Home | History | Annotate | Download | only in x87
      1 // Copyright 2012 the V8 project authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #if V8_TARGET_ARCH_X87
      6 
      7 #include "src/code-stubs.h"
      8 #include "src/api-arguments.h"
      9 #include "src/base/bits.h"
     10 #include "src/bootstrapper.h"
     11 #include "src/codegen.h"
     12 #include "src/ic/handler-compiler.h"
     13 #include "src/ic/ic.h"
     14 #include "src/ic/stub-cache.h"
     15 #include "src/isolate.h"
     16 #include "src/regexp/jsregexp.h"
     17 #include "src/regexp/regexp-macro-assembler.h"
     18 #include "src/runtime/runtime.h"
     19 #include "src/x87/code-stubs-x87.h"
     20 #include "src/x87/frames-x87.h"
     21 
     22 namespace v8 {
     23 namespace internal {
     24 
     25 #define __ ACCESS_MASM(masm)
     26 
     27 void ArrayNArgumentsConstructorStub::Generate(MacroAssembler* masm) {
     28   __ pop(ecx);
     29   __ mov(MemOperand(esp, eax, times_4, 0), edi);
     30   __ push(edi);
     31   __ push(ebx);
     32   __ push(ecx);
     33   __ add(eax, Immediate(3));
     34   __ TailCallRuntime(Runtime::kNewArray);
     35 }
     36 
     37 void FastArrayPushStub::InitializeDescriptor(CodeStubDescriptor* descriptor) {
     38   Address deopt_handler = Runtime::FunctionForId(Runtime::kArrayPush)->entry;
     39   descriptor->Initialize(eax, deopt_handler, -1, JS_FUNCTION_STUB_MODE);
     40 }
     41 
     42 void FastFunctionBindStub::InitializeDescriptor(
     43     CodeStubDescriptor* descriptor) {
     44   Address deopt_handler = Runtime::FunctionForId(Runtime::kFunctionBind)->entry;
     45   descriptor->Initialize(eax, deopt_handler, -1, JS_FUNCTION_STUB_MODE);
     46 }
     47 
     48 void HydrogenCodeStub::GenerateLightweightMiss(MacroAssembler* masm,
     49                                                ExternalReference miss) {
     50   // Update the static counter each time a new code stub is generated.
     51   isolate()->counters()->code_stubs()->Increment();
     52 
     53   CallInterfaceDescriptor descriptor = GetCallInterfaceDescriptor();
     54   int param_count = descriptor.GetRegisterParameterCount();
     55   {
     56     // Call the runtime system in a fresh internal frame.
     57     FrameScope scope(masm, StackFrame::INTERNAL);
     58     DCHECK(param_count == 0 ||
     59            eax.is(descriptor.GetRegisterParameter(param_count - 1)));
     60     // Push arguments
     61     for (int i = 0; i < param_count; ++i) {
     62       __ push(descriptor.GetRegisterParameter(i));
     63     }
     64     __ CallExternalReference(miss, param_count);
     65   }
     66 
     67   __ ret(0);
     68 }
     69 
     70 
     71 void StoreBufferOverflowStub::Generate(MacroAssembler* masm) {
     72   // We don't allow a GC during a store buffer overflow so there is no need to
     73   // store the registers in any particular way, but we do have to store and
     74   // restore them.
     75   __ pushad();
     76   if (save_doubles()) {
     77     // Save FPU stat in m108byte.
     78     __ sub(esp, Immediate(108));
     79     __ fnsave(Operand(esp, 0));
     80   }
     81   const int argument_count = 1;
     82 
     83   AllowExternalCallThatCantCauseGC scope(masm);
     84   __ PrepareCallCFunction(argument_count, ecx);
     85   __ mov(Operand(esp, 0 * kPointerSize),
     86          Immediate(ExternalReference::isolate_address(isolate())));
     87   __ CallCFunction(
     88       ExternalReference::store_buffer_overflow_function(isolate()),
     89       argument_count);
     90   if (save_doubles()) {
     91     // Restore FPU stat in m108byte.
     92     __ frstor(Operand(esp, 0));
     93     __ add(esp, Immediate(108));
     94   }
     95   __ popad();
     96   __ ret(0);
     97 }
     98 
     99 
    100 class FloatingPointHelper : public AllStatic {
    101  public:
    102   enum ArgLocation {
    103     ARGS_ON_STACK,
    104     ARGS_IN_REGISTERS
    105   };
    106 
    107   // Code pattern for loading a floating point value. Input value must
    108   // be either a smi or a heap number object (fp value). Requirements:
    109   // operand in register number. Returns operand as floating point number
    110   // on FPU stack.
    111   static void LoadFloatOperand(MacroAssembler* masm, Register number);
    112 
    113   // Test if operands are smi or number objects (fp). Requirements:
    114   // operand_1 in eax, operand_2 in edx; falls through on float
    115   // operands, jumps to the non_float label otherwise.
    116   static void CheckFloatOperands(MacroAssembler* masm,
    117                                  Label* non_float,
    118                                  Register scratch);
    119 };
    120 
    121 
    122 void DoubleToIStub::Generate(MacroAssembler* masm) {
    123   Register input_reg = this->source();
    124   Register final_result_reg = this->destination();
    125   DCHECK(is_truncating());
    126 
    127   Label check_negative, process_64_bits, done, done_no_stash;
    128 
    129   int double_offset = offset();
    130 
    131   // Account for return address and saved regs if input is esp.
    132   if (input_reg.is(esp)) double_offset += 3 * kPointerSize;
    133 
    134   MemOperand mantissa_operand(MemOperand(input_reg, double_offset));
    135   MemOperand exponent_operand(MemOperand(input_reg,
    136                                          double_offset + kDoubleSize / 2));
    137 
    138   Register scratch1;
    139   {
    140     Register scratch_candidates[3] = { ebx, edx, edi };
    141     for (int i = 0; i < 3; i++) {
    142       scratch1 = scratch_candidates[i];
    143       if (!final_result_reg.is(scratch1) && !input_reg.is(scratch1)) break;
    144     }
    145   }
    146   // Since we must use ecx for shifts below, use some other register (eax)
    147   // to calculate the result if ecx is the requested return register.
    148   Register result_reg = final_result_reg.is(ecx) ? eax : final_result_reg;
    149   // Save ecx if it isn't the return register and therefore volatile, or if it
    150   // is the return register, then save the temp register we use in its stead for
    151   // the result.
    152   Register save_reg = final_result_reg.is(ecx) ? eax : ecx;
    153   __ push(scratch1);
    154   __ push(save_reg);
    155 
    156   bool stash_exponent_copy = !input_reg.is(esp);
    157   __ mov(scratch1, mantissa_operand);
    158   __ mov(ecx, exponent_operand);
    159   if (stash_exponent_copy) __ push(ecx);
    160 
    161   __ and_(ecx, HeapNumber::kExponentMask);
    162   __ shr(ecx, HeapNumber::kExponentShift);
    163   __ lea(result_reg, MemOperand(ecx, -HeapNumber::kExponentBias));
    164   __ cmp(result_reg, Immediate(HeapNumber::kMantissaBits));
    165   __ j(below, &process_64_bits);
    166 
    167   // Result is entirely in lower 32-bits of mantissa
    168   int delta = HeapNumber::kExponentBias + Double::kPhysicalSignificandSize;
    169   __ sub(ecx, Immediate(delta));
    170   __ xor_(result_reg, result_reg);
    171   __ cmp(ecx, Immediate(31));
    172   __ j(above, &done);
    173   __ shl_cl(scratch1);
    174   __ jmp(&check_negative);
    175 
    176   __ bind(&process_64_bits);
    177   // Result must be extracted from shifted 32-bit mantissa
    178   __ sub(ecx, Immediate(delta));
    179   __ neg(ecx);
    180   if (stash_exponent_copy) {
    181     __ mov(result_reg, MemOperand(esp, 0));
    182   } else {
    183     __ mov(result_reg, exponent_operand);
    184   }
    185   __ and_(result_reg,
    186           Immediate(static_cast<uint32_t>(Double::kSignificandMask >> 32)));
    187   __ add(result_reg,
    188          Immediate(static_cast<uint32_t>(Double::kHiddenBit >> 32)));
    189   __ shrd_cl(scratch1, result_reg);
    190   __ shr_cl(result_reg);
    191   __ test(ecx, Immediate(32));
    192   {
    193     Label skip_mov;
    194     __ j(equal, &skip_mov, Label::kNear);
    195     __ mov(scratch1, result_reg);
    196     __ bind(&skip_mov);
    197   }
    198 
    199   // If the double was negative, negate the integer result.
    200   __ bind(&check_negative);
    201   __ mov(result_reg, scratch1);
    202   __ neg(result_reg);
    203   if (stash_exponent_copy) {
    204     __ cmp(MemOperand(esp, 0), Immediate(0));
    205   } else {
    206     __ cmp(exponent_operand, Immediate(0));
    207   }
    208   {
    209     Label skip_mov;
    210     __ j(less_equal, &skip_mov, Label::kNear);
    211     __ mov(result_reg, scratch1);
    212     __ bind(&skip_mov);
    213   }
    214 
    215   // Restore registers
    216   __ bind(&done);
    217   if (stash_exponent_copy) {
    218     __ add(esp, Immediate(kDoubleSize / 2));
    219   }
    220   __ bind(&done_no_stash);
    221   if (!final_result_reg.is(result_reg)) {
    222     DCHECK(final_result_reg.is(ecx));
    223     __ mov(final_result_reg, result_reg);
    224   }
    225   __ pop(save_reg);
    226   __ pop(scratch1);
    227   __ ret(0);
    228 }
    229 
    230 
    231 void FloatingPointHelper::LoadFloatOperand(MacroAssembler* masm,
    232                                            Register number) {
    233   Label load_smi, done;
    234 
    235   __ JumpIfSmi(number, &load_smi, Label::kNear);
    236   __ fld_d(FieldOperand(number, HeapNumber::kValueOffset));
    237   __ jmp(&done, Label::kNear);
    238 
    239   __ bind(&load_smi);
    240   __ SmiUntag(number);
    241   __ push(number);
    242   __ fild_s(Operand(esp, 0));
    243   __ pop(number);
    244 
    245   __ bind(&done);
    246 }
    247 
    248 
    249 void FloatingPointHelper::CheckFloatOperands(MacroAssembler* masm,
    250                                              Label* non_float,
    251                                              Register scratch) {
    252   Label test_other, done;
    253   // Test if both operands are floats or smi -> scratch=k_is_float;
    254   // Otherwise scratch = k_not_float.
    255   __ JumpIfSmi(edx, &test_other, Label::kNear);
    256   __ mov(scratch, FieldOperand(edx, HeapObject::kMapOffset));
    257   Factory* factory = masm->isolate()->factory();
    258   __ cmp(scratch, factory->heap_number_map());
    259   __ j(not_equal, non_float);  // argument in edx is not a number -> NaN
    260 
    261   __ bind(&test_other);
    262   __ JumpIfSmi(eax, &done, Label::kNear);
    263   __ mov(scratch, FieldOperand(eax, HeapObject::kMapOffset));
    264   __ cmp(scratch, factory->heap_number_map());
    265   __ j(not_equal, non_float);  // argument in eax is not a number -> NaN
    266 
    267   // Fall-through: Both operands are numbers.
    268   __ bind(&done);
    269 }
    270 
    271 
    272 void MathPowStub::Generate(MacroAssembler* masm) {
    273   const Register base = edx;
    274   const Register scratch = ecx;
    275   Label call_runtime;
    276 
    277   // We will call runtime helper function directly.
    278   if (exponent_type() == ON_STACK) {
    279     // The arguments are still on the stack.
    280     __ bind(&call_runtime);
    281     __ TailCallRuntime(Runtime::kMathPowRT);
    282 
    283     // The stub is called from non-optimized code, which expects the result
    284     // as heap number in exponent.
    285     __ AllocateHeapNumber(eax, scratch, base, &call_runtime);
    286     __ fstp_d(FieldOperand(eax, HeapNumber::kValueOffset));
    287     __ ret(2 * kPointerSize);
    288   } else {
    289     // Currently it's only called from full-compiler and exponent type is
    290     // ON_STACK.
    291     UNIMPLEMENTED();
    292   }
    293 }
    294 
    295 
    296 void FunctionPrototypeStub::Generate(MacroAssembler* masm) {
    297   Label miss;
    298   Register receiver = LoadDescriptor::ReceiverRegister();
    299   // With careful management, we won't have to save slot and vector on
    300   // the stack. Simply handle the possibly missing case first.
    301   // TODO(mvstanton): this code can be more efficient.
    302   __ cmp(FieldOperand(receiver, JSFunction::kPrototypeOrInitialMapOffset),
    303          Immediate(isolate()->factory()->the_hole_value()));
    304   __ j(equal, &miss);
    305   __ TryGetFunctionPrototype(receiver, eax, ebx, &miss);
    306   __ ret(0);
    307 
    308   __ bind(&miss);
    309   PropertyAccessCompiler::TailCallBuiltin(
    310       masm, PropertyAccessCompiler::MissBuiltin(Code::LOAD_IC));
    311 }
    312 
    313 
    314 void LoadIndexedStringStub::Generate(MacroAssembler* masm) {
    315   // Return address is on the stack.
    316   Label miss;
    317 
    318   Register receiver = LoadDescriptor::ReceiverRegister();
    319   Register index = LoadDescriptor::NameRegister();
    320   Register scratch = edi;
    321   DCHECK(!scratch.is(receiver) && !scratch.is(index));
    322   Register result = eax;
    323   DCHECK(!result.is(scratch));
    324   DCHECK(!scratch.is(LoadWithVectorDescriptor::VectorRegister()) &&
    325          result.is(LoadDescriptor::SlotRegister()));
    326 
    327   // StringCharAtGenerator doesn't use the result register until it's passed
    328   // the different miss possibilities. If it did, we would have a conflict
    329   // when FLAG_vector_ics is true.
    330 
    331   StringCharAtGenerator char_at_generator(receiver, index, scratch, result,
    332                                           &miss,  // When not a string.
    333                                           &miss,  // When not a number.
    334                                           &miss,  // When index out of range.
    335                                           RECEIVER_IS_STRING);
    336   char_at_generator.GenerateFast(masm);
    337   __ ret(0);
    338 
    339   StubRuntimeCallHelper call_helper;
    340   char_at_generator.GenerateSlow(masm, PART_OF_IC_HANDLER, call_helper);
    341 
    342   __ bind(&miss);
    343   PropertyAccessCompiler::TailCallBuiltin(
    344       masm, PropertyAccessCompiler::MissBuiltin(Code::KEYED_LOAD_IC));
    345 }
    346 
    347 
    348 void RegExpExecStub::Generate(MacroAssembler* masm) {
    349   // Just jump directly to runtime if native RegExp is not selected at compile
    350   // time or if regexp entry in generated code is turned off runtime switch or
    351   // at compilation.
    352 #ifdef V8_INTERPRETED_REGEXP
    353   __ TailCallRuntime(Runtime::kRegExpExec);
    354 #else  // V8_INTERPRETED_REGEXP
    355 
    356   // Stack frame on entry.
    357   //  esp[0]: return address
    358   //  esp[4]: last_match_info (expected JSArray)
    359   //  esp[8]: previous index
    360   //  esp[12]: subject string
    361   //  esp[16]: JSRegExp object
    362 
    363   static const int kLastMatchInfoOffset = 1 * kPointerSize;
    364   static const int kPreviousIndexOffset = 2 * kPointerSize;
    365   static const int kSubjectOffset = 3 * kPointerSize;
    366   static const int kJSRegExpOffset = 4 * kPointerSize;
    367 
    368   Label runtime;
    369   Factory* factory = isolate()->factory();
    370 
    371   // Ensure that a RegExp stack is allocated.
    372   ExternalReference address_of_regexp_stack_memory_address =
    373       ExternalReference::address_of_regexp_stack_memory_address(isolate());
    374   ExternalReference address_of_regexp_stack_memory_size =
    375       ExternalReference::address_of_regexp_stack_memory_size(isolate());
    376   __ mov(ebx, Operand::StaticVariable(address_of_regexp_stack_memory_size));
    377   __ test(ebx, ebx);
    378   __ j(zero, &runtime);
    379 
    380   // Check that the first argument is a JSRegExp object.
    381   __ mov(eax, Operand(esp, kJSRegExpOffset));
    382   STATIC_ASSERT(kSmiTag == 0);
    383   __ JumpIfSmi(eax, &runtime);
    384   __ CmpObjectType(eax, JS_REGEXP_TYPE, ecx);
    385   __ j(not_equal, &runtime);
    386 
    387   // Check that the RegExp has been compiled (data contains a fixed array).
    388   __ mov(ecx, FieldOperand(eax, JSRegExp::kDataOffset));
    389   if (FLAG_debug_code) {
    390     __ test(ecx, Immediate(kSmiTagMask));
    391     __ Check(not_zero, kUnexpectedTypeForRegExpDataFixedArrayExpected);
    392     __ CmpObjectType(ecx, FIXED_ARRAY_TYPE, ebx);
    393     __ Check(equal, kUnexpectedTypeForRegExpDataFixedArrayExpected);
    394   }
    395 
    396   // ecx: RegExp data (FixedArray)
    397   // Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP.
    398   __ mov(ebx, FieldOperand(ecx, JSRegExp::kDataTagOffset));
    399   __ cmp(ebx, Immediate(Smi::FromInt(JSRegExp::IRREGEXP)));
    400   __ j(not_equal, &runtime);
    401 
    402   // ecx: RegExp data (FixedArray)
    403   // Check that the number of captures fit in the static offsets vector buffer.
    404   __ mov(edx, FieldOperand(ecx, JSRegExp::kIrregexpCaptureCountOffset));
    405   // Check (number_of_captures + 1) * 2 <= offsets vector size
    406   // Or          number_of_captures * 2 <= offsets vector size - 2
    407   // Multiplying by 2 comes for free since edx is smi-tagged.
    408   STATIC_ASSERT(kSmiTag == 0);
    409   STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
    410   STATIC_ASSERT(Isolate::kJSRegexpStaticOffsetsVectorSize >= 2);
    411   __ cmp(edx, Isolate::kJSRegexpStaticOffsetsVectorSize - 2);
    412   __ j(above, &runtime);
    413 
    414   // Reset offset for possibly sliced string.
    415   __ Move(edi, Immediate(0));
    416   __ mov(eax, Operand(esp, kSubjectOffset));
    417   __ JumpIfSmi(eax, &runtime);
    418   __ mov(edx, eax);  // Make a copy of the original subject string.
    419 
    420   // eax: subject string
    421   // edx: subject string
    422   // ecx: RegExp data (FixedArray)
    423   // Handle subject string according to its encoding and representation:
    424   // (1) Sequential two byte?  If yes, go to (9).
    425   // (2) Sequential one byte?  If yes, go to (5).
    426   // (3) Sequential or cons?  If not, go to (6).
    427   // (4) Cons string.  If the string is flat, replace subject with first string
    428   //     and go to (1). Otherwise bail out to runtime.
    429   // (5) One byte sequential.  Load regexp code for one byte.
    430   // (E) Carry on.
    431   /// [...]
    432 
    433   // Deferred code at the end of the stub:
    434   // (6) Long external string?  If not, go to (10).
    435   // (7) External string.  Make it, offset-wise, look like a sequential string.
    436   // (8) Is the external string one byte?  If yes, go to (5).
    437   // (9) Two byte sequential.  Load regexp code for two byte. Go to (E).
    438   // (10) Short external string or not a string?  If yes, bail out to runtime.
    439   // (11) Sliced string.  Replace subject with parent. Go to (1).
    440 
    441   Label seq_one_byte_string /* 5 */, seq_two_byte_string /* 9 */,
    442       external_string /* 7 */, check_underlying /* 1 */,
    443       not_seq_nor_cons /* 6 */, check_code /* E */, not_long_external /* 10 */;
    444 
    445   __ bind(&check_underlying);
    446   // (1) Sequential two byte?  If yes, go to (9).
    447   __ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset));
    448   __ movzx_b(ebx, FieldOperand(ebx, Map::kInstanceTypeOffset));
    449 
    450   __ and_(ebx, kIsNotStringMask |
    451                kStringRepresentationMask |
    452                kStringEncodingMask |
    453                kShortExternalStringMask);
    454   STATIC_ASSERT((kStringTag | kSeqStringTag | kTwoByteStringTag) == 0);
    455   __ j(zero, &seq_two_byte_string);  // Go to (9).
    456 
    457   // (2) Sequential one byte?  If yes, go to (5).
    458   // Any other sequential string must be one byte.
    459   __ and_(ebx, Immediate(kIsNotStringMask |
    460                          kStringRepresentationMask |
    461                          kShortExternalStringMask));
    462   __ j(zero, &seq_one_byte_string, Label::kNear);  // Go to (5).
    463 
    464   // (3) Sequential or cons?  If not, go to (6).
    465   // We check whether the subject string is a cons, since sequential strings
    466   // have already been covered.
    467   STATIC_ASSERT(kConsStringTag < kExternalStringTag);
    468   STATIC_ASSERT(kSlicedStringTag > kExternalStringTag);
    469   STATIC_ASSERT(kIsNotStringMask > kExternalStringTag);
    470   STATIC_ASSERT(kShortExternalStringTag > kExternalStringTag);
    471   __ cmp(ebx, Immediate(kExternalStringTag));
    472   __ j(greater_equal, &not_seq_nor_cons);  // Go to (6).
    473 
    474   // (4) Cons string.  Check that it's flat.
    475   // Replace subject with first string and reload instance type.
    476   __ cmp(FieldOperand(eax, ConsString::kSecondOffset), factory->empty_string());
    477   __ j(not_equal, &runtime);
    478   __ mov(eax, FieldOperand(eax, ConsString::kFirstOffset));
    479   __ jmp(&check_underlying);
    480 
    481   // eax: sequential subject string (or look-alike, external string)
    482   // edx: original subject string
    483   // ecx: RegExp data (FixedArray)
    484   // (5) One byte sequential.  Load regexp code for one byte.
    485   __ bind(&seq_one_byte_string);
    486   // Load previous index and check range before edx is overwritten.  We have
    487   // to use edx instead of eax here because it might have been only made to
    488   // look like a sequential string when it actually is an external string.
    489   __ mov(ebx, Operand(esp, kPreviousIndexOffset));
    490   __ JumpIfNotSmi(ebx, &runtime);
    491   __ cmp(ebx, FieldOperand(edx, String::kLengthOffset));
    492   __ j(above_equal, &runtime);
    493   __ mov(edx, FieldOperand(ecx, JSRegExp::kDataOneByteCodeOffset));
    494   __ Move(ecx, Immediate(1));  // Type is one byte.
    495 
    496   // (E) Carry on.  String handling is done.
    497   __ bind(&check_code);
    498   // edx: irregexp code
    499   // Check that the irregexp code has been generated for the actual string
    500   // encoding. If it has, the field contains a code object otherwise it contains
    501   // a smi (code flushing support).
    502   __ JumpIfSmi(edx, &runtime);
    503 
    504   // eax: subject string
    505   // ebx: previous index (smi)
    506   // edx: code
    507   // ecx: encoding of subject string (1 if one_byte, 0 if two_byte);
    508   // All checks done. Now push arguments for native regexp code.
    509   Counters* counters = isolate()->counters();
    510   __ IncrementCounter(counters->regexp_entry_native(), 1);
    511 
    512   // Isolates: note we add an additional parameter here (isolate pointer).
    513   static const int kRegExpExecuteArguments = 9;
    514   __ EnterApiExitFrame(kRegExpExecuteArguments);
    515 
    516   // Argument 9: Pass current isolate address.
    517   __ mov(Operand(esp, 8 * kPointerSize),
    518       Immediate(ExternalReference::isolate_address(isolate())));
    519 
    520   // Argument 8: Indicate that this is a direct call from JavaScript.
    521   __ mov(Operand(esp, 7 * kPointerSize), Immediate(1));
    522 
    523   // Argument 7: Start (high end) of backtracking stack memory area.
    524   __ mov(esi, Operand::StaticVariable(address_of_regexp_stack_memory_address));
    525   __ add(esi, Operand::StaticVariable(address_of_regexp_stack_memory_size));
    526   __ mov(Operand(esp, 6 * kPointerSize), esi);
    527 
    528   // Argument 6: Set the number of capture registers to zero to force global
    529   // regexps to behave as non-global.  This does not affect non-global regexps.
    530   __ mov(Operand(esp, 5 * kPointerSize), Immediate(0));
    531 
    532   // Argument 5: static offsets vector buffer.
    533   __ mov(Operand(esp, 4 * kPointerSize),
    534          Immediate(ExternalReference::address_of_static_offsets_vector(
    535              isolate())));
    536 
    537   // Argument 2: Previous index.
    538   __ SmiUntag(ebx);
    539   __ mov(Operand(esp, 1 * kPointerSize), ebx);
    540 
    541   // Argument 1: Original subject string.
    542   // The original subject is in the previous stack frame. Therefore we have to
    543   // use ebp, which points exactly to one pointer size below the previous esp.
    544   // (Because creating a new stack frame pushes the previous ebp onto the stack
    545   // and thereby moves up esp by one kPointerSize.)
    546   __ mov(esi, Operand(ebp, kSubjectOffset + kPointerSize));
    547   __ mov(Operand(esp, 0 * kPointerSize), esi);
    548 
    549   // esi: original subject string
    550   // eax: underlying subject string
    551   // ebx: previous index
    552   // ecx: encoding of subject string (1 if one_byte 0 if two_byte);
    553   // edx: code
    554   // Argument 4: End of string data
    555   // Argument 3: Start of string data
    556   // Prepare start and end index of the input.
    557   // Load the length from the original sliced string if that is the case.
    558   __ mov(esi, FieldOperand(esi, String::kLengthOffset));
    559   __ add(esi, edi);  // Calculate input end wrt offset.
    560   __ SmiUntag(edi);
    561   __ add(ebx, edi);  // Calculate input start wrt offset.
    562 
    563   // ebx: start index of the input string
    564   // esi: end index of the input string
    565   Label setup_two_byte, setup_rest;
    566   __ test(ecx, ecx);
    567   __ j(zero, &setup_two_byte, Label::kNear);
    568   __ SmiUntag(esi);
    569   __ lea(ecx, FieldOperand(eax, esi, times_1, SeqOneByteString::kHeaderSize));
    570   __ mov(Operand(esp, 3 * kPointerSize), ecx);  // Argument 4.
    571   __ lea(ecx, FieldOperand(eax, ebx, times_1, SeqOneByteString::kHeaderSize));
    572   __ mov(Operand(esp, 2 * kPointerSize), ecx);  // Argument 3.
    573   __ jmp(&setup_rest, Label::kNear);
    574 
    575   __ bind(&setup_two_byte);
    576   STATIC_ASSERT(kSmiTag == 0);
    577   STATIC_ASSERT(kSmiTagSize == 1);  // esi is smi (powered by 2).
    578   __ lea(ecx, FieldOperand(eax, esi, times_1, SeqTwoByteString::kHeaderSize));
    579   __ mov(Operand(esp, 3 * kPointerSize), ecx);  // Argument 4.
    580   __ lea(ecx, FieldOperand(eax, ebx, times_2, SeqTwoByteString::kHeaderSize));
    581   __ mov(Operand(esp, 2 * kPointerSize), ecx);  // Argument 3.
    582 
    583   __ bind(&setup_rest);
    584 
    585   // Locate the code entry and call it.
    586   __ add(edx, Immediate(Code::kHeaderSize - kHeapObjectTag));
    587   __ call(edx);
    588 
    589   // Drop arguments and come back to JS mode.
    590   __ LeaveApiExitFrame(true);
    591 
    592   // Check the result.
    593   Label success;
    594   __ cmp(eax, 1);
    595   // We expect exactly one result since we force the called regexp to behave
    596   // as non-global.
    597   __ j(equal, &success);
    598   Label failure;
    599   __ cmp(eax, NativeRegExpMacroAssembler::FAILURE);
    600   __ j(equal, &failure);
    601   __ cmp(eax, NativeRegExpMacroAssembler::EXCEPTION);
    602   // If not exception it can only be retry. Handle that in the runtime system.
    603   __ j(not_equal, &runtime);
    604   // Result must now be exception. If there is no pending exception already a
    605   // stack overflow (on the backtrack stack) was detected in RegExp code but
    606   // haven't created the exception yet. Handle that in the runtime system.
    607   // TODO(592): Rerunning the RegExp to get the stack overflow exception.
    608   ExternalReference pending_exception(Isolate::kPendingExceptionAddress,
    609                                       isolate());
    610   __ mov(edx, Immediate(isolate()->factory()->the_hole_value()));
    611   __ mov(eax, Operand::StaticVariable(pending_exception));
    612   __ cmp(edx, eax);
    613   __ j(equal, &runtime);
    614 
    615   // For exception, throw the exception again.
    616   __ TailCallRuntime(Runtime::kRegExpExecReThrow);
    617 
    618   __ bind(&failure);
    619   // For failure to match, return null.
    620   __ mov(eax, factory->null_value());
    621   __ ret(4 * kPointerSize);
    622 
    623   // Load RegExp data.
    624   __ bind(&success);
    625   __ mov(eax, Operand(esp, kJSRegExpOffset));
    626   __ mov(ecx, FieldOperand(eax, JSRegExp::kDataOffset));
    627   __ mov(edx, FieldOperand(ecx, JSRegExp::kIrregexpCaptureCountOffset));
    628   // Calculate number of capture registers (number_of_captures + 1) * 2.
    629   STATIC_ASSERT(kSmiTag == 0);
    630   STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
    631   __ add(edx, Immediate(2));  // edx was a smi.
    632 
    633   // edx: Number of capture registers
    634   // Load last_match_info which is still known to be a fast case JSArray.
    635   // Check that the fourth object is a JSArray object.
    636   __ mov(eax, Operand(esp, kLastMatchInfoOffset));
    637   __ JumpIfSmi(eax, &runtime);
    638   __ CmpObjectType(eax, JS_ARRAY_TYPE, ebx);
    639   __ j(not_equal, &runtime);
    640   // Check that the JSArray is in fast case.
    641   __ mov(ebx, FieldOperand(eax, JSArray::kElementsOffset));
    642   __ mov(eax, FieldOperand(ebx, HeapObject::kMapOffset));
    643   __ cmp(eax, factory->fixed_array_map());
    644   __ j(not_equal, &runtime);
    645   // Check that the last match info has space for the capture registers and the
    646   // additional information.
    647   __ mov(eax, FieldOperand(ebx, FixedArray::kLengthOffset));
    648   __ SmiUntag(eax);
    649   __ sub(eax, Immediate(RegExpImpl::kLastMatchOverhead));
    650   __ cmp(edx, eax);
    651   __ j(greater, &runtime);
    652 
    653   // ebx: last_match_info backing store (FixedArray)
    654   // edx: number of capture registers
    655   // Store the capture count.
    656   __ SmiTag(edx);  // Number of capture registers to smi.
    657   __ mov(FieldOperand(ebx, RegExpImpl::kLastCaptureCountOffset), edx);
    658   __ SmiUntag(edx);  // Number of capture registers back from smi.
    659   // Store last subject and last input.
