrameConstants::kLengthOffset));
   4341   __ subl(rax, rcx);
   4342   __ j(greater, &rest_parameters);
   4343 
   4344   // Return an empty rest parameter array.
   4345   __ bind(&no_rest_parameters);
   4346   {
   4347     // ----------- S t a t e -------------
   4348     //  -- rsi    : context
   4349     //  -- rsp[0] : return address
   4350     // -----------------------------------
   4351 
   4352     // Allocate an empty rest parameter array.
   4353     Label allocate, done_allocate;
   4354     __ Allocate(JSArray::kSize, rax, rdx, rcx, &allocate, NO_ALLOCATION_FLAGS);
   4355     __ bind(&done_allocate);
   4356 
   4357     // Setup the rest parameter array in rax.
   4358     __ LoadNativeContextSlot(Context::JS_ARRAY_FAST_ELEMENTS_MAP_INDEX, rcx);
   4359     __ movp(FieldOperand(rax, JSArray::kMapOffset), rcx);
   4360     __ LoadRoot(rcx, Heap::kEmptyFixedArrayRootIndex);
   4361     __ movp(FieldOperand(rax, JSArray::kPropertiesOffset), rcx);
   4362     __ movp(FieldOperand(rax, JSArray::kElementsOffset), rcx);
   4363     __ movp(FieldOperand(rax, JSArray::kLengthOffset), Immediate(0));
   4364     STATIC_ASSERT(JSArray::kSize == 4 * kPointerSize);
   4365     __ Ret();
   4366 
   4367     // Fall back to %AllocateInNewSpace.
   4368     __ bind(&allocate);
   4369     {
   4370       FrameScope scope(masm, StackFrame::INTERNAL);
   4371       __ Push(Smi::FromInt(JSArray::kSize));
   4372       __ CallRuntime(Runtime::kAllocateInNewSpace);
   4373     }
   4374     __ jmp(&done_allocate);
   4375   }
   4376 
   4377   __ bind(&rest_parameters);
   4378   {
   4379     // Compute the pointer to the first rest parameter (skippping the receiver).
   4380     __ leap(rbx, Operand(rbx, rax, times_pointer_size,
   4381                          StandardFrameConstants::kCallerSPOffset -
   4382                              1 * kPointerSize));
   4383 
   4384     // ----------- S t a t e -------------
   4385     //  -- rdi    : function
   4386     //  -- rsi    : context
   4387     //  -- rax    : number of rest parameters
   4388     //  -- rbx    : pointer to first rest parameters
   4389     //  -- rsp[0] : return address
   4390     // -----------------------------------
   4391 
   4392     // Allocate space for the rest parameter array plus the backing store.
   4393     Label allocate, done_allocate;
   4394     __ leal(rcx, Operand(rax, times_pointer_size,
   4395                          JSArray::kSize + FixedArray::kHeaderSize));
   4396     __ Allocate(rcx, rdx, r8, no_reg, &allocate, NO_ALLOCATION_FLAGS);
   4397     __ bind(&done_allocate);
   4398 
   4399     // Compute the arguments.length in rdi.
   4400     __ Integer32ToSmi(rdi, rax);
   4401 
   4402     // Setup the elements array in rdx.
   4403     __ LoadRoot(rcx, Heap::kFixedArrayMapRootIndex);
   4404     __ movp(FieldOperand(rdx, FixedArray::kMapOffset), rcx);
   4405     __ movp(FieldOperand(rdx, FixedArray::kLengthOffset), rdi);
   4406     {
   4407       Label loop, done_loop;
   4408       __ Set(rcx, 0);
   4409       __ bind(&loop);
   4410       __ cmpl(rcx, rax);
   4411       __ j(equal, &done_loop, Label::kNear);
   4412       __ movp(kScratchRegister, Operand(rbx, 0 * kPointerSize));
   4413       __ movp(
   4414           FieldOperand(rdx, rcx, times_pointer_size, FixedArray::kHeaderSize),
   4415           kScratchRegister);
   4416       __ subp(rbx, Immediate(1 * kPointerSize));
   4417       __ addl(rcx, Immediate(1));
   4418       __ jmp(&loop);
   4419       __ bind(&done_loop);
   4420     }
   4421 
   4422     // Setup the rest parameter array in rax.
   4423     __ leap(rax,
   4424             Operand(rdx, rax, times_pointer_size, FixedArray::kHeaderSize));
   4425     __ LoadNativeContextSlot(Context::JS_ARRAY_FAST_ELEMENTS_MAP_INDEX, rcx);
   4426     __ movp(FieldOperand(rax, JSArray::kMapOffset), rcx);
   4427     __ LoadRoot(rcx, Heap::kEmptyFixedArrayRootIndex);
   4428     __ movp(FieldOperand(rax, JSArray::kPropertiesOffset), rcx);
   4429     __ movp(FieldOperand(rax, JSArray::kElementsOffset), rdx);
   4430     __ movp(FieldOperand(rax, JSArray::kLengthOffset), rdi);
   4431     STATIC_ASSERT(JSArray::kSize == 4 * kPointerSize);
   4432     __ Ret();
   4433 
   4434     // Fall back to %AllocateInNewSpace (if not too big).
   4435     Label too_big_for_new_space;
   4436     __ bind(&allocate);
   4437     __ cmpl(rcx, Immediate(Page::kMaxRegularHeapObjectSize));
   4438     __ j(greater, &too_big_for_new_space);
   4439     {
   4440       FrameScope scope(masm, StackFrame::INTERNAL);
   4441       __ Integer32ToSmi(rax, rax);
   4442       __ Integer32ToSmi(rcx, rcx);
   4443       __ Push(rax);
   4444       __ Push(rbx);
   4445       __ Push(rcx);
   4446       __ CallRuntime(Runtime::kAllocateInNewSpace);
   4447       __ movp(rdx, rax);
   4448       __ Pop(rbx);
   4449       __ Pop(rax);
   4450       __ SmiToInteger32(rax, rax);
   4451     }
   4452     __ jmp(&done_allocate);
   4453 
   4454     // Fall back to %NewRestParameter.
   4455     __ bind(&too_big_for_new_space);
   4456     __ PopReturnAddressTo(kScratchRegister);
   4457     __ Push(rdi);
   4458     __ PushReturnAddressFrom(kScratchRegister);
   4459     __ TailCallRuntime(Runtime::kNewRestParameter);
   4460   }
   4461 }
   4462 
   4463 
   4464 void FastNewSloppyArgumentsStub::Generate(MacroAssembler* masm) {
   4465   // ----------- S t a t e -------------
   4466   //  -- rdi    : function
   4467   //  -- rsi    : context
   4468   //  -- rbp    : frame pointer
   4469   //  -- rsp[0] : return address
   4470   // -----------------------------------
   4471   __ AssertFunction(rdi);
   4472 
   4473   // Make r9 point to the JavaScript frame.
