1 // 2 // Copyright 2006 The Android Open Source Project 3 // 4 // Build resource files from raw assets. 5 // 6 7 #define PNG_INTERNAL 8 9 #include "Images.h" 10 11 #include <androidfw/ResourceTypes.h> 12 #include <utils/ByteOrder.h> 13 14 #include <png.h> 15 #include <zlib.h> 16 17 // Change this to true for noisy debug output. 18 static const bool kIsDebug = false; 19 20 static void 21 png_write_aapt_file(png_structp png_ptr, png_bytep data, png_size_t length) 22 { 23 AaptFile* aaptfile = (AaptFile*) png_get_io_ptr(png_ptr); 24 status_t err = aaptfile->writeData(data, length); 25 if (err != NO_ERROR) { 26 png_error(png_ptr, "Write Error"); 27 } 28 } 29 30 31 static void 32 png_flush_aapt_file(png_structp /* png_ptr */) 33 { 34 } 35 36 // This holds an image as 8bpp RGBA. 37 struct image_info 38 { 39 image_info() : rows(NULL), is9Patch(false), 40 xDivs(NULL), yDivs(NULL), colors(NULL), allocRows(NULL) { } 41 42 ~image_info() { 43 if (rows && rows != allocRows) { 44 free(rows); 45 } 46 if (allocRows) { 47 for (int i=0; i<(int)allocHeight; i++) { 48 free(allocRows[i]); 49 } 50 free(allocRows); 51 } 52 free(xDivs); 53 free(yDivs); 54 free(colors); 55 } 56 57 void* serialize9patch() { 58 void* serialized = Res_png_9patch::serialize(info9Patch, xDivs, yDivs, colors); 59 reinterpret_cast<Res_png_9patch*>(serialized)->deviceToFile(); 60 return serialized; 61 } 62 63 png_uint_32 width; 64 png_uint_32 height; 65 png_bytepp rows; 66 67 // 9-patch info. 68 bool is9Patch; 69 Res_png_9patch info9Patch; 70 int32_t* xDivs; 71 int32_t* yDivs; 72 uint32_t* colors; 73 74 // Layout padding, if relevant 75 bool haveLayoutBounds; 76 int32_t layoutBoundsLeft; 77 int32_t layoutBoundsTop; 78 int32_t layoutBoundsRight; 79 int32_t layoutBoundsBottom; 80 81 // Round rect outline description 82 int32_t outlineInsetsLeft; 83 int32_t outlineInsetsTop; 84 int32_t outlineInsetsRight; 85 int32_t outlineInsetsBottom; 86 float outlineRadius; 87 uint8_t outlineAlpha; 88 89 png_uint_32 allocHeight; 90 png_bytepp allocRows; 91 }; 92 93 static void log_warning(png_structp png_ptr, png_const_charp warning_message) 94 { 95 const char* imageName = (const char*) png_get_error_ptr(png_ptr); 96 fprintf(stderr, "%s: libpng warning: %s\n", imageName, warning_message); 97 } 98 99 static void read_png(const char* imageName, 100 png_structp read_ptr, png_infop read_info, 101 image_info* outImageInfo) 102 { 103 int color_type; 104 int bit_depth, interlace_type, compression_type; 105 int i; 106 107 png_set_error_fn(read_ptr, const_cast<char*>(imageName), 108 NULL /* use default errorfn */, log_warning); 109 png_read_info(read_ptr, read_info); 110 111 png_get_IHDR(read_ptr, read_info, &outImageInfo->width, 112 &outImageInfo->height, &bit_depth, &color_type, 113 &interlace_type, &compression_type, NULL); 114 115 //printf("Image %s:\n", imageName); 116 //printf("color_type=%d, bit_depth=%d, interlace_type=%d, compression_type=%d\n", 117 // color_type, bit_depth, interlace_type, compression_type); 118 119 if (color_type == PNG_COLOR_TYPE_PALETTE) 120 png_set_palette_to_rgb(read_ptr); 121 122 if (color_type == PNG_COLOR_TYPE_GRAY && bit_depth < 8) 123 png_set_expand_gray_1_2_4_to_8(read_ptr); 124 125 if (png_get_valid(read_ptr, read_info, PNG_INFO_tRNS)) { 126 //printf("Has PNG_INFO_tRNS!\n"); 127 png_set_tRNS_to_alpha(read_ptr); 128 } 129 130 if (bit_depth == 16) 131 png_set_strip_16(read_ptr); 132 133 if ((color_type&PNG_COLOR_MASK_ALPHA) == 0) 134 png_set_add_alpha(read_ptr, 0xFF, PNG_FILLER_AFTER); 135 136 if (color_type == PNG_COLOR_TYPE_GRAY || color_type == PNG_COLOR_TYPE_GRAY_ALPHA) 137 png_set_gray_to_rgb(read_ptr); 138 139 png_set_interlace_handling(read_ptr); 140 141 png_read_update_info(read_ptr, read_info); 142 143 outImageInfo->rows = (png_bytepp)malloc( 144 outImageInfo->height * sizeof(png_bytep)); 145 outImageInfo->allocHeight = outImageInfo->height; 146 outImageInfo->allocRows = outImageInfo->rows; 147 148 png_set_rows(read_ptr, read_info, outImageInfo->rows); 149 150 for (i = 0; i < (int)outImageInfo->height; i++) 151 { 152 outImageInfo->rows[i] = (png_bytep) 153 malloc(png_get_rowbytes(read_ptr, read_info)); 154 } 155 156 png_read_image(read_ptr, outImageInfo->rows); 157 158 png_read_end(read_ptr, read_info); 159 160 if (kIsDebug) { 161 printf("Image %s: w=%d, h=%d, d=%d, colors=%d, inter=%d, comp=%d\n", 162 imageName, 163 (int)outImageInfo->width, (int)outImageInfo->height, 164 bit_depth, color_type, 165 interlace_type, compression_type); 166 } 167 168 png_get_IHDR(read_ptr, read_info, &outImageInfo->width, 169 &outImageInfo->height, &bit_depth, &color_type, 170 &interlace_type, &compression_type, NULL); 171 } 172 173 #define COLOR_TRANSPARENT 0 174 #define COLOR_WHITE 0xFFFFFFFF 175 #define COLOR_TICK 0xFF000000 176 #define COLOR_LAYOUT_BOUNDS_TICK 0xFF0000FF 177 178 enum { 179 TICK_TYPE_NONE, 180 TICK_TYPE_TICK, 181 TICK_TYPE_LAYOUT_BOUNDS, 182 TICK_TYPE_BOTH 183 }; 184 185 static int tick_type(png_bytep p, bool transparent, const char** outError) 186 { 187 png_uint_32 color = p[0] | (p[1] << 8) | (p[2] << 16) | (p[3] << 24); 188 189 if (transparent) { 190 if (p[3] == 0) { 191 return TICK_TYPE_NONE; 192 } 193 if (color == COLOR_LAYOUT_BOUNDS_TICK) { 194 return TICK_TYPE_LAYOUT_BOUNDS; 195 } 196 if (color == COLOR_TICK) { 197 return TICK_TYPE_TICK; 198 } 199 200 // Error cases 201 if (p[3] != 0xff) { 202 *outError = "Frame pixels must be either solid or transparent (not intermediate alphas)"; 203 return TICK_TYPE_NONE; 204 } 205 if (p[0] != 0 || p[1] != 0 || p[2] != 0) { 206 *outError = "Ticks in transparent frame must be black or red"; 207 } 208 return TICK_TYPE_TICK; 209 } 210 211 if (p[3] != 0xFF) { 212 *outError = "White frame must be a solid color (no alpha)"; 213 } 214 if (color == COLOR_WHITE) { 215 return TICK_TYPE_NONE; 216 } 217 if (color == COLOR_TICK) { 218 return TICK_TYPE_TICK; 219 } 220 if (color == COLOR_LAYOUT_BOUNDS_TICK) { 221 return TICK_TYPE_LAYOUT_BOUNDS; 222 } 223 224 if (p[0] != 0 || p[1] != 0 || p[2] != 0) { 225 *outError = "Ticks in white frame must be black or red"; 226 return TICK_TYPE_NONE; 227 } 228 return TICK_TYPE_TICK; 229 } 230 231 enum { 232 TICK_START, 233 TICK_INSIDE_1, 234 TICK_OUTSIDE_1 235 }; 236 237 static status_t get_horizontal_ticks( 238 png_bytep row, int width, bool transparent, bool required, 239 int32_t* outLeft, int32_t* outRight, const char** outError, 240 uint8_t* outDivs, bool multipleAllowed) 241 { 242 int i; 243 *outLeft = *outRight = -1; 244 int state = TICK_START; 245 bool found = false; 246 247 for (i=1; i<width-1; i++) { 248 if (TICK_TYPE_TICK == tick_type(row+i*4, transparent, outError)) { 249 if (state == TICK_START || 250 (state == TICK_OUTSIDE_1 && multipleAllowed)) { 251 *outLeft = i-1; 252 *outRight = width-2; 253 found = true; 254 if (outDivs != NULL) { 255 *outDivs += 2; 256 } 257 state = TICK_INSIDE_1; 258 } else if (state == TICK_OUTSIDE_1) { 259 *outError = "Can't have more than one marked region along edge"; 260 *outLeft = i; 261 return UNKNOWN_ERROR; 262 } 263 } else if (*outError == NULL) { 264 if (state == TICK_INSIDE_1) { 265 // We're done with this div. Move on to the next. 266 *outRight = i-1; 267 outRight += 2; 268 outLeft += 2; 269 state = TICK_OUTSIDE_1; 270 } 271 } else { 272 *outLeft = i; 273 return UNKNOWN_ERROR; 274 } 275 } 276 277 if (required && !found) { 278 *outError = "No marked region found along edge"; 279 *outLeft = -1; 280 return UNKNOWN_ERROR; 281 } 282 283 return NO_ERROR; 284 } 285 286 static status_t get_vertical_ticks( 287 png_bytepp rows, int offset, int height, bool transparent, bool required, 288 int32_t* outTop, int32_t* outBottom, const char** outError, 289 uint8_t* outDivs, bool multipleAllowed) 290 { 291 int i; 292 *outTop = *outBottom = -1; 293 int state = TICK_START; 294 bool found = false; 295 296 for (i=1; i<height-1; i++) { 297 if (TICK_TYPE_TICK == tick_type(rows[i]+offset, transparent, outError)) { 298 if (state == TICK_START || 299 (state == TICK_OUTSIDE_1 && multipleAllowed)) { 300 *outTop = i-1; 301 *outBottom = height-2; 302 found = true; 303 if (outDivs != NULL) { 304 *outDivs += 2; 305 } 306 state = TICK_INSIDE_1; 307 } else if (state == TICK_OUTSIDE_1) { 308 *outError = "Can't have more than one marked region along edge"; 309 *outTop = i; 310 return UNKNOWN_ERROR; 311 } 312 } else if (*outError == NULL) { 313 if (state == TICK_INSIDE_1) { 314 // We're done with this div. Move on to the next. 315 *outBottom = i-1; 316 outTop += 2; 317 outBottom += 2; 318 state = TICK_OUTSIDE_1; 319 } 320 } else { 321 *outTop = i; 322 return UNKNOWN_ERROR; 323 } 324 } 325 326 if (required && !found) { 327 *outError = "No marked region found along edge"; 328 *outTop = -1; 329 return UNKNOWN_ERROR; 330 } 331 332 return NO_ERROR; 333 } 334 335 static status_t get_horizontal_layout_bounds_ticks( 336 png_bytep row, int width, bool transparent, bool /* required */, 337 int32_t* outLeft, int32_t* outRight, const char** outError) 338 { 339 int i; 340 *outLeft = *outRight = 0; 341 342 // Look for left tick 343 if (TICK_TYPE_LAYOUT_BOUNDS == tick_type(row + 4, transparent, outError)) { 344 // Starting with a layout padding tick 345 i = 1; 346 while (i < width - 1) { 347 (*outLeft)++; 348 i++; 349 int tick = tick_type(row + i * 4, transparent, outError); 350 if (tick != TICK_TYPE_LAYOUT_BOUNDS) { 351 break; 352 } 353 } 354 } 355 356 // Look for right tick 357 if (TICK_TYPE_LAYOUT_BOUNDS == tick_type(row + (width - 2) * 4, transparent, outError)) { 358 // Ending with a layout padding tick 359 i = width - 2; 360 while (i > 1) { 361 (*outRight)++; 362 i--; 363 int tick = tick_type(row+i*4, transparent, outError); 364 if (tick != TICK_TYPE_LAYOUT_BOUNDS) { 365 break; 366 } 367 } 368 } 369 370 return NO_ERROR; 371 } 372 373 static status_t get_vertical_layout_bounds_ticks( 374 png_bytepp rows, int offset, int height, bool transparent, bool /* required */, 375 int32_t* outTop, int32_t* outBottom, const char** outError) 376 { 377 int i; 378 *outTop = *outBottom = 0; 379 380 // Look for top tick 381 if (TICK_TYPE_LAYOUT_BOUNDS == tick_type(rows[1] + offset, transparent, outError)) { 382 // Starting with a layout padding tick 383 i = 1; 384 while (i < height - 1) { 385 (*outTop)++; 386 i++; 387 int tick = tick_type(rows[i] + offset, transparent, outError); 388 if (tick != TICK_TYPE_LAYOUT_BOUNDS) { 389 break; 390 } 391 } 392 } 393 394 // Look for bottom tick 395 if (TICK_TYPE_LAYOUT_BOUNDS == tick_type(rows[height - 2] + offset, transparent, outError)) { 396 // Ending with a layout padding tick 397 i = height - 2; 398 while (i > 1) { 399 (*outBottom)++; 400 i--; 401 int tick = tick_type(rows[i] + offset, transparent, outError); 402 if (tick != TICK_TYPE_LAYOUT_BOUNDS) { 403 break; 404 } 405 } 406 } 407 408 return NO_ERROR; 409 } 410 411 static void find_max_opacity(png_byte** rows, 412 int startX, int startY, int endX, int endY, int dX, int dY, 413 int* out_inset) 414 { 415 uint8_t max_opacity = 0; 416 int inset = 0; 417 *out_inset = 0; 418 for (int x = startX, y = startY; x != endX && y != endY; x += dX, y += dY, inset++) { 419 png_byte* color = rows[y] + x * 4; 420 uint8_t opacity = color[3]; 421 if (opacity > max_opacity) { 422 max_opacity = opacity; 423 *out_inset = inset; 424 } 425 if (opacity == 0xff) return; 426 } 427 } 428 429 static uint8_t max_alpha_over_row(png_byte* row, int startX, int endX) 430 { 431 uint8_t max_alpha = 0; 432 for (int x = startX; x < endX; x++) { 433 uint8_t alpha = (row + x * 4)[3]; 434 if (alpha > max_alpha) max_alpha = alpha; 435 } 436 return max_alpha; 437 } 438 439 static uint8_t max_alpha_over_col(png_byte** rows, int offsetX, int startY, int endY) 440 { 441 uint8_t max_alpha = 0; 442 for (int y = startY; y < endY; y++) { 443 uint8_t alpha = (rows[y] + offsetX * 4)[3]; 444 if (alpha > max_alpha) max_alpha = alpha; 445 } 446 return max_alpha; 447 } 448 449 static void get_outline(image_info* image) 450 { 451 int midX = image->width / 2; 452 int midY = image->height / 2; 453 int endX = image->width - 2; 454 int endY = image->height - 2; 455 456 // find left and right extent of nine patch content on center row 457 if (image->width > 4) { 458 find_max_opacity(image->rows, 1, midY, midX, -1, 1, 