Home | History | Annotate | Download | only in X86
      1 //===-- X86OptimizeLEAs.cpp - optimize usage of LEA instructions ----------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the pass that performs some optimizations with LEA
     11 // instructions in order to improve performance and code size.
     12 // Currently, it does two things:
     13 // 1) If there are two LEA instructions calculating addresses which only differ
     14 //    by displacement inside a basic block, one of them is removed.
     15 // 2) Address calculations in load and store instructions are replaced by
     16 //    existing LEA def registers where possible.
     17 //
     18 //===----------------------------------------------------------------------===//
     19 
     20 #include "X86.h"
     21 #include "X86InstrInfo.h"
     22 #include "X86Subtarget.h"
     23 #include "llvm/ADT/Statistic.h"
     24 #include "llvm/CodeGen/LiveVariables.h"
     25 #include "llvm/CodeGen/MachineFunctionPass.h"
     26 #include "llvm/CodeGen/MachineInstrBuilder.h"
     27 #include "llvm/CodeGen/MachineOperand.h"
     28 #include "llvm/CodeGen/MachineRegisterInfo.h"
     29 #include "llvm/CodeGen/Passes.h"
     30 #include "llvm/IR/Function.h"
     31 #include "llvm/Support/Debug.h"
     32 #include "llvm/Support/raw_ostream.h"
     33 #include "llvm/Target/TargetInstrInfo.h"
     34 
     35 using namespace llvm;
     36 
     37 #define DEBUG_TYPE "x86-optimize-LEAs"
     38 
     39 static cl::opt<bool>
     40     DisableX86LEAOpt("disable-x86-lea-opt", cl::Hidden,
     41                      cl::desc("X86: Disable LEA optimizations."),
     42                      cl::init(false));
     43 
     44 STATISTIC(NumSubstLEAs, "Number of LEA instruction substitutions");
     45 STATISTIC(NumRedundantLEAs, "Number of redundant LEA instructions removed");
     46 
     47 class MemOpKey;
     48 
     49 /// \brief Returns a hash table key based on memory operands of \p MI. The
     50 /// number of the first memory operand of \p MI is specified through \p N.
     51 static inline MemOpKey getMemOpKey(const MachineInstr &MI, unsigned N);
     52 
     53 /// \brief Returns true if two machine operands are identical and they are not
     54 /// physical registers.
     55 static inline bool isIdenticalOp(const MachineOperand &MO1,
     56                                  const MachineOperand &MO2);
     57 
     58 /// \brief Returns true if two address displacement operands are of the same
     59 /// type and use the same symbol/index/address regardless of the offset.
     60 static bool isSimilarDispOp(const MachineOperand &MO1,
     61                             const MachineOperand &MO2);
     62 
     63 /// \brief Returns true if the instruction is LEA.
     64 static inline bool isLEA(const MachineInstr &MI);
     65 
     66 /// A key based on instruction's memory operands.
     67 class MemOpKey {
     68 public:
     69   MemOpKey(const MachineOperand *Base, const MachineOperand *Scale,
     70            const MachineOperand *Index, const MachineOperand *Segment,
     71            const MachineOperand *Disp)
     72       : Disp(Disp) {
     73     Operands[0] = Base;
     74     Operands[1] = Scale;
     75     Operands[2] = Index;
     76     Operands[3] = Segment;
     77   }
     78 
     79   bool operator==(const MemOpKey &Other) const {
     80     // Addresses' bases, scales, indices and segments must be identical.
     81     for (int i = 0; i < 4; ++i)
     82       if (!isIdenticalOp(*Operands[i], *Other.Operands[i]))
     83         return false;
     84 
     85     // Addresses' displacements don't have to be exactly the same. It only
     86     // matters that they use the same symbol/index/address. Immediates' or
     87     // offsets' differences will be taken care of during instruction
     88     // substitution.
     89     return isSimilarDispOp(*Disp, *Other.Disp);
     90   }
     91 
     92   // Address' base, scale, index and segment operands.
     93   const MachineOperand *Operands[4];
     94 
     95   // Address' displacement operand.
     96   const MachineOperand *Disp;
     97 };
     98 
     99 /// Provide DenseMapInfo for MemOpKey.
