1 //=== Target/TargetRegisterInfo.h - Target Register Information -*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file describes an abstract interface used to get information about a 11 // target machines register file. This information is used for a variety of 12 // purposed, especially register allocation. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #ifndef LLVM_TARGET_TARGETREGISTERINFO_H 17 #define LLVM_TARGET_TARGETREGISTERINFO_H 18 19 #include "llvm/ADT/ArrayRef.h" 20 #include "llvm/CodeGen/MachineBasicBlock.h" 21 #include "llvm/CodeGen/MachineValueType.h" 22 #include "llvm/IR/CallingConv.h" 23 #include "llvm/MC/MCRegisterInfo.h" 24 #include "llvm/Support/Printable.h" 25 #include <cassert> 26 #include <functional> 27 28 namespace llvm { 29 30 class BitVector; 31 class MachineFunction; 32 class RegScavenger; 33 template<class T> class SmallVectorImpl; 34 class VirtRegMap; 35 class raw_ostream; 36 class LiveRegMatrix; 37 38 /// A bitmask representing the covering of a register with sub-registers. 39 /// 40 /// This is typically used to track liveness at sub-register granularity. 41 /// Lane masks for sub-register indices are similar to register units for 42 /// physical registers. The individual bits in a lane mask can't be assigned 43 /// any specific meaning. They can be used to check if two sub-register 44 /// indices overlap. 45 /// 46 /// Iff the target has a register such that: 47 /// 48 /// getSubReg(Reg, A) overlaps getSubReg(Reg, B) 49 /// 50 /// then: 51 /// 52 /// (getSubRegIndexLaneMask(A) & getSubRegIndexLaneMask(B)) != 0 53 typedef unsigned LaneBitmask; 54 55 class TargetRegisterClass { 56 public: 57 typedef const MCPhysReg* iterator; 58 typedef const MCPhysReg* const_iterator; 59 typedef const MVT::SimpleValueType* vt_iterator; 60 typedef const TargetRegisterClass* const * sc_iterator; 61 62 // Instance variables filled by tablegen, do not use! 63 const MCRegisterClass *MC; 64 const vt_iterator VTs; 65 const uint32_t *SubClassMask; 66 const uint16_t *SuperRegIndices; 67 const LaneBitmask LaneMask; 68 /// Classes with a higher priority value are assigned first by register 69 /// allocators using a greedy heuristic. The value is in the range [0,63]. 70 const uint8_t AllocationPriority; 71 /// Whether the class supports two (or more) disjunct subregister indices. 72 const bool HasDisjunctSubRegs; 73 /// Whether a combination of subregisters can cover every register in the 74 /// class. See also the CoveredBySubRegs description in Target.td. 75 const bool CoveredBySubRegs; 76 const sc_iterator SuperClasses; 77 ArrayRef<MCPhysReg> (*OrderFunc)(const MachineFunction&); 78 79 /// Return the register class ID number. 80 unsigned getID() const { return MC->getID(); } 81 82 /// begin/end - Return all of the registers in this class. 83 /// 84 iterator begin() const { return MC->begin(); } 85 iterator end() const { return MC->end(); } 86 87 /// Return the number of registers in this class. 88 unsigned getNumRegs() const { return MC->getNumRegs(); } 89 90 /// Return the specified register in the class. 91 unsigned getRegister(unsigned i) const { 92 return MC->getRegister(i); 93 } 94 95 /// Return true if the specified register is included in this register class. 96 /// This does not include virtual registers. 97 bool contains(unsigned Reg) const { 98 return MC->contains(Reg); 99 } 100 101 /// Return true if both registers are in this class. 102 bool contains(unsigned Reg1, unsigned Reg2) const { 103 return MC->contains(Reg1, Reg2); 104 } 105 106 /// Return the size of the register in bytes, which is also the size 107 /// of a stack slot allocated to hold a spilled copy of this register. 108 unsigned getSize() const { return MC->getSize(); } 109 110 /// Return the minimum required alignment for a register of this class. 111 unsigned getAlignment() const { return MC->getAlignment(); } 112 113 /// Return the cost of copying a value between two registers in this class. 114 /// A negative number means the register class is very expensive 115 /// to copy e.g. status flag register classes. 116 int getCopyCost() const { return MC->getCopyCost(); } 117 118 /// Return true if this register class may be used to create virtual 119 /// registers. 120 bool isAllocatable() const { return MC->isAllocatable(); } 121 122 /// Return true if this TargetRegisterClass has the ValueType vt. 123 bool hasType(MVT vt) const { 124 for(int i = 0; VTs[i] != MVT::Other; ++i) 125 if (MVT(VTs[i]) == vt) 126 return true; 127 return false; 128 } 129 130 /// vt_begin / vt_end - Loop over all of the value types that can be 131 /// represented by values in this register class. 132 vt_iterator vt_begin() const { 133 return VTs; 134 } 135 136 vt_iterator vt_end() const { 137 vt_iterator I = VTs; 138 while (*I != MVT::Other) ++I; 139 return I; 140 } 141 142 /// Return true if the specified TargetRegisterClass 143 /// is a proper sub-class of this TargetRegisterClass. 144 bool hasSubClass(const TargetRegisterClass *RC) const { 145 return RC != this && hasSubClassEq(RC); 146 } 147 148 /// Returns true if RC is a sub-class of or equal to this class. 149 bool hasSubClassEq(const TargetRegisterClass *RC) const { 150 unsigned ID = RC->getID(); 151 return (SubClassMask[ID / 32] >> (ID % 32)) & 1; 152 } 153 154 /// Return true if the specified TargetRegisterClass is a 155 /// proper super-class of this TargetRegisterClass. 156 bool hasSuperClass(const TargetRegisterClass *RC) const { 157 return RC->hasSubClass(this); 158 } 159 160 /// Returns true if RC is a super-class of or equal to this class. 