    660   __ mov(eax, Operand(esp, kSubjectOffset));
    661   __ mov(ecx, eax);
    662   __ mov(FieldOperand(ebx, RegExpImpl::kLastSubjectOffset), eax);
    663   __ RecordWriteField(ebx, RegExpImpl::kLastSubjectOffset, eax, edi,
    664                       kDontSaveFPRegs);
    665   __ mov(eax, ecx);
    666   __ mov(FieldOperand(ebx, RegExpImpl::kLastInputOffset), eax);
    667   __ RecordWriteField(ebx, RegExpImpl::kLastInputOffset, eax, edi,
    668                       kDontSaveFPRegs);
    669 
    670   // Get the static offsets vector filled by the native regexp code.
    671   ExternalReference address_of_static_offsets_vector =
    672       ExternalReference::address_of_static_offsets_vector(isolate());
    673   __ mov(ecx, Immediate(address_of_static_offsets_vector));
    674 
    675   // ebx: last_match_info backing store (FixedArray)
    676   // ecx: offsets vector
    677   // edx: number of capture registers
    678   Label next_capture, done;
    679   // Capture register counter starts from number of capture registers and
    680   // counts down until wraping after zero.
    681   __ bind(&next_capture);
    682   __ sub(edx, Immediate(1));
    683   __ j(negative, &done, Label::kNear);
    684   // Read the value from the static offsets vector buffer.
    685   __ mov(edi, Operand(ecx, edx, times_int_size, 0));
    686   __ SmiTag(edi);
    687   // Store the smi value in the last match info.
    688   __ mov(FieldOperand(ebx,
    689                       edx,
    690                       times_pointer_size,
    691                       RegExpImpl::kFirstCaptureOffset),
    692                       edi);
    693   __ jmp(&next_capture);
    694   __ bind(&done);
    695 
    696   // Return last match info.
    697   __ mov(eax, Operand(esp, kLastMatchInfoOffset));
    698   __ ret(4 * kPointerSize);
    699 
    700   // Do the runtime call to execute the regexp.
    701   __ bind(&runtime);
    702   __ TailCallRuntime(Runtime::kRegExpExec);
    703 
    704   // Deferred code for string handling.
    705   // (6) Long external string?  If not, go to (10).
    706   __ bind(&not_seq_nor_cons);
    707   // Compare flags are still set from (3).
    708   __ j(greater, &not_long_external, Label::kNear);  // Go to (10).
    709 
    710   // (7) External string.  Short external strings have been ruled out.
    711   __ bind(&external_string);
    712   // Reload instance type.
    713   __ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset));
    714   __ movzx_b(ebx, FieldOperand(ebx, Map::kInstanceTypeOffset));
    715   if (FLAG_debug_code) {
    716     // Assert that we do not have a cons or slice (indirect strings) here.
    717     // Sequential strings have already been ruled out.
    718     __ test_b(ebx, Immediate(kIsIndirectStringMask));
    719     __ Assert(zero, kExternalStringExpectedButNotFound);
    720   }
    721   __ mov(eax, FieldOperand(eax, ExternalString::kResourceDataOffset));
    722   // Move the pointer so that offset-wise, it looks like a sequential string.
    723   STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize);
    724   __ sub(eax, Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
    725   STATIC_ASSERT(kTwoByteStringTag == 0);
    726   // (8) Is the external string one byte?  If yes, go to (5).
    727   __ test_b(ebx, Immediate(kStringEncodingMask));
    728   __ j(not_zero, &seq_one_byte_string);  // Go to (5).
    729 
    730   // eax: sequential subject string (or look-alike, external string)
    731   // edx: original subject string
    732   // ecx: RegExp data (FixedArray)
    733   // (9) Two byte sequential.  Load regexp code for two byte. Go to (E).
    734   __ bind(&seq_two_byte_string);
    735   // Load previous index and check range before edx is overwritten.  We have
    736   // to use edx instead of eax here because it might have been only made to
    737   // look like a sequential string when it actually is an external string.
    738   __ mov(ebx, Operand(esp, kPreviousIndexOffset));
    739   __ JumpIfNotSmi(ebx, &runtime);
    740   __ cmp(ebx, FieldOperand(edx, String::kLengthOffset));
    741   __ j(above_equal, &runtime);
    742   __ mov(edx, FieldOperand(ecx, JSRegExp::kDataUC16CodeOffset));
    743   __ Move(ecx, Immediate(0));  // Type is two byte.
    744   __ jmp(&check_code);  // Go to (E).
    745 
    746   // (10) Not a string or a short external string?  If yes, bail out to runtime.
    747   __ bind(&not_long_external);
    748   // Catch non-string subject or short external string.
    749   STATIC_ASSERT(kNotStringTag != 0 && kShortExternalStringTag !=0);
    750   __ test(ebx, Immediate(kIsNotStringMask | kShortExternalStringTag));
    751   __ j(not_zero, &runtime);
    752 
    753   // (11) Sliced string.  Replace subject with parent.  Go to (1).
    754   // Load offset into edi and replace subject string with parent.
    755   __ mov(edi, FieldOperand(eax, SlicedString::kOffsetOffset));
    756   __ mov(eax, FieldOperand(eax, SlicedString::kParentOffset));
    757   __ jmp(&check_underlying);  // Go to (1).
    758 #endif  // V8_INTERPRETED_REGEXP
    759 }
    760 
    761 
    762 static int NegativeComparisonResult(Condition cc) {
    763   DCHECK(cc != equal);
    764   DCHECK((cc == less) || (cc == less_equal)
    765       || (cc == greater) || (cc == greater_equal));
    766   return (cc == greater || cc == greater_equal) ? LESS : GREATER;
    767 }
    768 
    769 
    770 static void CheckInputType(MacroAssembler* masm, Register input,
    771                            CompareICState::State expected, Label* fail) {
    772   Label ok;
    773   if (expected == CompareICState::SMI) {
    774     __ JumpIfNotSmi(input, fail);
    775   } else if (expected == CompareICState::NUMBER) {
    776     __ JumpIfSmi(input, &ok);
    777     __ cmp(FieldOperand(input, HeapObject::kMapOffset),
    778            Immediate(masm->isolate()->factory()->heap_number_map()));
    779     __ j(not_equal, fail);
    780   }
    781   // We could be strict about internalized/non-internalized here, but as long as
    782   // hydrogen doesn't care, the stub doesn't have to care either.
    783   __ bind(&ok);
    784 }
    785 
    786 
    787 static void BranchIfNotInternalizedString(MacroAssembler* masm,
    788                                           Label* label,
    789                                           Register object,
    790                                           Register scratch) {
    791   __ JumpIfSmi(object, label);
    792   __ mov(scratch, FieldOperand(object, HeapObject::kMapOffset));
    793   __ movzx_b(scratch, FieldOperand(scratch, Map::kInstanceTypeOffset));
    794   STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
    795   __ test(scratch, Immediate(kIsNotStringMask | kIsNotInternalizedMask));
    796   __ j(not_zero, label);
    797 }
    798 
    799 
    800 void CompareICStub::GenerateGeneric(MacroAssembler* masm) {
    801   Label runtime_call, check_unequal_objects;
    802   Condition cc = GetCondition();
    803 
    804   Label miss;
    805   CheckInputType(masm, edx, left(), &miss);
    806   CheckInputType(masm, eax, right(), &miss);
    807 
    808   // Compare two smis.
    809   Label non_smi, smi_done;
    810   __ mov(ecx, edx);
    811   __ or_(ecx, eax);
    812   __ JumpIfNotSmi(ecx, &non_smi, Label::kNear);
    813   __ sub(edx, eax);  // Return on the result of the subtraction.
    814   __ j(no_overflow, &smi_done, Label::kNear);
    815   __ not_(edx);  // Correct sign in case of overflow. edx is never 0 here.
    816   __ bind(&smi_done);
    817   __ mov(eax, edx);
    818   __ ret(0);
    819   __ bind(&non_smi);
    820 
    821   // NOTICE! This code is only reached after a smi-fast-case check, so
    822   // it is certain that at least one operand isn't a smi.
    823 
    824   // Identical objects can be compared fast, but there are some tricky cases
    825   // for NaN and undefined.
    826   Label generic_heap_number_comparison;
    827   {
    828     Label not_identical;
    829     __ cmp(eax, edx);
    830     __ j(not_equal, &not_identical);
    831 
    832     if (cc != equal) {
    833       // Check for undefined.  undefined OP undefined is false even though
    834       // undefined == undefined.
    835       __ cmp(edx, isolate()->factory()->undefined_value());
    836       Label check_for_nan;
    837       __ j(not_equal, &check_for_nan, Label::kNear);
    838       __ Move(eax, Immediate(Smi::FromInt(NegativeComparisonResult(cc))));
    839       __ ret(0);
    840       __ bind(&check_for_nan);
    841     }
    842 
    843     // Test for NaN. Compare heap numbers in a general way,
    844     // to handle NaNs correctly.
    845     __ cmp(FieldOperand(edx, HeapObject::kMapOffset),
    846            Immediate(isolate()->factory()->heap_number_map()));
    847     __ j(equal, &generic_heap_number_comparison, Label::kNear);
    848     if (cc != equal) {
    849       __ mov(ecx, FieldOperand(eax, HeapObject::kMapOffset));
    850       __ movzx_b(ecx, FieldOperand(ecx, Map::kInstanceTypeOffset));
    851       // Call runtime on identical JSObjects.  Otherwise return equal.
    852       __ cmpb(ecx, Immediate(FIRST_JS_RECEIVER_TYPE));
    853       __ j(above_equal, &runtime_call, Label::kFar);
    854       // Call runtime on identical symbols since we need to throw a TypeError.
    855       __ cmpb(ecx, Immediate(SYMBOL_TYPE));
    856       __ j(equal, &runtime_call, Label::kFar);
    857       // Call runtime on identical SIMD values since we must throw a TypeError.
    858       __ cmpb(ecx, Immediate(SIMD128_VALUE_TYPE));
    859       __ j(equal, &runtime_call, Label::kFar);
    860     }
    861     __ Move(eax, Immediate(Smi::FromInt(EQUAL)));
    862     __ ret(0);
    863 
    864 
    865     __ bind(&not_identical);
    866   }
    867 
    868   // Strict equality can quickly decide whether objects are equal.
    869   // Non-strict object equality is slower, so it is handled later in the stub.
    870   if (cc == equal && strict()) {
    871     Label slow;  // Fallthrough label.
    872     Label not_smis;
    873     // If we're doing a strict equality comparison, we don't have to do
    874     // type conversion, so we generate code to do fast comparison for objects
    875     // and oddballs. Non-smi numbers and strings still go through the usual
    876     // slow-case code.
    877     // If either is a Smi (we know that not both are), then they can only
    878     // be equal if the other is a HeapNumber. If so, use the slow case.
    879     STATIC_ASSERT(kSmiTag == 0);
    880     DCHECK_EQ(static_cast<Smi*>(0), Smi::FromInt(0));
    881     __ mov(ecx, Immediate(kSmiTagMask));
    882     __ and_(ecx, eax);
    883     __ test(ecx, edx);
    884     __ j(not_zero, &not_smis, Label::kNear);
    885     // One operand is a smi.
    886 
    887     // Check whether the non-smi is a heap number.
    888     STATIC_ASSERT(kSmiTagMask == 1);
    889     // ecx still holds eax & kSmiTag, which is either zero or one.
    890     __ sub(ecx, Immediate(0x01));
    891     __ mov(ebx, edx);
    892     __ xor_(ebx, eax);
    893     __ and_(ebx, ecx);  // ebx holds either 0 or eax ^ edx.
    894     __ xor_(ebx, eax);
    895     // if eax was smi, ebx is now edx, else eax.
    896 
    897     // Check if the non-smi operand is a heap number.
    898     __ cmp(FieldOperand(ebx, HeapObject::kMapOffset),
    899            Immediate(isolate()->factory()->heap_number_map()));
    900     // If heap number, handle it in the slow case.
    901     __ j(equal, &slow, Label::kNear);
    902     // Return non-equal (ebx is not zero)
    903     __ mov(eax, ebx);
    904     __ ret(0);
    905 
    906     __ bind(&not_smis);
    907     // If either operand is a JSObject or an oddball value, then they are not
    908     // equal since their pointers are different
    909     // There is no test for undetectability in strict equality.
    910 
    911     // Get the type of the first operand.
    912     // If the first object is a JS object, we have done pointer comparison.
    913     Label first_non_object;
    914     STATIC_ASSERT(LAST_TYPE == LAST_JS_RECEIVER_TYPE);
    915     __ CmpObjectType(eax, FIRST_JS_RECEIVER_TYPE, ecx);
    916     __ j(below, &first_non_object, Label::kNear);
    917 
    918     // Return non-zero (eax is not zero)
    919     Label return_not_equal;
    920     STATIC_ASSERT(kHeapObjectTag != 0);
    921     __ bind(&return_not_equal);
    922     __ ret(0);
    923 
    924     __ bind(&first_non_object);
    925     // Check for oddballs: true, false, null, undefined.
    926     __ CmpInstanceType(ecx, ODDBALL_TYPE);
    927     __ j(equal, &return_not_equal);
    928 
    929     __ CmpObjectType(edx, FIRST_JS_RECEIVER_TYPE, ecx);
    930     __ j(above_equal, &return_not_equal);
    931 
    932     // Check for oddballs: true, false, null, undefined.
    933     __ CmpInstanceType(ecx, ODDBALL_TYPE);
    934     __ j(equal, &return_not_equal);
    935 
    936     // Fall through to the general case.
    937     __ bind(&slow);
    938   }
    939 
    940   // Generate the number comparison code.
    941   Label non_number_comparison;
    942   Label unordered;
    943   __ bind(&generic_heap_number_comparison);
    944   FloatingPointHelper::CheckFloatOperands(
    945       masm, &non_number_comparison, ebx);
    946   FloatingPointHelper::LoadFloatOperand(masm, eax);
    947   FloatingPointHelper::LoadFloatOperand(masm, edx);
    948   __ FCmp();
    949 
    950   // Don't base result on EFLAGS when a NaN is involved.
    951   __ j(parity_even, &unordered, Label::kNear);
    952 
    953   Label below_label, above_label;
    954   // Return a result of -1, 0, or 1, based on EFLAGS.
    955   __ j(below, &below_label, Label::kNear);
    956   __ j(above, &above_label, Label::kNear);
    957 
    958   __ Move(eax, Immediate(0));
    959   __ ret(0);
    960 
    961   __ bind(&below_label);
    962   __ mov(eax, Immediate(Smi::FromInt(-1)));
    963   __ ret(0);
    964 
    965   __ bind(&above_label);
    966   __ mov(eax, Immediate(Smi::FromInt(1)));
    967   __ ret(0);
    968 
    969   // If one of the numbers was NaN, then the result is always false.
    970   // The cc is never not-equal.
    971   __ bind(&unordered);
    972   DCHECK(cc != not_equal);
    973   if (cc == less || cc == less_equal) {
    974     __ mov(eax, Immediate(Smi::FromInt(1)));
    975   } else {
    976     __ mov(eax, Immediate(Smi::FromInt(-1)));
    977   }
    978   __ ret(0);
    979 
    980   // The number comparison code did not provide a valid result.
    981   __ bind(&non_number_comparison);
    982 
    983   // Fast negative check for internalized-to-internalized equality.
    984   Label check_for_strings;
    985   if (cc == equal) {
    986     BranchIfNotInternalizedString(masm, &check_for_strings, eax, ecx);
    987     BranchIfNotInternalizedString(masm, &check_for_strings, edx, ecx);
    988 
    989     // We've already checked for object identity, so if both operands
    990     // are internalized they aren't equal. Register eax already holds a
    991     // non-zero value, which indicates not equal, so just return.
    992     __ ret(0);
    993   }
    994 
    995   __ bind(&check_for_strings);
    996 
    997   __ JumpIfNotBothSequentialOneByteStrings(edx, eax, ecx, ebx,
    998                                            &check_unequal_objects);
    999 
   1000   // Inline comparison of one-byte strings.
   1001   if (cc == equal) {
   1002     StringHelper::GenerateFlatOneByteStringEquals(masm, edx, eax, ecx, ebx);
   1003   } else {
   1004     StringHelper::GenerateCompareFlatOneByteStrings(masm, edx, eax, ecx, ebx,
   1005                                                     edi);
   1006   }
   1007 #ifdef DEBUG
   1008   __ Abort(kUnexpectedFallThroughFromStringComparison);
   1009 #endif
   1010 
   1011   __ bind(&check_unequal_objects);
   1012   if (cc == equal && !strict()) {
   1013     // Non-strict equality.  Objects are unequal if
   1014     // they are both JSObjects and not undetectable,
   1015     // and their pointers are different.
   1016     Label return_equal, return_unequal, undetectable;
   1017     // At most one is a smi, so we can test for smi by adding the two.
   1018     // A smi plus a heap object has the low bit set, a heap object plus
   1019     // a heap object has the low bit clear.
   1020     STATIC_ASSERT(kSmiTag == 0);
   1021     STATIC_ASSERT(kSmiTagMask == 1);
   1022     __ lea(ecx, Operand(eax, edx, times_1, 0));
   1023     __ test(ecx, Immediate(kSmiTagMask));
   1024     __ j(not_zero, &runtime_call);
   1025 
   1026     __ mov(ecx, FieldOperand(eax, HeapObject::kMapOffset));
   1027     __ mov(ebx, FieldOperand(edx, HeapObject::kMapOffset));
   1028 
   1029     __ test_b(FieldOperand(ebx, Map::kBitFieldOffset),
   1030               Immediate(1 << Map::kIsUndetectable));
   1031     __ j(not_zero, &undetectable, Label::kNear);
   1032     __ test_b(FieldOperand(ecx, Map::kBitFieldOffset),
   1033               Immediate(1 << Map::kIsUndetectable));
   1034     __ j(not_zero, &return_unequal, Label::kNear);
   1035 
   1036     __ CmpInstanceType(ebx, FIRST_JS_RECEIVER_TYPE);
   1037     __ j(below, &runtime_call, Label::kNear);
   1038     __ CmpInstanceType(ecx, FIRST_JS_RECEIVER_TYPE);
   1039     __ j(below, &runtime_call, Label::kNear);
   1040 
   1041     __ bind(&return_unequal);
   1042     // Return non-equal by returning the non-zero object pointer in eax.
   1043     __ ret(0);  // eax, edx were pushed
   1044 
   1045     __ bind(&undetectable);
   1046     __ test_b(FieldOperand(ecx, Map::kBitFieldOffset),
   1047               Immediate(1 << Map::kIsUndetectable));
   1048     __ j(zero, &return_unequal, Label::kNear);
   1049 
   1050     // If both sides are JSReceivers, then the result is false according to
   1051     // the HTML specification, which says that only comparisons with null or
   1052     // undefined are affected by special casing for document.all.
   1053     __ CmpInstanceType(ebx, ODDBALL_TYPE);
   1054     __ j(zero, &return_equal, Label::kNear);
   1055     __ CmpInstanceType(ecx, ODDBALL_TYPE);
   1056     __ j(not_zero, &return_unequal, Label::kNear);
   1057 
   1058     __ bind(&return_equal);
   1059     __ Move(eax, Immediate(EQUAL));
   1060     __ ret(0);  // eax, edx were pushed
   1061   }
   1062   __ bind(&runtime_call);
   1063 
   1064   if (cc == equal) {
   1065     {
   1066       FrameScope scope(masm, StackFrame::INTERNAL);
   1067       __ Push(edx);
   1068       __ Push(eax);
   1069       __ CallRuntime(strict() ? Runtime::kStrictEqual : Runtime::kEqual);
   1070     }
   1071     // Turn true into 0 and false into some non-zero value.
   1072     STATIC_ASSERT(EQUAL == 0);
   1073     __ sub(eax, Immediate(isolate()->factory()->true_value()));
   1074     __ Ret();
   1075   } else {
   1076     // Push arguments below the return address.
   1077     __ pop(ecx);
   1078     __ push(edx);
   1079     __ push(eax);
   1080     __ push(Immediate(Smi::FromInt(NegativeComparisonResult(cc))));
   1081 
   1082     // Restore return address on the stack.
   1083     __ push(ecx);
   1084     // Call the native; it returns -1 (less), 0 (equal), or 1 (greater)
   1085     // tagged as a small integer.
   1086     __ TailCallRuntime(Runtime::kCompare);
   1087   }
   1088 
   1089   __ bind(&miss);
   1090   GenerateMiss(masm);
   1091 }
   1092 
   1093 
   1094 static void CallStubInRecordCallTarget(MacroAssembler* masm, CodeStub* stub) {
   1095   // eax : number of arguments to the construct function
   1096   // ebx : feedback vector
   1097   // edx : slot in feedback vector (Smi)
   1098   // edi : the function to call
   1099 
   1100   {
   1101     FrameScope scope(masm, StackFrame::INTERNAL);
   1102 
   1103     // Number-of-arguments register must be smi-tagged to call out.
   1104     __ SmiTag(eax);
   1105     __ push(eax);
   1106     __ push(edi);
   1107     __ push(edx);
   1108     __ push(ebx);
   1109 
   1110     __ CallStub(stub);
   1111 
   1112     __ pop(ebx);
   1113     __ pop(edx);
   1114     __ pop(edi);
   1115     __ pop(eax);
   1116     __ SmiUntag(eax);
   1117   }
   1118 }
   1119 
   1120 
   1121 static void GenerateRecordCallTarget(MacroAssembler* masm) {
   1122   // Cache the called function in a feedback vector slot.  Cache states
   1123   // are uninitialized, monomorphic (indicated by a JSFunction), and
   1124   // megamorphic.
   1125   // eax : number of arguments to the construct function
   1126   // ebx : feedback vector
   1127   // edx : slot in feedback vector (Smi)
   1128   // edi : the function to call
   1129   Isolate* isolate = masm->isolate();
   1130   Label initialize, done, miss, megamorphic, not_array_function;
   1131   Label done_increment_count, done_initialize_count;
   1132 
   1133   // Load the cache state into ecx.
   1134   __ mov(ecx, FieldOperand(ebx, edx, times_half_pointer_size,
   1135                            FixedArray::kHeaderSize));
   1136 
   1137   // A monomorphic cache hit or an already megamorphic state: invoke the
   1138   // function without changing the state.
   1139   // We don't know if ecx is a WeakCell or a Symbol, but it's harmless to read
   1140   // at this position in a symbol (see static asserts in
   1141   // type-feedback-vector.h).
   1142   Label check_allocation_site;
   1143   __ cmp(edi, FieldOperand(ecx, WeakCell::kValueOffset));
   1144   __ j(equal, &done_increment_count, Label::kFar);
   1145   __ CompareRoot(ecx, Heap::kmegamorphic_symbolRootIndex);
   1146   __ j(equal, &done, Label::kFar);
   1147   __ CompareRoot(FieldOperand(ecx, HeapObject::kMapOffset),
   1148                  Heap::kWeakCellMapRootIndex);
   1149   __ j(not_equal, &check_allocation_site);
   1150 
   1151   // If the weak cell is cleared, we have a new chance to become monomorphic.
   1152   __ JumpIfSmi(FieldOperand(ecx, WeakCell::kValueOffset), &initialize);
   1153   __ jmp(&megamorphic);
   1154 
   1155   __ bind(&check_allocation_site);
   1156   // If we came here, we need to see if we are the array function.
   1157   // If we didn't have a matching function, and we didn't find the megamorph
   1158   // sentinel, then we have in the slot either some other function or an
   1159   // AllocationSite.
   1160   __ CompareRoot(FieldOperand(ecx, 0), Heap::kAllocationSiteMapRootIndex);
   1161   __ j(not_equal, &miss);
   1162 
   1163   // Make sure the function is the Array() function
   1164   __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, ecx);
   1165   __ cmp(edi, ecx);
   1166   __ j(not_equal, &megamorphic);
   1167   __ jmp(&done_increment_count, Label::kFar);
   1168 
   1169   __ bind(&miss);
   1170 
   1171   // A monomorphic miss (i.e, here the cache is not uninitialized) goes
   1172   // megamorphic.
   1173   __ CompareRoot(ecx, Heap::kuninitialized_symbolRootIndex);
   1174   __ j(equal, &initialize);
   1175   // MegamorphicSentinel is an immortal immovable object (undefined) so no
   1176   // write-barrier is needed.
   1177   __ bind(&megamorphic);
   1178   __ mov(
   1179       FieldOperand(ebx, edx, times_half_pointer_size, FixedArray::kHeaderSize),
   1180       Immediate(TypeFeedbackVector::MegamorphicSentinel(isolate)));
   1181   __ jmp(&done, Label::kFar);
   1182 
   1183   // An uninitialized cache is patched with the function or sentinel to
   1184   // indicate the ElementsKind if function is the Array constructor.
   1185   __ bind(&initialize);
   1186   // Make sure the function is the Array() function
   1187   __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, ecx);
   1188   __ cmp(edi, ecx);
   1189   __ j(not_equal, &not_array_function);
   1190 
   1191   // The target function is the Array constructor,
   1192   // Create an AllocationSite if we don't already have it, store it in the
   1193   // slot.
   1194   CreateAllocationSiteStub create_stub(isolate);
   1195   CallStubInRecordCallTarget(masm, &create_stub);
   1196   __ jmp(&done_initialize_count);
   1197 
   1198   __ bind(&not_array_function);
   1199   CreateWeakCellStub weak_cell_stub(isolate);
   1200   CallStubInRecordCallTarget(masm, &weak_cell_stub);
   1201   __ bind(&done_initialize_count);
   1202 
   1203   // Initialize the call counter.
   1204   __ mov(FieldOperand(ebx, edx, times_half_pointer_size,
   1205                       FixedArray::kHeaderSize + kPointerSize),
   1206          Immediate(Smi::FromInt(1)));
   1207   __ jmp(&done);
   1208 
   1209   __ bind(&done_increment_count);
   1210   // Increment the call count for monomorphic function calls.
   1211   __ add(FieldOperand(ebx, edx, times_half_pointer_size,
   1212                       FixedArray::kHeaderSize + kPointerSize),
   1213          Immediate(Smi::FromInt(1)));
   1214 
   1215   __ bind(&done);
   1216 }
   1217 
   1218 
   1219 void CallConstructStub::Generate(MacroAssembler* masm) {
   1220   // eax : number of arguments
   1221   // ebx : feedback vector
   1222   // edx : slot in feedback vector (Smi, for RecordCallTarget)
   1223   // edi : constructor function
   1224 
   1225   Label non_function;
   1226   // Check that function is not a smi.
   1227   __ JumpIfSmi(edi, &non_function);
   1228   // Check that function is a JSFunction.
   1229   __ CmpObjectType(edi, JS_FUNCTION_TYPE, ecx);
   1230   __ j(not_equal, &non_function);
   1231 
   1232   GenerateRecordCallTarget(masm);
   1233 
   1234   Label feedback_register_initialized;
   1235   // Put the AllocationSite from the feedback vector into ebx, or undefined.
   1236   __ mov(ebx, FieldOperand(ebx, edx, times_half_pointer_size,
   1237                            FixedArray::kHeaderSize));
   1238   Handle<Map> allocation_site_map = isolate()->factory()->allocation_site_map();
   1239   __ cmp(FieldOperand(ebx, 0), Immediate(allocation_site_map));
   1240   __ j(equal, &feedback_register_initialized);
   1241   __ mov(ebx, isolate()->factory()->undefined_value());
   1242   __ bind(&feedback_register_initialized);
   1243 
   1244   __ AssertUndefinedOrAllocationSite(ebx);
   1245 
   1246   // Pass new target to construct stub.
   1247   __ mov(edx, edi);
   1248 
   1249   // Tail call to the function-specific construct stub (still in the caller
   1250   // context at this point).
   1251   __ mov(ecx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
   1252   __ mov(ecx, FieldOperand(ecx, SharedFunctionInfo::kConstructStubOffset));
   1253   __ lea(ecx, FieldOperand(ecx, Code::kHeaderSize));
   1254   __ jmp(ecx);
   1255 
   1256   __ bind(&non_function);
   1257   __ mov(edx, edi);
   1258   __ Jump(isolate()->builtins()->Construct(), RelocInfo::CODE_TARGET);
   1259 }
   1260 
   1261 
   1262 void CallICStub::HandleArrayCase(MacroAssembler* masm, Label* miss) {
   1263   // edi - function
   1264   // edx - slot id
   1265   // ebx - vector
   1266   __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, ecx);
   1267   __ cmp(edi, ecx);
   1268   __ j(not_equal, miss);
   1269 
   1270   __ mov(eax, arg_count());
   1271   // Reload ecx.
   1272   __ mov(ecx, FieldOperand(ebx, edx, times_half_pointer_size,
   1273                            FixedArray::kHeaderSize));
   1274 
   1275   // Increment the call count for monomorphic function calls.
   1276   __ add(FieldOperand(ebx, edx, times_half_pointer_size,
   1277                       FixedArray::kHeaderSize + kPointerSize),
   1278          Immediate(Smi::FromInt(1)));
   1279 
   1280   __ mov(ebx, ecx);
   1281   __ mov(edx, edi);
   1282   ArrayConstructorStub stub(masm->isolate(), arg_count());
   1283   __ TailCallStub(&stub);
   1284 
   1285   // Unreachable.
   1286 }
   1287 
   1288 
   1289 void CallICStub::Generate(MacroAssembler* masm) {
   1290   // edi - function
   1291   // edx - slot id
   1292   // ebx - vector
   1293   Isolate* isolate = masm->isolate();
   1294   Label extra_checks_or_miss, call, call_function;
   1295   int argc = arg_count();
   1296   ParameterCount actual(argc);
   1297 
   1298   // The checks. First, does edi match the recorded monomorphic target?
   1299   __ mov(ecx, FieldOperand(ebx, edx, times_half_pointer_size,
   1300                            FixedArray::kHeaderSize));
   1301 
   1302   // We don't know that we have a weak cell. We might have a private symbol
   1303   // or an AllocationSite, but the memory is safe to examine.
   1304   // AllocationSite::kTransitionInfoOffset - contains a Smi or pointer to
   1305   // FixedArray.
   1306   // WeakCell::kValueOffset - contains a JSFunction or Smi(0)
   1307   // Symbol::kHashFieldSlot - if the low bit is 1, then the hash is not
   1308   // computed, meaning that it can't appear to be a pointer. If the low bit is
   1309   // 0, then hash is computed, but the 0 bit prevents the field from appearing
   1310   // to be a pointer.
   1311   STATIC_ASSERT(WeakCell::kSize >= kPointerSize);
   1312   STATIC_ASSERT(AllocationSite::kTransitionInfoOffset ==
   1313                     WeakCell::kValueOffset &&
   1314                 WeakCell::kValueOffset == Symbol::kHashFieldSlot);
   1315 
   1316   __ cmp(edi, FieldOperand(ecx, WeakCell::kValueOffset));
   1317   __ j(not_equal, &extra_checks_or_miss);
   1318 
   1319   // The compare above could have been a SMI/SMI comparison. Guard against this
   1320   // convincing us that we have a monomorphic JSFunction.
   1321   __ JumpIfSmi(edi, &extra_checks_or_miss);
   1322 
   1323   // Increment the call count for monomorphic function calls.
   1324   __ add(FieldOperand(ebx, edx, times_half_pointer_size,
   1325                       FixedArray::kHeaderSize + kPointerSize),
   1326          Immediate(Smi::FromInt(1)));
   1327 
   1328   __ bind(&call_function);
   1329   __ Set(eax, argc);
   1330   __ Jump(masm->isolate()->builtins()->CallFunction(convert_mode(),
   1331                                                     tail_call_mode()),
   1332           RelocInfo::CODE_TARGET);
   1333 
   1334   __ bind(&extra_checks_or_miss);
   1335   Label uninitialized, miss, not_allocation_site;
   1336 
   1337   __ cmp(ecx, Immediate(TypeFeedbackVector::MegamorphicSentinel(isolate)));
   1338   __ j(equal, &call);
   1339 
   1340   // Check if we have an allocation site.
