1 //===-- X86OptimizeLEAs.cpp - optimize usage of LEA instructions ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the pass that performs some optimizations with LEA 11 // instructions in order to improve performance and code size. 12 // Currently, it does two things: 13 // 1) If there are two LEA instructions calculating addresses which only differ 14 // by displacement inside a basic block, one of them is removed. 15 // 2) Address calculations in load and store instructions are replaced by 16 // existing LEA def registers where possible. 17 // 18 //===----------------------------------------------------------------------===// 19 20 #include "X86.h" 21 #include "X86InstrInfo.h" 22 #include "X86Subtarget.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/CodeGen/LiveVariables.h" 25 #include "llvm/CodeGen/MachineFunctionPass.h" 26 #include "llvm/CodeGen/MachineInstrBuilder.h" 27 #include "llvm/CodeGen/MachineOperand.h" 28 #include "llvm/CodeGen/MachineRegisterInfo.h" 29 #include "llvm/CodeGen/Passes.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/Support/Debug.h" 32 #include "llvm/Support/raw_ostream.h" 33 #include "llvm/Target/TargetInstrInfo.h" 34 35 using namespace llvm; 36 37 #define DEBUG_TYPE "x86-optimize-LEAs" 38 39 static cl::opt<bool> 40 DisableX86LEAOpt("disable-x86-lea-opt", cl::Hidden, 41 cl::desc("X86: Disable LEA optimizations."), 42 cl::init(false)); 43 44 STATISTIC(NumSubstLEAs, "Number of LEA instruction substitutions"); 45 STATISTIC(NumRedundantLEAs, "Number of redundant LEA instructions removed"); 46 47 class MemOpKey; 48 49 /// \brief Returns a hash table key based on memory operands of \p MI. The 50 /// number of the first memory operand of \p MI is specified through \p N. 51 static inline MemOpKey getMemOpKey(const MachineInstr &MI, unsigned N); 52 53 /// \brief Returns true if two machine operands are identical and they are not 54 /// physical registers. 55 static inline bool isIdenticalOp(const MachineOperand &MO1, 56 const MachineOperand &MO2); 57 58 /// \brief Returns true if two address displacement operands are of the same 59 /// type and use the same symbol/index/address regardless of the offset. 60 static bool isSimilarDispOp(const MachineOperand &MO1, 61 const MachineOperand &MO2); 62 63 /// \brief Returns true if the instruction is LEA. 64 static inline bool isLEA(const MachineInstr &MI); 65 66 /// A key based on instruction's memory operands. 67 class MemOpKey { 68 public: 69 MemOpKey(const MachineOperand *Base, const MachineOperand *Scale, 70 const MachineOperand *Index, const MachineOperand *Segment, 71 const MachineOperand *Disp) 72 : Disp(Disp) { 73 Operands[0] = Base; 74 Operands[1] = Scale; 75 Operands[2] = Index; 76 Operands[3] = Segment; 77 } 78 79 bool operator==(const MemOpKey &Other) const { 80 // Addresses' bases, scales, indices and segments must be identical. 81 for (int i = 0; i < 4; ++i) 82 if (!isIdenticalOp(*Operands[i], *Other.Operands[i])) 83 return false; 84 85 // Addresses' displacements don't have to be exactly the same. It only 86 // matters that they use the same symbol/index/address. Immediates' or 87 // offsets' differences will be taken care of during instruction 88 // substitution. 89 return isSimilarDispOp(*Disp, *Other.Disp); 90 } 91 92 // Address' base, scale, index and segment operands. 93 const MachineOperand *Operands[4]; 94 95 // Address' displacement operand. 96 const MachineOperand *Disp; 97 }; 98 99 /// Provide DenseMapInfo for MemOpKey. 