1 //===-- TargetInstrInfoImpl.cpp - Target Instruction Information ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the TargetInstrInfoImpl class, it just provides default 11 // implementations of various methods. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Target/TargetInstrInfo.h" 16 #include "llvm/Target/TargetLowering.h" 17 #include "llvm/Target/TargetMachine.h" 18 #include "llvm/Target/TargetRegisterInfo.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/CodeGen/MachineFrameInfo.h" 21 #include "llvm/CodeGen/MachineInstr.h" 22 #include "llvm/CodeGen/MachineInstrBuilder.h" 23 #include "llvm/CodeGen/MachineMemOperand.h" 24 #include "llvm/CodeGen/MachineRegisterInfo.h" 25 #include "llvm/CodeGen/ScoreboardHazardRecognizer.h" 26 #include "llvm/CodeGen/PseudoSourceValue.h" 27 #include "llvm/Support/CommandLine.h" 28 #include "llvm/Support/Debug.h" 29 #include "llvm/Support/ErrorHandling.h" 30 #include "llvm/Support/raw_ostream.h" 31 using namespace llvm; 32 33 static cl::opt<bool> DisableHazardRecognizer( 34 "disable-sched-hazard", cl::Hidden, cl::init(false), 35 cl::desc("Disable hazard detection during preRA scheduling")); 36 37 /// ReplaceTailWithBranchTo - Delete the instruction OldInst and everything 38 /// after it, replacing it with an unconditional branch to NewDest. 39 void 40 TargetInstrInfoImpl::ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail, 41 MachineBasicBlock *NewDest) const { 42 MachineBasicBlock *MBB = Tail->getParent(); 43 44 // Remove all the old successors of MBB from the CFG. 45 while (!MBB->succ_empty()) 46 MBB->removeSuccessor(MBB->succ_begin()); 47 48 // Remove all the dead instructions from the end of MBB. 49 MBB->erase(Tail, MBB->end()); 50 51 // If MBB isn't immediately before MBB, insert a branch to it. 52 if (++MachineFunction::iterator(MBB) != MachineFunction::iterator(NewDest)) 53 InsertBranch(*MBB, NewDest, 0, SmallVector<MachineOperand, 0>(), 54 Tail->getDebugLoc()); 55 MBB->addSuccessor(NewDest); 56 } 57 58 // commuteInstruction - The default implementation of this method just exchanges 59 // the two operands returned by findCommutedOpIndices. 60 MachineInstr *TargetInstrInfoImpl::commuteInstruction(MachineInstr *MI, 61 bool NewMI) const { 62 const MCInstrDesc &MCID = MI->getDesc(); 63 bool HasDef = MCID.getNumDefs(); 64 if (HasDef && !MI->getOperand(0).isReg()) 65 // No idea how to commute this instruction. Target should implement its own. 66 return 0; 67 unsigned Idx1, Idx2; 68 if (!findCommutedOpIndices(MI, Idx1, Idx2)) { 69 std::string msg; 70 raw_string_ostream Msg(msg); 71 Msg << "Don't know how to commute: " << *MI; 72 report_fatal_error(Msg.str()); 73 } 74 75 assert(MI->getOperand(Idx1).isReg() && MI->getOperand(Idx2).isReg() && 76 "This only knows how to commute register operands so far"); 77 unsigned Reg0 = HasDef ? MI->getOperand(0).getReg() : 0; 78 unsigned Reg1 = MI->getOperand(Idx1).getReg(); 79 unsigned Reg2 = MI->getOperand(Idx2).getReg(); 80 bool Reg1IsKill = MI->getOperand(Idx1).isKill(); 81 bool Reg2IsKill = MI->getOperand(Idx2).isKill(); 82 // If destination is tied to either of the commuted source register, then 83 // it must be updated. 84 if (HasDef && Reg0 == Reg1 && 85 MI->getDesc().getOperandConstraint(Idx1, MCOI::TIED_TO) == 0) { 86 Reg2IsKill = false; 87 Reg0 = Reg2; 88 } else if (HasDef && Reg0 == Reg2 && 89 MI->getDesc().getOperandConstraint(Idx2, MCOI::TIED_TO) == 0) { 90 Reg1IsKill = false; 91 Reg0 = Reg1; 92 } 93 94 if (NewMI) { 95 // Create a new instruction. 