Home | History | Annotate | Download | only in x87
      1 // Copyright 2012 the V8 project authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #ifndef V8_X87_MACRO_ASSEMBLER_X87_H_
      6 #define V8_X87_MACRO_ASSEMBLER_X87_H_
      7 
      8 #include "src/assembler.h"
      9 #include "src/bailout-reason.h"
     10 #include "src/frames.h"
     11 #include "src/globals.h"
     12 
     13 namespace v8 {
     14 namespace internal {
     15 
     16 // Give alias names to registers for calling conventions.
     17 const Register kReturnRegister0 = {Register::kCode_eax};
     18 const Register kReturnRegister1 = {Register::kCode_edx};
     19 const Register kReturnRegister2 = {Register::kCode_edi};
     20 const Register kJSFunctionRegister = {Register::kCode_edi};
     21 const Register kContextRegister = {Register::kCode_esi};
     22 const Register kAllocateSizeRegister = {Register::kCode_edx};
     23 const Register kInterpreterAccumulatorRegister = {Register::kCode_eax};
     24 const Register kInterpreterBytecodeOffsetRegister = {Register::kCode_ecx};
     25 const Register kInterpreterBytecodeArrayRegister = {Register::kCode_edi};
     26 const Register kInterpreterDispatchTableRegister = {Register::kCode_esi};
     27 const Register kJavaScriptCallArgCountRegister = {Register::kCode_eax};
     28 const Register kJavaScriptCallNewTargetRegister = {Register::kCode_edx};
     29 const Register kRuntimeCallFunctionRegister = {Register::kCode_ebx};
     30 const Register kRuntimeCallArgCountRegister = {Register::kCode_eax};
     31 
     32 // Spill slots used by interpreter dispatch calling convention.
     33 const int kInterpreterDispatchTableSpillSlot = -1;
     34 
     35 // Convenience for platform-independent signatures.  We do not normally
     36 // distinguish memory operands from other operands on ia32.
     37 typedef Operand MemOperand;
     38 
     39 enum RememberedSetAction { EMIT_REMEMBERED_SET, OMIT_REMEMBERED_SET };
     40 enum SmiCheck { INLINE_SMI_CHECK, OMIT_SMI_CHECK };
     41 enum PointersToHereCheck {
     42   kPointersToHereMaybeInteresting,
     43   kPointersToHereAreAlwaysInteresting
     44 };
     45 
     46 enum RegisterValueType { REGISTER_VALUE_IS_SMI, REGISTER_VALUE_IS_INT32 };
     47 
     48 enum class ReturnAddressState { kOnStack, kNotOnStack };
     49 
     50 #ifdef DEBUG
     51 bool AreAliased(Register reg1, Register reg2, Register reg3 = no_reg,
     52                 Register reg4 = no_reg, Register reg5 = no_reg,
     53                 Register reg6 = no_reg, Register reg7 = no_reg,
     54                 Register reg8 = no_reg);
     55 #endif
     56 
     57 // MacroAssembler implements a collection of frequently used macros.
     58 class MacroAssembler: public Assembler {
     59  public:
     60   MacroAssembler(Isolate* isolate, void* buffer, int size,
     61                  CodeObjectRequired create_code_object);
     62 
     63   void Load(Register dst, const Operand& src, Representation r);
     64   void Store(Register src, const Operand& dst, Representation r);
     65 
     66   // Load a register with a long value as efficiently as possible.
     67   void Set(Register dst, int32_t x) {
     68     if (x == 0) {
     69       xor_(dst, dst);
     70     } else {
     71       mov(dst, Immediate(x));
     72     }
     73   }
     74   void Set(const Operand& dst, int32_t x) { mov(dst, Immediate(x)); }
     75 
     76   // Operations on roots in the root-array.
     77   void LoadRoot(Register destination, Heap::RootListIndex index);
     78   void StoreRoot(Register source, Register scratch, Heap::RootListIndex index);
     79   void CompareRoot(Register with, Register scratch, Heap::RootListIndex index);
     80   // These methods can only be used with constant roots (i.e. non-writable
     81   // and not in new space).
     82   void CompareRoot(Register with, Heap::RootListIndex index);
     83   void CompareRoot(const Operand& with, Heap::RootListIndex index);
     84   void PushRoot(Heap::RootListIndex index);
     85 
     86   // Compare the object in a register to a value and jump if they are equal.
     87   void JumpIfRoot(Register with, Heap::RootListIndex index, Label* if_equal,
     88                   Label::Distance if_equal_distance = Label::kFar) {
     89     CompareRoot(with, index);
     90     j(equal, if_equal, if_equal_distance);
     91   }
     92   void JumpIfRoot(const Operand& with, Heap::RootListIndex index,
     93                   Label* if_equal,
     94                   Label::Distance if_equal_distance = Label::kFar) {
     95     CompareRoot(with, index);
     96     j(equal, if_equal, if_equal_distance);
     97   }
     98 
     99   // Compare the object in a register to a value and jump if they are not equal.
    100   void JumpIfNotRoot(Register with, Heap::RootListIndex index,
    101                      Label* if_not_equal,
    102                      Label::Distance if_not_equal_distance = Label::kFar) {
    103     CompareRoot(with, index);
    104     j(not_equal, if_not_equal, if_not_equal_distance);
    105   }
    106   void JumpIfNotRoot(const Operand& with, Heap::RootListIndex index,
    107                      Label* if_not_equal,
    108                      Label::Distance if_not_equal_distance = Label::kFar) {
    109     CompareRoot(with, index);
    110     j(not_equal, if_not_equal, if_not_equal_distance);
    111   }
    112 
    113   // These functions do not arrange the registers in any particular order so
    114   // they are not useful for calls that can cause a GC.  The caller can
    115   // exclude up to 3 registers that do not need to be saved and restored.
    116   void PushCallerSaved(SaveFPRegsMode fp_mode, Register exclusion1 = no_reg,
    117                        Register exclusion2 = no_reg,
    118                        Register exclusion3 = no_reg);
    119   void PopCallerSaved(SaveFPRegsMode fp_mode, Register exclusion1 = no_reg,
    120                       Register exclusion2 = no_reg,
    121                       Register exclusion3 = no_reg);
    122 
    123   // ---------------------------------------------------------------------------
    124   // GC Support
    125   enum RememberedSetFinalAction { kReturnAtEnd, kFallThroughAtEnd };
    126 
    127   // Record in the remembered set the fact that we have a pointer to new space
    128   // at the address pointed to by the addr register.  Only works if addr is not
    129   // in new space.