161 bool hasSuperClassEq(const TargetRegisterClass *RC) const { 162 return RC->hasSubClassEq(this); 163 } 164 165 /// Returns a bit vector of subclasses, including this one. 166 /// The vector is indexed by class IDs. 167 /// 168 /// To use it, consider the returned array as a chunk of memory that 169 /// contains an array of bits of size NumRegClasses. Each 32-bit chunk 170 /// contains a bitset of the ID of the subclasses in big-endian style. 171 172 /// I.e., the representation of the memory from left to right at the 173 /// bit level looks like: 174 /// [31 30 ... 1 0] [ 63 62 ... 33 32] ... 175 /// [ XXX NumRegClasses NumRegClasses - 1 ... ] 176 /// Where the number represents the class ID and XXX bits that 177 /// should be ignored. 178 /// 179 /// See the implementation of hasSubClassEq for an example of how it 180 /// can be used. 181 const uint32_t *getSubClassMask() const { 182 return SubClassMask; 183 } 184 185 /// Returns a 0-terminated list of sub-register indices that project some 186 /// super-register class into this register class. The list has an entry for 187 /// each Idx such that: 188 /// 189 /// There exists SuperRC where: 190 /// For all Reg in SuperRC: 191 /// this->contains(Reg:Idx) 192 /// 193 const uint16_t *getSuperRegIndices() const { 194 return SuperRegIndices; 195 } 196 197 /// Returns a NULL-terminated list of super-classes. The 198 /// classes are ordered by ID which is also a topological ordering from large 199 /// to small classes. The list does NOT include the current class. 200 sc_iterator getSuperClasses() const { 201 return SuperClasses; 202 } 203 204 /// Return true if this TargetRegisterClass is a subset 205 /// class of at least one other TargetRegisterClass. 206 bool isASubClass() const { 207 return SuperClasses[0] != nullptr; 208 } 209 210 /// Returns the preferred order for allocating registers from this register 211 /// class in MF. The raw order comes directly from the .td file and may 212 /// include reserved registers that are not allocatable. 213 /// Register allocators should also make sure to allocate 214 /// callee-saved registers only after all the volatiles are used. The 215 /// RegisterClassInfo class provides filtered allocation orders with 216 /// callee-saved registers moved to the end. 217 /// 218 /// The MachineFunction argument can be used to tune the allocatable 219 /// registers based on the characteristics of the function, subtarget, or 220 /// other criteria. 221 /// 222 /// By default, this method returns all registers in the class. 223 /// 224 ArrayRef<MCPhysReg> getRawAllocationOrder(const MachineFunction &MF) const { 225 return OrderFunc ? OrderFunc(MF) : makeArrayRef(begin(), getNumRegs()); 226 } 227 228 /// Returns the combination of all lane masks of register in this class. 229 /// The lane masks of the registers are the combination of all lane masks 230 /// of their subregisters. Returns 1 if there are no subregisters. 231 LaneBitmask getLaneMask() const { 232 return LaneMask; 233 } 234 }; 235 236 /// Extra information, not in MCRegisterDesc, about registers. 237 /// These are used by codegen, not by MC. 238 struct TargetRegisterInfoDesc { 239 unsigned CostPerUse; // Extra cost of instructions using register. 240 bool inAllocatableClass; // Register belongs to an allocatable regclass. 241 }; 242 243 /// Each TargetRegisterClass has a per register weight, and weight 244 /// limit which must be less than the limits of its pressure sets. 245 struct RegClassWeight { 246 unsigned RegWeight; 247 unsigned WeightLimit; 248 }; 249 250 /// TargetRegisterInfo base class - We assume that the target defines a static 251 /// array of TargetRegisterDesc objects that represent all of the machine 252 /// registers that the target has. As such, we simply have to track a pointer 253 /// to this array so that we can turn register number into a register 254 /// descriptor. 255 /// 256 class TargetRegisterInfo : public MCRegisterInfo { 257 public: 258 typedef const TargetRegisterClass * const * regclass_iterator; 259 private: 260 const TargetRegisterInfoDesc *InfoDesc; // Extra desc array for codegen 261 const char *const *SubRegIndexNames; // Names of subreg indexes. 262 // Pointer to array of lane masks, one per sub-reg index. 263 const LaneBitmask *SubRegIndexLaneMasks; 264 265 regclass_iterator RegClassBegin, RegClassEnd; // List of regclasses 266 unsigned CoveringLanes; 267 268 protected: 269 TargetRegisterInfo(const TargetRegisterInfoDesc *ID, 270 regclass_iterator RegClassBegin, 271 regclass_iterator RegClassEnd, 272 const char *const *SRINames, 273 const LaneBitmask *SRILaneMasks, 274 unsigned CoveringLanes); 275 virtual ~TargetRegisterInfo(); 276 public: 277 278 // Register numbers can represent physical registers, virtual registers, and 279 // sometimes stack slots. The unsigned values are divided into these ranges: 280 // 281 // 0 Not a register, can be used as a sentinel. 282 // [1;2^30) Physical registers assigned by TableGen. 283 // [2^30;2^31) Stack slots. (Rarely used.) 284 // [2^31;2^32) Virtual registers assigned by MachineRegisterInfo. 285 // 286 // Further sentinels can be allocated from the small negative integers. 287 // DenseMapInfo<unsigned> uses -1u and -2u. 288 289 /// isStackSlot - Sometimes it is useful the be able to store a non-negative 290 /// frame index in a variable that normally holds a register. isStackSlot() 291 /// returns true if Reg is in the range used for stack slots. 292 /// 293 /// Note that isVirtualRegister() and isPhysicalRegister() cannot handle stack 294 /// slots, so if a variable may contains a stack slot, always check 295 /// isStackSlot() first. 296 /// 297 static bool isStackSlot(unsigned Reg) { 298 return int(Reg) >= (1 << 30); 299 } 300 301 /// Compute the frame index from a register value representing a stack slot. 302 static int stackSlot2Index(unsigned Reg) { 303 assert(isStackSlot(Reg) && "Not a stack slot"); 304 return int(Reg - (1u << 30)); 305 } 306 307 /// Convert a non-negative frame index to a stack slot register value. 