1 /* 2 * Copyright 2011 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 */ 23 24 #include "brw_vec4.h" 25 extern "C" { 26 #include "main/macros.h" 27 #include "program/prog_parameter.h" 28 #include "program/sampler.h" 29 } 30 31 namespace brw { 32 33 vec4_instruction::vec4_instruction(vec4_visitor *v, 34 enum opcode opcode, dst_reg dst, 35 src_reg src0, src_reg src1, src_reg src2) 36 { 37 this->opcode = opcode; 38 this->dst = dst; 39 this->src[0] = src0; 40 this->src[1] = src1; 41 this->src[2] = src2; 42 this->ir = v->base_ir; 43 this->annotation = v->current_annotation; 44 } 45 46 vec4_instruction * 47 vec4_visitor::emit(vec4_instruction *inst) 48 { 49 this->instructions.push_tail(inst); 50 51 return inst; 52 } 53 54 vec4_instruction * 55 vec4_visitor::emit_before(vec4_instruction *inst, vec4_instruction *new_inst) 56 { 57 new_inst->ir = inst->ir; 58 new_inst->annotation = inst->annotation; 59 60 inst->insert_before(new_inst); 61 62 return inst; 63 } 64 65 vec4_instruction * 66 vec4_visitor::emit(enum opcode opcode, dst_reg dst, 67 src_reg src0, src_reg src1, src_reg src2) 68 { 69 return emit(new(mem_ctx) vec4_instruction(this, opcode, dst, 70 src0, src1, src2)); 71 } 72 73 74 vec4_instruction * 75 vec4_visitor::emit(enum opcode opcode, dst_reg dst, src_reg src0, src_reg src1) 76 { 77 return emit(new(mem_ctx) vec4_instruction(this, opcode, dst, src0, src1)); 78 } 79 80 vec4_instruction * 81 vec4_visitor::emit(enum opcode opcode, dst_reg dst, src_reg src0) 82 { 83 return emit(new(mem_ctx) vec4_instruction(this, opcode, dst, src0)); 84 } 85 86 vec4_instruction * 87 vec4_visitor::emit(enum opcode opcode) 88 { 89 return emit(new(mem_ctx) vec4_instruction(this, opcode, dst_reg())); 90 } 91 92 #define ALU1(op) \ 93 vec4_instruction * \ 94 vec4_visitor::op(dst_reg dst, src_reg src0) \ 95 { \ 96 return new(mem_ctx) vec4_instruction(this, BRW_OPCODE_##op, dst, \ 97 src0); \ 98 } 99 100 #define ALU2(op) \ 101 vec4_instruction * \ 102 vec4_visitor::op(dst_reg dst, src_reg src0, src_reg src1) \ 103 { \ 104 return new(mem_ctx) vec4_instruction(this, BRW_OPCODE_##op, dst, \ 105 src0, src1); \ 106 } 107 108 ALU1(NOT) 109 ALU1(MOV) 110 ALU1(FRC) 111 ALU1(RNDD) 112 ALU1(RNDE) 113 ALU1(RNDZ) 114 ALU2(ADD) 115 ALU2(MUL) 116 ALU2(MACH) 117 ALU2(AND) 118 ALU2(OR) 119 ALU2(XOR) 120 ALU2(DP3) 121 ALU2(DP4) 122 123 /** Gen4 predicated IF. */ 124 vec4_instruction * 125 vec4_visitor::IF(uint32_t predicate) 126 { 127 vec4_instruction *inst; 128 129 inst = new(mem_ctx) vec4_instruction(this, BRW_OPCODE_IF); 130 inst->predicate = predicate; 131 132 return inst; 133 } 134 135 /** Gen6+ IF with embedded comparison. */ 136 vec4_instruction * 137 vec4_visitor::IF(src_reg src0, src_reg src1, uint32_t condition) 138 { 139 assert(intel->gen >= 6); 140 141 vec4_instruction *inst; 142 143 resolve_ud_negate(&src0); 144 resolve_ud_negate(&src1); 145 146 inst = new(mem_ctx) vec4_instruction(this, BRW_OPCODE_IF, dst_null_d(), 147 src0, src1); 148 inst->conditional_mod = condition; 149 150 return inst; 151 } 152 153 /** 154 * CMP: Sets the low bit of the destination channels with the result 155 * of the comparison, while the upper bits are undefined, and updates 156 * the flag register with the packed 16 bits of the result. 157 */ 158 vec4_instruction * 159 vec4_visitor::CMP(dst_reg dst, src_reg src0, src_reg src1, uint32_t condition) 160 { 161 vec4_instruction *inst; 162 163 /* original gen4 does type conversion to the destination type 164 * before before comparison, producing garbage results for floating 165 * point comparisons. 166 */ 167 if (intel->gen == 4) { 168 dst.type = src0.type; 169 if (dst.file == HW_REG) 170 dst.fixed_hw_reg.type = dst.type; 171 } 172 173 resolve_ud_negate(&src0); 174 resolve_ud_negate(&src1); 175 176 inst = new(mem_ctx) vec4_instruction(this, BRW_OPCODE_CMP, dst, src0, src1); 177 inst->conditional_mod = condition; 178 179 return inst; 180 } 181 182 vec4_instruction * 183 vec4_visitor::SCRATCH_READ(dst_reg dst, src_reg index) 184 { 185 vec4_instruction *inst; 186 187 inst = new(mem_ctx) vec4_instruction(this, VS_OPCODE_SCRATCH_READ, 188 dst, index); 189 inst->base_mrf = 14; 190 inst->mlen = 1; 191 192 return inst; 193 } 194 195 vec4_instruction * 196 vec4_visitor::SCRATCH_WRITE(dst_reg dst, src_reg src, src_reg index) 197 { 198 vec4_instruction *inst; 199 200 inst = new(mem_ctx) vec4_instruction(this, VS_OPCODE_SCRATCH_WRITE, 201 dst, src, index); 202 inst->base_mrf = 13; 203 inst->mlen = 2; 204 205 return inst; 206 } 207 208 void 209 vec4_visitor::emit_dp(dst_reg dst, src_reg src0, src_reg src1, unsigned elements) 210 { 211 static enum opcode dot_opcodes[] = { 212 BRW_OPCODE_DP2, BRW_OPCODE_DP3, BRW_OPCODE_DP4 213 }; 214 215 emit(dot_opcodes[elements - 2], dst, src0, src1); 216 } 217 218 void 219 vec4_visitor::emit_math1_gen6(enum opcode opcode, dst_reg dst, src_reg src) 220 { 221 /* The gen6 math instruction ignores the source modifiers -- 222 * swizzle, abs, negate, and at least some parts of the register 223 * region description. 224 * 225 * While it would seem that this MOV could be avoided at this point 226 * in the case that the swizzle is matched up with the destination 227 * writemask, note that uniform packing and register allocation 228 * could rearrange our swizzle, so let's leave this matter up to 229 * copy propagation later. 230 */ 231 src_reg temp_src = src_reg(this, glsl_type::vec4_type); 232 emit(MOV(dst_reg(temp_src), src)); 233 234 if (dst.writemask != WRITEMASK_XYZW) { 235 /* The gen6 math instruction must be align1, so we can't do 236 * writemasks. 237 */ 238 dst_reg temp_dst = dst_reg(this, glsl_type::vec4_type); 239 240 emit(opcode, temp_dst, temp_src); 241 242 emit(MOV(dst, src_reg(temp_dst))); 243 } else { 244 emit(opcode, dst, temp_src); 245 } 246 } 247 248 void 249 vec4_visitor::emit_math1_gen4(enum opcode opcode, dst_reg dst, src_reg src) 250 { 251 vec4_instruction *inst = emit(opcode, dst, src); 252 inst->base_mrf = 1; 253 inst->mlen = 1; 254 } 255 256 void 257 vec4_visitor::emit_math(opcode opcode, dst_reg dst, src_reg src) 258 { 259 switch (opcode) { 260 case SHADER_OPCODE_RCP: 261 case SHADER_OPCODE_RSQ: 262 case SHADER_OPCODE_SQRT: 263 case SHADER_OPCODE_EXP2: 264 case SHADER_OPCODE_LOG2: 265 case SHADER_OPCODE_SIN: 266 case SHADER_OPCODE_COS: 267 break; 268 default: 269 assert(!"not reached: bad math opcode"); 270 return; 271 } 272 273 if (intel->gen >= 7) { 274 emit(opcode, dst, src); 275 } else if (intel->gen == 6) { 276 return emit_math1_gen6(opcode, dst, src); 277 } else { 278 return emit_math1_gen4(opcode, dst, src); 279 } 280 } 281 282 void 283 vec4_visitor::emit_math2_gen6(enum opcode opcode, 284 dst_reg dst, src_reg src0, src_reg src1) 285 { 286 src_reg expanded; 287 288 /* The gen6 math instruction ignores the source modifiers -- 289 * swizzle, abs, negate, and at least some parts of the register 290 * region description. Move the sources to temporaries to make it 291 * generally work. 292 */ 293 294 expanded = src_reg(this, glsl_type::vec4_type); 295 expanded.type = src0.type; 296 emit(MOV(dst_reg(expanded), src0)); 297 src0 = expanded; 298 299 expanded = src_reg(this, glsl_type::vec4_type); 300 expanded.type = src1.type; 301 emit(MOV(dst_reg(expanded), src1)); 302 src1 = expanded; 303 304 if (dst.writemask != WRITEMASK_XYZW) { 305 /* The gen6 math instruction must be align1, so we can't do 306 * writemasks. 307 */ 308 dst_reg temp_dst = dst_reg(this, glsl_type::vec4_type); 309 temp_dst.type = dst.type; 310 311 emit(opcode, temp_dst, src0, src1); 312 313 emit(MOV(dst, src_reg(temp_dst))); 314 } else { 315 emit(opcode, dst, src0, src1); 316 } 317 } 318 319 void 320 vec4_visitor::emit_math2_gen4(enum opcode opcode, 321 dst_reg dst, src_reg src0, src_reg src1) 322 { 323 vec4_instruction *inst = emit(opcode, dst, src0, src1); 324 inst->base_mrf = 1; 325 inst->mlen = 2; 326 } 327 328 void 329 vec4_visitor::emit_math(enum opcode opcode, 330 dst_reg dst, src_reg src0, src_reg src1) 331 { 332 switch (opcode) { 333 case SHADER_OPCODE_POW: 334 case SHADER_OPCODE_INT_QUOTIENT: 335 case SHADER_OPCODE_INT_REMAINDER: 336 break; 337 default: 338 assert(!"not reached: unsupported binary math opcode"); 339 return; 340 } 341 342 if (intel->gen >= 7) { 343 emit(opcode, dst, src0, src1); 344 } else if (intel->gen == 6) { 345 return emit_math2_gen6(opcode, dst, src0, src1); 346 } else { 347 return emit_math2_gen4(opcode, dst, src0, src1); 348 } 349 } 350 351 void 352 vec4_visitor::visit_instructions(const exec_list *list) 353 { 354 foreach_list(node, list) { 355 ir_instruction *ir = (ir_instruction *)node; 356 357 base_ir = ir; 358 ir->accept(this); 359 } 360 } 361 362 363 static int 364 type_size(const struct glsl_type *type) 365 { 366 unsigned int i; 367 int size; 368 369 switch (type->base_type) { 370 case GLSL_TYPE_UINT: 371 case GLSL_TYPE_INT: 372 case GLSL_TYPE_FLOAT: 373 case GLSL_TYPE_BOOL: 374 if (type->is_matrix()) { 375 return type->matrix_columns; 376 } else { 377 /* Regardless of size of vector, it gets a vec4. This is bad 378 * packing for things like floats, but otherwise arrays become a 379 * mess. Hopefully a later pass over the code can pack scalars 380 * down if appropriate. 