100 namespace llvm { 101 template <> struct DenseMapInfo<MemOpKey> { 102 typedef DenseMapInfo<const MachineOperand *> PtrInfo; 103 104 static inline MemOpKey getEmptyKey() { 105 return MemOpKey(PtrInfo::getEmptyKey(), PtrInfo::getEmptyKey(), 106 PtrInfo::getEmptyKey(), PtrInfo::getEmptyKey(), 107 PtrInfo::getEmptyKey()); 108 } 109 110 static inline MemOpKey getTombstoneKey() { 111 return MemOpKey(PtrInfo::getTombstoneKey(), PtrInfo::getTombstoneKey(), 112 PtrInfo::getTombstoneKey(), PtrInfo::getTombstoneKey(), 113 PtrInfo::getTombstoneKey()); 114 } 115 116 static unsigned getHashValue(const MemOpKey &Val) { 117 // Checking any field of MemOpKey is enough to determine if the key is 118 // empty or tombstone. 119 assert(Val.Disp != PtrInfo::getEmptyKey() && "Cannot hash the empty key"); 120 assert(Val.Disp != PtrInfo::getTombstoneKey() && 121 "Cannot hash the tombstone key"); 122 123 hash_code Hash = hash_combine(*Val.Operands[0], *Val.Operands[1], 124 *Val.Operands[2], *Val.Operands[3]); 125 126 // If the address displacement is an immediate, it should not affect the 127 // hash so that memory operands which differ only be immediate displacement 128 // would have the same hash. If the address displacement is something else, 129 // we should reflect symbol/index/address in the hash. 130 switch (Val.Disp->getType()) { 131 case MachineOperand::MO_Immediate: 132 break; 133 case MachineOperand::MO_ConstantPoolIndex: 134 case MachineOperand::MO_JumpTableIndex: 135 Hash = hash_combine(Hash, Val.Disp->getIndex()); 136 break; 137 case MachineOperand::MO_ExternalSymbol: 138 Hash = hash_combine(Hash, Val.Disp->getSymbolName()); 139 break; 140 case MachineOperand::MO_GlobalAddress: 141 Hash = hash_combine(Hash, Val.Disp->getGlobal()); 142 break; 143 case MachineOperand::MO_BlockAddress: 144 Hash = hash_combine(Hash, Val.Disp->getBlockAddress()); 145 break; 146 case MachineOperand::MO_MCSymbol: 147 Hash = hash_combine(Hash, Val.Disp->getMCSymbol()); 148 break; 149 case MachineOperand::MO_MachineBasicBlock: 150 Hash = hash_combine(Hash, Val.Disp->getMBB()); 151 break; 152 default: 153 llvm_unreachable("Invalid address displacement operand"); 154 } 155 156 return (unsigned)Hash; 157 } 158 159 static bool isEqual(const MemOpKey &LHS, const MemOpKey &RHS) { 160 // Checking any field of MemOpKey is enough to determine if the key is 161 // empty or tombstone. 162 if (RHS.Disp == PtrInfo::getEmptyKey()) 163 return LHS.Disp == PtrInfo::getEmptyKey(); 164 if (RHS.Disp == PtrInfo::getTombstoneKey()) 165 return LHS.Disp == PtrInfo::getTombstoneKey(); 166 return LHS == RHS; 167 } 168 }; 169 } 170 171 static inline MemOpKey getMemOpKey(const MachineInstr &MI, unsigned N) { 172 assert((isLEA(MI) || MI.mayLoadOrStore()) && 173 "The instruction must be a LEA, a load or a store"); 174 return MemOpKey(&MI.getOperand(N + X86::AddrBaseReg), 175 &MI.getOperand(N + X86::AddrScaleAmt), 176 &MI.getOperand(N + X86::AddrIndexReg), 177 &MI.getOperand(N + X86::AddrSegmentReg), 178 &MI.getOperand(N + X86::AddrDisp)); 179 } 180 181 static inline bool isIdenticalOp(const MachineOperand &MO1, 182 const MachineOperand &MO2) { 183 return MO1.isIdenticalTo(MO2) && 184 (!MO1.isReg() || 185 !TargetRegisterInfo::isPhysicalRegister(MO1.getReg())); 186 } 187 188 #ifndef NDEBUG 189 static bool isValidDispOp(const MachineOperand &MO) { 190 return MO.isImm() || MO.isCPI() || MO.isJTI() || MO.isSymbol() || 191 MO.isGlobal() || MO.isBlockAddress() || MO.isMCSymbol() || MO.isMBB(); 192 } 193 #endif 194 