308 static unsigned index2StackSlot(int FI) { 309 assert(FI >= 0 && "Cannot hold a negative frame index."); 310 return FI + (1u << 30); 311 } 312 313 /// Return true if the specified register number is in 314 /// the physical register namespace. 315 static bool isPhysicalRegister(unsigned Reg) { 316 assert(!isStackSlot(Reg) && "Not a register! Check isStackSlot() first."); 317 return int(Reg) > 0; 318 } 319 320 /// Return true if the specified register number is in 321 /// the virtual register namespace. 322 static bool isVirtualRegister(unsigned Reg) { 323 assert(!isStackSlot(Reg) && "Not a register! Check isStackSlot() first."); 324 return int(Reg) < 0; 325 } 326 327 /// Convert a virtual register number to a 0-based index. 328 /// The first virtual register in a function will get the index 0. 329 static unsigned virtReg2Index(unsigned Reg) { 330 assert(isVirtualRegister(Reg) && "Not a virtual register"); 331 return Reg & ~(1u << 31); 332 } 333 334 /// Convert a 0-based index to a virtual register number. 335 /// This is the inverse operation of VirtReg2IndexFunctor below. 336 static unsigned index2VirtReg(unsigned Index) { 337 return Index | (1u << 31); 338 } 339 340 /// Returns the Register Class of a physical register of the given type, 341 /// picking the most sub register class of the right type that contains this 342 /// physreg. 343 const TargetRegisterClass * 344 getMinimalPhysRegClass(unsigned Reg, MVT VT = MVT::Other) const; 345 346 /// Return the maximal subclass of the given register class that is 347 /// allocatable or NULL. 348 const TargetRegisterClass * 349 getAllocatableClass(const TargetRegisterClass *RC) const; 350 351 /// Returns a bitset indexed by register number indicating if a register is 352 /// allocatable or not. If a register class is specified, returns the subset 353 /// for the class. 354 BitVector getAllocatableSet(const MachineFunction &MF, 355 const TargetRegisterClass *RC = nullptr) const; 356 357 /// Return the additional cost of using this register instead 358 /// of other registers in its class. 359 unsigned getCostPerUse(unsigned RegNo) const { 360 return InfoDesc[RegNo].CostPerUse; 361 } 362 363 /// Return true if the register is in the allocation of any register class. 364 bool isInAllocatableClass(unsigned RegNo) const { 365 return InfoDesc[RegNo].inAllocatableClass; 366 } 367 368 /// Return the human-readable symbolic target-specific 369 /// name for the specified SubRegIndex. 370 const char *getSubRegIndexName(unsigned SubIdx) const { 371 assert(SubIdx && SubIdx < getNumSubRegIndices() && 372 "This is not a subregister index"); 373 return SubRegIndexNames[SubIdx-1]; 374 } 375 376 /// Return a bitmask representing the parts of a register that are covered by 377 /// SubIdx \see LaneBitmask. 378 /// 379 /// SubIdx == 0 is allowed, it has the lane mask ~0u. 380 LaneBitmask getSubRegIndexLaneMask(unsigned SubIdx) const { 381 assert(SubIdx < getNumSubRegIndices() && "This is not a subregister index"); 382 return SubRegIndexLaneMasks[SubIdx]; 383 } 384 385 /// The lane masks returned by getSubRegIndexLaneMask() above can only be 386 /// used to determine if sub-registers overlap - they can't be used to 387 /// determine if a set of sub-registers completely cover another 388 /// sub-register. 389 /// 390 /// The X86 general purpose registers have two lanes corresponding to the 391 /// sub_8bit and sub_8bit_hi sub-registers. Both sub_32bit and sub_16bit have 392 /// lane masks '3', but the sub_16bit sub-register doesn't fully cover the 393 /// sub_32bit sub-register. 394 /// 395 /// On the other hand, the ARM NEON lanes fully cover their registers: The 396 /// dsub_0 sub-register is completely covered by the ssub_0 and ssub_1 lanes. 397 /// This is related to the CoveredBySubRegs property on register definitions. 398 /// 399 /// This function returns a bit mask of lanes that completely cover their 400 /// sub-registers. More precisely, given: 401 /// 402 /// Covering = getCoveringLanes(); 403 /// MaskA = getSubRegIndexLaneMask(SubA); 404 /// MaskB = getSubRegIndexLaneMask(SubB); 405 /// 406 /// If (MaskA & ~(MaskB & Covering)) == 0, then SubA is completely covered by 407 /// SubB. 408 LaneBitmask getCoveringLanes() const { return CoveringLanes; } 409 410 /// Returns true if the two registers are equal or alias each other. 411 /// The registers may be virtual registers. 412 bool regsOverlap(unsigned regA, unsigned regB) const { 413 if (regA == regB) return true; 414 if (isVirtualRegister(regA) || isVirtualRegister(regB)) 415 return false; 416 417 // Regunits are numerically ordered. Find a common unit. 418 MCRegUnitIterator RUA(regA, this); 419 MCRegUnitIterator RUB(regB, this); 420 do { 421 if (*RUA == *RUB) return true; 422 if (*RUA < *RUB) ++RUA; 423 else ++RUB; 424 } while (RUA.isValid() && RUB.isValid()); 425 return false; 426 } 427 428 /// Returns true if Reg contains RegUnit. 429 bool hasRegUnit(unsigned Reg, unsigned RegUnit) const { 430 for (MCRegUnitIterator Units(Reg, this); Units.isValid(); ++Units) 431 if (*Units == RegUnit) 432 return true; 433 return false; 434 } 435 436 /// Return a null-terminated list of all of the callee-saved registers on 437 /// this target. The register should be in the order of desired callee-save 438 /// stack frame offset. The first register is closest to the incoming stack 439 /// pointer if stack grows down, and vice versa. 