381 */ 382 return 1; 383 } 384 case GLSL_TYPE_ARRAY: 385 assert(type->length > 0); 386 return type_size(type->fields.array) * type->length; 387 case GLSL_TYPE_STRUCT: 388 size = 0; 389 for (i = 0; i < type->length; i++) { 390 size += type_size(type->fields.structure[i].type); 391 } 392 return size; 393 case GLSL_TYPE_SAMPLER: 394 /* Samplers take up one slot in UNIFORMS[], but they're baked in 395 * at link time. 396 */ 397 return 1; 398 default: 399 assert(0); 400 return 0; 401 } 402 } 403 404 int 405 vec4_visitor::virtual_grf_alloc(int size) 406 { 407 if (virtual_grf_array_size <= virtual_grf_count) { 408 if (virtual_grf_array_size == 0) 409 virtual_grf_array_size = 16; 410 else 411 virtual_grf_array_size *= 2; 412 virtual_grf_sizes = reralloc(mem_ctx, virtual_grf_sizes, int, 413 virtual_grf_array_size); 414 virtual_grf_reg_map = reralloc(mem_ctx, virtual_grf_reg_map, int, 415 virtual_grf_array_size); 416 } 417 virtual_grf_reg_map[virtual_grf_count] = virtual_grf_reg_count; 418 virtual_grf_reg_count += size; 419 virtual_grf_sizes[virtual_grf_count] = size; 420 return virtual_grf_count++; 421 } 422 423 src_reg::src_reg(class vec4_visitor *v, const struct glsl_type *type) 424 { 425 init(); 426 427 this->file = GRF; 428 this->reg = v->virtual_grf_alloc(type_size(type)); 429 430 if (type->is_array() || type->is_record()) { 431 this->swizzle = BRW_SWIZZLE_NOOP; 432 } else { 433 this->swizzle = swizzle_for_size(type->vector_elements); 434 } 435 436 this->type = brw_type_for_base_type(type); 437 } 438 439 dst_reg::dst_reg(class vec4_visitor *v, const struct glsl_type *type) 440 { 441 init(); 442 443 this->file = GRF; 444 this->reg = v->virtual_grf_alloc(type_size(type)); 445 446 if (type->is_array() || type->is_record()) { 447 this->writemask = WRITEMASK_XYZW; 448 } else { 449 this->writemask = (1 << type->vector_elements) - 1; 450 } 451 452 this->type = brw_type_for_base_type(type); 453 } 454 455 /* Our support for uniforms is piggy-backed on the struct 456 * gl_fragment_program, because that's where the values actually 457 * get stored, rather than in some global gl_shader_program uniform 458 * store. 459 */ 460 int 461 vec4_visitor::setup_uniform_values(int loc, const glsl_type *type) 462 { 463 unsigned int offset = 0; 464 float *values = &this->vp->Base.Parameters->ParameterValues[loc][0].f; 465 466 if (type->is_matrix()) { 467 const glsl_type *column = type->column_type(); 468 469 for (unsigned int i = 0; i < type->matrix_columns; i++) { 470 offset += setup_uniform_values(loc + offset, column); 471 } 472 473 return offset; 474 } 475 476 switch (type->base_type) { 477 case GLSL_TYPE_FLOAT: 478 case GLSL_TYPE_UINT: 479 case GLSL_TYPE_INT: 480 case GLSL_TYPE_BOOL: 481 for (unsigned int i = 0; i < type->vector_elements; i++) { 482 c->prog_data.param[this->uniforms * 4 + i] = &values[i]; 483 } 484 485 /* Set up pad elements to get things aligned to a vec4 boundary. */ 486 for (unsigned int i = type->vector_elements; i < 4; i++) { 487 static float zero = 0; 488 489 c->prog_data.param[this->uniforms * 4 + i] = &zero; 490 } 491 492 /* Track the size of this uniform vector, for future packing of 493 * uniforms. 494 */ 495 this->uniform_vector_size[this->uniforms] = type->vector_elements; 496 this->uniforms++; 497 498 return 1; 499 500 case GLSL_TYPE_STRUCT: 501 for (unsigned int i = 0; i < type->length; i++) { 502 offset += setup_uniform_values(loc + offset, 503 type->fields.structure[i].type); 504 } 505 return offset; 506 507 case GLSL_TYPE_ARRAY: 508 for (unsigned int i = 0; i < type->length; i++) { 509 offset += setup_uniform_values(loc + offset, type->fields.array); 510 } 511 return offset; 512 513 case GLSL_TYPE_SAMPLER: 514 /* The sampler takes up a slot, but we don't use any values from it. */ 515 return 1; 516 517 default: 518 assert(!"not reached"); 519 return 0; 520 } 521 } 522 523 void 524 vec4_visitor::setup_uniform_clipplane_values() 525 { 526 gl_clip_plane *clip_planes = brw_select_clip_planes(ctx); 527 528 /* Pre-Gen6, we compact clip planes. For example, if the user 529 * enables just clip planes 0, 1, and 3, we will enable clip planes 530 * 0, 1, and 2 in the hardware, and we'll move clip plane 3 to clip 531 * plane 2. This simplifies the implementation of the Gen6 clip 532 * thread. 533 * 534 * In Gen6 and later, we don't compact clip planes, because this 535 * simplifies the implementation of gl_ClipDistance. 536 */ 537 int compacted_clipplane_index = 0; 538 for (int i = 0; i < c->key.nr_userclip_plane_consts; ++i) { 539 if (intel->gen < 6 && 540 !(c->key.userclip_planes_enabled_gen_4_5 & (1 << i))) { 541 continue; 542 } 543 this->uniform_vector_size[this->uniforms] = 4; 544 this->userplane[compacted_clipplane_index] = dst_reg(UNIFORM, this->uniforms); 545 this->userplane[compacted_clipplane_index].type = BRW_REGISTER_TYPE_F; 546 for (int j = 0; j < 4; ++j) { 547 c->prog_data.param[this->uniforms * 4 + j] = &clip_planes[i][j]; 548 } 549 ++compacted_clipplane_index; 550 ++this->uniforms; 551 } 552 } 553 554 /* Our support for builtin uniforms is even scarier than non-builtin. 555 * It sits on top of the PROG_STATE_VAR parameters that are 556 * automatically updated from GL context state. 557 */ 558 void 559 vec4_visitor::setup_builtin_uniform_values(ir_variable *ir) 560 { 561 const ir_state_slot *const slots = ir->state_slots; 562 assert(ir->state_slots != NULL); 563 564 for (unsigned int i = 0; i < ir->num_state_slots; i++) { 565 /* This state reference has already been setup by ir_to_mesa, 566 * but we'll get the same index back here. We can reference 567 * ParameterValues directly, since unlike brw_fs.cpp, we never 568 * add new state references during compile. 569 */ 570 int index = _mesa_add_state_reference(this->vp->Base.Parameters, 571 (gl_state_index *)slots[i].tokens); 572 float *values = &this->vp->Base.Parameters->ParameterValues[index][0].f; 573 574 this->uniform_vector_size[this->uniforms] = 0; 575 /* Add each of the unique swizzled channels of the element. 576 * This will end up matching the size of the glsl_type of this field. 577 */ 578 int last_swiz = -1; 579 for (unsigned int j = 0; j < 4; j++) { 580 int swiz = GET_SWZ(slots[i].swizzle, j); 581 last_swiz = swiz; 582 583 c->prog_data.param[this->uniforms * 4 + j] = &values[swiz]; 584 if (swiz <= last_swiz) 585 this->uniform_vector_size[this->uniforms]++; 586 } 587 this->uniforms++; 588 } 589 } 590 591 dst_reg * 592 vec4_visitor::variable_storage(ir_variable *var) 593 { 594 return (dst_reg *)hash_table_find(this->variable_ht, var); 595 } 596 597 void 598 vec4_visitor::emit_bool_to_cond_code(ir_rvalue *ir, uint32_t *predicate) 599 { 600 ir_expression *expr = ir->as_expression(); 601 602 *predicate = BRW_PREDICATE_NORMAL; 603 604 if (expr) { 605 src_reg op[2]; 606 vec4_instruction *inst; 607 608 assert(expr->get_num_operands() <= 2); 609 for (unsigned int i = 0; i < expr->get_num_operands(); i++) { 610 expr->operands[i]->accept(this); 611 op[i] = this->result; 612 613 resolve_ud_negate(&op[i]); 614 } 615 616 switch (expr->operation) { 617 case ir_unop_logic_not: 618 inst = emit(AND(dst_null_d(), op[0], src_reg(1))); 619 inst->conditional_mod = BRW_CONDITIONAL_Z; 620 break; 621 622 case ir_binop_logic_xor: 623 inst = emit(XOR(dst_null_d(), op[0], op[1])); 624 inst->conditional_mod = BRW_CONDITIONAL_NZ; 625 break; 626 627 case ir_binop_logic_or: 628 inst = emit(OR(dst_null_d(), op[0], op[1])); 629 inst->conditional_mod = BRW_CONDITIONAL_NZ; 630 break; 631 632 case ir_binop_logic_and: 633 inst = emit(AND(dst_null_d(), op[0], op[1])); 634 inst->conditional_mod = BRW_CONDITIONAL_NZ; 635 break; 636 637 case ir_unop_f2b: 638 if (intel->gen >= 6) { 639 emit(CMP(dst_null_d(), op[0], src_reg(0.0f), BRW_CONDITIONAL_NZ)); 640 } else { 641 inst = emit(MOV(dst_null_f(), op[0])); 642 inst->conditional_mod = BRW_CONDITIONAL_NZ; 643 } 644 break; 645 646 case ir_unop_i2b: 647 if (intel->gen >= 6) { 648 emit(CMP(dst_null_d(), op[0], src_reg(0), BRW_CONDITIONAL_NZ)); 649 } else { 650 inst = emit(MOV(dst_null_d(), op[0])); 651 inst->conditional_mod = BRW_CONDITIONAL_NZ; 652 } 653 break; 654 655 case ir_binop_all_equal: 656 inst = emit(CMP(dst_null_d(), op[0], op[1], BRW_CONDITIONAL_Z)); 657 *predicate = BRW_PREDICATE_ALIGN16_ALL4H; 658 break; 659 660 case ir_binop_any_nequal: 661 inst = emit(CMP(dst_null_d(), op[0], op[1], BRW_CONDITIONAL_NZ)); 662 *predicate = BRW_PREDICATE_ALIGN16_ANY4H; 663 break; 664 665 case ir_unop_any: 666 inst = emit(CMP(dst_null_d(), op[0], src_reg(0), BRW_CONDITIONAL_NZ)); 667 *predicate = BRW_PREDICATE_ALIGN16_ANY4H; 668 break; 669 670 case ir_binop_greater: 671 case ir_binop_gequal: 672 case ir_binop_less: 673 case ir_binop_lequal: 674 case ir_binop_equal: 675 case ir_binop_nequal: 676 emit(CMP(dst_null_d(), op[0], op[1], 677 brw_conditional_for_comparison(expr->operation))); 678 break; 679 680 default: 681 assert(!"not reached"); 682 break; 683 } 684 return; 685 } 686 687 ir->accept(this); 688 689 resolve_ud_negate(&this->result); 690 691 if (intel->gen >= 6) { 692 vec4_instruction *inst = emit(AND(dst_null_d(), 693 this->result, src_reg(1))); 694 inst->conditional_mod = BRW_CONDITIONAL_NZ; 695 } else { 696 vec4_instruction *inst = emit(MOV(dst_null_d(), this->result)); 697 inst->conditional_mod = BRW_CONDITIONAL_NZ; 698 } 699 } 700 701 /** 702 * Emit a gen6 IF statement with the comparison folded into the IF 703 * instruction. 704 */ 705 void 706 vec4_visitor::emit_if_gen6(ir_if *ir) 707 { 708 ir_expression *expr = ir->condition->as_expression(); 709 710 if (expr) { 711 src_reg op[2]; 712 dst_reg temp; 713 714 assert(expr->get_num_operands() <= 2); 715 for (unsigned int i = 0; i < expr->get_num_operands(); i++) { 716 expr->operands[i]->accept(this); 717 op[i] = this->result; 718 } 719 720 switch (expr->operation) { 721 case ir_unop_logic_not: 722 emit(IF(op[0], src_reg(0), BRW_CONDITIONAL_Z)); 723 return; 724 725 case ir_binop_logic_xor: 726 emit(IF(op[0], op[1], BRW_CONDITIONAL_NZ)); 727 return; 728 729 case ir_binop_logic_or: 730 temp = dst_reg(this, glsl_type::bool_type); 731 emit(OR(temp, op[0], op[1])); 732 emit(IF(src_reg(temp), src_reg(0), BRW_CONDITIONAL_NZ)); 733 return; 734 735 case ir_binop_logic_and: 736 temp = dst_reg(this, glsl_type::bool_type); 737 emit(AND(temp, op[0], op[1])); 738 emit(IF(src_reg(temp), src_reg(0), BRW_CONDITIONAL_NZ)); 739 return; 740 741 case ir_unop_f2b: 742 emit(IF(op[0], src_reg(0), BRW_CONDITIONAL_NZ)); 743 return; 744 745 case ir_unop_i2b: 746 emit(IF(op[0], src_reg(0), BRW_CONDITIONAL_NZ)); 747 return; 748 749 case ir_binop_greater: 750 case ir_binop_gequal: 751 case ir_binop_less: 752 case ir_binop_lequal: 753 case ir_binop_equal: 754 case ir_binop_nequal: 755 emit(IF(op[0], op[1], 756 brw_conditional_for_comparison(expr->operation))); 757 return; 758 759 case ir_binop_all_equal: 760 emit(CMP(dst_null_d(), op[0], op[1], BRW_CONDITIONAL_Z)); 761 emit(IF(BRW_PREDICATE_ALIGN16_ALL4H)); 762 return; 763 764 case ir_binop_any_nequal: 765 emit(CMP(dst_null_d(), op[0], op[1], BRW_CONDITIONAL_NZ)); 766 emit(IF(BRW_PREDICATE_ALIGN16_ANY4H)); 767 return; 768 769 case ir_unop_any: 770 emit(CMP(dst_null_d(), op[0], src_reg(0), BRW_CONDITIONAL_NZ)); 771 emit(IF(BRW_PREDICATE_ALIGN16_ANY4H)); 772 return; 773 774 default: 775 assert(!"not reached"); 776 emit(IF(op[0], src_reg(0), BRW_CONDITIONAL_NZ)); 777 return; 778 } 779 return; 780 } 781 782 ir->condition->accept(this); 783 784 emit(IF(this->result, src_reg(0), BRW_CONDITIONAL_NZ)); 785 } 786 787 void 788 vec4_visitor::visit(ir_variable *ir) 789 { 790 dst_reg *reg = NULL; 791 792 if (variable_storage(ir)) 793 return; 794 795 switch (ir->mode) { 796 case ir_var_in: 797 reg = new(mem_ctx) dst_reg(ATTR, ir->location); 798 799 /* Do GL_FIXED rescaling for GLES2.0. Our GL_FIXED attributes 800 * come in as floating point conversions of the integer values. 