195 static bool isSimilarDispOp(const MachineOperand &MO1, 196 const MachineOperand &MO2) { 197 assert(isValidDispOp(MO1) && isValidDispOp(MO2) && 198 "Address displacement operand is not valid"); 199 return (MO1.isImm() && MO2.isImm()) || 200 (MO1.isCPI() && MO2.isCPI() && MO1.getIndex() == MO2.getIndex()) || 201 (MO1.isJTI() && MO2.isJTI() && MO1.getIndex() == MO2.getIndex()) || 202 (MO1.isSymbol() && MO2.isSymbol() && 203 MO1.getSymbolName() == MO2.getSymbolName()) || 204 (MO1.isGlobal() && MO2.isGlobal() && 205 MO1.getGlobal() == MO2.getGlobal()) || 206 (MO1.isBlockAddress() && MO2.isBlockAddress() && 207 MO1.getBlockAddress() == MO2.getBlockAddress()) || 208 (MO1.isMCSymbol() && MO2.isMCSymbol() && 209 MO1.getMCSymbol() == MO2.getMCSymbol()) || 210 (MO1.isMBB() && MO2.isMBB() && MO1.getMBB() == MO2.getMBB()); 211 } 212 213 static inline bool isLEA(const MachineInstr &MI) { 214 unsigned Opcode = MI.getOpcode(); 215 return Opcode == X86::LEA16r || Opcode == X86::LEA32r || 216 Opcode == X86::LEA64r || Opcode == X86::LEA64_32r; 217 } 218 219 namespace { 220 class OptimizeLEAPass : public MachineFunctionPass { 221 public: 222 OptimizeLEAPass() : MachineFunctionPass(ID) {} 223 224 const char *getPassName() const override { return "X86 LEA Optimize"; } 225 226 /// \brief Loop over all of the basic blocks, replacing address 227 /// calculations in load and store instructions, if it's already 228 /// been calculated by LEA. Also, remove redundant LEAs. 229 bool runOnMachineFunction(MachineFunction &MF) override; 230 231 private: 232 typedef DenseMap<MemOpKey, SmallVector<MachineInstr *, 16>> MemOpMap; 233 234 /// \brief Returns a distance between two instructions inside one basic block. 235 /// Negative result means, that instructions occur in reverse order. 236 int calcInstrDist(const MachineInstr &First, const MachineInstr &Last); 237 238 /// \brief Choose the best \p LEA instruction from the \p List to replace 239 /// address calculation in \p MI instruction. Return the address displacement 240 /// and the distance between \p MI and the choosen \p BestLEA in 241 /// \p AddrDispShift and \p Dist. 242 bool chooseBestLEA(const SmallVectorImpl<MachineInstr *> &List, 243 const MachineInstr &MI, MachineInstr *&BestLEA, 244 int64_t &AddrDispShift, int &Dist); 245 246 /// \brief Returns the difference between addresses' displacements of \p MI1 247 /// and \p MI2. The numbers of the first memory operands for the instructions 248 /// are specified through \p N1 and \p N2. 249 int64_t getAddrDispShift(const MachineInstr &MI1, unsigned N1, 250 const MachineInstr &MI2, unsigned N2) const; 251 252 /// \brief Returns true if the \p Last LEA instruction can be replaced by the 253 /// \p First. The difference between displacements of the addresses calculated 254 /// by these LEAs is returned in \p AddrDispShift. It'll be used for proper 255 /// replacement of the \p Last LEA's uses with the \p First's def register. 256 bool isReplaceable(const MachineInstr &First, const MachineInstr &Last, 257 int64_t &AddrDispShift) const; 258 259 /// \brief Find all LEA instructions in the basic block. Also, assign position 260 /// numbers to all instructions in the basic block to speed up calculation of 261 /// distance between them. 262 void findLEAs(const MachineBasicBlock &MBB, MemOpMap &LEAs); 263 264 /// \brief Removes redundant address calculations. 265 bool removeRedundantAddrCalc(MemOpMap &LEAs); 266 267 /// \brief Removes LEAs which calculate similar addresses. 