440 /// 441 virtual const MCPhysReg* 442 getCalleeSavedRegs(const MachineFunction *MF) const = 0; 443 444 virtual const MCPhysReg* 445 getCalleeSavedRegsViaCopy(const MachineFunction *MF) const { 446 return nullptr; 447 } 448 449 /// Return a mask of call-preserved registers for the given calling convention 450 /// on the current function. The mask should include all call-preserved 451 /// aliases. This is used by the register allocator to determine which 452 /// registers can be live across a call. 453 /// 454 /// The mask is an array containing (TRI::getNumRegs()+31)/32 entries. 455 /// A set bit indicates that all bits of the corresponding register are 456 /// preserved across the function call. The bit mask is expected to be 457 /// sub-register complete, i.e. if A is preserved, so are all its 458 /// sub-registers. 459 /// 460 /// Bits are numbered from the LSB, so the bit for physical register Reg can 461 /// be found as (Mask[Reg / 32] >> Reg % 32) & 1. 462 /// 463 /// A NULL pointer means that no register mask will be used, and call 464 /// instructions should use implicit-def operands to indicate call clobbered 465 /// registers. 466 /// 467 virtual const uint32_t *getCallPreservedMask(const MachineFunction &MF, 468 CallingConv::ID) const { 469 // The default mask clobbers everything. All targets should override. 470 return nullptr; 471 } 472 473 /// Return a register mask that clobbers everything. 474 virtual const uint32_t *getNoPreservedMask() const { 475 llvm_unreachable("target does not provide no preserved mask"); 476 } 477 478 /// Return true if all bits that are set in mask \p mask0 are also set in 479 /// \p mask1. 480 bool regmaskSubsetEqual(const uint32_t *mask0, const uint32_t *mask1) const; 481 482 /// Return all the call-preserved register masks defined for this target. 483 virtual ArrayRef<const uint32_t *> getRegMasks() const = 0; 484 virtual ArrayRef<const char *> getRegMaskNames() const = 0; 485 486 /// Returns a bitset indexed by physical register number indicating if a 487 /// register is a special register that has particular uses and should be 488 /// considered unavailable at all times, e.g. SP, RA. This is 489 /// used by register scavenger to determine what registers are free. 490 virtual BitVector getReservedRegs(const MachineFunction &MF) const = 0; 491 492 /// Prior to adding the live-out mask to a stackmap or patchpoint 493 /// instruction, provide the target the opportunity to adjust it (mainly to 494 /// remove pseudo-registers that should be ignored). 495 virtual void adjustStackMapLiveOutMask(uint32_t *Mask) const { } 496 497 /// Return a super-register of the specified register 498 /// Reg so its sub-register of index SubIdx is Reg. 499 unsigned getMatchingSuperReg(unsigned Reg, unsigned SubIdx, 500 const TargetRegisterClass *RC) const { 501 return MCRegisterInfo::getMatchingSuperReg(Reg, SubIdx, RC->MC); 502 } 503 504 /// Return a subclass of the specified register 505 /// class A so that each register in it has a sub-register of the 506 /// specified sub-register index which is in the specified register class B. 507 /// 508 /// TableGen will synthesize missing A sub-classes. 509 virtual const TargetRegisterClass * 510 getMatchingSuperRegClass(const TargetRegisterClass *A, 511 const TargetRegisterClass *B, unsigned Idx) const; 512 513 // For a copy-like instruction that defines a register of class DefRC with 514 // subreg index DefSubReg, reading from another source with class SrcRC and 515 // subregister SrcSubReg return true if this is a preferrable copy 516 // instruction or an earlier use should be used. 517 virtual bool shouldRewriteCopySrc(const TargetRegisterClass *DefRC, 518 unsigned DefSubReg, 519 const TargetRegisterClass *SrcRC, 520 unsigned SrcSubReg) const; 521 522 /// Returns the largest legal sub-class of RC that 523 /// supports the sub-register index Idx. 524 /// If no such sub-class exists, return NULL. 525 /// If all registers in RC already have an Idx sub-register, return RC. 526 /// 527 /// TableGen generates a version of this function that is good enough in most 528 /// cases. Targets can override if they have constraints that TableGen 529 /// doesn't understand. For example, the x86 sub_8bit sub-register index is 530 /// supported by the full GR32 register class in 64-bit mode, but only by the 531 /// GR32_ABCD regiister class in 32-bit mode. 532 /// 533 /// TableGen will synthesize missing RC sub-classes. 534 virtual const TargetRegisterClass * 535 getSubClassWithSubReg(const TargetRegisterClass *RC, unsigned Idx) const { 536 assert(Idx == 0 && "Target has no sub-registers"); 537 return RC; 538 } 539 540 /// Return the subregister index you get from composing 541 /// two subregister indices. 542 /// 543 /// The special null sub-register index composes as the identity. 544 /// 545 /// If R:a:b is the same register as R:c, then composeSubRegIndices(a, b) 546 /// returns c. Note that composeSubRegIndices does not tell you about illegal 547 /// compositions. If R does not have a subreg a, or R:a does not have a subreg 548 /// b, composeSubRegIndices doesn't tell you. 549 /// 550 /// The ARM register Q0 has two D subregs dsub_0:D0 and dsub_1:D1. It also has 551 /// ssub_0:S0 - ssub_3:S3 subregs. 552 /// If you compose subreg indices dsub_1, ssub_0 you get ssub_2. 553 /// 554 unsigned composeSubRegIndices(unsigned a, unsigned b) const { 555 if (!a) return b; 556 if (!b) return a; 557 return composeSubRegIndicesImpl(a, b); 558 } 559 560 /// Transforms a LaneMask computed for one subregister to the lanemask that 561 /// would have been computed when composing the subsubregisters with IdxA 562 /// first. @sa composeSubRegIndices() 563 LaneBitmask composeSubRegIndexLaneMask(unsigned IdxA, 564 LaneBitmask Mask) const { 565 if (!IdxA) 566 return Mask; 567 return composeSubRegIndexLaneMaskImpl(IdxA, Mask); 568 } 569 570 /// Transform a lanemask given for a virtual register to the corresponding 571 /// lanemask before using subregister with index \p IdxA. 572 /// This is the reverse of composeSubRegIndexLaneMask(), assuming Mask is a 573 /// valie lane mask (no invalid bits set) the following holds: 574 /// X0 = composeSubRegIndexLaneMask(Idx, Mask) 575 /// X1 = reverseComposeSubRegIndexLaneMask(Idx, X0) 576 /// => X1 == Mask 577 LaneBitmask reverseComposeSubRegIndexLaneMask(unsigned IdxA, 578 LaneBitmask LaneMask) const { 579 if (!IdxA) 580 return LaneMask; 581 return reverseComposeSubRegIndexLaneMaskImpl(IdxA, LaneMask); 582 } 583 584 /// Debugging helper: dump register in human readable form to dbgs() stream. 