   4474   __ movp(r9, rbp);
   4475   if (skip_stub_frame()) {
   4476     // For Ignition we need to skip the handler/stub frame to reach the
   4477     // JavaScript frame for the function.
   4478     __ movp(r9, Operand(r9, StandardFrameConstants::kCallerFPOffset));
   4479   }
   4480   if (FLAG_debug_code) {
   4481     Label ok;
   4482     __ cmpp(rdi, Operand(r9, StandardFrameConstants::kFunctionOffset));
   4483     __ j(equal, &ok);
   4484     __ Abort(kInvalidFrameForFastNewRestArgumentsStub);
   4485     __ bind(&ok);
   4486   }
   4487 
   4488   // TODO(bmeurer): Cleanup to match the FastNewStrictArgumentsStub.
   4489   __ movp(rcx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset));
   4490   __ LoadSharedFunctionInfoSpecialField(
   4491       rcx, rcx, SharedFunctionInfo::kFormalParameterCountOffset);
   4492   __ leap(rdx, Operand(r9, rcx, times_pointer_size,
   4493                        StandardFrameConstants::kCallerSPOffset));
   4494   __ Integer32ToSmi(rcx, rcx);
   4495 
   4496   // rcx : number of parameters (tagged)
   4497   // rdx : parameters pointer
   4498   // rdi : function
   4499   // rsp[0] : return address
   4500   // r9  : JavaScript frame pointer.
   4501   // Registers used over the whole function:
   4502   //  rbx: the mapped parameter count (untagged)
   4503   //  rax: the allocated object (tagged).
   4504   Factory* factory = isolate()->factory();
   4505 
   4506   __ SmiToInteger64(rbx, rcx);
   4507   // rbx = parameter count (untagged)
   4508 
   4509   // Check if the calling frame is an arguments adaptor frame.
   4510   Label adaptor_frame, try_allocate, runtime;
   4511   __ movp(rax, Operand(r9, StandardFrameConstants::kCallerFPOffset));
   4512   __ movp(r8, Operand(rax, CommonFrameConstants::kContextOrFrameTypeOffset));
   4513   __ Cmp(r8, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
   4514   __ j(equal, &adaptor_frame);
   4515 
   4516   // No adaptor, parameter count = argument count.
   4517   __ movp(r11, rbx);
   4518   __ jmp(&try_allocate, Label::kNear);
   4519 
   4520   // We have an adaptor frame. Patch the parameters pointer.
   4521   __ bind(&adaptor_frame);
   4522   __ SmiToInteger64(
   4523       r11, Operand(rax, ArgumentsAdaptorFrameConstants::kLengthOffset));
   4524   __ leap(rdx, Operand(rax, r11, times_pointer_size,
   4525                        StandardFrameConstants::kCallerSPOffset));
   4526 
   4527   // rbx = parameter count (untagged)
   4528   // r11 = argument count (untagged)
   4529   // Compute the mapped parameter count = min(rbx, r11) in rbx.
   4530   __ cmpp(rbx, r11);
   4531   __ j(less_equal, &try_allocate, Label::kNear);
   4532   __ movp(rbx, r11);
   4533 
   4534   __ bind(&try_allocate);
   4535 
   4536   // Compute the sizes of backing store, parameter map, and arguments object.
   4537   // 1. Parameter map, has 2 extra words containing context and backing store.
   4538   const int kParameterMapHeaderSize =
   4539       FixedArray::kHeaderSize + 2 * kPointerSize;
   4540   Label no_parameter_map;
   4541   __ xorp(r8, r8);
   4542   __ testp(rbx, rbx);
   4543   __ j(zero, &no_parameter_map, Label::kNear);
   4544   __ leap(r8, Operand(rbx, times_pointer_size, kParameterMapHeaderSize));
   4545   __ bind(&no_parameter_map);
   4546 
   4547   // 2. Backing store.
   4548   __ leap(r8, Operand(r8, r11, times_pointer_size, FixedArray::kHeaderSize));
   4549 
   4550   // 3. Arguments object.
   4551   __ addp(r8, Immediate(JSSloppyArgumentsObject::kSize));
   4552 
   4553   // Do the allocation of all three objects in one go.
   4554   __ Allocate(r8, rax, r9, no_reg, &runtime, NO_ALLOCATION_FLAGS);
   4555 
   4556   // rax = address of new object(s) (tagged)
   4557   // r11 = argument count (untagged)
   4558   // Get the arguments map from the current native context into r9.
   4559   Label has_mapped_parameters, instantiate;
   4560   __ movp(r9, NativeContextOperand());
   4561   __ testp(rbx, rbx);
   4562   __ j(not_zero, &has_mapped_parameters, Label::kNear);
   4563 
   4564   const int kIndex = Context::SLOPPY_ARGUMENTS_MAP_INDEX;
   4565   __ movp(r9, Operand(r9, Context::SlotOffset(kIndex)));
   4566   __ jmp(&instantiate, Label::kNear);
   4567 
   4568   const int kAliasedIndex = Context::FAST_ALIASED_ARGUMENTS_MAP_INDEX;
   4569   __ bind(&has_mapped_parameters);
   4570   __ movp(r9, Operand(r9, Context::SlotOffset(kAliasedIndex)));
   4571   __ bind(&instantiate);
   4572 
   4573   // rax = address of new object (tagged)
   4574   // rbx = mapped parameter count (untagged)
   4575   // r11 = argument count (untagged)
   4576   // r9 = address of arguments map (tagged)
   4577   __ movp(FieldOperand(rax, JSObject::kMapOffset), r9);
   4578   __ LoadRoot(kScratchRegister, Heap::kEmptyFixedArrayRootIndex);
   4579   __ movp(FieldOperand(rax, JSObject::kPropertiesOffset), kScratchRegister);
   4580   __ movp(FieldOperand(rax, JSObject::kElementsOffset), kScratchRegister);
   4581 
   4582   // Set up the callee in-object property.
   4583   __ AssertNotSmi(rdi);
   4584   __ movp(FieldOperand(rax, JSSloppyArgumentsObject::kCalleeOffset), rdi);
   4585 
   4586   // Use the length (smi tagged) and set that as an in-object property too.