801 */ 802 for (int i = ir->location; i < ir->location + type_size(ir->type); i++) { 803 if (!c->key.gl_fixed_input_size[i]) 804 continue; 805 806 dst_reg dst = *reg; 807 dst.type = brw_type_for_base_type(ir->type); 808 dst.writemask = (1 << c->key.gl_fixed_input_size[i]) - 1; 809 emit(MUL(dst, src_reg(dst), src_reg(1.0f / 65536.0f))); 810 } 811 break; 812 813 case ir_var_out: 814 reg = new(mem_ctx) dst_reg(this, ir->type); 815 816 for (int i = 0; i < type_size(ir->type); i++) { 817 output_reg[ir->location + i] = *reg; 818 output_reg[ir->location + i].reg_offset = i; 819 output_reg[ir->location + i].type = 820 brw_type_for_base_type(ir->type->get_scalar_type()); 821 output_reg_annotation[ir->location + i] = ir->name; 822 } 823 break; 824 825 case ir_var_auto: 826 case ir_var_temporary: 827 reg = new(mem_ctx) dst_reg(this, ir->type); 828 break; 829 830 case ir_var_uniform: 831 reg = new(this->mem_ctx) dst_reg(UNIFORM, this->uniforms); 832 833 /* Thanks to the lower_ubo_reference pass, we will see only 834 * ir_binop_ubo_load expressions and not ir_dereference_variable for UBO 835 * variables, so no need for them to be in variable_ht. 836 */ 837 if (ir->uniform_block != -1) 838 return; 839 840 /* Track how big the whole uniform variable is, in case we need to put a 841 * copy of its data into pull constants for array access. 842 */ 843 this->uniform_size[this->uniforms] = type_size(ir->type); 844 845 if (!strncmp(ir->name, "gl_", 3)) { 846 setup_builtin_uniform_values(ir); 847 } else { 848 setup_uniform_values(ir->location, ir->type); 849 } 850 break; 851 852 case ir_var_system_value: 853 /* VertexID is stored by the VF as the last vertex element, but 854 * we don't represent it with a flag in inputs_read, so we call 855 * it VERT_ATTRIB_MAX, which setup_attributes() picks up on. 856 */ 857 reg = new(mem_ctx) dst_reg(ATTR, VERT_ATTRIB_MAX); 858 prog_data->uses_vertexid = true; 859 860 switch (ir->location) { 861 case SYSTEM_VALUE_VERTEX_ID: 862 reg->writemask = WRITEMASK_X; 863 break; 864 case SYSTEM_VALUE_INSTANCE_ID: 865 reg->writemask = WRITEMASK_Y; 866 break; 867 default: 868 assert(!"not reached"); 869 break; 870 } 871 break; 872 873 default: 874 assert(!"not reached"); 875 } 876 877 reg->type = brw_type_for_base_type(ir->type); 878 hash_table_insert(this->variable_ht, reg, ir); 879 } 880 881 void 882 vec4_visitor::visit(ir_loop *ir) 883 { 884 dst_reg counter; 885 886 /* We don't want debugging output to print the whole body of the 887 * loop as the annotation. 888 */ 889 this->base_ir = NULL; 890 891 if (ir->counter != NULL) { 892 this->base_ir = ir->counter; 893 ir->counter->accept(this); 894 counter = *(variable_storage(ir->counter)); 895 896 if (ir->from != NULL) { 897 this->base_ir = ir->from; 898 ir->from->accept(this); 899 900 emit(MOV(counter, this->result)); 901 } 902 } 903 904 emit(BRW_OPCODE_DO); 905 906 if (ir->to) { 907 this->base_ir = ir->to; 908 ir->to->accept(this); 909 910 emit(CMP(dst_null_d(), src_reg(counter), this->result, 911 brw_conditional_for_comparison(ir->cmp))); 912 913 vec4_instruction *inst = emit(BRW_OPCODE_BREAK); 914 inst->predicate = BRW_PREDICATE_NORMAL; 915 } 916 917 visit_instructions(&ir->body_instructions); 918 919 920 if (ir->increment) { 921 this->base_ir = ir->increment; 922 ir->increment->accept(this); 923 emit(ADD(counter, src_reg(counter), this->result)); 924 } 925 926 emit(BRW_OPCODE_WHILE); 927 } 928 929 void 930 vec4_visitor::visit(ir_loop_jump *ir) 931 { 932 switch (ir->mode) { 933 case ir_loop_jump::jump_break: 934 emit(BRW_OPCODE_BREAK); 935 break; 936 case ir_loop_jump::jump_continue: 937 emit(BRW_OPCODE_CONTINUE); 938 break; 939 } 940 } 941 942 943 void 944 vec4_visitor::visit(ir_function_signature *ir) 945 { 946 assert(0); 947 (void)ir; 948 } 949 950 void 951 vec4_visitor::visit(ir_function *ir) 952 { 953 /* Ignore function bodies other than main() -- we shouldn't see calls to 954 * them since they should all be inlined. 955 */ 956 if (strcmp(ir->name, "main") == 0) { 957 const ir_function_signature *sig; 958 exec_list empty; 959 960 sig = ir->matching_signature(&empty); 961 962 assert(sig); 963 964 visit_instructions(&sig->body); 965 } 966 } 967 968 bool 969 vec4_visitor::try_emit_sat(ir_expression *ir) 970 { 971 ir_rvalue *sat_src = ir->as_rvalue_to_saturate(); 972 if (!sat_src) 973 return false; 974 975 sat_src->accept(this); 976 src_reg src = this->result; 977 978 this->result = src_reg(this, ir->type); 979 vec4_instruction *inst; 980 inst = emit(MOV(dst_reg(this->result), src)); 981 inst->saturate = true; 982 983 return true; 984 } 985 986 void 987 vec4_visitor::emit_bool_comparison(unsigned int op, 988 dst_reg dst, src_reg src0, src_reg src1) 989 { 990 /* original gen4 does destination conversion before comparison. */ 991 if (intel->gen < 5) 992 dst.type = src0.type; 993 994 emit(CMP(dst, src0, src1, brw_conditional_for_comparison(op))); 995 996 dst.type = BRW_REGISTER_TYPE_D; 997 emit(AND(dst, src_reg(dst), src_reg(0x1))); 998 } 999 1000 void 1001 vec4_visitor::visit(ir_expression *ir) 1002 { 1003 unsigned int operand; 1004 src_reg op[Elements(ir->operands)]; 1005 src_reg result_src; 1006 dst_reg result_dst; 1007 vec4_instruction *inst; 1008 1009 if (try_emit_sat(ir)) 1010 return; 1011 1012 for (operand = 0; operand < ir->get_num_operands(); operand++) { 1013 this->result.file = BAD_FILE; 1014 ir->operands[operand]->accept(this); 1015 if (this->result.file == BAD_FILE) { 1016 printf("Failed to get tree for expression operand:\n"); 1017 ir->operands[operand]->print(); 1018 exit(1); 1019 } 1020 op[operand] = this->result; 1021 1022 /* Matrix expression operands should have been broken down to vector 1023 * operations already. 1024 */ 1025 assert(!ir->operands[operand]->type->is_matrix()); 1026 } 1027 1028 int vector_elements = ir->operands[0]->type->vector_elements; 1029 if (ir->operands[1]) { 1030 vector_elements = MAX2(vector_elements, 1031 ir->operands[1]->type->vector_elements); 1032 } 1033 1034 this->result.file = BAD_FILE; 1035 1036 /* Storage for our result. Ideally for an assignment we'd be using 1037 * the actual storage for the result here, instead. 1038 */ 1039 result_src = src_reg(this, ir->type); 1040 /* convenience for the emit functions below. */ 1041 result_dst = dst_reg(result_src); 1042 /* If nothing special happens, this is the result. */ 1043 this->result = result_src; 1044 /* Limit writes to the channels that will be used by result_src later. 1045 * This does limit this temp's use as a temporary for multi-instruction 1046 * sequences. 1047 */ 1048 result_dst.writemask = (1 << ir->type->vector_elements) - 1; 1049 1050 switch (ir->operation) { 1051 case ir_unop_logic_not: 1052 /* Note that BRW_OPCODE_NOT is not appropriate here, since it is 1053 * ones complement of the whole register, not just bit 0. 1054 */ 1055 emit(XOR(result_dst, op[0], src_reg(1))); 1056 break; 1057 case ir_unop_neg: 1058 op[0].negate = !op[0].negate; 1059 this->result = op[0]; 1060 break; 1061 case ir_unop_abs: 1062 op[0].abs = true; 1063 op[0].negate = false; 1064 this->result = op[0]; 1065 break; 1066 1067 case ir_unop_sign: 1068 emit(MOV(result_dst, src_reg(0.0f))); 1069 1070 emit(CMP(dst_null_d(), op[0], src_reg(0.0f), BRW_CONDITIONAL_G)); 1071 inst = emit(MOV(result_dst, src_reg(1.0f))); 1072 inst->predicate = BRW_PREDICATE_NORMAL; 1073 1074 emit(CMP(dst_null_d(), op[0], src_reg(0.0f), BRW_CONDITIONAL_L)); 1075 inst = emit(MOV(result_dst, src_reg(-1.0f))); 1076 inst->predicate = BRW_PREDICATE_NORMAL; 1077 1078 break; 1079 1080 case ir_unop_rcp: 1081 emit_math(SHADER_OPCODE_RCP, result_dst, op[0]); 1082 break; 1083 1084 case ir_unop_exp2: 1085 emit_math(SHADER_OPCODE_EXP2, result_dst, op[0]); 1086 break; 1087 case ir_unop_log2: 1088 emit_math(SHADER_OPCODE_LOG2, result_dst, op[0]); 1089 break; 1090 case ir_unop_exp: 1091 case ir_unop_log: 1092 assert(!"not reached: should be handled by ir_explog_to_explog2"); 1093 break; 1094 case ir_unop_sin: 1095 case ir_unop_sin_reduced: 1096 emit_math(SHADER_OPCODE_SIN, result_dst, op[0]); 1097 break; 1098 case ir_unop_cos: 1099 case ir_unop_cos_reduced: 1100 emit_math(SHADER_OPCODE_COS, result_dst, op[0]); 1101 break; 1102 1103 case ir_unop_dFdx: 1104 case ir_unop_dFdy: 1105 assert(!"derivatives not valid in vertex shader"); 1106 break; 1107 1108 case ir_unop_noise: 1109 assert(!"not reached: should be handled by lower_noise"); 1110 break; 1111 1112 case ir_binop_add: 1113 emit(ADD(result_dst, op[0], op[1])); 1114 break; 1115 case ir_binop_sub: 1116 assert(!"not reached: should be handled by ir_sub_to_add_neg"); 1117 break; 1118 1119 case ir_binop_mul: 1120 if (ir->type->is_integer()) { 1121 /* For integer multiplication, the MUL uses the low 16 bits 1122 * of one of the operands (src0 on gen6, src1 on gen7). The 1123 * MACH accumulates in the contribution of the upper 16 bits 1124 * of that operand. 