0, &image->outlineInsetsLeft); 459 find_max_opacity(image->rows, endX, midY, midX, -1, -1, 0, &image->outlineInsetsRight); 460 } else { 461 image->outlineInsetsLeft = 0; 462 image->outlineInsetsRight = 0; 463 } 464 465 // find top and bottom extent of nine patch content on center column 466 if (image->height > 4) { 467 find_max_opacity(image->rows, midX, 1, -1, midY, 0, 1, &image->outlineInsetsTop); 468 find_max_opacity(image->rows, midX, endY, -1, midY, 0, -1, &image->outlineInsetsBottom); 469 } else { 470 image->outlineInsetsTop = 0; 471 image->outlineInsetsBottom = 0; 472 } 473 474 int innerStartX = 1 + image->outlineInsetsLeft; 475 int innerStartY = 1 + image->outlineInsetsTop; 476 int innerEndX = endX - image->outlineInsetsRight; 477 int innerEndY = endY - image->outlineInsetsBottom; 478 int innerMidX = (innerEndX + innerStartX) / 2; 479 int innerMidY = (innerEndY + innerStartY) / 2; 480 481 // assuming the image is a round rect, compute the radius by marching 482 // diagonally from the top left corner towards the center 483 image->outlineAlpha = std::max( 484 max_alpha_over_row(image->rows[innerMidY], innerStartX, innerEndX), 485 max_alpha_over_col(image->rows, innerMidX, innerStartY, innerStartY)); 486 487 int diagonalInset = 0; 488 find_max_opacity(image->rows, innerStartX, innerStartY, innerMidX, innerMidY, 1, 1, 489 &diagonalInset); 490 491 /* Determine source radius based upon inset: 492 * sqrt(r^2 + r^2) = sqrt(i^2 + i^2) + r 493 * sqrt(2) * r = sqrt(2) * i + r 494 * (sqrt(2) - 1) * r = sqrt(2) * i 495 * r = sqrt(2) / (sqrt(2) - 1) * i 496 */ 497 image->outlineRadius = 3.4142f * diagonalInset; 498 499 if (kIsDebug) { 500 printf("outline insets %d %d %d %d, rad %f, alpha %x\n", 501 image->outlineInsetsLeft, 502 image->outlineInsetsTop, 503 image->outlineInsetsRight, 504 image->outlineInsetsBottom, 505 image->outlineRadius, 506 image->outlineAlpha); 507 } 508 } 509 510 511 static uint32_t get_color( 512 png_bytepp rows, int left, int top, int right, int bottom) 513 { 514 png_bytep color = rows[top] + left*4; 515 516 if (left > right || top > bottom) { 517 return Res_png_9patch::TRANSPARENT_COLOR; 518 } 519 520 while (top <= bottom) { 521 for (int i = left; i <= right; i++) { 522 png_bytep p = rows[top]+i*4; 523 if (color[3] == 0) { 524 if (p[3] != 0) { 525 return Res_png_9patch::NO_COLOR; 526 } 527 } else if (p[0] != color[0] || p[1] != color[1] 528 || p[2] != color[2] || p[3] != color[3]) { 529 return Res_png_9patch::NO_COLOR; 530 } 531 } 532 top++; 533 } 534 535 if (color[3] == 0) { 536 return Res_png_9patch::TRANSPARENT_COLOR; 537 } 538 return (color[3]<<24) | (color[0]<<16) | (color[1]<<8) | color[2]; 539 } 540 541 static status_t do_9patch(const char* imageName, image_info* image) 542 { 543 image->is9Patch = true; 544 545 int W = image->width; 546 int H = image->height; 547 int i, j; 548 549 int maxSizeXDivs = W * sizeof(int32_t); 550 int maxSizeYDivs = H * sizeof(int32_t); 551 int32_t* xDivs = image->xDivs = (int32_t*) malloc(maxSizeXDivs); 552 int32_t* yDivs = image->yDivs = (int32_t*) malloc(maxSizeYDivs); 553 uint8_t numXDivs = 0; 554 uint8_t numYDivs = 0; 555 556 int8_t numColors; 557 int numRows; 558 int numCols; 559 int top; 560 int left; 561 int right; 562 int bottom; 563 memset(xDivs, -1, maxSizeXDivs); 564 memset(yDivs, -1, maxSizeYDivs); 565 image->info9Patch.paddingLeft = image->info9Patch.paddingRight = 566 image->info9Patch.paddingTop = image->info9Patch.paddingBottom = -1; 567 568 image->layoutBoundsLeft = image->layoutBoundsRight = 569 image->layoutBoundsTop = image->layoutBoundsBottom = 0; 570 571 png_bytep p = image->rows[0]; 572 bool transparent = p[3] == 0; 573 bool hasColor = false; 574 575 const char* errorMsg = NULL; 576 int errorPixel = -1; 577 const char* errorEdge = NULL; 578 579 int colorIndex = 0; 580 581 // Validate size... 582 if (W < 3 || H < 3) { 583 errorMsg = "Image must be at least 3x3 (1x1 without frame) pixels"; 584 goto getout; 585 } 586 587 // Validate frame... 588 if (!transparent && 589 (p[0] != 0xFF || p[1] != 0xFF || p[2] != 0xFF || p[3] != 0xFF)) { 590 errorMsg = "Must have one-pixel frame that is either transparent or white"; 591 goto getout; 592 } 593 594 // Find left and right of sizing areas... 595 if (get_horizontal_ticks(p, W, transparent, true, &xDivs[0], 596 &xDivs[1], &errorMsg, &numXDivs, true) != NO_ERROR) { 597 errorPixel = xDivs[0]; 598 errorEdge = "top"; 599 goto getout; 600 } 601 602 // Find top and bottom of sizing areas... 603 if (get_vertical_ticks(image->rows, 0, H, transparent, true, &yDivs[0], 604 &yDivs[1], &errorMsg, &numYDivs, true) != NO_ERROR) { 605 errorPixel = yDivs[0]; 606 errorEdge = "left"; 607 goto getout; 608 } 609 610 // Copy patch size data into image... 611 image->info9Patch.numXDivs = numXDivs; 612 image->info9Patch.numYDivs = numYDivs; 613 614 // Find left and right of padding area... 615 if (get_horizontal_ticks(image->rows[H-1], W, transparent, false, &image->info9Patch.paddingLeft, 616 &image->info9Patch.paddingRight, &errorMsg, NULL, false) != NO_ERROR) { 617 errorPixel = image->info9Patch.paddingLeft; 618 errorEdge = "bottom"; 619 goto getout; 620 } 621 622 // Find top and bottom of padding area... 623 if (get_vertical_ticks(image->rows, (W-1)*4, H, transparent, false, &image->info9Patch.paddingTop, 624 &image->info9Patch.paddingBottom, &errorMsg, NULL, false) != NO_ERROR) { 625 errorPixel = image->info9Patch.paddingTop; 626 errorEdge = "right"; 627 goto getout; 628 } 629 630 // Find left and right of layout padding... 631 get_horizontal_layout_bounds_ticks(image->rows[H-1], W, transparent, false, 632 &image->layoutBoundsLeft, 633 &image->layoutBoundsRight, &errorMsg); 634 635 get_vertical_layout_bounds_ticks(image->rows, (W-1)*4, H, transparent, false, 636 &image->layoutBoundsTop, 637 &image->layoutBoundsBottom, &errorMsg); 638 639 image->haveLayoutBounds = image->layoutBoundsLeft != 0 640 || image->layoutBoundsRight != 0 641 || image->layoutBoundsTop != 0 642 || image->layoutBoundsBottom != 0; 643 644 if (image->haveLayoutBounds) { 645 if (kIsDebug) { 646 printf("layoutBounds=%d %d %d %d\n", image->layoutBoundsLeft, image->layoutBoundsTop, 647 image->layoutBoundsRight, image->layoutBoundsBottom); 648 } 649 } 650 651 // use opacity of pixels to estimate the round rect outline 652 get_outline(image); 653 654 // If padding is not yet specified, take values from size. 655 if (image->info9Patch.paddingLeft < 0) { 656 image->info9Patch.paddingLeft = xDivs[0]; 657 image->info9Patch.paddingRight = W - 2 - xDivs[1]; 658 } else { 659 // Adjust value to be correct! 