    100 namespace llvm {
    101 template <> struct DenseMapInfo<MemOpKey> {
    102   typedef DenseMapInfo<const MachineOperand *> PtrInfo;
    103 
    104   static inline MemOpKey getEmptyKey() {
    105     return MemOpKey(PtrInfo::getEmptyKey(), PtrInfo::getEmptyKey(),
    106                     PtrInfo::getEmptyKey(), PtrInfo::getEmptyKey(),
    107                     PtrInfo::getEmptyKey());
    108   }
    109 
    110   static inline MemOpKey getTombstoneKey() {
    111     return MemOpKey(PtrInfo::getTombstoneKey(), PtrInfo::getTombstoneKey(),
    112                     PtrInfo::getTombstoneKey(), PtrInfo::getTombstoneKey(),
    113                     PtrInfo::getTombstoneKey());
    114   }
    115 
    116   static unsigned getHashValue(const MemOpKey &Val) {
    117     // Checking any field of MemOpKey is enough to determine if the key is
    118     // empty or tombstone.
    119     assert(Val.Disp != PtrInfo::getEmptyKey() && "Cannot hash the empty key");
    120     assert(Val.Disp != PtrInfo::getTombstoneKey() &&
    121            "Cannot hash the tombstone key");
    122 
    123     hash_code Hash = hash_combine(*Val.Operands[0], *Val.Operands[1],
    124                                   *Val.Operands[2], *Val.Operands[3]);
    125 
    126     // If the address displacement is an immediate, it should not affect the
    127     // hash so that memory operands which differ only be immediate displacement
    128     // would have the same hash. If the address displacement is something else,
    129     // we should reflect symbol/index/address in the hash.
    130     switch (Val.Disp->getType()) {
    131     case MachineOperand::MO_Immediate:
    132       break;
    133     case MachineOperand::MO_ConstantPoolIndex:
    134     case MachineOperand::MO_JumpTableIndex:
    135       Hash = hash_combine(Hash, Val.Disp->getIndex());
    136       break;
    137     case MachineOperand::MO_ExternalSymbol:
    138       Hash = hash_combine(Hash, Val.Disp->getSymbolName());
    139       break;
    140     case MachineOperand::MO_GlobalAddress:
    141       Hash = hash_combine(Hash, Val.Disp->getGlobal());
    142       break;
    143     case MachineOperand::MO_BlockAddress:
    144       Hash = hash_combine(Hash, Val.Disp->getBlockAddress());
    145       break;
    146     case MachineOperand::MO_MCSymbol:
    147       Hash = hash_combine(Hash, Val.Disp->getMCSymbol());
    148       break;
    149     case MachineOperand::MO_MachineBasicBlock:
    150       Hash = hash_combine(Hash, Val.Disp->getMBB());
    151       break;
    152     default:
    153       llvm_unreachable("Invalid address displacement operand");
    154     }
    155 
    156     return (unsigned)Hash;
    157   }
    158 
    159   static bool isEqual(const MemOpKey &LHS, const MemOpKey &RHS) {
    160     // Checking any field of MemOpKey is enough to determine if the key is
    161     // empty or tombstone.
    162     if (RHS.Disp == PtrInfo::getEmptyKey())
    163       return LHS.Disp == PtrInfo::getEmptyKey();
    164     if (RHS.Disp == PtrInfo::getTombstoneKey())
    165       return LHS.Disp == PtrInfo::getTombstoneKey();
    166     return LHS == RHS;
    167   }
    168 };
    169 }
    170 
    171 static inline MemOpKey getMemOpKey(const MachineInstr &MI, unsigned N) {
    172   assert((isLEA(MI) || MI.mayLoadOrStore()) &&
    173          "The instruction must be a LEA, a load or a store");
    174   return MemOpKey(&MI.getOperand(N + X86::AddrBaseReg),
    175                   &MI.getOperand(N + X86::AddrScaleAmt),
    176                   &MI.getOperand(N + X86::AddrIndexReg),
    177                   &MI.getOperand(N + X86::AddrSegmentReg),
    178                   &MI.getOperand(N + X86::AddrDisp));
    179 }
    180 
    181 static inline bool isIdenticalOp(const MachineOperand &MO1,
    182                                  const MachineOperand &MO2) {
    183   return MO1.isIdenticalTo(MO2) &&
    184          (!MO1.isReg() ||
    185           !TargetRegisterInfo::isPhysicalRegister(MO1.getReg()));
    186 }
    187 
    188 #ifndef NDEBUG
    189 static bool isValidDispOp(const MachineOperand &MO) {