    130   void RememberedSetHelper(Register object,  // Used for debug code.
    131                            Register addr, Register scratch,
    132                            SaveFPRegsMode save_fp,
    133                            RememberedSetFinalAction and_then);
    134 
    135   void CheckPageFlag(Register object, Register scratch, int mask, Condition cc,
    136                      Label* condition_met,
    137                      Label::Distance condition_met_distance = Label::kFar);
    138 
    139   void CheckPageFlagForMap(
    140       Handle<Map> map, int mask, Condition cc, Label* condition_met,
    141       Label::Distance condition_met_distance = Label::kFar);
    142 
    143   // Check if object is in new space.  Jumps if the object is not in new space.
    144   // The register scratch can be object itself, but scratch will be clobbered.
    145   void JumpIfNotInNewSpace(Register object, Register scratch, Label* branch,
    146                            Label::Distance distance = Label::kFar) {
    147     InNewSpace(object, scratch, zero, branch, distance);
    148   }
    149 
    150   // Check if object is in new space.  Jumps if the object is in new space.
    151   // The register scratch can be object itself, but it will be clobbered.
    152   void JumpIfInNewSpace(Register object, Register scratch, Label* branch,
    153                         Label::Distance distance = Label::kFar) {
    154     InNewSpace(object, scratch, not_zero, branch, distance);
    155   }
    156 
    157   // Check if an object has a given incremental marking color.  Also uses ecx!
    158   void HasColor(Register object, Register scratch0, Register scratch1,
    159                 Label* has_color, Label::Distance has_color_distance,
    160                 int first_bit, int second_bit);
    161 
    162   void JumpIfBlack(Register object, Register scratch0, Register scratch1,
    163                    Label* on_black,
    164                    Label::Distance on_black_distance = Label::kFar);
    165 
    166   // Checks the color of an object.  If the object is white we jump to the
    167   // incremental marker.
    168   void JumpIfWhite(Register value, Register scratch1, Register scratch2,
    169                    Label* value_is_white, Label::Distance distance);
    170 
    171   // Notify the garbage collector that we wrote a pointer into an object.
    172   // |object| is the object being stored into, |value| is the object being
    173   // stored.  value and scratch registers are clobbered by the operation.
    174   // The offset is the offset from the start of the object, not the offset from
    175   // the tagged HeapObject pointer.  For use with FieldOperand(reg, off).
    176   void RecordWriteField(
    177       Register object, int offset, Register value, Register scratch,
    178       SaveFPRegsMode save_fp,
    179       RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
    180       SmiCheck smi_check = INLINE_SMI_CHECK,
    181       PointersToHereCheck pointers_to_here_check_for_value =
    182           kPointersToHereMaybeInteresting);
    183 
    184   // As above, but the offset has the tag presubtracted.  For use with
    185   // Operand(reg, off).
    186   void RecordWriteContextSlot(
    187       Register context, int offset, Register value, Register scratch,
    188       SaveFPRegsMode save_fp,
    189       RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
    190       SmiCheck smi_check = INLINE_SMI_CHECK,
    191       PointersToHereCheck pointers_to_here_check_for_value =
    192           kPointersToHereMaybeInteresting) {
    193     RecordWriteField(context, offset + kHeapObjectTag, value, scratch, save_fp,
    194                      remembered_set_action, smi_check,
    195                      pointers_to_here_check_for_value);
    196   }
    197 
    198   // Notify the garbage collector that we wrote a pointer into a fixed array.
    199   // |array| is the array being stored into, |value| is the
    200   // object being stored.  |index| is the array index represented as a
    201   // Smi. All registers are clobbered by the operation RecordWriteArray
    202   // filters out smis so it does not update the write barrier if the
    203   // value is a smi.
    204   void RecordWriteArray(
    205       Register array, Register value, Register index, SaveFPRegsMode save_fp,
    206       RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
    207       SmiCheck smi_check = INLINE_SMI_CHECK,
    208       PointersToHereCheck pointers_to_here_check_for_value =
    209           kPointersToHereMaybeInteresting);
    210 
    211   // For page containing |object| mark region covering |address|
    212   // dirty. |object| is the object being stored into, |value| is the
    213   // object being stored. The address and value registers are clobbered by the
    214   // operation. RecordWrite filters out smis so it does not update the
    215   // write barrier if the value is a smi.
    216   void RecordWrite(
    217       Register object, Register address, Register value, SaveFPRegsMode save_fp,
    218       RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
    219       SmiCheck smi_check = INLINE_SMI_CHECK,
    220       PointersToHereCheck pointers_to_here_check_for_value =
    221           kPointersToHereMaybeInteresting);
    222 
    223   // Notify the garbage collector that we wrote a code entry into a
    224   // JSFunction. Only scratch is clobbered by the operation.
    225   void RecordWriteCodeEntryField(Register js_function, Register code_entry,
    226                                  Register scratch);
    227 
    228   // For page containing |object| mark the region covering the object's map
    229   // dirty. |object| is the object being stored into, |map| is the Map object
    230   // that was stored.
    231   void RecordWriteForMap(Register object, Handle<Map> map, Register scratch1,
    232                          Register scratch2, SaveFPRegsMode save_fp);
    233 
    234   // ---------------------------------------------------------------------------
    235   // Debugger Support
    236 
    237   void DebugBreak();
    238 
    239   // Generates function and stub prologue code.
    240   void StubPrologue(StackFrame::Type type);
    241   void Prologue(bool code_pre_aging);
    242 
    243   // Enter specific kind of exit frame. Expects the number of
    244   // arguments in register eax and sets up the number of arguments in
    245   // register edi and the pointer to the first argument in register
    246   // esi.
    247   void EnterExitFrame(int argc, bool save_doubles);
    248 
    249   void EnterApiExitFrame(int argc);
    250 
    251   // Leave the current exit frame. Expects the return value in
    252   // register eax:edx (untouched) and the pointer to the first
    253   // argument in register esi (if pop_arguments == true).