660 image->info9Patch.paddingRight = W - 2 - image->info9Patch.paddingRight; 661 } 662 if (image->info9Patch.paddingTop < 0) { 663 image->info9Patch.paddingTop = yDivs[0]; 664 image->info9Patch.paddingBottom = H - 2 - yDivs[1]; 665 } else { 666 // Adjust value to be correct! 667 image->info9Patch.paddingBottom = H - 2 - image->info9Patch.paddingBottom; 668 } 669 670 if (kIsDebug) { 671 printf("Size ticks for %s: x0=%d, x1=%d, y0=%d, y1=%d\n", imageName, 672 xDivs[0], xDivs[1], 673 yDivs[0], yDivs[1]); 674 printf("padding ticks for %s: l=%d, r=%d, t=%d, b=%d\n", imageName, 675 image->info9Patch.paddingLeft, image->info9Patch.paddingRight, 676 image->info9Patch.paddingTop, image->info9Patch.paddingBottom); 677 } 678 679 // Remove frame from image. 680 image->rows = (png_bytepp)malloc((H-2) * sizeof(png_bytep)); 681 for (i=0; i<(H-2); i++) { 682 image->rows[i] = image->allocRows[i+1]; 683 memmove(image->rows[i], image->rows[i]+4, (W-2)*4); 684 } 685 image->width -= 2; 686 W = image->width; 687 image->height -= 2; 688 H = image->height; 689 690 // Figure out the number of rows and columns in the N-patch 691 numCols = numXDivs + 1; 692 if (xDivs[0] == 0) { // Column 1 is strechable 693 numCols--; 694 } 695 if (xDivs[numXDivs - 1] == W) { 696 numCols--; 697 } 698 numRows = numYDivs + 1; 699 if (yDivs[0] == 0) { // Row 1 is strechable 700 numRows--; 701 } 702 if (yDivs[numYDivs - 1] == H) { 703 numRows--; 704 } 705 706 // Make sure the amount of rows and columns will fit in the number of 707 // colors we can use in the 9-patch format. 708 if (numRows * numCols > 0x7F) { 709 errorMsg = "Too many rows and columns in 9-patch perimeter"; 710 goto getout; 711 } 712 713 numColors = numRows * numCols; 714 image->info9Patch.numColors = numColors; 715 image->colors = (uint32_t*)malloc(numColors * sizeof(uint32_t)); 716 717 // Fill in color information for each patch. 718 719 uint32_t c; 720 top = 0; 721 722 // The first row always starts with the top being at y=0 and the bottom 723 // being either yDivs[1] (if yDivs[0]=0) of yDivs[0]. In the former case 724 // the first row is stretchable along the Y axis, otherwise it is fixed. 725 // The last row always ends with the bottom being bitmap.height and the top 726 // being either yDivs[numYDivs-2] (if yDivs[numYDivs-1]=bitmap.height) or 727 // yDivs[numYDivs-1]. In the former case the last row is stretchable along 728 // the Y axis, otherwise it is fixed. 729 // 730 // The first and last columns are similarly treated with respect to the X 731 // axis. 732 // 733 // The above is to help explain some of the special casing that goes on the 734 // code below. 735 736 // The initial yDiv and whether the first row is considered stretchable or 737 // not depends on whether yDiv[0] was zero or not. 738 for (j = (yDivs[0] == 0 ? 1 : 0); 739 j <= numYDivs && top < H; 740 j++) { 741 if (j == numYDivs) { 742 bottom = H; 743 } else { 744 bottom = yDivs[j]; 745 } 746 left = 0; 747 // The initial xDiv and whether the first column is considered 748 // stretchable or not depends on whether xDiv[0] was zero or not. 749 for (i = xDivs[0] == 0 ? 1 : 0; 750 i <= numXDivs && left < W; 751 i++) { 752 if (i == numXDivs) { 753 right = W; 754 } else { 755 right = xDivs[i]; 756 } 757 c = get_color(image->rows, left, top, right - 1, bottom - 1); 758 image->colors[colorIndex++] = c; 759 if (kIsDebug) { 760 if (c != Res_png_9patch::NO_COLOR) 761 hasColor = true; 762 } 763 left = right; 764 } 765 top = bottom; 766 } 767 768 assert(colorIndex == numColors); 769 770 for (i=0; i<numColors; i++) { 771 if (hasColor) { 772 if (i == 0) printf("Colors in %s:\n ", imageName); 773 printf(" #%08x", image->colors[i]); 774 if (i == numColors - 1) printf("\n"); 775 } 776 } 777 getout: 778 if (errorMsg) { 779 fprintf(stderr, 780 "ERROR: 9-patch image %s malformed.\n" 781 " %s.\n", imageName, errorMsg); 782 if (errorEdge != NULL) { 783 if (errorPixel >= 0) { 784 fprintf(stderr, 785 " Found at pixel #%d along %s edge.\n", errorPixel, errorEdge); 786 } else { 787 fprintf(stderr, 788 " Found along %s edge.\n", errorEdge); 789 } 790 } 791 return UNKNOWN_ERROR; 792 } 793 return NO_ERROR; 794 } 795 796 static void checkNinePatchSerialization(Res_png_9patch* inPatch, void* data) 797 { 798 size_t patchSize = inPatch->serializedSize(); 799 void* newData = malloc(patchSize); 800 memcpy(newData, data, patchSize); 801 Res_png_9patch* outPatch = inPatch->deserialize(newData); 802 // deserialization is done in place, so outPatch == newData 803 assert(outPatch == newData); 804 assert(outPatch->numXDivs == inPatch->numXDivs); 805 assert(outPatch->numYDivs == inPatch->numYDivs); 806 assert(outPatch->paddingLeft == inPatch->paddingLeft); 807 assert(outPatch->paddingRight == inPatch->paddingRight); 808 assert(outPatch->paddingTop == inPatch->paddingTop); 809 assert(outPatch->paddingBottom == inPatch->paddingBottom); 810 for (int i = 0; i < outPatch->numXDivs; i++) { 811 assert(outPatch->getXDivs()[i] == inPatch->getXDivs()[i]); 812 } 813 for (int i = 0; i < outPatch->numYDivs; i++) { 814 assert(outPatch->getYDivs()[i] == inPatch->getYDivs()[i]); 815 } 816 for (int i = 0; i < outPatch->numColors; i++) { 817 assert(outPatch->getColors()[i] == inPatch->getColors()[i]); 818 } 819 free(newData); 820 } 821 822 static void dump_image(int w, int h, png_bytepp rows, int color_type) 823 { 824 int i, j, rr, gg, bb, aa; 825 826 int bpp; 827 if (color_type == PNG_COLOR_TYPE_PALETTE || color_type == PNG_COLOR_TYPE_GRAY) { 828 bpp = 1; 829 } else if (color_type == PNG_COLOR_TYPE_GRAY_ALPHA) { 830 bpp = 2; 831 } else if (color_type == PNG_COLOR_TYPE_RGB || color_type == PNG_COLOR_TYPE_RGB_ALPHA) { 832 // We use a padding byte even when there is no alpha 833 bpp = 4; 834 } else { 835 printf("Unknown color type %d.