    190   return MO.isImm() || MO.isCPI() || MO.isJTI() || MO.isSymbol() ||
    191          MO.isGlobal() || MO.isBlockAddress() || MO.isMCSymbol() || MO.isMBB();
    192 }
    193 #endif
    194 
    195 static bool isSimilarDispOp(const MachineOperand &MO1,
    196                             const MachineOperand &MO2) {
    197   assert(isValidDispOp(MO1) && isValidDispOp(MO2) &&
    198          "Address displacement operand is not valid");
    199   return (MO1.isImm() && MO2.isImm()) ||
    200          (MO1.isCPI() && MO2.isCPI() && MO1.getIndex() == MO2.getIndex()) ||
    201          (MO1.isJTI() && MO2.isJTI() && MO1.getIndex() == MO2.getIndex()) ||
    202          (MO1.isSymbol() && MO2.isSymbol() &&
    203           MO1.getSymbolName() == MO2.getSymbolName()) ||
    204          (MO1.isGlobal() && MO2.isGlobal() &&
    205           MO1.getGlobal() == MO2.getGlobal()) ||
    206          (MO1.isBlockAddress() && MO2.isBlockAddress() &&
    207           MO1.getBlockAddress() == MO2.getBlockAddress()) ||
    208          (MO1.isMCSymbol() && MO2.isMCSymbol() &&
    209           MO1.getMCSymbol() == MO2.getMCSymbol()) ||
    210          (MO1.isMBB() && MO2.isMBB() && MO1.getMBB() == MO2.getMBB());
    211 }
    212 
    213 static inline bool isLEA(const MachineInstr &MI) {
    214   unsigned Opcode = MI.getOpcode();
    215   return Opcode == X86::LEA16r || Opcode == X86::LEA32r ||
    216          Opcode == X86::LEA64r || Opcode == X86::LEA64_32r;
    217 }
    218 
    219 namespace {
    220 class OptimizeLEAPass : public MachineFunctionPass {
    221 public:
    222   OptimizeLEAPass() : MachineFunctionPass(ID) {}
    223 
    224   const char *getPassName() const override { return "X86 LEA Optimize"; }
    225 
    226   /// \brief Loop over all of the basic blocks, replacing address
    227   /// calculations in load and store instructions, if it's already
    228   /// been calculated by LEA. Also, remove redundant LEAs.
    229   bool runOnMachineFunction(MachineFunction &MF) override;
    230 
    231 private:
    232   typedef DenseMap<MemOpKey, SmallVector<MachineInstr *, 16>> MemOpMap;
    233 
    234   /// \brief Returns a distance between two instructions inside one basic block.
    235   /// Negative result means, that instructions occur in reverse order.
    236   int calcInstrDist(const MachineInstr &First, const MachineInstr &Last);
    237 
    238   /// \brief Choose the best \p LEA instruction from the \p List to replace
    239   /// address calculation in \p MI instruction. Return the address displacement
    240   /// and the distance between \p MI and the choosen \p BestLEA in
    241   /// \p AddrDispShift and \p Dist.
    242   bool chooseBestLEA(const SmallVectorImpl<MachineInstr *> &List,
    243                      const MachineInstr &MI, MachineInstr *&BestLEA,
    244                      int64_t &AddrDispShift, int &Dist);
    245 
    246   /// \brief Returns the difference between addresses' displacements of \p MI1
    247   /// and \p MI2. The numbers of the first memory operands for the instructions
    248   /// are specified through \p N1 and \p N2.
    249   int64_t getAddrDispShift(const MachineInstr &MI1, unsigned N1,
    250                            const MachineInstr &MI2, unsigned N2) const;
    251 
    252   /// \brief Returns true if the \p Last LEA instruction can be replaced by the
    253   /// \p First. The difference between displacements of the addresses calculated
    254   /// by these LEAs is returned in \p AddrDispShift. It'll be used for proper
    255   /// replacement of the \p Last LEA's uses with the \p First's def register.
    256   bool isReplaceable(const MachineInstr &First, const MachineInstr &Last,
    257                      int64_t &AddrDispShift) const;
    258 
    259   /// \brief Find all LEA instructions in the basic block. Also, assign position
    260   /// numbers to all instructions in the basic block to speed up calculation of
    261   /// distance between them.
    262   void findLEAs(const MachineBasicBlock &MBB, MemOpMap &LEAs);
    263 
    264   /// \brief Removes redundant address calculations.