   4587   // Note: r11 is tagged from here on.
   4588   __ Integer32ToSmi(r11, r11);
   4589   __ movp(FieldOperand(rax, JSSloppyArgumentsObject::kLengthOffset), r11);
   4590 
   4591   // Set up the elements pointer in the allocated arguments object.
   4592   // If we allocated a parameter map, rdi will point there, otherwise to the
   4593   // backing store.
   4594   __ leap(rdi, Operand(rax, JSSloppyArgumentsObject::kSize));
   4595   __ movp(FieldOperand(rax, JSObject::kElementsOffset), rdi);
   4596 
   4597   // rax = address of new object (tagged)
   4598   // rbx = mapped parameter count (untagged)
   4599   // r11 = argument count (tagged)
   4600   // rdi = address of parameter map or backing store (tagged)
   4601 
   4602   // Initialize parameter map. If there are no mapped arguments, we're done.
   4603   Label skip_parameter_map;
   4604   __ testp(rbx, rbx);
   4605   __ j(zero, &skip_parameter_map);
   4606 
   4607   __ LoadRoot(kScratchRegister, Heap::kSloppyArgumentsElementsMapRootIndex);
   4608   // rbx contains the untagged argument count. Add 2 and tag to write.
   4609   __ movp(FieldOperand(rdi, FixedArray::kMapOffset), kScratchRegister);
   4610   __ Integer64PlusConstantToSmi(r9, rbx, 2);
   4611   __ movp(FieldOperand(rdi, FixedArray::kLengthOffset), r9);
   4612   __ movp(FieldOperand(rdi, FixedArray::kHeaderSize + 0 * kPointerSize), rsi);
   4613   __ leap(r9, Operand(rdi, rbx, times_pointer_size, kParameterMapHeaderSize));
   4614   __ movp(FieldOperand(rdi, FixedArray::kHeaderSize + 1 * kPointerSize), r9);
   4615 
   4616   // Copy the parameter slots and the holes in the arguments.
   4617   // We need to fill in mapped_parameter_count slots. They index the context,
   4618   // where parameters are stored in reverse order, at
   4619   //   MIN_CONTEXT_SLOTS .. MIN_CONTEXT_SLOTS+parameter_count-1
   4620   // The mapped parameter thus need to get indices
   4621   //   MIN_CONTEXT_SLOTS+parameter_count-1 ..
   4622   //       MIN_CONTEXT_SLOTS+parameter_count-mapped_parameter_count
   4623   // We loop from right to left.
   4624   Label parameters_loop, parameters_test;
   4625 
   4626   // Load tagged parameter count into r9.
   4627   __ Integer32ToSmi(r9, rbx);
   4628   __ Move(r8, Smi::FromInt(Context::MIN_CONTEXT_SLOTS));
   4629   __ addp(r8, rcx);
   4630   __ subp(r8, r9);
   4631   __ movp(rcx, rdi);
   4632   __ leap(rdi, Operand(rdi, rbx, times_pointer_size, kParameterMapHeaderSize));
   4633   __ SmiToInteger64(r9, r9);
   4634   // r9 = loop variable (untagged)
   4635   // r8 = mapping index (tagged)
   4636   // rcx = address of parameter map (tagged)
   4637   // rdi = address of backing store (tagged)
   4638   __ jmp(&parameters_test, Label::kNear);
   4639 
   4640   __ bind(&parameters_loop);
   4641   __ subp(r9, Immediate(1));
   4642   __ LoadRoot(kScratchRegister, Heap::kTheHoleValueRootIndex);
   4643   __ movp(FieldOperand(rcx, r9, times_pointer_size, kParameterMapHeaderSize),
   4644           r8);
   4645   __ movp(FieldOperand(rdi, r9, times_pointer_size, FixedArray::kHeaderSize),
   4646           kScratchRegister);
   4647   __ SmiAddConstant(r8, r8, Smi::FromInt(1));
   4648   __ bind(&parameters_test);
   4649   __ testp(r9, r9);
   4650   __ j(not_zero, &parameters_loop, Label::kNear);
   4651 
   4652   __ bind(&skip_parameter_map);
   4653 
   4654   // r11 = argument count (tagged)
   4655   // rdi = address of backing store (tagged)
   4656   // Copy arguments header and remaining slots (if there are any).
   4657   __ Move(FieldOperand(rdi, FixedArray::kMapOffset),
   4658           factory->fixed_array_map());
   4659   __ movp(FieldOperand(rdi, FixedArray::kLengthOffset), r11);
   4660 
   4661   Label arguments_loop, arguments_test;
   4662   __ movp(r8, rbx);
   4663   // Untag r11 for the loop below.
   4664   __ SmiToInteger64(r11, r11);
   4665   __ leap(kScratchRegister, Operand(r8, times_pointer_size, 0));
   4666   __ subp(rdx, kScratchRegister);
   4667   __ jmp(&arguments_test, Label::kNear);
   4668 
   4669   __ bind(&arguments_loop);
   4670   __ subp(rdx, Immediate(kPointerSize));
   4671   __ movp(r9, Operand(rdx, 0));
   4672   __ movp(FieldOperand(rdi, r8,
   4673                        times_pointer_size,
   4674                        FixedArray::kHeaderSize),
   4675           r9);
   4676   __ addp(r8, Immediate(1));
   4677 
   4678   __ bind(&arguments_test);
   4679   __ cmpp(r8, r11);
   4680   __ j(less, &arguments_loop, Label::kNear);
   4681 
   4682   // Return.
   4683   __ ret(0);
   4684 
   4685   // Do the runtime call to allocate the arguments object.
   4686   // r11 = argument count (untagged)
   4687   __ bind(&runtime);
   4688   __ Integer32ToSmi(r11, r11);
   4689   __ PopReturnAddressTo(rax);
   4690   __ Push(rdi);  // Push function.
   4691   __ Push(rdx);  // Push parameters pointer.
   4692   __ Push(r11);  // Push parameter count.
   4693   __ PushReturnAddressFrom(rax);
   4694   __ TailCallRuntime(Runtime::kNewSloppyArguments);
   4695 }
   4696 
   4697 
   4698 void FastNewStrictArgumentsStub::Generate(MacroAssembler* masm) {
   4699   // ----------- S t a t e -------------
   4700   //  -- rdi    : function
   4701   //  -- rsi    : context
   4702   //  -- rbp    : frame pointer
   4703   //  -- rsp[0] : return address
   4704   // -----------------------------------
   4705   __ AssertFunction(rdi);
   4706 
   4707   // Make rdx point to the JavaScript frame.