\n", color_type); 836 return; 837 } 838 839 for (j = 0; j < h; j++) { 840 png_bytep row = rows[j]; 841 for (i = 0; i < w; i++) { 842 rr = row[0]; 843 gg = row[1]; 844 bb = row[2]; 845 aa = row[3]; 846 row += bpp; 847 848 if (i == 0) { 849 printf("Row %d:", j); 850 } 851 switch (bpp) { 852 case 1: 853 printf(" (%d)", rr); 854 break; 855 case 2: 856 printf(" (%d %d", rr, gg); 857 break; 858 case 3: 859 printf(" (%d %d %d)", rr, gg, bb); 860 break; 861 case 4: 862 printf(" (%d %d %d %d)", rr, gg, bb, aa); 863 break; 864 } 865 if (i == (w - 1)) { 866 printf("\n"); 867 } 868 } 869 } 870 } 871 872 #define MAX(a,b) ((a)>(b)?(a):(b)) 873 #define ABS(a) ((a)<0?-(a):(a)) 874 875 static void analyze_image(const char *imageName, image_info &imageInfo, int grayscaleTolerance, 876 png_colorp rgbPalette, png_bytep alphaPalette, 877 int *paletteEntries, int *alphaPaletteEntries, bool *hasTransparency, 878 int *colorType, png_bytepp outRows) 879 { 880 int w = imageInfo.width; 881 int h = imageInfo.height; 882 int i, j, rr, gg, bb, aa, idx;; 883 uint32_t opaqueColors[256], alphaColors[256]; 884 uint32_t col; 885 int numOpaqueColors = 0, numAlphaColors = 0; 886 int maxGrayDeviation = 0; 887 888 bool isOpaque = true; 889 bool isPalette = true; 890 bool isGrayscale = true; 891 892 // Scan the entire image and determine if: 893 // 1. Every pixel has R == G == B (grayscale) 894 // 2. Every pixel has A == 255 (opaque) 895 // 3. There are no more than 256 distinct RGBA colors 896 // We will track opaque colors separately from colors with 897 // alpha. This allows us to reencode the color table more 898 // efficiently (color tables entries without a corresponding 899 // alpha value are assumed to be opaque). 900 901 if (kIsDebug) { 902 printf("Initial image data:\n"); 903 dump_image(w, h, imageInfo.rows, PNG_COLOR_TYPE_RGB_ALPHA); 904 } 905 906 for (j = 0; j < h; j++) { 907 png_bytep row = imageInfo.rows[j]; 908 png_bytep out = outRows[j]; 909 for (i = 0; i < w; i++) { 910 911 // Make sure any zero alpha pixels are fully zeroed. On average, 912 // each of our PNG assets seem to have about four distinct pixels 913 // with zero alpha. 914 // There are several advantages to setting these to zero: 915 // (1) Images are more likely able to be encodable with a palette. 916 // (2) Image palettes will be smaller. 917 // (3) Premultiplied and unpremultiplied PNG decodes can skip 918 // writing zeros to memory, often saving significant numbers 919 // of memory pages. 920 aa = *(row + 3); 921 if (aa == 0) { 922 rr = 0; 923 gg = 0; 924 bb = 0; 925 926 // Also set red, green, and blue to zero in "row". If we later 927 // decide to encode the PNG as RGB or RGBA, we will use the 928 // values stored there. 929 *(row) = 0; 930 *(row + 1) = 0; 931 *(row + 2) = 0; 932 } else { 933 rr = *(row); 934 gg = *(row + 1); 935 bb = *(row + 2); 936 } 937 row += 4; 938 939 int odev = maxGrayDeviation; 940 maxGrayDeviation = MAX(ABS(rr - gg), maxGrayDeviation); 941 maxGrayDeviation = MAX(ABS(gg - bb), maxGrayDeviation); 942 maxGrayDeviation = MAX(ABS(bb - rr), maxGrayDeviation); 943 if (maxGrayDeviation > odev) { 944 if (kIsDebug) { 945 printf("New max dev. = %d at pixel (%d, %d) = (%d %d %d %d)\n", 946 maxGrayDeviation, i, j, rr, gg, bb, aa); 947 } 948 } 949 950 // Check if image is really grayscale 951 if (isGrayscale) { 952 if (rr != gg || rr != bb) { 953 if (kIsDebug) { 954 printf("Found a non-gray pixel at %d, %d = (%d %d %d %d)\n", 955 i, j, rr, gg, bb, aa); 956 } 957 isGrayscale = false; 958 } 959 } 960 961 // Check if image is really opaque 962 if (isOpaque) { 963 if (aa != 0xff) { 964 if (kIsDebug) { 965 printf("Found a non-opaque pixel at %d, %d = (%d %d %d %d)\n", 966 i, j, rr, gg, bb, aa); 967 } 968 isOpaque = false; 969 } 970 } 971 972 // Check if image is really <= 256 colors 973 if (isPalette) { 974 col = (uint32_t) ((rr << 24) | (gg << 16) | (bb << 8) | aa); 975 bool match = false; 976 977 if (aa == 0xff) { 978 for (idx = 0; idx < numOpaqueColors; idx++) { 979 if (opaqueColors[idx] == col) { 980 match = true; 981 break; 982 } 983 } 984 985 if (!match) { 986 if (numOpaqueColors < 256) { 987 opaqueColors[numOpaqueColors] = col; 988 } 989 numOpaqueColors++; 990 } 991 992 // Write the palette index for the pixel to outRows optimistically. 993 // We might overwrite it later if we decide to encode as gray or 994 // gray + alpha. We may also need to overwrite it when we combine 995 // into a single palette. 996 *out++ = idx; 997 } else { 998 for (idx = 0; idx < numAlphaColors; idx++) { 999 if (alphaColors[idx] == col) { 1000 match = true; 1001 break; 1002 } 1003 } 1004 1005 if (!match) { 1006 if (numAlphaColors < 256) { 1007 alphaColors[numAlphaColors] = col; 1008 } 1009 numAlphaColors++; 1010 } 1011 1012 // Write the palette index for the pixel to outRows optimistically. 1013 // We might overwrite it later if we decide to encode as gray or 1014 // gray + alpha. 1015 *out++ = idx; 1016 } 1017 1018 if (numOpaqueColors + numAlphaColors > 256) { 1019 if (kIsDebug) { 1020 printf("Found 257th color at %d, %d\n", i, j); 1021 } 1022 isPalette = false; 1023 } 1024 } 1025 } 1026 } 1027 1028 // If we decide to encode the image using a palette, we will reset these counts 1029 // to the appropriate values later. Initializing them here avoids compiler 1030 // complaints about uses of possibly uninitialized variables. 1031 *paletteEntries = 0; 1032 *alphaPaletteEntries = 0; 1033 1034 *hasTransparency = !isOpaque; 1035 int paletteSize = w * h + 3 * numOpaqueColors + 4 * numAlphaColors; 1036 1037 int bpp = isOpaque ? 3 : 4; 1038 if (kIsDebug) { 1039 printf("isGrayscale = %s\n", isGrayscale ? "true" : "false"); 1040 printf("isOpaque = %s\n", isOpaque ? "true" : "false"); 1041 printf("isPalette = %s\n", isPalette ? "true" : "false"); 1042 printf("Size w/ palette = %d, gray+alpha = %d, rgb(a) = %d\n", 1043 paletteSize, 2 * w * h, bpp * w * h); 1044 printf("Max gray deviation = %d, tolerance = %d\n", maxGrayDeviation, grayscaleTolerance); 1045 } 1046 1047 // Choose the best color type for the image. 