Home | History | Annotate | Download | only in x64
      1 // Copyright 2012 the V8 project authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #ifndef V8_X64_MACRO_ASSEMBLER_X64_H_
      6 #define V8_X64_MACRO_ASSEMBLER_X64_H_
      7 
      8 #include "src/assembler.h"
      9 #include "src/bailout-reason.h"
     10 #include "src/base/flags.h"
     11 #include "src/frames.h"
     12 #include "src/globals.h"
     13 #include "src/x64/frames-x64.h"
     14 
     15 namespace v8 {
     16 namespace internal {
     17 
     18 // Give alias names to registers for calling conventions.
     19 const Register kReturnRegister0 = {Register::kCode_rax};
     20 const Register kReturnRegister1 = {Register::kCode_rdx};
     21 const Register kReturnRegister2 = {Register::kCode_r8};
     22 const Register kJSFunctionRegister = {Register::kCode_rdi};
     23 const Register kContextRegister = {Register::kCode_rsi};
     24 const Register kAllocateSizeRegister = {Register::kCode_rdx};
     25 const Register kInterpreterAccumulatorRegister = {Register::kCode_rax};
     26 const Register kInterpreterBytecodeOffsetRegister = {Register::kCode_r12};
     27 const Register kInterpreterBytecodeArrayRegister = {Register::kCode_r14};
     28 const Register kInterpreterDispatchTableRegister = {Register::kCode_r15};
     29 const Register kJavaScriptCallArgCountRegister = {Register::kCode_rax};
     30 const Register kJavaScriptCallNewTargetRegister = {Register::kCode_rdx};
     31 const Register kRuntimeCallFunctionRegister = {Register::kCode_rbx};
     32 const Register kRuntimeCallArgCountRegister = {Register::kCode_rax};
     33 
     34 // Default scratch register used by MacroAssembler (and other code that needs
     35 // a spare register). The register isn't callee save, and not used by the
     36 // function calling convention.
     37 const Register kScratchRegister = {10};      // r10.
     38 const XMMRegister kScratchDoubleReg = {15};  // xmm15.
     39 const Register kRootRegister = {13};         // r13 (callee save).
     40 // Actual value of root register is offset from the root array's start
     41 // to take advantage of negitive 8-bit displacement values.
     42 const int kRootRegisterBias = 128;
     43 
     44 // Convenience for platform-independent signatures.
     45 typedef Operand MemOperand;
     46 
     47 enum RememberedSetAction { EMIT_REMEMBERED_SET, OMIT_REMEMBERED_SET };
     48 enum SmiCheck { INLINE_SMI_CHECK, OMIT_SMI_CHECK };
     49 enum PointersToHereCheck {
     50   kPointersToHereMaybeInteresting,
     51   kPointersToHereAreAlwaysInteresting
     52 };
     53 
     54 enum class SmiOperationConstraint {
     55   kPreserveSourceRegister = 1 << 0,
     56   kBailoutOnNoOverflow = 1 << 1,
     57   kBailoutOnOverflow = 1 << 2
     58 };
     59 
     60 enum class ReturnAddressState { kOnStack, kNotOnStack };
     61 
     62 typedef base::Flags<SmiOperationConstraint> SmiOperationConstraints;
     63 
     64 DEFINE_OPERATORS_FOR_FLAGS(SmiOperationConstraints)
     65 
     66 #ifdef DEBUG
     67 bool AreAliased(Register reg1,
     68                 Register reg2,
     69                 Register reg3 = no_reg,
     70                 Register reg4 = no_reg,
     71                 Register reg5 = no_reg,
     72                 Register reg6 = no_reg,
     73                 Register reg7 = no_reg,
     74                 Register reg8 = no_reg);
     75 #endif
     76 
     77 // Forward declaration.
     78 class JumpTarget;
     79 
     80 struct SmiIndex {
     81   SmiIndex(Register index_register, ScaleFactor scale)
     82       : reg(index_register),
     83         scale(scale) {}
     84   Register reg;
     85   ScaleFactor scale;
     86 };
     87 
     88 
     89 // MacroAssembler implements a collection of frequently used macros.
     90 class MacroAssembler: public Assembler {
     91  public:
     92   MacroAssembler(Isolate* isolate, void* buffer, int size,
     93                  CodeObjectRequired create_code_object);
     94 
     95   // Prevent the use of the RootArray during the lifetime of this
     96   // scope object.
     97   class NoRootArrayScope BASE_EMBEDDED {
     98    public:
     99     explicit NoRootArrayScope(MacroAssembler* assembler)
    100         : variable_(&assembler->root_array_available_),
    101           old_value_(assembler->root_array_available_) {
    102       assembler->root_array_available_ = false;
    103     }
    104     ~NoRootArrayScope() {
    105       *variable_ = old_value_;
    106     }
    107    private:
    108     bool* variable_;
    109     bool old_value_;
    110   };
    111 
    112   // Operand pointing to an external reference.
    113   // May emit code to set up the scratch register. The operand is
    114   // only guaranteed to be correct as long as the scratch register
    115   // isn't changed.
    116   // If the operand is used more than once, use a scratch register
    117   // that is guaranteed not to be clobbered.
    118   Operand ExternalOperand(ExternalReference reference,
    119                           Register scratch = kScratchRegister);
    120   // Loads and stores the value of an external reference.
    121   // Special case code for load and store to take advantage of
    122   // load_rax/store_rax if possible/necessary.
    123   // For other operations, just use:
    124   //   Operand operand = ExternalOperand(extref);
    125   //   operation(operand, ..);
    126   void Load(Register destination, ExternalReference source);
    127   void Store(ExternalReference destination, Register source);
    128   // Loads the address of the external reference into the destination
    129   // register.
    130   void LoadAddress(Register destination, ExternalReference source);
    131   // Returns the size of the code generated by LoadAddress.
    132   // Used by CallSize(ExternalReference) to find the size of a call.
    133   int LoadAddressSize(ExternalReference source);
    134   // Pushes the address of the external reference onto the stack.
    135   void PushAddress(ExternalReference source);
    136 
    137   // Operations on roots in the root-array.
    138   void LoadRoot(Register destination, Heap::RootListIndex index);
    139   void LoadRoot(const Operand& destination, Heap::RootListIndex index) {
    140     LoadRoot(kScratchRegister, index);
    141     movp(destination, kScratchRegister);
    142   }
    143   void StoreRoot(Register source, Heap::RootListIndex index);
    144   // Load a root value where the index (or part of it) is variable.
    145   // The variable_offset register is added to the fixed_offset value
    146   // to get the index into the root-array.
    147   void LoadRootIndexed(Register destination,
    148                        Register variable_offset,
    149                        int fixed_offset);
    150   void CompareRoot(Register with, Heap::RootListIndex index);
    151   void CompareRoot(const Operand& with, Heap::RootListIndex index);
    152   void PushRoot(Heap::RootListIndex index);
    153 
    154   // Compare the object in a register to a value and jump if they are equal.
    155   void JumpIfRoot(Register with, Heap::RootListIndex index, Label* if_equal,
    156                   Label::Distance if_equal_distance = Label::kFar) {
    157     CompareRoot(with, index);
    158     j(equal, if_equal, if_equal_distance);
    159   }
    160   void JumpIfRoot(const Operand& with, Heap::RootListIndex index,
    161                   Label* if_equal,
    162                   Label::Distance if_equal_distance = Label::kFar) {
    163     CompareRoot(with, index);
    164     j(equal, if_equal, if_equal_distance);
    165   }
    166 
    167   // Compare the object in a register to a value and jump if they are not equal.
    168   void JumpIfNotRoot(Register with, Heap::RootListIndex index,
    169                      Label* if_not_equal,
    170                      Label::Distance if_not_equal_distance = Label::kFar) {
    171     CompareRoot(with, index);
    172     j(not_equal, if_not_equal, if_not_equal_distance);
    173   }
    174   void JumpIfNotRoot(const Operand& with, Heap::RootListIndex index,
    175                      Label* if_not_equal,
    176                      Label::Distance if_not_equal_distance = Label::kFar) {
    177     CompareRoot(with, index);
    178     j(not_equal, if_not_equal, if_not_equal_distance);
    179   }
    180 
    181   // These functions do not arrange the registers in any particular order so
    182   // they are not useful for calls that can cause a GC.  The caller can
    183   // exclude up to 3 registers that do not need to be saved and restored.
    184   void PushCallerSaved(SaveFPRegsMode fp_mode,
    185                        Register exclusion1 = no_reg,
    186                        Register exclusion2 = no_reg,
    187                        Register exclusion3 = no_reg);
    188   void PopCallerSaved(SaveFPRegsMode fp_mode,
    189                       Register exclusion1 = no_reg,
    190                       Register exclusion2 = no_reg,
    191                       Register exclusion3 = no_reg);
    192 
    193 // ---------------------------------------------------------------------------
    194 // GC Support
    195 
    196 
    197   enum RememberedSetFinalAction {
    198     kReturnAtEnd,
    199     kFallThroughAtEnd
    200   };
    201 
    202   // Record in the remembered set the fact that we have a pointer to new space
    203   // at the address pointed to by the addr register.  Only works if addr is not
    204   // in new space.
    205   void RememberedSetHelper(Register object,  // Used for debug code.
    206                            Register addr,
    207                            Register scratch,
    208                            SaveFPRegsMode save_fp,
    209                            RememberedSetFinalAction and_then);
    210 
    211   void CheckPageFlag(Register object,
    212                      Register scratch,
    213                      int mask,
    214                      Condition cc,
    215                      Label* condition_met,
    216                      Label::Distance condition_met_distance = Label::kFar);
    217 
    218   // Check if object is in new space.  Jumps if the object is not in new space.
    219   // The register scratch can be object itself, but scratch will be clobbered.
    220   void JumpIfNotInNewSpace(Register object,
    221                            Register scratch,
    222                            Label* branch,
    223                            Label::Distance distance = Label::kFar) {
    224     InNewSpace(object, scratch, zero, branch, distance);
    225   }
    226 
    227   // Check if object is in new space.  Jumps if the object is in new space.