585 static void dumpReg(unsigned Reg, unsigned SubRegIndex = 0, 586 const TargetRegisterInfo* TRI = nullptr); 587 588 protected: 589 /// Overridden by TableGen in targets that have sub-registers. 590 virtual unsigned composeSubRegIndicesImpl(unsigned, unsigned) const { 591 llvm_unreachable("Target has no sub-registers"); 592 } 593 594 /// Overridden by TableGen in targets that have sub-registers. 595 virtual LaneBitmask 596 composeSubRegIndexLaneMaskImpl(unsigned, LaneBitmask) const { 597 llvm_unreachable("Target has no sub-registers"); 598 } 599 600 virtual LaneBitmask reverseComposeSubRegIndexLaneMaskImpl(unsigned, 601 LaneBitmask) const { 602 llvm_unreachable("Target has no sub-registers"); 603 } 604 605 public: 606 /// Find a common super-register class if it exists. 607 /// 608 /// Find a register class, SuperRC and two sub-register indices, PreA and 609 /// PreB, such that: 610 /// 611 /// 1. PreA + SubA == PreB + SubB (using composeSubRegIndices()), and 612 /// 613 /// 2. For all Reg in SuperRC: Reg:PreA in RCA and Reg:PreB in RCB, and 614 /// 615 /// 3. SuperRC->getSize() >= max(RCA->getSize(), RCB->getSize()). 616 /// 617 /// SuperRC will be chosen such that no super-class of SuperRC satisfies the 618 /// requirements, and there is no register class with a smaller spill size 619 /// that satisfies the requirements. 620 /// 621 /// SubA and SubB must not be 0. Use getMatchingSuperRegClass() instead. 622 /// 623 /// Either of the PreA and PreB sub-register indices may be returned as 0. In 624 /// that case, the returned register class will be a sub-class of the 625 /// corresponding argument register class. 626 /// 627 /// The function returns NULL if no register class can be found. 628 /// 629 const TargetRegisterClass* 630 getCommonSuperRegClass(const TargetRegisterClass *RCA, unsigned SubA, 631 const TargetRegisterClass *RCB, unsigned SubB, 632 unsigned &PreA, unsigned &PreB) const; 633 634 //===--------------------------------------------------------------------===// 635 // Register Class Information 636 // 637 638 /// Register class iterators 639 /// 640 regclass_iterator regclass_begin() const { return RegClassBegin; } 641 regclass_iterator regclass_end() const { return RegClassEnd; } 642 643 unsigned getNumRegClasses() const { 644 return (unsigned)(regclass_end()-regclass_begin()); 645 } 646 647 /// Returns the register class associated with the enumeration value. 648 /// See class MCOperandInfo. 649 const TargetRegisterClass *getRegClass(unsigned i) const { 650 assert(i < getNumRegClasses() && "Register Class ID out of range"); 651 return RegClassBegin[i]; 652 } 653 654 /// Returns the name of the register class. 655 const char *getRegClassName(const TargetRegisterClass *Class) const { 656 return MCRegisterInfo::getRegClassName(Class->MC); 657 } 658 659 /// Find the largest common subclass of A and B. 660 /// Return NULL if there is no common subclass. 661 /// The common subclass should contain 662 /// simple value type SVT if it is not the Any type. 663 const TargetRegisterClass * 664 getCommonSubClass(const TargetRegisterClass *A, 665 const TargetRegisterClass *B, 666 const MVT::SimpleValueType SVT = 667 MVT::SimpleValueType::Any) const; 668 669 /// Returns a TargetRegisterClass used for pointer values. 670 /// If a target supports multiple different pointer register classes, 671 /// kind specifies which one is indicated. 672 virtual const TargetRegisterClass * 673 getPointerRegClass(const MachineFunction &MF, unsigned Kind=0) const { 674 llvm_unreachable("Target didn't implement getPointerRegClass!"); 675 } 676 677 /// Returns a legal register class to copy a register in the specified class 678 /// to or from. If it is possible to copy the register directly without using 679 /// a cross register class copy, return the specified RC. Returns NULL if it 680 /// is not possible to copy between two registers of the specified class. 681 virtual const TargetRegisterClass * 682 getCrossCopyRegClass(const TargetRegisterClass *RC) const { 683 return RC; 684 } 685 686 /// Returns the largest super class of RC that is legal to use in the current 687 /// sub-target and has the same spill size. 688 /// The returned register class can be used to create virtual registers which 689 /// means that all its registers can be copied and spilled. 690 virtual const TargetRegisterClass * 691 getLargestLegalSuperClass(const TargetRegisterClass *RC, 692 const MachineFunction &) const { 693 /// The default implementation is very conservative and doesn't allow the 694 /// register allocator to inflate register classes. 695 return RC; 696 } 697 698 /// Return the register pressure "high water mark" for the specific register 699 /// class. The scheduler is in high register pressure mode (for the specific 700 /// register class) if it goes over the limit. 701 /// 702 /// Note: this is the old register pressure model that relies on a manually 703 /// specified representative register class per value type. 704 virtual unsigned getRegPressureLimit(const TargetRegisterClass *RC, 705 MachineFunction &MF) const { 706 return 0; 707 } 708 709 /// Return a heuristic for the machine scheduler to compare the profitability 710 /// of increasing one register pressure set versus another. The scheduler 711 /// will prefer increasing the register pressure of the set which returns 712 /// the largest value for this function. 