   4708   __ movp(rdx, rbp);
   4709   if (skip_stub_frame()) {
   4710     // For Ignition we need to skip the handler/stub frame to reach the
   4711     // JavaScript frame for the function.
   4712     __ movp(rdx, Operand(rdx, StandardFrameConstants::kCallerFPOffset));
   4713   }
   4714   if (FLAG_debug_code) {
   4715     Label ok;
   4716     __ cmpp(rdi, Operand(rdx, StandardFrameConstants::kFunctionOffset));
   4717     __ j(equal, &ok);
   4718     __ Abort(kInvalidFrameForFastNewRestArgumentsStub);
   4719     __ bind(&ok);
   4720   }
   4721 
   4722   // Check if we have an arguments adaptor frame below the function frame.
   4723   Label arguments_adaptor, arguments_done;
   4724   __ movp(rbx, Operand(rdx, StandardFrameConstants::kCallerFPOffset));
   4725   __ Cmp(Operand(rbx, CommonFrameConstants::kContextOrFrameTypeOffset),
   4726          Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
   4727   __ j(equal, &arguments_adaptor, Label::kNear);
   4728   {
   4729     __ movp(rax, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset));
   4730     __ LoadSharedFunctionInfoSpecialField(
   4731         rax, rax, SharedFunctionInfo::kFormalParameterCountOffset);
   4732     __ leap(rbx, Operand(rdx, rax, times_pointer_size,
   4733                          StandardFrameConstants::kCallerSPOffset -
   4734                              1 * kPointerSize));
   4735   }
   4736   __ jmp(&arguments_done, Label::kNear);
   4737   __ bind(&arguments_adaptor);
   4738   {
   4739     __ SmiToInteger32(
   4740         rax, Operand(rbx, ArgumentsAdaptorFrameConstants::kLengthOffset));
   4741     __ leap(rbx, Operand(rbx, rax, times_pointer_size,
   4742                          StandardFrameConstants::kCallerSPOffset -
   4743                              1 * kPointerSize));
   4744   }
   4745   __ bind(&arguments_done);
   4746 
   4747   // ----------- S t a t e -------------
   4748   //  -- rax    : number of arguments
   4749   //  -- rbx    : pointer to the first argument
   4750   //  -- rdi    : function
   4751   //  -- rsi    : context
   4752   //  -- rsp[0] : return address
   4753   // -----------------------------------
   4754 
   4755   // Allocate space for the strict arguments object plus the backing store.
   4756   Label allocate, done_allocate;
   4757   __ leal(rcx, Operand(rax, times_pointer_size, JSStrictArgumentsObject::kSize +
   4758                                                     FixedArray::kHeaderSize));
   4759   __ Allocate(rcx, rdx, r8, no_reg, &allocate, NO_ALLOCATION_FLAGS);
   4760   __ bind(&done_allocate);
   4761 
   4762   // Compute the arguments.length in rdi.
   4763   __ Integer32ToSmi(rdi, rax);
   4764 
   4765   // Setup the elements array in rdx.
   4766   __ LoadRoot(rcx, Heap::kFixedArrayMapRootIndex);
   4767   __ movp(FieldOperand(rdx, FixedArray::kMapOffset), rcx);
   4768   __ movp(FieldOperand(rdx, FixedArray::kLengthOffset), rdi);
   4769   {
   4770     Label loop, done_loop;
   4771     __ Set(rcx, 0);
   4772     __ bind(&loop);
   4773     __ cmpl(rcx, rax);
   4774     __ j(equal, &done_loop, Label::kNear);
   4775     __ movp(kScratchRegister, Operand(rbx, 0 * kPointerSize));
   4776     __ movp(
   4777         FieldOperand(rdx, rcx, times_pointer_size, FixedArray::kHeaderSize),
   4778         kScratchRegister);
   4779     __ subp(rbx, Immediate(1 * kPointerSize));
   4780     __ addl(rcx, Immediate(1));
   4781     __ jmp(&loop);
   4782     __ bind(&done_loop);
   4783   }
   4784 
   4785   // Setup the strict arguments object in rax.
   4786   __ leap(rax,
   4787           Operand(rdx, rax, times_pointer_size, FixedArray::kHeaderSize));
   4788   __ LoadNativeContextSlot(Context::STRICT_ARGUMENTS_MAP_INDEX, rcx);
   4789   __ movp(FieldOperand(rax, JSStrictArgumentsObject::kMapOffset), rcx);
   4790   __ LoadRoot(rcx, Heap::kEmptyFixedArrayRootIndex);
   4791   __ movp(FieldOperand(rax, JSStrictArgumentsObject::kPropertiesOffset), rcx);
   4792   __ movp(FieldOperand(rax, JSStrictArgumentsObject::kElementsOffset), rdx);
   4793   __ movp(FieldOperand(rax, JSStrictArgumentsObject::kLengthOffset), rdi);
   4794   STATIC_ASSERT(JSStrictArgumentsObject::kSize == 4 * kPointerSize);
   4795   __ Ret();
   4796 
   4797   // Fall back to %AllocateInNewSpace (if not too big).
   4798   Label too_big_for_new_space;
   4799   __ bind(&allocate);
   4800   __ cmpl(rcx, Immediate(Page::kMaxRegularHeapObjectSize));
   4801   __ j(greater, &too_big_for_new_space);
   4802   {
   4803     FrameScope scope(masm, StackFrame::INTERNAL);
   4804     __ Integer32ToSmi(rax, rax);
   4805     __ Integer32ToSmi(rcx, rcx);
   4806     __ Push(rax);
   4807     __ Push(rbx);
   4808     __ Push(rcx);
   4809     __ CallRuntime(Runtime::kAllocateInNewSpace);
   4810     __ movp(rdx, rax);
   4811     __ Pop(rbx);
   4812     __ Pop(rax);
   4813     __ SmiToInteger32(rax, rax);
   4814   }
   4815   __ jmp(&done_allocate);
   4816 
   4817   // Fall back to %NewStrictArguments.