   1341   __ CompareRoot(FieldOperand(ecx, HeapObject::kMapOffset),
   1342                  Heap::kAllocationSiteMapRootIndex);
   1343   __ j(not_equal, &not_allocation_site);
   1344 
   1345   // We have an allocation site.
   1346   HandleArrayCase(masm, &miss);
   1347 
   1348   __ bind(&not_allocation_site);
   1349 
   1350   // The following cases attempt to handle MISS cases without going to the
   1351   // runtime.
   1352   if (FLAG_trace_ic) {
   1353     __ jmp(&miss);
   1354   }
   1355 
   1356   __ cmp(ecx, Immediate(TypeFeedbackVector::UninitializedSentinel(isolate)));
   1357   __ j(equal, &uninitialized);
   1358 
   1359   // We are going megamorphic. If the feedback is a JSFunction, it is fine
   1360   // to handle it here. More complex cases are dealt with in the runtime.
   1361   __ AssertNotSmi(ecx);
   1362   __ CmpObjectType(ecx, JS_FUNCTION_TYPE, ecx);
   1363   __ j(not_equal, &miss);
   1364   __ mov(
   1365       FieldOperand(ebx, edx, times_half_pointer_size, FixedArray::kHeaderSize),
   1366       Immediate(TypeFeedbackVector::MegamorphicSentinel(isolate)));
   1367 
   1368   __ bind(&call);
   1369   __ Set(eax, argc);
   1370   __ Jump(masm->isolate()->builtins()->Call(convert_mode(), tail_call_mode()),
   1371           RelocInfo::CODE_TARGET);
   1372 
   1373   __ bind(&uninitialized);
   1374 
   1375   // We are going monomorphic, provided we actually have a JSFunction.
   1376   __ JumpIfSmi(edi, &miss);
   1377 
   1378   // Goto miss case if we do not have a function.
   1379   __ CmpObjectType(edi, JS_FUNCTION_TYPE, ecx);
   1380   __ j(not_equal, &miss);
   1381 
   1382   // Make sure the function is not the Array() function, which requires special
   1383   // behavior on MISS.
   1384   __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, ecx);
   1385   __ cmp(edi, ecx);
   1386   __ j(equal, &miss);
   1387 
   1388   // Make sure the function belongs to the same native context.
   1389   __ mov(ecx, FieldOperand(edi, JSFunction::kContextOffset));
   1390   __ mov(ecx, ContextOperand(ecx, Context::NATIVE_CONTEXT_INDEX));
   1391   __ cmp(ecx, NativeContextOperand());
   1392   __ j(not_equal, &miss);
   1393 
   1394   // Initialize the call counter.
   1395   __ mov(FieldOperand(ebx, edx, times_half_pointer_size,
   1396                       FixedArray::kHeaderSize + kPointerSize),
   1397          Immediate(Smi::FromInt(1)));
   1398 
   1399   // Store the function. Use a stub since we need a frame for allocation.
   1400   // ebx - vector
   1401   // edx - slot
   1402   // edi - function
   1403   {
   1404     FrameScope scope(masm, StackFrame::INTERNAL);
   1405     CreateWeakCellStub create_stub(isolate);
   1406     __ push(edi);
   1407     __ CallStub(&create_stub);
   1408     __ pop(edi);
   1409   }
   1410 
   1411   __ jmp(&call_function);
   1412 
   1413   // We are here because tracing is on or we encountered a MISS case we can't
   1414   // handle here.
   1415   __ bind(&miss);
   1416   GenerateMiss(masm);
   1417 
   1418   __ jmp(&call);
   1419 
   1420   // Unreachable
   1421   __ int3();
   1422 }
   1423 
   1424 
   1425 void CallICStub::GenerateMiss(MacroAssembler* masm) {
   1426   FrameScope scope(masm, StackFrame::INTERNAL);
   1427 
   1428   // Push the function and feedback info.
   1429   __ push(edi);
   1430   __ push(ebx);
   1431   __ push(edx);
   1432 
   1433   // Call the entry.
   1434   __ CallRuntime(Runtime::kCallIC_Miss);
   1435 
   1436   // Move result to edi and exit the internal frame.
   1437   __ mov(edi, eax);
   1438 }
   1439 
   1440 
   1441 bool CEntryStub::NeedsImmovableCode() {
   1442   return false;
   1443 }
   1444 
   1445 
   1446 void CodeStub::GenerateStubsAheadOfTime(Isolate* isolate) {
   1447   CEntryStub::GenerateAheadOfTime(isolate);
   1448   StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(isolate);
   1449   StubFailureTrampolineStub::GenerateAheadOfTime(isolate);
   1450   // It is important that the store buffer overflow stubs are generated first.
   1451   CommonArrayConstructorStub::GenerateStubsAheadOfTime(isolate);
   1452   CreateAllocationSiteStub::GenerateAheadOfTime(isolate);
   1453   CreateWeakCellStub::GenerateAheadOfTime(isolate);
   1454   BinaryOpICStub::GenerateAheadOfTime(isolate);
   1455   BinaryOpICWithAllocationSiteStub::GenerateAheadOfTime(isolate);
   1456   StoreFastElementStub::GenerateAheadOfTime(isolate);
   1457   TypeofStub::GenerateAheadOfTime(isolate);
   1458 }
   1459 
   1460 
   1461 void CodeStub::GenerateFPStubs(Isolate* isolate) {
   1462   CEntryStub save_doubles(isolate, 1, kSaveFPRegs);
   1463   // Stubs might already be in the snapshot, detect that and don't regenerate,
   1464   // which would lead to code stub initialization state being messed up.
   1465   Code* save_doubles_code;
   1466   if (!save_doubles.FindCodeInCache(&save_doubles_code)) {
   1467     save_doubles_code = *(save_doubles.GetCode());
   1468   }
   1469   isolate->set_fp_stubs_generated(true);
   1470 }
   1471 
   1472 
   1473 void CEntryStub::GenerateAheadOfTime(Isolate* isolate) {
   1474   CEntryStub stub(isolate, 1, kDontSaveFPRegs);
   1475   stub.GetCode();
   1476 }
   1477 
   1478 
   1479 void CEntryStub::Generate(MacroAssembler* masm) {
   1480   // eax: number of arguments including receiver
   1481   // ebx: pointer to C function  (C callee-saved)
   1482   // ebp: frame pointer  (restored after C call)
   1483   // esp: stack pointer  (restored after C call)
   1484   // esi: current context (C callee-saved)
   1485   // edi: JS function of the caller (C callee-saved)
   1486   //
   1487   // If argv_in_register():
   1488   // ecx: pointer to the first argument
   1489 
   1490   ProfileEntryHookStub::MaybeCallEntryHook(masm);
   1491 
   1492   // Reserve space on the stack for the three arguments passed to the call. If
   1493   // result size is greater than can be returned in registers, also reserve
   1494   // space for the hidden argument for the result location, and space for the
   1495   // result itself.
   1496   int arg_stack_space = result_size() < 3 ? 3 : 4 + result_size();
   1497 
   1498   // Enter the exit frame that transitions from JavaScript to C++.
   1499   if (argv_in_register()) {
   1500     DCHECK(!save_doubles());
   1501     __ EnterApiExitFrame(arg_stack_space);
   1502 
   1503     // Move argc and argv into the correct registers.
   1504     __ mov(esi, ecx);
   1505     __ mov(edi, eax);
   1506   } else {
   1507     __ EnterExitFrame(arg_stack_space, save_doubles());
   1508   }
   1509 
   1510   // ebx: pointer to C function  (C callee-saved)
   1511   // ebp: frame pointer  (restored after C call)
   1512   // esp: stack pointer  (restored after C call)
   1513   // edi: number of arguments including receiver  (C callee-saved)
   1514   // esi: pointer to the first argument (C callee-saved)
   1515 
   1516   // Result returned in eax, or eax+edx if result size is 2.
   1517 
   1518   // Check stack alignment.
   1519   if (FLAG_debug_code) {
   1520     __ CheckStackAlignment();
   1521   }
   1522   // Call C function.
   1523   if (result_size() <= 2) {
   1524     __ mov(Operand(esp, 0 * kPointerSize), edi);  // argc.
   1525     __ mov(Operand(esp, 1 * kPointerSize), esi);  // argv.
   1526     __ mov(Operand(esp, 2 * kPointerSize),
   1527            Immediate(ExternalReference::isolate_address(isolate())));
   1528   } else {
   1529     DCHECK_EQ(3, result_size());
   1530     // Pass a pointer to the result location as the first argument.
   1531     __ lea(eax, Operand(esp, 4 * kPointerSize));
   1532     __ mov(Operand(esp, 0 * kPointerSize), eax);
   1533     __ mov(Operand(esp, 1 * kPointerSize), edi);  // argc.
   1534     __ mov(Operand(esp, 2 * kPointerSize), esi);  // argv.
   1535     __ mov(Operand(esp, 3 * kPointerSize),
   1536            Immediate(ExternalReference::isolate_address(isolate())));
   1537   }
   1538   __ call(ebx);
   1539 
   1540   if (result_size() > 2) {
   1541     DCHECK_EQ(3, result_size());
   1542 #ifndef _WIN32
   1543     // Restore the "hidden" argument on the stack which was popped by caller.
   1544     __ sub(esp, Immediate(kPointerSize));
   1545 #endif
   1546     // Read result values stored on stack. Result is stored above the arguments.
   1547     __ mov(kReturnRegister0, Operand(esp, 4 * kPointerSize));
   1548     __ mov(kReturnRegister1, Operand(esp, 5 * kPointerSize));
   1549     __ mov(kReturnRegister2, Operand(esp, 6 * kPointerSize));
   1550   }
   1551   // Result is in eax, edx:eax or edi:edx:eax - do not destroy these registers!
   1552 
   1553   // Check result for exception sentinel.
   1554   Label exception_returned;
   1555   __ cmp(eax, isolate()->factory()->exception());
   1556   __ j(equal, &exception_returned);
   1557 
   1558   // Check that there is no pending exception, otherwise we
   1559   // should have returned the exception sentinel.
   1560   if (FLAG_debug_code) {
   1561     __ push(edx);
   1562     __ mov(edx, Immediate(isolate()->factory()->the_hole_value()));
   1563     Label okay;
   1564     ExternalReference pending_exception_address(
   1565         Isolate::kPendingExceptionAddress, isolate());
   1566     __ cmp(edx, Operand::StaticVariable(pending_exception_address));
   1567     // Cannot use check here as it attempts to generate call into runtime.
   1568     __ j(equal, &okay, Label::kNear);
   1569     __ int3();
   1570     __ bind(&okay);
   1571     __ pop(edx);
   1572   }
   1573 
   1574   // Exit the JavaScript to C++ exit frame.
   1575   __ LeaveExitFrame(save_doubles(), !argv_in_register());
   1576   __ ret(0);
   1577 
   1578   // Handling of exception.
   1579   __ bind(&exception_returned);
   1580 
   1581   ExternalReference pending_handler_context_address(
   1582       Isolate::kPendingHandlerContextAddress, isolate());
   1583   ExternalReference pending_handler_code_address(
   1584       Isolate::kPendingHandlerCodeAddress, isolate());
   1585   ExternalReference pending_handler_offset_address(
   1586       Isolate::kPendingHandlerOffsetAddress, isolate());
   1587   ExternalReference pending_handler_fp_address(
   1588       Isolate::kPendingHandlerFPAddress, isolate());
   1589   ExternalReference pending_handler_sp_address(
   1590       Isolate::kPendingHandlerSPAddress, isolate());
   1591 
   1592   // Ask the runtime for help to determine the handler. This will set eax to
   1593   // contain the current pending exception, don't clobber it.
   1594   ExternalReference find_handler(Runtime::kUnwindAndFindExceptionHandler,
   1595                                  isolate());
   1596   {
   1597     FrameScope scope(masm, StackFrame::MANUAL);
   1598     __ PrepareCallCFunction(3, eax);
   1599     __ mov(Operand(esp, 0 * kPointerSize), Immediate(0));  // argc.
   1600     __ mov(Operand(esp, 1 * kPointerSize), Immediate(0));  // argv.
   1601     __ mov(Operand(esp, 2 * kPointerSize),
   1602            Immediate(ExternalReference::isolate_address(isolate())));
   1603     __ CallCFunction(find_handler, 3);
   1604   }
   1605 
   1606   // Retrieve the handler context, SP and FP.
   1607   __ mov(esi, Operand::StaticVariable(pending_handler_context_address));
   1608   __ mov(esp, Operand::StaticVariable(pending_handler_sp_address));
   1609   __ mov(ebp, Operand::StaticVariable(pending_handler_fp_address));
   1610 
   1611   // If the handler is a JS frame, restore the context to the frame. Note that
   1612   // the context will be set to (esi == 0) for non-JS frames.
   1613   Label skip;
   1614   __ test(esi, esi);
   1615   __ j(zero, &skip, Label::kNear);
   1616   __ mov(Operand(ebp, StandardFrameConstants::kContextOffset), esi);
   1617   __ bind(&skip);
   1618 
   1619   // Compute the handler entry address and jump to it.
   1620   __ mov(edi, Operand::StaticVariable(pending_handler_code_address));
   1621   __ mov(edx, Operand::StaticVariable(pending_handler_offset_address));
   1622   // Check whether it's a turbofanned exception handler code before jump to it.
   1623   Label not_turbo;
   1624   __ push(eax);
   1625   __ mov(eax, Operand(edi, Code::kKindSpecificFlags1Offset - kHeapObjectTag));
   1626   __ and_(eax, Immediate(1 << Code::kIsTurbofannedBit));
   1627   __ j(zero, &not_turbo);
   1628   __ fninit();
   1629   __ fld1();
   1630   __ bind(&not_turbo);
   1631   __ pop(eax);
   1632   __ lea(edi, FieldOperand(edi, edx, times_1, Code::kHeaderSize));
   1633   __ jmp(edi);
   1634 }
   1635 
   1636 
   1637 void JSEntryStub::Generate(MacroAssembler* masm) {
   1638   Label invoke, handler_entry, exit;
   1639   Label not_outermost_js, not_outermost_js_2;
   1640 
   1641   ProfileEntryHookStub::MaybeCallEntryHook(masm);
   1642 
   1643   // Set up frame.
   1644   __ push(ebp);
   1645   __ mov(ebp, esp);
   1646 
   1647   // Push marker in two places.
   1648   int marker = type();
   1649   __ push(Immediate(Smi::FromInt(marker)));  // marker
   1650   ExternalReference context_address(Isolate::kContextAddress, isolate());
   1651   __ push(Operand::StaticVariable(context_address));  // context
   1652   // Save callee-saved registers (C calling conventions).
   1653   __ push(edi);
   1654   __ push(esi);
   1655   __ push(ebx);
   1656 
   1657   // Save copies of the top frame descriptor on the stack.
   1658   ExternalReference c_entry_fp(Isolate::kCEntryFPAddress, isolate());
   1659   __ push(Operand::StaticVariable(c_entry_fp));
   1660 
   1661   // If this is the outermost JS call, set js_entry_sp value.
   1662   ExternalReference js_entry_sp(Isolate::kJSEntrySPAddress, isolate());
   1663   __ cmp(Operand::StaticVariable(js_entry_sp), Immediate(0));
   1664   __ j(not_equal, &not_outermost_js, Label::kNear);
   1665   __ mov(Operand::StaticVariable(js_entry_sp), ebp);
   1666   __ push(Immediate(Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME)));
   1667   __ jmp(&invoke, Label::kNear);
   1668   __ bind(&not_outermost_js);
   1669   __ push(Immediate(Smi::FromInt(StackFrame::INNER_JSENTRY_FRAME)));
   1670 
   1671   // Jump to a faked try block that does the invoke, with a faked catch
   1672   // block that sets the pending exception.
   1673   __ jmp(&invoke);
   1674   __ bind(&handler_entry);
   1675   handler_offset_ = handler_entry.pos();
   1676   // Caught exception: Store result (exception) in the pending exception
   1677   // field in the JSEnv and return a failure sentinel.
   1678   ExternalReference pending_exception(Isolate::kPendingExceptionAddress,
   1679                                       isolate());
   1680   __ mov(Operand::StaticVariable(pending_exception), eax);
   1681   __ mov(eax, Immediate(isolate()->factory()->exception()));
   1682   __ jmp(&exit);
   1683 
   1684   // Invoke: Link this frame into the handler chain.
   1685   __ bind(&invoke);
   1686   __ PushStackHandler();
   1687 
   1688   // Clear any pending exceptions.
   1689   __ mov(edx, Immediate(isolate()->factory()->the_hole_value()));
   1690   __ mov(Operand::StaticVariable(pending_exception), edx);
   1691 
   1692   // Fake a receiver (NULL).
   1693   __ push(Immediate(0));  // receiver
   1694 
   1695   // Invoke the function by calling through JS entry trampoline builtin and
   1696   // pop the faked function when we return. Notice that we cannot store a
   1697   // reference to the trampoline code directly in this stub, because the
   1698   // builtin stubs may not have been generated yet.
   1699   if (type() == StackFrame::ENTRY_CONSTRUCT) {
   1700     ExternalReference construct_entry(Builtins::kJSConstructEntryTrampoline,
   1701                                       isolate());
   1702     __ mov(edx, Immediate(construct_entry));
   1703   } else {
   1704     ExternalReference entry(Builtins::kJSEntryTrampoline, isolate());
   1705     __ mov(edx, Immediate(entry));
   1706   }
   1707   __ mov(edx, Operand(edx, 0));  // deref address
   1708   __ lea(edx, FieldOperand(edx, Code::kHeaderSize));
   1709   __ call(edx);
   1710 
   1711   // Unlink this frame from the handler chain.
   1712   __ PopStackHandler();
   1713 
   1714   __ bind(&exit);
   1715   // Check if the current stack frame is marked as the outermost JS frame.
   1716   __ pop(ebx);
   1717   __ cmp(ebx, Immediate(Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME)));
   1718   __ j(not_equal, &not_outermost_js_2);
   1719   __ mov(Operand::StaticVariable(js_entry_sp), Immediate(0));
   1720   __ bind(&not_outermost_js_2);
   1721 
   1722   // Restore the top frame descriptor from the stack.
   1723   __ pop(Operand::StaticVariable(ExternalReference(
   1724       Isolate::kCEntryFPAddress, isolate())));
   1725 
   1726   // Restore callee-saved registers (C calling conventions).
   1727   __ pop(ebx);
   1728   __ pop(esi);
   1729   __ pop(edi);
   1730   __ add(esp, Immediate(2 * kPointerSize));  // remove markers
   1731 
   1732   // Restore frame pointer and return.
   1733   __ pop(ebp);
   1734   __ ret(0);
   1735 }
   1736 
   1737 
   1738 // -------------------------------------------------------------------------
   1739 // StringCharCodeAtGenerator
   1740 
   1741 void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) {
   1742   // If the receiver is a smi trigger the non-string case.
   1743   if (check_mode_ == RECEIVER_IS_UNKNOWN) {
   1744     __ JumpIfSmi(object_, receiver_not_string_);
   1745 
   1746     // Fetch the instance type of the receiver into result register.
   1747     __ mov(result_, FieldOperand(object_, HeapObject::kMapOffset));
   1748     __ movzx_b(result_, FieldOperand(result_, Map::kInstanceTypeOffset));
   1749     // If the receiver is not a string trigger the non-string case.
   1750     __ test(result_, Immediate(kIsNotStringMask));
   1751     __ j(not_zero, receiver_not_string_);
   1752   }
   1753 
   1754   // If the index is non-smi trigger the non-smi case.
   1755   __ JumpIfNotSmi(index_, &index_not_smi_);
   1756   __ bind(&got_smi_index_);
   1757 
   1758   // Check for index out of range.
   1759   __ cmp(index_, FieldOperand(object_, String::kLengthOffset));
   1760   __ j(above_equal, index_out_of_range_);
   1761 
   1762   __ SmiUntag(index_);
   1763 
   1764   Factory* factory = masm->isolate()->factory();
   1765   StringCharLoadGenerator::Generate(
   1766       masm, factory, object_, index_, result_, &call_runtime_);
   1767 
   1768   __ SmiTag(result_);
   1769   __ bind(&exit_);
   1770 }
   1771 
   1772 
   1773 void StringCharCodeAtGenerator::GenerateSlow(
   1774     MacroAssembler* masm, EmbedMode embed_mode,
   1775     const RuntimeCallHelper& call_helper) {
   1776   __ Abort(kUnexpectedFallthroughToCharCodeAtSlowCase);
   1777 
   1778   // Index is not a smi.
   1779   __ bind(&index_not_smi_);
   1780   // If index is a heap number, try converting it to an integer.
   1781   __ CheckMap(index_,
   1782               masm->isolate()->factory()->heap_number_map(),
   1783               index_not_number_,
   1784               DONT_DO_SMI_CHECK);
   1785   call_helper.BeforeCall(masm);
   1786   if (embed_mode == PART_OF_IC_HANDLER) {
   1787     __ push(LoadWithVectorDescriptor::VectorRegister());
   1788     __ push(LoadDescriptor::SlotRegister());
   1789   }
   1790   __ push(object_);
   1791   __ push(index_);  // Consumed by runtime conversion function.
   1792   __ CallRuntime(Runtime::kNumberToSmi);
   1793   if (!index_.is(eax)) {
   1794     // Save the conversion result before the pop instructions below
   1795     // have a chance to overwrite it.
   1796     __ mov(index_, eax);
   1797   }
   1798   __ pop(object_);
   1799   if (embed_mode == PART_OF_IC_HANDLER) {
   1800     __ pop(LoadDescriptor::SlotRegister());
   1801     __ pop(LoadWithVectorDescriptor::VectorRegister());
   1802   }
   1803   // Reload the instance type.
   1804   __ mov(result_, FieldOperand(object_, HeapObject::kMapOffset));
   1805   __ movzx_b(result_, FieldOperand(result_, Map::kInstanceTypeOffset));
   1806   call_helper.AfterCall(masm);
   1807   // If index is still not a smi, it must be out of range.
   1808   STATIC_ASSERT(kSmiTag == 0);
   1809   __ JumpIfNotSmi(index_, index_out_of_range_);
   1810   // Otherwise, return to the fast path.
   1811   __ jmp(&got_smi_index_);
   1812 
   1813   // Call runtime. We get here when the receiver is a string and the
   1814   // index is a number, but the code of getting the actual character
   1815   // is too complex (e.g., when the string needs to be flattened).
   1816   __ bind(&call_runtime_);
   1817   call_helper.BeforeCall(masm);
   1818   __ push(object_);
   1819   __ SmiTag(index_);
   1820   __ push(index_);
   1821   __ CallRuntime(Runtime::kStringCharCodeAtRT);
   1822   if (!result_.is(eax)) {
   1823     __ mov(result_, eax);
   1824   }
   1825   call_helper.AfterCall(masm);
   1826   __ jmp(&exit_);
   1827 
   1828   __ Abort(kUnexpectedFallthroughFromCharCodeAtSlowCase);
   1829 }
   1830 
   1831 
   1832 // -------------------------------------------------------------------------
   1833 // StringCharFromCodeGenerator
   1834 
   1835 void StringCharFromCodeGenerator::GenerateFast(MacroAssembler* masm) {
   1836   // Fast case of Heap::LookupSingleCharacterStringFromCode.
   1837   STATIC_ASSERT(kSmiTag == 0);
   1838   STATIC_ASSERT(kSmiShiftSize == 0);
   1839   DCHECK(base::bits::IsPowerOfTwo32(String::kMaxOneByteCharCodeU + 1));
   1840   __ test(code_, Immediate(kSmiTagMask |
   1841                            ((~String::kMaxOneByteCharCodeU) << kSmiTagSize)));
   1842   __ j(not_zero, &slow_case_);
   1843 
   1844   Factory* factory = masm->isolate()->factory();
   1845   __ Move(result_, Immediate(factory->single_character_string_cache()));
   1846   STATIC_ASSERT(kSmiTag == 0);
   1847   STATIC_ASSERT(kSmiTagSize == 1);
   1848   STATIC_ASSERT(kSmiShiftSize == 0);
   1849   // At this point code register contains smi tagged one byte char code.
   1850   __ mov(result_, FieldOperand(result_,
   1851                                code_, times_half_pointer_size,
   1852                                FixedArray::kHeaderSize));
   1853   __ cmp(result_, factory->undefined_value());
   1854   __ j(equal, &slow_case_);
   1855   __ bind(&exit_);
   1856 }
   1857 
   1858 
   1859 void StringCharFromCodeGenerator::GenerateSlow(
   1860     MacroAssembler* masm,
   1861     const RuntimeCallHelper& call_helper) {
   1862   __ Abort(kUnexpectedFallthroughToCharFromCodeSlowCase);
   1863 
   1864   __ bind(&slow_case_);
   1865   call_helper.BeforeCall(masm);
   1866   __ push(code_);
   1867   __ CallRuntime(Runtime::kStringCharFromCode);
   1868   if (!result_.is(eax)) {
   1869     __ mov(result_, eax);
   1870   }
   1871   call_helper.AfterCall(masm);
   1872   __ jmp(&exit_);
   1873 
   1874   __ Abort(kUnexpectedFallthroughFromCharFromCodeSlowCase);
   1875 }
   1876 
   1877 
   1878 void StringHelper::GenerateCopyCharacters(MacroAssembler* masm,
   1879                                           Register dest,
   1880                                           Register src,
   1881                                           Register count,
   1882                                           Register scratch,
   1883                                           String::Encoding encoding) {
   1884   DCHECK(!scratch.is(dest));
   1885   DCHECK(!scratch.is(src));
   1886   DCHECK(!scratch.is(count));
   1887 
   1888   // Nothing to do for zero characters.
   1889   Label done;
   1890   __ test(count, count);
   1891   __ j(zero, &done);
   1892 
   1893   // Make count the number of bytes to copy.
   1894   if (encoding == String::TWO_BYTE_ENCODING) {
   1895     __ shl(count, 1);
   1896   }
   1897 
   1898   Label loop;
   1899   __ bind(&loop);
   1900   __ mov_b(scratch, Operand(src, 0));
   1901   __ mov_b(Operand(dest, 0), scratch);
   1902   __ inc(src);
   1903   __ inc(dest);
   1904   __ dec(count);
   1905   __ j(not_zero, &loop);
   1906 
   1907   __ bind(&done);
   1908 }
   1909 
   1910 
   1911 void SubStringStub::Generate(MacroAssembler* masm) {
   1912   Label runtime;
   1913 
   1914   // Stack frame on entry.
   1915   //  esp[0]: return address
   1916   //  esp[4]: to
   1917   //  esp[8]: from
   1918   //  esp[12]: string
   1919 
   1920   // Make sure first argument is a string.
   1921   __ mov(eax, Operand(esp, 3 * kPointerSize));
   1922   STATIC_ASSERT(kSmiTag == 0);
   1923   __ JumpIfSmi(eax, &runtime);
   1924   Condition is_string = masm->IsObjectStringType(eax, ebx, ebx);
   1925   __ j(NegateCondition(is_string), &runtime);
   1926 
   1927   // eax: string
   1928   // ebx: instance type
   1929 
   1930   // Calculate length of sub string using the smi values.
   1931   __ mov(ecx, Operand(esp, 1 * kPointerSize));  // To index.
   1932   __ JumpIfNotSmi(ecx, &runtime);
   1933   __ mov(edx, Operand(esp, 2 * kPointerSize));  // From index.
   1934   __ JumpIfNotSmi(edx, &runtime);
   1935   __ sub(ecx, edx);
   1936   __ cmp(ecx, FieldOperand(eax, String::kLengthOffset));
   1937   Label not_original_string;
   1938   // Shorter than original string's length: an actual substring.
   1939   __ j(below, &not_original_string, Label::kNear);
   1940   // Longer than original string's length or negative: unsafe arguments.
   1941   __ j(above, &runtime);
   1942   // Return original string.
   1943   Counters* counters = isolate()->counters();
   1944   __ IncrementCounter(counters->sub_string_native(), 1);
   1945   __ ret(3 * kPointerSize);
   1946   __ bind(&not_original_string);
   1947 
   1948   Label single_char;
   1949   __ cmp(ecx, Immediate(Smi::FromInt(1)));
   1950   __ j(equal, &single_char);
   1951 
   1952   // eax: string
   1953   // ebx: instance type
   1954   // ecx: sub string length (smi)
   1955   // edx: from index (smi)
   1956   // Deal with different string types: update the index if necessary
   1957   // and put the underlying string into edi.
   1958   Label underlying_unpacked, sliced_string, seq_or_external_string;
   1959   // If the string is not indirect, it can only be sequential or external.
   1960   STATIC_ASSERT(kIsIndirectStringMask == (kSlicedStringTag & kConsStringTag));
   1961   STATIC_ASSERT(kIsIndirectStringMask != 0);
   1962   __ test(ebx, Immediate(kIsIndirectStringMask));
   1963   __ j(zero, &seq_or_external_string, Label::kNear);
   1964 
   1965   Factory* factory = isolate()->factory();
   1966   __ test(ebx, Immediate(kSlicedNotConsMask));
   1967   __ j(not_zero, &sliced_string, Label::kNear);
   1968   // Cons string.  Check whether it is flat, then fetch first part.
   1969   // Flat cons strings have an empty second part.
   1970   __ cmp(FieldOperand(eax, ConsString::kSecondOffset),
   1971          factory->empty_string());
   1972   __ j(not_equal, &runtime);
   1973   __ mov(edi, FieldOperand(eax, ConsString::kFirstOffset));
   1974   // Update instance type.
   1975   __ mov(ebx, FieldOperand(edi, HeapObject::kMapOffset));
   1976   __ movzx_b(ebx, FieldOperand(ebx, Map::kInstanceTypeOffset));
   1977   __ jmp(&underlying_unpacked, Label::kNear);
   1978 
   1979   __ bind(&sliced_string);
   1980   // Sliced string.  Fetch parent and adjust start index by offset.
   1981   __ add(edx, FieldOperand(eax, SlicedString::kOffsetOffset));
   1982   __ mov(edi, FieldOperand(eax, SlicedString::kParentOffset));
   1983   // Update instance type.
   1984   __ mov(ebx, FieldOperand(edi, HeapObject::kMapOffset));
   1985   __ movzx_b(ebx, FieldOperand(ebx, Map::kInstanceTypeOffset));
   1986   __ jmp(&underlying_unpacked, Label::kNear);
   1987 
   1988   __ bind(&seq_or_external_string);
   1989   // Sequential or external string.  Just move string to the expected register.
   1990   __ mov(edi, eax);
   1991 
   1992   __ bind(&underlying_unpacked);
   1993 
   1994   if (FLAG_string_slices) {
   1995     Label copy_routine;
   1996     // edi: underlying subject string
   1997     // ebx: instance type of underlying subject string
   1998     // edx: adjusted start index (smi)
   1999     // ecx: length (smi)
   2000     __ cmp(ecx, Immediate(Smi::FromInt(SlicedString::kMinLength)));
   2001     // Short slice.  Copy instead of slicing.
   2002     __ j(less, &copy_routine);
   2003     // Allocate new sliced string.  At this point we do not reload the instance
   2004     // type including the string encoding because we simply rely on the info
   2005     // provided by the original string.  It does not matter if the original
   2006     // string's encoding is wrong because we always have to recheck encoding of
   2007     // the newly created string's parent anyways due to externalized strings.