    265   bool removeRedundantAddrCalc(MemOpMap &LEAs);
    266 
    267   /// \brief Removes LEAs which calculate similar addresses.
    268   bool removeRedundantLEAs(MemOpMap &LEAs);
    269 
    270   DenseMap<const MachineInstr *, unsigned> InstrPos;
    271 
    272   MachineRegisterInfo *MRI;
    273   const X86InstrInfo *TII;
    274   const X86RegisterInfo *TRI;
    275 
    276   static char ID;
    277 };
    278 char OptimizeLEAPass::ID = 0;
    279 }
    280 
    281 FunctionPass *llvm::createX86OptimizeLEAs() { return new OptimizeLEAPass(); }
    282 
    283 int OptimizeLEAPass::calcInstrDist(const MachineInstr &First,
    284                                    const MachineInstr &Last) {
    285   // Both instructions must be in the same basic block and they must be
    286   // presented in InstrPos.
    287   assert(Last.getParent() == First.getParent() &&
    288          "Instructions are in different basic blocks");
    289   assert(InstrPos.find(&First) != InstrPos.end() &&
    290          InstrPos.find(&Last) != InstrPos.end() &&
    291          "Instructions' positions are undefined");
    292 
    293   return InstrPos[&Last] - InstrPos[&First];
    294 }
    295 
    296 // Find the best LEA instruction in the List to replace address recalculation in
    297 // MI. Such LEA must meet these requirements:
    298 // 1) The address calculated by the LEA differs only by the displacement from
    299 //    the address used in MI.
    300 // 2) The register class of the definition of the LEA is compatible with the
    301 //    register class of the address base register of MI.
    302 // 3) Displacement of the new memory operand should fit in 1 byte if possible.
    303 // 4) The LEA should be as close to MI as possible, and prior to it if
    304 //    possible.
    305 bool OptimizeLEAPass::chooseBestLEA(const SmallVectorImpl<MachineInstr *> &List,
    306                                     const MachineInstr &MI,
    307                                     MachineInstr *&BestLEA,
    308                                     int64_t &AddrDispShift, int &Dist) {
    309   const MachineFunction *MF = MI.getParent()->getParent();
    310   const MCInstrDesc &Desc = MI.getDesc();
    311   int MemOpNo = X86II::getMemoryOperandNo(Desc.TSFlags) +
    312                 X86II::getOperandBias(Desc);
    313 
    314   BestLEA = nullptr;
    315 
    316   // Loop over all LEA instructions.
    317   for (auto DefMI : List) {
    318     // Get new address displacement.
    319     int64_t AddrDispShiftTemp = getAddrDispShift(MI, MemOpNo, *DefMI, 1);
    320 
    321     // Make sure address displacement fits 4 bytes.
    322     if (!isInt<32>(AddrDispShiftTemp))
    323       continue;
    324 
    325     // Check that LEA def register can be used as MI address base. Some
    326     // instructions can use a limited set of registers as address base, for
    327     // example MOV8mr_NOREX. We could constrain the register class of the LEA
    328     // def to suit MI, however since this case is very rare and hard to
    329     // reproduce in a test it's just more reliable to skip the LEA.
    330     if (TII->getRegClass(Desc, MemOpNo + X86::AddrBaseReg, TRI, *MF) !=
    331         MRI->getRegClass(DefMI->getOperand(0).getReg()))
    332       continue;
    333 
    334     // Choose the closest LEA instruction from the list, prior to MI if
    335     // possible. Note that we took into account resulting address displacement
    336     // as well. Also note that the list is sorted by the order in which the LEAs
    337     // occur, so the break condition is pretty simple.
    338     int DistTemp = calcInstrDist(*DefMI, MI);
    339     assert(DistTemp != 0 &&
    340            "The distance between two different instructions cannot be zero");
    341     if (DistTemp > 0 || BestLEA == nullptr) {
    342       // Do not update return LEA, if the current one provides a displacement
    343       // which fits in 1 byte, while the new candidate does not.
    344       if (BestLEA != nullptr && !isInt<8>(AddrDispShiftTemp) &&
    345           isInt<8>(AddrDispShift))
    346         continue;
    347 
    348       BestLEA = DefMI;
    349       AddrDispShift = AddrDispShiftTemp;
    350       Dist = DistTemp;
    351     }
    352 
    353     // FIXME: Maybe we should not always stop at the first LEA after MI.
