Home | History | Annotate | Download | only in CodeGen
      1 //===--- CGClass.cpp - Emit LLVM Code for C++ classes -----------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This contains code dealing with C++ code generation of classes
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "CGBlocks.h"
     15 #include "CGCXXABI.h"
     16 #include "CGDebugInfo.h"
     17 #include "CGRecordLayout.h"
     18 #include "CodeGenFunction.h"
     19 #include "clang/AST/CXXInheritance.h"
     20 #include "clang/AST/DeclTemplate.h"
     21 #include "clang/AST/EvaluatedExprVisitor.h"
     22 #include "clang/AST/RecordLayout.h"
     23 #include "clang/AST/StmtCXX.h"
     24 #include "clang/Basic/TargetBuiltins.h"
     25 #include "clang/CodeGen/CGFunctionInfo.h"
     26 #include "clang/Frontend/CodeGenOptions.h"
     27 #include "llvm/IR/Intrinsics.h"
     28 #include "llvm/IR/Metadata.h"
     29 #include "llvm/Transforms/Utils/SanitizerStats.h"
     30 
     31 using namespace clang;
     32 using namespace CodeGen;
     33 
     34 /// Return the best known alignment for an unknown pointer to a
     35 /// particular class.
     36 CharUnits CodeGenModule::getClassPointerAlignment(const CXXRecordDecl *RD) {
     37   if (!RD->isCompleteDefinition())
     38     return CharUnits::One(); // Hopefully won't be used anywhere.
     39 
     40   auto &layout = getContext().getASTRecordLayout(RD);
     41 
     42   // If the class is final, then we know that the pointer points to an
     43   // object of that type and can use the full alignment.
     44   if (RD->hasAttr<FinalAttr>()) {
     45     return layout.getAlignment();
     46 
     47   // Otherwise, we have to assume it could be a subclass.
     48   } else {
     49     return layout.getNonVirtualAlignment();
     50   }
     51 }
     52 
     53 /// Return the best known alignment for a pointer to a virtual base,
     54 /// given the alignment of a pointer to the derived class.
     55 CharUnits CodeGenModule::getVBaseAlignment(CharUnits actualDerivedAlign,
     56                                            const CXXRecordDecl *derivedClass,
     57                                            const CXXRecordDecl *vbaseClass) {
     58   // The basic idea here is that an underaligned derived pointer might
     59   // indicate an underaligned base pointer.
     60 
     61   assert(vbaseClass->isCompleteDefinition());
     62   auto &baseLayout = getContext().getASTRecordLayout(vbaseClass);
     63   CharUnits expectedVBaseAlign = baseLayout.getNonVirtualAlignment();
     64 
     65   return getDynamicOffsetAlignment(actualDerivedAlign, derivedClass,
     66                                    expectedVBaseAlign);
     67 }
     68 
     69 CharUnits
     70 CodeGenModule::getDynamicOffsetAlignment(CharUnits actualBaseAlign,
     71                                          const CXXRecordDecl *baseDecl,
     72                                          CharUnits expectedTargetAlign) {
     73   // If the base is an incomplete type (which is, alas, possible with
     74   // member pointers), be pessimistic.
     75   if (!baseDecl->isCompleteDefinition())
     76     return std::min(actualBaseAlign, expectedTargetAlign);
     77 
     78   auto &baseLayout = getContext().getASTRecordLayout(baseDecl);
     79   CharUnits expectedBaseAlign = baseLayout.getNonVirtualAlignment();
     80 
     81   // If the class is properly aligned, assume the target offset is, too.
     82   //
     83   // This actually isn't necessarily the right thing to do --- if the
     84   // class is a complete object, but it's only properly aligned for a
     85   // base subobject, then the alignments of things relative to it are
     86   // probably off as well.  (Note that this requires the alignment of
     87   // the target to be greater than the NV alignment of the derived
     88   // class.)