   2008     Label two_byte_slice, set_slice_header;
   2009     STATIC_ASSERT((kStringEncodingMask & kOneByteStringTag) != 0);
   2010     STATIC_ASSERT((kStringEncodingMask & kTwoByteStringTag) == 0);
   2011     __ test(ebx, Immediate(kStringEncodingMask));
   2012     __ j(zero, &two_byte_slice, Label::kNear);
   2013     __ AllocateOneByteSlicedString(eax, ebx, no_reg, &runtime);
   2014     __ jmp(&set_slice_header, Label::kNear);
   2015     __ bind(&two_byte_slice);
   2016     __ AllocateTwoByteSlicedString(eax, ebx, no_reg, &runtime);
   2017     __ bind(&set_slice_header);
   2018     __ mov(FieldOperand(eax, SlicedString::kLengthOffset), ecx);
   2019     __ mov(FieldOperand(eax, SlicedString::kHashFieldOffset),
   2020            Immediate(String::kEmptyHashField));
   2021     __ mov(FieldOperand(eax, SlicedString::kParentOffset), edi);
   2022     __ mov(FieldOperand(eax, SlicedString::kOffsetOffset), edx);
   2023     __ IncrementCounter(counters->sub_string_native(), 1);
   2024     __ ret(3 * kPointerSize);
   2025 
   2026     __ bind(&copy_routine);
   2027   }
   2028 
   2029   // edi: underlying subject string
   2030   // ebx: instance type of underlying subject string
   2031   // edx: adjusted start index (smi)
   2032   // ecx: length (smi)
   2033   // The subject string can only be external or sequential string of either
   2034   // encoding at this point.
   2035   Label two_byte_sequential, runtime_drop_two, sequential_string;
   2036   STATIC_ASSERT(kExternalStringTag != 0);
   2037   STATIC_ASSERT(kSeqStringTag == 0);
   2038   __ test_b(ebx, Immediate(kExternalStringTag));
   2039   __ j(zero, &sequential_string);
   2040 
   2041   // Handle external string.
   2042   // Rule out short external strings.
   2043   STATIC_ASSERT(kShortExternalStringTag != 0);
   2044   __ test_b(ebx, Immediate(kShortExternalStringMask));
   2045   __ j(not_zero, &runtime);
   2046   __ mov(edi, FieldOperand(edi, ExternalString::kResourceDataOffset));
   2047   // Move the pointer so that offset-wise, it looks like a sequential string.
   2048   STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize);
   2049   __ sub(edi, Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
   2050 
   2051   __ bind(&sequential_string);
   2052   // Stash away (adjusted) index and (underlying) string.
   2053   __ push(edx);
   2054   __ push(edi);
   2055   __ SmiUntag(ecx);
   2056   STATIC_ASSERT((kOneByteStringTag & kStringEncodingMask) != 0);
   2057   __ test_b(ebx, Immediate(kStringEncodingMask));
   2058   __ j(zero, &two_byte_sequential);
   2059 
   2060   // Sequential one byte string.  Allocate the result.
   2061   __ AllocateOneByteString(eax, ecx, ebx, edx, edi, &runtime_drop_two);
   2062 
   2063   // eax: result string
   2064   // ecx: result string length
   2065   // Locate first character of result.
   2066   __ mov(edi, eax);
   2067   __ add(edi, Immediate(SeqOneByteString::kHeaderSize - kHeapObjectTag));
   2068   // Load string argument and locate character of sub string start.
   2069   __ pop(edx);
   2070   __ pop(ebx);
   2071   __ SmiUntag(ebx);
   2072   __ lea(edx, FieldOperand(edx, ebx, times_1, SeqOneByteString::kHeaderSize));
   2073 
   2074   // eax: result string
   2075   // ecx: result length
   2076   // edi: first character of result
   2077   // edx: character of sub string start
   2078   StringHelper::GenerateCopyCharacters(
   2079       masm, edi, edx, ecx, ebx, String::ONE_BYTE_ENCODING);
   2080   __ IncrementCounter(counters->sub_string_native(), 1);
   2081   __ ret(3 * kPointerSize);
   2082 
   2083   __ bind(&two_byte_sequential);
   2084   // Sequential two-byte string.  Allocate the result.
   2085   __ AllocateTwoByteString(eax, ecx, ebx, edx, edi, &runtime_drop_two);
   2086 
   2087   // eax: result string
   2088   // ecx: result string length
   2089   // Locate first character of result.
   2090   __ mov(edi, eax);
   2091   __ add(edi,
   2092          Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
   2093   // Load string argument and locate character of sub string start.
   2094   __ pop(edx);
   2095   __ pop(ebx);
   2096   // As from is a smi it is 2 times the value which matches the size of a two
   2097   // byte character.
   2098   STATIC_ASSERT(kSmiTag == 0);
   2099   STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
   2100   __ lea(edx, FieldOperand(edx, ebx, times_1, SeqTwoByteString::kHeaderSize));
   2101 
   2102   // eax: result string
   2103   // ecx: result length
   2104   // edi: first character of result
   2105   // edx: character of sub string start
   2106   StringHelper::GenerateCopyCharacters(
   2107       masm, edi, edx, ecx, ebx, String::TWO_BYTE_ENCODING);
   2108   __ IncrementCounter(counters->sub_string_native(), 1);
   2109   __ ret(3 * kPointerSize);
   2110 
   2111   // Drop pushed values on the stack before tail call.
   2112   __ bind(&runtime_drop_two);
   2113   __ Drop(2);
   2114 
   2115   // Just jump to runtime to create the sub string.
   2116   __ bind(&runtime);
   2117   __ TailCallRuntime(Runtime::kSubString);
   2118 
   2119   __ bind(&single_char);
   2120   // eax: string
   2121   // ebx: instance type
   2122   // ecx: sub string length (smi)
   2123   // edx: from index (smi)
   2124   StringCharAtGenerator generator(eax, edx, ecx, eax, &runtime, &runtime,
   2125                                   &runtime, RECEIVER_IS_STRING);
   2126   generator.GenerateFast(masm);
   2127   __ ret(3 * kPointerSize);
   2128   generator.SkipSlow(masm, &runtime);
   2129 }
   2130 
   2131 void ToStringStub::Generate(MacroAssembler* masm) {
   2132   // The ToString stub takes one argument in eax.
   2133   Label is_number;
   2134   __ JumpIfSmi(eax, &is_number, Label::kNear);
   2135 
   2136   Label not_string;
   2137   __ CmpObjectType(eax, FIRST_NONSTRING_TYPE, edi);
   2138   // eax: receiver
   2139   // edi: receiver map
   2140   __ j(above_equal, &not_string, Label::kNear);
   2141   __ Ret();
   2142   __ bind(&not_string);
   2143 
   2144   Label not_heap_number;
   2145   __ CompareMap(eax, masm->isolate()->factory()->heap_number_map());
   2146   __ j(not_equal, &not_heap_number, Label::kNear);
   2147   __ bind(&is_number);
   2148   NumberToStringStub stub(isolate());
   2149   __ TailCallStub(&stub);
   2150   __ bind(&not_heap_number);
   2151 
   2152   Label not_oddball;
   2153   __ CmpInstanceType(edi, ODDBALL_TYPE);
   2154   __ j(not_equal, &not_oddball, Label::kNear);
   2155   __ mov(eax, FieldOperand(eax, Oddball::kToStringOffset));
   2156   __ Ret();
   2157   __ bind(&not_oddball);
   2158 
   2159   __ pop(ecx);   // Pop return address.
   2160   __ push(eax);  // Push argument.
   2161   __ push(ecx);  // Push return address.
   2162   __ TailCallRuntime(Runtime::kToString);
   2163 }
   2164 
   2165 
   2166 void ToNameStub::Generate(MacroAssembler* masm) {
   2167   // The ToName stub takes one argument in eax.
   2168   Label is_number;
   2169   __ JumpIfSmi(eax, &is_number, Label::kNear);
   2170 
   2171   Label not_name;
   2172   STATIC_ASSERT(FIRST_NAME_TYPE == FIRST_TYPE);
   2173   __ CmpObjectType(eax, LAST_NAME_TYPE, edi);
   2174   // eax: receiver
   2175   // edi: receiver map
   2176   __ j(above, &not_name, Label::kNear);
   2177   __ Ret();
   2178   __ bind(&not_name);
   2179 
   2180   Label not_heap_number;
   2181   __ CompareMap(eax, masm->isolate()->factory()->heap_number_map());
   2182   __ j(not_equal, &not_heap_number, Label::kNear);
   2183   __ bind(&is_number);
   2184   NumberToStringStub stub(isolate());
   2185   __ TailCallStub(&stub);
   2186   __ bind(&not_heap_number);
   2187 
   2188   Label not_oddball;
   2189   __ CmpInstanceType(edi, ODDBALL_TYPE);
   2190   __ j(not_equal, &not_oddball, Label::kNear);
   2191   __ mov(eax, FieldOperand(eax, Oddball::kToStringOffset));
   2192   __ Ret();
   2193   __ bind(&not_oddball);
   2194 
   2195   __ pop(ecx);   // Pop return address.
   2196   __ push(eax);  // Push argument.
   2197   __ push(ecx);  // Push return address.
   2198   __ TailCallRuntime(Runtime::kToName);
   2199 }
   2200 
   2201 
   2202 void StringHelper::GenerateFlatOneByteStringEquals(MacroAssembler* masm,
   2203                                                    Register left,
   2204                                                    Register right,
   2205                                                    Register scratch1,
   2206                                                    Register scratch2) {
   2207   Register length = scratch1;
   2208 
   2209   // Compare lengths.
   2210   Label strings_not_equal, check_zero_length;
   2211   __ mov(length, FieldOperand(left, String::kLengthOffset));
   2212   __ cmp(length, FieldOperand(right, String::kLengthOffset));
   2213   __ j(equal, &check_zero_length, Label::kNear);
   2214   __ bind(&strings_not_equal);
   2215   __ Move(eax, Immediate(Smi::FromInt(NOT_EQUAL)));
   2216   __ ret(0);
   2217 
   2218   // Check if the length is zero.
   2219   Label compare_chars;
   2220   __ bind(&check_zero_length);
   2221   STATIC_ASSERT(kSmiTag == 0);
   2222   __ test(length, length);
   2223   __ j(not_zero, &compare_chars, Label::kNear);
   2224   __ Move(eax, Immediate(Smi::FromInt(EQUAL)));
   2225   __ ret(0);
   2226 
   2227   // Compare characters.
   2228   __ bind(&compare_chars);
   2229   GenerateOneByteCharsCompareLoop(masm, left, right, length, scratch2,
   2230                                   &strings_not_equal, Label::kNear);
   2231 
   2232   // Characters are equal.
   2233   __ Move(eax, Immediate(Smi::FromInt(EQUAL)));
   2234   __ ret(0);
   2235 }
   2236 
   2237 
   2238 void StringHelper::GenerateCompareFlatOneByteStrings(
   2239     MacroAssembler* masm, Register left, Register right, Register scratch1,
   2240     Register scratch2, Register scratch3) {
   2241   Counters* counters = masm->isolate()->counters();
   2242   __ IncrementCounter(counters->string_compare_native(), 1);
   2243 
   2244   // Find minimum length.
   2245   Label left_shorter;
   2246   __ mov(scratch1, FieldOperand(left, String::kLengthOffset));
   2247   __ mov(scratch3, scratch1);
   2248   __ sub(scratch3, FieldOperand(right, String::kLengthOffset));
   2249 
   2250   Register length_delta = scratch3;
   2251 
   2252   __ j(less_equal, &left_shorter, Label::kNear);
   2253   // Right string is shorter. Change scratch1 to be length of right string.
   2254   __ sub(scratch1, length_delta);
   2255   __ bind(&left_shorter);
   2256 
   2257   Register min_length = scratch1;
   2258 
   2259   // If either length is zero, just compare lengths.
   2260   Label compare_lengths;
   2261   __ test(min_length, min_length);
   2262   __ j(zero, &compare_lengths, Label::kNear);
   2263 
   2264   // Compare characters.
   2265   Label result_not_equal;
   2266   GenerateOneByteCharsCompareLoop(masm, left, right, min_length, scratch2,
   2267                                   &result_not_equal, Label::kNear);
   2268 
   2269   // Compare lengths -  strings up to min-length are equal.
   2270   __ bind(&compare_lengths);
   2271   __ test(length_delta, length_delta);
   2272   Label length_not_equal;
   2273   __ j(not_zero, &length_not_equal, Label::kNear);
   2274 
   2275   // Result is EQUAL.
   2276   STATIC_ASSERT(EQUAL == 0);
   2277   STATIC_ASSERT(kSmiTag == 0);
   2278   __ Move(eax, Immediate(Smi::FromInt(EQUAL)));
   2279   __ ret(0);
   2280 
   2281   Label result_greater;
   2282   Label result_less;
   2283   __ bind(&length_not_equal);
   2284   __ j(greater, &result_greater, Label::kNear);
   2285   __ jmp(&result_less, Label::kNear);
   2286   __ bind(&result_not_equal);
   2287   __ j(above, &result_greater, Label::kNear);
   2288   __ bind(&result_less);
   2289 
   2290   // Result is LESS.
   2291   __ Move(eax, Immediate(Smi::FromInt(LESS)));
   2292   __ ret(0);
   2293 
   2294   // Result is GREATER.
   2295   __ bind(&result_greater);
   2296   __ Move(eax, Immediate(Smi::FromInt(GREATER)));
   2297   __ ret(0);
   2298 }
   2299 
   2300 
   2301 void StringHelper::GenerateOneByteCharsCompareLoop(
   2302     MacroAssembler* masm, Register left, Register right, Register length,
   2303     Register scratch, Label* chars_not_equal,
   2304     Label::Distance chars_not_equal_near) {
   2305   // Change index to run from -length to -1 by adding length to string
   2306   // start. This means that loop ends when index reaches zero, which
   2307   // doesn't need an additional compare.
   2308   __ SmiUntag(length);
   2309   __ lea(left,
   2310          FieldOperand(left, length, times_1, SeqOneByteString::kHeaderSize));
   2311   __ lea(right,
   2312          FieldOperand(right, length, times_1, SeqOneByteString::kHeaderSize));
   2313   __ neg(length);
   2314   Register index = length;  // index = -length;
   2315 
   2316   // Compare loop.
   2317   Label loop;
   2318   __ bind(&loop);
   2319   __ mov_b(scratch, Operand(left, index, times_1, 0));
   2320   __ cmpb(scratch, Operand(right, index, times_1, 0));
   2321   __ j(not_equal, chars_not_equal, chars_not_equal_near);
   2322   __ inc(index);
   2323   __ j(not_zero, &loop);
   2324 }
   2325 
   2326 
   2327 void BinaryOpICWithAllocationSiteStub::Generate(MacroAssembler* masm) {
   2328   // ----------- S t a t e -------------
   2329   //  -- edx    : left
   2330   //  -- eax    : right
   2331   //  -- esp[0] : return address
   2332   // -----------------------------------
   2333 
   2334   // Load ecx with the allocation site.  We stick an undefined dummy value here
   2335   // and replace it with the real allocation site later when we instantiate this
   2336   // stub in BinaryOpICWithAllocationSiteStub::GetCodeCopyFromTemplate().
   2337   __ mov(ecx, isolate()->factory()->undefined_value());
   2338 
   2339   // Make sure that we actually patched the allocation site.
   2340   if (FLAG_debug_code) {
   2341     __ test(ecx, Immediate(kSmiTagMask));
   2342     __ Assert(not_equal, kExpectedAllocationSite);
   2343     __ cmp(FieldOperand(ecx, HeapObject::kMapOffset),
   2344            isolate()->factory()->allocation_site_map());
   2345     __ Assert(equal, kExpectedAllocationSite);
   2346   }
   2347 
   2348   // Tail call into the stub that handles binary operations with allocation
   2349   // sites.
   2350   BinaryOpWithAllocationSiteStub stub(isolate(), state());
   2351   __ TailCallStub(&stub);
   2352 }
   2353 
   2354 
   2355 void CompareICStub::GenerateBooleans(MacroAssembler* masm) {
   2356   DCHECK_EQ(CompareICState::BOOLEAN, state());
   2357   Label miss;
   2358   Label::Distance const miss_distance =
   2359       masm->emit_debug_code() ? Label::kFar : Label::kNear;
   2360 
   2361   __ JumpIfSmi(edx, &miss, miss_distance);
   2362   __ mov(ecx, FieldOperand(edx, HeapObject::kMapOffset));
   2363   __ JumpIfSmi(eax, &miss, miss_distance);
   2364   __ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset));
   2365   __ JumpIfNotRoot(ecx, Heap::kBooleanMapRootIndex, &miss, miss_distance);
   2366   __ JumpIfNotRoot(ebx, Heap::kBooleanMapRootIndex, &miss, miss_distance);
   2367   if (!Token::IsEqualityOp(op())) {
   2368     __ mov(eax, FieldOperand(eax, Oddball::kToNumberOffset));
   2369     __ AssertSmi(eax);
   2370     __ mov(edx, FieldOperand(edx, Oddball::kToNumberOffset));
   2371     __ AssertSmi(edx);
   2372     __ xchg(eax, edx);
   2373   }
   2374   __ sub(eax, edx);
   2375   __ Ret();
   2376 
   2377   __ bind(&miss);
   2378   GenerateMiss(masm);
   2379 }
   2380 
   2381 
   2382 void CompareICStub::GenerateSmis(MacroAssembler* masm) {
   2383   DCHECK(state() == CompareICState::SMI);
   2384   Label miss;
   2385   __ mov(ecx, edx);
   2386   __ or_(ecx, eax);
   2387   __ JumpIfNotSmi(ecx, &miss, Label::kNear);
   2388 
   2389   if (GetCondition() == equal) {
   2390     // For equality we do not care about the sign of the result.
   2391     __ sub(eax, edx);
   2392   } else {
   2393     Label done;
   2394     __ sub(edx, eax);
   2395     __ j(no_overflow, &done, Label::kNear);
   2396     // Correct sign of result in case of overflow.
   2397     __ not_(edx);
   2398     __ bind(&done);
   2399     __ mov(eax, edx);
   2400   }
   2401   __ ret(0);
   2402 
   2403   __ bind(&miss);
   2404   GenerateMiss(masm);
   2405 }
   2406 
   2407 
   2408 void CompareICStub::GenerateNumbers(MacroAssembler* masm) {
   2409   DCHECK(state() == CompareICState::NUMBER);
   2410 
   2411   Label generic_stub, check_left;
   2412   Label unordered, maybe_undefined1, maybe_undefined2;
   2413   Label miss;
   2414 
   2415   if (left() == CompareICState::SMI) {
   2416     __ JumpIfNotSmi(edx, &miss);
   2417   }
   2418   if (right() == CompareICState::SMI) {
   2419     __ JumpIfNotSmi(eax, &miss);
   2420   }
   2421 
   2422   // Inlining the double comparison and falling back to the general compare
   2423   // stub if NaN is involved or SSE2 or CMOV is unsupported.
   2424   __ JumpIfSmi(eax, &check_left, Label::kNear);
   2425   __ cmp(FieldOperand(eax, HeapObject::kMapOffset),
   2426          isolate()->factory()->heap_number_map());
   2427   __ j(not_equal, &maybe_undefined1, Label::kNear);
   2428 
   2429   __ bind(&check_left);
   2430   __ JumpIfSmi(edx, &generic_stub, Label::kNear);
   2431   __ cmp(FieldOperand(edx, HeapObject::kMapOffset),
   2432          isolate()->factory()->heap_number_map());
   2433   __ j(not_equal, &maybe_undefined2, Label::kNear);
   2434 
   2435   __ bind(&unordered);
   2436   __ bind(&generic_stub);
   2437   CompareICStub stub(isolate(), op(), CompareICState::GENERIC,
   2438                      CompareICState::GENERIC, CompareICState::GENERIC);
   2439   __ jmp(stub.GetCode(), RelocInfo::CODE_TARGET);
   2440 
   2441   __ bind(&maybe_undefined1);
   2442   if (Token::IsOrderedRelationalCompareOp(op())) {
   2443     __ cmp(eax, Immediate(isolate()->factory()->undefined_value()));
   2444     __ j(not_equal, &miss);
   2445     __ JumpIfSmi(edx, &unordered);
   2446     __ CmpObjectType(edx, HEAP_NUMBER_TYPE, ecx);
   2447     __ j(not_equal, &maybe_undefined2, Label::kNear);
   2448     __ jmp(&unordered);
   2449   }
   2450 
   2451   __ bind(&maybe_undefined2);
   2452   if (Token::IsOrderedRelationalCompareOp(op())) {
   2453     __ cmp(edx, Immediate(isolate()->factory()->undefined_value()));
   2454     __ j(equal, &unordered);
   2455   }
   2456 
   2457   __ bind(&miss);
   2458   GenerateMiss(masm);
   2459 }
   2460 
   2461 
   2462 void CompareICStub::GenerateInternalizedStrings(MacroAssembler* masm) {
   2463   DCHECK(state() == CompareICState::INTERNALIZED_STRING);
   2464   DCHECK(GetCondition() == equal);
   2465 
   2466   // Registers containing left and right operands respectively.
   2467   Register left = edx;
   2468   Register right = eax;
   2469   Register tmp1 = ecx;
   2470   Register tmp2 = ebx;
   2471 
   2472   // Check that both operands are heap objects.
   2473   Label miss;
   2474   __ mov(tmp1, left);
   2475   STATIC_ASSERT(kSmiTag == 0);
   2476   __ and_(tmp1, right);
   2477   __ JumpIfSmi(tmp1, &miss, Label::kNear);
   2478 
   2479   // Check that both operands are internalized strings.
   2480   __ mov(tmp1, FieldOperand(left, HeapObject::kMapOffset));
   2481   __ mov(tmp2, FieldOperand(right, HeapObject::kMapOffset));
   2482   __ movzx_b(tmp1, FieldOperand(tmp1, Map::kInstanceTypeOffset));
   2483   __ movzx_b(tmp2, FieldOperand(tmp2, Map::kInstanceTypeOffset));
   2484   STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
   2485   __ or_(tmp1, tmp2);
   2486   __ test(tmp1, Immediate(kIsNotStringMask | kIsNotInternalizedMask));
   2487   __ j(not_zero, &miss, Label::kNear);
   2488 
   2489   // Internalized strings are compared by identity.
   2490   Label done;
   2491   __ cmp(left, right);
   2492   // Make sure eax is non-zero. At this point input operands are
   2493   // guaranteed to be non-zero.
   2494   DCHECK(right.is(eax));
   2495   __ j(not_equal, &done, Label::kNear);
   2496   STATIC_ASSERT(EQUAL == 0);
   2497   STATIC_ASSERT(kSmiTag == 0);
   2498   __ Move(eax, Immediate(Smi::FromInt(EQUAL)));
   2499   __ bind(&done);
   2500   __ ret(0);
   2501 
   2502   __ bind(&miss);
   2503   GenerateMiss(masm);
   2504 }
   2505 
   2506 
   2507 void CompareICStub::GenerateUniqueNames(MacroAssembler* masm) {
   2508   DCHECK(state() == CompareICState::UNIQUE_NAME);
   2509   DCHECK(GetCondition() == equal);
   2510 
   2511   // Registers containing left and right operands respectively.
   2512   Register left = edx;
   2513   Register right = eax;
   2514   Register tmp1 = ecx;
   2515   Register tmp2 = ebx;
   2516 
   2517   // Check that both operands are heap objects.
   2518   Label miss;
   2519   __ mov(tmp1, left);
   2520   STATIC_ASSERT(kSmiTag == 0);
   2521   __ and_(tmp1, right);
   2522   __ JumpIfSmi(tmp1, &miss, Label::kNear);
   2523 
   2524   // Check that both operands are unique names. This leaves the instance
   2525   // types loaded in tmp1 and tmp2.
   2526   __ mov(tmp1, FieldOperand(left, HeapObject::kMapOffset));
   2527   __ mov(tmp2, FieldOperand(right, HeapObject::kMapOffset));
   2528   __ movzx_b(tmp1, FieldOperand(tmp1, Map::kInstanceTypeOffset));
   2529   __ movzx_b(tmp2, FieldOperand(tmp2, Map::kInstanceTypeOffset));
   2530 
   2531   __ JumpIfNotUniqueNameInstanceType(tmp1, &miss, Label::kNear);
   2532   __ JumpIfNotUniqueNameInstanceType(tmp2, &miss, Label::kNear);
   2533 
   2534   // Unique names are compared by identity.
   2535   Label done;
   2536   __ cmp(left, right);
   2537   // Make sure eax is non-zero. At this point input operands are
   2538   // guaranteed to be non-zero.
   2539   DCHECK(right.is(eax));
   2540   __ j(not_equal, &done, Label::kNear);
   2541   STATIC_ASSERT(EQUAL == 0);
   2542   STATIC_ASSERT(kSmiTag == 0);
   2543   __ Move(eax, Immediate(Smi::FromInt(EQUAL)));
   2544   __ bind(&done);
   2545   __ ret(0);
   2546 
   2547   __ bind(&miss);
   2548   GenerateMiss(masm);
   2549 }
   2550 
   2551 
   2552 void CompareICStub::GenerateStrings(MacroAssembler* masm) {
   2553   DCHECK(state() == CompareICState::STRING);
   2554   Label miss;
   2555 
   2556   bool equality = Token::IsEqualityOp(op());
   2557 
   2558   // Registers containing left and right operands respectively.
   2559   Register left = edx;
   2560   Register right = eax;
   2561   Register tmp1 = ecx;
   2562   Register tmp2 = ebx;
   2563   Register tmp3 = edi;
   2564 
   2565   // Check that both operands are heap objects.
   2566   __ mov(tmp1, left);
   2567   STATIC_ASSERT(kSmiTag == 0);
   2568   __ and_(tmp1, right);
   2569   __ JumpIfSmi(tmp1, &miss);
   2570 
   2571   // Check that both operands are strings. This leaves the instance
   2572   // types loaded in tmp1 and tmp2.
   2573   __ mov(tmp1, FieldOperand(left, HeapObject::kMapOffset));
   2574   __ mov(tmp2, FieldOperand(right, HeapObject::kMapOffset));
   2575   __ movzx_b(tmp1, FieldOperand(tmp1, Map::kInstanceTypeOffset));
   2576   __ movzx_b(tmp2, FieldOperand(tmp2, Map::kInstanceTypeOffset));
   2577   __ mov(tmp3, tmp1);
   2578   STATIC_ASSERT(kNotStringTag != 0);
   2579   __ or_(tmp3, tmp2);
   2580   __ test(tmp3, Immediate(kIsNotStringMask));
   2581   __ j(not_zero, &miss);
   2582 
   2583   // Fast check for identical strings.
   2584   Label not_same;
   2585   __ cmp(left, right);
   2586   __ j(not_equal, &not_same, Label::kNear);
   2587   STATIC_ASSERT(EQUAL == 0);
   2588   STATIC_ASSERT(kSmiTag == 0);
   2589   __ Move(eax, Immediate(Smi::FromInt(EQUAL)));
   2590   __ ret(0);
   2591 
   2592   // Handle not identical strings.
   2593   __ bind(&not_same);
   2594 
   2595   // Check that both strings are internalized. If they are, we're done
   2596   // because we already know they are not identical.  But in the case of
   2597   // non-equality compare, we still need to determine the order. We
   2598   // also know they are both strings.
   2599   if (equality) {
   2600     Label do_compare;
   2601     STATIC_ASSERT(kInternalizedTag == 0);
   2602     __ or_(tmp1, tmp2);
   2603     __ test(tmp1, Immediate(kIsNotInternalizedMask));
   2604     __ j(not_zero, &do_compare, Label::kNear);
   2605     // Make sure eax is non-zero. At this point input operands are
   2606     // guaranteed to be non-zero.
   2607     DCHECK(right.is(eax));
   2608     __ ret(0);
   2609     __ bind(&do_compare);
   2610   }
   2611 
   2612   // Check that both strings are sequential one-byte.
   2613   Label runtime;
   2614   __ JumpIfNotBothSequentialOneByteStrings(left, right, tmp1, tmp2, &runtime);
   2615 
   2616   // Compare flat one byte strings. Returns when done.
   2617   if (equality) {
   2618     StringHelper::GenerateFlatOneByteStringEquals(masm, left, right, tmp1,
   2619                                                   tmp2);
   2620   } else {
   2621     StringHelper::GenerateCompareFlatOneByteStrings(masm, left, right, tmp1,
   2622                                                     tmp2, tmp3);
   2623   }
   2624 
   2625   // Handle more complex cases in runtime.
   2626   __ bind(&runtime);
   2627   if (equality) {
   2628     {
   2629       FrameScope scope(masm, StackFrame::INTERNAL);
   2630       __ Push(left);
   2631       __ Push(right);
   2632       __ CallRuntime(Runtime::kStringEqual);
   2633     }
   2634     __ sub(eax, Immediate(masm->isolate()->factory()->true_value()));
   2635     __ Ret();
   2636   } else {
   2637     __ pop(tmp1);  // Return address.
   2638     __ push(left);
   2639     __ push(right);
   2640     __ push(tmp1);
   2641     __ TailCallRuntime(Runtime::kStringCompare);
   2642   }
   2643 
   2644   __ bind(&miss);
   2645   GenerateMiss(masm);
   2646 }
   2647 
   2648 
   2649 void CompareICStub::GenerateReceivers(MacroAssembler* masm) {
   2650   DCHECK_EQ(CompareICState::RECEIVER, state());
   2651   Label miss;
   2652   __ mov(ecx, edx);
   2653   __ and_(ecx, eax);
   2654   __ JumpIfSmi(ecx, &miss, Label::kNear);
   2655 
   2656   STATIC_ASSERT(LAST_TYPE == LAST_JS_RECEIVER_TYPE);
   2657   __ CmpObjectType(eax, FIRST_JS_RECEIVER_TYPE, ecx);
   2658   __ j(below, &miss, Label::kNear);
   2659   __ CmpObjectType(edx, FIRST_JS_RECEIVER_TYPE, ecx);
   2660   __ j(below, &miss, Label::kNear);
   2661 
   2662   DCHECK_EQ(equal, GetCondition());
   2663   __ sub(eax, edx);
   2664   __ ret(0);
   2665 
   2666   __ bind(&miss);
   2667   GenerateMiss(masm);
   2668 }
   2669 
   2670 
   2671 void CompareICStub::GenerateKnownReceivers(MacroAssembler* masm) {
   2672   Label miss;
   2673   Handle<WeakCell> cell = Map::WeakCellForMap(known_map_);
   2674   __ mov(ecx, edx);
   2675   __ and_(ecx, eax);
   2676   __ JumpIfSmi(ecx, &miss, Label::kNear);
   2677 
   2678   __ GetWeakValue(edi, cell);
   2679   __ cmp(edi, FieldOperand(eax, HeapObject::kMapOffset));
   2680   __ j(not_equal, &miss, Label::kNear);
   2681   __ cmp(edi, FieldOperand(edx, HeapObject::kMapOffset));
   2682   __ j(not_equal, &miss, Label::kNear);
   2683 
   2684   if (Token::IsEqualityOp(op())) {
   2685     __ sub(eax, edx);
   2686     __ ret(0);
   2687   } else {
   2688     __ PopReturnAddressTo(ecx);
   2689     __ Push(edx);
   2690     __ Push(eax);
   2691     __ Push(Immediate(Smi::FromInt(NegativeComparisonResult(GetCondition()))));
   2692     __ PushReturnAddressFrom(ecx);
   2693     __ TailCallRuntime(Runtime::kCompare);
   2694   }
   2695 
   2696   __ bind(&miss);
   2697   GenerateMiss(masm);
   2698 }
   2699 
   2700 
   2701 void CompareICStub::GenerateMiss(MacroAssembler* masm) {
   2702   {
   2703     // Call the runtime system in a fresh internal frame.