   4818   __ bind(&too_big_for_new_space);
   4819   __ PopReturnAddressTo(kScratchRegister);
   4820   __ Push(rdi);
   4821   __ PushReturnAddressFrom(kScratchRegister);
   4822   __ TailCallRuntime(Runtime::kNewStrictArguments);
   4823 }
   4824 
   4825 
   4826 void StoreGlobalViaContextStub::Generate(MacroAssembler* masm) {
   4827   Register context_reg = rsi;
   4828   Register slot_reg = rbx;
   4829   Register value_reg = rax;
   4830   Register cell_reg = r8;
   4831   Register cell_details_reg = rdx;
   4832   Register cell_value_reg = r9;
   4833   Label fast_heapobject_case, fast_smi_case, slow_case;
   4834 
   4835   if (FLAG_debug_code) {
   4836     __ CompareRoot(value_reg, Heap::kTheHoleValueRootIndex);
   4837     __ Check(not_equal, kUnexpectedValue);
   4838   }
   4839 
   4840   // Go up context chain to the script context.
   4841   for (int i = 0; i < depth(); ++i) {
   4842     __ movp(rdi, ContextOperand(context_reg, Context::PREVIOUS_INDEX));
   4843     context_reg = rdi;
   4844   }
   4845 
   4846   // Load the PropertyCell at the specified slot.
   4847   __ movp(cell_reg, ContextOperand(context_reg, slot_reg));
   4848 
   4849   // Load PropertyDetails for the cell (actually only the cell_type, kind and
   4850   // READ_ONLY bit of attributes).
   4851   __ SmiToInteger32(cell_details_reg,
   4852                     FieldOperand(cell_reg, PropertyCell::kDetailsOffset));
   4853   __ andl(cell_details_reg,
   4854           Immediate(PropertyDetails::PropertyCellTypeField::kMask |
   4855                     PropertyDetails::KindField::kMask |
   4856                     PropertyDetails::kAttributesReadOnlyMask));
   4857 
   4858   // Check if PropertyCell holds mutable data.
   4859   Label not_mutable_data;
   4860   __ cmpl(cell_details_reg,
   4861           Immediate(PropertyDetails::PropertyCellTypeField::encode(
   4862                         PropertyCellType::kMutable) |
   4863                     PropertyDetails::KindField::encode(kData)));
   4864   __ j(not_equal, &not_mutable_data);
   4865   __ JumpIfSmi(value_reg, &fast_smi_case);
   4866   __ bind(&fast_heapobject_case);
   4867   __ movp(FieldOperand(cell_reg, PropertyCell::kValueOffset), value_reg);
   4868   __ RecordWriteField(cell_reg, PropertyCell::kValueOffset, value_reg,
   4869                       cell_value_reg, kDontSaveFPRegs, EMIT_REMEMBERED_SET,
   4870                       OMIT_SMI_CHECK);
   4871   // RecordWriteField clobbers the value register, so we need to reload.
   4872   __ movp(value_reg, FieldOperand(cell_reg, PropertyCell::kValueOffset));
   4873   __ Ret();
   4874   __ bind(&not_mutable_data);
   4875 
   4876   // Check if PropertyCell value matches the new value (relevant for Constant,
   4877   // ConstantType and Undefined cells).
   4878   Label not_same_value;
   4879   __ movp(cell_value_reg, FieldOperand(cell_reg, PropertyCell::kValueOffset));
   4880   __ cmpp(cell_value_reg, value_reg);
   4881   __ j(not_equal, &not_same_value,
   4882        FLAG_debug_code ? Label::kFar : Label::kNear);
   4883   // Make sure the PropertyCell is not marked READ_ONLY.
   4884   __ testl(cell_details_reg,
   4885            Immediate(PropertyDetails::kAttributesReadOnlyMask));
   4886   __ j(not_zero, &slow_case);
   4887   if (FLAG_debug_code) {
   4888     Label done;
   4889     // This can only be true for Constant, ConstantType and Undefined cells,
   4890     // because we never store the_hole via this stub.
   4891     __ cmpl(cell_details_reg,
   4892             Immediate(PropertyDetails::PropertyCellTypeField::encode(
   4893                           PropertyCellType::kConstant) |
   4894                       PropertyDetails::KindField::encode(kData)));
   4895     __ j(equal, &done);
   4896     __ cmpl(cell_details_reg,
   4897             Immediate(PropertyDetails::PropertyCellTypeField::encode(
   4898                           PropertyCellType::kConstantType) |
   4899                       PropertyDetails::KindField::encode(kData)));
   4900     __ j(equal, &done);
   4901     __ cmpl(cell_details_reg,
   4902             Immediate(PropertyDetails::PropertyCellTypeField::encode(
   4903                           PropertyCellType::kUndefined) |
   4904                       PropertyDetails::KindField::encode(kData)));
   4905     __ Check(equal, kUnexpectedValue);
   4906     __ bind(&done);
   4907   }
   4908   __ Ret();
   4909   __ bind(&not_same_value);
   4910 
   4911   // Check if PropertyCell contains data with constant type (and is not
   4912   // READ_ONLY).
   4913   __ cmpl(cell_details_reg,
   4914           Immediate(PropertyDetails::PropertyCellTypeField::encode(
   4915                         PropertyCellType::kConstantType) |
   4916                     PropertyDetails::KindField::encode(kData)));
   4917   __ j(not_equal, &slow_case, Label::kNear);
   4918 
   4919   // Now either both old and new values must be SMIs or both must be heap
   4920   // objects with same map.
   4921   Label value_is_heap_object;
   4922   __ JumpIfNotSmi(value_reg, &value_is_heap_object, Label::kNear);
   4923   __ JumpIfNotSmi(cell_value_reg, &slow_case, Label::kNear);
   4924   // Old and new values are SMIs, no need for a write barrier here.
   4925   __ bind(&fast_smi_case);
   4926   __ movp(FieldOperand(cell_reg, PropertyCell::kValueOffset), value_reg);
   4927   __ Ret();
   4928   __ bind(&value_is_heap_object);
   4929   __ JumpIfSmi(cell_value_reg, &slow_case, Label::kNear);
   4930   Register cell_value_map_reg = cell_value_reg;
   4931   __ movp(cell_value_map_reg,
   4932           FieldOperand(cell_value_reg, HeapObject::kMapOffset));
   4933   __ cmpp(cell_value_map_reg, FieldOperand(value_reg, HeapObject::kMapOffset));
   4934   __ j(equal, &fast_heapobject_case);
   4935 
   4936   // Fallback to the runtime.
   4937   __ bind(&slow_case);
   4938   __ Integer32ToSmi(slot_reg, slot_reg);
   4939   __ PopReturnAddressTo(kScratchRegister);
   4940   __ Push(slot_reg);
   4941   __ Push(value_reg);
   4942   __ Push(kScratchRegister);
   4943   __ TailCallRuntime(is_strict(language_mode())
   4944                          ? Runtime::kStoreGlobalViaContext_Strict
   4945                          : Runtime::kStoreGlobalViaContext_Sloppy);
   4946 }
   4947 
   4948 
   4949 static int Offset(ExternalReference ref0, ExternalReference ref1) {
   4950   int64_t offset = (ref0.address() - ref1.address());
   4951   // Check that fits into int.