     89   //
     90   // However, our approach to this kind of under-alignment can only
     91   // ever be best effort; after all, we're never going to propagate
     92   // alignments through variables or parameters.  Note, in particular,
     93   // that constructing a polymorphic type in an address that's less
     94   // than pointer-aligned will generally trap in the constructor,
     95   // unless we someday add some sort of attribute to change the
     96   // assumed alignment of 'this'.  So our goal here is pretty much
     97   // just to allow the user to explicitly say that a pointer is
     98   // under-aligned and then safely access its fields and vtables.
     99   if (actualBaseAlign >= expectedBaseAlign) {
    100     return expectedTargetAlign;
    101   }
    102 
    103   // Otherwise, we might be offset by an arbitrary multiple of the
    104   // actual alignment.  The correct adjustment is to take the min of
    105   // the two alignments.
    106   return std::min(actualBaseAlign, expectedTargetAlign);
    107 }
    108 
    109 Address CodeGenFunction::LoadCXXThisAddress() {
    110   assert(CurFuncDecl && "loading 'this' without a func declaration?");
    111   assert(isa<CXXMethodDecl>(CurFuncDecl));
    112 
    113   // Lazily compute CXXThisAlignment.
    114   if (CXXThisAlignment.isZero()) {
    115     // Just use the best known alignment for the parent.
    116     // TODO: if we're currently emitting a complete-object ctor/dtor,
    117     // we can always use the complete-object alignment.
    118     auto RD = cast<CXXMethodDecl>(CurFuncDecl)->getParent();
    119     CXXThisAlignment = CGM.getClassPointerAlignment(RD);
    120   }
    121 
    122   return Address(LoadCXXThis(), CXXThisAlignment);
    123 }
    124 
    125 /// Emit the address of a field using a member data pointer.
    126 ///
    127 /// \param E Only used for emergency diagnostics
    128 Address
    129 CodeGenFunction::EmitCXXMemberDataPointerAddress(const Expr *E, Address base,
    130                                                  llvm::Value *memberPtr,
    131                                       const MemberPointerType *memberPtrType,
    132                                                  AlignmentSource *alignSource) {
    133   // Ask the ABI to compute the actual address.
    134   llvm::Value *ptr =
    135     CGM.getCXXABI().EmitMemberDataPointerAddress(*this, E, base,
    136                                                  memberPtr, memberPtrType);
    137 
    138   QualType memberType = memberPtrType->getPointeeType();
    139   CharUnits memberAlign = getNaturalTypeAlignment(memberType, alignSource);
    140   memberAlign =
    141     CGM.getDynamicOffsetAlignment(base.getAlignment(),
    142                             memberPtrType->getClass()->getAsCXXRecordDecl(),
    143                                   memberAlign);
    144   return Address(ptr, memberAlign);
    145 }
    146 
    147 CharUnits CodeGenModule::computeNonVirtualBaseClassOffset(
    148     const CXXRecordDecl *DerivedClass, CastExpr::path_const_iterator Start,
    149     CastExpr::path_const_iterator End) {
    150   CharUnits Offset = CharUnits::Zero();
    151 
    152   const ASTContext &Context = getContext();
    153   const CXXRecordDecl *RD = DerivedClass;
    154 
    155   for (CastExpr::path_const_iterator I = Start; I != End; ++I) {
    156     const CXXBaseSpecifier *Base = *I;
    157     assert(!Base->isVirtual() && "Should not see virtual bases here!");
    158 
    159     // Get the layout.
    160     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
    161 
    162     const CXXRecordDecl *BaseDecl =
    163       cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
    164 
    165     // Add the offset.