    254   void LeaveExitFrame(bool save_doubles, bool pop_arguments = true);
    255 
    256   // Leave the current exit frame. Expects the return value in
    257   // register eax (untouched).
    258   void LeaveApiExitFrame(bool restore_context);
    259 
    260   // Find the function context up the context chain.
    261   void LoadContext(Register dst, int context_chain_length);
    262 
    263   // Load the global proxy from the current context.
    264   void LoadGlobalProxy(Register dst);
    265 
    266   // Conditionally load the cached Array transitioned map of type
    267   // transitioned_kind from the native context if the map in register
    268   // map_in_out is the cached Array map in the native context of
    269   // expected_kind.
    270   void LoadTransitionedArrayMapConditional(ElementsKind expected_kind,
    271                                            ElementsKind transitioned_kind,
    272                                            Register map_in_out,
    273                                            Register scratch,
    274                                            Label* no_map_match);
    275 
    276   // Load the global function with the given index.
    277   void LoadGlobalFunction(int index, Register function);
    278 
    279   // Load the initial map from the global function. The registers
    280   // function and map can be the same.
    281   void LoadGlobalFunctionInitialMap(Register function, Register map);
    282 
    283   // Push and pop the registers that can hold pointers.
    284   void PushSafepointRegisters() { pushad(); }
    285   void PopSafepointRegisters() { popad(); }
    286   // Store the value in register/immediate src in the safepoint
    287   // register stack slot for register dst.
    288   void StoreToSafepointRegisterSlot(Register dst, Register src);
    289   void StoreToSafepointRegisterSlot(Register dst, Immediate src);
    290   void LoadFromSafepointRegisterSlot(Register dst, Register src);
    291 
    292   // Nop, because x87 does not have a root register.
    293   void InitializeRootRegister() {}
    294 
    295   void LoadHeapObject(Register result, Handle<HeapObject> object);
    296   void CmpHeapObject(Register reg, Handle<HeapObject> object);
    297   void PushHeapObject(Handle<HeapObject> object);
    298 
    299   void LoadObject(Register result, Handle<Object> object) {
    300     AllowDeferredHandleDereference heap_object_check;
    301     if (object->IsHeapObject()) {
    302       LoadHeapObject(result, Handle<HeapObject>::cast(object));
    303     } else {
    304       Move(result, Immediate(object));
    305     }
    306   }
    307 
    308   void CmpObject(Register reg, Handle<Object> object) {
    309     AllowDeferredHandleDereference heap_object_check;
    310     if (object->IsHeapObject()) {
    311       CmpHeapObject(reg, Handle<HeapObject>::cast(object));
    312     } else {
    313       cmp(reg, Immediate(object));
    314     }
    315   }
    316 
    317   void CmpWeakValue(Register value, Handle<WeakCell> cell, Register scratch);
    318   void GetWeakValue(Register value, Handle<WeakCell> cell);
    319   void LoadWeakValue(Register value, Handle<WeakCell> cell, Label* miss);
    320 
    321   // ---------------------------------------------------------------------------
    322   // JavaScript invokes
    323 
    324   // Removes current frame and its arguments from the stack preserving
    325   // the arguments and a return address pushed to the stack for the next call.
    326   // |ra_state| defines whether return address is already pushed to stack or
    327   // not. Both |callee_args_count| and |caller_args_count_reg| do not include
    328   // receiver. |callee_args_count| is not modified, |caller_args_count_reg|
    329   // is trashed. |number_of_temp_values_after_return_address| specifies
    330   // the number of words pushed to the stack after the return address. This is
    331   // to allow "allocation" of scratch registers that this function requires
    332   // by saving their values on the stack.
    333   void PrepareForTailCall(const ParameterCount& callee_args_count,
    334                           Register caller_args_count_reg, Register scratch0,
    335                           Register scratch1, ReturnAddressState ra_state,
    336                           int number_of_temp_values_after_return_address);
    337 
    338   // Invoke the JavaScript function code by either calling or jumping.
    339 
    340   void InvokeFunctionCode(Register function, Register new_target,
    341                           const ParameterCount& expected,
    342                           const ParameterCount& actual, InvokeFlag flag,
    343                           const CallWrapper& call_wrapper);
    344 
    345   void FloodFunctionIfStepping(Register fun, Register new_target,
    346                                const ParameterCount& expected,
    347                                const ParameterCount& actual);
    348 
    349   // Invoke the JavaScript function in the given register. Changes the
    350   // current context to the context in the function before invoking.
    351   void InvokeFunction(Register function, Register new_target,
    352                       const ParameterCount& actual, InvokeFlag flag,
    353                       const CallWrapper& call_wrapper);
    354 
    355   void InvokeFunction(Register function, const ParameterCount& expected,
    356                       const ParameterCount& actual, InvokeFlag flag,
    357                       const CallWrapper& call_wrapper);
    358 
    359   void InvokeFunction(Handle<JSFunction> function,
    360                       const ParameterCount& expected,
    361                       const ParameterCount& actual, InvokeFlag flag,
    362                       const CallWrapper& call_wrapper);
    363 
    364   void ShlPair(Register high, Register low, uint8_t imm8);
    365   void ShlPair_cl(Register high, Register low);
    366   void ShrPair(Register high, Register low, uint8_t imm8);
    367   void ShrPair_cl(Register high, Register src);
    368   void SarPair(Register high, Register low, uint8_t imm8);
    369   void SarPair_cl(Register high, Register low);
    370 
    371   // Expression support
    372   // Support for constant splitting.
    373   bool IsUnsafeImmediate(const Immediate& x);
    374   void SafeMove(Register dst, const Immediate& x);
    375   void SafePush(const Immediate& x);
    376 
    377   // Compare object type for heap object.
    378   // Incoming register is heap_object and outgoing register is map.
    379   void CmpObjectType(Register heap_object, InstanceType type, Register map);
    380 
    381   // Compare instance type for map.
    382   void CmpInstanceType(Register map, InstanceType type);
    383 
    384   // Check if a map for a JSObject indicates that the object has fast elements.
    385   // Jump to the specified label if it does not.