713 virtual unsigned getRegPressureSetScore(const MachineFunction &MF, 714 unsigned PSetID) const { 715 return PSetID; 716 } 717 718 /// Get the weight in units of pressure for this register class. 719 virtual const RegClassWeight &getRegClassWeight( 720 const TargetRegisterClass *RC) const = 0; 721 722 /// Get the weight in units of pressure for this register unit. 723 virtual unsigned getRegUnitWeight(unsigned RegUnit) const = 0; 724 725 /// Get the number of dimensions of register pressure. 726 virtual unsigned getNumRegPressureSets() const = 0; 727 728 /// Get the name of this register unit pressure set. 729 virtual const char *getRegPressureSetName(unsigned Idx) const = 0; 730 731 /// Get the register unit pressure limit for this dimension. 732 /// This limit must be adjusted dynamically for reserved registers. 733 virtual unsigned getRegPressureSetLimit(const MachineFunction &MF, 734 unsigned Idx) const = 0; 735 736 /// Get the dimensions of register pressure impacted by this register class. 737 /// Returns a -1 terminated array of pressure set IDs. 738 virtual const int *getRegClassPressureSets( 739 const TargetRegisterClass *RC) const = 0; 740 741 /// Get the dimensions of register pressure impacted by this register unit. 742 /// Returns a -1 terminated array of pressure set IDs. 743 virtual const int *getRegUnitPressureSets(unsigned RegUnit) const = 0; 744 745 /// Get a list of 'hint' registers that the register allocator should try 746 /// first when allocating a physical register for the virtual register 747 /// VirtReg. These registers are effectively moved to the front of the 748 /// allocation order. 749 /// 750 /// The Order argument is the allocation order for VirtReg's register class 751 /// as returned from RegisterClassInfo::getOrder(). The hint registers must 752 /// come from Order, and they must not be reserved. 753 /// 754 /// The default implementation of this function can resolve 755 /// target-independent hints provided to MRI::setRegAllocationHint with 756 /// HintType == 0. Targets that override this function should defer to the 757 /// default implementation if they have no reason to change the allocation 758 /// order for VirtReg. There may be target-independent hints. 759 virtual void getRegAllocationHints(unsigned VirtReg, 760 ArrayRef<MCPhysReg> Order, 761 SmallVectorImpl<MCPhysReg> &Hints, 762 const MachineFunction &MF, 763 const VirtRegMap *VRM = nullptr, 764 const LiveRegMatrix *Matrix = nullptr) 765 const; 766 767 /// A callback to allow target a chance to update register allocation hints 768 /// when a register is "changed" (e.g. coalesced) to another register. 769 /// e.g. On ARM, some virtual registers should target register pairs, 770 /// if one of pair is coalesced to another register, the allocation hint of 771 /// the other half of the pair should be changed to point to the new register. 772 virtual void updateRegAllocHint(unsigned Reg, unsigned NewReg, 773 MachineFunction &MF) const { 774 // Do nothing. 775 } 776 777 /// Allow the target to reverse allocation order of local live ranges. This 778 /// will generally allocate shorter local live ranges first. For targets with 779 /// many registers, this could reduce regalloc compile time by a large 780 /// factor. It is disabled by default for three reasons: 781 /// (1) Top-down allocation is simpler and easier to debug for targets that 782 /// don't benefit from reversing the order. 783 /// (2) Bottom-up allocation could result in poor evicition decisions on some 784 /// targets affecting the performance of compiled code. 785 /// (3) Bottom-up allocation is no longer guaranteed to optimally color. 786 virtual bool reverseLocalAssignment() const { return false; } 787 788 /// Allow the target to override the cost of using a callee-saved register for 789 /// the first time. Default value of 0 means we will use a callee-saved 790 /// register if it is available. 791 virtual unsigned getCSRFirstUseCost() const { return 0; } 792 793 /// Returns true if the target requires (and can make use of) the register 794 /// scavenger. 795 virtual bool requiresRegisterScavenging(const MachineFunction &MF) const { 796 return false; 797 } 798 799 /// Returns true if the target wants to use frame pointer based accesses to 800 /// spill to the scavenger emergency spill slot. 801 virtual bool useFPForScavengingIndex(const MachineFunction &MF) const { 802 return true; 803 } 804 805 /// Returns true if the target requires post PEI scavenging of registers for 806 /// materializing frame index constants. 807 virtual bool requiresFrameIndexScavenging(const MachineFunction &MF) const { 808 return false; 809 } 810 811 /// Returns true if the target wants the LocalStackAllocation pass to be run 812 /// and virtual base registers used for more efficient stack access. 813 virtual bool requiresVirtualBaseRegisters(const MachineFunction &MF) const { 814 return false; 815 } 816 817 /// Return true if target has reserved a spill slot in the stack frame of 818 /// the given function for the specified register. e.g. On x86, if the frame 819 /// register is required, the first fixed stack object is reserved as its 820 /// spill slot. This tells PEI not to create a new stack frame 821 /// object for the given register. It should be called only after 822 /// determineCalleeSaves(). 823 virtual bool hasReservedSpillSlot(const MachineFunction &MF, unsigned Reg, 824 int &FrameIdx) const { 825 return false; 826 } 827 828 /// Returns true if the live-ins should be tracked after register allocation. 