96 bool Reg0IsDead = HasDef ? MI->getOperand(0).isDead() : false; 97 MachineFunction &MF = *MI->getParent()->getParent(); 98 if (HasDef) 99 return BuildMI(MF, MI->getDebugLoc(), MI->getDesc()) 100 .addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead)) 101 .addReg(Reg2, getKillRegState(Reg2IsKill)) 102 .addReg(Reg1, getKillRegState(Reg2IsKill)); 103 else 104 return BuildMI(MF, MI->getDebugLoc(), MI->getDesc()) 105 .addReg(Reg2, getKillRegState(Reg2IsKill)) 106 .addReg(Reg1, getKillRegState(Reg2IsKill)); 107 } 108 109 if (HasDef) 110 MI->getOperand(0).setReg(Reg0); 111 MI->getOperand(Idx2).setReg(Reg1); 112 MI->getOperand(Idx1).setReg(Reg2); 113 MI->getOperand(Idx2).setIsKill(Reg1IsKill); 114 MI->getOperand(Idx1).setIsKill(Reg2IsKill); 115 return MI; 116 } 117 118 /// findCommutedOpIndices - If specified MI is commutable, return the two 119 /// operand indices that would swap value. Return true if the instruction 120 /// is not in a form which this routine understands. 121 bool TargetInstrInfoImpl::findCommutedOpIndices(MachineInstr *MI, 122 unsigned &SrcOpIdx1, 123 unsigned &SrcOpIdx2) const { 124 const MCInstrDesc &MCID = MI->getDesc(); 125 if (!MCID.isCommutable()) 126 return false; 127 // This assumes v0 = op v1, v2 and commuting would swap v1 and v2. If this 128 // is not true, then the target must implement this. 129 SrcOpIdx1 = MCID.getNumDefs(); 130 SrcOpIdx2 = SrcOpIdx1 + 1; 131 if (!MI->getOperand(SrcOpIdx1).isReg() || 132 !MI->getOperand(SrcOpIdx2).isReg()) 133 // No idea. 134 return false; 135 return true; 136 } 137 138 139 bool TargetInstrInfoImpl::PredicateInstruction(MachineInstr *MI, 140 const SmallVectorImpl<MachineOperand> &Pred) const { 141 bool MadeChange = false; 142 const MCInstrDesc &MCID = MI->getDesc(); 143 if (!MCID.isPredicable()) 144 return false; 145 146 for (unsigned j = 0, i = 0, e = MI->getNumOperands(); i != e; ++i) { 147 if (MCID.OpInfo[i].isPredicate()) { 148 MachineOperand &MO = MI->getOperand(i); 149 if (MO.isReg()) { 150 MO.setReg(Pred[j].getReg()); 151 MadeChange = true; 152 } else if (MO.isImm()) { 153 MO.setImm(Pred[j].getImm()); 154 MadeChange = true; 155 } else if (MO.isMBB()) { 156 MO.setMBB(Pred[j].getMBB()); 157 MadeChange = true; 158 } 159 ++j; 160 } 161 } 162 return MadeChange; 163 } 164 165 bool TargetInstrInfoImpl::hasLoadFromStackSlot(const MachineInstr *MI, 166 const MachineMemOperand *&MMO, 167 int &FrameIndex) const { 168 for (MachineInstr::mmo_iterator o = MI->memoperands_begin(), 169 oe = MI->memoperands_end(); 170 o != oe; 171 ++o) { 172 if ((*o)->isLoad() && (*o)->getValue()) 173 if (const FixedStackPseudoSourceValue *Value = 174 dyn_cast<const FixedStackPseudoSourceValue>((*o)->getValue())) { 175 FrameIndex = Value->getFrameIndex(); 176 MMO = *o; 177 return true; 178 } 179 } 180 return false; 181 } 182 183 bool TargetInstrInfoImpl::hasStoreToStackSlot(const MachineInstr *MI, 184 const MachineMemOperand *&MMO, 185 int &FrameIndex) const { 186 for (MachineInstr::mmo_iterator o = MI->memoperands_begin(), 187 oe = MI->memoperands_end(); 188 o != oe; 189 ++o) { 190 if ((*o)->isStore() && (*o)->getValue()) 191 if (const FixedStackPseudoSourceValue *Value = 192 dyn_cast<const FixedStackPseudoSourceValue>((*o)->getValue())) { 193 FrameIndex = Value->getFrameIndex(); 194 MMO = *o; 195 return true; 196 } 197 } 198 return false; 199 } 200 201 void TargetInstrInfoImpl::reMaterialize(MachineBasicBlock &MBB, 202 MachineBasicBlock::iterator I, 203 unsigned DestReg, 204 unsigned SubIdx, 205 const MachineInstr *Orig, 206 const TargetRegisterInfo &TRI) const { 207 MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig); 208 MI->substituteRegister(MI->getOperand(0).getReg(), DestReg, SubIdx, TRI); 