    386   void CheckFastElements(Register map, Label* fail,
    387                          Label::Distance distance = Label::kFar);
    388 
    389   // Check if a map for a JSObject indicates that the object can have both smi
    390   // and HeapObject elements.  Jump to the specified label if it does not.
    391   void CheckFastObjectElements(Register map, Label* fail,
    392                                Label::Distance distance = Label::kFar);
    393 
    394   // Check if a map for a JSObject indicates that the object has fast smi only
    395   // elements.  Jump to the specified label if it does not.
    396   void CheckFastSmiElements(Register map, Label* fail,
    397                             Label::Distance distance = Label::kFar);
    398 
    399   // Check to see if maybe_number can be stored as a double in
    400   // FastDoubleElements. If it can, store it at the index specified by key in
    401   // the FastDoubleElements array elements, otherwise jump to fail.
    402   void StoreNumberToDoubleElements(Register maybe_number, Register elements,
    403                                    Register key, Register scratch, Label* fail,
    404                                    int offset = 0);
    405 
    406   // Compare an object's map with the specified map.
    407   void CompareMap(Register obj, Handle<Map> map);
    408 
    409   // Check if the map of an object is equal to a specified map and branch to
    410   // label if not. Skip the smi check if not required (object is known to be a
    411   // heap object). If mode is ALLOW_ELEMENT_TRANSITION_MAPS, then also match
    412   // against maps that are ElementsKind transition maps of the specified map.
    413   void CheckMap(Register obj, Handle<Map> map, Label* fail,
    414                 SmiCheckType smi_check_type);
    415 
    416   // Check if the map of an object is equal to a specified weak map and branch
    417   // to a specified target if equal. Skip the smi check if not required
    418   // (object is known to be a heap object)
    419   void DispatchWeakMap(Register obj, Register scratch1, Register scratch2,
    420                        Handle<WeakCell> cell, Handle<Code> success,
    421                        SmiCheckType smi_check_type);
    422 
    423   // Check if the object in register heap_object is a string. Afterwards the
    424   // register map contains the object map and the register instance_type
    425   // contains the instance_type. The registers map and instance_type can be the
    426   // same in which case it contains the instance type afterwards. Either of the
    427   // registers map and instance_type can be the same as heap_object.
    428   Condition IsObjectStringType(Register heap_object, Register map,
    429                                Register instance_type);
    430 
    431   // Check if the object in register heap_object is a name. Afterwards the
    432   // register map contains the object map and the register instance_type
    433   // contains the instance_type. The registers map and instance_type can be the
    434   // same in which case it contains the instance type afterwards. Either of the
    435   // registers map and instance_type can be the same as heap_object.
    436   Condition IsObjectNameType(Register heap_object, Register map,
    437                              Register instance_type);
    438 
    439   // FCmp is similar to integer cmp, but requires unsigned
    440   // jcc instructions (je, ja, jae, jb, jbe, je, and jz).
    441   void FCmp();
    442   void FXamMinusZero();
    443   void FXamSign();
    444   void X87CheckIA();
    445   void X87SetRC(int rc);
    446   void X87SetFPUCW(int cw);
    447 
    448   void ClampUint8(Register reg);
    449   void ClampTOSToUint8(Register result_reg);
    450 
    451   void SlowTruncateToI(Register result_reg, Register input_reg,
    452       int offset = HeapNumber::kValueOffset - kHeapObjectTag);
    453 
    454   void TruncateHeapNumberToI(Register result_reg, Register input_reg);
    455   void TruncateX87TOSToI(Register result_reg);
    456 
    457   void X87TOSToI(Register result_reg, MinusZeroMode minus_zero_mode,
    458       Label* lost_precision, Label* is_nan, Label* minus_zero,
    459       Label::Distance dst = Label::kFar);
    460 
    461   // Smi tagging support.
    462   void SmiTag(Register reg) {
    463     STATIC_ASSERT(kSmiTag == 0);
    464     STATIC_ASSERT(kSmiTagSize == 1);
    465     add(reg, reg);
    466   }
    467   void SmiUntag(Register reg) {
    468     sar(reg, kSmiTagSize);
    469   }
    470 
    471   // Modifies the register even if it does not contain a Smi!
    472   void SmiUntag(Register reg, Label* is_smi) {
    473     STATIC_ASSERT(kSmiTagSize == 1);
    474     sar(reg, kSmiTagSize);
    475     STATIC_ASSERT(kSmiTag == 0);
    476     j(not_carry, is_smi);
    477   }
    478 
    479   void LoadUint32NoSSE2(Register src) {
    480     LoadUint32NoSSE2(Operand(src));
    481   }
    482   void LoadUint32NoSSE2(const Operand& src);
    483 
    484   // Jump the register contains a smi.
    485   inline void JumpIfSmi(Register value, Label* smi_label,
    486                         Label::Distance distance = Label::kFar) {
    487     test(value, Immediate(kSmiTagMask));
    488     j(zero, smi_label, distance);
    489   }
    490   // Jump if the operand is a smi.
    491   inline void JumpIfSmi(Operand value, Label* smi_label,
    492                         Label::Distance distance = Label::kFar) {
    493     test(value, Immediate(kSmiTagMask));
    494     j(zero, smi_label, distance);
    495   }
    496   // Jump if register contain a non-smi.
    497   inline void JumpIfNotSmi(Register value, Label* not_smi_label,
    498                            Label::Distance distance = Label::kFar) {
    499     test(value, Immediate(kSmiTagMask));
    500     j(not_zero, not_smi_label, distance);
    501   }
    502 
    503   // Jump if the value cannot be represented by a smi.
    504   inline void JumpIfNotValidSmiValue(Register value, Register scratch,
    505                                      Label* on_invalid,
    506                                      Label::Distance distance = Label::kFar) {
    507     mov(scratch, value);
    508     add(scratch, Immediate(0x40000000U));
    509     j(sign, on_invalid, distance);
    510   }
    511 
    512   // Jump if the unsigned integer value cannot be represented by a smi.