   4952   DCHECK(static_cast<int>(offset) == offset);
   4953   return static_cast<int>(offset);
   4954 }
   4955 
   4956 
   4957 // Prepares stack to put arguments (aligns and so on).  WIN64 calling
   4958 // convention requires to put the pointer to the return value slot into
   4959 // rcx (rcx must be preserverd until CallApiFunctionAndReturn).  Saves
   4960 // context (rsi).  Clobbers rax.  Allocates arg_stack_space * kPointerSize
   4961 // inside the exit frame (not GCed) accessible via StackSpaceOperand.
   4962 static void PrepareCallApiFunction(MacroAssembler* masm, int arg_stack_space) {
   4963   __ EnterApiExitFrame(arg_stack_space);
   4964 }
   4965 
   4966 
   4967 // Calls an API function.  Allocates HandleScope, extracts returned value
   4968 // from handle and propagates exceptions.  Clobbers r14, r15, rbx and
   4969 // caller-save registers.  Restores context.  On return removes
   4970 // stack_space * kPointerSize (GCed).
   4971 static void CallApiFunctionAndReturn(MacroAssembler* masm,
   4972                                      Register function_address,
   4973                                      ExternalReference thunk_ref,
   4974                                      Register thunk_last_arg, int stack_space,
   4975                                      Operand* stack_space_operand,
   4976                                      Operand return_value_operand,
   4977                                      Operand* context_restore_operand) {
   4978   Label prologue;
   4979   Label promote_scheduled_exception;
   4980   Label delete_allocated_handles;
   4981   Label leave_exit_frame;
   4982   Label write_back;
   4983 
   4984   Isolate* isolate = masm->isolate();
   4985   Factory* factory = isolate->factory();
   4986   ExternalReference next_address =
   4987       ExternalReference::handle_scope_next_address(isolate);
   4988   const int kNextOffset = 0;
   4989   const int kLimitOffset = Offset(
   4990       ExternalReference::handle_scope_limit_address(isolate), next_address);
   4991   const int kLevelOffset = Offset(
   4992       ExternalReference::handle_scope_level_address(isolate), next_address);
   4993   ExternalReference scheduled_exception_address =
   4994       ExternalReference::scheduled_exception_address(isolate);
   4995 
   4996   DCHECK(rdx.is(function_address) || r8.is(function_address));
   4997   // Allocate HandleScope in callee-save registers.
   4998   Register prev_next_address_reg = r14;
   4999   Register prev_limit_reg = rbx;
   5000   Register base_reg = r15;
   5001   __ Move(base_reg, next_address);
   5002   __ movp(prev_next_address_reg, Operand(base_reg, kNextOffset));
   5003   __ movp(prev_limit_reg, Operand(base_reg, kLimitOffset));
   5004   __ addl(Operand(base_reg, kLevelOffset), Immediate(1));
   5005 
   5006   if (FLAG_log_timer_events) {
   5007     FrameScope frame(masm, StackFrame::MANUAL);
   5008     __ PushSafepointRegisters();
   5009     __ PrepareCallCFunction(1);
   5010     __ LoadAddress(arg_reg_1, ExternalReference::isolate_address(isolate));
   5011     __ CallCFunction(ExternalReference::log_enter_external_function(isolate),
   5012                      1);
   5013     __ PopSafepointRegisters();
   5014   }
   5015 
   5016   Label profiler_disabled;
   5017   Label end_profiler_check;
   5018   __ Move(rax, ExternalReference::is_profiling_address(isolate));
   5019   __ cmpb(Operand(rax, 0), Immediate(0));
   5020   __ j(zero, &profiler_disabled);
   5021 
   5022   // Third parameter is the address of the actual getter function.
   5023   __ Move(thunk_last_arg, function_address);
   5024   __ Move(rax, thunk_ref);
   5025   __ jmp(&end_profiler_check);
   5026 
   5027   __ bind(&profiler_disabled);
   5028   // Call the api function!
   5029   __ Move(rax, function_address);
   5030 
   5031   __ bind(&end_profiler_check);
   5032 
   5033   // Call the api function!
   5034   __ call(rax);
   5035 
   5036   if (FLAG_log_timer_events) {
   5037     FrameScope frame(masm, StackFrame::MANUAL);
   5038     __ PushSafepointRegisters();
   5039     __ PrepareCallCFunction(1);
   5040     __ LoadAddress(arg_reg_1, ExternalReference::isolate_address(isolate));
   5041     __ CallCFunction(ExternalReference::log_leave_external_function(isolate),
   5042                      1);
   5043     __ PopSafepointRegisters();
   5044   }
   5045 
   5046   // Load the value from ReturnValue
   5047   __ movp(rax, return_value_operand);
   5048   __ bind(&prologue);
   5049 
   5050   // No more valid handles (the result handle was the last one). Restore
   5051   // previous handle scope.
   5052   __ subl(Operand(base_reg, kLevelOffset), Immediate(1));
   5053   __ movp(Operand(base_reg, kNextOffset), prev_next_address_reg);
   5054   __ cmpp(prev_limit_reg, Operand(base_reg, kLimitOffset));
   5055   __ j(not_equal, &delete_allocated_handles);
   5056 
   5057   // Leave the API exit frame.
   5058   __ bind(&leave_exit_frame);
   5059   bool restore_context = context_restore_operand != NULL;
   5060   if (restore_context) {
   5061     __ movp(rsi, *context_restore_operand);
   5062   }
   5063   if (stack_space_operand != nullptr) {
   5064     __ movp(rbx, *stack_space_operand);
   5065   }
   5066   __ LeaveApiExitFrame(!restore_context);
   5067 
   5068   // Check if the function scheduled an exception.
   5069   __ Move(rdi, scheduled_exception_address);
   5070   __ Cmp(Operand(rdi, 0), factory->the_hole_value());
   5071   __ j(not_equal, &promote_scheduled_exception);
   5072 
   5073 #if DEBUG
   5074   // Check if the function returned a valid JavaScript value.