829 virtual bool trackLivenessAfterRegAlloc(const MachineFunction &MF) const { 830 return false; 831 } 832 833 /// True if the stack can be realigned for the target. 834 virtual bool canRealignStack(const MachineFunction &MF) const; 835 836 /// True if storage within the function requires the stack pointer to be 837 /// aligned more than the normal calling convention calls for. 838 /// This cannot be overriden by the target, but canRealignStack can be 839 /// overridden. 840 bool needsStackRealignment(const MachineFunction &MF) const; 841 842 /// Get the offset from the referenced frame index in the instruction, 843 /// if there is one. 844 virtual int64_t getFrameIndexInstrOffset(const MachineInstr *MI, 845 int Idx) const { 846 return 0; 847 } 848 849 /// Returns true if the instruction's frame index reference would be better 850 /// served by a base register other than FP or SP. 851 /// Used by LocalStackFrameAllocation to determine which frame index 852 /// references it should create new base registers for. 853 virtual bool needsFrameBaseReg(MachineInstr *MI, int64_t Offset) const { 854 return false; 855 } 856 857 /// Insert defining instruction(s) for BaseReg to be a pointer to FrameIdx 858 /// before insertion point I. 859 virtual void materializeFrameBaseRegister(MachineBasicBlock *MBB, 860 unsigned BaseReg, int FrameIdx, 861 int64_t Offset) const { 862 llvm_unreachable("materializeFrameBaseRegister does not exist on this " 863 "target"); 864 } 865 866 /// Resolve a frame index operand of an instruction 867 /// to reference the indicated base register plus offset instead. 868 virtual void resolveFrameIndex(MachineInstr &MI, unsigned BaseReg, 869 int64_t Offset) const { 870 llvm_unreachable("resolveFrameIndex does not exist on this target"); 871 } 872 873 /// Determine whether a given base register plus offset immediate is 874 /// encodable to resolve a frame index. 875 virtual bool isFrameOffsetLegal(const MachineInstr *MI, unsigned BaseReg, 876 int64_t Offset) const { 877 llvm_unreachable("isFrameOffsetLegal does not exist on this target"); 878 } 879 880 /// Spill the register so it can be used by the register scavenger. 881 /// Return true if the register was spilled, false otherwise. 882 /// If this function does not spill the register, the scavenger 883 /// will instead spill it to the emergency spill slot. 884 /// 885 virtual bool saveScavengerRegister(MachineBasicBlock &MBB, 886 MachineBasicBlock::iterator I, 887 MachineBasicBlock::iterator &UseMI, 888 const TargetRegisterClass *RC, 889 unsigned Reg) const { 890 return false; 891 } 892 893 /// This method must be overriden to eliminate abstract frame indices from 894 /// instructions which may use them. The instruction referenced by the 895 /// iterator contains an MO_FrameIndex operand which must be eliminated by 896 /// this method. This method may modify or replace the specified instruction, 897 /// as long as it keeps the iterator pointing at the finished product. 898 /// SPAdj is the SP adjustment due to call frame setup instruction. 899 /// FIOperandNum is the FI operand number. 900 virtual void eliminateFrameIndex(MachineBasicBlock::iterator MI, 901 int SPAdj, unsigned FIOperandNum, 902 RegScavenger *RS = nullptr) const = 0; 903 904 /// Return the assembly name for \p Reg. 905 virtual StringRef getRegAsmName(unsigned Reg) const { 906 // FIXME: We are assuming that the assembly name is equal to the TableGen 907 // name converted to lower case 908 // 909 // The TableGen name is the name of the definition for this register in the 910 // target's tablegen files. For example, the TableGen name of 911 // def EAX : Register <...>; is "EAX" 912 return StringRef(getName(Reg)); 913 } 914 915 //===--------------------------------------------------------------------===// 916 /// Subtarget Hooks 917 918 /// \brief SrcRC and DstRC will be morphed into NewRC if this returns true. 919 virtual bool shouldCoalesce(MachineInstr *MI, 920 const TargetRegisterClass *SrcRC, 921 unsigned SubReg, 922 const TargetRegisterClass *DstRC, 923 unsigned DstSubReg, 924 const TargetRegisterClass *NewRC) const 925 { return true; } 926 927 //===--------------------------------------------------------------------===// 928 /// Debug information queries. 929 930 /// getFrameRegister - This method should return the register used as a base 931 /// for values allocated in the current stack frame. 932 virtual unsigned getFrameRegister(const MachineFunction &MF) const = 0; 933 }; 934 935 936 //===----------------------------------------------------------------------===// 937 // SuperRegClassIterator 938 //===----------------------------------------------------------------------===// 939 // 940 // Iterate over the possible super-registers for a given register class. The 941 // iterator will visit a list of pairs (Idx, Mask) corresponding to the 942 // possible classes of super-registers. 943 // 944 // Each bit mask will have at least one set bit, and each set bit in Mask 945 // corresponds to a SuperRC such that: 946 // 947 // For all Reg in SuperRC: Reg:Idx is in RC. 948 // 949 // The iterator can include (O, RC->getSubClassMask()) as the first entry which 950 // also satisfies the above requirement, assuming Reg:0 == Reg. 951 // 952 class SuperRegClassIterator { 953 const unsigned RCMaskWords; 954 unsigned SubReg; 955 const uint16_t *Idx; 956 const uint32_t *Mask; 957 958 public: 959 /// Create a SuperRegClassIterator that visits all the super-register classes 960 /// of RC. When IncludeSelf is set, also include the (0, sub-classes) entry. 961 SuperRegClassIterator(const TargetRegisterClass *RC, 962 const TargetRegisterInfo *TRI, 963 bool IncludeSelf = false) 964 : RCMaskWords((TRI->getNumRegClasses() + 31) / 32), 965 SubReg(0), 966 Idx(RC->getSuperRegIndices()), 967 Mask(RC->getSubClassMask()) { 968 if (!IncludeSelf) 969 ++*this; 970 } 971 972 /// Returns true if this iterator is still pointing at a valid entry. 