1048 // 1. Opaque gray - use COLOR_TYPE_GRAY at 1 byte/pixel 1049 // 2. Gray + alpha - use COLOR_TYPE_PALETTE if the number of distinct combinations 1050 // is sufficiently small, otherwise use COLOR_TYPE_GRAY_ALPHA 1051 // 3. RGB(A) - use COLOR_TYPE_PALETTE if the number of distinct colors is sufficiently 1052 // small, otherwise use COLOR_TYPE_RGB{_ALPHA} 1053 if (isGrayscale) { 1054 if (isOpaque) { 1055 *colorType = PNG_COLOR_TYPE_GRAY; // 1 byte/pixel 1056 } else { 1057 // Use a simple heuristic to determine whether using a palette will 1058 // save space versus using gray + alpha for each pixel. 1059 // This doesn't take into account chunk overhead, filtering, LZ 1060 // compression, etc. 1061 if (isPalette && (paletteSize < 2 * w * h)) { 1062 *colorType = PNG_COLOR_TYPE_PALETTE; // 1 byte/pixel + 4 bytes/color 1063 } else { 1064 *colorType = PNG_COLOR_TYPE_GRAY_ALPHA; // 2 bytes per pixel 1065 } 1066 } 1067 } else if (isPalette && (paletteSize < bpp * w * h)) { 1068 *colorType = PNG_COLOR_TYPE_PALETTE; 1069 } else { 1070 if (maxGrayDeviation <= grayscaleTolerance) { 1071 printf("%s: forcing image to gray (max deviation = %d)\n", imageName, maxGrayDeviation); 1072 *colorType = isOpaque ? PNG_COLOR_TYPE_GRAY : PNG_COLOR_TYPE_GRAY_ALPHA; 1073 } else { 1074 *colorType = isOpaque ? PNG_COLOR_TYPE_RGB : PNG_COLOR_TYPE_RGB_ALPHA; 1075 } 1076 } 1077 1078 // Perform postprocessing of the image or palette data based on the final 1079 // color type chosen 1080 1081 if (*colorType == PNG_COLOR_TYPE_PALETTE) { 1082 // Combine the alphaColors and the opaqueColors into a single palette. 1083 // The alphaColors must be at the start of the palette. 1084 uint32_t* colors = alphaColors; 1085 memcpy(colors + numAlphaColors, opaqueColors, 4 * numOpaqueColors); 1086 1087 // Fix the indices of the opaque colors in the image. 1088 for (j = 0; j < h; j++) { 1089 png_bytep row = imageInfo.rows[j]; 1090 png_bytep out = outRows[j]; 1091 for (i = 0; i < w; i++) { 1092 uint32_t pixel = ((uint32_t*) row)[i]; 1093 if (pixel >> 24 == 0xFF) { 1094 out[i] += numAlphaColors; 1095 } 1096 } 1097 } 1098 1099 // Create separate RGB and Alpha palettes and set the number of colors 1100 int numColors = numOpaqueColors + numAlphaColors; 1101 *paletteEntries = numColors; 1102 *alphaPaletteEntries = numAlphaColors; 1103 1104 // Create the RGB and alpha palettes 1105 for (int idx = 0; idx < numColors; idx++) { 1106 col = colors[idx]; 1107 rgbPalette[idx].red = (png_byte) ((col >> 24) & 0xff); 1108 rgbPalette[idx].green = (png_byte) ((col >> 16) & 0xff); 1109 rgbPalette[idx].blue = (png_byte) ((col >> 8) & 0xff); 1110 if (idx < numAlphaColors) { 1111 alphaPalette[idx] = (png_byte) (col & 0xff); 1112 } 1113 } 1114 } else if (*colorType == PNG_COLOR_TYPE_GRAY || *colorType == PNG_COLOR_TYPE_GRAY_ALPHA) { 1115 // If the image is gray or gray + alpha, compact the pixels into outRows 1116 for (j = 0; j < h; j++) { 1117 png_bytep row = imageInfo.rows[j]; 1118 png_bytep out = outRows[j]; 1119 for (i = 0; i < w; i++) { 1120 rr = *row++; 1121 gg = *row++; 1122 bb = *row++; 1123 aa = *row++; 1124 1125 if (isGrayscale) { 1126 *out++ = rr; 1127 } else { 1128 *out++ = (png_byte) (rr * 0.2126f + gg * 0.7152f + bb * 0.0722f); 1129 } 1130 if (!isOpaque) { 1131 *out++ = aa; 1132 } 1133 } 1134 } 1135 } 1136 } 1137 1138 static void write_png(const char* imageName, 1139 png_structp write_ptr, png_infop write_info, 1140 image_info& imageInfo, const Bundle* bundle) 1141 { 1142 png_uint_32 width, height; 1143 int color_type; 1144 int bit_depth, interlace_type, compression_type; 1145 int i; 1146 1147 png_unknown_chunk unknowns[3]; 1148 unknowns[0].data = NULL; 1149 unknowns[1].data = NULL; 1150 unknowns[2].data = NULL; 1151 1152 png_bytepp outRows = (png_bytepp) malloc((int) imageInfo.height * sizeof(png_bytep)); 1153 if (outRows == (png_bytepp) 0) { 1154 printf("Can't allocate output buffer!\n"); 1155 exit(1); 1156 } 1157 for (i = 0; i < (int) imageInfo.height; i++) { 1158 outRows[i] = (png_bytep) malloc(2 * (int) imageInfo.width); 1159 if (outRows[i] == (png_bytep) 0) { 1160 printf("Can't allocate output buffer!\n"); 1161 exit(1); 1162 } 1163 } 1164 1165 png_set_compression_level(write_ptr, Z_BEST_COMPRESSION); 1166 1167 if (kIsDebug) { 1168 printf("Writing image %s: w = %d, h = %d\n", imageName, 1169 (int) imageInfo.width, (int) imageInfo.height); 1170 } 1171 1172 png_color rgbPalette[256]; 1173 png_byte alphaPalette[256]; 1174 bool hasTransparency; 1175 int paletteEntries, alphaPaletteEntries; 1176 1177 int grayscaleTolerance = bundle->getGrayscaleTolerance(); 1178 analyze_image(imageName, imageInfo, grayscaleTolerance, rgbPalette, alphaPalette, 1179 &paletteEntries, &alphaPaletteEntries, &hasTransparency, &color_type, outRows); 1180 1181 // Legacy versions of aapt would always encode 9patch PNGs as RGBA. This had the unintended 1182 // benefit of working around a bug decoding paletted images in Android 4.1. 1183 // https://code.google.com/p/android/issues/detail?id=34619 1184 // 1185 // If SDK_JELLY_BEAN is supported, we need to avoid a paletted encoding in order to not expose 1186 // this bug. 1187 if (!bundle->isMinSdkAtLeast(SDK_JELLY_BEAN_MR1)) { 1188 if (imageInfo.is9Patch && PNG_COLOR_TYPE_PALETTE == color_type) { 1189 if (hasTransparency) { 1190 color_type = PNG_COLOR_TYPE_RGB_ALPHA; 1191 } else { 1192 color_type = PNG_COLOR_TYPE_RGB; 1193 } 1194 } 1195 } 1196 1197 if (kIsDebug) { 1198 switch (color_type) { 1199 case PNG_COLOR_TYPE_PALETTE: 1200 printf("Image %s has %d colors%s, using PNG_COLOR_TYPE_PALETTE\n", 1201 imageName, paletteEntries, 1202 hasTransparency ? " (with alpha)" : ""); 1203 break; 1204 case PNG_COLOR_TYPE_GRAY: 1205 printf("Image %s is opaque gray, using PNG_COLOR_TYPE_GRAY\n", imageName); 1206 break; 1207 case PNG_COLOR_TYPE_GRAY_ALPHA: 1208 printf("Image %s is gray + alpha, using PNG_COLOR_TYPE_GRAY_ALPHA\n", imageName); 1209 break; 1210 case PNG_COLOR_TYPE_RGB: 1211 printf("Image %s is opaque RGB, using PNG_COLOR_TYPE_RGB\n", imageName); 1212 break; 1213 case PNG_COLOR_TYPE_RGB_ALPHA: 1214 printf("Image %s is RGB + alpha, using PNG_COLOR_TYPE_RGB_ALPHA\n", imageName); 1215 break; 1216 } 1217 } 1218 1219 png_set_IHDR(write_ptr, write_info, imageInfo.width, imageInfo.height, 1220 8, color_type, PNG_INTERLACE_NONE, 1221 PNG_COMPRESSION_TYPE_DEFAULT, PNG_FILTER_TYPE_DEFAULT); 1222 1223 if (color_type == PNG_COLOR_TYPE_PALETTE) { 1224 png_set_PLTE(write_ptr, write_info, rgbPalette, paletteEntries); 1225 if (hasTransparency) { 1226 png_set_tRNS(write_ptr, write_info, alphaPalette, alphaPaletteEntries, 1227 (png_color_16p) 0); 1228 } 1229 png_set_filter(write_ptr, 0, PNG_NO_FILTERS); 1230 } else { 1231 png_set_filter(write_ptr, 0, PNG_ALL_FILTERS); 1232 } 1233 1234 if (imageInfo.is9Patch) { 1235 int chunk_count = 2 + (imageInfo.haveLayoutBounds ? 