209 MBB.insert(I, MI); 210 } 211 212 bool 213 TargetInstrInfoImpl::produceSameValue(const MachineInstr *MI0, 214 const MachineInstr *MI1, 215 const MachineRegisterInfo *MRI) const { 216 return MI0->isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs); 217 } 218 219 MachineInstr *TargetInstrInfoImpl::duplicate(MachineInstr *Orig, 220 MachineFunction &MF) const { 221 assert(!Orig->getDesc().isNotDuplicable() && 222 "Instruction cannot be duplicated"); 223 return MF.CloneMachineInstr(Orig); 224 } 225 226 // If the COPY instruction in MI can be folded to a stack operation, return 227 // the register class to use. 228 static const TargetRegisterClass *canFoldCopy(const MachineInstr *MI, 229 unsigned FoldIdx) { 230 assert(MI->isCopy() && "MI must be a COPY instruction"); 231 if (MI->getNumOperands() != 2) 232 return 0; 233 assert(FoldIdx<2 && "FoldIdx refers no nonexistent operand"); 234 235 const MachineOperand &FoldOp = MI->getOperand(FoldIdx); 236 const MachineOperand &LiveOp = MI->getOperand(1-FoldIdx); 237 238 if (FoldOp.getSubReg() || LiveOp.getSubReg()) 239 return 0; 240 241 unsigned FoldReg = FoldOp.getReg(); 242 unsigned LiveReg = LiveOp.getReg(); 243 244 assert(TargetRegisterInfo::isVirtualRegister(FoldReg) && 245 "Cannot fold physregs"); 246 247 const MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo(); 248 const TargetRegisterClass *RC = MRI.getRegClass(FoldReg); 249 250 if (TargetRegisterInfo::isPhysicalRegister(LiveOp.getReg())) 251 return RC->contains(LiveOp.getReg()) ? RC : 0; 252 253 if (RC->hasSubClassEq(MRI.getRegClass(LiveReg))) 254 return RC; 255 256 // FIXME: Allow folding when register classes are memory compatible. 257 return 0; 258 } 259 260 bool TargetInstrInfoImpl:: 261 canFoldMemoryOperand(const MachineInstr *MI, 262 const SmallVectorImpl<unsigned> &Ops) const { 263 return MI->isCopy() && Ops.size() == 1 && canFoldCopy(MI, Ops[0]); 264 } 265 266 /// foldMemoryOperand - Attempt to fold a load or store of the specified stack 267 /// slot into the specified machine instruction for the specified operand(s). 268 /// If this is possible, a new instruction is returned with the specified 269 /// operand folded, otherwise NULL is returned. The client is responsible for 270 /// removing the old instruction and adding the new one in the instruction 271 /// stream. 272 MachineInstr* 273 TargetInstrInfo::foldMemoryOperand(MachineBasicBlock::iterator MI, 274 const SmallVectorImpl<unsigned> &Ops, 275 int FI) const { 276 unsigned Flags = 0; 277 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 278 if (MI->getOperand(Ops[i]).isDef()) 279 Flags |= MachineMemOperand::MOStore; 280 else 281 Flags |= MachineMemOperand::MOLoad; 282 283 MachineBasicBlock *MBB = MI->getParent(); 284 assert(MBB && "foldMemoryOperand needs an inserted instruction"); 285 MachineFunction &MF = *MBB->getParent(); 286 287 // Ask the target to do the actual folding. 288 if (MachineInstr *NewMI = foldMemoryOperandImpl(MF, MI, Ops, FI)) { 289 // Add a memory operand, foldMemoryOperandImpl doesn't do that. 290 assert((!(Flags & MachineMemOperand::MOStore) || 291 NewMI->getDesc().mayStore()) && 292 "Folded a def to a non-store!"); 293 assert((!(Flags & MachineMemOperand::MOLoad) || 294 NewMI->getDesc().mayLoad()) && 295 "Folded a use to a non-load!"); 296 const MachineFrameInfo &MFI = *MF.getFrameInfo(); 297 assert(MFI.getObjectOffset(FI) != -1); 298 MachineMemOperand *MMO = 299 MF.getMachineMemOperand( 300 MachinePointerInfo(PseudoSourceValue::getFixedStack(FI)), 301 Flags, MFI.getObjectSize(FI), 302 MFI.getObjectAlignment(FI)); 303 NewMI->addMemOperand(MF, MMO); 304 305 // FIXME: change foldMemoryOperandImpl semantics to also insert NewMI. 