1125 * 1126 * FINISHME: Emit just the MUL if we know an operand is small 1127 * enough. 1128 */ 1129 struct brw_reg acc = retype(brw_acc_reg(), BRW_REGISTER_TYPE_D); 1130 1131 emit(MUL(acc, op[0], op[1])); 1132 emit(MACH(dst_null_d(), op[0], op[1])); 1133 emit(MOV(result_dst, src_reg(acc))); 1134 } else { 1135 emit(MUL(result_dst, op[0], op[1])); 1136 } 1137 break; 1138 case ir_binop_div: 1139 /* Floating point should be lowered by DIV_TO_MUL_RCP in the compiler. */ 1140 assert(ir->type->is_integer()); 1141 emit_math(SHADER_OPCODE_INT_QUOTIENT, result_dst, op[0], op[1]); 1142 break; 1143 case ir_binop_mod: 1144 /* Floating point should be lowered by MOD_TO_FRACT in the compiler. */ 1145 assert(ir->type->is_integer()); 1146 emit_math(SHADER_OPCODE_INT_REMAINDER, result_dst, op[0], op[1]); 1147 break; 1148 1149 case ir_binop_less: 1150 case ir_binop_greater: 1151 case ir_binop_lequal: 1152 case ir_binop_gequal: 1153 case ir_binop_equal: 1154 case ir_binop_nequal: { 1155 emit(CMP(result_dst, op[0], op[1], 1156 brw_conditional_for_comparison(ir->operation))); 1157 emit(AND(result_dst, result_src, src_reg(0x1))); 1158 break; 1159 } 1160 1161 case ir_binop_all_equal: 1162 /* "==" operator producing a scalar boolean. */ 1163 if (ir->operands[0]->type->is_vector() || 1164 ir->operands[1]->type->is_vector()) { 1165 emit(CMP(dst_null_d(), op[0], op[1], BRW_CONDITIONAL_Z)); 1166 emit(MOV(result_dst, src_reg(0))); 1167 inst = emit(MOV(result_dst, src_reg(1))); 1168 inst->predicate = BRW_PREDICATE_ALIGN16_ALL4H; 1169 } else { 1170 emit(CMP(result_dst, op[0], op[1], BRW_CONDITIONAL_Z)); 1171 emit(AND(result_dst, result_src, src_reg(0x1))); 1172 } 1173 break; 1174 case ir_binop_any_nequal: 1175 /* "!=" operator producing a scalar boolean. */ 1176 if (ir->operands[0]->type->is_vector() || 1177 ir->operands[1]->type->is_vector()) { 1178 emit(CMP(dst_null_d(), op[0], op[1], BRW_CONDITIONAL_NZ)); 1179 1180 emit(MOV(result_dst, src_reg(0))); 1181 inst = emit(MOV(result_dst, src_reg(1))); 1182 inst->predicate = BRW_PREDICATE_ALIGN16_ANY4H; 1183 } else { 1184 emit(CMP(result_dst, op[0], op[1], BRW_CONDITIONAL_NZ)); 1185 emit(AND(result_dst, result_src, src_reg(0x1))); 1186 } 1187 break; 1188 1189 case ir_unop_any: 1190 emit(CMP(dst_null_d(), op[0], src_reg(0), BRW_CONDITIONAL_NZ)); 1191 emit(MOV(result_dst, src_reg(0))); 1192 1193 inst = emit(MOV(result_dst, src_reg(1))); 1194 inst->predicate = BRW_PREDICATE_ALIGN16_ANY4H; 1195 break; 1196 1197 case ir_binop_logic_xor: 1198 emit(XOR(result_dst, op[0], op[1])); 1199 break; 1200 1201 case ir_binop_logic_or: 1202 emit(OR(result_dst, op[0], op[1])); 1203 break; 1204 1205 case ir_binop_logic_and: 1206 emit(AND(result_dst, op[0], op[1])); 1207 break; 1208 1209 case ir_binop_dot: 1210 assert(ir->operands[0]->type->is_vector()); 1211 assert(ir->operands[0]->type == ir->operands[1]->type); 1212 emit_dp(result_dst, op[0], op[1], ir->operands[0]->type->vector_elements); 1213 break; 1214 1215 case ir_unop_sqrt: 1216 emit_math(SHADER_OPCODE_SQRT, result_dst, op[0]); 1217 break; 1218 case ir_unop_rsq: 1219 emit_math(SHADER_OPCODE_RSQ, result_dst, op[0]); 1220 break; 1221 1222 case ir_unop_bitcast_i2f: 1223 case ir_unop_bitcast_u2f: 1224 this->result = op[0]; 1225 this->result.type = BRW_REGISTER_TYPE_F; 1226 break; 1227 1228 case ir_unop_bitcast_f2i: 1229 this->result = op[0]; 1230 this->result.type = BRW_REGISTER_TYPE_D; 1231 break; 1232 1233 case ir_unop_bitcast_f2u: 1234 this->result = op[0]; 1235 this->result.type = BRW_REGISTER_TYPE_UD; 1236 break; 1237 1238 case ir_unop_i2f: 1239 case ir_unop_i2u: 1240 case ir_unop_u2i: 1241 case ir_unop_u2f: 1242 case ir_unop_b2f: 1243 case ir_unop_b2i: 1244 case ir_unop_f2i: 1245 case ir_unop_f2u: 1246 emit(MOV(result_dst, op[0])); 1247 break; 1248 case ir_unop_f2b: 1249 case ir_unop_i2b: { 1250 emit(CMP(result_dst, op[0], src_reg(0.0f), BRW_CONDITIONAL_NZ)); 1251 emit(AND(result_dst, result_src, src_reg(1))); 1252 break; 1253 } 1254 1255 case ir_unop_trunc: 1256 emit(RNDZ(result_dst, op[0])); 1257 break; 1258 case ir_unop_ceil: 1259 op[0].negate = !op[0].negate; 1260 inst = emit(RNDD(result_dst, op[0])); 1261 this->result.negate = true; 1262 break; 1263 case ir_unop_floor: 1264 inst = emit(RNDD(result_dst, op[0])); 1265 break; 1266 case ir_unop_fract: 1267 inst = emit(FRC(result_dst, op[0])); 1268 break; 1269 case ir_unop_round_even: 1270 emit(RNDE(result_dst, op[0])); 1271 break; 1272 1273 case ir_binop_min: 1274 if (intel->gen >= 6) { 1275 inst = emit(BRW_OPCODE_SEL, result_dst, op[0], op[1]); 1276 inst->conditional_mod = BRW_CONDITIONAL_L; 1277 } else { 1278 emit(CMP(result_dst, op[0], op[1], BRW_CONDITIONAL_L)); 1279 1280 inst = emit(BRW_OPCODE_SEL, result_dst, op[0], op[1]); 1281 inst->predicate = BRW_PREDICATE_NORMAL; 1282 } 1283 break; 1284 case ir_binop_max: 1285 if (intel->gen >= 6) { 1286 inst = emit(BRW_OPCODE_SEL, result_dst, op[0], op[1]); 1287 inst->conditional_mod = BRW_CONDITIONAL_G; 1288 } else { 1289 emit(CMP(result_dst, op[0], op[1], BRW_CONDITIONAL_G)); 1290 1291 inst = emit(BRW_OPCODE_SEL, result_dst, op[0], op[1]); 1292 inst->predicate = BRW_PREDICATE_NORMAL; 1293 } 1294 break; 1295 1296 case ir_binop_pow: 1297 emit_math(SHADER_OPCODE_POW, result_dst, op[0], op[1]); 1298 break; 1299 1300 case ir_unop_bit_not: 1301 inst = emit(NOT(result_dst, op[0])); 1302 break; 1303 case ir_binop_bit_and: 1304 inst = emit(AND(result_dst, op[0], op[1])); 1305 break; 1306 case ir_binop_bit_xor: 1307 inst = emit(XOR(result_dst, op[0], op[1])); 1308 break; 1309 case ir_binop_bit_or: 1310 inst = emit(OR(result_dst, op[0], op[1])); 1311 break; 1312 1313 case ir_binop_lshift: 1314 inst = emit(BRW_OPCODE_SHL, result_dst, op[0], op[1]); 1315 break; 1316 1317 case ir_binop_rshift: 1318 if (ir->type->base_type == GLSL_TYPE_INT) 1319 inst = emit(BRW_OPCODE_ASR, result_dst, op[0], op[1]); 1320 else 1321 inst = emit(BRW_OPCODE_SHR, result_dst, op[0], op[1]); 1322 break; 1323 1324 case ir_binop_ubo_load: { 1325 ir_constant *uniform_block = ir->operands[0]->as_constant(); 1326 ir_constant *const_offset_ir = ir->operands[1]->as_constant(); 1327 unsigned const_offset = const_offset_ir ? const_offset_ir->value.u[0] : 0; 1328 src_reg offset = op[1]; 1329 1330 /* Now, load the vector from that offset. */ 1331 assert(ir->type->is_vector() || ir->type->is_scalar()); 1332 1333 src_reg packed_consts = src_reg(this, glsl_type::vec4_type); 1334 packed_consts.type = result.type; 1335 src_reg surf_index = 1336 src_reg(SURF_INDEX_VS_UBO(uniform_block->value.u[0])); 1337 if (const_offset_ir) { 1338 offset = src_reg(const_offset / 16); 1339 } else { 1340 emit(BRW_OPCODE_SHR, dst_reg(offset), offset, src_reg(4)); 1341 } 1342 1343 vec4_instruction *pull = 1344 emit(new(mem_ctx) vec4_instruction(this, 1345 VS_OPCODE_PULL_CONSTANT_LOAD, 1346 dst_reg(packed_consts), 1347 surf_index, 1348 offset)); 1349 pull->base_mrf = 14; 1350 pull->mlen = 1; 1351 1352 packed_consts.swizzle = swizzle_for_size(ir->type->vector_elements); 1353 packed_consts.swizzle += BRW_SWIZZLE4(const_offset % 16 / 4, 1354 const_offset % 16 / 4, 1355 const_offset % 16 / 4, 1356 const_offset % 16 / 4); 1357 1358 /* UBO bools are any nonzero int. We store bools as either 0 or 1. */ 1359 if (ir->type->base_type == GLSL_TYPE_BOOL) { 1360 emit(CMP(result_dst, packed_consts, src_reg(0u), 1361 BRW_CONDITIONAL_NZ)); 1362 emit(AND(result_dst, result, src_reg(0x1))); 1363 } else { 1364 emit(MOV(result_dst, packed_consts)); 1365 } 1366 break; 1367 } 1368 1369 case ir_quadop_vector: 1370 assert(!"not reached: should be handled by lower_quadop_vector"); 1371 break; 1372 } 1373 } 1374 1375 1376 void 1377 vec4_visitor::visit(ir_swizzle *ir) 1378 { 1379 src_reg src; 1380 int i = 0; 1381 int swizzle[4]; 1382 1383 /* Note that this is only swizzles in expressions, not those on the left 1384 * hand side of an assignment, which do write masking. See ir_assignment 1385 * for that. 1386 */ 1387 1388 ir->val->accept(this); 1389 src = this->result; 1390 assert(src.file != BAD_FILE); 1391 1392 for (i = 0; i < ir->type->vector_elements; i++) { 1393 switch (i) { 1394 case 0: 1395 swizzle[i] = BRW_GET_SWZ(src.swizzle, ir->mask.x); 1396 break; 1397 case 1: 1398 swizzle[i] = BRW_GET_SWZ(src.swizzle, ir->mask.y); 1399 break; 1400 case 2: 1401 swizzle[i] = BRW_GET_SWZ(src.swizzle, ir->mask.z); 1402 break; 1403 case 3: 1404 swizzle[i] = BRW_GET_SWZ(src.swizzle, ir->mask.w); 1405 break; 1406 } 1407 } 1408 for (; i < 4; i++) { 1409 /* Replicate the last channel out. */ 1410 swizzle[i] = swizzle[ir->type->vector_elements - 1]; 1411 } 1412 1413 src.swizzle = BRW_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]); 1414 1415 this->result = src; 1416 } 1417 1418 void 1419 vec4_visitor::visit(ir_dereference_variable *ir) 1420 { 1421 const struct glsl_type *type = ir->type; 1422 dst_reg *reg = variable_storage(ir->var); 1423 1424 if (!reg) { 1425 fail("Failed to find variable storage for %s\n", ir->var->name); 1426 this->result = src_reg(brw_null_reg()); 1427 return; 1428 } 1429 1430 this->result = src_reg(*reg); 1431 1432 /* System values get their swizzle from the dst_reg writemask */ 1433 if (ir->var->mode == ir_var_system_value) 1434 return; 1435 1436 if (type->is_scalar() || type->is_vector() || type->is_matrix()) 1437 this->result.swizzle = swizzle_for_size(type->vector_elements); 1438 } 1439 1440 void 1441 vec4_visitor::visit(ir_dereference_array *ir) 1442 { 1443 ir_constant *constant_index; 1444 src_reg src; 1445 int element_size = type_size(ir->type); 1446 1447 constant_index = ir->array_index->constant_expression_value(); 1448 1449 ir->array->accept(this); 1450 src = this->result; 1451 1452 if (constant_index) { 1453 src.reg_offset += constant_index->value.i[0] * element_size; 1454 } else { 1455 /* Variable index array dereference. It eats the "vec4" of the 1456 * base of the array and an index that offsets the Mesa register 1457 * index. 