   5075   Label ok;
   5076   Register return_value = rax;
   5077   Register map = rcx;
   5078 
   5079   __ JumpIfSmi(return_value, &ok, Label::kNear);
   5080   __ movp(map, FieldOperand(return_value, HeapObject::kMapOffset));
   5081 
   5082   __ CmpInstanceType(map, LAST_NAME_TYPE);
   5083   __ j(below_equal, &ok, Label::kNear);
   5084 
   5085   __ CmpInstanceType(map, FIRST_JS_RECEIVER_TYPE);
   5086   __ j(above_equal, &ok, Label::kNear);
   5087 
   5088   __ CompareRoot(map, Heap::kHeapNumberMapRootIndex);
   5089   __ j(equal, &ok, Label::kNear);
   5090 
   5091   __ CompareRoot(return_value, Heap::kUndefinedValueRootIndex);
   5092   __ j(equal, &ok, Label::kNear);
   5093 
   5094   __ CompareRoot(return_value, Heap::kTrueValueRootIndex);
   5095   __ j(equal, &ok, Label::kNear);
   5096 
   5097   __ CompareRoot(return_value, Heap::kFalseValueRootIndex);
   5098   __ j(equal, &ok, Label::kNear);
   5099 
   5100   __ CompareRoot(return_value, Heap::kNullValueRootIndex);
   5101   __ j(equal, &ok, Label::kNear);
   5102 
   5103   __ Abort(kAPICallReturnedInvalidObject);
   5104 
   5105   __ bind(&ok);
   5106 #endif
   5107 
   5108   if (stack_space_operand != nullptr) {
   5109     DCHECK_EQ(stack_space, 0);
   5110     __ PopReturnAddressTo(rcx);
   5111     __ addq(rsp, rbx);
   5112     __ jmp(rcx);
   5113   } else {
   5114     __ ret(stack_space * kPointerSize);
   5115   }
   5116 
   5117   // Re-throw by promoting a scheduled exception.
   5118   __ bind(&promote_scheduled_exception);
   5119   __ TailCallRuntime(Runtime::kPromoteScheduledException);
   5120 
   5121   // HandleScope limit has changed. Delete allocated extensions.
   5122   __ bind(&delete_allocated_handles);
   5123   __ movp(Operand(base_reg, kLimitOffset), prev_limit_reg);
   5124   __ movp(prev_limit_reg, rax);
   5125   __ LoadAddress(arg_reg_1, ExternalReference::isolate_address(isolate));
   5126   __ LoadAddress(rax,
   5127                  ExternalReference::delete_handle_scope_extensions(isolate));
   5128   __ call(rax);
   5129   __ movp(rax, prev_limit_reg);
   5130   __ jmp(&leave_exit_frame);
   5131 }
   5132 
   5133 void CallApiCallbackStub::Generate(MacroAssembler* masm) {
   5134   // ----------- S t a t e -------------
   5135   //  -- rdi                 : callee
   5136   //  -- rbx                 : call_data
   5137   //  -- rcx                 : holder
   5138   //  -- rdx                 : api_function_address
   5139   //  -- rsi                 : context
   5140   //  -- rax                 : number of arguments if argc is a register
   5141   //  -- rsp[0]              : return address
   5142   //  -- rsp[8]              : last argument
   5143   //  -- ...
   5144   //  -- rsp[argc * 8]       : first argument
   5145   //  -- rsp[(argc + 1) * 8] : receiver
   5146   // -----------------------------------
   5147 
   5148   Register callee = rdi;
   5149   Register call_data = rbx;
   5150   Register holder = rcx;
   5151   Register api_function_address = rdx;
   5152   Register context = rsi;
   5153   Register return_address = r8;
   5154 
   5155   typedef FunctionCallbackArguments FCA;
   5156 
   5157   STATIC_ASSERT(FCA::kContextSaveIndex == 6);
   5158   STATIC_ASSERT(FCA::kCalleeIndex == 5);
   5159   STATIC_ASSERT(FCA::kDataIndex == 4);
   5160   STATIC_ASSERT(FCA::kReturnValueOffset == 3);
   5161   STATIC_ASSERT(FCA::kReturnValueDefaultValueIndex == 2);
   5162   STATIC_ASSERT(FCA::kIsolateIndex == 1);
   5163   STATIC_ASSERT(FCA::kHolderIndex == 0);
   5164   STATIC_ASSERT(FCA::kNewTargetIndex == 7);
   5165   STATIC_ASSERT(FCA::kArgsLength == 8);
   5166 
   5167   __ PopReturnAddressTo(return_address);
   5168 
   5169   // new target
   5170   __ PushRoot(Heap::kUndefinedValueRootIndex);
   5171 
   5172   // context save
   5173   __ Push(context);
   5174 
   5175   // callee
   5176   __ Push(callee);
   5177 
   5178   // call data
   5179   __ Push(call_data);
   5180   Register scratch = call_data;
   5181   if (!this->call_data_undefined()) {
   5182     __ LoadRoot(scratch, Heap::kUndefinedValueRootIndex);
   5183   }
   5184   // return value
   5185   __ Push(scratch);
   5186   // return value default
   5187   __ Push(scratch);
   5188   // isolate
   5189   __ Move(scratch, ExternalReference::isolate_address(masm->isolate()));
   5190   __ Push(scratch);
   5191   // holder
   5192   __ Push(holder);
   5193 
   5194   __ movp(scratch, rsp);
   5195   // Push return address back on stack.
   5196   __ PushReturnAddressFrom(return_address);
   5197 
   5198   if (!this->is_lazy()) {
   5199     // load context from callee
   5200     __ movp(context, FieldOperand(callee, JSFunction::kContextOffset));
   5201   }
   5202 
   5203   // Allocate the v8::Arguments structure in the arguments' space since
   5204   // it's not controlled by GC.
   5205   const int kApiStackSpace = 3;
   5206 
   5207   PrepareCallApiFunction(masm, kApiStackSpace);
   5208 
   5209   // FunctionCallbackInfo::implicit_args_.
   5210   int argc = this->argc();
   5211   __ movp(StackSpaceOperand(0), scratch);
   5212   __ addp(scratch, Immediate((argc + FCA::kArgsLength - 1) * kPointerSize));
   5213   // FunctionCallbackInfo::values_.
   5214   __ movp(StackSpaceOperand(1), scratch);
   5215   // FunctionCallbackInfo::length_.
   5216   __ Set(StackSpaceOperand(2), argc);
   5217 
   5218 #if defined(__MINGW64__) || defined(_WIN64)
   5219   Register arguments_arg = rcx;
   5220   Register callback_arg = rdx;
   5221 #else
   5222   Register arguments_arg = rdi;
   5223   Register callback_arg = rsi;
   5224 #endif
   5225 
   5226   // It's okay if api_function_address == callback_arg
   5227   // but not arguments_arg
   5228   DCHECK(!api_function_address.is(arguments_arg));
   5229 
   5230   // v8::InvocationCallback's argument.