    513   inline void JumpIfUIntNotValidSmiValue(
    514       Register value, Label* on_invalid,
    515       Label::Distance distance = Label::kFar) {
    516     cmp(value, Immediate(0x40000000U));
    517     j(above_equal, on_invalid, distance);
    518   }
    519 
    520   void LoadInstanceDescriptors(Register map, Register descriptors);
    521   void EnumLength(Register dst, Register map);
    522   void NumberOfOwnDescriptors(Register dst, Register map);
    523   void LoadAccessor(Register dst, Register holder, int accessor_index,
    524                     AccessorComponent accessor);
    525 
    526   template<typename Field>
    527   void DecodeField(Register reg) {
    528     static const int shift = Field::kShift;
    529     static const int mask = Field::kMask >> Field::kShift;
    530     if (shift != 0) {
    531       sar(reg, shift);
    532     }
    533     and_(reg, Immediate(mask));
    534   }
    535 
    536   template<typename Field>
    537   void DecodeFieldToSmi(Register reg) {
    538     static const int shift = Field::kShift;
    539     static const int mask = (Field::kMask >> Field::kShift) << kSmiTagSize;
    540     STATIC_ASSERT((mask & (0x80000000u >> (kSmiTagSize - 1))) == 0);
    541     STATIC_ASSERT(kSmiTag == 0);
    542     if (shift < kSmiTagSize) {
    543       shl(reg, kSmiTagSize - shift);
    544     } else if (shift > kSmiTagSize) {
    545       sar(reg, shift - kSmiTagSize);
    546     }
    547     and_(reg, Immediate(mask));
    548   }
    549 
    550   // Abort execution if argument is not a number, enabled via --debug-code.
    551   void AssertNumber(Register object);
    552   void AssertNotNumber(Register object);
    553 
    554   // Abort execution if argument is not a smi, enabled via --debug-code.
    555   void AssertSmi(Register object);
    556 
    557   // Abort execution if argument is a smi, enabled via --debug-code.
    558   void AssertNotSmi(Register object);
    559 
    560   // Abort execution if argument is not a string, enabled via --debug-code.
    561   void AssertString(Register object);
    562 
    563   // Abort execution if argument is not a name, enabled via --debug-code.
    564   void AssertName(Register object);
    565 
    566   // Abort execution if argument is not a JSFunction, enabled via --debug-code.
    567   void AssertFunction(Register object);
    568 
    569   // Abort execution if argument is not a JSBoundFunction,
    570   // enabled via --debug-code.
    571   void AssertBoundFunction(Register object);
    572 
    573   // Abort execution if argument is not a JSGeneratorObject,
    574   // enabled via --debug-code.
    575   void AssertGeneratorObject(Register object);
    576 
    577   // Abort execution if argument is not a JSReceiver, enabled via --debug-code.
    578   void AssertReceiver(Register object);
    579 
    580   // Abort execution if argument is not undefined or an AllocationSite, enabled
    581   // via --debug-code.
    582   void AssertUndefinedOrAllocationSite(Register object);
    583 
    584   // ---------------------------------------------------------------------------
    585   // Exception handling
    586 
    587   // Push a new stack handler and link it into stack handler chain.
    588   void PushStackHandler();
    589 
    590   // Unlink the stack handler on top of the stack from the stack handler chain.
    591   void PopStackHandler();
    592 
    593   // ---------------------------------------------------------------------------
    594   // Inline caching support
    595 
    596   // Generate code for checking access rights - used for security checks
    597   // on access to global objects across environments. The holder register
    598   // is left untouched, but the scratch register is clobbered.
    599   void CheckAccessGlobalProxy(Register holder_reg, Register scratch1,
    600                               Register scratch2, Label* miss);
    601 
    602   void GetNumberHash(Register r0, Register scratch);
    603 
    604   void LoadFromNumberDictionary(Label* miss, Register elements, Register key,
    605                                 Register r0, Register r1, Register r2,
    606                                 Register result);
    607 
    608   // ---------------------------------------------------------------------------
    609   // Allocation support
    610 
    611   // Allocate an object in new space or old space. If the given space
    612   // is exhausted control continues at the gc_required label. The allocated
    613   // object is returned in result and end of the new object is returned in
    614   // result_end. The register scratch can be passed as no_reg in which case
    615   // an additional object reference will be added to the reloc info. The
    616   // returned pointers in result and result_end have not yet been tagged as
    617   // heap objects. If result_contains_top_on_entry is true the content of
    618   // result is known to be the allocation top on entry (could be result_end
    619   // from a previous call). If result_contains_top_on_entry is true scratch
    620   // should be no_reg as it is never used.
    621   void Allocate(int object_size, Register result, Register result_end,
    622                 Register scratch, Label* gc_required, AllocationFlags flags);
    623 
    624   void Allocate(int header_size, ScaleFactor element_size,
    625                 Register element_count, RegisterValueType element_count_type,
    626                 Register result, Register result_end, Register scratch,
    627                 Label* gc_required, AllocationFlags flags);
    628 
    629   void Allocate(Register object_size, Register result, Register result_end,
    630                 Register scratch, Label* gc_required, AllocationFlags flags);
    631 
    632   // FastAllocate is right now only used for folded allocations. It just
    633   // increments the top pointer without checking against limit. This can only
    634   // be done if it was proved earlier that the allocation will succeed.
    635   void FastAllocate(int object_size, Register result, Register result_end,
    636                     AllocationFlags flags);
    637   void FastAllocate(Register object_size, Register result, Register result_end,
    638                     AllocationFlags flags);
    639 
    640   // Allocate a heap number in new space with undefined value. The
    641   // register scratch2 can be passed as no_reg; the others must be
    642   // valid registers. Returns tagged pointer in result register, or
    643   // jumps to gc_required if new space is full.
    644   void AllocateHeapNumber(Register result, Register scratch1, Register scratch2,
    645                           Label* gc_required, MutableMode mode = IMMUTABLE);
    646 
    647   // Allocate a sequential string. All the header fields of the string object
    648   // are initialized.
    649   void AllocateTwoByteString(Register result, Register length,
    650                              Register scratch1, Register scratch2,
    651                              Register scratch3, Label* gc_required);
    652   void AllocateOneByteString(Register result, Register length,
    653                              Register scratch1, Register scratch2,
    654                              Register scratch3, Label* gc_required);
    655   void AllocateOneByteString(Register result, int length, Register scratch1,
    656                              Register scratch2, Label* gc_required);
    657 
    658   // Allocate a raw cons string object. Only the map field of the result is
    659   // initialized.