268 bool removeRedundantLEAs(MemOpMap &LEAs); 269 270 DenseMap<const MachineInstr *, unsigned> InstrPos; 271 272 MachineRegisterInfo *MRI; 273 const X86InstrInfo *TII; 274 const X86RegisterInfo *TRI; 275 276 static char ID; 277 }; 278 char OptimizeLEAPass::ID = 0; 279 } 280 281 FunctionPass *llvm::createX86OptimizeLEAs() { return new OptimizeLEAPass(); } 282 283 int OptimizeLEAPass::calcInstrDist(const MachineInstr &First, 284 const MachineInstr &Last) { 285 // Both instructions must be in the same basic block and they must be 286 // presented in InstrPos. 287 assert(Last.getParent() == First.getParent() && 288 "Instructions are in different basic blocks"); 289 assert(InstrPos.find(&First) != InstrPos.end() && 290 InstrPos.find(&Last) != InstrPos.end() && 291 "Instructions' positions are undefined"); 292 293 return InstrPos[&Last] - InstrPos[&First]; 294 } 295 296 // Find the best LEA instruction in the List to replace address recalculation in 297 // MI. Such LEA must meet these requirements: 298 // 1) The address calculated by the LEA differs only by the displacement from 299 // the address used in MI. 300 // 2) The register class of the definition of the LEA is compatible with the 301 // register class of the address base register of MI. 302 // 3) Displacement of the new memory operand should fit in 1 byte if possible. 303 // 4) The LEA should be as close to MI as possible, and prior to it if 304 // possible. 305 bool OptimizeLEAPass::chooseBestLEA(const SmallVectorImpl<MachineInstr *> &List, 306 const MachineInstr &MI, 307 MachineInstr *&BestLEA, 308 int64_t &AddrDispShift, int &Dist) { 309 const MachineFunction *MF = MI.getParent()->getParent(); 310 const MCInstrDesc &Desc = MI.getDesc(); 311 int MemOpNo = X86II::getMemoryOperandNo(Desc.TSFlags) + 312 X86II::getOperandBias(Desc); 313 314 BestLEA = nullptr; 315 316 // Loop over all LEA instructions. 317 for (auto DefMI : List) { 318 // Get new address displacement. 319 int64_t AddrDispShiftTemp = getAddrDispShift(MI, MemOpNo, *DefMI, 1); 320 321 // Make sure address displacement fits 4 bytes. 322 if (!isInt<32>(AddrDispShiftTemp)) 323 continue; 324 325 // Check that LEA def register can be used as MI address base. Some 326 // instructions can use a limited set of registers as address base, for 327 // example MOV8mr_NOREX. We could constrain the register class of the LEA 328 // def to suit MI, however since this case is very rare and hard to 329 // reproduce in a test it's just more reliable to skip the LEA. 330 if (TII->getRegClass(Desc, MemOpNo + X86::AddrBaseReg, TRI, *MF) != 331 MRI->getRegClass(DefMI->getOperand(0).getReg())) 332 continue; 333 334 // Choose the closest LEA instruction from the list, prior to MI if 335 // possible. Note that we took into account resulting address displacement 336 // as well. Also note that the list is sorted by the order in which the LEAs 337 // occur, so the break condition is pretty simple. 338 int DistTemp = calcInstrDist(*DefMI, MI); 339 assert(DistTemp != 0 && 340 "The distance between two different instructions cannot be zero"); 341 if (DistTemp > 0 || BestLEA == nullptr) { 342 // Do not update return LEA, if the current one provides a displacement 343 // which fits in 1 byte, while the new candidate does not. 344 if (BestLEA != nullptr && !isInt<8>(AddrDispShiftTemp) && 345 isInt<8>(AddrDispShift)) 346 continue; 347 348 BestLEA = DefMI; 349 AddrDispShift = AddrDispShiftTemp; 350 Dist = DistTemp; 351 } 352 353 // FIXME: Maybe we should not always stop at the first LEA after MI. 354 if (DistTemp < 0) 355 break; 356 } 357 358 return BestLEA != nullptr; 359 } 360 361 // Get the difference between the addresses' displacements of the two 362 // instructions \p MI1 and \p MI2. The numbers of the first memory operands are 363 // passed through \p N1 and \p N2. 