   2704     FrameScope scope(masm, StackFrame::INTERNAL);
   2705     __ push(edx);  // Preserve edx and eax.
   2706     __ push(eax);
   2707     __ push(edx);  // And also use them as the arguments.
   2708     __ push(eax);
   2709     __ push(Immediate(Smi::FromInt(op())));
   2710     __ CallRuntime(Runtime::kCompareIC_Miss);
   2711     // Compute the entry point of the rewritten stub.
   2712     __ lea(edi, FieldOperand(eax, Code::kHeaderSize));
   2713     __ pop(eax);
   2714     __ pop(edx);
   2715   }
   2716 
   2717   // Do a tail call to the rewritten stub.
   2718   __ jmp(edi);
   2719 }
   2720 
   2721 
   2722 // Helper function used to check that the dictionary doesn't contain
   2723 // the property. This function may return false negatives, so miss_label
   2724 // must always call a backup property check that is complete.
   2725 // This function is safe to call if the receiver has fast properties.
   2726 // Name must be a unique name and receiver must be a heap object.
   2727 void NameDictionaryLookupStub::GenerateNegativeLookup(MacroAssembler* masm,
   2728                                                       Label* miss,
   2729                                                       Label* done,
   2730                                                       Register properties,
   2731                                                       Handle<Name> name,
   2732                                                       Register r0) {
   2733   DCHECK(name->IsUniqueName());
   2734 
   2735   // If names of slots in range from 1 to kProbes - 1 for the hash value are
   2736   // not equal to the name and kProbes-th slot is not used (its name is the
   2737   // undefined value), it guarantees the hash table doesn't contain the
   2738   // property. It's true even if some slots represent deleted properties
   2739   // (their names are the hole value).
   2740   for (int i = 0; i < kInlinedProbes; i++) {
   2741     // Compute the masked index: (hash + i + i * i) & mask.
   2742     Register index = r0;
   2743     // Capacity is smi 2^n.
   2744     __ mov(index, FieldOperand(properties, kCapacityOffset));
   2745     __ dec(index);
   2746     __ and_(index,
   2747             Immediate(Smi::FromInt(name->Hash() +
   2748                                    NameDictionary::GetProbeOffset(i))));
   2749 
   2750     // Scale the index by multiplying by the entry size.
   2751     STATIC_ASSERT(NameDictionary::kEntrySize == 3);
   2752     __ lea(index, Operand(index, index, times_2, 0));  // index *= 3.
   2753     Register entity_name = r0;
   2754     // Having undefined at this place means the name is not contained.
   2755     STATIC_ASSERT(kSmiTagSize == 1);
   2756     __ mov(entity_name, Operand(properties, index, times_half_pointer_size,
   2757                                 kElementsStartOffset - kHeapObjectTag));
   2758     __ cmp(entity_name, masm->isolate()->factory()->undefined_value());
   2759     __ j(equal, done);
   2760 
   2761     // Stop if found the property.
   2762     __ cmp(entity_name, Handle<Name>(name));
   2763     __ j(equal, miss);
   2764 
   2765     Label good;
   2766     // Check for the hole and skip.
   2767     __ cmp(entity_name, masm->isolate()->factory()->the_hole_value());
   2768     __ j(equal, &good, Label::kNear);
   2769 
   2770     // Check if the entry name is not a unique name.
   2771     __ mov(entity_name, FieldOperand(entity_name, HeapObject::kMapOffset));
   2772     __ JumpIfNotUniqueNameInstanceType(
   2773         FieldOperand(entity_name, Map::kInstanceTypeOffset), miss);
   2774     __ bind(&good);
   2775   }
   2776 
   2777   NameDictionaryLookupStub stub(masm->isolate(), properties, r0, r0,
   2778                                 NEGATIVE_LOOKUP);
   2779   __ push(Immediate(Handle<Object>(name)));
   2780   __ push(Immediate(name->Hash()));
   2781   __ CallStub(&stub);
   2782   __ test(r0, r0);
   2783   __ j(not_zero, miss);
   2784   __ jmp(done);
   2785 }
   2786 
   2787 
   2788 // Probe the name dictionary in the |elements| register. Jump to the
   2789 // |done| label if a property with the given name is found leaving the
   2790 // index into the dictionary in |r0|. Jump to the |miss| label
   2791 // otherwise.
   2792 void NameDictionaryLookupStub::GeneratePositiveLookup(MacroAssembler* masm,
   2793                                                       Label* miss,
   2794                                                       Label* done,
   2795                                                       Register elements,
   2796                                                       Register name,
   2797                                                       Register r0,
   2798                                                       Register r1) {
   2799   DCHECK(!elements.is(r0));
   2800   DCHECK(!elements.is(r1));
   2801   DCHECK(!name.is(r0));
   2802   DCHECK(!name.is(r1));
   2803 
   2804   __ AssertName(name);
   2805 
   2806   __ mov(r1, FieldOperand(elements, kCapacityOffset));
   2807   __ shr(r1, kSmiTagSize);  // convert smi to int
   2808   __ dec(r1);
   2809 
   2810   // Generate an unrolled loop that performs a few probes before
   2811   // giving up. Measurements done on Gmail indicate that 2 probes
   2812   // cover ~93% of loads from dictionaries.
   2813   for (int i = 0; i < kInlinedProbes; i++) {
   2814     // Compute the masked index: (hash + i + i * i) & mask.
   2815     __ mov(r0, FieldOperand(name, Name::kHashFieldOffset));
   2816     __ shr(r0, Name::kHashShift);
   2817     if (i > 0) {
   2818       __ add(r0, Immediate(NameDictionary::GetProbeOffset(i)));
   2819     }
   2820     __ and_(r0, r1);
   2821 
   2822     // Scale the index by multiplying by the entry size.
   2823     STATIC_ASSERT(NameDictionary::kEntrySize == 3);
   2824     __ lea(r0, Operand(r0, r0, times_2, 0));  // r0 = r0 * 3
   2825 
   2826     // Check if the key is identical to the name.
   2827     __ cmp(name, Operand(elements,
   2828                          r0,
   2829                          times_4,
   2830                          kElementsStartOffset - kHeapObjectTag));
   2831     __ j(equal, done);
   2832   }
   2833 
   2834   NameDictionaryLookupStub stub(masm->isolate(), elements, r1, r0,
   2835                                 POSITIVE_LOOKUP);
   2836   __ push(name);
   2837   __ mov(r0, FieldOperand(name, Name::kHashFieldOffset));
   2838   __ shr(r0, Name::kHashShift);
   2839   __ push(r0);
   2840   __ CallStub(&stub);
   2841 
   2842   __ test(r1, r1);
   2843   __ j(zero, miss);
   2844   __ jmp(done);
   2845 }
   2846 
   2847 
   2848 void NameDictionaryLookupStub::Generate(MacroAssembler* masm) {
   2849   // This stub overrides SometimesSetsUpAFrame() to return false.  That means
   2850   // we cannot call anything that could cause a GC from this stub.
   2851   // Stack frame on entry:
   2852   //  esp[0 * kPointerSize]: return address.
   2853   //  esp[1 * kPointerSize]: key's hash.
   2854   //  esp[2 * kPointerSize]: key.
   2855   // Registers:
   2856   //  dictionary_: NameDictionary to probe.
   2857   //  result_: used as scratch.
   2858   //  index_: will hold an index of entry if lookup is successful.
   2859   //          might alias with result_.
   2860   // Returns:
   2861   //  result_ is zero if lookup failed, non zero otherwise.
   2862 
   2863   Label in_dictionary, maybe_in_dictionary, not_in_dictionary;
   2864 
   2865   Register scratch = result();
   2866 
   2867   __ mov(scratch, FieldOperand(dictionary(), kCapacityOffset));
   2868   __ dec(scratch);
   2869   __ SmiUntag(scratch);
   2870   __ push(scratch);
   2871 
   2872   // If names of slots in range from 1 to kProbes - 1 for the hash value are
   2873   // not equal to the name and kProbes-th slot is not used (its name is the
   2874   // undefined value), it guarantees the hash table doesn't contain the
   2875   // property. It's true even if some slots represent deleted properties
   2876   // (their names are the null value).
   2877   for (int i = kInlinedProbes; i < kTotalProbes; i++) {
   2878     // Compute the masked index: (hash + i + i * i) & mask.
   2879     __ mov(scratch, Operand(esp, 2 * kPointerSize));
   2880     if (i > 0) {
   2881       __ add(scratch, Immediate(NameDictionary::GetProbeOffset(i)));
   2882     }
   2883     __ and_(scratch, Operand(esp, 0));
   2884 
   2885     // Scale the index by multiplying by the entry size.
   2886     STATIC_ASSERT(NameDictionary::kEntrySize == 3);
   2887     __ lea(index(), Operand(scratch, scratch, times_2, 0));  // index *= 3.
   2888 
   2889     // Having undefined at this place means the name is not contained.
   2890     STATIC_ASSERT(kSmiTagSize == 1);
   2891     __ mov(scratch, Operand(dictionary(), index(), times_pointer_size,
   2892                             kElementsStartOffset - kHeapObjectTag));
   2893     __ cmp(scratch, isolate()->factory()->undefined_value());
   2894     __ j(equal, &not_in_dictionary);
   2895 
   2896     // Stop if found the property.
   2897     __ cmp(scratch, Operand(esp, 3 * kPointerSize));
   2898     __ j(equal, &in_dictionary);
   2899 
   2900     if (i != kTotalProbes - 1 && mode() == NEGATIVE_LOOKUP) {
   2901       // If we hit a key that is not a unique name during negative
   2902       // lookup we have to bailout as this key might be equal to the
   2903       // key we are looking for.
   2904 
   2905       // Check if the entry name is not a unique name.
   2906       __ mov(scratch, FieldOperand(scratch, HeapObject::kMapOffset));
   2907       __ JumpIfNotUniqueNameInstanceType(
   2908           FieldOperand(scratch, Map::kInstanceTypeOffset),
   2909           &maybe_in_dictionary);
   2910     }
   2911   }
   2912 
   2913   __ bind(&maybe_in_dictionary);
   2914   // If we are doing negative lookup then probing failure should be
   2915   // treated as a lookup success. For positive lookup probing failure
   2916   // should be treated as lookup failure.
   2917   if (mode() == POSITIVE_LOOKUP) {
   2918     __ mov(result(), Immediate(0));
   2919     __ Drop(1);
   2920     __ ret(2 * kPointerSize);
   2921   }
   2922 
   2923   __ bind(&in_dictionary);
   2924   __ mov(result(), Immediate(1));
   2925   __ Drop(1);
   2926   __ ret(2 * kPointerSize);
   2927 
   2928   __ bind(&not_in_dictionary);
   2929   __ mov(result(), Immediate(0));
   2930   __ Drop(1);
   2931   __ ret(2 * kPointerSize);
   2932 }
   2933 
   2934 
   2935 void StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(
   2936     Isolate* isolate) {
   2937   StoreBufferOverflowStub stub(isolate, kDontSaveFPRegs);
   2938   stub.GetCode();
   2939   StoreBufferOverflowStub stub2(isolate, kSaveFPRegs);
   2940   stub2.GetCode();
   2941 }
   2942 
   2943 
   2944 // Takes the input in 3 registers: address_ value_ and object_.  A pointer to
   2945 // the value has just been written into the object, now this stub makes sure
   2946 // we keep the GC informed.  The word in the object where the value has been
   2947 // written is in the address register.
   2948 void RecordWriteStub::Generate(MacroAssembler* masm) {
   2949   Label skip_to_incremental_noncompacting;
   2950   Label skip_to_incremental_compacting;
   2951 
   2952   // The first two instructions are generated with labels so as to get the
   2953   // offset fixed up correctly by the bind(Label*) call.  We patch it back and
   2954   // forth between a compare instructions (a nop in this position) and the
   2955   // real branch when we start and stop incremental heap marking.
   2956   __ jmp(&skip_to_incremental_noncompacting, Label::kNear);
   2957   __ jmp(&skip_to_incremental_compacting, Label::kFar);
   2958 
   2959   if (remembered_set_action() == EMIT_REMEMBERED_SET) {
   2960     __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
   2961                            MacroAssembler::kReturnAtEnd);
   2962   } else {
   2963     __ ret(0);
   2964   }
   2965 
   2966   __ bind(&skip_to_incremental_noncompacting);
   2967   GenerateIncremental(masm, INCREMENTAL);
   2968 
   2969   __ bind(&skip_to_incremental_compacting);
   2970   GenerateIncremental(masm, INCREMENTAL_COMPACTION);
   2971 
   2972   // Initial mode of the stub is expected to be STORE_BUFFER_ONLY.
   2973   // Will be checked in IncrementalMarking::ActivateGeneratedStub.
   2974   masm->set_byte_at(0, kTwoByteNopInstruction);
   2975   masm->set_byte_at(2, kFiveByteNopInstruction);
   2976 }
   2977 
   2978 
   2979 void RecordWriteStub::GenerateIncremental(MacroAssembler* masm, Mode mode) {
   2980   regs_.Save(masm);
   2981 
   2982   if (remembered_set_action() == EMIT_REMEMBERED_SET) {
   2983     Label dont_need_remembered_set;
   2984 
   2985     __ mov(regs_.scratch0(), Operand(regs_.address(), 0));
   2986     __ JumpIfNotInNewSpace(regs_.scratch0(),  // Value.
   2987                            regs_.scratch0(),
   2988                            &dont_need_remembered_set);
   2989 
   2990     __ JumpIfInNewSpace(regs_.object(), regs_.scratch0(),
   2991                         &dont_need_remembered_set);
   2992 
   2993     // First notify the incremental marker if necessary, then update the
   2994     // remembered set.
   2995     CheckNeedsToInformIncrementalMarker(
   2996         masm,
   2997         kUpdateRememberedSetOnNoNeedToInformIncrementalMarker,
   2998         mode);
   2999     InformIncrementalMarker(masm);
   3000     regs_.Restore(masm);
   3001     __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
   3002                            MacroAssembler::kReturnAtEnd);
   3003 
   3004     __ bind(&dont_need_remembered_set);
   3005   }
   3006 
   3007   CheckNeedsToInformIncrementalMarker(
   3008       masm,
   3009       kReturnOnNoNeedToInformIncrementalMarker,
   3010       mode);
   3011   InformIncrementalMarker(masm);
   3012   regs_.Restore(masm);
   3013   __ ret(0);
   3014 }
   3015 
   3016 
   3017 void RecordWriteStub::InformIncrementalMarker(MacroAssembler* masm) {
   3018   regs_.SaveCallerSaveRegisters(masm, save_fp_regs_mode());
   3019   int argument_count = 3;
   3020   __ PrepareCallCFunction(argument_count, regs_.scratch0());
   3021   __ mov(Operand(esp, 0 * kPointerSize), regs_.object());
   3022   __ mov(Operand(esp, 1 * kPointerSize), regs_.address());  // Slot.
   3023   __ mov(Operand(esp, 2 * kPointerSize),
   3024          Immediate(ExternalReference::isolate_address(isolate())));
   3025 
   3026   AllowExternalCallThatCantCauseGC scope(masm);
   3027   __ CallCFunction(
   3028       ExternalReference::incremental_marking_record_write_function(isolate()),
   3029       argument_count);
   3030 
   3031   regs_.RestoreCallerSaveRegisters(masm, save_fp_regs_mode());
   3032 }
   3033 
   3034 
   3035 void RecordWriteStub::CheckNeedsToInformIncrementalMarker(
   3036     MacroAssembler* masm,
   3037     OnNoNeedToInformIncrementalMarker on_no_need,
   3038     Mode mode) {
   3039   Label object_is_black, need_incremental, need_incremental_pop_object;
   3040 
   3041   __ mov(regs_.scratch0(), Immediate(~Page::kPageAlignmentMask));
   3042   __ and_(regs_.scratch0(), regs_.object());
   3043   __ mov(regs_.scratch1(),
   3044          Operand(regs_.scratch0(),
   3045                  MemoryChunk::kWriteBarrierCounterOffset));
   3046   __ sub(regs_.scratch1(), Immediate(1));
   3047   __ mov(Operand(regs_.scratch0(),
   3048                  MemoryChunk::kWriteBarrierCounterOffset),
   3049          regs_.scratch1());
   3050   __ j(negative, &need_incremental);
   3051 
   3052   // Let's look at the color of the object:  If it is not black we don't have
   3053   // to inform the incremental marker.
   3054   __ JumpIfBlack(regs_.object(),
   3055                  regs_.scratch0(),
   3056                  regs_.scratch1(),
   3057                  &object_is_black,
   3058                  Label::kNear);
   3059 
   3060   regs_.Restore(masm);
   3061   if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
   3062     __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
   3063                            MacroAssembler::kReturnAtEnd);
   3064   } else {
   3065     __ ret(0);
   3066   }
   3067 
   3068   __ bind(&object_is_black);
   3069 
   3070   // Get the value from the slot.
   3071   __ mov(regs_.scratch0(), Operand(regs_.address(), 0));
   3072 
   3073   if (mode == INCREMENTAL_COMPACTION) {
   3074     Label ensure_not_white;
   3075 
   3076     __ CheckPageFlag(regs_.scratch0(),  // Contains value.
   3077                      regs_.scratch1(),  // Scratch.
   3078                      MemoryChunk::kEvacuationCandidateMask,
   3079                      zero,
   3080                      &ensure_not_white,
   3081                      Label::kNear);
   3082 
   3083     __ CheckPageFlag(regs_.object(),
   3084                      regs_.scratch1(),  // Scratch.
   3085                      MemoryChunk::kSkipEvacuationSlotsRecordingMask,
   3086                      not_zero,
   3087                      &ensure_not_white,
   3088                      Label::kNear);
   3089 
   3090     __ jmp(&need_incremental);
   3091 
   3092     __ bind(&ensure_not_white);
   3093   }
   3094 
   3095   // We need an extra register for this, so we push the object register
   3096   // temporarily.
   3097   __ push(regs_.object());
   3098   __ JumpIfWhite(regs_.scratch0(),  // The value.
   3099                  regs_.scratch1(),  // Scratch.
   3100                  regs_.object(),    // Scratch.
   3101                  &need_incremental_pop_object, Label::kNear);
   3102   __ pop(regs_.object());
   3103 
   3104   regs_.Restore(masm);
   3105   if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
   3106     __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
   3107                            MacroAssembler::kReturnAtEnd);
   3108   } else {
   3109     __ ret(0);
   3110   }
   3111 
   3112   __ bind(&need_incremental_pop_object);
   3113   __ pop(regs_.object());
   3114 
   3115   __ bind(&need_incremental);
   3116 
   3117   // Fall through when we need to inform the incremental marker.
   3118 }
   3119 
   3120 
   3121 void StubFailureTrampolineStub::Generate(MacroAssembler* masm) {
   3122   CEntryStub ces(isolate(), 1, kSaveFPRegs);
   3123   __ call(ces.GetCode(), RelocInfo::CODE_TARGET);
   3124   int parameter_count_offset =
   3125       StubFailureTrampolineFrameConstants::kArgumentsLengthOffset;
   3126   __ mov(ebx, MemOperand(ebp, parameter_count_offset));
   3127   masm->LeaveFrame(StackFrame::STUB_FAILURE_TRAMPOLINE);
   3128   __ pop(ecx);
   3129   int additional_offset =
   3130       function_mode() == JS_FUNCTION_STUB_MODE ? kPointerSize : 0;
   3131   __ lea(esp, MemOperand(esp, ebx, times_pointer_size, additional_offset));
   3132   __ jmp(ecx);  // Return to IC Miss stub, continuation still on stack.
   3133 }
   3134 
   3135 
   3136 void LoadICTrampolineStub::Generate(MacroAssembler* masm) {
   3137   __ EmitLoadTypeFeedbackVector(LoadWithVectorDescriptor::VectorRegister());
   3138   LoadICStub stub(isolate());
   3139   stub.GenerateForTrampoline(masm);
   3140 }
   3141 
   3142 
   3143 void KeyedLoadICTrampolineStub::Generate(MacroAssembler* masm) {
   3144   __ EmitLoadTypeFeedbackVector(LoadWithVectorDescriptor::VectorRegister());
   3145   KeyedLoadICStub stub(isolate());
   3146   stub.GenerateForTrampoline(masm);
   3147 }
   3148 
   3149 
   3150 static void HandleArrayCases(MacroAssembler* masm, Register receiver,
   3151                              Register key, Register vector, Register slot,
   3152                              Register feedback, bool is_polymorphic,
   3153                              Label* miss) {
   3154   // feedback initially contains the feedback array
   3155   Label next, next_loop, prepare_next;
   3156   Label load_smi_map, compare_map;
   3157   Label start_polymorphic;
   3158 
   3159   __ push(receiver);
   3160   __ push(vector);
   3161 
   3162   Register receiver_map = receiver;
   3163   Register cached_map = vector;
   3164 
   3165   // Receiver might not be a heap object.
   3166   __ JumpIfSmi(receiver, &load_smi_map);
   3167   __ mov(receiver_map, FieldOperand(receiver, 0));
   3168   __ bind(&compare_map);
   3169   __ mov(cached_map, FieldOperand(feedback, FixedArray::OffsetOfElementAt(0)));
   3170 
   3171   // A named keyed load might have a 2 element array, all other cases can count
   3172   // on an array with at least 2 {map, handler} pairs, so they can go right
   3173   // into polymorphic array handling.
   3174   __ cmp(receiver_map, FieldOperand(cached_map, WeakCell::kValueOffset));
   3175   __ j(not_equal, is_polymorphic ? &start_polymorphic : &next);
   3176 
   3177   // found, now call handler.
   3178   Register handler = feedback;
   3179   __ mov(handler, FieldOperand(feedback, FixedArray::OffsetOfElementAt(1)));
   3180   __ pop(vector);
   3181   __ pop(receiver);
   3182   __ lea(handler, FieldOperand(handler, Code::kHeaderSize));
   3183   __ jmp(handler);
   3184 
   3185   if (!is_polymorphic) {
   3186     __ bind(&next);
   3187     __ cmp(FieldOperand(feedback, FixedArray::kLengthOffset),
   3188            Immediate(Smi::FromInt(2)));
   3189     __ j(not_equal, &start_polymorphic);
   3190     __ pop(vector);
   3191     __ pop(receiver);
   3192     __ jmp(miss);
   3193   }
   3194 
   3195   // Polymorphic, we have to loop from 2 to N
   3196   __ bind(&start_polymorphic);
   3197   __ push(key);
   3198   Register counter = key;
   3199   __ mov(counter, Immediate(Smi::FromInt(2)));
   3200   __ bind(&next_loop);
   3201   __ mov(cached_map, FieldOperand(feedback, counter, times_half_pointer_size,
   3202                                   FixedArray::kHeaderSize));
   3203   __ cmp(receiver_map, FieldOperand(cached_map, WeakCell::kValueOffset));
   3204   __ j(not_equal, &prepare_next);
   3205   __ mov(handler, FieldOperand(feedback, counter, times_half_pointer_size,
   3206                                FixedArray::kHeaderSize + kPointerSize));
   3207   __ pop(key);
   3208   __ pop(vector);
   3209   __ pop(receiver);
   3210   __ lea(handler, FieldOperand(handler, Code::kHeaderSize));
   3211   __ jmp(handler);
   3212 
   3213   __ bind(&prepare_next);
   3214   __ add(counter, Immediate(Smi::FromInt(2)));
   3215   __ cmp(counter, FieldOperand(feedback, FixedArray::kLengthOffset));
   3216   __ j(less, &next_loop);
   3217 
   3218   // We exhausted our array of map handler pairs.
   3219   __ pop(key);
   3220   __ pop(vector);
   3221   __ pop(receiver);
   3222   __ jmp(miss);
   3223 
   3224   __ bind(&load_smi_map);
   3225   __ LoadRoot(receiver_map, Heap::kHeapNumberMapRootIndex);
   3226   __ jmp(&compare_map);
   3227 }
   3228 
   3229 
   3230 static void HandleMonomorphicCase(MacroAssembler* masm, Register receiver,
   3231                                   Register key, Register vector, Register slot,
   3232                                   Register weak_cell, Label* miss) {
   3233   // feedback initially contains the feedback array
   3234   Label compare_smi_map;
   3235 
   3236   // Move the weak map into the weak_cell register.
   3237   Register ic_map = weak_cell;
   3238   __ mov(ic_map, FieldOperand(weak_cell, WeakCell::kValueOffset));
   3239 
   3240   // Receiver might not be a heap object.
   3241   __ JumpIfSmi(receiver, &compare_smi_map);
   3242   __ cmp(ic_map, FieldOperand(receiver, 0));
   3243   __ j(not_equal, miss);
   3244   Register handler = weak_cell;
   3245   __ mov(handler, FieldOperand(vector, slot, times_half_pointer_size,
   3246                                FixedArray::kHeaderSize + kPointerSize));
   3247   __ lea(handler, FieldOperand(handler, Code::kHeaderSize));
   3248   __ jmp(handler);
   3249 
   3250   // In microbenchmarks, it made sense to unroll this code so that the call to
   3251   // the handler is duplicated for a HeapObject receiver and a Smi receiver.
   3252   __ bind(&compare_smi_map);
   3253   __ CompareRoot(ic_map, Heap::kHeapNumberMapRootIndex);
   3254   __ j(not_equal, miss);
   3255   __ mov(handler, FieldOperand(vector, slot, times_half_pointer_size,
   3256                                FixedArray::kHeaderSize + kPointerSize));
   3257   __ lea(handler, FieldOperand(handler, Code::kHeaderSize));
   3258   __ jmp(handler);
   3259 }
   3260 
   3261 
   3262 void LoadICStub::Generate(MacroAssembler* masm) { GenerateImpl(masm, false); }
   3263 
   3264 
   3265 void LoadICStub::GenerateForTrampoline(MacroAssembler* masm) {
   3266   GenerateImpl(masm, true);
   3267 }
   3268 
   3269 
   3270 void LoadICStub::GenerateImpl(MacroAssembler* masm, bool in_frame) {
   3271   Register receiver = LoadWithVectorDescriptor::ReceiverRegister();  // edx
   3272   Register name = LoadWithVectorDescriptor::NameRegister();          // ecx
   3273   Register vector = LoadWithVectorDescriptor::VectorRegister();      // ebx
   3274   Register slot = LoadWithVectorDescriptor::SlotRegister();          // eax
   3275   Register scratch = edi;
   3276   __ mov(scratch, FieldOperand(vector, slot, times_half_pointer_size,
   3277                                FixedArray::kHeaderSize));
   3278 
   3279   // Is it a weak cell?
   3280   Label try_array;
   3281   Label not_array, smi_key, key_okay, miss;
   3282   __ CompareRoot(FieldOperand(scratch, 0), Heap::kWeakCellMapRootIndex);
   3283   __ j(not_equal, &try_array);
   3284   HandleMonomorphicCase(masm, receiver, name, vector, slot, scratch, &miss);
   3285 
   3286   // Is it a fixed array?
   3287   __ bind(&try_array);
   3288   __ CompareRoot(FieldOperand(scratch, 0), Heap::kFixedArrayMapRootIndex);
   3289   __ j(not_equal, &not_array);
   3290   HandleArrayCases(masm, receiver, name, vector, slot, scratch, true, &miss);
   3291 
   3292   __ bind(&not_array);
   3293   __ CompareRoot(scratch, Heap::kmegamorphic_symbolRootIndex);
   3294   __ j(not_equal, &miss);
   3295   __ push(slot);
   3296   __ push(vector);
   3297   Code::Flags code_flags =
   3298       Code::RemoveHolderFromFlags(Code::ComputeHandlerFlags(Code::LOAD_IC));
   3299   masm->isolate()->stub_cache()->GenerateProbe(masm, Code::LOAD_IC, code_flags,
   3300                                                receiver, name, vector, scratch);
   3301   __ pop(vector);
   3302   __ pop(slot);
   3303 
   3304   __ bind(&miss);
   3305   LoadIC::GenerateMiss(masm);
   3306 }
   3307 
   3308 
   3309 void KeyedLoadICStub::Generate(MacroAssembler* masm) {
   3310   GenerateImpl(masm, false);
   3311 }
   3312 
   3313 
   3314 void KeyedLoadICStub::GenerateForTrampoline(MacroAssembler* masm) {
   3315   GenerateImpl(masm, true);
   3316 }
   3317 
   3318 
   3319 void KeyedLoadICStub::GenerateImpl(MacroAssembler* masm, bool in_frame) {
   3320   Register receiver = LoadWithVectorDescriptor::ReceiverRegister();  // edx
   3321   Register key = LoadWithVectorDescriptor::NameRegister();           // ecx
   3322   Register vector = LoadWithVectorDescriptor::VectorRegister();      // ebx
   3323   Register slot = LoadWithVectorDescriptor::SlotRegister();          // eax
   3324   Register feedback = edi;
   3325   __ mov(feedback, FieldOperand(vector, slot, times_half_pointer_size,
   3326                                 FixedArray::kHeaderSize));
   3327   // Is it a weak cell?
   3328   Label try_array;
   3329   Label not_array, smi_key, key_okay, miss;
   3330   __ CompareRoot(FieldOperand(feedback, 0), Heap::kWeakCellMapRootIndex);
   3331   __ j(not_equal, &try_array);
   3332   HandleMonomorphicCase(masm, receiver, key, vector, slot, feedback, &miss);
   3333 
   3334   __ bind(&try_array);
   3335   // Is it a fixed array?
   3336   __ CompareRoot(FieldOperand(feedback, 0), Heap::kFixedArrayMapRootIndex);
   3337   __ j(not_equal, &not_array);
   3338 
   3339   // We have a polymorphic element handler.
   3340   Label polymorphic, try_poly_name;
   3341   __ bind(&polymorphic);
   3342   HandleArrayCases(masm, receiver, key, vector, slot, feedback, true, &miss);
   3343 
   3344   __ bind(&not_array);
   3345   // Is it generic?
   3346   __ CompareRoot(feedback, Heap::kmegamorphic_symbolRootIndex);
   3347   __ j(not_equal, &try_poly_name);
   3348   Handle<Code> megamorphic_stub =
   3349       KeyedLoadIC::ChooseMegamorphicStub(masm->isolate(), GetExtraICState());
   3350   __ jmp(megamorphic_stub, RelocInfo::CODE_TARGET);
   3351 
   3352   __ bind(&try_poly_name);
   3353   // We might have a name in feedback, and a fixed array in the next slot.
   3354   __ cmp(key, feedback);
   3355   __ j(not_equal, &miss);
   3356   // If the name comparison succeeded, we know we have a fixed array with
   3357   // at least one map/handler pair.