    660   void AllocateTwoByteConsString(Register result, Register scratch1,
    661                                  Register scratch2, Label* gc_required);
    662   void AllocateOneByteConsString(Register result, Register scratch1,
    663                                  Register scratch2, Label* gc_required);
    664 
    665   // Allocate a raw sliced string object. Only the map field of the result is
    666   // initialized.
    667   void AllocateTwoByteSlicedString(Register result, Register scratch1,
    668                                    Register scratch2, Label* gc_required);
    669   void AllocateOneByteSlicedString(Register result, Register scratch1,
    670                                    Register scratch2, Label* gc_required);
    671 
    672   // Allocate and initialize a JSValue wrapper with the specified {constructor}
    673   // and {value}.
    674   void AllocateJSValue(Register result, Register constructor, Register value,
    675                        Register scratch, Label* gc_required);
    676 
    677   // Copy memory, byte-by-byte, from source to destination.  Not optimized for
    678   // long or aligned copies.
    679   // The contents of index and scratch are destroyed.
    680   void CopyBytes(Register source, Register destination, Register length,
    681                  Register scratch);
    682 
    683   // Initialize fields with filler values.  Fields starting at |current_address|
    684   // not including |end_address| are overwritten with the value in |filler|.  At
    685   // the end the loop, |current_address| takes the value of |end_address|.
    686   void InitializeFieldsWithFiller(Register current_address,
    687                                   Register end_address, Register filler);
    688 
    689   // ---------------------------------------------------------------------------
    690   // Support functions.
    691 
    692   // Check a boolean-bit of a Smi field.
    693   void BooleanBitTest(Register object, int field_offset, int bit_index);
    694 
    695   // Check if result is zero and op is negative.
    696   void NegativeZeroTest(Register result, Register op, Label* then_label);
    697 
    698   // Check if result is zero and any of op1 and op2 are negative.
    699   // Register scratch is destroyed, and it must be different from op2.
    700   void NegativeZeroTest(Register result, Register op1, Register op2,
    701                         Register scratch, Label* then_label);
    702 
    703   // Machine code version of Map::GetConstructor().
    704   // |temp| holds |result|'s map when done.
    705   void GetMapConstructor(Register result, Register map, Register temp);
    706 
    707   // Try to get function prototype of a function and puts the value in
    708   // the result register. Checks that the function really is a
    709   // function and jumps to the miss label if the fast checks fail. The
    710   // function register will be untouched; the other registers may be
    711   // clobbered.
    712   void TryGetFunctionPrototype(Register function, Register result,
    713                                Register scratch, Label* miss);
    714 
    715   // Picks out an array index from the hash field.
    716   // Register use:
    717   //   hash - holds the index's hash. Clobbered.
    718   //   index - holds the overwritten index on exit.
    719   void IndexFromHash(Register hash, Register index);
    720 
    721   // ---------------------------------------------------------------------------
    722   // Runtime calls
    723 
    724   // Call a code stub.  Generate the code if necessary.
    725   void CallStub(CodeStub* stub, TypeFeedbackId ast_id = TypeFeedbackId::None());
    726 
    727   // Tail call a code stub (jump).  Generate the code if necessary.
    728   void TailCallStub(CodeStub* stub);
    729 
    730   // Return from a code stub after popping its arguments.
    731   void StubReturn(int argc);
    732 
    733   // Call a runtime routine.
    734   void CallRuntime(const Runtime::Function* f, int num_arguments,
    735                    SaveFPRegsMode save_doubles = kDontSaveFPRegs);
    736   void CallRuntimeSaveDoubles(Runtime::FunctionId fid) {
    737     const Runtime::Function* function = Runtime::FunctionForId(fid);
    738     CallRuntime(function, function->nargs, kSaveFPRegs);
    739   }
    740 
    741   // Convenience function: Same as above, but takes the fid instead.
    742   void CallRuntime(Runtime::FunctionId fid,
    743                    SaveFPRegsMode save_doubles = kDontSaveFPRegs) {
    744     const Runtime::Function* function = Runtime::FunctionForId(fid);
    745     CallRuntime(function, function->nargs, save_doubles);
    746   }
    747 
    748   // Convenience function: Same as above, but takes the fid instead.
    749   void CallRuntime(Runtime::FunctionId fid, int num_arguments,
    750                    SaveFPRegsMode save_doubles = kDontSaveFPRegs) {
    751     CallRuntime(Runtime::FunctionForId(fid), num_arguments, save_doubles);
    752   }
    753 
    754   // Convenience function: call an external reference.
    755   void CallExternalReference(ExternalReference ref, int num_arguments);
    756 
    757   // Convenience function: tail call a runtime routine (jump).
    758   void TailCallRuntime(Runtime::FunctionId fid);
    759 
    760   // Before calling a C-function from generated code, align arguments on stack.
    761   // After aligning the frame, arguments must be stored in esp[0], esp[4],
    762   // etc., not pushed. The argument count assumes all arguments are word sized.
    763   // Some compilers/platforms require the stack to be aligned when calling
    764   // C++ code.
    765   // Needs a scratch register to do some arithmetic. This register will be
    766   // trashed.
    767   void PrepareCallCFunction(int num_arguments, Register scratch);
    768 
    769   // Calls a C function and cleans up the space for arguments allocated
    770   // by PrepareCallCFunction. The called function is not allowed to trigger a
    771   // garbage collection, since that might move the code and invalidate the
    772   // return address (unless this is somehow accounted for by the called
    773   // function).
    774   void CallCFunction(ExternalReference function, int num_arguments);
    775   void CallCFunction(Register function, int num_arguments);
    776 
    777   // Jump to a runtime routine.
    778   void JumpToExternalReference(const ExternalReference& ext);
    779 
    780   // ---------------------------------------------------------------------------
    781   // Utilities
    782 
    783   void Ret();
    784 
    785   // Return and drop arguments from stack, where the number of arguments
    786   // may be bigger than 2^16 - 1.  Requires a scratch register.
    787   void Ret(int bytes_dropped, Register scratch);
    788 
    789   // Emit code to discard a non-negative number of pointer-sized elements
    790   // from the stack, clobbering only the esp register.