1458 */ 1459 ir->array_index->accept(this); 1460 1461 src_reg index_reg; 1462 1463 if (element_size == 1) { 1464 index_reg = this->result; 1465 } else { 1466 index_reg = src_reg(this, glsl_type::int_type); 1467 1468 emit(MUL(dst_reg(index_reg), this->result, src_reg(element_size))); 1469 } 1470 1471 if (src.reladdr) { 1472 src_reg temp = src_reg(this, glsl_type::int_type); 1473 1474 emit(ADD(dst_reg(temp), *src.reladdr, index_reg)); 1475 1476 index_reg = temp; 1477 } 1478 1479 src.reladdr = ralloc(mem_ctx, src_reg); 1480 memcpy(src.reladdr, &index_reg, sizeof(index_reg)); 1481 } 1482 1483 /* If the type is smaller than a vec4, replicate the last channel out. */ 1484 if (ir->type->is_scalar() || ir->type->is_vector() || ir->type->is_matrix()) 1485 src.swizzle = swizzle_for_size(ir->type->vector_elements); 1486 else 1487 src.swizzle = BRW_SWIZZLE_NOOP; 1488 src.type = brw_type_for_base_type(ir->type); 1489 1490 this->result = src; 1491 } 1492 1493 void 1494 vec4_visitor::visit(ir_dereference_record *ir) 1495 { 1496 unsigned int i; 1497 const glsl_type *struct_type = ir->record->type; 1498 int offset = 0; 1499 1500 ir->record->accept(this); 1501 1502 for (i = 0; i < struct_type->length; i++) { 1503 if (strcmp(struct_type->fields.structure[i].name, ir->field) == 0) 1504 break; 1505 offset += type_size(struct_type->fields.structure[i].type); 1506 } 1507 1508 /* If the type is smaller than a vec4, replicate the last channel out. */ 1509 if (ir->type->is_scalar() || ir->type->is_vector() || ir->type->is_matrix()) 1510 this->result.swizzle = swizzle_for_size(ir->type->vector_elements); 1511 else 1512 this->result.swizzle = BRW_SWIZZLE_NOOP; 1513 this->result.type = brw_type_for_base_type(ir->type); 1514 1515 this->result.reg_offset += offset; 1516 } 1517 1518 /** 1519 * We want to be careful in assignment setup to hit the actual storage 1520 * instead of potentially using a temporary like we might with the 1521 * ir_dereference handler. 1522 */ 1523 static dst_reg 1524 get_assignment_lhs(ir_dereference *ir, vec4_visitor *v) 1525 { 1526 /* The LHS must be a dereference. If the LHS is a variable indexed array 1527 * access of a vector, it must be separated into a series conditional moves 1528 * before reaching this point (see ir_vec_index_to_cond_assign). 1529 */ 1530 assert(ir->as_dereference()); 1531 ir_dereference_array *deref_array = ir->as_dereference_array(); 1532 if (deref_array) { 1533 assert(!deref_array->array->type->is_vector()); 1534 } 1535 1536 /* Use the rvalue deref handler for the most part. We'll ignore 1537 * swizzles in it and write swizzles using writemask, though. 1538 */ 1539 ir->accept(v); 1540 return dst_reg(v->result); 1541 } 1542 1543 void 1544 vec4_visitor::emit_block_move(dst_reg *dst, src_reg *src, 1545 const struct glsl_type *type, uint32_t predicate) 1546 { 1547 if (type->base_type == GLSL_TYPE_STRUCT) { 1548 for (unsigned int i = 0; i < type->length; i++) { 1549 emit_block_move(dst, src, type->fields.structure[i].type, predicate); 1550 } 1551 return; 1552 } 1553 1554 if (type->is_array()) { 1555 for (unsigned int i = 0; i < type->length; i++) { 1556 emit_block_move(dst, src, type->fields.array, predicate); 1557 } 1558 return; 1559 } 1560 1561 if (type->is_matrix()) { 1562 const struct glsl_type *vec_type; 1563 1564 vec_type = glsl_type::get_instance(GLSL_TYPE_FLOAT, 1565 type->vector_elements, 1); 1566 1567 for (int i = 0; i < type->matrix_columns; i++) { 1568 emit_block_move(dst, src, vec_type, predicate); 1569 } 1570 return; 1571 } 1572 1573 assert(type->is_scalar() || type->is_vector()); 1574 1575 dst->type = brw_type_for_base_type(type); 1576 src->type = dst->type; 1577 1578 dst->writemask = (1 << type->vector_elements) - 1; 1579 1580 src->swizzle = swizzle_for_size(type->vector_elements); 1581 1582 vec4_instruction *inst = emit(MOV(*dst, *src)); 1583 inst->predicate = predicate; 1584 1585 dst->reg_offset++; 1586 src->reg_offset++; 1587 } 1588 1589 1590 /* If the RHS processing resulted in an instruction generating a 1591 * temporary value, and it would be easy to rewrite the instruction to 1592 * generate its result right into the LHS instead, do so. This ends 1593 * up reliably removing instructions where it can be tricky to do so 1594 * later without real UD chain information. 1595 */ 1596 bool 1597 vec4_visitor::try_rewrite_rhs_to_dst(ir_assignment *ir, 1598 dst_reg dst, 1599 src_reg src, 1600 vec4_instruction *pre_rhs_inst, 1601 vec4_instruction *last_rhs_inst) 1602 { 1603 /* This could be supported, but it would take more smarts. */ 1604 if (ir->condition) 1605 return false; 1606 1607 if (pre_rhs_inst == last_rhs_inst) 1608 return false; /* No instructions generated to work with. */ 1609 1610 /* Make sure the last instruction generated our source reg. */ 1611 if (src.file != GRF || 1612 src.file != last_rhs_inst->dst.file || 1613 src.reg != last_rhs_inst->dst.reg || 1614 src.reg_offset != last_rhs_inst->dst.reg_offset || 1615 src.reladdr || 1616 src.abs || 1617 src.negate || 1618 last_rhs_inst->predicate != BRW_PREDICATE_NONE) 1619 return false; 1620 1621 /* Check that that last instruction fully initialized the channels 1622 * we want to use, in the order we want to use them. We could 1623 * potentially reswizzle the operands of many instructions so that 1624 * we could handle out of order channels, but don't yet. 1625 */ 1626 1627 for (unsigned i = 0; i < 4; i++) { 1628 if (dst.writemask & (1 << i)) { 1629 if (!(last_rhs_inst->dst.writemask & (1 << i))) 1630 return false; 1631 1632 if (BRW_GET_SWZ(src.swizzle, i) != i) 1633 return false; 1634 } 1635 } 1636 1637 /* Success! Rewrite the instruction. */ 1638 last_rhs_inst->dst.file = dst.file; 1639 last_rhs_inst->dst.reg = dst.reg; 1640 last_rhs_inst->dst.reg_offset = dst.reg_offset; 1641 last_rhs_inst->dst.reladdr = dst.reladdr; 1642 last_rhs_inst->dst.writemask &= dst.writemask; 1643 1644 return true; 1645 } 1646 1647 void 1648 vec4_visitor::visit(ir_assignment *ir) 1649 { 1650 dst_reg dst = get_assignment_lhs(ir->lhs, this); 1651 uint32_t predicate = BRW_PREDICATE_NONE; 1652 1653 if (!ir->lhs->type->is_scalar() && 1654 !ir->lhs->type->is_vector()) { 1655 ir->rhs->accept(this); 1656 src_reg src = this->result; 1657 1658 if (ir->condition) { 1659 emit_bool_to_cond_code(ir->condition, &predicate); 1660 } 1661 1662 /* emit_block_move doesn't account for swizzles in the source register. 1663 * This should be ok, since the source register is a structure or an 1664 * array, and those can't be swizzled. But double-check to be sure. 1665 */ 1666 assert(src.swizzle == 1667 (ir->rhs->type->is_matrix() 1668 ? swizzle_for_size(ir->rhs->type->vector_elements) 1669 : BRW_SWIZZLE_NOOP)); 1670 1671 emit_block_move(&dst, &src, ir->rhs->type, predicate); 1672 return; 1673 } 1674 1675 /* Now we're down to just a scalar/vector with writemasks. */ 1676 int i; 1677 1678 vec4_instruction *pre_rhs_inst, *last_rhs_inst; 1679 pre_rhs_inst = (vec4_instruction *)this->instructions.get_tail(); 1680 1681 ir->rhs->accept(this); 1682 1683 last_rhs_inst = (vec4_instruction *)this->instructions.get_tail(); 1684 1685 src_reg src = this->result; 1686 1687 int swizzles[4]; 1688 int first_enabled_chan = 0; 1689 int src_chan = 0; 1690 1691 assert(ir->lhs->type->is_vector() || 1692 ir->lhs->type->is_scalar()); 1693 dst.writemask = ir->write_mask; 1694 1695 for (int i = 0; i < 4; i++) { 1696 if (dst.writemask & (1 << i)) { 1697 first_enabled_chan = BRW_GET_SWZ(src.swizzle, i); 1698 break; 1699 } 1700 } 1701 1702 /* Swizzle a small RHS vector into the channels being written. 1703 * 1704 * glsl ir treats write_mask as dictating how many channels are 1705 * present on the RHS while in our instructions we need to make 1706 * those channels appear in the slots of the vec4 they're written to. 1707 */ 1708 for (int i = 0; i < 4; i++) { 1709 if (dst.writemask & (1 << i)) 1710 swizzles[i] = BRW_GET_SWZ(src.swizzle, src_chan++); 1711 else 1712 swizzles[i] = first_enabled_chan; 1713 } 1714 src.swizzle = BRW_SWIZZLE4(swizzles[0], swizzles[1], 1715 swizzles[2], swizzles[3]); 1716 1717 if (try_rewrite_rhs_to_dst(ir, dst, src, pre_rhs_inst, last_rhs_inst)) { 1718 return; 1719 } 1720 1721 if (ir->condition) { 1722 emit_bool_to_cond_code(ir->condition, &predicate); 1723 } 1724 1725 for (i = 0; i < type_size(ir->lhs->type); i++) { 1726 vec4_instruction *inst = emit(MOV(dst, src)); 1727 inst->predicate = predicate; 1728 1729 dst.reg_offset++; 1730 src.reg_offset++; 1731 } 1732 } 1733 1734 void 1735 vec4_visitor::emit_constant_values(dst_reg *dst, ir_constant *ir) 1736 { 1737 if (ir->type->base_type == GLSL_TYPE_STRUCT) { 1738 foreach_list(node, &ir->components) { 1739 ir_constant *field_value = (ir_constant *)node; 1740 1741 emit_constant_values(dst, field_value); 1742 } 1743 return; 1744 } 1745 1746 if (ir->type->is_array()) { 1747 for (unsigned int i = 0; i < ir->type->length; i++) { 1748 emit_constant_values(dst, ir->array_elements[i]); 1749 } 1750 return; 1751 } 1752 1753 if (ir->type->is_matrix()) { 1754 for (int i = 0; i < ir->type->matrix_columns; i++) { 1755 float *vec = &ir->value.f[i * ir->type->vector_elements]; 1756 1757 for (int j = 0; j < ir->type->vector_elements; j++) { 1758 dst->writemask = 1 << j; 1759 dst->type = BRW_REGISTER_TYPE_F; 1760 1761 emit(MOV(*dst, src_reg(vec[j]))); 1762 } 1763 dst->reg_offset++; 1764 } 1765 return; 1766 } 1767 1768 int remaining_writemask = (1 << ir->type->vector_elements) - 1; 1769 1770 for (int i = 0; i < ir->type->vector_elements; i++) { 1771 if (!(remaining_writemask & (1 << i))) 1772 continue; 1773 1774 dst->writemask = 1 << i; 1775 dst->type = brw_type_for_base_type(ir->type); 1776 1777 /* Find other components that match the one we're about to 1778 * write. Emits fewer instructions for things like vec4(0.5, 1779 * 1.5, 1.5, 1.5). 