   3358   __ mov(feedback, FieldOperand(vector, slot, times_half_pointer_size,
   3359                                 FixedArray::kHeaderSize + kPointerSize));
   3360   HandleArrayCases(masm, receiver, key, vector, slot, feedback, false, &miss);
   3361 
   3362   __ bind(&miss);
   3363   KeyedLoadIC::GenerateMiss(masm);
   3364 }
   3365 
   3366 
   3367 void VectorStoreICTrampolineStub::Generate(MacroAssembler* masm) {
   3368   __ EmitLoadTypeFeedbackVector(VectorStoreICDescriptor::VectorRegister());
   3369   VectorStoreICStub stub(isolate(), state());
   3370   stub.GenerateForTrampoline(masm);
   3371 }
   3372 
   3373 
   3374 void VectorKeyedStoreICTrampolineStub::Generate(MacroAssembler* masm) {
   3375   __ EmitLoadTypeFeedbackVector(VectorStoreICDescriptor::VectorRegister());
   3376   VectorKeyedStoreICStub stub(isolate(), state());
   3377   stub.GenerateForTrampoline(masm);
   3378 }
   3379 
   3380 
   3381 void VectorStoreICStub::Generate(MacroAssembler* masm) {
   3382   GenerateImpl(masm, false);
   3383 }
   3384 
   3385 
   3386 void VectorStoreICStub::GenerateForTrampoline(MacroAssembler* masm) {
   3387   GenerateImpl(masm, true);
   3388 }
   3389 
   3390 
   3391 // value is on the stack already.
   3392 static void HandlePolymorphicStoreCase(MacroAssembler* masm, Register receiver,
   3393                                        Register key, Register vector,
   3394                                        Register slot, Register feedback,
   3395                                        bool is_polymorphic, Label* miss) {
   3396   // feedback initially contains the feedback array
   3397   Label next, next_loop, prepare_next;
   3398   Label load_smi_map, compare_map;
   3399   Label start_polymorphic;
   3400   Label pop_and_miss;
   3401   ExternalReference virtual_register =
   3402       ExternalReference::virtual_handler_register(masm->isolate());
   3403 
   3404   __ push(receiver);
   3405   __ push(vector);
   3406 
   3407   Register receiver_map = receiver;
   3408   Register cached_map = vector;
   3409 
   3410   // Receiver might not be a heap object.
   3411   __ JumpIfSmi(receiver, &load_smi_map);
   3412   __ mov(receiver_map, FieldOperand(receiver, 0));
   3413   __ bind(&compare_map);
   3414   __ mov(cached_map, FieldOperand(feedback, FixedArray::OffsetOfElementAt(0)));
   3415 
   3416   // A named keyed store might have a 2 element array, all other cases can count
   3417   // on an array with at least 2 {map, handler} pairs, so they can go right
   3418   // into polymorphic array handling.
   3419   __ cmp(receiver_map, FieldOperand(cached_map, WeakCell::kValueOffset));
   3420   __ j(not_equal, &start_polymorphic);
   3421 
   3422   // found, now call handler.
   3423   Register handler = feedback;
   3424   DCHECK(handler.is(VectorStoreICDescriptor::ValueRegister()));
   3425   __ mov(handler, FieldOperand(feedback, FixedArray::OffsetOfElementAt(1)));
   3426   __ pop(vector);
   3427   __ pop(receiver);
   3428   __ lea(handler, FieldOperand(handler, Code::kHeaderSize));
   3429   __ mov(Operand::StaticVariable(virtual_register), handler);
   3430   __ pop(handler);  // Pop "value".
   3431   __ jmp(Operand::StaticVariable(virtual_register));
   3432 
   3433   // Polymorphic, we have to loop from 2 to N
   3434   __ bind(&start_polymorphic);
   3435   __ push(key);
   3436   Register counter = key;
   3437   __ mov(counter, Immediate(Smi::FromInt(2)));
   3438 
   3439   if (!is_polymorphic) {
   3440     // If is_polymorphic is false, we may only have a two element array.
   3441     // Check against length now in that case.
   3442     __ cmp(counter, FieldOperand(feedback, FixedArray::kLengthOffset));
   3443     __ j(greater_equal, &pop_and_miss);
   3444   }
   3445 
   3446   __ bind(&next_loop);
   3447   __ mov(cached_map, FieldOperand(feedback, counter, times_half_pointer_size,
   3448                                   FixedArray::kHeaderSize));
   3449   __ cmp(receiver_map, FieldOperand(cached_map, WeakCell::kValueOffset));
   3450   __ j(not_equal, &prepare_next);
   3451   __ mov(handler, FieldOperand(feedback, counter, times_half_pointer_size,
   3452                                FixedArray::kHeaderSize + kPointerSize));
   3453   __ lea(handler, FieldOperand(handler, Code::kHeaderSize));
   3454   __ pop(key);
   3455   __ pop(vector);
   3456   __ pop(receiver);
   3457   __ mov(Operand::StaticVariable(virtual_register), handler);
   3458   __ pop(handler);  // Pop "value".
   3459   __ jmp(Operand::StaticVariable(virtual_register));
   3460 
   3461   __ bind(&prepare_next);
   3462   __ add(counter, Immediate(Smi::FromInt(2)));
   3463   __ cmp(counter, FieldOperand(feedback, FixedArray::kLengthOffset));
   3464   __ j(less, &next_loop);
   3465 
   3466   // We exhausted our array of map handler pairs.
   3467   __ bind(&pop_and_miss);
   3468   __ pop(key);
   3469   __ pop(vector);
   3470   __ pop(receiver);
   3471   __ jmp(miss);
   3472 
   3473   __ bind(&load_smi_map);
   3474   __ LoadRoot(receiver_map, Heap::kHeapNumberMapRootIndex);
   3475   __ jmp(&compare_map);
   3476 }
   3477 
   3478 
   3479 static void HandleMonomorphicStoreCase(MacroAssembler* masm, Register receiver,
   3480                                        Register key, Register vector,
   3481                                        Register slot, Register weak_cell,
   3482                                        Label* miss) {
   3483   // The store ic value is on the stack.
   3484   DCHECK(weak_cell.is(VectorStoreICDescriptor::ValueRegister()));
   3485   ExternalReference virtual_register =
   3486       ExternalReference::virtual_handler_register(masm->isolate());
   3487 
   3488   // feedback initially contains the feedback array
   3489   Label compare_smi_map;
   3490 
   3491   // Move the weak map into the weak_cell register.
   3492   Register ic_map = weak_cell;
   3493   __ mov(ic_map, FieldOperand(weak_cell, WeakCell::kValueOffset));
   3494 
   3495   // Receiver might not be a heap object.
   3496   __ JumpIfSmi(receiver, &compare_smi_map);
   3497   __ cmp(ic_map, FieldOperand(receiver, 0));
   3498   __ j(not_equal, miss);
   3499   __ mov(weak_cell, FieldOperand(vector, slot, times_half_pointer_size,
   3500                                  FixedArray::kHeaderSize + kPointerSize));
   3501   __ lea(weak_cell, FieldOperand(weak_cell, Code::kHeaderSize));
   3502   // Put the store ic value back in it's register.
   3503   __ mov(Operand::StaticVariable(virtual_register), weak_cell);
   3504   __ pop(weak_cell);  // Pop "value".
   3505   // jump to the handler.
   3506   __ jmp(Operand::StaticVariable(virtual_register));
   3507 
   3508   // In microbenchmarks, it made sense to unroll this code so that the call to
   3509   // the handler is duplicated for a HeapObject receiver and a Smi receiver.
   3510   __ bind(&compare_smi_map);
   3511   __ CompareRoot(ic_map, Heap::kHeapNumberMapRootIndex);
   3512   __ j(not_equal, miss);
   3513   __ mov(weak_cell, FieldOperand(vector, slot, times_half_pointer_size,
   3514                                  FixedArray::kHeaderSize + kPointerSize));
   3515   __ lea(weak_cell, FieldOperand(weak_cell, Code::kHeaderSize));
   3516   __ mov(Operand::StaticVariable(virtual_register), weak_cell);
   3517   __ pop(weak_cell);  // Pop "value".
   3518   // jump to the handler.
   3519   __ jmp(Operand::StaticVariable(virtual_register));
   3520 }
   3521 
   3522 
   3523 void VectorStoreICStub::GenerateImpl(MacroAssembler* masm, bool in_frame) {
   3524   Register receiver = VectorStoreICDescriptor::ReceiverRegister();  // edx
   3525   Register key = VectorStoreICDescriptor::NameRegister();           // ecx
   3526   Register value = VectorStoreICDescriptor::ValueRegister();        // eax
   3527   Register vector = VectorStoreICDescriptor::VectorRegister();      // ebx
   3528   Register slot = VectorStoreICDescriptor::SlotRegister();          // edi
   3529   Label miss;
   3530 
   3531   __ push(value);
   3532 
   3533   Register scratch = value;
   3534   __ mov(scratch, FieldOperand(vector, slot, times_half_pointer_size,
   3535                                FixedArray::kHeaderSize));
   3536 
   3537   // Is it a weak cell?
   3538   Label try_array;
   3539   Label not_array, smi_key, key_okay;
   3540   __ CompareRoot(FieldOperand(scratch, 0), Heap::kWeakCellMapRootIndex);
   3541   __ j(not_equal, &try_array);
   3542   HandleMonomorphicStoreCase(masm, receiver, key, vector, slot, scratch, &miss);
   3543 
   3544   // Is it a fixed array?
   3545   __ bind(&try_array);
   3546   __ CompareRoot(FieldOperand(scratch, 0), Heap::kFixedArrayMapRootIndex);
   3547   __ j(not_equal, &not_array);
   3548   HandlePolymorphicStoreCase(masm, receiver, key, vector, slot, scratch, true,
   3549                              &miss);
   3550 
   3551   __ bind(&not_array);
   3552   __ CompareRoot(scratch, Heap::kmegamorphic_symbolRootIndex);
   3553   __ j(not_equal, &miss);
   3554 
   3555   __ pop(value);
   3556   __ push(slot);
   3557   __ push(vector);
   3558   Code::Flags code_flags =
   3559       Code::RemoveHolderFromFlags(Code::ComputeHandlerFlags(Code::STORE_IC));
   3560   masm->isolate()->stub_cache()->GenerateProbe(masm, Code::STORE_IC, code_flags,
   3561                                                receiver, key, slot, no_reg);
   3562   __ pop(vector);
   3563   __ pop(slot);
   3564   Label no_pop_miss;
   3565   __ jmp(&no_pop_miss);
   3566 
   3567   __ bind(&miss);
   3568   __ pop(value);
   3569   __ bind(&no_pop_miss);
   3570   StoreIC::GenerateMiss(masm);
   3571 }
   3572 
   3573 
   3574 void VectorKeyedStoreICStub::Generate(MacroAssembler* masm) {
   3575   GenerateImpl(masm, false);
   3576 }
   3577 
   3578 
   3579 void VectorKeyedStoreICStub::GenerateForTrampoline(MacroAssembler* masm) {
   3580   GenerateImpl(masm, true);
   3581 }
   3582 
   3583 
   3584 static void HandlePolymorphicKeyedStoreCase(MacroAssembler* masm,
   3585                                             Register receiver, Register key,
   3586                                             Register vector, Register slot,
   3587                                             Register feedback, Label* miss) {
   3588   // feedback initially contains the feedback array
   3589   Label next, next_loop, prepare_next;
   3590   Label load_smi_map, compare_map;
   3591   Label transition_call;
   3592   Label pop_and_miss;
   3593   ExternalReference virtual_register =
   3594       ExternalReference::virtual_handler_register(masm->isolate());
   3595   ExternalReference virtual_slot =
   3596       ExternalReference::virtual_slot_register(masm->isolate());
   3597 
   3598   __ push(receiver);
   3599   __ push(vector);
   3600 
   3601   Register receiver_map = receiver;
   3602   Register cached_map = vector;
   3603   Register value = StoreDescriptor::ValueRegister();
   3604 
   3605   // Receiver might not be a heap object.
   3606   __ JumpIfSmi(receiver, &load_smi_map);
   3607   __ mov(receiver_map, FieldOperand(receiver, 0));
   3608   __ bind(&compare_map);
   3609 
   3610   // Polymorphic, we have to loop from 0 to N - 1
   3611   __ push(key);
   3612   // Current stack layout:
   3613   // - esp[0]    -- key
   3614   // - esp[4]    -- vector
   3615   // - esp[8]    -- receiver
   3616   // - esp[12]   -- value
   3617   // - esp[16]   -- return address
   3618   //
   3619   // Required stack layout for handler call:
   3620   // - esp[0]    -- return address
   3621   // - receiver, key, value, vector, slot in registers.
   3622   // - handler in virtual register.
   3623   Register counter = key;
   3624   __ mov(counter, Immediate(Smi::FromInt(0)));
   3625   __ bind(&next_loop);
   3626   __ mov(cached_map, FieldOperand(feedback, counter, times_half_pointer_size,
   3627                                   FixedArray::kHeaderSize));
   3628   __ cmp(receiver_map, FieldOperand(cached_map, WeakCell::kValueOffset));
   3629   __ j(not_equal, &prepare_next);
   3630   __ mov(cached_map, FieldOperand(feedback, counter, times_half_pointer_size,
   3631                                   FixedArray::kHeaderSize + kPointerSize));
   3632   __ CompareRoot(cached_map, Heap::kUndefinedValueRootIndex);
   3633   __ j(not_equal, &transition_call);
   3634   __ mov(feedback, FieldOperand(feedback, counter, times_half_pointer_size,
   3635                                 FixedArray::kHeaderSize + 2 * kPointerSize));
   3636   __ pop(key);
   3637   __ pop(vector);
   3638   __ pop(receiver);
   3639   __ lea(feedback, FieldOperand(feedback, Code::kHeaderSize));
   3640   __ mov(Operand::StaticVariable(virtual_register), feedback);
   3641   __ pop(value);
   3642   __ jmp(Operand::StaticVariable(virtual_register));
   3643 
   3644   __ bind(&transition_call);
   3645   // Current stack layout:
   3646   // - esp[0]    -- key
   3647   // - esp[4]    -- vector
   3648   // - esp[8]    -- receiver
   3649   // - esp[12]   -- value
   3650   // - esp[16]   -- return address
   3651   //
   3652   // Required stack layout for handler call:
   3653   // - esp[0]    -- return address
   3654   // - receiver, key, value, map, vector in registers.
   3655   // - handler and slot in virtual registers.
   3656   __ mov(Operand::StaticVariable(virtual_slot), slot);
   3657   __ mov(feedback, FieldOperand(feedback, counter, times_half_pointer_size,
   3658                                 FixedArray::kHeaderSize + 2 * kPointerSize));
   3659   __ lea(feedback, FieldOperand(feedback, Code::kHeaderSize));
   3660   __ mov(Operand::StaticVariable(virtual_register), feedback);
   3661 
   3662   __ mov(cached_map, FieldOperand(cached_map, WeakCell::kValueOffset));
   3663   // The weak cell may have been cleared.
   3664   __ JumpIfSmi(cached_map, &pop_and_miss);
   3665   DCHECK(!cached_map.is(VectorStoreTransitionDescriptor::MapRegister()));
   3666   __ mov(VectorStoreTransitionDescriptor::MapRegister(), cached_map);
   3667 
   3668   // Pop key into place.
   3669   __ pop(key);
   3670   __ pop(vector);
   3671   __ pop(receiver);
   3672   __ pop(value);
   3673   __ jmp(Operand::StaticVariable(virtual_register));
   3674 
   3675   __ bind(&prepare_next);
   3676   __ add(counter, Immediate(Smi::FromInt(3)));
   3677   __ cmp(counter, FieldOperand(feedback, FixedArray::kLengthOffset));
   3678   __ j(less, &next_loop);
   3679 
   3680   // We exhausted our array of map handler pairs.
   3681   __ bind(&pop_and_miss);
   3682   __ pop(key);
   3683   __ pop(vector);
   3684   __ pop(receiver);
   3685   __ jmp(miss);
   3686 
   3687   __ bind(&load_smi_map);
   3688   __ LoadRoot(receiver_map, Heap::kHeapNumberMapRootIndex);
   3689   __ jmp(&compare_map);
   3690 }
   3691 
   3692 void VectorKeyedStoreICStub::GenerateImpl(MacroAssembler* masm, bool in_frame) {
   3693   Register receiver = VectorStoreICDescriptor::ReceiverRegister();  // edx
   3694   Register key = VectorStoreICDescriptor::NameRegister();           // ecx
   3695   Register value = VectorStoreICDescriptor::ValueRegister();        // eax
   3696   Register vector = VectorStoreICDescriptor::VectorRegister();      // ebx
   3697   Register slot = VectorStoreICDescriptor::SlotRegister();          // edi
   3698   Label miss;
   3699 
   3700   __ push(value);
   3701 
   3702   Register scratch = value;
   3703   __ mov(scratch, FieldOperand(vector, slot, times_half_pointer_size,
   3704                                FixedArray::kHeaderSize));
   3705 
   3706   // Is it a weak cell?
   3707   Label try_array;
   3708   Label not_array, smi_key, key_okay;
   3709   __ CompareRoot(FieldOperand(scratch, 0), Heap::kWeakCellMapRootIndex);
   3710   __ j(not_equal, &try_array);
   3711   HandleMonomorphicStoreCase(masm, receiver, key, vector, slot, scratch, &miss);
   3712 
   3713   // Is it a fixed array?
   3714   __ bind(&try_array);
   3715   __ CompareRoot(FieldOperand(scratch, 0), Heap::kFixedArrayMapRootIndex);
   3716   __ j(not_equal, &not_array);
   3717   HandlePolymorphicKeyedStoreCase(masm, receiver, key, vector, slot, scratch,
   3718                                   &miss);
   3719 
   3720   __ bind(&not_array);
   3721   Label try_poly_name;
   3722   __ CompareRoot(scratch, Heap::kmegamorphic_symbolRootIndex);
   3723   __ j(not_equal, &try_poly_name);
   3724 
   3725   __ pop(value);
   3726 
   3727   Handle<Code> megamorphic_stub =
   3728       KeyedStoreIC::ChooseMegamorphicStub(masm->isolate(), GetExtraICState());
   3729   __ jmp(megamorphic_stub, RelocInfo::CODE_TARGET);
   3730 
   3731   __ bind(&try_poly_name);
   3732   // We might have a name in feedback, and a fixed array in the next slot.
   3733   __ cmp(key, scratch);
   3734   __ j(not_equal, &miss);
   3735   // If the name comparison succeeded, we know we have a fixed array with
   3736   // at least one map/handler pair.
   3737   __ mov(scratch, FieldOperand(vector, slot, times_half_pointer_size,
   3738                                FixedArray::kHeaderSize + kPointerSize));
   3739   HandlePolymorphicStoreCase(masm, receiver, key, vector, slot, scratch, false,
   3740                              &miss);
   3741 
   3742   __ bind(&miss);
   3743   __ pop(value);
   3744   KeyedStoreIC::GenerateMiss(masm);
   3745 }
   3746 
   3747 void CallICTrampolineStub::Generate(MacroAssembler* masm) {
   3748   __ EmitLoadTypeFeedbackVector(ebx);
   3749   CallICStub stub(isolate(), state());
   3750   __ jmp(stub.GetCode(), RelocInfo::CODE_TARGET);
   3751 }
   3752 
   3753 void ProfileEntryHookStub::MaybeCallEntryHook(MacroAssembler* masm) {
   3754   if (masm->isolate()->function_entry_hook() != NULL) {
   3755     ProfileEntryHookStub stub(masm->isolate());
   3756     masm->CallStub(&stub);
   3757   }
   3758 }
   3759 
   3760 void ProfileEntryHookStub::Generate(MacroAssembler* masm) {
   3761   // Save volatile registers.
   3762   const int kNumSavedRegisters = 3;
   3763   __ push(eax);
   3764   __ push(ecx);
   3765   __ push(edx);
   3766 
   3767   // Calculate and push the original stack pointer.
   3768   __ lea(eax, Operand(esp, (kNumSavedRegisters + 1) * kPointerSize));
   3769   __ push(eax);
   3770 
   3771   // Retrieve our return address and use it to calculate the calling
   3772   // function's address.
   3773   __ mov(eax, Operand(esp, (kNumSavedRegisters + 1) * kPointerSize));
   3774   __ sub(eax, Immediate(Assembler::kCallInstructionLength));
   3775   __ push(eax);
   3776 
   3777   // Call the entry hook.
   3778   DCHECK(isolate()->function_entry_hook() != NULL);
   3779   __ call(FUNCTION_ADDR(isolate()->function_entry_hook()),
   3780           RelocInfo::RUNTIME_ENTRY);
   3781   __ add(esp, Immediate(2 * kPointerSize));
   3782 
   3783   // Restore ecx.
   3784   __ pop(edx);
   3785   __ pop(ecx);
   3786   __ pop(eax);
   3787 
   3788   __ ret(0);
   3789 }
   3790 
   3791 template <class T>
   3792 static void CreateArrayDispatch(MacroAssembler* masm,
   3793                                 AllocationSiteOverrideMode mode) {
   3794   if (mode == DISABLE_ALLOCATION_SITES) {
   3795     T stub(masm->isolate(), GetInitialFastElementsKind(), mode);
   3796     __ TailCallStub(&stub);
   3797   } else if (mode == DONT_OVERRIDE) {
   3798     int last_index =
   3799         GetSequenceIndexFromFastElementsKind(TERMINAL_FAST_ELEMENTS_KIND);
   3800     for (int i = 0; i <= last_index; ++i) {
   3801       Label next;
   3802       ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
   3803       __ cmp(edx, kind);
   3804       __ j(not_equal, &next);
   3805       T stub(masm->isolate(), kind);
   3806       __ TailCallStub(&stub);
   3807       __ bind(&next);
   3808     }
   3809 
   3810     // If we reached this point there is a problem.
   3811     __ Abort(kUnexpectedElementsKindInArrayConstructor);
   3812   } else {
   3813     UNREACHABLE();
   3814   }
   3815 }
   3816 
   3817 static void CreateArrayDispatchOneArgument(MacroAssembler* masm,
   3818                                            AllocationSiteOverrideMode mode) {
   3819   // ebx - allocation site (if mode != DISABLE_ALLOCATION_SITES)
   3820   // edx - kind (if mode != DISABLE_ALLOCATION_SITES)
   3821   // eax - number of arguments
   3822   // edi - constructor?
   3823   // esp[0] - return address
   3824   // esp[4] - last argument
   3825   Label normal_sequence;
   3826   if (mode == DONT_OVERRIDE) {
   3827     STATIC_ASSERT(FAST_SMI_ELEMENTS == 0);
   3828     STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
   3829     STATIC_ASSERT(FAST_ELEMENTS == 2);
   3830     STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3);
   3831     STATIC_ASSERT(FAST_DOUBLE_ELEMENTS == 4);
   3832     STATIC_ASSERT(FAST_HOLEY_DOUBLE_ELEMENTS == 5);
   3833 
   3834     // is the low bit set? If so, we are holey and that is good.
   3835     __ test_b(edx, Immediate(1));
   3836     __ j(not_zero, &normal_sequence);
   3837   }
   3838 
   3839   // look at the first argument
   3840   __ mov(ecx, Operand(esp, kPointerSize));
   3841   __ test(ecx, ecx);
   3842   __ j(zero, &normal_sequence);
   3843 
   3844   if (mode == DISABLE_ALLOCATION_SITES) {
   3845     ElementsKind initial = GetInitialFastElementsKind();
   3846     ElementsKind holey_initial = GetHoleyElementsKind(initial);
   3847 
   3848     ArraySingleArgumentConstructorStub stub_holey(
   3849         masm->isolate(), holey_initial, DISABLE_ALLOCATION_SITES);
   3850     __ TailCallStub(&stub_holey);
   3851 
   3852     __ bind(&normal_sequence);
   3853     ArraySingleArgumentConstructorStub stub(masm->isolate(), initial,
   3854                                             DISABLE_ALLOCATION_SITES);
   3855     __ TailCallStub(&stub);
   3856   } else if (mode == DONT_OVERRIDE) {
   3857     // We are going to create a holey array, but our kind is non-holey.
   3858     // Fix kind and retry.
   3859     __ inc(edx);
   3860 
   3861     if (FLAG_debug_code) {
   3862       Handle<Map> allocation_site_map =
   3863           masm->isolate()->factory()->allocation_site_map();
   3864       __ cmp(FieldOperand(ebx, 0), Immediate(allocation_site_map));
   3865       __ Assert(equal, kExpectedAllocationSite);
   3866     }
   3867 
   3868     // Save the resulting elements kind in type info. We can't just store r3
   3869     // in the AllocationSite::transition_info field because elements kind is
   3870     // restricted to a portion of the field...upper bits need to be left alone.
   3871     STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0);
   3872     __ add(FieldOperand(ebx, AllocationSite::kTransitionInfoOffset),
   3873            Immediate(Smi::FromInt(kFastElementsKindPackedToHoley)));
   3874 
   3875     __ bind(&normal_sequence);
   3876     int last_index =
   3877         GetSequenceIndexFromFastElementsKind(TERMINAL_FAST_ELEMENTS_KIND);
   3878     for (int i = 0; i <= last_index; ++i) {
   3879       Label next;
   3880       ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
   3881       __ cmp(edx, kind);
   3882       __ j(not_equal, &next);
   3883       ArraySingleArgumentConstructorStub stub(masm->isolate(), kind);
   3884       __ TailCallStub(&stub);
   3885       __ bind(&next);
   3886     }
   3887 
   3888     // If we reached this point there is a problem.
   3889     __ Abort(kUnexpectedElementsKindInArrayConstructor);
   3890   } else {
   3891     UNREACHABLE();
   3892   }
   3893 }
   3894 
   3895 template <class T>
   3896 static void ArrayConstructorStubAheadOfTimeHelper(Isolate* isolate) {
   3897   int to_index =
   3898       GetSequenceIndexFromFastElementsKind(TERMINAL_FAST_ELEMENTS_KIND);
   3899   for (int i = 0; i <= to_index; ++i) {
   3900     ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
   3901     T stub(isolate, kind);
   3902     stub.GetCode();
   3903     if (AllocationSite::GetMode(kind) != DONT_TRACK_ALLOCATION_SITE) {
   3904       T stub1(isolate, kind, DISABLE_ALLOCATION_SITES);
   3905       stub1.GetCode();
   3906     }
   3907   }
   3908 }
   3909 
   3910 void CommonArrayConstructorStub::GenerateStubsAheadOfTime(Isolate* isolate) {
   3911   ArrayConstructorStubAheadOfTimeHelper<ArrayNoArgumentConstructorStub>(
   3912       isolate);
   3913   ArrayConstructorStubAheadOfTimeHelper<ArraySingleArgumentConstructorStub>(
   3914       isolate);
   3915   ArrayNArgumentsConstructorStub stub(isolate);
   3916   stub.GetCode();
   3917 
   3918   ElementsKind kinds[2] = {FAST_ELEMENTS, FAST_HOLEY_ELEMENTS};
   3919   for (int i = 0; i < 2; i++) {
   3920     // For internal arrays we only need a few things
   3921     InternalArrayNoArgumentConstructorStub stubh1(isolate, kinds[i]);
   3922     stubh1.GetCode();
   3923     InternalArraySingleArgumentConstructorStub stubh2(isolate, kinds[i]);
   3924     stubh2.GetCode();
   3925   }
   3926 }
   3927 
   3928 void ArrayConstructorStub::GenerateDispatchToArrayStub(
   3929     MacroAssembler* masm, AllocationSiteOverrideMode mode) {
   3930   if (argument_count() == ANY) {
   3931     Label not_zero_case, not_one_case;
   3932     __ test(eax, eax);
   3933     __ j(not_zero, &not_zero_case);
   3934     CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode);
   3935 
   3936     __ bind(&not_zero_case);
   3937     __ cmp(eax, 1);
   3938     __ j(greater, &not_one_case);
   3939     CreateArrayDispatchOneArgument(masm, mode);
   3940 
   3941     __ bind(&not_one_case);
   3942     ArrayNArgumentsConstructorStub stub(masm->isolate());
   3943     __ TailCallStub(&stub);
   3944   } else if (argument_count() == NONE) {
   3945     CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode);
   3946   } else if (argument_count() == ONE) {
   3947     CreateArrayDispatchOneArgument(masm, mode);
   3948   } else if (argument_count() == MORE_THAN_ONE) {
   3949     ArrayNArgumentsConstructorStub stub(masm->isolate());
   3950     __ TailCallStub(&stub);
   3951   } else {
   3952     UNREACHABLE();
   3953   }
   3954 }
   3955 
   3956 void ArrayConstructorStub::Generate(MacroAssembler* masm) {
   3957   // ----------- S t a t e -------------
   3958   //  -- eax : argc (only if argument_count() is ANY or MORE_THAN_ONE)
   3959   //  -- ebx : AllocationSite or undefined
   3960   //  -- edi : constructor
   3961   //  -- edx : Original constructor
   3962   //  -- esp[0] : return address
   3963   //  -- esp[4] : last argument
   3964   // -----------------------------------
   3965   if (FLAG_debug_code) {
   3966     // The array construct code is only set for the global and natives
   3967     // builtin Array functions which always have maps.
   3968 
   3969     // Initial map for the builtin Array function should be a map.
   3970     __ mov(ecx, FieldOperand(edi, JSFunction::kPrototypeOrInitialMapOffset));
   3971     // Will both indicate a NULL and a Smi.
   3972     __ test(ecx, Immediate(kSmiTagMask));
   3973     __ Assert(not_zero, kUnexpectedInitialMapForArrayFunction);
   3974     __ CmpObjectType(ecx, MAP_TYPE, ecx);
   3975     __ Assert(equal, kUnexpectedInitialMapForArrayFunction);
   3976 
   3977     // We should either have undefined in ebx or a valid AllocationSite
   3978     __ AssertUndefinedOrAllocationSite(ebx);
   3979   }
   3980 
   3981   Label subclassing;
   3982 
   3983   // Enter the context of the Array function.
   3984   __ mov(esi, FieldOperand(edi, JSFunction::kContextOffset));
   3985 
   3986   __ cmp(edx, edi);
   3987   __ j(not_equal, &subclassing);
   3988 
   3989   Label no_info;
   3990   // If the feedback vector is the undefined value call an array constructor
   3991   // that doesn't use AllocationSites.
   3992   __ cmp(ebx, isolate()->factory()->undefined_value());
   3993   __ j(equal, &no_info);
   3994 
   3995   // Only look at the lower 16 bits of the transition info.
   3996   __ mov(edx, FieldOperand(ebx, AllocationSite::kTransitionInfoOffset));
   3997   __ SmiUntag(edx);
   3998   STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0);
   3999   __ and_(edx, Immediate(AllocationSite::ElementsKindBits::kMask));
   4000   GenerateDispatchToArrayStub(masm, DONT_OVERRIDE);
   4001 
   4002   __ bind(&no_info);
   4003   GenerateDispatchToArrayStub(masm, DISABLE_ALLOCATION_SITES);
   4004 
   4005   // Subclassing.