    791   void Drop(int element_count);
    792 
    793   void Call(Label* target) { call(target); }
    794   void Call(Handle<Code> target, RelocInfo::Mode rmode) { call(target, rmode); }
    795   void Jump(Handle<Code> target, RelocInfo::Mode rmode) { jmp(target, rmode); }
    796   void Push(Register src) { push(src); }
    797   void Push(const Operand& src) { push(src); }
    798   void Push(Immediate value) { push(value); }
    799   void Pop(Register dst) { pop(dst); }
    800   void Pop(const Operand& dst) { pop(dst); }
    801   void PushReturnAddressFrom(Register src) { push(src); }
    802   void PopReturnAddressTo(Register dst) { pop(dst); }
    803 
    804   void Lzcnt(Register dst, Register src) { Lzcnt(dst, Operand(src)); }
    805   void Lzcnt(Register dst, const Operand& src);
    806 
    807   void Tzcnt(Register dst, Register src) { Tzcnt(dst, Operand(src)); }
    808   void Tzcnt(Register dst, const Operand& src);
    809 
    810   void Popcnt(Register dst, Register src) { Popcnt(dst, Operand(src)); }
    811   void Popcnt(Register dst, const Operand& src);
    812 
    813   // Move if the registers are not identical.
    814   void Move(Register target, Register source);
    815 
    816   // Move a constant into a destination using the most efficient encoding.
    817   void Move(Register dst, const Immediate& x);
    818   void Move(const Operand& dst, const Immediate& x);
    819 
    820   void Move(Register dst, Handle<Object> handle) { LoadObject(dst, handle); }
    821   void Move(Register dst, Smi* source) { Move(dst, Immediate(source)); }
    822 
    823   // Push a handle value.
    824   void Push(Handle<Object> handle) { push(Immediate(handle)); }
    825   void Push(Smi* smi) { Push(Immediate(smi)); }
    826 
    827   Handle<Object> CodeObject() {
    828     DCHECK(!code_object_.is_null());
    829     return code_object_;
    830   }
    831 
    832   // Insert code to verify that the x87 stack has the specified depth (0-7)
    833   void VerifyX87StackDepth(uint32_t depth);
    834 
    835   // Emit code for a truncating division by a constant. The dividend register is
    836   // unchanged, the result is in edx, and eax gets clobbered.
    837   void TruncatingDiv(Register dividend, int32_t divisor);
    838 
    839   // ---------------------------------------------------------------------------
    840   // StatsCounter support
    841 
    842   void SetCounter(StatsCounter* counter, int value);
    843   void IncrementCounter(StatsCounter* counter, int value);
    844   void DecrementCounter(StatsCounter* counter, int value);
    845   void IncrementCounter(Condition cc, StatsCounter* counter, int value);
    846   void DecrementCounter(Condition cc, StatsCounter* counter, int value);
    847 
    848   // ---------------------------------------------------------------------------
    849   // Debugging
    850 
    851   // Calls Abort(msg) if the condition cc is not satisfied.
    852   // Use --debug_code to enable.
    853   void Assert(Condition cc, BailoutReason reason);
    854 
    855   void AssertFastElements(Register elements);
    856 
    857   // Like Assert(), but always enabled.
    858   void Check(Condition cc, BailoutReason reason);
    859 
    860   // Print a message to stdout and abort execution.
    861   void Abort(BailoutReason reason);
    862 
    863   // Check that the stack is aligned.
    864   void CheckStackAlignment();
    865 
    866   // Verify restrictions about code generated in stubs.
    867   void set_generating_stub(bool value) { generating_stub_ = value; }
    868   bool generating_stub() { return generating_stub_; }
    869   void set_has_frame(bool value) { has_frame_ = value; }
    870   bool has_frame() { return has_frame_; }
    871   inline bool AllowThisStubCall(CodeStub* stub);
    872 
    873   // ---------------------------------------------------------------------------
    874   // String utilities.
    875 
    876   // Check whether the instance type represents a flat one-byte string. Jump to
    877   // the label if not. If the instance type can be scratched specify same
    878   // register for both instance type and scratch.
    879   void JumpIfInstanceTypeIsNotSequentialOneByte(
    880       Register instance_type, Register scratch,
    881       Label* on_not_flat_one_byte_string);
    882 
    883   // Checks if both objects are sequential one-byte strings, and jumps to label
    884   // if either is not.
    885   void JumpIfNotBothSequentialOneByteStrings(
    886       Register object1, Register object2, Register scratch1, Register scratch2,
    887       Label* on_not_flat_one_byte_strings);
    888 
    889   // Checks if the given register or operand is a unique name
    890   void JumpIfNotUniqueNameInstanceType(Register reg, Label* not_unique_name,
    891                                        Label::Distance distance = Label::kFar) {
    892     JumpIfNotUniqueNameInstanceType(Operand(reg), not_unique_name, distance);
    893   }
    894 
    895   void JumpIfNotUniqueNameInstanceType(Operand operand, Label* not_unique_name,
    896                                        Label::Distance distance = Label::kFar);
    897 
    898   void EmitSeqStringSetCharCheck(Register string, Register index,
    899                                  Register value, uint32_t encoding_mask);
    900 
    901   static int SafepointRegisterStackIndex(Register reg) {
    902     return SafepointRegisterStackIndex(reg.code());
    903   }
    904 
    905   // Load the type feedback vector from a JavaScript frame.
    906   void EmitLoadTypeFeedbackVector(Register vector);
    907 
    908   // Activation support.
    909   void EnterFrame(StackFrame::Type type);
    910   void EnterFrame(StackFrame::Type type, bool load_constant_pool_pointer_reg);
    911   void LeaveFrame(StackFrame::Type type);
    912 
    913   // Expects object in eax and returns map with validated enum cache
    914   // in eax.  Assumes that any other register can be used as a scratch.
    915   void CheckEnumCache(Label* call_runtime);
    916 
    917   // AllocationMemento support. Arrays may have an associated
    918   // AllocationMemento object that can be checked for in order to pretransition
    919   // to another type.
    920   // On entry, receiver_reg should point to the array object.
    921   // scratch_reg gets clobbered.
    922   // If allocation info is present, conditional code is set to equal.