1 : 0); 1236 int p_index = imageInfo.haveLayoutBounds ? 2 : 1; 1237 int b_index = 1; 1238 int o_index = 0; 1239 1240 // Chunks ordered thusly because older platforms depend on the base 9 patch data being last 1241 png_byte *chunk_names = imageInfo.haveLayoutBounds 1242 ? (png_byte*)"npOl\0npLb\0npTc\0" 1243 : (png_byte*)"npOl\0npTc"; 1244 1245 // base 9 patch data 1246 if (kIsDebug) { 1247 printf("Adding 9-patch info...\n"); 1248 } 1249 strcpy((char*)unknowns[p_index].name, "npTc"); 1250 unknowns[p_index].data = (png_byte*)imageInfo.serialize9patch(); 1251 unknowns[p_index].size = imageInfo.info9Patch.serializedSize(); 1252 // TODO: remove the check below when everything works 1253 checkNinePatchSerialization(&imageInfo.info9Patch, unknowns[p_index].data); 1254 1255 // automatically generated 9 patch outline data 1256 int chunk_size = sizeof(png_uint_32) * 6; 1257 strcpy((char*)unknowns[o_index].name, "npOl"); 1258 unknowns[o_index].data = (png_byte*) calloc(chunk_size, 1); 1259 png_byte outputData[chunk_size]; 1260 memcpy(&outputData, &imageInfo.outlineInsetsLeft, 4 * sizeof(png_uint_32)); 1261 ((float*) outputData)[4] = imageInfo.outlineRadius; 1262 ((png_uint_32*) outputData)[5] = imageInfo.outlineAlpha; 1263 memcpy(unknowns[o_index].data, &outputData, chunk_size); 1264 unknowns[o_index].size = chunk_size; 1265 1266 // optional optical inset / layout bounds data 1267 if (imageInfo.haveLayoutBounds) { 1268 int chunk_size = sizeof(png_uint_32) * 4; 1269 strcpy((char*)unknowns[b_index].name, "npLb"); 1270 unknowns[b_index].data = (png_byte*) calloc(chunk_size, 1); 1271 memcpy(unknowns[b_index].data, &imageInfo.layoutBoundsLeft, chunk_size); 1272 unknowns[b_index].size = chunk_size; 1273 } 1274 1275 for (int i = 0; i < chunk_count; i++) { 1276 unknowns[i].location = PNG_HAVE_IHDR; 1277 } 1278 png_set_keep_unknown_chunks(write_ptr, PNG_HANDLE_CHUNK_ALWAYS, 1279 chunk_names, chunk_count); 1280 png_set_unknown_chunks(write_ptr, write_info, unknowns, chunk_count); 1281 } 1282 1283 1284 png_write_info(write_ptr, write_info); 1285 1286 png_bytepp rows; 1287 if (color_type == PNG_COLOR_TYPE_RGB || color_type == PNG_COLOR_TYPE_RGB_ALPHA) { 1288 if (color_type == PNG_COLOR_TYPE_RGB) { 1289 png_set_filler(write_ptr, 0, PNG_FILLER_AFTER); 1290 } 1291 rows = imageInfo.rows; 1292 } else { 1293 rows = outRows; 1294 } 1295 png_write_image(write_ptr, rows); 1296 1297 if (kIsDebug) { 1298 printf("Final image data:\n"); 1299 dump_image(imageInfo.width, imageInfo.height, rows, color_type); 1300 } 1301 1302 png_write_end(write_ptr, write_info); 1303 1304 for (i = 0; i < (int) imageInfo.height; i++) { 1305 free(outRows[i]); 1306 } 1307 free(outRows); 1308 free(unknowns[0].data); 1309 free(unknowns[1].data); 1310 free(unknowns[2].data); 1311 1312 png_get_IHDR(write_ptr, write_info, &width, &height, 1313 &bit_depth, &color_type, &interlace_type, 1314 &compression_type, NULL); 1315 1316 if (kIsDebug) { 1317 printf("Image written: w=%d, h=%d, d=%d, colors=%d, inter=%d, comp=%d\n", 1318 (int)width, (int)height, bit_depth, color_type, interlace_type, 1319 compression_type); 1320 } 1321 } 1322 1323 static bool read_png_protected(png_structp read_ptr, String8& printableName, png_infop read_info, 1324 const sp<AaptFile>& file, FILE* fp, image_info* imageInfo) { 1325 if (setjmp(png_jmpbuf(read_ptr))) { 1326 return false; 1327 } 1328 1329 png_init_io(read_ptr, fp); 1330 1331 read_png(printableName.string(), read_ptr, read_info, imageInfo); 1332 1333 const size_t nameLen = file->getPath().length(); 1334 if (nameLen > 6) { 1335 const char* name = file->getPath().string(); 1336 if (name[nameLen-5] == '9' && name[nameLen-6] == '.') { 1337 if (do_9patch(printableName.string(), imageInfo) != NO_ERROR) { 1338 return false; 1339 } 1340 } 1341 } 1342 1343 return true; 1344 } 1345 1346 static bool write_png_protected(png_structp write_ptr, String8& printableName, png_infop write_info, 1347 image_info* imageInfo, const Bundle* bundle) { 1348 if (setjmp(png_jmpbuf(write_ptr))) { 1349 return false; 1350 } 1351 1352 write_png(printableName.string(), write_ptr, write_info, *imageInfo, bundle); 1353 1354 return true; 1355 } 1356 1357 status_t preProcessImage(const Bundle* bundle, const sp<AaptAssets>& /* assets */, 1358 const sp<AaptFile>& file, String8* /* outNewLeafName */) 1359 { 1360 String8 ext(file->getPath().getPathExtension()); 1361 1362 // We currently only process PNG images. 