    354     if (DistTemp < 0)
    355       break;
    356   }
    357 
    358   return BestLEA != nullptr;
    359 }
    360 
    361 // Get the difference between the addresses' displacements of the two
    362 // instructions \p MI1 and \p MI2. The numbers of the first memory operands are
    363 // passed through \p N1 and \p N2.
    364 int64_t OptimizeLEAPass::getAddrDispShift(const MachineInstr &MI1, unsigned N1,
    365                                           const MachineInstr &MI2,
    366                                           unsigned N2) const {
    367   const MachineOperand &Op1 = MI1.getOperand(N1 + X86::AddrDisp);
    368   const MachineOperand &Op2 = MI2.getOperand(N2 + X86::AddrDisp);
    369 
    370   assert(isSimilarDispOp(Op1, Op2) &&
    371          "Address displacement operands are not compatible");
    372 
    373   // After the assert above we can be sure that both operands are of the same
    374   // valid type and use the same symbol/index/address, thus displacement shift
    375   // calculation is rather simple.
    376   if (Op1.isJTI())
    377     return 0;
    378   return Op1.isImm() ? Op1.getImm() - Op2.getImm()
    379                      : Op1.getOffset() - Op2.getOffset();
    380 }
    381 
    382 // Check that the Last LEA can be replaced by the First LEA. To be so,
    383 // these requirements must be met:
    384 // 1) Addresses calculated by LEAs differ only by displacement.
    385 // 2) Def registers of LEAs belong to the same class.
    386 // 3) All uses of the Last LEA def register are replaceable, thus the
    387 //    register is used only as address base.
    388 bool OptimizeLEAPass::isReplaceable(const MachineInstr &First,
    389                                     const MachineInstr &Last,
    390                                     int64_t &AddrDispShift) const {
    391   assert(isLEA(First) && isLEA(Last) &&
    392          "The function works only with LEA instructions");
    393 
    394   // Get new address displacement.
    395   AddrDispShift = getAddrDispShift(Last, 1, First, 1);
    396 
    397   // Make sure that LEA def registers belong to the same class. There may be
    398   // instructions (like MOV8mr_NOREX) which allow a limited set of registers to
    399   // be used as their operands, so we must be sure that replacing one LEA
    400   // with another won't lead to putting a wrong register in the instruction.
    401   if (MRI->getRegClass(First.getOperand(0).getReg()) !=
    402       MRI->getRegClass(Last.getOperand(0).getReg()))
    403     return false;
    404 
    405   // Loop over all uses of the Last LEA to check that its def register is
    406   // used only as address base for memory accesses. If so, it can be
    407   // replaced, otherwise - no.
    408   for (auto &MO : MRI->use_operands(Last.getOperand(0).getReg())) {
    409     MachineInstr &MI = *MO.getParent();
    410 
    411     // Get the number of the first memory operand.
    412     const MCInstrDesc &Desc = MI.getDesc();
    413     int MemOpNo = X86II::getMemoryOperandNo(Desc.TSFlags);
    414 
    415     // If the use instruction has no memory operand - the LEA is not
    416     // replaceable.
    417     if (MemOpNo < 0)
    418       return false;
    419 
    420     MemOpNo += X86II::getOperandBias(Desc);
    421 
    422     // If the address base of the use instruction is not the LEA def register -
    423     // the LEA is not replaceable.
    424     if (!isIdenticalOp(MI.getOperand(MemOpNo + X86::AddrBaseReg), MO))
    425       return false;
    426 
    427     // If the LEA def register is used as any other operand of the use
    428     // instruction - the LEA is not replaceable.
    429     for (unsigned i = 0; i < MI.getNumOperands(); i++)
    430       if (i != (unsigned)(MemOpNo + X86::AddrBaseReg) &&
    431           isIdenticalOp(MI.getOperand(i), MO))
    432         return false;
    433 
    434     // Check that the new address displacement will fit 4 bytes.
    435     if (MI.getOperand(MemOpNo + X86::AddrDisp).isImm() &&
    436         !isInt<32>(MI.getOperand(MemOpNo + X86::AddrDisp).getImm() +
    437                    AddrDispShift))
    438       return false;
    439   }
    440 
    441   return true;
    442 }
    443 
    444 void OptimizeLEAPass::findLEAs(const MachineBasicBlock &MBB, MemOpMap &LEAs) {
    445   unsigned Pos = 0;
    446   for (auto &MI : MBB) {
    447     // Assign the position number to the instruction. Note that we are going to
    448     // move some instructions during the optimization however there will never
    449     // be a need to move two instructions before any selected instruction. So to
    450     // avoid multiple positions' updates during moves we just increase position
    451     // counter by two leaving a free space for instructions which will be moved.