    923   void TestJSArrayForAllocationMemento(Register receiver_reg,
    924                                        Register scratch_reg,
    925                                        Label* no_memento_found);
    926 
    927   void JumpIfJSArrayHasAllocationMemento(Register receiver_reg,
    928                                          Register scratch_reg,
    929                                          Label* memento_found) {
    930     Label no_memento_found;
    931     TestJSArrayForAllocationMemento(receiver_reg, scratch_reg,
    932                                     &no_memento_found);
    933     j(equal, memento_found);
    934     bind(&no_memento_found);
    935   }
    936 
    937   // Jumps to found label if a prototype map has dictionary elements.
    938   void JumpIfDictionaryInPrototypeChain(Register object, Register scratch0,
    939                                         Register scratch1, Label* found);
    940 
    941  private:
    942   bool generating_stub_;
    943   bool has_frame_;
    944   // This handle will be patched with the code object on installation.
    945   Handle<Object> code_object_;
    946 
    947   // Helper functions for generating invokes.
    948   void InvokePrologue(const ParameterCount& expected,
    949                       const ParameterCount& actual, Label* done,
    950                       bool* definitely_mismatches, InvokeFlag flag,
    951                       Label::Distance done_distance,
    952                       const CallWrapper& call_wrapper);
    953 
    954   void EnterExitFramePrologue();
    955   void EnterExitFrameEpilogue(int argc, bool save_doubles);
    956 
    957   void LeaveExitFrameEpilogue(bool restore_context);
    958 
    959   // Allocation support helpers.
    960   void LoadAllocationTopHelper(Register result, Register scratch,
    961                                AllocationFlags flags);
    962 
    963   void UpdateAllocationTopHelper(Register result_end, Register scratch,
    964                                  AllocationFlags flags);
    965 
    966   // Helper for implementing JumpIfNotInNewSpace and JumpIfInNewSpace.
    967   void InNewSpace(Register object, Register scratch, Condition cc,
    968                   Label* condition_met,
    969                   Label::Distance condition_met_distance = Label::kFar);
    970 
    971   // Helper for finding the mark bits for an address.  Afterwards, the
    972   // bitmap register points at the word with the mark bits and the mask
    973   // the position of the first bit.  Uses ecx as scratch and leaves addr_reg
    974   // unchanged.
    975   inline void GetMarkBits(Register addr_reg, Register bitmap_reg,
    976                           Register mask_reg);
    977 
    978   // Compute memory operands for safepoint stack slots.
    979   Operand SafepointRegisterSlot(Register reg);
    980   static int SafepointRegisterStackIndex(int reg_code);
    981 
    982   // Needs access to SafepointRegisterStackIndex for compiled frame
    983   // traversal.
    984   friend class StandardFrame;
    985 };
    986 
    987 // The code patcher is used to patch (typically) small parts of code e.g. for
    988 // debugging and other types of instrumentation. When using the code patcher
    989 // the exact number of bytes specified must be emitted. Is not legal to emit
    990 // relocation information. If any of these constraints are violated it causes
    991 // an assertion.
    992 class CodePatcher {
    993  public:
    994   CodePatcher(Isolate* isolate, byte* address, int size);
    995   ~CodePatcher();
    996 
    997   // Macro assembler to emit code.
    998   MacroAssembler* masm() { return &masm_; }
    999 
   1000  private:
   1001   byte* address_;        // The address of the code being patched.
   1002   int size_;             // Number of bytes of the expected patch size.
   1003   MacroAssembler masm_;  // Macro assembler used to generate the code.
   1004 };
   1005 
   1006 // -----------------------------------------------------------------------------
   1007 // Static helper functions.
   1008 
   1009 // Generate an Operand for loading a field from an object.
   1010 inline Operand FieldOperand(Register object, int offset) {
   1011   return Operand(object, offset - kHeapObjectTag);
   1012 }
   1013 
   1014 // Generate an Operand for loading an indexed field from an object.
   1015 inline Operand FieldOperand(Register object, Register index, ScaleFactor scale,
   1016                             int offset) {
   1017   return Operand(object, index, scale, offset - kHeapObjectTag);
   1018 }
   1019 
   1020 inline Operand FixedArrayElementOperand(Register array, Register index_as_smi,
   1021                                         int additional_offset = 0) {
   1022   int offset = FixedArray::kHeaderSize + additional_offset * kPointerSize;
   1023   return FieldOperand(array, index_as_smi, times_half_pointer_size, offset);
   1024 }
   1025 
   1026 inline Operand ContextOperand(Register context, int index) {
   1027   return Operand(context, Context::SlotOffset(index));
   1028 }
   1029 
   1030 inline Operand ContextOperand(Register context, Register index) {
   1031   return Operand(context, index, times_pointer_size, Context::SlotOffset(0));
   1032 }
   1033 
   1034 inline Operand NativeContextOperand() {
   1035   return ContextOperand(esi, Context::NATIVE_CONTEXT_INDEX);
   1036 }
   1037 
   1038 #ifdef GENERATED_CODE_COVERAGE
   1039 extern void LogGeneratedCodeCoverage(const char* file_line);
   1040 #define CODE_COVERAGE_STRINGIFY(x) #x
   1041 #define CODE_COVERAGE_TOSTRING(x) CODE_COVERAGE_STRINGIFY(x)
   1042 #define __FILE_LINE__ __FILE__ ":" CODE_COVERAGE_TOSTRING(__LINE__)
   1043 #define ACCESS_MASM(masm) {                                               \
   1044     byte* ia32_coverage_function =                                        \
   1045         reinterpret_cast<byte*>(FUNCTION_ADDR(LogGeneratedCodeCoverage)); \
   1046     masm->pushfd();                                                       \
   1047     masm->pushad();                                                       \
   1048     masm->push(Immediate(reinterpret_cast<int>(&__FILE_LINE__)));         \
   1049     masm->call(ia32_coverage_function, RelocInfo::RUNTIME_ENTRY);         \
   1050     masm->pop(eax);                                                       \
   1051     masm->popad();                                                        \
   1052     masm->popfd();                                                        \
   1053   }                                                                       \
   1054   masm->
   1055 #else
   1056 #define ACCESS_MASM(masm) masm->
   1057 #endif
   1058 
   1059 }  // namespace internal
   1060 }  // namespace v8
   1061 
   1062 #endif  // V8_X87_MACRO_ASSEMBLER_X87_H_
   1063