    228   // The register scratch can be object itself, but it will be clobbered.
    229   void JumpIfInNewSpace(Register object,
    230                         Register scratch,
    231                         Label* branch,
    232                         Label::Distance distance = Label::kFar) {
    233     InNewSpace(object, scratch, not_zero, branch, distance);
    234   }
    235 
    236   // Check if an object has the black incremental marking color.  Also uses rcx!
    237   void JumpIfBlack(Register object, Register bitmap_scratch,
    238                    Register mask_scratch, Label* on_black,
    239                    Label::Distance on_black_distance);
    240 
    241   // Checks the color of an object.  If the object is white we jump to the
    242   // incremental marker.
    243   void JumpIfWhite(Register value, Register scratch1, Register scratch2,
    244                    Label* value_is_white, Label::Distance distance);
    245 
    246   // Notify the garbage collector that we wrote a pointer into an object.
    247   // |object| is the object being stored into, |value| is the object being
    248   // stored.  value and scratch registers are clobbered by the operation.
    249   // The offset is the offset from the start of the object, not the offset from
    250   // the tagged HeapObject pointer.  For use with FieldOperand(reg, off).
    251   void RecordWriteField(
    252       Register object,
    253       int offset,
    254       Register value,
    255       Register scratch,
    256       SaveFPRegsMode save_fp,
    257       RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
    258       SmiCheck smi_check = INLINE_SMI_CHECK,
    259       PointersToHereCheck pointers_to_here_check_for_value =
    260           kPointersToHereMaybeInteresting);
    261 
    262   // As above, but the offset has the tag presubtracted.  For use with
    263   // Operand(reg, off).
    264   void RecordWriteContextSlot(
    265       Register context,
    266       int offset,
    267       Register value,
    268       Register scratch,
    269       SaveFPRegsMode save_fp,
    270       RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
    271       SmiCheck smi_check = INLINE_SMI_CHECK,
    272       PointersToHereCheck pointers_to_here_check_for_value =
    273           kPointersToHereMaybeInteresting) {
    274     RecordWriteField(context,
    275                      offset + kHeapObjectTag,
    276                      value,
    277                      scratch,
    278                      save_fp,
    279                      remembered_set_action,
    280                      smi_check,
    281                      pointers_to_here_check_for_value);
    282   }
    283 
    284   // Notify the garbage collector that we wrote a pointer into a fixed array.
    285   // |array| is the array being stored into, |value| is the
    286   // object being stored.  |index| is the array index represented as a non-smi.
    287   // All registers are clobbered by the operation RecordWriteArray
    288   // filters out smis so it does not update the write barrier if the
    289   // value is a smi.
    290   void RecordWriteArray(
    291       Register array,
    292       Register value,
    293       Register index,
    294       SaveFPRegsMode save_fp,
    295       RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
    296       SmiCheck smi_check = INLINE_SMI_CHECK,
    297       PointersToHereCheck pointers_to_here_check_for_value =
    298           kPointersToHereMaybeInteresting);
    299 
    300   // Notify the garbage collector that we wrote a code entry into a
    301   // JSFunction. Only scratch is clobbered by the operation.
    302   void RecordWriteCodeEntryField(Register js_function, Register code_entry,
    303                                  Register scratch);
    304 
    305   void RecordWriteForMap(
    306       Register object,
    307       Register map,
    308       Register dst,
    309       SaveFPRegsMode save_fp);
    310 
    311   // For page containing |object| mark region covering |address|
    312   // dirty. |object| is the object being stored into, |value| is the
    313   // object being stored. The address and value registers are clobbered by the
    314   // operation.  RecordWrite filters out smis so it does not update
    315   // the write barrier if the value is a smi.
    316   void RecordWrite(
    317       Register object,
    318       Register address,
    319       Register value,
    320       SaveFPRegsMode save_fp,
    321       RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
    322       SmiCheck smi_check = INLINE_SMI_CHECK,
    323       PointersToHereCheck pointers_to_here_check_for_value =
    324           kPointersToHereMaybeInteresting);
    325 
    326   // ---------------------------------------------------------------------------
    327   // Debugger Support
    328 
    329   void DebugBreak();
    330 
    331   // Generates function and stub prologue code.
    332   void StubPrologue(StackFrame::Type type);
    333   void Prologue(bool code_pre_aging);
    334 
    335   // Enter specific kind of exit frame; either in normal or
    336   // debug mode. Expects the number of arguments in register rax and
    337   // sets up the number of arguments in register rdi and the pointer
    338   // to the first argument in register rsi.
    339   //
    340   // Allocates arg_stack_space * kPointerSize memory (not GCed) on the stack
    341   // accessible via StackSpaceOperand.
    342   void EnterExitFrame(int arg_stack_space = 0, bool save_doubles = false);
    343 
    344   // Enter specific kind of exit frame. Allocates arg_stack_space * kPointerSize
    345   // memory (not GCed) on the stack accessible via StackSpaceOperand.
    346   void EnterApiExitFrame(int arg_stack_space);
    347 
    348   // Leave the current exit frame. Expects/provides the return value in
    349   // register rax:rdx (untouched) and the pointer to the first
    350   // argument in register rsi (if pop_arguments == true).
    351   void LeaveExitFrame(bool save_doubles = false, bool pop_arguments = true);
    352 
    353   // Leave the current exit frame. Expects/provides the return value in
    354   // register rax (untouched).
    355   void LeaveApiExitFrame(bool restore_context);
    356 
    357   // Push and pop the registers that can hold pointers.
    358   void PushSafepointRegisters() { Pushad(); }
    359   void PopSafepointRegisters() { Popad(); }
    360   // Store the value in register src in the safepoint register stack
    361   // slot for register dst.
    362   void StoreToSafepointRegisterSlot(Register dst, const Immediate& imm);
    363   void StoreToSafepointRegisterSlot(Register dst, Register src);
    364   void LoadFromSafepointRegisterSlot(Register dst, Register src);
    365 
    366   void InitializeRootRegister() {
    367     ExternalReference roots_array_start =
    368         ExternalReference::roots_array_start(isolate());
    369     Move(kRootRegister, roots_array_start);
    370     addp(kRootRegister, Immediate(kRootRegisterBias));
    371   }
    372 
    373   // ---------------------------------------------------------------------------
    374   // JavaScript invokes
    375 
    376   // Removes current frame and its arguments from the stack preserving
    377   // the arguments and a return address pushed to the stack for the next call.
    378   // |ra_state| defines whether return address is already pushed to stack or
    379   // not. Both |callee_args_count| and |caller_args_count_reg| do not include
    380   // receiver. |callee_args_count| is not modified, |caller_args_count_reg|
    381   // is trashed.
    382   void PrepareForTailCall(const ParameterCount& callee_args_count,
    383                           Register caller_args_count_reg, Register scratch0,
    384                           Register scratch1, ReturnAddressState ra_state);
    385 
    386   // Invoke the JavaScript function code by either calling or jumping.
    387   void InvokeFunctionCode(Register function, Register new_target,
    388                           const ParameterCount& expected,
    389                           const ParameterCount& actual, InvokeFlag flag,
    390                           const CallWrapper& call_wrapper);
    391 
    392   void FloodFunctionIfStepping(Register fun, Register new_target,
    393                                const ParameterCount& expected,
    394                                const ParameterCount& actual);
    395 
    396   // Invoke the JavaScript function in the given register. Changes the
    397   // current context to the context in the function before invoking.
    398   void InvokeFunction(Register function,
    399                       Register new_target,
    400                       const ParameterCount& actual,
    401                       InvokeFlag flag,
    402                       const CallWrapper& call_wrapper);
    403 
    404   void InvokeFunction(Register function,
    405                       Register new_target,
    406                       const ParameterCount& expected,
    407                       const ParameterCount& actual,
    408                       InvokeFlag flag,
    409                       const CallWrapper& call_wrapper);
    410 
    411   void InvokeFunction(Handle<JSFunction> function,
    412                       const ParameterCount& expected,
    413                       const ParameterCount& actual,
    414                       InvokeFlag flag,
    415                       const CallWrapper& call_wrapper);
    416 
    417   // ---------------------------------------------------------------------------
    418   // Smi tagging, untagging and operations on tagged smis.
    419 
    420   // Support for constant splitting.
    421   bool IsUnsafeInt(const int32_t x);
    422   void SafeMove(Register dst, Smi* src);
    423   void SafePush(Smi* src);
    424 
    425   // Conversions between tagged smi values and non-tagged integer values.
    426 
    427   // Tag an integer value. The result must be known to be a valid smi value.
    428   // Only uses the low 32 bits of the src register. Sets the N and Z flags
    429   // based on the value of the resulting smi.
    430   void Integer32ToSmi(Register dst, Register src);
    431 
    432   // Stores an integer32 value into a memory field that already holds a smi.
    433   void Integer32ToSmiField(const Operand& dst, Register src);
    434 
    435   // Adds constant to src and tags the result as a smi.
    436   // Result must be a valid smi.
    437   void Integer64PlusConstantToSmi(Register dst, Register src, int constant);
    438 
    439   // Convert smi to 32-bit integer. I.e., not sign extended into
    440   // high 32 bits of destination.
    441   void SmiToInteger32(Register dst, Register src);
    442   void SmiToInteger32(Register dst, const Operand& src);
    443 
    444   // Convert smi to 64-bit integer (sign extended if necessary).
    445   void SmiToInteger64(Register dst, Register src);
    446   void SmiToInteger64(Register dst, const Operand& src);
    447 
    448   // Convert smi to double.
    449   void SmiToDouble(XMMRegister dst, Register src) {
    450     SmiToInteger32(kScratchRegister, src);
    451     Cvtlsi2sd(dst, kScratchRegister);
    452   }
    453 
    454   // Multiply a positive smi's integer value by a power of two.
    455   // Provides result as 64-bit integer value.