364 int64_t OptimizeLEAPass::getAddrDispShift(const MachineInstr &MI1, unsigned N1, 365 const MachineInstr &MI2, 366 unsigned N2) const { 367 const MachineOperand &Op1 = MI1.getOperand(N1 + X86::AddrDisp); 368 const MachineOperand &Op2 = MI2.getOperand(N2 + X86::AddrDisp); 369 370 assert(isSimilarDispOp(Op1, Op2) && 371 "Address displacement operands are not compatible"); 372 373 // After the assert above we can be sure that both operands are of the same 374 // valid type and use the same symbol/index/address, thus displacement shift 375 // calculation is rather simple. 376 if (Op1.isJTI()) 377 return 0; 378 return Op1.isImm() ? Op1.getImm() - Op2.getImm() 379 : Op1.getOffset() - Op2.getOffset(); 380 } 381 382 // Check that the Last LEA can be replaced by the First LEA. To be so, 383 // these requirements must be met: 384 // 1) Addresses calculated by LEAs differ only by displacement. 385 // 2) Def registers of LEAs belong to the same class. 386 // 3) All uses of the Last LEA def register are replaceable, thus the 387 // register is used only as address base. 388 bool OptimizeLEAPass::isReplaceable(const MachineInstr &First, 389 const MachineInstr &Last, 390 int64_t &AddrDispShift) const { 391 assert(isLEA(First) && isLEA(Last) && 392 "The function works only with LEA instructions"); 393 394 // Get new address displacement. 395 AddrDispShift = getAddrDispShift(Last, 1, First, 1); 396 397 // Make sure that LEA def registers belong to the same class. There may be 398 // instructions (like MOV8mr_NOREX) which allow a limited set of registers to 399 // be used as their operands, so we must be sure that replacing one LEA 400 // with another won't lead to putting a wrong register in the instruction. 401 if (MRI->getRegClass(First.getOperand(0).getReg()) != 402 MRI->getRegClass(Last.getOperand(0).getReg())) 403 return false; 404 405 // Loop over all uses of the Last LEA to check that its def register is 406 // used only as address base for memory accesses. If so, it can be 407 // replaced, otherwise - no. 408 for (auto &MO : MRI->use_operands(Last.getOperand(0).getReg())) { 409 MachineInstr &MI = *MO.getParent(); 410 411 // Get the number of the first memory operand. 412 const MCInstrDesc &Desc = MI.getDesc(); 413 int MemOpNo = X86II::getMemoryOperandNo(Desc.TSFlags); 414 415 // If the use instruction has no memory operand - the LEA is not 416 // replaceable. 417 if (MemOpNo < 0) 418 return false; 419 420 MemOpNo += X86II::getOperandBias(Desc); 421 422 // If the address base of the use instruction is not the LEA def register - 423 // the LEA is not replaceable. 424 if (!isIdenticalOp(MI.getOperand(MemOpNo + X86::AddrBaseReg), MO)) 425 return false; 426 427 // If the LEA def register is used as any other operand of the use 428 // instruction - the LEA is not replaceable. 429 for (unsigned i = 0; i < MI.getNumOperands(); i++) 430 if (i != (unsigned)(MemOpNo + X86::AddrBaseReg) && 431 isIdenticalOp(MI.getOperand(i), MO)) 432 return false; 433 434 // Check that the new address displacement will fit 4 bytes. 