   5231   __ leap(arguments_arg, StackSpaceOperand(0));
   5232 
   5233   ExternalReference thunk_ref =
   5234       ExternalReference::invoke_function_callback(masm->isolate());
   5235 
   5236   // Accessor for FunctionCallbackInfo and first js arg.
   5237   StackArgumentsAccessor args_from_rbp(rbp, FCA::kArgsLength + 1,
   5238                                        ARGUMENTS_DONT_CONTAIN_RECEIVER);
   5239   Operand context_restore_operand = args_from_rbp.GetArgumentOperand(
   5240       FCA::kArgsLength - FCA::kContextSaveIndex);
   5241   Operand length_operand = StackSpaceOperand(2);
   5242   Operand return_value_operand = args_from_rbp.GetArgumentOperand(
   5243       this->is_store() ? 0 : FCA::kArgsLength - FCA::kReturnValueOffset);
   5244   int stack_space = 0;
   5245   Operand* stack_space_operand = &length_operand;
   5246   stack_space = argc + FCA::kArgsLength + 1;
   5247   stack_space_operand = nullptr;
   5248   CallApiFunctionAndReturn(masm, api_function_address, thunk_ref, callback_arg,
   5249                            stack_space, stack_space_operand,
   5250                            return_value_operand, &context_restore_operand);
   5251 }
   5252 
   5253 
   5254 void CallApiGetterStub::Generate(MacroAssembler* masm) {
   5255 #if defined(__MINGW64__) || defined(_WIN64)
   5256   Register getter_arg = r8;
   5257   Register accessor_info_arg = rdx;
   5258   Register name_arg = rcx;
   5259 #else
   5260   Register getter_arg = rdx;
   5261   Register accessor_info_arg = rsi;
   5262   Register name_arg = rdi;
   5263 #endif
   5264   Register api_function_address = r8;
   5265   Register receiver = ApiGetterDescriptor::ReceiverRegister();
   5266   Register holder = ApiGetterDescriptor::HolderRegister();
   5267   Register callback = ApiGetterDescriptor::CallbackRegister();
   5268   Register scratch = rax;
   5269   DCHECK(!AreAliased(receiver, holder, callback, scratch));
   5270 
   5271   // Build v8::PropertyCallbackInfo::args_ array on the stack and push property
   5272   // name below the exit frame to make GC aware of them.
   5273   STATIC_ASSERT(PropertyCallbackArguments::kShouldThrowOnErrorIndex == 0);
   5274   STATIC_ASSERT(PropertyCallbackArguments::kHolderIndex == 1);
   5275   STATIC_ASSERT(PropertyCallbackArguments::kIsolateIndex == 2);
   5276   STATIC_ASSERT(PropertyCallbackArguments::kReturnValueDefaultValueIndex == 3);
   5277   STATIC_ASSERT(PropertyCallbackArguments::kReturnValueOffset == 4);
   5278   STATIC_ASSERT(PropertyCallbackArguments::kDataIndex == 5);
   5279   STATIC_ASSERT(PropertyCallbackArguments::kThisIndex == 6);
   5280   STATIC_ASSERT(PropertyCallbackArguments::kArgsLength == 7);
   5281 
   5282   // Insert additional parameters into the stack frame above return address.
   5283   __ PopReturnAddressTo(scratch);
   5284   __ Push(receiver);
   5285   __ Push(FieldOperand(callback, AccessorInfo::kDataOffset));
   5286   __ LoadRoot(kScratchRegister, Heap::kUndefinedValueRootIndex);
   5287   __ Push(kScratchRegister);  // return value
   5288   __ Push(kScratchRegister);  // return value default
   5289   __ PushAddress(ExternalReference::isolate_address(isolate()));
   5290   __ Push(holder);
   5291   __ Push(Smi::FromInt(0));  // should_throw_on_error -> false
   5292   __ Push(FieldOperand(callback, AccessorInfo::kNameOffset));
   5293   __ PushReturnAddressFrom(scratch);
   5294 
   5295   // v8::PropertyCallbackInfo::args_ array and name handle.
   5296   const int kStackUnwindSpace = PropertyCallbackArguments::kArgsLength + 1;
   5297 
   5298   // Allocate v8::PropertyCallbackInfo in non-GCed stack space.
   5299   const int kArgStackSpace = 1;
   5300 
   5301   // Load address of v8::PropertyAccessorInfo::args_ array.
   5302   __ leap(scratch, Operand(rsp, 2 * kPointerSize));
   5303 
   5304   PrepareCallApiFunction(masm, kArgStackSpace);
   5305   // Create v8::PropertyCallbackInfo object on the stack and initialize
   5306   // it's args_ field.
   5307   Operand info_object = StackSpaceOperand(0);
   5308   __ movp(info_object, scratch);
   5309 
   5310   __ leap(name_arg, Operand(scratch, -kPointerSize));
   5311   // The context register (rsi) has been saved in PrepareCallApiFunction and
   5312   // could be used to pass arguments.
   5313   __ leap(accessor_info_arg, info_object);
   5314 
   5315   ExternalReference thunk_ref =
   5316       ExternalReference::invoke_accessor_getter_callback(isolate());
   5317 
   5318   // It's okay if api_function_address == getter_arg
   5319   // but not accessor_info_arg or name_arg
   5320   DCHECK(!api_function_address.is(accessor_info_arg));
   5321   DCHECK(!api_function_address.is(name_arg));
   5322   __ movp(scratch, FieldOperand(callback, AccessorInfo::kJsGetterOffset));
   5323   __ movp(api_function_address,
   5324           FieldOperand(scratch, Foreign::kForeignAddressOffset));
   5325 
   5326   // +3 is to skip prolog, return address and name handle.
   5327   Operand return_value_operand(
   5328       rbp, (PropertyCallbackArguments::kReturnValueOffset + 3) * kPointerSize);
   5329   CallApiFunctionAndReturn(masm, api_function_address, thunk_ref, getter_arg,
   5330                            kStackUnwindSpace, nullptr, return_value_operand,
   5331                            NULL);
   5332 }
   5333 
   5334 #undef __
   5335 
   5336 }  // namespace internal
   5337 }  // namespace v8
   5338 
   5339 #endif  // V8_TARGET_ARCH_X64
   5340