    456   void PositiveSmiTimesPowerOfTwoToInteger64(Register dst,
    457                                              Register src,
    458                                              int power);
    459 
    460   // Divide a positive smi's integer value by a power of two.
    461   // Provides result as 32-bit integer value.
    462   void PositiveSmiDivPowerOfTwoToInteger32(Register dst,
    463                                            Register src,
    464                                            int power);
    465 
    466   // Perform the logical or of two smi values and return a smi value.
    467   // If either argument is not a smi, jump to on_not_smis and retain
    468   // the original values of source registers. The destination register
    469   // may be changed if it's not one of the source registers.
    470   void SmiOrIfSmis(Register dst,
    471                    Register src1,
    472                    Register src2,
    473                    Label* on_not_smis,
    474                    Label::Distance near_jump = Label::kFar);
    475 
    476 
    477   // Simple comparison of smis.  Both sides must be known smis to use these,
    478   // otherwise use Cmp.
    479   void SmiCompare(Register smi1, Register smi2);
    480   void SmiCompare(Register dst, Smi* src);
    481   void SmiCompare(Register dst, const Operand& src);
    482   void SmiCompare(const Operand& dst, Register src);
    483   void SmiCompare(const Operand& dst, Smi* src);
    484   // Compare the int32 in src register to the value of the smi stored at dst.
    485   void SmiCompareInteger32(const Operand& dst, Register src);
    486   // Sets sign and zero flags depending on value of smi in register.
    487   void SmiTest(Register src);
    488 
    489   // Functions performing a check on a known or potential smi. Returns
    490   // a condition that is satisfied if the check is successful.
    491 
    492   // Is the value a tagged smi.
    493   Condition CheckSmi(Register src);
    494   Condition CheckSmi(const Operand& src);
    495 
    496   // Is the value a non-negative tagged smi.
    497   Condition CheckNonNegativeSmi(Register src);
    498 
    499   // Are both values tagged smis.
    500   Condition CheckBothSmi(Register first, Register second);
    501 
    502   // Are both values non-negative tagged smis.
    503   Condition CheckBothNonNegativeSmi(Register first, Register second);
    504 
    505   // Are either value a tagged smi.
    506   Condition CheckEitherSmi(Register first,
    507                            Register second,
    508                            Register scratch = kScratchRegister);
    509 
    510   // Checks whether an 32-bit integer value is a valid for conversion
    511   // to a smi.
    512   Condition CheckInteger32ValidSmiValue(Register src);
    513 
    514   // Checks whether an 32-bit unsigned integer value is a valid for
    515   // conversion to a smi.
    516   Condition CheckUInteger32ValidSmiValue(Register src);
    517 
    518   // Check whether src is a Smi, and set dst to zero if it is a smi,
    519   // and to one if it isn't.
    520   void CheckSmiToIndicator(Register dst, Register src);
    521   void CheckSmiToIndicator(Register dst, const Operand& src);
    522 
    523   // Test-and-jump functions. Typically combines a check function
    524   // above with a conditional jump.
    525 
    526   // Jump if the value can be represented by a smi.
    527   void JumpIfValidSmiValue(Register src, Label* on_valid,
    528                            Label::Distance near_jump = Label::kFar);
    529 
    530   // Jump if the value cannot be represented by a smi.
    531   void JumpIfNotValidSmiValue(Register src, Label* on_invalid,
    532                               Label::Distance near_jump = Label::kFar);
    533 
    534   // Jump if the unsigned integer value can be represented by a smi.
    535   void JumpIfUIntValidSmiValue(Register src, Label* on_valid,
    536                                Label::Distance near_jump = Label::kFar);
    537 
    538   // Jump if the unsigned integer value cannot be represented by a smi.
    539   void JumpIfUIntNotValidSmiValue(Register src, Label* on_invalid,
    540                                   Label::Distance near_jump = Label::kFar);
    541 
    542   // Jump to label if the value is a tagged smi.
    543   void JumpIfSmi(Register src,
    544                  Label* on_smi,
    545                  Label::Distance near_jump = Label::kFar);
    546 
    547   // Jump to label if the value is not a tagged smi.
    548   void JumpIfNotSmi(Register src,
    549                     Label* on_not_smi,
    550                     Label::Distance near_jump = Label::kFar);
    551 
    552   // Jump to label if the value is not a non-negative tagged smi.
    553   void JumpUnlessNonNegativeSmi(Register src,
    554                                 Label* on_not_smi,
    555                                 Label::Distance near_jump = Label::kFar);
    556 
    557   // Jump to label if the value, which must be a tagged smi, has value equal
    558   // to the constant.
    559   void JumpIfSmiEqualsConstant(Register src,
    560                                Smi* constant,
    561                                Label* on_equals,
    562                                Label::Distance near_jump = Label::kFar);
    563 
    564   // Jump if either or both register are not smi values.
    565   void JumpIfNotBothSmi(Register src1,
    566                         Register src2,
    567                         Label* on_not_both_smi,
    568                         Label::Distance near_jump = Label::kFar);
    569 
    570   // Jump if either or both register are not non-negative smi values.
    571   void JumpUnlessBothNonNegativeSmi(Register src1, Register src2,
    572                                     Label* on_not_both_smi,
    573                                     Label::Distance near_jump = Label::kFar);
    574 
    575   // Operations on tagged smi values.
    576 
    577   // Smis represent a subset of integers. The subset is always equivalent to
    578   // a two's complement interpretation of a fixed number of bits.
    579 
    580   // Add an integer constant to a tagged smi, giving a tagged smi as result.
    581   // No overflow testing on the result is done.
    582   void SmiAddConstant(Register dst, Register src, Smi* constant);
    583 
    584   // Add an integer constant to a tagged smi, giving a tagged smi as result.
    585   // No overflow testing on the result is done.
    586   void SmiAddConstant(const Operand& dst, Smi* constant);
    587 
    588   // Add an integer constant to a tagged smi, giving a tagged smi as result,
    589   // or jumping to a label if the result cannot be represented by a smi.
    590   void SmiAddConstant(Register dst, Register src, Smi* constant,
    591                       SmiOperationConstraints constraints, Label* bailout_label,
    592                       Label::Distance near_jump = Label::kFar);
    593 
    594   // Subtract an integer constant from a tagged smi, giving a tagged smi as
    595   // result. No testing on the result is done. Sets the N and Z flags
    596   // based on the value of the resulting integer.
    597   void SmiSubConstant(Register dst, Register src, Smi* constant);
    598 
    599   // Subtract an integer constant from a tagged smi, giving a tagged smi as
    600   // result, or jumping to a label if the result cannot be represented by a smi.
    601   void SmiSubConstant(Register dst, Register src, Smi* constant,
    602                       SmiOperationConstraints constraints, Label* bailout_label,
    603                       Label::Distance near_jump = Label::kFar);
    604 
    605   // Negating a smi can give a negative zero or too large positive value.
    606   // NOTICE: This operation jumps on success, not failure!
    607   void SmiNeg(Register dst,
    608               Register src,
    609               Label* on_smi_result,
    610               Label::Distance near_jump = Label::kFar);
    611 
    612   // Adds smi values and return the result as a smi.
    613   // If dst is src1, then src1 will be destroyed if the operation is
    614   // successful, otherwise kept intact.
    615   void SmiAdd(Register dst,
    616               Register src1,
    617               Register src2,
    618               Label* on_not_smi_result,
    619               Label::Distance near_jump = Label::kFar);
    620   void SmiAdd(Register dst,
    621               Register src1,
    622               const Operand& src2,
    623               Label* on_not_smi_result,
    624               Label::Distance near_jump = Label::kFar);
    625 
    626   void SmiAdd(Register dst,
    627               Register src1,
    628               Register src2);
    629 
    630   // Subtracts smi values and return the result as a smi.
    631   // If dst is src1, then src1 will be destroyed if the operation is
    632   // successful, otherwise kept intact.
    633   void SmiSub(Register dst,
    634               Register src1,
    635               Register src2,
    636               Label* on_not_smi_result,
    637               Label::Distance near_jump = Label::kFar);
    638   void SmiSub(Register dst,
    639               Register src1,
    640               const Operand& src2,
    641               Label* on_not_smi_result,
    642               Label::Distance near_jump = Label::kFar);
    643 
    644   void SmiSub(Register dst,
    645               Register src1,
    646               Register src2);
    647 
    648   void SmiSub(Register dst,
    649               Register src1,
    650               const Operand& src2);
    651 
    652   // Multiplies smi values and return the result as a smi,
    653   // if possible.
    654   // If dst is src1, then src1 will be destroyed, even if
    655   // the operation is unsuccessful.
    656   void SmiMul(Register dst,
    657               Register src1,
    658               Register src2,
    659               Label* on_not_smi_result,
    660               Label::Distance near_jump = Label::kFar);
    661 
    662   // Divides one smi by another and returns the quotient.
    663   // Clobbers rax and rdx registers.
    664   void SmiDiv(Register dst,
    665               Register src1,
    666               Register src2,
    667               Label* on_not_smi_result,
    668               Label::Distance near_jump = Label::kFar);
    669 
    670   // Divides one smi by another and returns the remainder.
    671   // Clobbers rax and rdx registers.
    672   void SmiMod(Register dst,
    673               Register src1,
    674               Register src2,
    675               Label* on_not_smi_result,
    676               Label::Distance near_jump = Label::kFar);
    677 
    678   // Bitwise operations.
    679   void SmiNot(Register dst, Register src);
    680   void SmiAnd(Register dst, Register src1, Register src2);
    681   void SmiOr(Register dst, Register src1, Register src2);
    682   void SmiXor(Register dst, Register src1, Register src2);
    683   void SmiAndConstant(Register dst, Register src1, Smi* constant);
    684   void SmiOrConstant(Register dst, Register src1, Smi* constant);
    685   void SmiXorConstant(Register dst, Register src1, Smi* constant);
    686 
    687   void SmiShiftLeftConstant(Register dst,
    688                             Register src,
    689                             int shift_value,
    690                             Label* on_not_smi_result = NULL,
    691                             Label::Distance near_jump = Label::kFar);
    692   void SmiShiftLogicalRightConstant(Register dst,
    693                                     Register src,
    694                                     int shift_value,
    695                                     Label* on_not_smi_result,
    696                                     Label::Distance near_jump = Label::kFar);
    697   void SmiShiftArithmeticRightConstant(Register dst,
    698                                        Register src,
    699                                        int shift_value);
    700 
    701   // Shifts a smi value to the left, and returns the result if that is a smi.