1780 */ 1781 for (int j = i + 1; j < ir->type->vector_elements; j++) { 1782 if (ir->type->base_type == GLSL_TYPE_BOOL) { 1783 if (ir->value.b[i] == ir->value.b[j]) 1784 dst->writemask |= (1 << j); 1785 } else { 1786 /* u, i, and f storage all line up, so no need for a 1787 * switch case for comparing each type. 1788 */ 1789 if (ir->value.u[i] == ir->value.u[j]) 1790 dst->writemask |= (1 << j); 1791 } 1792 } 1793 1794 switch (ir->type->base_type) { 1795 case GLSL_TYPE_FLOAT: 1796 emit(MOV(*dst, src_reg(ir->value.f[i]))); 1797 break; 1798 case GLSL_TYPE_INT: 1799 emit(MOV(*dst, src_reg(ir->value.i[i]))); 1800 break; 1801 case GLSL_TYPE_UINT: 1802 emit(MOV(*dst, src_reg(ir->value.u[i]))); 1803 break; 1804 case GLSL_TYPE_BOOL: 1805 emit(MOV(*dst, src_reg(ir->value.b[i]))); 1806 break; 1807 default: 1808 assert(!"Non-float/uint/int/bool constant"); 1809 break; 1810 } 1811 1812 remaining_writemask &= ~dst->writemask; 1813 } 1814 dst->reg_offset++; 1815 } 1816 1817 void 1818 vec4_visitor::visit(ir_constant *ir) 1819 { 1820 dst_reg dst = dst_reg(this, ir->type); 1821 this->result = src_reg(dst); 1822 1823 emit_constant_values(&dst, ir); 1824 } 1825 1826 void 1827 vec4_visitor::visit(ir_call *ir) 1828 { 1829 assert(!"not reached"); 1830 } 1831 1832 void 1833 vec4_visitor::visit(ir_texture *ir) 1834 { 1835 int sampler = _mesa_get_sampler_uniform_value(ir->sampler, prog, &vp->Base); 1836 1837 /* Should be lowered by do_lower_texture_projection */ 1838 assert(!ir->projector); 1839 1840 /* Generate code to compute all the subexpression trees. This has to be 1841 * done before loading any values into MRFs for the sampler message since 1842 * generating these values may involve SEND messages that need the MRFs. 1843 */ 1844 src_reg coordinate; 1845 if (ir->coordinate) { 1846 ir->coordinate->accept(this); 1847 coordinate = this->result; 1848 } 1849 1850 src_reg shadow_comparitor; 1851 if (ir->shadow_comparitor) { 1852 ir->shadow_comparitor->accept(this); 1853 shadow_comparitor = this->result; 1854 } 1855 1856 const glsl_type *lod_type; 1857 src_reg lod, dPdx, dPdy; 1858 switch (ir->op) { 1859 case ir_tex: 1860 lod = src_reg(0.0f); 1861 lod_type = glsl_type::float_type; 1862 break; 1863 case ir_txf: 1864 case ir_txl: 1865 case ir_txs: 1866 ir->lod_info.lod->accept(this); 1867 lod = this->result; 1868 lod_type = ir->lod_info.lod->type; 1869 break; 1870 case ir_txd: 1871 ir->lod_info.grad.dPdx->accept(this); 1872 dPdx = this->result; 1873 1874 ir->lod_info.grad.dPdy->accept(this); 1875 dPdy = this->result; 1876 1877 lod_type = ir->lod_info.grad.dPdx->type; 1878 break; 1879 case ir_txb: 1880 break; 1881 } 1882 1883 vec4_instruction *inst = NULL; 1884 switch (ir->op) { 1885 case ir_tex: 1886 case ir_txl: 1887 inst = new(mem_ctx) vec4_instruction(this, SHADER_OPCODE_TXL); 1888 break; 1889 case ir_txd: 1890 inst = new(mem_ctx) vec4_instruction(this, SHADER_OPCODE_TXD); 1891 break; 1892 case ir_txf: 1893 inst = new(mem_ctx) vec4_instruction(this, SHADER_OPCODE_TXF); 1894 break; 1895 case ir_txs: 1896 inst = new(mem_ctx) vec4_instruction(this, SHADER_OPCODE_TXS); 1897 break; 1898 case ir_txb: 1899 assert(!"TXB is not valid for vertex shaders."); 1900 } 1901 1902 /* Texel offsets go in the message header; Gen4 also requires headers. */ 1903 inst->header_present = ir->offset || intel->gen < 5; 1904 inst->base_mrf = 2; 1905 inst->mlen = inst->header_present + 1; /* always at least one */ 1906 inst->sampler = sampler; 1907 inst->dst = dst_reg(this, ir->type); 1908 inst->dst.writemask = WRITEMASK_XYZW; 1909 inst->shadow_compare = ir->shadow_comparitor != NULL; 1910 1911 if (ir->offset != NULL && ir->op != ir_txf) 1912 inst->texture_offset = brw_texture_offset(ir->offset->as_constant()); 1913 1914 /* MRF for the first parameter */ 1915 int param_base = inst->base_mrf + inst->header_present; 1916 1917 if (ir->op == ir_txs) { 1918 int writemask = intel->gen == 4 ? WRITEMASK_W : WRITEMASK_X; 1919 emit(MOV(dst_reg(MRF, param_base, lod_type, writemask), lod)); 1920 } else { 1921 int i, coord_mask = 0, zero_mask = 0; 1922 /* Load the coordinate */ 1923 /* FINISHME: gl_clamp_mask and saturate */ 1924 for (i = 0; i < ir->coordinate->type->vector_elements; i++) 1925 coord_mask |= (1 << i); 1926 for (; i < 4; i++) 1927 zero_mask |= (1 << i); 1928 1929 if (ir->offset && ir->op == ir_txf) { 1930 /* It appears that the ld instruction used for txf does its 1931 * address bounds check before adding in the offset. To work 1932 * around this, just add the integer offset to the integer 1933 * texel coordinate, and don't put the offset in the header. 1934 */ 1935 ir_constant *offset = ir->offset->as_constant(); 1936 assert(offset); 1937 1938 for (int j = 0; j < ir->coordinate->type->vector_elements; j++) { 1939 src_reg src = coordinate; 1940 src.swizzle = BRW_SWIZZLE4(BRW_GET_SWZ(src.swizzle, j), 1941 BRW_GET_SWZ(src.swizzle, j), 1942 BRW_GET_SWZ(src.swizzle, j), 1943 BRW_GET_SWZ(src.swizzle, j)); 1944 emit(ADD(dst_reg(MRF, param_base, ir->coordinate->type, 1 << j), 1945 src, offset->value.i[j])); 1946 } 1947 } else { 1948 emit(MOV(dst_reg(MRF, param_base, ir->coordinate->type, coord_mask), 1949 coordinate)); 1950 } 1951 emit(MOV(dst_reg(MRF, param_base, ir->coordinate->type, zero_mask), 1952 src_reg(0))); 1953 /* Load the shadow comparitor */ 1954 if (ir->shadow_comparitor) { 1955 emit(MOV(dst_reg(MRF, param_base + 1, ir->shadow_comparitor->type, 1956 WRITEMASK_X), 1957 shadow_comparitor)); 1958 inst->mlen++; 1959 } 1960 1961 /* Load the LOD info */ 1962 if (ir->op == ir_tex || ir->op == ir_txl) { 1963 int mrf, writemask; 1964 if (intel->gen >= 5) { 1965 mrf = param_base + 1; 1966 if (ir->shadow_comparitor) { 1967 writemask = WRITEMASK_Y; 1968 /* mlen already incremented */ 1969 } else { 1970 writemask = WRITEMASK_X; 1971 inst->mlen++; 1972 } 1973 } else /* intel->gen == 4 */ { 1974 mrf = param_base; 1975 writemask = WRITEMASK_Z; 1976 } 1977 emit(MOV(dst_reg(MRF, mrf, lod_type, writemask), lod)); 1978 } else if (ir->op == ir_txf) { 1979 emit(MOV(dst_reg(MRF, param_base, lod_type, WRITEMASK_W), 1980 lod)); 1981 } else if (ir->op == ir_txd) { 1982 const glsl_type *type = lod_type; 1983 1984 if (intel->gen >= 5) { 1985 dPdx.swizzle = BRW_SWIZZLE4(SWIZZLE_X,SWIZZLE_X,SWIZZLE_Y,SWIZZLE_Y); 1986 dPdy.swizzle = BRW_SWIZZLE4(SWIZZLE_X,SWIZZLE_X,SWIZZLE_Y,SWIZZLE_Y); 1987 emit(MOV(dst_reg(MRF, param_base + 1, type, WRITEMASK_XZ), dPdx)); 1988 emit(MOV(dst_reg(MRF, param_base + 1, type, WRITEMASK_YW), dPdy)); 1989 inst->mlen++; 1990 1991 if (ir->type->vector_elements == 3) { 1992 dPdx.swizzle = BRW_SWIZZLE_ZZZZ; 1993 dPdy.swizzle = BRW_SWIZZLE_ZZZZ; 1994 emit(MOV(dst_reg(MRF, param_base + 2, type, WRITEMASK_X), dPdx)); 1995 emit(MOV(dst_reg(MRF, param_base + 2, type, WRITEMASK_Y), dPdy)); 1996 inst->mlen++; 1997 } 1998 } else /* intel->gen == 4 */ { 1999 emit(MOV(dst_reg(MRF, param_base + 1, type, WRITEMASK_XYZ), dPdx)); 2000 emit(MOV(dst_reg(MRF, param_base + 2, type, WRITEMASK_XYZ), dPdy)); 2001 inst->mlen += 2; 2002 } 2003 } 2004 } 2005 2006 emit(inst); 2007 2008 swizzle_result(ir, src_reg(inst->dst), sampler); 2009 } 2010 2011 void 2012 vec4_visitor::swizzle_result(ir_texture *ir, src_reg orig_val, int sampler) 2013 { 2014 int s = c->key.tex.swizzles[sampler]; 2015 2016 this->result = src_reg(this, ir->type); 2017 dst_reg swizzled_result(this->result); 2018 2019 if (ir->op == ir_txs || ir->type == glsl_type::float_type 2020 || s == SWIZZLE_NOOP) { 2021 emit(MOV(swizzled_result, orig_val)); 2022 return; 2023 } 2024 2025 int zero_mask = 0, one_mask = 0, copy_mask = 0; 2026 int swizzle[4]; 2027 2028 for (int i = 0; i < 4; i++) { 2029 switch (GET_SWZ(s, i)) { 2030 case SWIZZLE_ZERO: 2031 zero_mask |= (1 << i); 2032 break; 2033 case SWIZZLE_ONE: 2034 one_mask |= (1 << i); 2035 break; 2036 default: 2037 copy_mask |= (1 << i); 2038 swizzle[i] = GET_SWZ(s, i); 2039 break; 2040 } 2041 } 2042 2043 if (copy_mask) { 2044 orig_val.swizzle = BRW_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]); 2045 swizzled_result.writemask = copy_mask; 2046 emit(MOV(swizzled_result, orig_val)); 2047 } 2048 2049 if (zero_mask) { 2050 swizzled_result.writemask = zero_mask; 2051 emit(MOV(swizzled_result, src_reg(0.0f))); 2052 } 2053 2054 if (one_mask) { 2055 swizzled_result.writemask = one_mask; 2056 emit(MOV(swizzled_result, src_reg(1.0f))); 2057 } 2058 } 2059 2060 void 2061 vec4_visitor::visit(ir_return *ir) 2062 { 2063 assert(!"not reached"); 2064 } 2065 2066 void 2067 vec4_visitor::visit(ir_discard *ir) 2068 { 2069 assert(!"not reached"); 2070 } 2071 2072 void 2073 vec4_visitor::visit(ir_if *ir) 2074 { 2075 /* Don't point the annotation at the if statement, because then it plus 2076 * the then and else blocks get printed. 2077 */ 2078 this->base_ir = ir->condition; 2079 2080 if (intel->gen == 6) { 2081 emit_if_gen6(ir); 2082 } else { 2083 uint32_t predicate; 2084 emit_bool_to_cond_code(ir->condition, &predicate); 2085 emit(IF(predicate)); 2086 } 2087 2088 visit_instructions(&ir->then_instructions); 2089 2090 if (!ir->else_instructions.is_empty()) { 2091 this->base_ir = ir->condition; 2092 emit(BRW_OPCODE_ELSE); 2093 2094 visit_instructions(&ir->else_instructions); 2095 } 2096 2097 this->base_ir = ir->condition; 2098 emit(BRW_OPCODE_ENDIF); 2099 } 2100 2101 void 2102 vec4_visitor::emit_ndc_computation() 2103 { 2104 /* Get the position */ 2105 src_reg pos = src_reg(output_reg[VERT_RESULT_HPOS]); 2106 2107 /* Build ndc coords, which are (x/w, y/w, z/w, 1/w) */ 2108 dst_reg ndc = dst_reg(this, glsl_type::vec4_type); 2109 output_reg[BRW_VERT_RESULT_NDC] = ndc; 2110 2111 current_annotation = "NDC"; 2112 dst_reg ndc_w = ndc; 2113 ndc_w.writemask = WRITEMASK_W; 2114 src_reg pos_w = pos; 2115 pos_w.swizzle = BRW_SWIZZLE4(SWIZZLE_W, SWIZZLE_W, SWIZZLE_W, SWIZZLE_W); 2116 emit_math(SHADER_OPCODE_RCP, ndc_w, pos_w); 2117 2118 dst_reg ndc_xyz = ndc; 2119 ndc_xyz.writemask = WRITEMASK_XYZ; 2120 2121 emit(MUL(ndc_xyz, pos, src_reg(ndc_w))); 2122 } 2123 2124 void 2125 vec4_visitor::emit_psiz_and_flags(struct brw_reg reg) 2126 { 2127 if (intel->gen < 6 && 2128 ((c->prog_data.outputs_written & BITFIELD64_BIT(VERT_RESULT_PSIZ)) || 2129 c->key.userclip_active || brw->has_negative_rhw_bug)) { 2130 dst_reg header1 = dst_reg(this, glsl_type::uvec4_type); 2131 dst_reg header1_w = header1; 2132 header1_w.writemask = WRITEMASK_W; 2133 GLuint i; 2134 2135 emit(MOV(header1, 0u)); 2136 2137 if (c->prog_data.outputs_written & BITFIELD64_BIT(VERT_RESULT_PSIZ)) { 2138 src_reg psiz = src_reg(output_reg[VERT_RESULT_PSIZ]); 2139 2140 current_annotation = "Point size"; 2141 emit(MUL(header1_w, psiz, src_reg((float)(1 << 11)))); 2142 emit(AND(header1_w, src_reg(header1_w), 0x7ff << 8)); 2143 } 2144 2145 current_annotation = "Clipping flags"; 2146 for (i = 0; i < c->key.nr_userclip_plane_consts; i++) { 2147 vec4_instruction *inst; 2148 2149 inst = emit(DP4(dst_null_f(), src_reg(output_reg[VERT_RESULT_HPOS]), 2150 src_reg(this->userplane[i]))); 2151 inst->conditional_mod = BRW_CONDITIONAL_L; 2152 2153 inst = emit(OR(header1_w, src_reg(header1_w), 1u << i)); 2154 inst->predicate = BRW_PREDICATE_NORMAL; 2155 } 2156 2157 /* i965 clipping workaround: 2158 * 1) Test for -ve rhw 2159 * 2) If set, 2160 * set ndc = (0,0,0,0) 2161 * set ucp[6] = 1 2162 * 2163 * Later, clipping will detect ucp[6] and ensure the primitive is 2164 * clipped against all fixed planes. 