306 return MBB->insert(MI, NewMI); 307 } 308 309 // Straight COPY may fold as load/store. 310 if (!MI->isCopy() || Ops.size() != 1) 311 return 0; 312 313 const TargetRegisterClass *RC = canFoldCopy(MI, Ops[0]); 314 if (!RC) 315 return 0; 316 317 const MachineOperand &MO = MI->getOperand(1-Ops[0]); 318 MachineBasicBlock::iterator Pos = MI; 319 const TargetRegisterInfo *TRI = MF.getTarget().getRegisterInfo(); 320 321 if (Flags == MachineMemOperand::MOStore) 322 storeRegToStackSlot(*MBB, Pos, MO.getReg(), MO.isKill(), FI, RC, TRI); 323 else 324 loadRegFromStackSlot(*MBB, Pos, MO.getReg(), FI, RC, TRI); 325 return --Pos; 326 } 327 328 /// foldMemoryOperand - Same as the previous version except it allows folding 329 /// of any load and store from / to any address, not just from a specific 330 /// stack slot. 331 MachineInstr* 332 TargetInstrInfo::foldMemoryOperand(MachineBasicBlock::iterator MI, 333 const SmallVectorImpl<unsigned> &Ops, 334 MachineInstr* LoadMI) const { 335 assert(LoadMI->getDesc().canFoldAsLoad() && "LoadMI isn't foldable!"); 336 #ifndef NDEBUG 337 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 338 assert(MI->getOperand(Ops[i]).isUse() && "Folding load into def!"); 339 #endif 340 MachineBasicBlock &MBB = *MI->getParent(); 341 MachineFunction &MF = *MBB.getParent(); 342 343 // Ask the target to do the actual folding. 344 MachineInstr *NewMI = foldMemoryOperandImpl(MF, MI, Ops, LoadMI); 345 if (!NewMI) return 0; 346 347 NewMI = MBB.insert(MI, NewMI); 348 349 // Copy the memoperands from the load to the folded instruction. 350 NewMI->setMemRefs(LoadMI->memoperands_begin(), 351 LoadMI->memoperands_end()); 352 353 return NewMI; 354 } 355 356 bool TargetInstrInfo:: 357 isReallyTriviallyReMaterializableGeneric(const MachineInstr *MI, 358 AliasAnalysis *AA) const { 359 const MachineFunction &MF = *MI->getParent()->getParent(); 360 const MachineRegisterInfo &MRI = MF.getRegInfo(); 361 const TargetMachine &TM = MF.getTarget(); 362 const TargetInstrInfo &TII = *TM.getInstrInfo(); 363 const TargetRegisterInfo &TRI = *TM.getRegisterInfo(); 364 365 // Remat clients assume operand 0 is the defined register. 366 if (!MI->getNumOperands() || !MI->getOperand(0).isReg()) 367 return false; 368 unsigned DefReg = MI->getOperand(0).getReg(); 369 370 // A sub-register definition can only be rematerialized if the instruction 371 // doesn't read the other parts of the register. Otherwise it is really a 372 // read-modify-write operation on the full virtual register which cannot be 373 // moved safely. 374 if (TargetRegisterInfo::isVirtualRegister(DefReg) && 375 MI->getOperand(0).getSubReg() && MI->readsVirtualRegister(DefReg)) 376 return false; 377 378 // A load from a fixed stack slot can be rematerialized. This may be 379 // redundant with subsequent checks, but it's target-independent, 380 // simple, and a common case. 381 int FrameIdx = 0; 382 if (TII.isLoadFromStackSlot(MI, FrameIdx) && 383 MF.getFrameInfo()->isImmutableObjectIndex(FrameIdx)) 384 return true; 385 386 const MCInstrDesc &MCID = MI->getDesc(); 387 388 // Avoid instructions obviously unsafe for remat. 389 if (MCID.isNotDuplicable() || MCID.mayStore() || 390 MI->hasUnmodeledSideEffects()) 391 return false; 392 393 // Don't remat inline asm. We have no idea how expensive it is 394 // even if it's side effect free. 395 if (MI->isInlineAsm()) 396 return false; 397 398 // Avoid instructions which load from potentially varying memory. 