1363 if (strcmp(ext.string(), ".png") != 0) { 1364 return NO_ERROR; 1365 } 1366 1367 // Example of renaming a file: 1368 //*outNewLeafName = file->getPath().getBasePath().getFileName(); 1369 //outNewLeafName->append(".nupng"); 1370 1371 String8 printableName(file->getPrintableSource()); 1372 1373 if (bundle->getVerbose()) { 1374 printf("Processing image: %s\n", printableName.string()); 1375 } 1376 1377 png_structp read_ptr = NULL; 1378 png_infop read_info = NULL; 1379 FILE* fp; 1380 1381 image_info imageInfo; 1382 1383 png_structp write_ptr = NULL; 1384 png_infop write_info = NULL; 1385 1386 status_t error = UNKNOWN_ERROR; 1387 1388 fp = fopen(file->getSourceFile().string(), "rb"); 1389 if (fp == NULL) { 1390 fprintf(stderr, "%s: ERROR: Unable to open PNG file\n", printableName.string()); 1391 goto bail; 1392 } 1393 1394 read_ptr = png_create_read_struct(PNG_LIBPNG_VER_STRING, 0, (png_error_ptr)NULL, 1395 (png_error_ptr)NULL); 1396 if (!read_ptr) { 1397 goto bail; 1398 } 1399 1400 read_info = png_create_info_struct(read_ptr); 1401 if (!read_info) { 1402 goto bail; 1403 } 1404 1405 if (!read_png_protected(read_ptr, printableName, read_info, file, fp, &imageInfo)) { 1406 goto bail; 1407 } 1408 1409 write_ptr = png_create_write_struct(PNG_LIBPNG_VER_STRING, 0, (png_error_ptr)NULL, 1410 (png_error_ptr)NULL); 1411 if (!write_ptr) 1412 { 1413 goto bail; 1414 } 1415 1416 write_info = png_create_info_struct(write_ptr); 1417 if (!write_info) 1418 { 1419 goto bail; 1420 } 1421 1422 png_set_write_fn(write_ptr, (void*)file.get(), 1423 png_write_aapt_file, png_flush_aapt_file); 1424 1425 if (!write_png_protected(write_ptr, printableName, write_info, &imageInfo, bundle)) { 1426 goto bail; 1427 } 1428 1429 error = NO_ERROR; 1430 1431 if (bundle->getVerbose()) { 1432 fseek(fp, 0, SEEK_END); 1433 size_t oldSize = (size_t)ftell(fp); 1434 size_t newSize = file->getSize(); 1435 float factor = ((float)newSize)/oldSize; 1436 int percent = (int)(factor*100); 1437 printf(" (processed image %s: %d%% size of source)\n", printableName.string(), percent); 1438 } 1439 1440 bail: 1441 if (read_ptr) { 1442 png_destroy_read_struct(&read_ptr, &read_info, (png_infopp)NULL); 1443 } 1444 if (fp) { 1445 fclose(fp); 1446 } 1447 if (write_ptr) { 1448 png_destroy_write_struct(&write_ptr, &write_info); 1449 } 1450 1451 if (error != NO_ERROR) { 1452 fprintf(stderr, "ERROR: Failure processing PNG image %s\n", 1453 file->getPrintableSource().string()); 1454 } 1455 return error; 1456 } 1457 1458 status_t preProcessImageToCache(const Bundle* bundle, const String8& source, const String8& dest) 1459 { 1460 png_structp read_ptr = NULL; 1461 png_infop read_info = NULL; 1462 1463 FILE* fp; 1464 1465 image_info imageInfo; 1466 1467 png_structp write_ptr = NULL; 1468 png_infop write_info = NULL; 1469 1470 status_t error = UNKNOWN_ERROR; 1471 1472 if (bundle->getVerbose()) { 1473 printf("Processing image to cache: %s => %s\n", source.string(), dest.string()); 1474 } 1475 1476 // Get a file handler to read from 1477 fp = fopen(source.string(),"rb"); 1478 if (fp == NULL) { 1479 fprintf(stderr, "%s ERROR: Unable to open PNG file\n", source.string()); 1480 return error; 1481 } 1482 1483 // Call libpng to get a struct to read image data into 1484 read_ptr = png_create_read_struct(PNG_LIBPNG_VER_STRING, NULL, NULL, NULL); 1485 if (!read_ptr) { 1486 fclose(fp); 1487 png_destroy_read_struct(&read_ptr, &read_info,NULL); 1488 return error; 1489 } 1490 1491 // Call libpng to get a struct to read image info into 1492 read_info = png_create_info_struct(read_ptr); 1493 if (!read_info) { 1494 fclose(fp); 1495 png_destroy_read_struct(&read_ptr, &read_info,NULL); 1496 return error; 1497 } 1498 1499 // Set a jump point for libpng to long jump back to on error 1500 if (setjmp(png_jmpbuf(read_ptr))) { 1501 fclose(fp); 1502 png_destroy_read_struct(&read_ptr, &read_info,NULL); 1503 return error; 1504 } 1505 1506 // Set up libpng to read from our file. 1507 png_init_io(read_ptr,fp); 1508 1509 // Actually read data from the file 1510 read_png(source.string(), read_ptr, read_info, &imageInfo); 1511 1512 // We're done reading so we can clean up 1513 // Find old file size before releasing handle 1514 fseek(fp, 0, SEEK_END); 1515 size_t oldSize = (size_t)ftell(fp); 1516 fclose(fp); 1517 png_destroy_read_struct(&read_ptr, &read_info,NULL); 1518 1519 // Check to see if we're dealing with a 9-patch 1520 // If we are, process appropriately 1521 if (source.getBasePath().getPathExtension() == ".9") { 1522 if (do_9patch(source.string(), &imageInfo) != NO_ERROR) { 1523 return error; 1524 } 1525 } 1526 1527 // Call libpng to create a structure to hold the processed image data 1528 // that can be written to disk 1529 write_ptr = png_create_write_struct(PNG_LIBPNG_VER_STRING, NULL, NULL, NULL); 1530 if (!write_ptr) { 1531 png_destroy_write_struct(&write_ptr, &write_info); 1532 return error; 1533 } 1534 1535 // Call libpng to create a structure to hold processed image info that can 1536 // be written to disk 1537 write_info = png_create_info_struct(write_ptr); 1538 if (!write_info) { 1539 png_destroy_write_struct(&write_ptr, &write_info); 1540 return error; 1541 } 1542 1543 // Open up our destination file for writing 1544 fp = fopen(dest.string(), "wb"); 1545 if (!fp) { 1546 fprintf(stderr, "%s ERROR: Unable to open PNG file\n", dest.string()); 1547 png_destroy_write_struct(&write_ptr, &write_info); 1548 return error; 1549 } 1550 1551 // Set up libpng to write to our file 1552 png_init_io(write_ptr, fp); 1553 1554 // Set up a jump for libpng to long jump back on on errors 1555 if (setjmp(png_jmpbuf(write_ptr))) { 1556 fclose(fp); 1557 png_destroy_write_struct(&write_ptr, &write_info); 1558 return error; 1559 } 1560 1561 // Actually write out to the new png 1562 write_png(dest.string(), write_ptr, write_info, imageInfo, bundle); 1563 1564 if (bundle->getVerbose()) { 1565 // Find the size of our new file 1566 FILE* reader = fopen(dest.string(), "rb"); 1567 fseek(reader, 0, SEEK_END); 1568 size_t newSize = (size_t)ftell(reader); 1569 fclose(reader); 1570 1571 float factor = ((float)newSize)/oldSize; 1572 int percent = (int)(factor*100); 1573 printf(" (processed image to cache entry %s: %d%% size of source)\n", 1574 dest.string(), percent); 1575 } 1576 1577 //Clean up 1578 fclose(fp); 1579 png_destroy_write_struct(&write_ptr, &write_info); 1580 1581 return NO_ERROR; 1582 } 1583 1584 status_t postProcessImage(const Bundle* bundle, const sp<AaptAssets>& assets, 1585 ResourceTable* table, const sp<AaptFile>& file) 1586 { 1587 String8 ext(file->getPath().getPathExtension()); 1588 1589 // At this point, now that we have all the resource data, all we need to 1590 // do is compile XML files. 1591 if (strcmp(ext.string(), ".xml") == 0) { 1592 String16 resourceName(parseResourceName(file->getSourceFile().getPathLeaf())); 1593 return compileXmlFile(bundle, assets, resourceName, file, table); 1594 } 1595 1596 return NO_ERROR; 1597 } 1598