    166     Offset += Layout.getBaseClassOffset(BaseDecl);
    167 
    168     RD = BaseDecl;
    169   }
    170 
    171   return Offset;
    172 }
    173 
    174 llvm::Constant *
    175 CodeGenModule::GetNonVirtualBaseClassOffset(const CXXRecordDecl *ClassDecl,
    176                                    CastExpr::path_const_iterator PathBegin,
    177                                    CastExpr::path_const_iterator PathEnd) {
    178   assert(PathBegin != PathEnd && "Base path should not be empty!");
    179 
    180   CharUnits Offset =
    181       computeNonVirtualBaseClassOffset(ClassDecl, PathBegin, PathEnd);
    182   if (Offset.isZero())
    183     return nullptr;
    184 
    185   llvm::Type *PtrDiffTy =
    186   Types.ConvertType(getContext().getPointerDiffType());
    187 
    188   return llvm::ConstantInt::get(PtrDiffTy, Offset.getQuantity());
    189 }
    190 
    191 /// Gets the address of a direct base class within a complete object.
    192 /// This should only be used for (1) non-virtual bases or (2) virtual bases
    193 /// when the type is known to be complete (e.g. in complete destructors).
    194 ///
    195 /// The object pointed to by 'This' is assumed to be non-null.
    196 Address
    197 CodeGenFunction::GetAddressOfDirectBaseInCompleteClass(Address This,
    198                                                    const CXXRecordDecl *Derived,
    199                                                    const CXXRecordDecl *Base,
    200                                                    bool BaseIsVirtual) {
    201   // 'this' must be a pointer (in some address space) to Derived.
    202   assert(This.getElementType() == ConvertType(Derived));
    203 
    204   // Compute the offset of the virtual base.
    205   CharUnits Offset;
    206   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(Derived);
    207   if (BaseIsVirtual)
    208     Offset = Layout.getVBaseClassOffset(Base);
    209   else
    210     Offset = Layout.getBaseClassOffset(Base);
    211 
    212   // Shift and cast down to the base type.
    213   // TODO: for complete types, this should be possible with a GEP.
    214   Address V = This;
    215   if (!Offset.isZero()) {
    216     V = Builder.CreateElementBitCast(V, Int8Ty);
    217     V = Builder.CreateConstInBoundsByteGEP(V, Offset);
    218   }
    219   V = Builder.CreateElementBitCast(V, ConvertType(Base));
    220 
    221   return V;
    222 }
    223 
    224 static Address
    225 ApplyNonVirtualAndVirtualOffset(CodeGenFunction &CGF, Address addr,
    226                                 CharUnits nonVirtualOffset,
    227                                 llvm::Value *virtualOffset,
    228                                 const CXXRecordDecl *derivedClass,
    229                                 const CXXRecordDecl *nearestVBase) {
    230   // Assert that we have something to do.
    231   assert(!nonVirtualOffset.isZero() || virtualOffset != nullptr);
    232 
    233   // Compute the offset from the static and dynamic components.
    234   llvm::Value *baseOffset;
    235   if (!nonVirtualOffset.isZero()) {
    236     baseOffset = llvm::ConstantInt::get(CGF.PtrDiffTy,
    237                                         nonVirtualOffset.getQuantity());
    238     if (virtualOffset) {
    239       baseOffset = CGF.Builder.CreateAdd(virtualOffset, baseOffset);
    240     }
    241   } else {
    242     baseOffset = virtualOffset;
    243   }
    244 
    245   // Apply the base offset.
    246   llvm::Value *ptr = addr.getPointer();
    247   ptr = CGF.Builder.CreateBitCast(ptr, CGF.Int8PtrTy);
    248   ptr = CGF.Builder.CreateInBoundsGEP(ptr, baseOffset, "add.ptr");
    249 
    250   // If we have a virtual component, the alignment of the result will
    251   // be relative only to the known alignment of that vbase.