399 if (MCID.mayLoad() && !MI->isInvariantLoad(AA)) 400 return false; 401 402 // If any of the registers accessed are non-constant, conservatively assume 403 // the instruction is not rematerializable. 404 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 405 const MachineOperand &MO = MI->getOperand(i); 406 if (!MO.isReg()) continue; 407 unsigned Reg = MO.getReg(); 408 if (Reg == 0) 409 continue; 410 411 // Check for a well-behaved physical register. 412 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 413 if (MO.isUse()) { 414 // If the physreg has no defs anywhere, it's just an ambient register 415 // and we can freely move its uses. Alternatively, if it's allocatable, 416 // it could get allocated to something with a def during allocation. 417 if (!MRI.def_empty(Reg)) 418 return false; 419 BitVector AllocatableRegs = TRI.getAllocatableSet(MF, 0); 420 if (AllocatableRegs.test(Reg)) 421 return false; 422 // Check for a def among the register's aliases too. 423 for (const unsigned *Alias = TRI.getAliasSet(Reg); *Alias; ++Alias) { 424 unsigned AliasReg = *Alias; 425 if (!MRI.def_empty(AliasReg)) 426 return false; 427 if (AllocatableRegs.test(AliasReg)) 428 return false; 429 } 430 } else { 431 // A physreg def. We can't remat it. 432 return false; 433 } 434 continue; 435 } 436 437 // Only allow one virtual-register def. There may be multiple defs of the 438 // same virtual register, though. 439 if (MO.isDef() && Reg != DefReg) 440 return false; 441 442 // Don't allow any virtual-register uses. Rematting an instruction with 443 // virtual register uses would length the live ranges of the uses, which 444 // is not necessarily a good idea, certainly not "trivial". 445 if (MO.isUse()) 446 return false; 447 } 448 449 // Everything checked out. 450 return true; 451 } 452 453 /// isSchedulingBoundary - Test if the given instruction should be 454 /// considered a scheduling boundary. This primarily includes labels 455 /// and terminators. 456 bool TargetInstrInfoImpl::isSchedulingBoundary(const MachineInstr *MI, 457 const MachineBasicBlock *MBB, 458 const MachineFunction &MF) const{ 459 // Terminators and labels can't be scheduled around. 460 if (MI->getDesc().isTerminator() || MI->isLabel()) 461 return true; 462 463 // Don't attempt to schedule around any instruction that defines 464 // a stack-oriented pointer, as it's unlikely to be profitable. This 465 // saves compile time, because it doesn't require every single 466 // stack slot reference to depend on the instruction that does the 467 // modification. 468 const TargetLowering &TLI = *MF.getTarget().getTargetLowering(); 469 if (MI->definesRegister(TLI.getStackPointerRegisterToSaveRestore())) 470 return true; 471 472 return false; 473 } 474 475 // Provide a global flag for disabling the PreRA hazard recognizer that targets 476 // may choose to honor. 477 bool TargetInstrInfoImpl::usePreRAHazardRecognizer() const { 478 return !DisableHazardRecognizer; 479 } 480 481 // Default implementation of CreateTargetRAHazardRecognizer. 482 ScheduleHazardRecognizer *TargetInstrInfoImpl:: 483 CreateTargetHazardRecognizer(const TargetMachine *TM, 484 const ScheduleDAG *DAG) const { 485 // Dummy hazard recognizer allows all instructions to issue. 486 return new ScheduleHazardRecognizer(); 487 } 488 489 // Default implementation of CreateTargetPostRAHazardRecognizer. 490 ScheduleHazardRecognizer *TargetInstrInfoImpl:: 491 CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II, 492 const ScheduleDAG *DAG) const { 493 return (ScheduleHazardRecognizer *) 494 new ScoreboardHazardRecognizer(II, DAG, "post-RA-sched"); 495 } 496