   4006   __ bind(&subclassing);
   4007   switch (argument_count()) {
   4008     case ANY:
   4009     case MORE_THAN_ONE:
   4010       __ mov(Operand(esp, eax, times_pointer_size, kPointerSize), edi);
   4011       __ add(eax, Immediate(3));
   4012       break;
   4013     case NONE:
   4014       __ mov(Operand(esp, 1 * kPointerSize), edi);
   4015       __ mov(eax, Immediate(3));
   4016       break;
   4017     case ONE:
   4018       __ mov(Operand(esp, 2 * kPointerSize), edi);
   4019       __ mov(eax, Immediate(4));
   4020       break;
   4021   }
   4022   __ PopReturnAddressTo(ecx);
   4023   __ Push(edx);
   4024   __ Push(ebx);
   4025   __ PushReturnAddressFrom(ecx);
   4026   __ JumpToExternalReference(ExternalReference(Runtime::kNewArray, isolate()));
   4027 }
   4028 
   4029 void InternalArrayConstructorStub::GenerateCase(MacroAssembler* masm,
   4030                                                 ElementsKind kind) {
   4031   Label not_zero_case, not_one_case;
   4032   Label normal_sequence;
   4033 
   4034   __ test(eax, eax);
   4035   __ j(not_zero, &not_zero_case);
   4036   InternalArrayNoArgumentConstructorStub stub0(isolate(), kind);
   4037   __ TailCallStub(&stub0);
   4038 
   4039   __ bind(&not_zero_case);
   4040   __ cmp(eax, 1);
   4041   __ j(greater, &not_one_case);
   4042 
   4043   if (IsFastPackedElementsKind(kind)) {
   4044     // We might need to create a holey array
   4045     // look at the first argument
   4046     __ mov(ecx, Operand(esp, kPointerSize));
   4047     __ test(ecx, ecx);
   4048     __ j(zero, &normal_sequence);
   4049 
   4050     InternalArraySingleArgumentConstructorStub stub1_holey(
   4051         isolate(), GetHoleyElementsKind(kind));
   4052     __ TailCallStub(&stub1_holey);
   4053   }
   4054 
   4055   __ bind(&normal_sequence);
   4056   InternalArraySingleArgumentConstructorStub stub1(isolate(), kind);
   4057   __ TailCallStub(&stub1);
   4058 
   4059   __ bind(&not_one_case);
   4060   ArrayNArgumentsConstructorStub stubN(isolate());
   4061   __ TailCallStub(&stubN);
   4062 }
   4063 
   4064 void InternalArrayConstructorStub::Generate(MacroAssembler* masm) {
   4065   // ----------- S t a t e -------------
   4066   //  -- eax : argc
   4067   //  -- edi : constructor
   4068   //  -- esp[0] : return address
   4069   //  -- esp[4] : last argument
   4070   // -----------------------------------
   4071 
   4072   if (FLAG_debug_code) {
   4073     // The array construct code is only set for the global and natives
   4074     // builtin Array functions which always have maps.
   4075 
   4076     // Initial map for the builtin Array function should be a map.
   4077     __ mov(ecx, FieldOperand(edi, JSFunction::kPrototypeOrInitialMapOffset));
   4078     // Will both indicate a NULL and a Smi.
   4079     __ test(ecx, Immediate(kSmiTagMask));
   4080     __ Assert(not_zero, kUnexpectedInitialMapForArrayFunction);
   4081     __ CmpObjectType(ecx, MAP_TYPE, ecx);
   4082     __ Assert(equal, kUnexpectedInitialMapForArrayFunction);
   4083   }
   4084 
   4085   // Figure out the right elements kind
   4086   __ mov(ecx, FieldOperand(edi, JSFunction::kPrototypeOrInitialMapOffset));
   4087 
   4088   // Load the map's "bit field 2" into |result|. We only need the first byte,
   4089   // but the following masking takes care of that anyway.
   4090   __ mov(ecx, FieldOperand(ecx, Map::kBitField2Offset));
   4091   // Retrieve elements_kind from bit field 2.
   4092   __ DecodeField<Map::ElementsKindBits>(ecx);
   4093 
   4094   if (FLAG_debug_code) {
   4095     Label done;
   4096     __ cmp(ecx, Immediate(FAST_ELEMENTS));
   4097     __ j(equal, &done);
   4098     __ cmp(ecx, Immediate(FAST_HOLEY_ELEMENTS));
   4099     __ Assert(equal, kInvalidElementsKindForInternalArrayOrInternalPackedArray);
   4100     __ bind(&done);
   4101   }
   4102 
   4103   Label fast_elements_case;
   4104   __ cmp(ecx, Immediate(FAST_ELEMENTS));
   4105   __ j(equal, &fast_elements_case);
   4106   GenerateCase(masm, FAST_HOLEY_ELEMENTS);
   4107 
   4108   __ bind(&fast_elements_case);
   4109   GenerateCase(masm, FAST_ELEMENTS);
   4110 }
   4111 
   4112 void FastNewObjectStub::Generate(MacroAssembler* masm) {
   4113   // ----------- S t a t e -------------
   4114   //  -- edi    : target
   4115   //  -- edx    : new target
   4116   //  -- esi    : context
   4117   //  -- esp[0] : return address
   4118   // -----------------------------------
   4119   __ AssertFunction(edi);
   4120   __ AssertReceiver(edx);
   4121 
   4122   // Verify that the new target is a JSFunction.
   4123   Label new_object;
   4124   __ CmpObjectType(edx, JS_FUNCTION_TYPE, ebx);
   4125   __ j(not_equal, &new_object);
   4126 
   4127   // Load the initial map and verify that it's in fact a map.
   4128   __ mov(ecx, FieldOperand(edx, JSFunction::kPrototypeOrInitialMapOffset));
   4129   __ JumpIfSmi(ecx, &new_object);
   4130   __ CmpObjectType(ecx, MAP_TYPE, ebx);
   4131   __ j(not_equal, &new_object);
   4132 
   4133   // Fall back to runtime if the target differs from the new target's
   4134   // initial map constructor.
   4135   __ cmp(edi, FieldOperand(ecx, Map::kConstructorOrBackPointerOffset));
   4136   __ j(not_equal, &new_object);
   4137 
   4138   // Allocate the JSObject on the heap.
   4139   Label allocate, done_allocate;
   4140   __ movzx_b(ebx, FieldOperand(ecx, Map::kInstanceSizeOffset));
   4141   __ lea(ebx, Operand(ebx, times_pointer_size, 0));
   4142   __ Allocate(ebx, eax, edi, no_reg, &allocate, NO_ALLOCATION_FLAGS);
   4143   __ bind(&done_allocate);
   4144 
   4145   // Initialize the JSObject fields.
   4146   __ mov(FieldOperand(eax, JSObject::kMapOffset), ecx);
   4147   __ mov(FieldOperand(eax, JSObject::kPropertiesOffset),
   4148          masm->isolate()->factory()->empty_fixed_array());
   4149   __ mov(FieldOperand(eax, JSObject::kElementsOffset),
   4150          masm->isolate()->factory()->empty_fixed_array());
   4151   STATIC_ASSERT(JSObject::kHeaderSize == 3 * kPointerSize);
   4152   __ lea(ebx, FieldOperand(eax, JSObject::kHeaderSize));
   4153 
   4154   // ----------- S t a t e -------------
   4155   //  -- eax    : result (tagged)
   4156   //  -- ebx    : result fields (untagged)
   4157   //  -- edi    : result end (untagged)
   4158   //  -- ecx    : initial map
   4159   //  -- esi    : context
   4160   //  -- esp[0] : return address
   4161   // -----------------------------------
   4162 
   4163   // Perform in-object slack tracking if requested.
   4164   Label slack_tracking;
   4165   STATIC_ASSERT(Map::kNoSlackTracking == 0);
   4166   __ test(FieldOperand(ecx, Map::kBitField3Offset),
   4167           Immediate(Map::ConstructionCounter::kMask));
   4168   __ j(not_zero, &slack_tracking, Label::kNear);
   4169   {
   4170     // Initialize all in-object fields with undefined.
   4171     __ LoadRoot(edx, Heap::kUndefinedValueRootIndex);
   4172     __ InitializeFieldsWithFiller(ebx, edi, edx);
   4173     __ Ret();
   4174   }
   4175   __ bind(&slack_tracking);
   4176   {
   4177     // Decrease generous allocation count.
   4178     STATIC_ASSERT(Map::ConstructionCounter::kNext == 32);
   4179     __ sub(FieldOperand(ecx, Map::kBitField3Offset),
   4180            Immediate(1 << Map::ConstructionCounter::kShift));
   4181 
   4182     // Initialize the in-object fields with undefined.
   4183     __ movzx_b(edx, FieldOperand(ecx, Map::kUnusedPropertyFieldsOffset));
   4184     __ neg(edx);
   4185     __ lea(edx, Operand(edi, edx, times_pointer_size, 0));
   4186     __ LoadRoot(edi, Heap::kUndefinedValueRootIndex);
   4187     __ InitializeFieldsWithFiller(ebx, edx, edi);
   4188 
   4189     // Initialize the remaining (reserved) fields with one pointer filler map.
   4190     __ movzx_b(edx, FieldOperand(ecx, Map::kUnusedPropertyFieldsOffset));
   4191     __ lea(edx, Operand(ebx, edx, times_pointer_size, 0));
   4192     __ LoadRoot(edi, Heap::kOnePointerFillerMapRootIndex);
   4193     __ InitializeFieldsWithFiller(ebx, edx, edi);
   4194 
   4195     // Check if we can finalize the instance size.
   4196     Label finalize;
   4197     STATIC_ASSERT(Map::kSlackTrackingCounterEnd == 1);
   4198     __ test(FieldOperand(ecx, Map::kBitField3Offset),
   4199             Immediate(Map::ConstructionCounter::kMask));
   4200     __ j(zero, &finalize, Label::kNear);
   4201     __ Ret();
   4202 
   4203     // Finalize the instance size.
   4204     __ bind(&finalize);
   4205     {
   4206       FrameScope scope(masm, StackFrame::INTERNAL);
   4207       __ Push(eax);
   4208       __ Push(ecx);
   4209       __ CallRuntime(Runtime::kFinalizeInstanceSize);
   4210       __ Pop(eax);
   4211     }
   4212     __ Ret();
   4213   }
   4214 
   4215   // Fall back to %AllocateInNewSpace.
   4216   __ bind(&allocate);
   4217   {
   4218     FrameScope scope(masm, StackFrame::INTERNAL);
   4219     __ SmiTag(ebx);
   4220     __ Push(ecx);
   4221     __ Push(ebx);
   4222     __ CallRuntime(Runtime::kAllocateInNewSpace);
   4223     __ Pop(ecx);
   4224   }
   4225   __ movzx_b(ebx, FieldOperand(ecx, Map::kInstanceSizeOffset));
   4226   __ lea(edi, Operand(eax, ebx, times_pointer_size, 0));
   4227   STATIC_ASSERT(kHeapObjectTag == 1);
   4228   __ dec(edi);
   4229   __ jmp(&done_allocate);
   4230 
   4231   // Fall back to %NewObject.
   4232   __ bind(&new_object);
   4233   __ PopReturnAddressTo(ecx);
   4234   __ Push(edi);
   4235   __ Push(edx);
   4236   __ PushReturnAddressFrom(ecx);
   4237   __ TailCallRuntime(Runtime::kNewObject);
   4238 }
   4239 
   4240 void FastNewRestParameterStub::Generate(MacroAssembler* masm) {
   4241   // ----------- S t a t e -------------
   4242   //  -- edi    : function
   4243   //  -- esi    : context
   4244   //  -- ebp    : frame pointer
   4245   //  -- esp[0] : return address
   4246   // -----------------------------------
   4247   __ AssertFunction(edi);
   4248 
   4249   // Make edx point to the JavaScript frame.
   4250   __ mov(edx, ebp);
   4251   if (skip_stub_frame()) {
   4252     // For Ignition we need to skip the handler/stub frame to reach the
   4253     // JavaScript frame for the function.
   4254     __ mov(edx, Operand(edx, StandardFrameConstants::kCallerFPOffset));
   4255   }
   4256   if (FLAG_debug_code) {
   4257     Label ok;
   4258     __ cmp(edi, Operand(edx, StandardFrameConstants::kFunctionOffset));
   4259     __ j(equal, &ok);
   4260     __ Abort(kInvalidFrameForFastNewRestArgumentsStub);
   4261     __ bind(&ok);
   4262   }
   4263 
   4264   // Check if we have rest parameters (only possible if we have an
   4265   // arguments adaptor frame below the function frame).
   4266   Label no_rest_parameters;
   4267   __ mov(ebx, Operand(edx, StandardFrameConstants::kCallerFPOffset));
   4268   __ cmp(Operand(ebx, CommonFrameConstants::kContextOrFrameTypeOffset),
   4269          Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
   4270   __ j(not_equal, &no_rest_parameters, Label::kNear);
   4271 
   4272   // Check if the arguments adaptor frame contains more arguments than
   4273   // specified by the function's internal formal parameter count.
   4274   Label rest_parameters;
   4275   __ mov(ecx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
   4276   __ mov(eax, Operand(ebx, ArgumentsAdaptorFrameConstants::kLengthOffset));
   4277   __ sub(eax,
   4278          FieldOperand(ecx, SharedFunctionInfo::kFormalParameterCountOffset));
   4279   __ j(greater, &rest_parameters);
   4280 
   4281   // Return an empty rest parameter array.
   4282   __ bind(&no_rest_parameters);
   4283   {
   4284     // ----------- S t a t e -------------
   4285     //  -- esi    : context
   4286     //  -- esp[0] : return address
   4287     // -----------------------------------
   4288 
   4289     // Allocate an empty rest parameter array.
   4290     Label allocate, done_allocate;
   4291     __ Allocate(JSArray::kSize, eax, edx, ecx, &allocate, NO_ALLOCATION_FLAGS);
   4292     __ bind(&done_allocate);
   4293 
   4294     // Setup the rest parameter array in rax.
   4295     __ LoadGlobalFunction(Context::JS_ARRAY_FAST_ELEMENTS_MAP_INDEX, ecx);
   4296     __ mov(FieldOperand(eax, JSArray::kMapOffset), ecx);
   4297     __ mov(ecx, isolate()->factory()->empty_fixed_array());
   4298     __ mov(FieldOperand(eax, JSArray::kPropertiesOffset), ecx);
   4299     __ mov(FieldOperand(eax, JSArray::kElementsOffset), ecx);
   4300     __ mov(FieldOperand(eax, JSArray::kLengthOffset),
   4301            Immediate(Smi::FromInt(0)));
   4302     STATIC_ASSERT(JSArray::kSize == 4 * kPointerSize);
   4303     __ Ret();
   4304 
   4305     // Fall back to %AllocateInNewSpace.
   4306     __ bind(&allocate);
   4307     {
   4308       FrameScope scope(masm, StackFrame::INTERNAL);
   4309       __ Push(Smi::FromInt(JSArray::kSize));
   4310       __ CallRuntime(Runtime::kAllocateInNewSpace);
   4311     }
   4312     __ jmp(&done_allocate);
   4313   }
   4314 
   4315   __ bind(&rest_parameters);
   4316   {
   4317     // Compute the pointer to the first rest parameter (skippping the receiver).
   4318     __ lea(ebx,
   4319            Operand(ebx, eax, times_half_pointer_size,
   4320                    StandardFrameConstants::kCallerSPOffset - 1 * kPointerSize));
   4321 
   4322     // ----------- S t a t e -------------
   4323     //  -- esi    : context
   4324     //  -- eax    : number of rest parameters (tagged)
   4325     //  -- ebx    : pointer to first rest parameters
   4326     //  -- esp[0] : return address
   4327     // -----------------------------------
   4328 
   4329     // Allocate space for the rest parameter array plus the backing store.
   4330     Label allocate, done_allocate;
   4331     __ lea(ecx, Operand(eax, times_half_pointer_size,
   4332                         JSArray::kSize + FixedArray::kHeaderSize));
   4333     __ Allocate(ecx, edx, edi, no_reg, &allocate, NO_ALLOCATION_FLAGS);
   4334     __ bind(&done_allocate);
   4335 
   4336     // Setup the elements array in edx.
   4337     __ mov(FieldOperand(edx, FixedArray::kMapOffset),
   4338            isolate()->factory()->fixed_array_map());
   4339     __ mov(FieldOperand(edx, FixedArray::kLengthOffset), eax);
   4340     {
   4341       Label loop, done_loop;
   4342       __ Move(ecx, Smi::FromInt(0));
   4343       __ bind(&loop);
   4344       __ cmp(ecx, eax);
   4345       __ j(equal, &done_loop, Label::kNear);
   4346       __ mov(edi, Operand(ebx, 0 * kPointerSize));
   4347       __ mov(FieldOperand(edx, ecx, times_half_pointer_size,
   4348                           FixedArray::kHeaderSize),
   4349              edi);
   4350       __ sub(ebx, Immediate(1 * kPointerSize));
   4351       __ add(ecx, Immediate(Smi::FromInt(1)));
   4352       __ jmp(&loop);
   4353       __ bind(&done_loop);
   4354     }
   4355 
   4356     // Setup the rest parameter array in edi.
   4357     __ lea(edi,
   4358            Operand(edx, eax, times_half_pointer_size, FixedArray::kHeaderSize));
   4359     __ LoadGlobalFunction(Context::JS_ARRAY_FAST_ELEMENTS_MAP_INDEX, ecx);
   4360     __ mov(FieldOperand(edi, JSArray::kMapOffset), ecx);
   4361     __ mov(FieldOperand(edi, JSArray::kPropertiesOffset),
   4362            isolate()->factory()->empty_fixed_array());
   4363     __ mov(FieldOperand(edi, JSArray::kElementsOffset), edx);
   4364     __ mov(FieldOperand(edi, JSArray::kLengthOffset), eax);
   4365     STATIC_ASSERT(JSArray::kSize == 4 * kPointerSize);
   4366     __ mov(eax, edi);
   4367     __ Ret();
   4368 
   4369     // Fall back to %AllocateInNewSpace (if not too big).
   4370     Label too_big_for_new_space;
   4371     __ bind(&allocate);
   4372     __ cmp(ecx, Immediate(Page::kMaxRegularHeapObjectSize));
   4373     __ j(greater, &too_big_for_new_space);
   4374     {
   4375       FrameScope scope(masm, StackFrame::INTERNAL);
   4376       __ SmiTag(ecx);
   4377       __ Push(eax);
   4378       __ Push(ebx);
   4379       __ Push(ecx);
   4380       __ CallRuntime(Runtime::kAllocateInNewSpace);
   4381       __ mov(edx, eax);
   4382       __ Pop(ebx);
   4383       __ Pop(eax);
   4384     }
   4385     __ jmp(&done_allocate);
   4386 
   4387     // Fall back to %NewRestParameter.
   4388     __ bind(&too_big_for_new_space);
   4389     __ PopReturnAddressTo(ecx);
   4390     // We reload the function from the caller frame due to register pressure
   4391     // within this stub. This is the slow path, hence reloading is preferable.
   4392     if (skip_stub_frame()) {
   4393       // For Ignition we need to skip the handler/stub frame to reach the
   4394       // JavaScript frame for the function.
   4395       __ mov(edx, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
   4396       __ Push(Operand(edx, StandardFrameConstants::kFunctionOffset));
   4397     } else {
   4398       __ Push(Operand(ebp, StandardFrameConstants::kFunctionOffset));
   4399     }
   4400     __ PushReturnAddressFrom(ecx);
   4401     __ TailCallRuntime(Runtime::kNewRestParameter);
   4402   }
   4403 }
   4404 
   4405 void FastNewSloppyArgumentsStub::Generate(MacroAssembler* masm) {
   4406   // ----------- S t a t e -------------
   4407   //  -- edi    : function
   4408   //  -- esi    : context
   4409   //  -- ebp    : frame pointer
   4410   //  -- esp[0] : return address
   4411   // -----------------------------------
   4412   __ AssertFunction(edi);
   4413 
   4414   // Make ecx point to the JavaScript frame.
   4415   __ mov(ecx, ebp);
   4416   if (skip_stub_frame()) {
   4417     // For Ignition we need to skip the handler/stub frame to reach the
   4418     // JavaScript frame for the function.
   4419     __ mov(ecx, Operand(ecx, StandardFrameConstants::kCallerFPOffset));
   4420   }
   4421   if (FLAG_debug_code) {
   4422     Label ok;
   4423     __ cmp(edi, Operand(ecx, StandardFrameConstants::kFunctionOffset));
   4424     __ j(equal, &ok);
   4425     __ Abort(kInvalidFrameForFastNewSloppyArgumentsStub);
   4426     __ bind(&ok);
   4427   }
   4428 
   4429   // TODO(bmeurer): Cleanup to match the FastNewStrictArgumentsStub.
   4430   __ mov(ebx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
   4431   __ mov(ebx,
   4432          FieldOperand(ebx, SharedFunctionInfo::kFormalParameterCountOffset));
   4433   __ lea(edx, Operand(ecx, ebx, times_half_pointer_size,
   4434                       StandardFrameConstants::kCallerSPOffset));
   4435 
   4436   // ebx : number of parameters (tagged)
   4437   // edx : parameters pointer
   4438   // edi : function
   4439   // ecx : JavaScript frame pointer.
   4440   // esp[0] : return address
   4441 
   4442   // Check if the calling frame is an arguments adaptor frame.
   4443   Label adaptor_frame, try_allocate, runtime;
   4444   __ mov(eax, Operand(ecx, StandardFrameConstants::kCallerFPOffset));
   4445   __ mov(eax, Operand(eax, CommonFrameConstants::kContextOrFrameTypeOffset));
   4446   __ cmp(eax, Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
   4447   __ j(equal, &adaptor_frame, Label::kNear);
   4448 
   4449   // No adaptor, parameter count = argument count.
   4450   __ mov(ecx, ebx);
   4451   __ push(ebx);
   4452   __ jmp(&try_allocate, Label::kNear);
   4453 
   4454   // We have an adaptor frame. Patch the parameters pointer.
   4455   __ bind(&adaptor_frame);
   4456   __ push(ebx);
   4457   __ mov(edx, Operand(ecx, StandardFrameConstants::kCallerFPOffset));
   4458   __ mov(ecx, Operand(edx, ArgumentsAdaptorFrameConstants::kLengthOffset));
   4459   __ lea(edx,
   4460          Operand(edx, ecx, times_2, StandardFrameConstants::kCallerSPOffset));
   4461 
   4462   // ebx = parameter count (tagged)
   4463   // ecx = argument count (smi-tagged)
   4464   // Compute the mapped parameter count = min(ebx, ecx) in ebx.
   4465   __ cmp(ebx, ecx);
   4466   __ j(less_equal, &try_allocate, Label::kNear);
   4467   __ mov(ebx, ecx);
   4468 
   4469   // Save mapped parameter count and function.
   4470   __ bind(&try_allocate);
   4471   __ push(edi);
   4472   __ push(ebx);
   4473 
   4474   // Compute the sizes of backing store, parameter map, and arguments object.
   4475   // 1. Parameter map, has 2 extra words containing context and backing store.
   4476   const int kParameterMapHeaderSize =
   4477       FixedArray::kHeaderSize + 2 * kPointerSize;
   4478   Label no_parameter_map;
   4479   __ test(ebx, ebx);
   4480   __ j(zero, &no_parameter_map, Label::kNear);
   4481   __ lea(ebx, Operand(ebx, times_2, kParameterMapHeaderSize));
   4482   __ bind(&no_parameter_map);
   4483 
   4484   // 2. Backing store.
   4485   __ lea(ebx, Operand(ebx, ecx, times_2, FixedArray::kHeaderSize));
   4486 
   4487   // 3. Arguments object.
   4488   __ add(ebx, Immediate(JSSloppyArgumentsObject::kSize));
   4489 
   4490   // Do the allocation of all three objects in one go.
   4491   __ Allocate(ebx, eax, edi, no_reg, &runtime, NO_ALLOCATION_FLAGS);
   4492 
   4493   // eax = address of new object(s) (tagged)
   4494   // ecx = argument count (smi-tagged)
   4495   // esp[0] = mapped parameter count (tagged)
   4496   // esp[4] = function
   4497   // esp[8] = parameter count (tagged)
   4498   // Get the arguments map from the current native context into edi.
   4499   Label has_mapped_parameters, instantiate;
   4500   __ mov(edi, NativeContextOperand());
   4501   __ mov(ebx, Operand(esp, 0 * kPointerSize));
   4502   __ test(ebx, ebx);
   4503   __ j(not_zero, &has_mapped_parameters, Label::kNear);
   4504   __ mov(
   4505       edi,
   4506       Operand(edi, Context::SlotOffset(Context::SLOPPY_ARGUMENTS_MAP_INDEX)));
   4507   __ jmp(&instantiate, Label::kNear);
   4508 
   4509   __ bind(&has_mapped_parameters);
   4510   __ mov(edi, Operand(edi, Context::SlotOffset(
   4511                                Context::FAST_ALIASED_ARGUMENTS_MAP_INDEX)));
   4512   __ bind(&instantiate);
   4513 
   4514   // eax = address of new object (tagged)
   4515   // ebx = mapped parameter count (tagged)
   4516   // ecx = argument count (smi-tagged)
   4517   // edi = address of arguments map (tagged)
   4518   // esp[0] = mapped parameter count (tagged)
   4519   // esp[4] = function
   4520   // esp[8] = parameter count (tagged)
   4521   // Copy the JS object part.
   4522   __ mov(FieldOperand(eax, JSObject::kMapOffset), edi);
   4523   __ mov(FieldOperand(eax, JSObject::kPropertiesOffset),
   4524          masm->isolate()->factory()->empty_fixed_array());
   4525   __ mov(FieldOperand(eax, JSObject::kElementsOffset),
   4526          masm->isolate()->factory()->empty_fixed_array());
   4527 
   4528   // Set up the callee in-object property.
   4529   STATIC_ASSERT(JSSloppyArgumentsObject::kCalleeIndex == 1);
   4530   __ mov(edi, Operand(esp, 1 * kPointerSize));
   4531   __ AssertNotSmi(edi);
   4532   __ mov(FieldOperand(eax, JSSloppyArgumentsObject::kCalleeOffset), edi);
   4533 
   4534   // Use the length (smi tagged) and set that as an in-object property too.
   4535   __ AssertSmi(ecx);
   4536   __ mov(FieldOperand(eax, JSSloppyArgumentsObject::kLengthOffset), ecx);
   4537 
   4538   // Set up the elements pointer in the allocated arguments object.
   4539   // If we allocated a parameter map, edi will point there, otherwise to the
   4540   // backing store.
   4541   __ lea(edi, Operand(eax, JSSloppyArgumentsObject::kSize));
   4542   __ mov(FieldOperand(eax, JSObject::kElementsOffset), edi);
   4543 
   4544   // eax = address of new object (tagged)
   4545   // ebx = mapped parameter count (tagged)
   4546   // ecx = argument count (tagged)
   4547   // edx = address of receiver argument
   4548   // edi = address of parameter map or backing store (tagged)
   4549   // esp[0] = mapped parameter count (tagged)
   4550   // esp[4] = function
   4551   // esp[8] = parameter count (tagged)
   4552   // Free two registers.
   4553   __ push(edx);
   4554   __ push(eax);
   4555 
   4556   // Initialize parameter map. If there are no mapped arguments, we're done.
   4557   Label skip_parameter_map;
   4558   __ test(ebx, ebx);
   4559   __ j(zero, &skip_parameter_map);
   4560 
   4561   __ mov(FieldOperand(edi, FixedArray::kMapOffset),
   4562          Immediate(isolate()->factory()->sloppy_arguments_elements_map()));
   4563   __ lea(eax, Operand(ebx, reinterpret_cast<intptr_t>(Smi::FromInt(2))));
   4564   __ mov(FieldOperand(edi, FixedArray::kLengthOffset), eax);
   4565   __ mov(FieldOperand(edi, FixedArray::kHeaderSize + 0 * kPointerSize), esi);
   4566   __ lea(eax, Operand(edi, ebx, times_2, kParameterMapHeaderSize));
   4567   __ mov(FieldOperand(edi, FixedArray::kHeaderSize + 1 * kPointerSize), eax);
   4568 
   4569   // Copy the parameter slots and the holes in the arguments.
   4570   // We need to fill in mapped_parameter_count slots. They index the context,
   4571   // where parameters are stored in reverse order, at
   4572   //   MIN_CONTEXT_SLOTS .. MIN_CONTEXT_SLOTS+parameter_count-1
   4573   // The mapped parameter thus need to get indices
   4574   //   MIN_CONTEXT_SLOTS+parameter_count-1 ..
   4575   //       MIN_CONTEXT_SLOTS+parameter_count-mapped_parameter_count
   4576   // We loop from right to left.
   4577   Label parameters_loop, parameters_test;
   4578   __ push(ecx);
   4579   __ mov(eax, Operand(esp, 3 * kPointerSize));
   4580   __ mov(ebx, Immediate(Smi::FromInt(Context::MIN_CONTEXT_SLOTS)));
   4581   __ add(ebx, Operand(esp, 5 * kPointerSize));
   4582   __ sub(ebx, eax);
   4583   __ mov(ecx, isolate()->factory()->the_hole_value());
   4584   __ mov(edx, edi);
   4585   __ lea(edi, Operand(edi, eax, times_2, kParameterMapHeaderSize));
   4586   // eax = loop variable (tagged)
   4587   // ebx = mapping index (tagged)
   4588   // ecx = the hole value
   4589   // edx = address of parameter map (tagged)
   4590   // edi = address of backing store (tagged)
   4591   // esp[0] = argument count (tagged)
   4592   // esp[4] = address of new object (tagged)
   4593   // esp[8] = address of receiver argument
   4594   // esp[12] = mapped parameter count (tagged)
   4595   // esp[16] = function
   4596   // esp[20] = parameter count (tagged)
   4597   __ jmp(&parameters_test, Label::kNear);
   4598 
   4599   __ bind(&parameters_loop);
   4600   __ sub(eax, Immediate(Smi::FromInt(1)));
   4601   __ mov(FieldOperand(edx, eax, times_2, kParameterMapHeaderSize), ebx);
   4602   __ mov(FieldOperand(edi, eax, times_2, FixedArray::kHeaderSize), ecx);
   4603   __ add(ebx, Immediate(Smi::FromInt(1)));
   4604   __ bind(&parameters_test);
   4605   __ test(eax, eax);
   4606   __ j(not_zero, &parameters_loop, Label::kNear);
   4607   __ pop(ecx);
   4608 
   4609   __ bind(&skip_parameter_map);
   4610 
   4611   // ecx = argument count (tagged)
   4612   // edi = address of backing store (tagged)
   4613   // esp[0] = address of new object (tagged)
   4614   // esp[4] = address of receiver argument
   4615   // esp[8] = mapped parameter count (tagged)
   4616   // esp[12] = function
   4617   // esp[16] = parameter count (tagged)
   4618   // Copy arguments header and remaining slots (if there are any).
   4619   __ mov(FieldOperand(edi, FixedArray::kMapOffset),
   4620          Immediate(isolate()->factory()->fixed_array_map()));
   4621   __ mov(FieldOperand(edi, FixedArray::kLengthOffset), ecx);
   4622 
   4623   Label arguments_loop, arguments_test;
   4624   __ mov(ebx, Operand(esp, 2 * kPointerSize));
   4625   __ mov(edx, Operand(esp, 1 * kPointerSize));
   4626   __ sub(edx, ebx);  // Is there a smarter way to do negative scaling?
   4627   __ sub(edx, ebx);
   4628   __ jmp(&arguments_test, Label::kNear);
   4629 
   4630   __ bind(&arguments_loop);
   4631   __ sub(edx, Immediate(kPointerSize));
   4632   __ mov(eax, Operand(edx, 0));
   4633   __ mov(FieldOperand(edi, ebx, times_2, FixedArray::kHeaderSize), eax);
   4634   __ add(ebx, Immediate(Smi::FromInt(1)));
   4635 
   4636   __ bind(&arguments_test);
   4637   __ cmp(ebx, ecx);
   4638   __ j(less, &arguments_loop, Label::kNear);
   4639 
   4640   // Restore.
   4641   __ pop(eax);  // Address of arguments object.
   4642   __ Drop(4);
   4643 
   4644   // Return.
   4645   __ ret(0);
   4646 
   4647   // Do the runtime call to allocate the arguments object.
   4648   __ bind(&runtime);
   4649   __ pop(eax);   // Remove saved mapped parameter count.