    702   // Uses and clobbers rcx, so dst may not be rcx.
    703   void SmiShiftLeft(Register dst,
    704                     Register src1,
    705                     Register src2,
    706                     Label* on_not_smi_result = NULL,
    707                     Label::Distance near_jump = Label::kFar);
    708   // Shifts a smi value to the right, shifting in zero bits at the top, and
    709   // returns the unsigned intepretation of the result if that is a smi.
    710   // Uses and clobbers rcx, so dst may not be rcx.
    711   void SmiShiftLogicalRight(Register dst,
    712                             Register src1,
    713                             Register src2,
    714                             Label* on_not_smi_result,
    715                             Label::Distance near_jump = Label::kFar);
    716   // Shifts a smi value to the right, sign extending the top, and
    717   // returns the signed intepretation of the result. That will always
    718   // be a valid smi value, since it's numerically smaller than the
    719   // original.
    720   // Uses and clobbers rcx, so dst may not be rcx.
    721   void SmiShiftArithmeticRight(Register dst,
    722                                Register src1,
    723                                Register src2);
    724 
    725   // Specialized operations
    726 
    727   // Select the non-smi register of two registers where exactly one is a
    728   // smi. If neither are smis, jump to the failure label.
    729   void SelectNonSmi(Register dst,
    730                     Register src1,
    731                     Register src2,
    732                     Label* on_not_smis,
    733                     Label::Distance near_jump = Label::kFar);
    734 
    735   // Converts, if necessary, a smi to a combination of number and
    736   // multiplier to be used as a scaled index.
    737   // The src register contains a *positive* smi value. The shift is the
    738   // power of two to multiply the index value by (e.g.
    739   // to index by smi-value * kPointerSize, pass the smi and kPointerSizeLog2).
    740   // The returned index register may be either src or dst, depending
    741   // on what is most efficient. If src and dst are different registers,
    742   // src is always unchanged.
    743   SmiIndex SmiToIndex(Register dst, Register src, int shift);
    744 
    745   // Converts a positive smi to a negative index.
    746   SmiIndex SmiToNegativeIndex(Register dst, Register src, int shift);
    747 
    748   // Add the value of a smi in memory to an int32 register.
    749   // Sets flags as a normal add.
    750   void AddSmiField(Register dst, const Operand& src);
    751 
    752   // Basic Smi operations.
    753   void Move(Register dst, Smi* source) {
    754     LoadSmiConstant(dst, source);
    755   }
    756 
    757   void Move(const Operand& dst, Smi* source) {
    758     Register constant = GetSmiConstant(source);
    759     movp(dst, constant);
    760   }
    761 
    762   void Push(Smi* smi);
    763 
    764   // Save away a raw integer with pointer size on the stack as two integers
    765   // masquerading as smis so that the garbage collector skips visiting them.
    766   void PushRegisterAsTwoSmis(Register src, Register scratch = kScratchRegister);
    767   // Reconstruct a raw integer with pointer size from two integers masquerading
    768   // as smis on the top of stack.
    769   void PopRegisterAsTwoSmis(Register dst, Register scratch = kScratchRegister);
    770 
    771   void Test(const Operand& dst, Smi* source);
    772 
    773 
    774   // ---------------------------------------------------------------------------
    775   // String macros.
    776 
    777   // If object is a string, its map is loaded into object_map.
    778   void JumpIfNotString(Register object,
    779                        Register object_map,
    780                        Label* not_string,
    781                        Label::Distance near_jump = Label::kFar);
    782 
    783 
    784   void JumpIfNotBothSequentialOneByteStrings(
    785       Register first_object, Register second_object, Register scratch1,
    786       Register scratch2, Label* on_not_both_flat_one_byte,
    787       Label::Distance near_jump = Label::kFar);
    788 
    789   // Check whether the instance type represents a flat one-byte string. Jump
    790   // to the label if not. If the instance type can be scratched specify same
    791   // register for both instance type and scratch.
    792   void JumpIfInstanceTypeIsNotSequentialOneByte(
    793       Register instance_type, Register scratch,
    794       Label* on_not_flat_one_byte_string,
    795       Label::Distance near_jump = Label::kFar);
    796 
    797   void JumpIfBothInstanceTypesAreNotSequentialOneByte(
    798       Register first_object_instance_type, Register second_object_instance_type,
    799       Register scratch1, Register scratch2, Label* on_fail,
    800       Label::Distance near_jump = Label::kFar);
    801 
    802   void EmitSeqStringSetCharCheck(Register string,
    803                                  Register index,
    804                                  Register value,
    805                                  uint32_t encoding_mask);
    806 
    807   // Checks if the given register or operand is a unique name
    808   void JumpIfNotUniqueNameInstanceType(Register reg, Label* not_unique_name,
    809                                        Label::Distance distance = Label::kFar);
    810   void JumpIfNotUniqueNameInstanceType(Operand operand, Label* not_unique_name,
    811                                        Label::Distance distance = Label::kFar);
    812 
    813   // ---------------------------------------------------------------------------
    814   // Macro instructions.
    815 
    816   // Load/store with specific representation.
    817   void Load(Register dst, const Operand& src, Representation r);
    818   void Store(const Operand& dst, Register src, Representation r);
    819 
    820   // Load a register with a long value as efficiently as possible.
    821   void Set(Register dst, int64_t x);
    822   void Set(const Operand& dst, intptr_t x);
    823 
    824   void Cvtss2sd(XMMRegister dst, XMMRegister src);
    825   void Cvtss2sd(XMMRegister dst, const Operand& src);
    826   void Cvtsd2ss(XMMRegister dst, XMMRegister src);
    827   void Cvtsd2ss(XMMRegister dst, const Operand& src);
    828 
    829   // cvtsi2sd instruction only writes to the low 64-bit of dst register, which
    830   // hinders register renaming and makes dependence chains longer. So we use
    831   // xorpd to clear the dst register before cvtsi2sd to solve this issue.
    832   void Cvtlsi2sd(XMMRegister dst, Register src);
    833   void Cvtlsi2sd(XMMRegister dst, const Operand& src);
    834 
    835   void Cvtlsi2ss(XMMRegister dst, Register src);
    836   void Cvtlsi2ss(XMMRegister dst, const Operand& src);
    837   void Cvtqsi2ss(XMMRegister dst, Register src);
    838   void Cvtqsi2ss(XMMRegister dst, const Operand& src);
    839 
    840   void Cvtqsi2sd(XMMRegister dst, Register src);
    841   void Cvtqsi2sd(XMMRegister dst, const Operand& src);
    842 
    843   void Cvtqui2ss(XMMRegister dst, Register src, Register tmp);
    844   void Cvtqui2sd(XMMRegister dst, Register src, Register tmp);
    845 
    846   void Cvtsd2si(Register dst, XMMRegister src);
    847 
    848   void Cvttss2si(Register dst, XMMRegister src);
    849   void Cvttss2si(Register dst, const Operand& src);
    850   void Cvttsd2si(Register dst, XMMRegister src);
    851   void Cvttsd2si(Register dst, const Operand& src);
    852   void Cvttss2siq(Register dst, XMMRegister src);
    853   void Cvttss2siq(Register dst, const Operand& src);
    854   void Cvttsd2siq(Register dst, XMMRegister src);
    855   void Cvttsd2siq(Register dst, const Operand& src);
    856 
    857   // Move if the registers are not identical.
    858   void Move(Register target, Register source);
    859 
    860   // TestBit and Load SharedFunctionInfo special field.
    861   void TestBitSharedFunctionInfoSpecialField(Register base,
    862                                              int offset,
    863                                              int bit_index);
    864   void LoadSharedFunctionInfoSpecialField(Register dst,
    865                                           Register base,
    866                                           int offset);
    867 
    868   // Handle support
    869   void Move(Register dst, Handle<Object> source);
    870   void Move(const Operand& dst, Handle<Object> source);
    871   void Cmp(Register dst, Handle<Object> source);
    872   void Cmp(const Operand& dst, Handle<Object> source);
    873   void Cmp(Register dst, Smi* src);
    874   void Cmp(const Operand& dst, Smi* src);
    875   void Push(Handle<Object> source);
    876 
    877   // Load a heap object and handle the case of new-space objects by
    878   // indirecting via a global cell.
    879   void MoveHeapObject(Register result, Handle<Object> object);
    880 
    881   // Load a global cell into a register.
    882   void LoadGlobalCell(Register dst, Handle<Cell> cell);
    883 
    884   // Compare the given value and the value of weak cell.
    885   void CmpWeakValue(Register value, Handle<WeakCell> cell, Register scratch);
    886 
    887   void GetWeakValue(Register value, Handle<WeakCell> cell);
    888 
    889   // Load the value of the weak cell in the value register. Branch to the given
    890   // miss label if the weak cell was cleared.
    891   void LoadWeakValue(Register value, Handle<WeakCell> cell, Label* miss);
    892 
    893   // Emit code to discard a non-negative number of pointer-sized elements
    894   // from the stack, clobbering only the rsp register.
    895   void Drop(int stack_elements);
    896   // Emit code to discard a positive number of pointer-sized elements
    897   // from the stack under the return address which remains on the top,
    898   // clobbering the rsp register.