973 bool isValid() const { return Idx; } 974 975 /// Returns the current sub-register index. 976 unsigned getSubReg() const { return SubReg; } 977 978 /// Returns the bit mask of register classes that getSubReg() projects into 979 /// RC. 980 /// See TargetRegisterClass::getSubClassMask() for how to use it. 981 const uint32_t *getMask() const { return Mask; } 982 983 /// Advance iterator to the next entry. 984 void operator++() { 985 assert(isValid() && "Cannot move iterator past end."); 986 Mask += RCMaskWords; 987 SubReg = *Idx++; 988 if (!SubReg) 989 Idx = nullptr; 990 } 991 }; 992 993 //===----------------------------------------------------------------------===// 994 // BitMaskClassIterator 995 //===----------------------------------------------------------------------===// 996 /// This class encapuslates the logic to iterate over bitmask returned by 997 /// the various RegClass related APIs. 998 /// E.g., this class can be used to iterate over the subclasses provided by 999 /// TargetRegisterClass::getSubClassMask or SuperRegClassIterator::getMask. 1000 class BitMaskClassIterator { 1001 /// Total number of register classes. 1002 const unsigned NumRegClasses; 1003 /// Base index of CurrentChunk. 1004 /// In other words, the number of bit we read to get at the 1005 /// beginning of that chunck. 1006 unsigned Base; 1007 /// Adjust base index of CurrentChunk. 1008 /// Base index + how many bit we read within CurrentChunk. 1009 unsigned Idx; 1010 /// Current register class ID. 1011 unsigned ID; 1012 /// Mask we are iterating over. 1013 const uint32_t *Mask; 1014 /// Current chunk of the Mask we are traversing. 1015 uint32_t CurrentChunk; 1016 1017 /// Move ID to the next set bit. 1018 void moveToNextID() { 1019 // If the current chunk of memory is empty, move to the next one, 1020 // while making sure we do not go pass the number of register 1021 // classes. 1022 while (!CurrentChunk) { 1023 // Move to the next chunk. 1024 Base += 32; 1025 if (Base >= NumRegClasses) { 1026 ID = NumRegClasses; 1027 return; 1028 } 1029 CurrentChunk = *++Mask; 1030 Idx = Base; 1031 } 1032 // Otherwise look for the first bit set from the right 1033 // (representation of the class ID is big endian). 1034 // See getSubClassMask for more details on the representation. 1035 unsigned Offset = countTrailingZeros(CurrentChunk); 1036 // Add the Offset to the adjusted base number of this chunk: Idx. 1037 // This is the ID of the register class. 1038 ID = Idx + Offset; 1039 1040 // Consume the zeros, if any, and the bit we just read 1041 // so that we are at the right spot for the next call. 1042 // Do not do Offset + 1 because Offset may be 31 and 32 1043 // will be UB for the shift, though in that case we could 1044 // have make the chunk being equal to 0, but that would 1045 // have introduced a if statement. 1046 moveNBits(Offset); 1047 moveNBits(1); 1048 } 1049 1050 /// Move \p NumBits Bits forward in CurrentChunk. 1051 void moveNBits(unsigned NumBits) { 1052 assert(NumBits < 32 && "Undefined behavior spotted!"); 1053 // Consume the bit we read for the next call. 1054 CurrentChunk >>= NumBits; 1055 // Adjust the base for the chunk. 1056 Idx += NumBits; 1057 } 1058 1059 public: 1060 /// Create a BitMaskClassIterator that visits all the register classes 1061 /// represented by \p Mask. 1062 /// 1063 /// \pre \p Mask != nullptr 1064 BitMaskClassIterator(const uint32_t *Mask, const TargetRegisterInfo &TRI) 1065 : NumRegClasses(TRI.getNumRegClasses()), Base(0), Idx(0), ID(0), 1066 Mask(Mask), CurrentChunk(*Mask) { 1067 // Move to the first ID. 1068 moveToNextID(); 1069 } 1070 1071 /// Returns true if this iterator is still pointing at a valid entry. 1072 bool isValid() const { return getID() != NumRegClasses; } 1073 1074 /// Returns the current register class ID. 1075 unsigned getID() const { return ID; } 1076 1077 /// Advance iterator to the next entry. 1078 void operator++() { 1079 assert(isValid() && "Cannot move iterator past end."); 1080 moveToNextID(); 1081 } 1082 }; 1083 1084 // This is useful when building IndexedMaps keyed on virtual registers 1085 struct VirtReg2IndexFunctor : public std::unary_function<unsigned, unsigned> { 1086 unsigned operator()(unsigned Reg) const { 1087 return TargetRegisterInfo::virtReg2Index(Reg); 1088 } 1089 }; 1090 1091 /// Prints virtual and physical registers with or without a TRI instance. 1092 /// 1093 /// The format is: 1094 /// %noreg - NoRegister 1095 /// %vreg5 - a virtual register. 1096 /// %vreg5:sub_8bit - a virtual register with sub-register index (with TRI). 1097 /// %EAX - a physical register 1098 /// %physreg17 - a physical register when no TRI instance given. 1099 /// 1100 /// Usage: OS << PrintReg(Reg, TRI) << '\n'; 1101 Printable PrintReg(unsigned Reg, const TargetRegisterInfo *TRI = nullptr, 1102 unsigned SubRegIdx = 0); 1103 1104 /// Create Printable object to print register units on a \ref raw_ostream. 1105 /// 1106 /// Register units are named after their root registers: 1107 /// 1108 /// AL - Single root. 1109 /// FP0~ST7 - Dual roots. 1110 /// 1111 /// Usage: OS << PrintRegUnit(Unit, TRI) << '\n'; 1112 Printable PrintRegUnit(unsigned Unit, const TargetRegisterInfo *TRI); 1113 1114 /// \brief Create Printable object to print virtual registers and physical 1115 /// registers on a \ref raw_ostream. 1116 Printable PrintVRegOrUnit(unsigned VRegOrUnit, const TargetRegisterInfo *TRI); 1117 1118 /// Create Printable object to print LaneBitmasks on a \ref raw_ostream. 1119 Printable PrintLaneMask(LaneBitmask LaneMask); 1120 1121 } // End llvm namespace 1122 1123 #endif 1124