2165 */ 2166 if (brw->has_negative_rhw_bug) { 2167 #if 0 2168 /* FINISHME */ 2169 brw_CMP(p, 2170 vec8(brw_null_reg()), 2171 BRW_CONDITIONAL_L, 2172 brw_swizzle1(output_reg[BRW_VERT_RESULT_NDC], 3), 2173 brw_imm_f(0)); 2174 2175 brw_OR(p, brw_writemask(header1, WRITEMASK_W), header1, brw_imm_ud(1<<6)); 2176 brw_MOV(p, output_reg[BRW_VERT_RESULT_NDC], brw_imm_f(0)); 2177 brw_set_predicate_control(p, BRW_PREDICATE_NONE); 2178 #endif 2179 } 2180 2181 emit(MOV(retype(reg, BRW_REGISTER_TYPE_UD), src_reg(header1))); 2182 } else if (intel->gen < 6) { 2183 emit(MOV(retype(reg, BRW_REGISTER_TYPE_UD), 0u)); 2184 } else { 2185 emit(MOV(retype(reg, BRW_REGISTER_TYPE_D), src_reg(0))); 2186 if (c->prog_data.outputs_written & BITFIELD64_BIT(VERT_RESULT_PSIZ)) { 2187 emit(MOV(brw_writemask(reg, WRITEMASK_W), 2188 src_reg(output_reg[VERT_RESULT_PSIZ]))); 2189 } 2190 } 2191 } 2192 2193 void 2194 vec4_visitor::emit_clip_distances(struct brw_reg reg, int offset) 2195 { 2196 if (intel->gen < 6) { 2197 /* Clip distance slots are set aside in gen5, but they are not used. It 2198 * is not clear whether we actually need to set aside space for them, 2199 * but the performance cost is negligible. 2200 */ 2201 return; 2202 } 2203 2204 /* From the GLSL 1.30 spec, section 7.1 (Vertex Shader Special Variables): 2205 * 2206 * "If a linked set of shaders forming the vertex stage contains no 2207 * static write to gl_ClipVertex or gl_ClipDistance, but the 2208 * application has requested clipping against user clip planes through 2209 * the API, then the coordinate written to gl_Position is used for 2210 * comparison against the user clip planes." 2211 * 2212 * This function is only called if the shader didn't write to 2213 * gl_ClipDistance. Accordingly, we use gl_ClipVertex to perform clipping 2214 * if the user wrote to it; otherwise we use gl_Position. 2215 */ 2216 gl_vert_result clip_vertex = VERT_RESULT_CLIP_VERTEX; 2217 if (!(c->prog_data.outputs_written 2218 & BITFIELD64_BIT(VERT_RESULT_CLIP_VERTEX))) { 2219 clip_vertex = VERT_RESULT_HPOS; 2220 } 2221 2222 for (int i = 0; i + offset < c->key.nr_userclip_plane_consts && i < 4; 2223 ++i) { 2224 emit(DP4(dst_reg(brw_writemask(reg, 1 << i)), 2225 src_reg(output_reg[clip_vertex]), 2226 src_reg(this->userplane[i + offset]))); 2227 } 2228 } 2229 2230 void 2231 vec4_visitor::emit_generic_urb_slot(dst_reg reg, int vert_result) 2232 { 2233 assert (vert_result < VERT_RESULT_MAX); 2234 reg.type = output_reg[vert_result].type; 2235 current_annotation = output_reg_annotation[vert_result]; 2236 /* Copy the register, saturating if necessary */ 2237 vec4_instruction *inst = emit(MOV(reg, 2238 src_reg(output_reg[vert_result]))); 2239 if ((vert_result == VERT_RESULT_COL0 || 2240 vert_result == VERT_RESULT_COL1 || 2241 vert_result == VERT_RESULT_BFC0 || 2242 vert_result == VERT_RESULT_BFC1) && 2243 c->key.clamp_vertex_color) { 2244 inst->saturate = true; 2245 } 2246 } 2247 2248 void 2249 vec4_visitor::emit_urb_slot(int mrf, int vert_result) 2250 { 2251 struct brw_reg hw_reg = brw_message_reg(mrf); 2252 dst_reg reg = dst_reg(MRF, mrf); 2253 reg.type = BRW_REGISTER_TYPE_F; 2254 2255 switch (vert_result) { 2256 case VERT_RESULT_PSIZ: 2257 /* PSIZ is always in slot 0, and is coupled with other flags. */ 2258 current_annotation = "indices, point width, clip flags"; 2259 emit_psiz_and_flags(hw_reg); 2260 break; 2261 case BRW_VERT_RESULT_NDC: 2262 current_annotation = "NDC"; 2263 emit(MOV(reg, src_reg(output_reg[BRW_VERT_RESULT_NDC]))); 2264 break; 2265 case BRW_VERT_RESULT_HPOS_DUPLICATE: 2266 case VERT_RESULT_HPOS: 2267 current_annotation = "gl_Position"; 2268 emit(MOV(reg, src_reg(output_reg[VERT_RESULT_HPOS]))); 2269 break; 2270 case VERT_RESULT_CLIP_DIST0: 2271 case VERT_RESULT_CLIP_DIST1: 2272 if (this->c->key.uses_clip_distance) { 2273 emit_generic_urb_slot(reg, vert_result); 2274 } else { 2275 current_annotation = "user clip distances"; 2276 emit_clip_distances(hw_reg, (vert_result - VERT_RESULT_CLIP_DIST0) * 4); 2277 } 2278 break; 2279 case VERT_RESULT_EDGE: 2280 /* This is present when doing unfilled polygons. We're supposed to copy 2281 * the edge flag from the user-provided vertex array 2282 * (glEdgeFlagPointer), or otherwise we'll copy from the current value 2283 * of that attribute (starts as 1.0f). This is then used in clipping to 2284 * determine which edges should be drawn as wireframe. 2285 */ 2286 current_annotation = "edge flag"; 2287 emit(MOV(reg, src_reg(dst_reg(ATTR, VERT_ATTRIB_EDGEFLAG, 2288 glsl_type::float_type, WRITEMASK_XYZW)))); 2289 break; 2290 case BRW_VERT_RESULT_PAD: 2291 /* No need to write to this slot */ 2292 break; 2293 default: 2294 emit_generic_urb_slot(reg, vert_result); 2295 break; 2296 } 2297 } 2298 2299 static int 2300 align_interleaved_urb_mlen(struct brw_context *brw, int mlen) 2301 { 2302 struct intel_context *intel = &brw->intel; 2303 2304 if (intel->gen >= 6) { 2305 /* URB data written (does not include the message header reg) must 2306 * be a multiple of 256 bits, or 2 VS registers. See vol5c.5, 2307 * section 5.4.3.2.2: URB_INTERLEAVED. 2308 * 2309 * URB entries are allocated on a multiple of 1024 bits, so an 2310 * extra 128 bits written here to make the end align to 256 is 2311 * no problem. 2312 */ 2313 if ((mlen % 2) != 1) 2314 mlen++; 2315 } 2316 2317 return mlen; 2318 } 2319 2320 /** 2321 * Generates the VUE payload plus the 1 or 2 URB write instructions to 2322 * complete the VS thread. 2323 * 2324 * The VUE layout is documented in Volume 2a. 2325 */ 2326 void 2327 vec4_visitor::emit_urb_writes() 2328 { 2329 /* MRF 0 is reserved for the debugger, so start with message header 2330 * in MRF 1. 2331 */ 2332 int base_mrf = 1; 2333 int mrf = base_mrf; 2334 /* In the process of generating our URB write message contents, we 2335 * may need to unspill a register or load from an array. Those 2336 * reads would use MRFs 14-15. 2337 */ 2338 int max_usable_mrf = 13; 2339 2340 /* The following assertion verifies that max_usable_mrf causes an 2341 * even-numbered amount of URB write data, which will meet gen6's 2342 * requirements for length alignment. 2343 */ 2344 assert ((max_usable_mrf - base_mrf) % 2 == 0); 2345 2346 /* First mrf is the g0-based message header containing URB handles and such, 2347 * which is implied in VS_OPCODE_URB_WRITE. 2348 */ 2349 mrf++; 2350 2351 if (intel->gen < 6) { 2352 emit_ndc_computation(); 2353 } 2354 2355 /* Set up the VUE data for the first URB write */ 2356 int slot; 2357 for (slot = 0; slot < c->prog_data.vue_map.num_slots; ++slot) { 2358 emit_urb_slot(mrf++, c->prog_data.vue_map.slot_to_vert_result[slot]); 2359 2360 /* If this was max_usable_mrf, we can't fit anything more into this URB 2361 * WRITE. 2362 */ 2363 if (mrf > max_usable_mrf) { 2364 slot++; 2365 break; 2366 } 2367 } 2368 2369 current_annotation = "URB write"; 2370 vec4_instruction *inst = emit(VS_OPCODE_URB_WRITE); 2371 inst->base_mrf = base_mrf; 2372 inst->mlen = align_interleaved_urb_mlen(brw, mrf - base_mrf); 2373 inst->eot = (slot >= c->prog_data.vue_map.num_slots); 2374 2375 /* Optional second URB write */ 2376 if (!inst->eot) { 2377 mrf = base_mrf + 1; 2378 2379 for (; slot < c->prog_data.vue_map.num_slots; ++slot) { 2380 assert(mrf < max_usable_mrf); 2381 2382 emit_urb_slot(mrf++, c->prog_data.vue_map.slot_to_vert_result[slot]); 2383 } 2384 2385 current_annotation = "URB write"; 2386 inst = emit(VS_OPCODE_URB_WRITE); 2387 inst->base_mrf = base_mrf; 2388 inst->mlen = align_interleaved_urb_mlen(brw, mrf - base_mrf); 2389 inst->eot = true; 2390 /* URB destination offset. In the previous write, we got MRFs 2391 * 2-13 minus the one header MRF, so 12 regs. URB offset is in 2392 * URB row increments, and each of our MRFs is half of one of 2393 * those, since we're doing interleaved writes. 2394 */ 2395 inst->offset = (max_usable_mrf - base_mrf) / 2; 2396 } 2397 } 2398 2399 src_reg 2400 vec4_visitor::get_scratch_offset(vec4_instruction *inst, 2401 src_reg *reladdr, int reg_offset) 2402 { 2403 /* Because we store the values to scratch interleaved like our 2404 * vertex data, we need to scale the vec4 index by 2. 2405 */ 2406 int message_header_scale = 2; 2407 2408 /* Pre-gen6, the message header uses byte offsets instead of vec4 2409 * (16-byte) offset units. 2410 */ 2411 if (intel->gen < 6) 2412 message_header_scale *= 16; 2413 2414 if (reladdr) { 2415 src_reg index = src_reg(this, glsl_type::int_type); 2416 2417 emit_before(inst, ADD(dst_reg(index), *reladdr, src_reg(reg_offset))); 2418 emit_before(inst, MUL(dst_reg(index), 2419 index, src_reg(message_header_scale))); 2420 2421 return index; 2422 } else { 2423 return src_reg(reg_offset * message_header_scale); 2424 } 2425 } 2426 2427 src_reg 2428 vec4_visitor::get_pull_constant_offset(vec4_instruction *inst, 2429 src_reg *reladdr, int reg_offset) 2430 { 2431 if (reladdr) { 2432 src_reg index = src_reg(this, glsl_type::int_type); 2433 2434 emit_before(inst, ADD(dst_reg(index), *reladdr, src_reg(reg_offset))); 2435 2436 /* Pre-gen6, the message header uses byte offsets instead of vec4 2437 * (16-byte) offset units. 