    899   void DropUnderReturnAddress(int stack_elements,
    900                               Register scratch = kScratchRegister);
    901 
    902   void Call(Label* target) { call(target); }
    903   void Push(Register src);
    904   void Push(const Operand& src);
    905   void PushQuad(const Operand& src);
    906   void Push(Immediate value);
    907   void PushImm32(int32_t imm32);
    908   void Pop(Register dst);
    909   void Pop(const Operand& dst);
    910   void PopQuad(const Operand& dst);
    911   void PushReturnAddressFrom(Register src) { pushq(src); }
    912   void PopReturnAddressTo(Register dst) { popq(dst); }
    913   void Move(Register dst, ExternalReference ext) {
    914     movp(dst, reinterpret_cast<void*>(ext.address()),
    915          RelocInfo::EXTERNAL_REFERENCE);
    916   }
    917 
    918   // Loads a pointer into a register with a relocation mode.
    919   void Move(Register dst, void* ptr, RelocInfo::Mode rmode) {
    920     // This method must not be used with heap object references. The stored
    921     // address is not GC safe. Use the handle version instead.
    922     DCHECK(rmode > RelocInfo::LAST_GCED_ENUM);
    923     movp(dst, ptr, rmode);
    924   }
    925 
    926   void Move(Register dst, Handle<Object> value, RelocInfo::Mode rmode) {
    927     AllowDeferredHandleDereference using_raw_address;
    928     DCHECK(!RelocInfo::IsNone(rmode));
    929     DCHECK(value->IsHeapObject());
    930     DCHECK(!isolate()->heap()->InNewSpace(*value));
    931     movp(dst, reinterpret_cast<void*>(value.location()), rmode);
    932   }
    933 
    934   void Move(XMMRegister dst, uint32_t src);
    935   void Move(XMMRegister dst, uint64_t src);
    936   void Move(XMMRegister dst, float src) { Move(dst, bit_cast<uint32_t>(src)); }
    937   void Move(XMMRegister dst, double src) { Move(dst, bit_cast<uint64_t>(src)); }
    938 
    939 #define AVX_OP2_WITH_TYPE(macro_name, name, src_type) \
    940   void macro_name(XMMRegister dst, src_type src) {    \
    941     if (CpuFeatures::IsSupported(AVX)) {              \
    942       CpuFeatureScope scope(this, AVX);               \
    943       v##name(dst, dst, src);                         \
    944     } else {                                          \
    945       name(dst, src);                                 \
    946     }                                                 \
    947   }
    948 #define AVX_OP2_X(macro_name, name) \
    949   AVX_OP2_WITH_TYPE(macro_name, name, XMMRegister)
    950 #define AVX_OP2_O(macro_name, name) \
    951   AVX_OP2_WITH_TYPE(macro_name, name, const Operand&)
    952 #define AVX_OP2_XO(macro_name, name) \
    953   AVX_OP2_X(macro_name, name)        \
    954   AVX_OP2_O(macro_name, name)
    955 
    956   AVX_OP2_XO(Addsd, addsd)
    957   AVX_OP2_XO(Subsd, subsd)
    958   AVX_OP2_XO(Mulsd, mulsd)
    959   AVX_OP2_XO(Divsd, divsd)
    960   AVX_OP2_X(Andpd, andpd)
    961   AVX_OP2_X(Orpd, orpd)
    962   AVX_OP2_X(Xorpd, xorpd)
    963   AVX_OP2_X(Pcmpeqd, pcmpeqd)
    964   AVX_OP2_WITH_TYPE(Psllq, psllq, byte)
    965   AVX_OP2_WITH_TYPE(Psrlq, psrlq, byte)
    966 
    967 #undef AVX_OP2_O
    968 #undef AVX_OP2_X
    969 #undef AVX_OP2_XO
    970 #undef AVX_OP2_WITH_TYPE
    971 
    972   void Movsd(XMMRegister dst, XMMRegister src);
    973   void Movsd(XMMRegister dst, const Operand& src);
    974   void Movsd(const Operand& dst, XMMRegister src);
    975   void Movss(XMMRegister dst, XMMRegister src);
    976   void Movss(XMMRegister dst, const Operand& src);
    977   void Movss(const Operand& dst, XMMRegister src);
    978 
    979   void Movd(XMMRegister dst, Register src);
    980   void Movd(XMMRegister dst, const Operand& src);
    981   void Movd(Register dst, XMMRegister src);
    982   void Movq(XMMRegister dst, Register src);
    983   void Movq(Register dst, XMMRegister src);
    984 
    985   void Movaps(XMMRegister dst, XMMRegister src);
    986   void Movapd(XMMRegister dst, XMMRegister src);
    987   void Movmskpd(Register dst, XMMRegister src);
    988 
    989   void Roundss(XMMRegister dst, XMMRegister src, RoundingMode mode);
    990   void Roundsd(XMMRegister dst, XMMRegister src, RoundingMode mode);
    991   void Sqrtsd(XMMRegister dst, XMMRegister src);
    992   void Sqrtsd(XMMRegister dst, const Operand& src);
    993 
    994   void Ucomiss(XMMRegister src1, XMMRegister src2);
    995   void Ucomiss(XMMRegister src1, const Operand& src2);
    996   void Ucomisd(XMMRegister src1, XMMRegister src2);
    997   void Ucomisd(XMMRegister src1, const Operand& src2);
    998 
    999   // Control Flow
   1000   void Jump(Address destination, RelocInfo::Mode rmode);
   1001   void Jump(ExternalReference ext);
   1002   void Jump(const Operand& op);
   1003   void Jump(Handle<Code> code_object, RelocInfo::Mode rmode);
   1004 
   1005   void Call(Address destination, RelocInfo::Mode rmode);
   1006   void Call(ExternalReference ext);
   1007   void Call(const Operand& op);
   1008   void Call(Handle<Code> code_object,
   1009             RelocInfo::Mode rmode,
   1010             TypeFeedbackId ast_id = TypeFeedbackId::None());
   1011 
   1012   // The size of the code generated for different call instructions.
   1013   int CallSize(Address destination) {
   1014     return kCallSequenceLength;
   1015   }
   1016   int CallSize(ExternalReference ext);
   1017   int CallSize(Handle<Code> code_object) {
   1018     // Code calls use 32-bit relative addressing.
   1019     return kShortCallInstructionLength;
   1020   }
   1021   int CallSize(Register target) {
   1022     // Opcode: REX_opt FF /2 m64
   1023     return (target.high_bit() != 0) ? 3 : 2;
   1024   }
   1025   int CallSize(const Operand& target) {
   1026     // Opcode: REX_opt FF /2 m64
   1027     return (target.requires_rex() ? 2 : 1) + target.operand_size();
   1028   }
   1029 
   1030   // Non-SSE2 instructions.
   1031   void Pextrd(Register dst, XMMRegister src, int8_t imm8);
   1032   void Pinsrd(XMMRegister dst, Register src, int8_t imm8);
   1033   void Pinsrd(XMMRegister dst, const Operand& src, int8_t imm8);
   1034 
   1035   void Lzcntq(Register dst, Register src);
   1036   void Lzcntq(Register dst, const Operand& src);
   1037 
   1038   void Lzcntl(Register dst, Register src);
   1039   void Lzcntl(Register dst, const Operand& src);
   1040 
   1041   void Tzcntq(Register dst, Register src);
   1042   void Tzcntq(Register dst, const Operand& src);
   1043 
   1044   void Tzcntl(Register dst, Register src);
   1045   void Tzcntl(Register dst, const Operand& src);
   1046 
   1047   void Popcntl(Register dst, Register src);
   1048   void Popcntl(Register dst, const Operand& src);
   1049 
   1050   void Popcntq(Register dst, Register src);
   1051   void Popcntq(Register dst, const Operand& src);
   1052 
   1053   // Non-x64 instructions.
   1054   // Push/pop all general purpose registers.
   1055   // Does not push rsp/rbp nor any of the assembler's special purpose registers
   1056   // (kScratchRegister, kRootRegister).
   1057   void Pushad();
   1058   void Popad();
   1059   // Sets the stack as after performing Popad, without actually loading the
   1060   // registers.
   1061   void Dropad();
   1062 
   1063   // Compare object type for heap object.
   1064   // Always use unsigned comparisons: above and below, not less and greater.
   1065   // Incoming register is heap_object and outgoing register is map.
   1066   // They may be the same register, and may be kScratchRegister.
   1067   void CmpObjectType(Register heap_object, InstanceType type, Register map);
   1068 
   1069   // Compare instance type for map.
   1070   // Always use unsigned comparisons: above and below, not less and greater.
   1071   void CmpInstanceType(Register map, InstanceType type);
   1072 
   1073   // Check if a map for a JSObject indicates that the object has fast elements.
   1074   // Jump to the specified label if it does not.
   1075   void CheckFastElements(Register map,
   1076                          Label* fail,
   1077                          Label::Distance distance = Label::kFar);
   1078 
   1079   // Check if a map for a JSObject indicates that the object can have both smi
   1080   // and HeapObject elements.  Jump to the specified label if it does not.
   1081   void CheckFastObjectElements(Register map,
   1082                                Label* fail,
   1083                                Label::Distance distance = Label::kFar);
   1084 
   1085   // Check if a map for a JSObject indicates that the object has fast smi only
   1086   // elements.  Jump to the specified label if it does not.
   1087   void CheckFastSmiElements(Register map,
   1088                             Label* fail,
   1089                             Label::Distance distance = Label::kFar);
   1090 
   1091   // Check to see if maybe_number can be stored as a double in
   1092   // FastDoubleElements. If it can, store it at the index specified by index in
   1093   // the FastDoubleElements array elements, otherwise jump to fail.  Note that
   1094   // index must not be smi-tagged.
   1095   void StoreNumberToDoubleElements(Register maybe_number,
   1096                                    Register elements,
   1097                                    Register index,
   1098                                    XMMRegister xmm_scratch,
   1099                                    Label* fail,
   1100                                    int elements_offset = 0);
   1101 
   1102   // Compare an object's map with the specified map.