   4650   __ pop(edi);   // Pop saved function.
   4651   __ pop(eax);   // Remove saved parameter count.
   4652   __ pop(eax);   // Pop return address.
   4653   __ push(edi);  // Push function.
   4654   __ push(edx);  // Push parameters pointer.
   4655   __ push(ecx);  // Push parameter count.
   4656   __ push(eax);  // Push return address.
   4657   __ TailCallRuntime(Runtime::kNewSloppyArguments);
   4658 }
   4659 
   4660 void FastNewStrictArgumentsStub::Generate(MacroAssembler* masm) {
   4661   // ----------- S t a t e -------------
   4662   //  -- edi    : function
   4663   //  -- esi    : context
   4664   //  -- ebp    : frame pointer
   4665   //  -- esp[0] : return address
   4666   // -----------------------------------
   4667   __ AssertFunction(edi);
   4668 
   4669   // Make edx point to the JavaScript frame.
   4670   __ mov(edx, ebp);
   4671   if (skip_stub_frame()) {
   4672     // For Ignition we need to skip the handler/stub frame to reach the
   4673     // JavaScript frame for the function.
   4674     __ mov(edx, Operand(edx, StandardFrameConstants::kCallerFPOffset));
   4675   }
   4676   if (FLAG_debug_code) {
   4677     Label ok;
   4678     __ cmp(edi, Operand(edx, StandardFrameConstants::kFunctionOffset));
   4679     __ j(equal, &ok);
   4680     __ Abort(kInvalidFrameForFastNewStrictArgumentsStub);
   4681     __ bind(&ok);
   4682   }
   4683 
   4684   // Check if we have an arguments adaptor frame below the function frame.
   4685   Label arguments_adaptor, arguments_done;
   4686   __ mov(ebx, Operand(edx, StandardFrameConstants::kCallerFPOffset));
   4687   __ cmp(Operand(ebx, CommonFrameConstants::kContextOrFrameTypeOffset),
   4688          Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
   4689   __ j(equal, &arguments_adaptor, Label::kNear);
   4690   {
   4691     __ mov(eax, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
   4692     __ mov(eax,
   4693            FieldOperand(eax, SharedFunctionInfo::kFormalParameterCountOffset));
   4694     __ lea(ebx,
   4695            Operand(edx, eax, times_half_pointer_size,
   4696                    StandardFrameConstants::kCallerSPOffset - 1 * kPointerSize));
   4697   }
   4698   __ jmp(&arguments_done, Label::kNear);
   4699   __ bind(&arguments_adaptor);
   4700   {
   4701     __ mov(eax, Operand(ebx, ArgumentsAdaptorFrameConstants::kLengthOffset));
   4702     __ lea(ebx,
   4703            Operand(ebx, eax, times_half_pointer_size,
   4704                    StandardFrameConstants::kCallerSPOffset - 1 * kPointerSize));
   4705   }
   4706   __ bind(&arguments_done);
   4707 
   4708   // ----------- S t a t e -------------
   4709   //  -- eax    : number of arguments (tagged)
   4710   //  -- ebx    : pointer to the first argument
   4711   //  -- esi    : context
   4712   //  -- esp[0] : return address
   4713   // -----------------------------------
   4714 
   4715   // Allocate space for the strict arguments object plus the backing store.
   4716   Label allocate, done_allocate;
   4717   __ lea(ecx,
   4718          Operand(eax, times_half_pointer_size,
   4719                  JSStrictArgumentsObject::kSize + FixedArray::kHeaderSize));
   4720   __ Allocate(ecx, edx, edi, no_reg, &allocate, NO_ALLOCATION_FLAGS);
   4721   __ bind(&done_allocate);
   4722 
   4723   // Setup the elements array in edx.
   4724   __ mov(FieldOperand(edx, FixedArray::kMapOffset),
   4725          isolate()->factory()->fixed_array_map());
   4726   __ mov(FieldOperand(edx, FixedArray::kLengthOffset), eax);
   4727   {
   4728     Label loop, done_loop;
   4729     __ Move(ecx, Smi::FromInt(0));
   4730     __ bind(&loop);
   4731     __ cmp(ecx, eax);
   4732     __ j(equal, &done_loop, Label::kNear);
   4733     __ mov(edi, Operand(ebx, 0 * kPointerSize));
   4734     __ mov(FieldOperand(edx, ecx, times_half_pointer_size,
   4735                         FixedArray::kHeaderSize),
   4736            edi);
   4737     __ sub(ebx, Immediate(1 * kPointerSize));
   4738     __ add(ecx, Immediate(Smi::FromInt(1)));
   4739     __ jmp(&loop);
   4740     __ bind(&done_loop);
   4741   }
   4742 
   4743   // Setup the rest parameter array in edi.
   4744   __ lea(edi,
   4745          Operand(edx, eax, times_half_pointer_size, FixedArray::kHeaderSize));
   4746   __ LoadGlobalFunction(Context::STRICT_ARGUMENTS_MAP_INDEX, ecx);
   4747   __ mov(FieldOperand(edi, JSStrictArgumentsObject::kMapOffset), ecx);
   4748   __ mov(FieldOperand(edi, JSStrictArgumentsObject::kPropertiesOffset),
   4749          isolate()->factory()->empty_fixed_array());
   4750   __ mov(FieldOperand(edi, JSStrictArgumentsObject::kElementsOffset), edx);
   4751   __ mov(FieldOperand(edi, JSStrictArgumentsObject::kLengthOffset), eax);
   4752   STATIC_ASSERT(JSStrictArgumentsObject::kSize == 4 * kPointerSize);
   4753   __ mov(eax, edi);
   4754   __ Ret();
   4755 
   4756   // Fall back to %AllocateInNewSpace (if not too big).
   4757   Label too_big_for_new_space;
   4758   __ bind(&allocate);
   4759   __ cmp(ecx, Immediate(Page::kMaxRegularHeapObjectSize));
   4760   __ j(greater, &too_big_for_new_space);
   4761   {
   4762     FrameScope scope(masm, StackFrame::INTERNAL);
   4763     __ SmiTag(ecx);
   4764     __ Push(eax);
   4765     __ Push(ebx);
   4766     __ Push(ecx);
   4767     __ CallRuntime(Runtime::kAllocateInNewSpace);
   4768     __ mov(edx, eax);
   4769     __ Pop(ebx);
   4770     __ Pop(eax);
   4771   }
   4772   __ jmp(&done_allocate);
   4773 
   4774   // Fall back to %NewStrictArguments.
   4775   __ bind(&too_big_for_new_space);
   4776   __ PopReturnAddressTo(ecx);
   4777   // We reload the function from the caller frame due to register pressure
   4778   // within this stub. This is the slow path, hence reloading is preferable.
   4779   if (skip_stub_frame()) {
   4780     // For Ignition we need to skip the handler/stub frame to reach the
   4781     // JavaScript frame for the function.
   4782     __ mov(edx, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
   4783     __ Push(Operand(edx, StandardFrameConstants::kFunctionOffset));
   4784   } else {
   4785     __ Push(Operand(ebp, StandardFrameConstants::kFunctionOffset));
   4786   }
   4787   __ PushReturnAddressFrom(ecx);
   4788   __ TailCallRuntime(Runtime::kNewStrictArguments);
   4789 }
   4790 
   4791 void StoreGlobalViaContextStub::Generate(MacroAssembler* masm) {
   4792   Register context_reg = esi;
   4793   Register slot_reg = ebx;
   4794   Register value_reg = eax;
   4795   Register cell_reg = edi;
   4796   Register cell_details_reg = edx;
   4797   Register cell_value_reg = ecx;
   4798   Label fast_heapobject_case, fast_smi_case, slow_case;
   4799 
   4800   if (FLAG_debug_code) {
   4801     __ CompareRoot(value_reg, Heap::kTheHoleValueRootIndex);
   4802     __ Check(not_equal, kUnexpectedValue);
   4803   }
   4804 
   4805   // Go up context chain to the script context.
   4806   for (int i = 0; i < depth(); ++i) {
   4807     __ mov(cell_reg, ContextOperand(context_reg, Context::PREVIOUS_INDEX));
   4808     context_reg = cell_reg;
   4809   }
   4810 
   4811   // Load the PropertyCell at the specified slot.
   4812   __ mov(cell_reg, ContextOperand(context_reg, slot_reg));
   4813 
   4814   // Load PropertyDetails for the cell (actually only the cell_type and kind).
   4815   __ mov(cell_details_reg,
   4816          FieldOperand(cell_reg, PropertyCell::kDetailsOffset));
   4817   __ SmiUntag(cell_details_reg);
   4818   __ and_(cell_details_reg,
   4819           Immediate(PropertyDetails::PropertyCellTypeField::kMask |
   4820                     PropertyDetails::KindField::kMask |
   4821                     PropertyDetails::kAttributesReadOnlyMask));
   4822 
   4823   // Check if PropertyCell holds mutable data.
   4824   Label not_mutable_data;
   4825   __ cmp(cell_details_reg,
   4826          Immediate(PropertyDetails::PropertyCellTypeField::encode(
   4827                        PropertyCellType::kMutable) |
   4828                    PropertyDetails::KindField::encode(kData)));
   4829   __ j(not_equal, &not_mutable_data);
   4830   __ JumpIfSmi(value_reg, &fast_smi_case);
   4831   __ bind(&fast_heapobject_case);
   4832   __ mov(FieldOperand(cell_reg, PropertyCell::kValueOffset), value_reg);
   4833   __ RecordWriteField(cell_reg, PropertyCell::kValueOffset, value_reg,
   4834                       cell_details_reg, kDontSaveFPRegs, EMIT_REMEMBERED_SET,
   4835                       OMIT_SMI_CHECK);
   4836   // RecordWriteField clobbers the value register, so we need to reload.
   4837   __ mov(value_reg, FieldOperand(cell_reg, PropertyCell::kValueOffset));
   4838   __ Ret();
   4839   __ bind(&not_mutable_data);
   4840 
   4841   // Check if PropertyCell value matches the new value (relevant for Constant,
   4842   // ConstantType and Undefined cells).
   4843   Label not_same_value;
   4844   __ mov(cell_value_reg, FieldOperand(cell_reg, PropertyCell::kValueOffset));
   4845   __ cmp(cell_value_reg, value_reg);
   4846   __ j(not_equal, &not_same_value,
   4847        FLAG_debug_code ? Label::kFar : Label::kNear);
   4848   // Make sure the PropertyCell is not marked READ_ONLY.
   4849   __ test(cell_details_reg,
   4850           Immediate(PropertyDetails::kAttributesReadOnlyMask));
   4851   __ j(not_zero, &slow_case);
   4852   if (FLAG_debug_code) {
   4853     Label done;
   4854     // This can only be true for Constant, ConstantType and Undefined cells,
   4855     // because we never store the_hole via this stub.
   4856     __ cmp(cell_details_reg,
   4857            Immediate(PropertyDetails::PropertyCellTypeField::encode(
   4858                          PropertyCellType::kConstant) |
   4859                      PropertyDetails::KindField::encode(kData)));
   4860     __ j(equal, &done);
   4861     __ cmp(cell_details_reg,
   4862            Immediate(PropertyDetails::PropertyCellTypeField::encode(
   4863                          PropertyCellType::kConstantType) |
   4864                      PropertyDetails::KindField::encode(kData)));
   4865     __ j(equal, &done);
   4866     __ cmp(cell_details_reg,
   4867            Immediate(PropertyDetails::PropertyCellTypeField::encode(
   4868                          PropertyCellType::kUndefined) |
   4869                      PropertyDetails::KindField::encode(kData)));
   4870     __ Check(equal, kUnexpectedValue);
   4871     __ bind(&done);
   4872   }
   4873   __ Ret();
   4874   __ bind(&not_same_value);
   4875 
   4876   // Check if PropertyCell contains data with constant type (and is not
   4877   // READ_ONLY).
   4878   __ cmp(cell_details_reg,
   4879          Immediate(PropertyDetails::PropertyCellTypeField::encode(
   4880                        PropertyCellType::kConstantType) |
   4881                    PropertyDetails::KindField::encode(kData)));
   4882   __ j(not_equal, &slow_case, Label::kNear);
   4883 
   4884   // Now either both old and new values must be SMIs or both must be heap
   4885   // objects with same map.
   4886   Label value_is_heap_object;
   4887   __ JumpIfNotSmi(value_reg, &value_is_heap_object, Label::kNear);
   4888   __ JumpIfNotSmi(cell_value_reg, &slow_case, Label::kNear);
   4889   // Old and new values are SMIs, no need for a write barrier here.
   4890   __ bind(&fast_smi_case);
   4891   __ mov(FieldOperand(cell_reg, PropertyCell::kValueOffset), value_reg);
   4892   __ Ret();
   4893   __ bind(&value_is_heap_object);
   4894   __ JumpIfSmi(cell_value_reg, &slow_case, Label::kNear);
   4895   Register cell_value_map_reg = cell_value_reg;
   4896   __ mov(cell_value_map_reg,
   4897          FieldOperand(cell_value_reg, HeapObject::kMapOffset));
   4898   __ cmp(cell_value_map_reg, FieldOperand(value_reg, HeapObject::kMapOffset));
   4899   __ j(equal, &fast_heapobject_case);
   4900 
   4901   // Fallback to the runtime.
   4902   __ bind(&slow_case);
   4903   __ SmiTag(slot_reg);
   4904   __ Pop(cell_reg);  // Pop return address.
   4905   __ Push(slot_reg);
   4906   __ Push(value_reg);
   4907   __ Push(cell_reg);  // Push return address.
   4908   __ TailCallRuntime(is_strict(language_mode())
   4909                          ? Runtime::kStoreGlobalViaContext_Strict
   4910                          : Runtime::kStoreGlobalViaContext_Sloppy);
   4911 }
   4912 
   4913 
   4914 // Generates an Operand for saving parameters after PrepareCallApiFunction.
   4915 static Operand ApiParameterOperand(int index) {
   4916   return Operand(esp, index * kPointerSize);
   4917 }
   4918 
   4919 
   4920 // Prepares stack to put arguments (aligns and so on). Reserves
   4921 // space for return value if needed (assumes the return value is a handle).
   4922 // Arguments must be stored in ApiParameterOperand(0), ApiParameterOperand(1)
   4923 // etc. Saves context (esi). If space was reserved for return value then
   4924 // stores the pointer to the reserved slot into esi.
   4925 static void PrepareCallApiFunction(MacroAssembler* masm, int argc) {
   4926   __ EnterApiExitFrame(argc);
   4927   if (__ emit_debug_code()) {
   4928     __ mov(esi, Immediate(bit_cast<int32_t>(kZapValue)));
   4929   }
   4930 }
   4931 
   4932 
   4933 // Calls an API function.  Allocates HandleScope, extracts returned value
   4934 // from handle and propagates exceptions.  Clobbers ebx, edi and
   4935 // caller-save registers.  Restores context.  On return removes
   4936 // stack_space * kPointerSize (GCed).
   4937 static void CallApiFunctionAndReturn(MacroAssembler* masm,
   4938                                      Register function_address,
   4939                                      ExternalReference thunk_ref,
   4940                                      Operand thunk_last_arg, int stack_space,
   4941                                      Operand* stack_space_operand,
   4942                                      Operand return_value_operand,
   4943                                      Operand* context_restore_operand) {
   4944   Isolate* isolate = masm->isolate();
   4945 
   4946   ExternalReference next_address =
   4947       ExternalReference::handle_scope_next_address(isolate);
   4948   ExternalReference limit_address =
   4949       ExternalReference::handle_scope_limit_address(isolate);
   4950   ExternalReference level_address =
   4951       ExternalReference::handle_scope_level_address(isolate);
   4952 
   4953   DCHECK(edx.is(function_address));
   4954   // Allocate HandleScope in callee-save registers.
   4955   __ mov(ebx, Operand::StaticVariable(next_address));
   4956   __ mov(edi, Operand::StaticVariable(limit_address));
   4957   __ add(Operand::StaticVariable(level_address), Immediate(1));
   4958 
   4959   if (FLAG_log_timer_events) {
   4960     FrameScope frame(masm, StackFrame::MANUAL);
   4961     __ PushSafepointRegisters();
   4962     __ PrepareCallCFunction(1, eax);
   4963     __ mov(Operand(esp, 0),
   4964            Immediate(ExternalReference::isolate_address(isolate)));
   4965     __ CallCFunction(ExternalReference::log_enter_external_function(isolate),
   4966                      1);
   4967     __ PopSafepointRegisters();
   4968   }
   4969 
   4970 
   4971   Label profiler_disabled;
   4972   Label end_profiler_check;
   4973   __ mov(eax, Immediate(ExternalReference::is_profiling_address(isolate)));
   4974   __ cmpb(Operand(eax, 0), Immediate(0));
   4975   __ j(zero, &profiler_disabled);
   4976 
   4977   // Additional parameter is the address of the actual getter function.
   4978   __ mov(thunk_last_arg, function_address);
   4979   // Call the api function.
   4980   __ mov(eax, Immediate(thunk_ref));
   4981   __ call(eax);
   4982   __ jmp(&end_profiler_check);
   4983 
   4984   __ bind(&profiler_disabled);
   4985   // Call the api function.
   4986   __ call(function_address);
   4987   __ bind(&end_profiler_check);
   4988 
   4989   if (FLAG_log_timer_events) {
   4990     FrameScope frame(masm, StackFrame::MANUAL);
   4991     __ PushSafepointRegisters();
   4992     __ PrepareCallCFunction(1, eax);
   4993     __ mov(Operand(esp, 0),
   4994            Immediate(ExternalReference::isolate_address(isolate)));
   4995     __ CallCFunction(ExternalReference::log_leave_external_function(isolate),
   4996                      1);
   4997     __ PopSafepointRegisters();
   4998   }
   4999 
   5000   Label prologue;
   5001   // Load the value from ReturnValue
   5002   __ mov(eax, return_value_operand);
   5003 
   5004   Label promote_scheduled_exception;
   5005   Label delete_allocated_handles;
   5006   Label leave_exit_frame;
   5007 
   5008   __ bind(&prologue);
   5009   // No more valid handles (the result handle was the last one). Restore
   5010   // previous handle scope.
   5011   __ mov(Operand::StaticVariable(next_address), ebx);
   5012   __ sub(Operand::StaticVariable(level_address), Immediate(1));
   5013   __ Assert(above_equal, kInvalidHandleScopeLevel);
   5014   __ cmp(edi, Operand::StaticVariable(limit_address));
   5015   __ j(not_equal, &delete_allocated_handles);
   5016 
   5017   // Leave the API exit frame.
   5018   __ bind(&leave_exit_frame);
   5019   bool restore_context = context_restore_operand != NULL;
   5020   if (restore_context) {
   5021     __ mov(esi, *context_restore_operand);
   5022   }
   5023   if (stack_space_operand != nullptr) {
   5024     __ mov(ebx, *stack_space_operand);
   5025   }
   5026   __ LeaveApiExitFrame(!restore_context);
   5027 
   5028   // Check if the function scheduled an exception.
   5029   ExternalReference scheduled_exception_address =
   5030       ExternalReference::scheduled_exception_address(isolate);
   5031   __ cmp(Operand::StaticVariable(scheduled_exception_address),
   5032          Immediate(isolate->factory()->the_hole_value()));
   5033   __ j(not_equal, &promote_scheduled_exception);
   5034 
   5035 #if DEBUG
   5036   // Check if the function returned a valid JavaScript value.
   5037   Label ok;
   5038   Register return_value = eax;
   5039   Register map = ecx;
   5040 
   5041   __ JumpIfSmi(return_value, &ok, Label::kNear);
   5042   __ mov(map, FieldOperand(return_value, HeapObject::kMapOffset));
   5043 
   5044   __ CmpInstanceType(map, LAST_NAME_TYPE);
   5045   __ j(below_equal, &ok, Label::kNear);
   5046 
   5047   __ CmpInstanceType(map, FIRST_JS_RECEIVER_TYPE);
   5048   __ j(above_equal, &ok, Label::kNear);
   5049 
   5050   __ cmp(map, isolate->factory()->heap_number_map());
   5051   __ j(equal, &ok, Label::kNear);
   5052 
   5053   __ cmp(return_value, isolate->factory()->undefined_value());
   5054   __ j(equal, &ok, Label::kNear);
   5055 
   5056   __ cmp(return_value, isolate->factory()->true_value());
   5057   __ j(equal, &ok, Label::kNear);
   5058 
   5059   __ cmp(return_value, isolate->factory()->false_value());
   5060   __ j(equal, &ok, Label::kNear);
   5061 
   5062   __ cmp(return_value, isolate->factory()->null_value());
   5063   __ j(equal, &ok, Label::kNear);
   5064 
   5065   __ Abort(kAPICallReturnedInvalidObject);
   5066 
   5067   __ bind(&ok);
   5068 #endif
   5069 
   5070   if (stack_space_operand != nullptr) {
   5071     DCHECK_EQ(0, stack_space);
   5072     __ pop(ecx);
   5073     __ add(esp, ebx);
   5074     __ jmp(ecx);
   5075   } else {
   5076     __ ret(stack_space * kPointerSize);
   5077   }
   5078 
   5079   // Re-throw by promoting a scheduled exception.
   5080   __ bind(&promote_scheduled_exception);
   5081   __ TailCallRuntime(Runtime::kPromoteScheduledException);
   5082 
   5083   // HandleScope limit has changed. Delete allocated extensions.
   5084   ExternalReference delete_extensions =
   5085       ExternalReference::delete_handle_scope_extensions(isolate);
   5086   __ bind(&delete_allocated_handles);
   5087   __ mov(Operand::StaticVariable(limit_address), edi);
   5088   __ mov(edi, eax);
   5089   __ mov(Operand(esp, 0),
   5090          Immediate(ExternalReference::isolate_address(isolate)));
   5091   __ mov(eax, Immediate(delete_extensions));
   5092   __ call(eax);
   5093   __ mov(eax, edi);
   5094   __ jmp(&leave_exit_frame);
   5095 }
   5096 
   5097 void CallApiCallbackStub::Generate(MacroAssembler* masm) {
   5098   // ----------- S t a t e -------------
   5099   //  -- edi                 : callee
   5100   //  -- ebx                 : call_data
   5101   //  -- ecx                 : holder
   5102   //  -- edx                 : api_function_address
   5103   //  -- esi                 : context
   5104   //  --
   5105   //  -- esp[0]              : return address
   5106   //  -- esp[4]              : last argument
   5107   //  -- ...
   5108   //  -- esp[argc * 4]       : first argument
   5109   //  -- esp[(argc + 1) * 4] : receiver
   5110   // -----------------------------------
   5111 
   5112   Register callee = edi;
   5113   Register call_data = ebx;
   5114   Register holder = ecx;
   5115   Register api_function_address = edx;
   5116   Register context = esi;
   5117   Register return_address = eax;
   5118 
   5119   typedef FunctionCallbackArguments FCA;
   5120 
   5121   STATIC_ASSERT(FCA::kContextSaveIndex == 6);
   5122   STATIC_ASSERT(FCA::kCalleeIndex == 5);
   5123   STATIC_ASSERT(FCA::kDataIndex == 4);
   5124   STATIC_ASSERT(FCA::kReturnValueOffset == 3);
   5125   STATIC_ASSERT(FCA::kReturnValueDefaultValueIndex == 2);
   5126   STATIC_ASSERT(FCA::kIsolateIndex == 1);
   5127   STATIC_ASSERT(FCA::kHolderIndex == 0);
   5128   STATIC_ASSERT(FCA::kNewTargetIndex == 7);
   5129   STATIC_ASSERT(FCA::kArgsLength == 8);
   5130 
   5131   __ pop(return_address);
   5132 
   5133   // new target
   5134   __ PushRoot(Heap::kUndefinedValueRootIndex);
   5135 
   5136   // context save.
   5137   __ push(context);
   5138 
   5139   // callee
   5140   __ push(callee);
   5141 
   5142   // call data
   5143   __ push(call_data);
   5144 
   5145   Register scratch = call_data;
   5146   if (!call_data_undefined()) {
   5147     // return value
   5148     __ push(Immediate(masm->isolate()->factory()->undefined_value()));
   5149     // return value default
   5150     __ push(Immediate(masm->isolate()->factory()->undefined_value()));
   5151   } else {
   5152     // return value
   5153     __ push(scratch);
   5154     // return value default
   5155     __ push(scratch);
   5156   }
   5157   // isolate
   5158   __ push(Immediate(reinterpret_cast<int>(masm->isolate())));
   5159   // holder
   5160   __ push(holder);
   5161 
   5162   __ mov(scratch, esp);
   5163 
   5164   // push return address
   5165   __ push(return_address);
   5166 
   5167   if (!is_lazy()) {
   5168     // load context from callee
   5169     __ mov(context, FieldOperand(callee, JSFunction::kContextOffset));
   5170   }
   5171 
   5172   // API function gets reference to the v8::Arguments. If CPU profiler
   5173   // is enabled wrapper function will be called and we need to pass
   5174   // address of the callback as additional parameter, always allocate
   5175   // space for it.
   5176   const int kApiArgc = 1 + 1;
   5177 
   5178   // Allocate the v8::Arguments structure in the arguments' space since
   5179   // it's not controlled by GC.
   5180   const int kApiStackSpace = 3;
   5181 
   5182   PrepareCallApiFunction(masm, kApiArgc + kApiStackSpace);
   5183 
   5184   // FunctionCallbackInfo::implicit_args_.
   5185   __ mov(ApiParameterOperand(2), scratch);
   5186   __ add(scratch, Immediate((argc() + FCA::kArgsLength - 1) * kPointerSize));
   5187   // FunctionCallbackInfo::values_.
   5188   __ mov(ApiParameterOperand(3), scratch);
   5189   // FunctionCallbackInfo::length_.
   5190   __ Move(ApiParameterOperand(4), Immediate(argc()));
   5191 
   5192   // v8::InvocationCallback's argument.
   5193   __ lea(scratch, ApiParameterOperand(2));
   5194   __ mov(ApiParameterOperand(0), scratch);
   5195 
   5196   ExternalReference thunk_ref =
   5197       ExternalReference::invoke_function_callback(masm->isolate());
   5198 
   5199   Operand context_restore_operand(ebp,
   5200                                   (2 + FCA::kContextSaveIndex) * kPointerSize);
   5201   // Stores return the first js argument
   5202   int return_value_offset = 0;
   5203   if (is_store()) {
   5204     return_value_offset = 2 + FCA::kArgsLength;
   5205   } else {
   5206     return_value_offset = 2 + FCA::kReturnValueOffset;
   5207   }
   5208   Operand return_value_operand(ebp, return_value_offset * kPointerSize);
   5209   int stack_space = 0;
   5210   Operand length_operand = ApiParameterOperand(4);
   5211   Operand* stack_space_operand = &length_operand;
   5212   stack_space = argc() + FCA::kArgsLength + 1;
   5213   stack_space_operand = nullptr;
   5214   CallApiFunctionAndReturn(masm, api_function_address, thunk_ref,
   5215                            ApiParameterOperand(1), stack_space,
   5216                            stack_space_operand, return_value_operand,
   5217                            &context_restore_operand);
   5218 }
   5219 
   5220 
   5221 void CallApiGetterStub::Generate(MacroAssembler* masm) {
   5222   // Build v8::PropertyCallbackInfo::args_ array on the stack and push property
   5223   // name below the exit frame to make GC aware of them.
   5224   STATIC_ASSERT(PropertyCallbackArguments::kShouldThrowOnErrorIndex == 0);
   5225   STATIC_ASSERT(PropertyCallbackArguments::kHolderIndex == 1);
   5226   STATIC_ASSERT(PropertyCallbackArguments::kIsolateIndex == 2);
   5227   STATIC_ASSERT(PropertyCallbackArguments::kReturnValueDefaultValueIndex == 3);
   5228   STATIC_ASSERT(PropertyCallbackArguments::kReturnValueOffset == 4);
   5229   STATIC_ASSERT(PropertyCallbackArguments::kDataIndex == 5);
   5230   STATIC_ASSERT(PropertyCallbackArguments::kThisIndex == 6);
   5231   STATIC_ASSERT(PropertyCallbackArguments::kArgsLength == 7);
   5232 
   5233   Register receiver = ApiGetterDescriptor::ReceiverRegister();
   5234   Register holder = ApiGetterDescriptor::HolderRegister();
   5235   Register callback = ApiGetterDescriptor::CallbackRegister();
   5236   Register scratch = ebx;
   5237   DCHECK(!AreAliased(receiver, holder, callback, scratch));
   5238 
   5239   __ pop(scratch);  // Pop return address to extend the frame.
   5240   __ push(receiver);
   5241   __ push(FieldOperand(callback, AccessorInfo::kDataOffset));
   5242   __ PushRoot(Heap::kUndefinedValueRootIndex);  // ReturnValue
   5243   // ReturnValue default value
   5244   __ PushRoot(Heap::kUndefinedValueRootIndex);
   5245   __ push(Immediate(ExternalReference::isolate_address(isolate())));
   5246   __ push(holder);
   5247   __ push(Immediate(Smi::FromInt(0)));  // should_throw_on_error -> false
   5248   __ push(FieldOperand(callback, AccessorInfo::kNameOffset));
   5249   __ push(scratch);  // Restore return address.
   5250 
   5251   // v8::PropertyCallbackInfo::args_ array and name handle.
   5252   const int kStackUnwindSpace = PropertyCallbackArguments::kArgsLength + 1;
   5253 
   5254   // Allocate v8::PropertyCallbackInfo object, arguments for callback and
   5255   // space for optional callback address parameter (in case CPU profiler is
   5256   // active) in non-GCed stack space.
   5257   const int kApiArgc = 3 + 1;
   5258 
   5259   // Load address of v8::PropertyAccessorInfo::args_ array.
   5260   __ lea(scratch, Operand(esp, 2 * kPointerSize));
   5261 
   5262   PrepareCallApiFunction(masm, kApiArgc);
   5263   // Create v8::PropertyCallbackInfo object on the stack and initialize
   5264   // it's args_ field.
   5265   Operand info_object = ApiParameterOperand(3);
   5266   __ mov(info_object, scratch);
   5267 
   5268   // Name as handle.
   5269   __ sub(scratch, Immediate(kPointerSize));
   5270   __ mov(ApiParameterOperand(0), scratch);
   5271   // Arguments pointer.
   5272   __ lea(scratch, info_object);
   5273   __ mov(ApiParameterOperand(1), scratch);
   5274   // Reserve space for optional callback address parameter.
   5275   Operand thunk_last_arg = ApiParameterOperand(2);
   5276 
   5277   ExternalReference thunk_ref =
   5278       ExternalReference::invoke_accessor_getter_callback(isolate());
   5279 
   5280   __ mov(scratch, FieldOperand(callback, AccessorInfo::kJsGetterOffset));
   5281   Register function_address = edx;
   5282   __ mov(function_address,
   5283          FieldOperand(scratch, Foreign::kForeignAddressOffset));
   5284   // +3 is to skip prolog, return address and name handle.
   5285   Operand return_value_operand(
   5286       ebp, (PropertyCallbackArguments::kReturnValueOffset + 3) * kPointerSize);
   5287   CallApiFunctionAndReturn(masm, function_address, thunk_ref, thunk_last_arg,
   5288                            kStackUnwindSpace, nullptr, return_value_operand,
   5289                            NULL);
   5290 }
   5291 
   5292 #undef __
   5293 
   5294 }  // namespace internal
   5295 }  // namespace v8
   5296 
   5297 #endif  // V8_TARGET_ARCH_X87
   5298