    452     InstrPos[&MI] = Pos += 2;
    453 
    454     if (isLEA(MI))
    455       LEAs[getMemOpKey(MI, 1)].push_back(const_cast<MachineInstr *>(&MI));
    456   }
    457 }
    458 
    459 // Try to find load and store instructions which recalculate addresses already
    460 // calculated by some LEA and replace their memory operands with its def
    461 // register.
    462 bool OptimizeLEAPass::removeRedundantAddrCalc(MemOpMap &LEAs) {
    463   bool Changed = false;
    464 
    465   assert(!LEAs.empty());
    466   MachineBasicBlock *MBB = (*LEAs.begin()->second.begin())->getParent();
    467 
    468   // Process all instructions in basic block.
    469   for (auto I = MBB->begin(), E = MBB->end(); I != E;) {
    470     MachineInstr &MI = *I++;
    471 
    472     // Instruction must be load or store.
    473     if (!MI.mayLoadOrStore())
    474       continue;
    475 
    476     // Get the number of the first memory operand.
    477     const MCInstrDesc &Desc = MI.getDesc();
    478     int MemOpNo = X86II::getMemoryOperandNo(Desc.TSFlags);
    479 
    480     // If instruction has no memory operand - skip it.
    481     if (MemOpNo < 0)
    482       continue;
    483 
    484     MemOpNo += X86II::getOperandBias(Desc);
    485 
    486     // Get the best LEA instruction to replace address calculation.
    487     MachineInstr *DefMI;
    488     int64_t AddrDispShift;
    489     int Dist;
    490     if (!chooseBestLEA(LEAs[getMemOpKey(MI, MemOpNo)], MI, DefMI, AddrDispShift,
    491                        Dist))
    492       continue;
    493 
    494     // If LEA occurs before current instruction, we can freely replace
    495     // the instruction. If LEA occurs after, we can lift LEA above the
    496     // instruction and this way to be able to replace it. Since LEA and the
    497     // instruction have similar memory operands (thus, the same def
    498     // instructions for these operands), we can always do that, without
    499     // worries of using registers before their defs.
    500     if (Dist < 0) {
    501       DefMI->removeFromParent();
    502       MBB->insert(MachineBasicBlock::iterator(&MI), DefMI);
    503       InstrPos[DefMI] = InstrPos[&MI] - 1;
    504 
    505       // Make sure the instructions' position numbers are sane.
    506       assert(((InstrPos[DefMI] == 1 &&
    507                MachineBasicBlock::iterator(DefMI) == MBB->begin()) ||
    508               InstrPos[DefMI] >
    509                   InstrPos[&*std::prev(MachineBasicBlock::iterator(DefMI))]) &&
    510              "Instruction positioning is broken");
    511     }
    512 
    513     // Since we can possibly extend register lifetime, clear kill flags.
    514     MRI->clearKillFlags(DefMI->getOperand(0).getReg());
    515 
    516     ++NumSubstLEAs;
    517     DEBUG(dbgs() << "OptimizeLEAs: Candidate to replace: "; MI.dump(););
    518 
    519     // Change instruction operands.
    520     MI.getOperand(MemOpNo + X86::AddrBaseReg)
    521         .ChangeToRegister(DefMI->getOperand(0).getReg(), false);
    522     MI.getOperand(MemOpNo + X86::AddrScaleAmt).ChangeToImmediate(1);
    523     MI.getOperand(MemOpNo + X86::AddrIndexReg)
    524         .ChangeToRegister(X86::NoRegister, false);
    525     MI.getOperand(MemOpNo + X86::AddrDisp).ChangeToImmediate(AddrDispShift);
    526     MI.getOperand(MemOpNo + X86::AddrSegmentReg)
    527         .ChangeToRegister(X86::NoRegister, false);
    528 
    529     DEBUG(dbgs() << "OptimizeLEAs: Replaced by: "; MI.dump(););
    530 
    531     Changed = true;
    532   }
    533 
    534   return Changed;
    535 }
    536 
    537 // Try to find similar LEAs in the list and replace one with another.