   1103   void CompareMap(Register obj, Handle<Map> map);
   1104 
   1105   // Check if the map of an object is equal to a specified map and branch to
   1106   // label if not. Skip the smi check if not required (object is known to be a
   1107   // heap object). If mode is ALLOW_ELEMENT_TRANSITION_MAPS, then also match
   1108   // against maps that are ElementsKind transition maps of the specified map.
   1109   void CheckMap(Register obj,
   1110                 Handle<Map> map,
   1111                 Label* fail,
   1112                 SmiCheckType smi_check_type);
   1113 
   1114   // Check if the map of an object is equal to a specified weak map and branch
   1115   // to a specified target if equal. Skip the smi check if not required
   1116   // (object is known to be a heap object)
   1117   void DispatchWeakMap(Register obj, Register scratch1, Register scratch2,
   1118                        Handle<WeakCell> cell, Handle<Code> success,
   1119                        SmiCheckType smi_check_type);
   1120 
   1121   // Check if the object in register heap_object is a string. Afterwards the
   1122   // register map contains the object map and the register instance_type
   1123   // contains the instance_type. The registers map and instance_type can be the
   1124   // same in which case it contains the instance type afterwards. Either of the
   1125   // registers map and instance_type can be the same as heap_object.
   1126   Condition IsObjectStringType(Register heap_object,
   1127                                Register map,
   1128                                Register instance_type);
   1129 
   1130   // Check if the object in register heap_object is a name. Afterwards the
   1131   // register map contains the object map and the register instance_type
   1132   // contains the instance_type. The registers map and instance_type can be the
   1133   // same in which case it contains the instance type afterwards. Either of the
   1134   // registers map and instance_type can be the same as heap_object.
   1135   Condition IsObjectNameType(Register heap_object,
   1136                              Register map,
   1137                              Register instance_type);
   1138 
   1139   // FCmp compares and pops the two values on top of the FPU stack.
   1140   // The flag results are similar to integer cmp, but requires unsigned
   1141   // jcc instructions (je, ja, jae, jb, jbe, je, and jz).
   1142   void FCmp();
   1143 
   1144   void ClampUint8(Register reg);
   1145 
   1146   void ClampDoubleToUint8(XMMRegister input_reg,
   1147                           XMMRegister temp_xmm_reg,
   1148                           Register result_reg);
   1149 
   1150   void SlowTruncateToI(Register result_reg, Register input_reg,
   1151       int offset = HeapNumber::kValueOffset - kHeapObjectTag);
   1152 
   1153   void TruncateHeapNumberToI(Register result_reg, Register input_reg);
   1154   void TruncateDoubleToI(Register result_reg, XMMRegister input_reg);
   1155 
   1156   void DoubleToI(Register result_reg, XMMRegister input_reg,
   1157                  XMMRegister scratch, MinusZeroMode minus_zero_mode,
   1158                  Label* lost_precision, Label* is_nan, Label* minus_zero,
   1159                  Label::Distance dst = Label::kFar);
   1160 
   1161   void LoadUint32(XMMRegister dst, Register src);
   1162 
   1163   void LoadInstanceDescriptors(Register map, Register descriptors);
   1164   void EnumLength(Register dst, Register map);
   1165   void NumberOfOwnDescriptors(Register dst, Register map);
   1166   void LoadAccessor(Register dst, Register holder, int accessor_index,
   1167                     AccessorComponent accessor);
   1168 
   1169   template<typename Field>
   1170   void DecodeField(Register reg) {
   1171     static const int shift = Field::kShift;
   1172     static const int mask = Field::kMask >> Field::kShift;
   1173     if (shift != 0) {
   1174       shrp(reg, Immediate(shift));
   1175     }
   1176     andp(reg, Immediate(mask));
   1177   }
   1178 
   1179   template<typename Field>
   1180   void DecodeFieldToSmi(Register reg) {
   1181     if (SmiValuesAre32Bits()) {
   1182       andp(reg, Immediate(Field::kMask));
   1183       shlp(reg, Immediate(kSmiShift - Field::kShift));
   1184     } else {
   1185       static const int shift = Field::kShift;
   1186       static const int mask = (Field::kMask >> Field::kShift) << kSmiTagSize;
   1187       DCHECK(SmiValuesAre31Bits());
   1188       DCHECK(kSmiShift == kSmiTagSize);
   1189       DCHECK((mask & 0x80000000u) == 0);
   1190       if (shift < kSmiShift) {
   1191         shlp(reg, Immediate(kSmiShift - shift));
   1192       } else if (shift > kSmiShift) {
   1193         sarp(reg, Immediate(shift - kSmiShift));
   1194       }
   1195       andp(reg, Immediate(mask));
   1196     }
   1197   }
   1198 
   1199   // Abort execution if argument is not a number, enabled via --debug-code.
   1200   void AssertNumber(Register object);
   1201   void AssertNotNumber(Register object);
   1202 
   1203   // Abort execution if argument is a smi, enabled via --debug-code.
   1204   void AssertNotSmi(Register object);
   1205 
   1206   // Abort execution if argument is not a smi, enabled via --debug-code.
   1207   void AssertSmi(Register object);
   1208   void AssertSmi(const Operand& object);
   1209 
   1210   // Abort execution if a 64 bit register containing a 32 bit payload does not
   1211   // have zeros in the top 32 bits, enabled via --debug-code.
   1212   void AssertZeroExtended(Register reg);
   1213 
   1214   // Abort execution if argument is not a string, enabled via --debug-code.
   1215   void AssertString(Register object);
   1216 
   1217   // Abort execution if argument is not a name, enabled via --debug-code.
   1218   void AssertName(Register object);
   1219 
   1220   // Abort execution if argument is not a JSFunction, enabled via --debug-code.
   1221   void AssertFunction(Register object);
   1222 
   1223   // Abort execution if argument is not a JSBoundFunction,
   1224   // enabled via --debug-code.
   1225   void AssertBoundFunction(Register object);
   1226 
   1227   // Abort execution if argument is not a JSGeneratorObject,
   1228   // enabled via --debug-code.
   1229   void AssertGeneratorObject(Register object);
   1230 
   1231   // Abort execution if argument is not a JSReceiver, enabled via --debug-code.
   1232   void AssertReceiver(Register object);
   1233 
   1234   // Abort execution if argument is not undefined or an AllocationSite, enabled
   1235   // via --debug-code.
   1236   void AssertUndefinedOrAllocationSite(Register object);
   1237 
   1238   // Abort execution if argument is not the root value with the given index,
   1239   // enabled via --debug-code.
   1240   void AssertRootValue(Register src,
   1241                        Heap::RootListIndex root_value_index,
   1242                        BailoutReason reason);
   1243 
   1244   // ---------------------------------------------------------------------------
   1245   // Exception handling
   1246 
   1247   // Push a new stack handler and link it into stack handler chain.
   1248   void PushStackHandler();
   1249 
   1250   // Unlink the stack handler on top of the stack from the stack handler chain.
   1251   void PopStackHandler();
   1252 
   1253   // ---------------------------------------------------------------------------
   1254   // Inline caching support
   1255 
   1256   // Generate code for checking access rights - used for security checks
   1257   // on access to global objects across environments. The holder register
   1258   // is left untouched, but the scratch register and kScratchRegister,
   1259   // which must be different, are clobbered.
   1260   void CheckAccessGlobalProxy(Register holder_reg,
   1261                               Register scratch,
   1262                               Label* miss);
   1263 
   1264   void GetNumberHash(Register r0, Register scratch);
   1265 
   1266   void LoadFromNumberDictionary(Label* miss,
   1267                                 Register elements,
   1268                                 Register key,
   1269                                 Register r0,
   1270                                 Register r1,
   1271                                 Register r2,
   1272                                 Register result);
   1273 
   1274 
   1275   // ---------------------------------------------------------------------------
   1276   // Allocation support
   1277 
   1278   // Allocate an object in new space or old space. If the given space
   1279   // is exhausted control continues at the gc_required label. The allocated
   1280   // object is returned in result and end of the new object is returned in
   1281   // result_end. The register scratch can be passed as no_reg in which case
   1282   // an additional object reference will be added to the reloc info. The
   1283   // returned pointers in result and result_end have not yet been tagged as
   1284   // heap objects. If result_contains_top_on_entry is true the content of
   1285   // result is known to be the allocation top on entry (could be result_end
   1286   // from a previous call). If result_contains_top_on_entry is true scratch
   1287   // should be no_reg as it is never used.
   1288   void Allocate(int object_size,
   1289                 Register result,
   1290                 Register result_end,
   1291                 Register scratch,
   1292                 Label* gc_required,
   1293                 AllocationFlags flags);
   1294 
   1295   void Allocate(int header_size,
   1296                 ScaleFactor element_size,
   1297                 Register element_count,
   1298                 Register result,
   1299                 Register result_end,
   1300                 Register scratch,
   1301                 Label* gc_required,
   1302                 AllocationFlags flags);
   1303 
   1304   void Allocate(Register object_size,
   1305                 Register result,
   1306                 Register result_end,
   1307                 Register scratch,
   1308                 Label* gc_required,
   1309                 AllocationFlags flags);
   1310 
   1311   // FastAllocate is right now only used for folded allocations. It just
   1312   // increments the top pointer without checking against limit. This can only
   1313   // be done if it was proved earlier that the allocation will succeed.
   1314   void FastAllocate(int object_size, Register result, Register result_end,
   1315                     AllocationFlags flags);
   1316 
   1317   void FastAllocate(Register object_size, Register result, Register result_end,
   1318                     AllocationFlags flags);
   1319 
   1320   // Allocate a heap number in new space with undefined value. Returns
   1321   // tagged pointer in result register, or jumps to gc_required if new
   1322   // space is full.
   1323   void AllocateHeapNumber(Register result,
   1324                           Register scratch,
   1325                           Label* gc_required,
   1326                           MutableMode mode = IMMUTABLE);
   1327 
   1328   // Allocate a sequential string. All the header fields of the string object
   1329   // are initialized.