2438 */ 2439 if (intel->gen < 6) { 2440 emit_before(inst, MUL(dst_reg(index), index, src_reg(16))); 2441 } 2442 2443 return index; 2444 } else { 2445 int message_header_scale = intel->gen < 6 ? 16 : 1; 2446 return src_reg(reg_offset * message_header_scale); 2447 } 2448 } 2449 2450 /** 2451 * Emits an instruction before @inst to load the value named by @orig_src 2452 * from scratch space at @base_offset to @temp. 2453 * 2454 * @base_offset is measured in 32-byte units (the size of a register). 2455 */ 2456 void 2457 vec4_visitor::emit_scratch_read(vec4_instruction *inst, 2458 dst_reg temp, src_reg orig_src, 2459 int base_offset) 2460 { 2461 int reg_offset = base_offset + orig_src.reg_offset; 2462 src_reg index = get_scratch_offset(inst, orig_src.reladdr, reg_offset); 2463 2464 emit_before(inst, SCRATCH_READ(temp, index)); 2465 } 2466 2467 /** 2468 * Emits an instruction after @inst to store the value to be written 2469 * to @orig_dst to scratch space at @base_offset, from @temp. 2470 * 2471 * @base_offset is measured in 32-byte units (the size of a register). 2472 */ 2473 void 2474 vec4_visitor::emit_scratch_write(vec4_instruction *inst, 2475 src_reg temp, dst_reg orig_dst, 2476 int base_offset) 2477 { 2478 int reg_offset = base_offset + orig_dst.reg_offset; 2479 src_reg index = get_scratch_offset(inst, orig_dst.reladdr, reg_offset); 2480 2481 dst_reg dst = dst_reg(brw_writemask(brw_vec8_grf(0, 0), 2482 orig_dst.writemask)); 2483 vec4_instruction *write = SCRATCH_WRITE(dst, temp, index); 2484 write->predicate = inst->predicate; 2485 write->ir = inst->ir; 2486 write->annotation = inst->annotation; 2487 inst->insert_after(write); 2488 } 2489 2490 /** 2491 * We can't generally support array access in GRF space, because a 2492 * single instruction's destination can only span 2 contiguous 2493 * registers. So, we send all GRF arrays that get variable index 2494 * access to scratch space. 2495 */ 2496 void 2497 vec4_visitor::move_grf_array_access_to_scratch() 2498 { 2499 int scratch_loc[this->virtual_grf_count]; 2500 2501 for (int i = 0; i < this->virtual_grf_count; i++) { 2502 scratch_loc[i] = -1; 2503 } 2504 2505 /* First, calculate the set of virtual GRFs that need to be punted 2506 * to scratch due to having any array access on them, and where in 2507 * scratch. 2508 */ 2509 foreach_list(node, &this->instructions) { 2510 vec4_instruction *inst = (vec4_instruction *)node; 2511 2512 if (inst->dst.file == GRF && inst->dst.reladdr && 2513 scratch_loc[inst->dst.reg] == -1) { 2514 scratch_loc[inst->dst.reg] = c->last_scratch; 2515 c->last_scratch += this->virtual_grf_sizes[inst->dst.reg]; 2516 } 2517 2518 for (int i = 0 ; i < 3; i++) { 2519 src_reg *src = &inst->src[i]; 2520 2521 if (src->file == GRF && src->reladdr && 2522 scratch_loc[src->reg] == -1) { 2523 scratch_loc[src->reg] = c->last_scratch; 2524 c->last_scratch += this->virtual_grf_sizes[src->reg]; 2525 } 2526 } 2527 } 2528 2529 /* Now, for anything that will be accessed through scratch, rewrite 2530 * it to load/store. Note that this is a _safe list walk, because 2531 * we may generate a new scratch_write instruction after the one 2532 * we're processing. 2533 */ 2534 foreach_list_safe(node, &this->instructions) { 2535 vec4_instruction *inst = (vec4_instruction *)node; 2536 2537 /* Set up the annotation tracking for new generated instructions. */ 2538 base_ir = inst->ir; 2539 current_annotation = inst->annotation; 2540 2541 if (inst->dst.file == GRF && scratch_loc[inst->dst.reg] != -1) { 2542 src_reg temp = src_reg(this, glsl_type::vec4_type); 2543 2544 emit_scratch_write(inst, temp, inst->dst, scratch_loc[inst->dst.reg]); 2545 2546 inst->dst.file = temp.file; 2547 inst->dst.reg = temp.reg; 2548 inst->dst.reg_offset = temp.reg_offset; 2549 inst->dst.reladdr = NULL; 2550 } 2551 2552 for (int i = 0 ; i < 3; i++) { 2553 if (inst->src[i].file != GRF || scratch_loc[inst->src[i].reg] == -1) 2554 continue; 2555 2556 dst_reg temp = dst_reg(this, glsl_type::vec4_type); 2557 2558 emit_scratch_read(inst, temp, inst->src[i], 2559 scratch_loc[inst->src[i].reg]); 2560 2561 inst->src[i].file = temp.file; 2562 inst->src[i].reg = temp.reg; 2563 inst->src[i].reg_offset = temp.reg_offset; 2564 inst->src[i].reladdr = NULL; 2565 } 2566 } 2567 } 2568 2569 /** 2570 * Emits an instruction before @inst to load the value named by @orig_src 2571 * from the pull constant buffer (surface) at @base_offset to @temp. 2572 */ 2573 void 2574 vec4_visitor::emit_pull_constant_load(vec4_instruction *inst, 2575 dst_reg temp, src_reg orig_src, 2576 int base_offset) 2577 { 2578 int reg_offset = base_offset + orig_src.reg_offset; 2579 src_reg index = src_reg((unsigned)SURF_INDEX_VERT_CONST_BUFFER); 2580 src_reg offset = get_pull_constant_offset(inst, orig_src.reladdr, reg_offset); 2581 vec4_instruction *load; 2582 2583 load = new(mem_ctx) vec4_instruction(this, VS_OPCODE_PULL_CONSTANT_LOAD, 2584 temp, index, offset); 2585 load->base_mrf = 14; 2586 load->mlen = 1; 2587 emit_before(inst, load); 2588 } 2589 2590 /** 2591 * Implements array access of uniforms by inserting a 2592 * PULL_CONSTANT_LOAD instruction. 2593 * 2594 * Unlike temporary GRF array access (where we don't support it due to 2595 * the difficulty of doing relative addressing on instruction 2596 * destinations), we could potentially do array access of uniforms 2597 * that were loaded in GRF space as push constants. In real-world 2598 * usage we've seen, though, the arrays being used are always larger 2599 * than we could load as push constants, so just always move all 2600 * uniform array access out to a pull constant buffer. 2601 */ 2602 void 2603 vec4_visitor::move_uniform_array_access_to_pull_constants() 2604 { 2605 int pull_constant_loc[this->uniforms]; 2606 2607 for (int i = 0; i < this->uniforms; i++) { 2608 pull_constant_loc[i] = -1; 2609 } 2610 2611 /* Walk through and find array access of uniforms. Put a copy of that 2612 * uniform in the pull constant buffer. 2613 * 2614 * Note that we don't move constant-indexed accesses to arrays. No 2615 * testing has been done of the performance impact of this choice. 2616 */ 2617 foreach_list_safe(node, &this->instructions) { 2618 vec4_instruction *inst = (vec4_instruction *)node; 2619 2620 for (int i = 0 ; i < 3; i++) { 2621 if (inst->src[i].file != UNIFORM || !inst->src[i].reladdr) 2622 continue; 2623 2624 int uniform = inst->src[i].reg; 2625 2626 /* If this array isn't already present in the pull constant buffer, 2627 * add it. 2628 */ 2629 if (pull_constant_loc[uniform] == -1) { 2630 const float **values = &prog_data->param[uniform * 4]; 2631 2632 pull_constant_loc[uniform] = prog_data->nr_pull_params / 4; 2633 2634 for (int j = 0; j < uniform_size[uniform] * 4; j++) { 2635 prog_data->pull_param[prog_data->nr_pull_params++] = values[j]; 2636 } 2637 } 2638 2639 /* Set up the annotation tracking for new generated instructions. */ 2640 base_ir = inst->ir; 2641 current_annotation = inst->annotation; 2642 2643 dst_reg temp = dst_reg(this, glsl_type::vec4_type); 2644 2645 emit_pull_constant_load(inst, temp, inst->src[i], 2646 pull_constant_loc[uniform]); 2647 2648 inst->src[i].file = temp.file; 2649 inst->src[i].reg = temp.reg; 2650 inst->src[i].reg_offset = temp.reg_offset; 2651 inst->src[i].reladdr = NULL; 2652 } 2653 } 2654 2655 /* Now there are no accesses of the UNIFORM file with a reladdr, so 2656 * no need to track them as larger-than-vec4 objects. This will be 2657 * relied on in cutting out unused uniform vectors from push 2658 * constants. 2659 */ 2660 split_uniform_registers(); 2661 } 2662 2663 void 2664 vec4_visitor::resolve_ud_negate(src_reg *reg) 2665 { 2666 if (reg->type != BRW_REGISTER_TYPE_UD || 2667 !reg->negate) 2668 return; 2669 2670 src_reg temp = src_reg(this, glsl_type::uvec4_type); 2671 emit(BRW_OPCODE_MOV, dst_reg(temp), *reg); 2672 *reg = temp; 2673 } 2674 2675 vec4_visitor::vec4_visitor(struct brw_vs_compile *c, 2676 struct gl_shader_program *prog, 2677 struct brw_shader *shader) 2678 { 2679 this->c = c; 2680 this->p = &c->func; 2681 this->brw = p->brw; 2682 this->intel = &brw->intel; 2683 this->ctx = &intel->ctx; 2684 this->prog = prog; 2685 this->shader = shader; 2686 2687 this->mem_ctx = ralloc_context(NULL); 2688 this->failed = false; 2689 2690 this->base_ir = NULL; 2691 this->current_annotation = NULL; 2692 2693 this->c = c; 2694 this->vp = (struct gl_vertex_program *) 2695 prog->_LinkedShaders[MESA_SHADER_VERTEX]->Program; 2696 this->prog_data = &c->prog_data; 2697 2698 this->variable_ht = hash_table_ctor(0, 2699 hash_table_pointer_hash, 2700 hash_table_pointer_compare); 2701 2702 this->virtual_grf_def = NULL; 2703 this->virtual_grf_use = NULL; 2704 this->virtual_grf_sizes = NULL; 2705 this->virtual_grf_count = 0; 2706 this->virtual_grf_reg_map = NULL; 2707 this->virtual_grf_reg_count = 0; 2708 this->virtual_grf_array_size = 0; 2709 this->live_intervals_valid = false; 2710 2711 this->max_grf = intel->gen >= 7 ? GEN7_MRF_HACK_START : BRW_MAX_GRF; 2712 2713 this->uniforms = 0; 2714 } 2715 2716 vec4_visitor::~vec4_visitor() 2717 { 2718 ralloc_free(this->mem_ctx); 2719 hash_table_dtor(this->variable_ht); 2720 } 2721 2722 2723 void 2724 vec4_visitor::fail(const char *format, ...) 2725 { 2726 va_list va; 2727 char *msg; 2728 2729 if (failed) 2730 return; 2731 2732 failed = true; 2733 2734 va_start(va, format); 2735 msg = ralloc_vasprintf(mem_ctx, format, va); 2736 va_end(va); 2737 msg = ralloc_asprintf(mem_ctx, "VS compile failed: %s\n", msg); 2738 2739 this->fail_msg = msg; 2740 2741 if (INTEL_DEBUG & DEBUG_VS) { 2742 fprintf(stderr, "%s", msg); 2743 } 2744 } 2745 2746 } /* namespace brw */ 2747