435 if (MI.getOperand(MemOpNo + X86::AddrDisp).isImm() && 436 !isInt<32>(MI.getOperand(MemOpNo + X86::AddrDisp).getImm() + 437 AddrDispShift)) 438 return false; 439 } 440 441 return true; 442 } 443 444 void OptimizeLEAPass::findLEAs(const MachineBasicBlock &MBB, MemOpMap &LEAs) { 445 unsigned Pos = 0; 446 for (auto &MI : MBB) { 447 // Assign the position number to the instruction. Note that we are going to 448 // move some instructions during the optimization however there will never 449 // be a need to move two instructions before any selected instruction. So to 450 // avoid multiple positions' updates during moves we just increase position 451 // counter by two leaving a free space for instructions which will be moved. 452 InstrPos[&MI] = Pos += 2; 453 454 if (isLEA(MI)) 455 LEAs[getMemOpKey(MI, 1)].push_back(const_cast<MachineInstr *>(&MI)); 456 } 457 } 458 459 // Try to find load and store instructions which recalculate addresses already 460 // calculated by some LEA and replace their memory operands with its def 461 // register. 462 bool OptimizeLEAPass::removeRedundantAddrCalc(MemOpMap &LEAs) { 463 bool Changed = false; 464 465 assert(!LEAs.empty()); 466 MachineBasicBlock *MBB = (*LEAs.begin()->second.begin())->getParent(); 467 468 // Process all instructions in basic block. 469 for (auto I = MBB->begin(), E = MBB->end(); I != E;) { 470 MachineInstr &MI = *I++; 471 472 // Instruction must be load or store. 473 if (!MI.mayLoadOrStore()) 474 continue; 475 476 // Get the number of the first memory operand. 477 const MCInstrDesc &Desc = MI.getDesc(); 478 int MemOpNo = X86II::getMemoryOperandNo(Desc.TSFlags); 479 480 // If instruction has no memory operand - skip it. 481 if (MemOpNo < 0) 482 continue; 483 484 MemOpNo += X86II::getOperandBias(Desc); 485 486 // Get the best LEA instruction to replace address calculation. 487 MachineInstr *DefMI; 488 int64_t AddrDispShift; 489 int Dist; 490 if (!chooseBestLEA(LEAs[getMemOpKey(MI, MemOpNo)], MI, DefMI, AddrDispShift, 491 Dist)) 492 continue; 493 494 // If LEA occurs before current instruction, we can freely replace 495 // the instruction. If LEA occurs after, we can lift LEA above the 496 // instruction and this way to be able to replace it. Since LEA and the 497 // instruction have similar memory operands (thus, the same def 498 // instructions for these operands), we can always do that, without 499 // worries of using registers before their defs. 500 if (Dist < 0) { 501 DefMI->removeFromParent(); 502 MBB->insert(MachineBasicBlock::iterator(&MI), DefMI); 503 InstrPos[DefMI] = InstrPos[&MI] - 1; 504 505 // Make sure the instructions' position numbers are sane. 506 assert(((InstrPos[DefMI] == 1 && 507 MachineBasicBlock::iterator(DefMI) == MBB->begin()) || 508 InstrPos[DefMI] > 509 InstrPos[&*std::prev(MachineBasicBlock::iterator(DefMI))]) && 510 "Instruction positioning is broken"); 511 } 512 513 // Since we can possibly extend register lifetime, clear kill flags. 514 MRI->clearKillFlags(DefMI->getOperand(0).getReg()); 515 516 ++NumSubstLEAs; 517 DEBUG(dbgs() << "OptimizeLEAs: Candidate to replace: "; MI.dump();); 518 519 // Change instruction operands. 520 MI.getOperand(MemOpNo + X86::AddrBaseReg) 521 .ChangeToRegister(DefMI->getOperand(0).getReg(), false); 522 MI.getOperand(MemOpNo + X86::AddrScaleAmt).ChangeToImmediate(1); 523 MI.getOperand(MemOpNo + X86::AddrIndexReg) 524 .ChangeToRegister(X86::NoRegister, false); 525 MI.getOperand(MemOpNo + X86::AddrDisp).ChangeToImmediate(AddrDispShift); 526 MI.getOperand(MemOpNo + X86::AddrSegmentReg) 527 .ChangeToRegister(X86::NoRegister, false); 528 529 DEBUG(dbgs() << "OptimizeLEAs: Replaced by: "; MI.dump();); 530 531 Changed = true; 532 } 533 534 return Changed; 535 } 536 537 // Try to find similar LEAs in the list and replace one with another. 