   1330   void AllocateTwoByteString(Register result,
   1331                              Register length,
   1332                              Register scratch1,
   1333                              Register scratch2,
   1334                              Register scratch3,
   1335                              Label* gc_required);
   1336   void AllocateOneByteString(Register result, Register length,
   1337                              Register scratch1, Register scratch2,
   1338                              Register scratch3, Label* gc_required);
   1339 
   1340   // Allocate a raw cons string object. Only the map field of the result is
   1341   // initialized.
   1342   void AllocateTwoByteConsString(Register result,
   1343                           Register scratch1,
   1344                           Register scratch2,
   1345                           Label* gc_required);
   1346   void AllocateOneByteConsString(Register result, Register scratch1,
   1347                                  Register scratch2, Label* gc_required);
   1348 
   1349   // Allocate a raw sliced string object. Only the map field of the result is
   1350   // initialized.
   1351   void AllocateTwoByteSlicedString(Register result,
   1352                             Register scratch1,
   1353                             Register scratch2,
   1354                             Label* gc_required);
   1355   void AllocateOneByteSlicedString(Register result, Register scratch1,
   1356                                    Register scratch2, Label* gc_required);
   1357 
   1358   // Allocate and initialize a JSValue wrapper with the specified {constructor}
   1359   // and {value}.
   1360   void AllocateJSValue(Register result, Register constructor, Register value,
   1361                        Register scratch, Label* gc_required);
   1362 
   1363   // ---------------------------------------------------------------------------
   1364   // Support functions.
   1365 
   1366   // Check if result is zero and op is negative.
   1367   void NegativeZeroTest(Register result, Register op, Label* then_label);
   1368 
   1369   // Check if result is zero and op is negative in code using jump targets.
   1370   void NegativeZeroTest(CodeGenerator* cgen,
   1371                         Register result,
   1372                         Register op,
   1373                         JumpTarget* then_target);
   1374 
   1375   // Check if result is zero and any of op1 and op2 are negative.
   1376   // Register scratch is destroyed, and it must be different from op2.
   1377   void NegativeZeroTest(Register result, Register op1, Register op2,
   1378                         Register scratch, Label* then_label);
   1379 
   1380   // Machine code version of Map::GetConstructor().
   1381   // |temp| holds |result|'s map when done.
   1382   void GetMapConstructor(Register result, Register map, Register temp);
   1383 
   1384   // Try to get function prototype of a function and puts the value in
   1385   // the result register. Checks that the function really is a
   1386   // function and jumps to the miss label if the fast checks fail. The
   1387   // function register will be untouched; the other register may be
   1388   // clobbered.
   1389   void TryGetFunctionPrototype(Register function, Register result, Label* miss);
   1390 
   1391   // Picks out an array index from the hash field.
   1392   // Register use:
   1393   //   hash - holds the index's hash. Clobbered.
   1394   //   index - holds the overwritten index on exit.
   1395   void IndexFromHash(Register hash, Register index);
   1396 
   1397   // Find the function context up the context chain.
   1398   void LoadContext(Register dst, int context_chain_length);
   1399 
   1400   // Load the global object from the current context.
   1401   void LoadGlobalObject(Register dst) {
   1402     LoadNativeContextSlot(Context::EXTENSION_INDEX, dst);
   1403   }
   1404 
   1405   // Load the global proxy from the current context.
   1406   void LoadGlobalProxy(Register dst) {
   1407     LoadNativeContextSlot(Context::GLOBAL_PROXY_INDEX, dst);
   1408   }
   1409 
   1410   // Conditionally load the cached Array transitioned map of type
   1411   // transitioned_kind from the native context if the map in register
   1412   // map_in_out is the cached Array map in the native context of
   1413   // expected_kind.
   1414   void LoadTransitionedArrayMapConditional(
   1415       ElementsKind expected_kind,
   1416       ElementsKind transitioned_kind,
   1417       Register map_in_out,
   1418       Register scratch,
   1419       Label* no_map_match);
   1420 
   1421   // Load the native context slot with the current index.
   1422   void LoadNativeContextSlot(int index, Register dst);
   1423 
   1424   // Load the initial map from the global function. The registers
   1425   // function and map can be the same.
   1426   void LoadGlobalFunctionInitialMap(Register function, Register map);
   1427 
   1428   // ---------------------------------------------------------------------------
   1429   // Runtime calls
   1430 
   1431   // Call a code stub.
   1432   void CallStub(CodeStub* stub, TypeFeedbackId ast_id = TypeFeedbackId::None());
   1433 
   1434   // Tail call a code stub (jump).
   1435   void TailCallStub(CodeStub* stub);
   1436 
   1437   // Return from a code stub after popping its arguments.
   1438   void StubReturn(int argc);
   1439 
   1440   // Call a runtime routine.
   1441   void CallRuntime(const Runtime::Function* f,
   1442                    int num_arguments,
   1443                    SaveFPRegsMode save_doubles = kDontSaveFPRegs);
   1444 
   1445   // Call a runtime function and save the value of XMM registers.
   1446   void CallRuntimeSaveDoubles(Runtime::FunctionId fid) {
   1447     const Runtime::Function* function = Runtime::FunctionForId(fid);
   1448     CallRuntime(function, function->nargs, kSaveFPRegs);
   1449   }
   1450 
   1451   // Convenience function: Same as above, but takes the fid instead.
   1452   void CallRuntime(Runtime::FunctionId fid,
   1453                    SaveFPRegsMode save_doubles = kDontSaveFPRegs) {
   1454     const Runtime::Function* function = Runtime::FunctionForId(fid);
   1455     CallRuntime(function, function->nargs, save_doubles);
   1456   }
   1457 
   1458   // Convenience function: Same as above, but takes the fid instead.
   1459   void CallRuntime(Runtime::FunctionId fid, int num_arguments,
   1460                    SaveFPRegsMode save_doubles = kDontSaveFPRegs) {
   1461     CallRuntime(Runtime::FunctionForId(fid), num_arguments, save_doubles);
   1462   }
   1463 
   1464   // Convenience function: call an external reference.
   1465   void CallExternalReference(const ExternalReference& ext,
   1466                              int num_arguments);
   1467 
   1468   // Convenience function: tail call a runtime routine (jump)
   1469   void TailCallRuntime(Runtime::FunctionId fid);
   1470 
   1471   // Jump to a runtime routines
   1472   void JumpToExternalReference(const ExternalReference& ext);
   1473 
   1474   // Before calling a C-function from generated code, align arguments on stack.
   1475   // After aligning the frame, arguments must be stored in rsp[0], rsp[8],
   1476   // etc., not pushed. The argument count assumes all arguments are word sized.
   1477   // The number of slots reserved for arguments depends on platform. On Windows
   1478   // stack slots are reserved for the arguments passed in registers. On other
   1479   // platforms stack slots are only reserved for the arguments actually passed
   1480   // on the stack.
   1481   void PrepareCallCFunction(int num_arguments);
   1482 
   1483   // Calls a C function and cleans up the space for arguments allocated
   1484   // by PrepareCallCFunction. The called function is not allowed to trigger a
   1485   // garbage collection, since that might move the code and invalidate the
   1486   // return address (unless this is somehow accounted for by the called
   1487   // function).
   1488   void CallCFunction(ExternalReference function, int num_arguments);
   1489   void CallCFunction(Register function, int num_arguments);
   1490 
   1491   // Calculate the number of stack slots to reserve for arguments when calling a
   1492   // C function.
   1493   int ArgumentStackSlotsForCFunctionCall(int num_arguments);
   1494 
   1495   // ---------------------------------------------------------------------------
   1496   // Utilities
   1497 
   1498   void Ret();
   1499 
   1500   // Return and drop arguments from stack, where the number of arguments
   1501   // may be bigger than 2^16 - 1.  Requires a scratch register.
   1502   void Ret(int bytes_dropped, Register scratch);
   1503 
   1504   Handle<Object> CodeObject() {
   1505     DCHECK(!code_object_.is_null());
   1506     return code_object_;
   1507   }
   1508 
   1509   // Copy length bytes from source to destination.
   1510   // Uses scratch register internally (if you have a low-eight register
   1511   // free, do use it, otherwise kScratchRegister will be used).
   1512   // The min_length is a minimum limit on the value that length will have.
   1513   // The algorithm has some special cases that might be omitted if the string
   1514   // is known to always be long.
   1515   void CopyBytes(Register destination,
   1516                  Register source,
   1517                  Register length,
   1518                  int min_length = 0,
   1519                  Register scratch = kScratchRegister);
   1520 
   1521   // Initialize fields with filler values.  Fields starting at |current_address|
   1522   // not including |end_address| are overwritten with the value in |filler|.  At
   1523   // the end the loop, |current_address| takes the value of |end_address|.
   1524   void InitializeFieldsWithFiller(Register current_address,
   1525                                   Register end_address, Register filler);
   1526 
   1527 
   1528   // Emit code for a truncating division by a constant. The dividend register is
   1529   // unchanged, the result is in rdx, and rax gets clobbered.
   1530   void TruncatingDiv(Register dividend, int32_t divisor);
   1531 
   1532   // ---------------------------------------------------------------------------
   1533   // StatsCounter support
   1534 
   1535   void SetCounter(StatsCounter* counter, int value);
   1536   void IncrementCounter(StatsCounter* counter, int value);
   1537   void DecrementCounter(StatsCounter* counter, int value);
   1538 
   1539 
   1540   // ---------------------------------------------------------------------------
   1541   // Debugging
   1542 
   1543   // Calls Abort(msg) if the condition cc is not satisfied.
   1544   // Use --debug_code to enable.
   1545   void Assert(Condition cc, BailoutReason reason);
   1546 
   1547   void AssertFastElements(Register elements);
   1548 
   1549   // Like Assert(), but always enabled.
   1550   void Check(Condition cc, BailoutReason reason);
   1551 
   1552   // Print a message to stdout and abort execution.
   1553   void Abort(BailoutReason msg);
   1554 
   1555   // Check that the stack is aligned.
   1556   void CheckStackAlignment();
   1557 
   1558   // Verify restrictions about code generated in stubs.