    538 bool OptimizeLEAPass::removeRedundantLEAs(MemOpMap &LEAs) {
    539   bool Changed = false;
    540 
    541   // Loop over all entries in the table.
    542   for (auto &E : LEAs) {
    543     auto &List = E.second;
    544 
    545     // Loop over all LEA pairs.
    546     auto I1 = List.begin();
    547     while (I1 != List.end()) {
    548       MachineInstr &First = **I1;
    549       auto I2 = std::next(I1);
    550       while (I2 != List.end()) {
    551         MachineInstr &Last = **I2;
    552         int64_t AddrDispShift;
    553 
    554         // LEAs should be in occurence order in the list, so we can freely
    555         // replace later LEAs with earlier ones.
    556         assert(calcInstrDist(First, Last) > 0 &&
    557                "LEAs must be in occurence order in the list");
    558 
    559         // Check that the Last LEA instruction can be replaced by the First.
    560         if (!isReplaceable(First, Last, AddrDispShift)) {
    561           ++I2;
    562           continue;
    563         }
    564 
    565         // Loop over all uses of the Last LEA and update their operands. Note
    566         // that the correctness of this has already been checked in the
    567         // isReplaceable function.
    568         for (auto UI = MRI->use_begin(Last.getOperand(0).getReg()),
    569                   UE = MRI->use_end();
    570              UI != UE;) {
    571           MachineOperand &MO = *UI++;
    572           MachineInstr &MI = *MO.getParent();
    573 
    574           // Get the number of the first memory operand.
    575           const MCInstrDesc &Desc = MI.getDesc();
    576           int MemOpNo =
    577               X86II::getMemoryOperandNo(Desc.TSFlags) +
    578               X86II::getOperandBias(Desc);
    579 
    580           // Update address base.
    581           MO.setReg(First.getOperand(0).getReg());
    582 
    583           // Update address disp.
    584           MachineOperand &Op = MI.getOperand(MemOpNo + X86::AddrDisp);
    585           if (Op.isImm())
    586             Op.setImm(Op.getImm() + AddrDispShift);
    587           else if (!Op.isJTI())
    588             Op.setOffset(Op.getOffset() + AddrDispShift);
    589         }
    590 
    591         // Since we can possibly extend register lifetime, clear kill flags.
    592         MRI->clearKillFlags(First.getOperand(0).getReg());
    593 
    594         ++NumRedundantLEAs;
    595         DEBUG(dbgs() << "OptimizeLEAs: Remove redundant LEA: "; Last.dump(););
    596 
    597         // By this moment, all of the Last LEA's uses must be replaced. So we
    598         // can freely remove it.
    599         assert(MRI->use_empty(Last.getOperand(0).getReg()) &&
    600                "The LEA's def register must have no uses");
    601         Last.eraseFromParent();
    602 
    603         // Erase removed LEA from the list.
    604         I2 = List.erase(I2);
    605 
    606         Changed = true;
    607       }
    608       ++I1;
    609     }
    610   }
    611 
    612   return Changed;
    613 }
    614 
    615 bool OptimizeLEAPass::runOnMachineFunction(MachineFunction &MF) {
    616   bool Changed = false;
    617 
    618   if (DisableX86LEAOpt || skipFunction(*MF.getFunction()))
    619     return false;
    620 
    621   MRI = &MF.getRegInfo();
    622   TII = MF.getSubtarget<X86Subtarget>().getInstrInfo();
    623   TRI = MF.getSubtarget<X86Subtarget>().getRegisterInfo();
    624 
    625   // Process all basic blocks.
    626   for (auto &MBB : MF) {
    627     MemOpMap LEAs;
    628     InstrPos.clear();
    629 
    630     // Find all LEA instructions in basic block.
    631     findLEAs(MBB, LEAs);
    632 
    633     // If current basic block has no LEAs, move on to the next one.
    634     if (LEAs.empty())
    635       continue;
    636 
    637     // Remove redundant LEA instructions.
    638     Changed |= removeRedundantLEAs(LEAs);
    639 
    640     // Remove redundant address calculations. Do it only for -Os/-Oz since only
    641     // a code size gain is expected from this part of the pass.
    642     if (MF.getFunction()->optForSize())
    643       Changed |= removeRedundantAddrCalc(LEAs);
    644   }
    645 
    646   return Changed;
    647 }
    648