538 bool OptimizeLEAPass::removeRedundantLEAs(MemOpMap &LEAs) { 539 bool Changed = false; 540 541 // Loop over all entries in the table. 542 for (auto &E : LEAs) { 543 auto &List = E.second; 544 545 // Loop over all LEA pairs. 546 auto I1 = List.begin(); 547 while (I1 != List.end()) { 548 MachineInstr &First = **I1; 549 auto I2 = std::next(I1); 550 while (I2 != List.end()) { 551 MachineInstr &Last = **I2; 552 int64_t AddrDispShift; 553 554 // LEAs should be in occurence order in the list, so we can freely 555 // replace later LEAs with earlier ones. 556 assert(calcInstrDist(First, Last) > 0 && 557 "LEAs must be in occurence order in the list"); 558 559 // Check that the Last LEA instruction can be replaced by the First. 560 if (!isReplaceable(First, Last, AddrDispShift)) { 561 ++I2; 562 continue; 563 } 564 565 // Loop over all uses of the Last LEA and update their operands. Note 566 // that the correctness of this has already been checked in the 567 // isReplaceable function. 568 for (auto UI = MRI->use_begin(Last.getOperand(0).getReg()), 569 UE = MRI->use_end(); 570 UI != UE;) { 571 MachineOperand &MO = *UI++; 572 MachineInstr &MI = *MO.getParent(); 573 574 // Get the number of the first memory operand. 575 const MCInstrDesc &Desc = MI.getDesc(); 576 int MemOpNo = 577 X86II::getMemoryOperandNo(Desc.TSFlags) + 578 X86II::getOperandBias(Desc); 579 580 // Update address base. 581 MO.setReg(First.getOperand(0).getReg()); 582 583 // Update address disp. 584 MachineOperand &Op = MI.getOperand(MemOpNo + X86::AddrDisp); 585 if (Op.isImm()) 586 Op.setImm(Op.getImm() + AddrDispShift); 587 else if (!Op.isJTI()) 588 Op.setOffset(Op.getOffset() + AddrDispShift); 589 } 590 591 // Since we can possibly extend register lifetime, clear kill flags. 592 MRI->clearKillFlags(First.getOperand(0).getReg()); 593 594 ++NumRedundantLEAs; 595 DEBUG(dbgs() << "OptimizeLEAs: Remove redundant LEA: "; Last.dump();); 596 597 // By this moment, all of the Last LEA's uses must be replaced. So we 598 // can freely remove it. 599 assert(MRI->use_empty(Last.getOperand(0).getReg()) && 600 "The LEA's def register must have no uses"); 601 Last.eraseFromParent(); 602 603 // Erase removed LEA from the list. 604 I2 = List.erase(I2); 605 606 Changed = true; 607 } 608 ++I1; 609 } 610 } 611 612 return Changed; 613 } 614 615 bool OptimizeLEAPass::runOnMachineFunction(MachineFunction &MF) { 616 bool Changed = false; 617 618 if (DisableX86LEAOpt || skipFunction(*MF.getFunction())) 619 return false; 620 621 MRI = &MF.getRegInfo(); 622 TII = MF.getSubtarget<X86Subtarget>().getInstrInfo(); 623 TRI = MF.getSubtarget<X86Subtarget>().getRegisterInfo(); 624 625 // Process all basic blocks. 626 for (auto &MBB : MF) { 627 MemOpMap LEAs; 628 InstrPos.clear(); 629 630 // Find all LEA instructions in basic block. 631 findLEAs(MBB, LEAs); 632 633 // If current basic block has no LEAs, move on to the next one. 634 if (LEAs.empty()) 635 continue; 636 637 // Remove redundant LEA instructions. 638 Changed |= removeRedundantLEAs(LEAs); 639 640 // Remove redundant address calculations. Do it only for -Os/-Oz since only 641 // a code size gain is expected from this part of the pass. 642 if (MF.getFunction()->optForSize()) 643 Changed |= removeRedundantAddrCalc(LEAs); 644 } 645 646 return Changed; 647 } 648