   1559   void set_generating_stub(bool value) { generating_stub_ = value; }
   1560   bool generating_stub() { return generating_stub_; }
   1561   void set_has_frame(bool value) { has_frame_ = value; }
   1562   bool has_frame() { return has_frame_; }
   1563   inline bool AllowThisStubCall(CodeStub* stub);
   1564 
   1565   static int SafepointRegisterStackIndex(Register reg) {
   1566     return SafepointRegisterStackIndex(reg.code());
   1567   }
   1568 
   1569   // Load the type feedback vector from a JavaScript frame.
   1570   void EmitLoadTypeFeedbackVector(Register vector);
   1571 
   1572   // Activation support.
   1573   void EnterFrame(StackFrame::Type type);
   1574   void EnterFrame(StackFrame::Type type, bool load_constant_pool_pointer_reg);
   1575   void LeaveFrame(StackFrame::Type type);
   1576 
   1577   // Expects object in rax and returns map with validated enum cache
   1578   // in rax.  Assumes that any other register can be used as a scratch.
   1579   void CheckEnumCache(Label* call_runtime);
   1580 
   1581   // AllocationMemento support. Arrays may have an associated
   1582   // AllocationMemento object that can be checked for in order to pretransition
   1583   // to another type.
   1584   // On entry, receiver_reg should point to the array object.
   1585   // scratch_reg gets clobbered.
   1586   // If allocation info is present, condition flags are set to equal.
   1587   void TestJSArrayForAllocationMemento(Register receiver_reg,
   1588                                        Register scratch_reg,
   1589                                        Label* no_memento_found);
   1590 
   1591   void JumpIfJSArrayHasAllocationMemento(Register receiver_reg,
   1592                                          Register scratch_reg,
   1593                                          Label* memento_found) {
   1594     Label no_memento_found;
   1595     TestJSArrayForAllocationMemento(receiver_reg, scratch_reg,
   1596                                     &no_memento_found);
   1597     j(equal, memento_found);
   1598     bind(&no_memento_found);
   1599   }
   1600 
   1601   // Jumps to found label if a prototype map has dictionary elements.
   1602   void JumpIfDictionaryInPrototypeChain(Register object, Register scratch0,
   1603                                         Register scratch1, Label* found);
   1604 
   1605  private:
   1606   // Order general registers are pushed by Pushad.
   1607   // rax, rcx, rdx, rbx, rsi, rdi, r8, r9, r11, r12, r14, r15.
   1608   static const int kSafepointPushRegisterIndices[Register::kNumRegisters];
   1609   static const int kNumSafepointSavedRegisters = 12;
   1610   static const int kSmiShift = kSmiTagSize + kSmiShiftSize;
   1611 
   1612   bool generating_stub_;
   1613   bool has_frame_;
   1614   bool root_array_available_;
   1615 
   1616   // Returns a register holding the smi value. The register MUST NOT be
   1617   // modified. It may be the "smi 1 constant" register.
   1618   Register GetSmiConstant(Smi* value);
   1619 
   1620   int64_t RootRegisterDelta(ExternalReference other);
   1621 
   1622   // Moves the smi value to the destination register.
   1623   void LoadSmiConstant(Register dst, Smi* value);
   1624 
   1625   // This handle will be patched with the code object on installation.
   1626   Handle<Object> code_object_;
   1627 
   1628   // Helper functions for generating invokes.
   1629   void InvokePrologue(const ParameterCount& expected,
   1630                       const ParameterCount& actual,
   1631                       Label* done,
   1632                       bool* definitely_mismatches,
   1633                       InvokeFlag flag,
   1634                       Label::Distance near_jump,
   1635                       const CallWrapper& call_wrapper);
   1636 
   1637   void EnterExitFramePrologue(bool save_rax);
   1638 
   1639   // Allocates arg_stack_space * kPointerSize memory (not GCed) on the stack
   1640   // accessible via StackSpaceOperand.
   1641   void EnterExitFrameEpilogue(int arg_stack_space, bool save_doubles);
   1642 
   1643   void LeaveExitFrameEpilogue(bool restore_context);
   1644 
   1645   // Allocation support helpers.
   1646   // Loads the top of new-space into the result register.
   1647   // Otherwise the address of the new-space top is loaded into scratch (if
   1648   // scratch is valid), and the new-space top is loaded into result.
   1649   void LoadAllocationTopHelper(Register result,
   1650                                Register scratch,
   1651                                AllocationFlags flags);
   1652 
   1653   void MakeSureDoubleAlignedHelper(Register result,
   1654                                    Register scratch,
   1655                                    Label* gc_required,
   1656                                    AllocationFlags flags);
   1657 
   1658   // Update allocation top with value in result_end register.
   1659   // If scratch is valid, it contains the address of the allocation top.
   1660   void UpdateAllocationTopHelper(Register result_end,
   1661                                  Register scratch,
   1662                                  AllocationFlags flags);
   1663 
   1664   // Helper for implementing JumpIfNotInNewSpace and JumpIfInNewSpace.
   1665   void InNewSpace(Register object,
   1666                   Register scratch,
   1667                   Condition cc,
   1668                   Label* branch,
   1669                   Label::Distance distance = Label::kFar);
   1670 
   1671   // Helper for finding the mark bits for an address.  Afterwards, the
   1672   // bitmap register points at the word with the mark bits and the mask
   1673   // the position of the first bit.  Uses rcx as scratch and leaves addr_reg
   1674   // unchanged.
   1675   inline void GetMarkBits(Register addr_reg,
   1676                           Register bitmap_reg,
   1677                           Register mask_reg);
   1678 
   1679   // Compute memory operands for safepoint stack slots.
   1680   Operand SafepointRegisterSlot(Register reg);
   1681   static int SafepointRegisterStackIndex(int reg_code) {
   1682     return kNumSafepointRegisters - kSafepointPushRegisterIndices[reg_code] - 1;
   1683   }
   1684 
   1685   // Needs access to SafepointRegisterStackIndex for compiled frame
   1686   // traversal.
   1687   friend class StandardFrame;
   1688 };
   1689 
   1690 
   1691 // The code patcher is used to patch (typically) small parts of code e.g. for
   1692 // debugging and other types of instrumentation. When using the code patcher
   1693 // the exact number of bytes specified must be emitted. Is not legal to emit
   1694 // relocation information. If any of these constraints are violated it causes
   1695 // an assertion.
   1696 class CodePatcher {
   1697  public:
   1698   CodePatcher(Isolate* isolate, byte* address, int size);
   1699   ~CodePatcher();
   1700 
   1701   // Macro assembler to emit code.
   1702   MacroAssembler* masm() { return &masm_; }
   1703 
   1704  private:
   1705   byte* address_;  // The address of the code being patched.
   1706   int size_;  // Number of bytes of the expected patch size.
   1707   MacroAssembler masm_;  // Macro assembler used to generate the code.
   1708 };
   1709 
   1710 
   1711 // -----------------------------------------------------------------------------
   1712 // Static helper functions.
   1713 
   1714 // Generate an Operand for loading a field from an object.
   1715 inline Operand FieldOperand(Register object, int offset) {
   1716   return Operand(object, offset - kHeapObjectTag);
   1717 }
   1718 
   1719 
   1720 // Generate an Operand for loading an indexed field from an object.
   1721 inline Operand FieldOperand(Register object,
   1722                             Register index,
   1723                             ScaleFactor scale,
   1724                             int offset) {
   1725   return Operand(object, index, scale, offset - kHeapObjectTag);
   1726 }
   1727 
   1728 
   1729 inline Operand ContextOperand(Register context, int index) {
   1730   return Operand(context, Context::SlotOffset(index));
   1731 }
   1732 
   1733 
   1734 inline Operand ContextOperand(Register context, Register index) {
   1735   return Operand(context, index, times_pointer_size, Context::SlotOffset(0));
   1736 }
   1737 
   1738 
   1739 inline Operand NativeContextOperand() {
   1740   return ContextOperand(rsi, Context::NATIVE_CONTEXT_INDEX);
   1741 }
   1742 
   1743 
   1744 // Provides access to exit frame stack space (not GCed).
   1745 inline Operand StackSpaceOperand(int index) {
   1746 #ifdef _WIN64
   1747   const int kShaddowSpace = 4;
   1748   return Operand(rsp, (index + kShaddowSpace) * kPointerSize);
   1749 #else
   1750   return Operand(rsp, index * kPointerSize);
   1751 #endif
   1752 }
   1753 
   1754 
   1755 inline Operand StackOperandForReturnAddress(int32_t disp) {
   1756   return Operand(rsp, disp);
   1757 }
   1758 
   1759 
   1760 #ifdef GENERATED_CODE_COVERAGE
   1761 extern void LogGeneratedCodeCoverage(const char* file_line);
   1762 #define CODE_COVERAGE_STRINGIFY(x) #x
   1763 #define CODE_COVERAGE_TOSTRING(x) CODE_COVERAGE_STRINGIFY(x)
   1764 #define __FILE_LINE__ __FILE__ ":" CODE_COVERAGE_TOSTRING(__LINE__)
   1765 #define ACCESS_MASM(masm) {                                                  \
   1766     Address x64_coverage_function = FUNCTION_ADDR(LogGeneratedCodeCoverage); \
   1767     masm->pushfq();                                                          \
   1768     masm->Pushad();                                                          \
   1769     masm->Push(Immediate(reinterpret_cast<int>(&__FILE_LINE__)));            \
   1770     masm->Call(x64_coverage_function, RelocInfo::EXTERNAL_REFERENCE);        \
   1771     masm->Pop(rax);                                                          \
   1772     masm->Popad();                                                           \
   1773     masm->popfq();                                                           \
   1774   }                                                                          \
   1775   masm->
   1776 #else
   1777 #define ACCESS_MASM(masm) masm->
   1778 #endif
   1779 
   1780 }  // namespace internal
   1781 }  // namespace v8
   1782 
   1783 #endif  // V8_X64_MACRO_ASSEMBLER_X64_H_
   1784