    252   CharUnits alignment;
    253   if (virtualOffset) {
    254     assert(nearestVBase && "virtual offset without vbase?");
    255     alignment = CGF.CGM.getVBaseAlignment(addr.getAlignment(),
    256                                           derivedClass, nearestVBase);
    257   } else {
    258     alignment = addr.getAlignment();
    259   }
    260   alignment = alignment.alignmentAtOffset(nonVirtualOffset);
    261 
    262   return Address(ptr, alignment);
    263 }
    264 
    265 Address CodeGenFunction::GetAddressOfBaseClass(
    266     Address Value, const CXXRecordDecl *Derived,
    267     CastExpr::path_const_iterator PathBegin,
    268     CastExpr::path_const_iterator PathEnd, bool NullCheckValue,
    269     SourceLocation Loc) {
    270   assert(PathBegin != PathEnd && "Base path should not be empty!");
    271 
    272   CastExpr::path_const_iterator Start = PathBegin;
    273   const CXXRecordDecl *VBase = nullptr;
    274 
    275   // Sema has done some convenient canonicalization here: if the
    276   // access path involved any virtual steps, the conversion path will
    277   // *start* with a step down to the correct virtual base subobject,
    278   // and hence will not require any further steps.
    279   if ((*Start)->isVirtual()) {
    280     VBase =
    281       cast<CXXRecordDecl>((*Start)->getType()->getAs<RecordType>()->getDecl());
    282     ++Start;
    283   }
    284 
    285   // Compute the static offset of the ultimate destination within its
    286   // allocating subobject (the virtual base, if there is one, or else
    287   // the "complete" object that we see).
    288   CharUnits NonVirtualOffset = CGM.computeNonVirtualBaseClassOffset(
    289       VBase ? VBase : Derived, Start, PathEnd);
    290 
    291   // If there's a virtual step, we can sometimes "devirtualize" it.
    292   // For now, that's limited to when the derived type is final.
    293   // TODO: "devirtualize" this for accesses to known-complete objects.
    294   if (VBase && Derived->hasAttr<FinalAttr>()) {
    295     const ASTRecordLayout &layout = getContext().getASTRecordLayout(Derived);
    296     CharUnits vBaseOffset = layout.getVBaseClassOffset(VBase);
    297     NonVirtualOffset += vBaseOffset;
    298     VBase = nullptr; // we no longer have a virtual step
    299   }
    300 
    301   // Get the base pointer type.
    302   llvm::Type *BasePtrTy =
    303     ConvertType((PathEnd[-1])->getType())->getPointerTo();
    304 
    305   QualType DerivedTy = getContext().getRecordType(Derived);
    306   CharUnits DerivedAlign = CGM.getClassPointerAlignment(Derived);
    307 
    308   // If the static offset is zero and we don't have a virtual step,
    309   // just do a bitcast; null checks are unnecessary.
    310   if (NonVirtualOffset.isZero() && !VBase) {
    311     if (sanitizePerformTypeCheck()) {
    312       EmitTypeCheck(TCK_Upcast, Loc, Value.getPointer(),
    313                     DerivedTy, DerivedAlign, !NullCheckValue);
    314     }
    315     return Builder.CreateBitCast(Value, BasePtrTy);
    316   }
    317 
    318   llvm::BasicBlock *origBB = nullptr;
    319   llvm::BasicBlock *endBB = nullptr;
    320 
    321   // Skip over the offset (and the vtable load) if we're supposed to
    322   // null-check the pointer.
    323   if (NullCheckValue) {
    324     origBB = Builder.GetInsertBlock();
    325     llvm::BasicBlock *notNullBB = createBasicBlock("cast.notnull");
    326     endBB = createBasicBlock("cast.end");
    327 
    328     llvm::Value *isNull = Builder.CreateIsNull(Value.getPointer());
    329     Builder.CreateCondBr(isNull, endBB, notNullBB);
    330     EmitBlock(notNullBB);
    331   }
    332 
    333   if (sanitizePerformTypeCheck()) {
    334     EmitTypeCheck(VBase ? TCK_UpcastToVirtualBase : TCK_Upcast, Loc,
    335                   Value.getPointer(), DerivedTy, DerivedAlign, true);
    336   }
    337 
    338   // Compute the virtual offset.
    339   llvm::Value *VirtualOffset = nullptr;
    340   if (VBase) {
    341     VirtualOffset =
    342       CGM.getCXXABI().GetVirtualBaseClassOffset(*this, Value, Derived, VBase);
    343   }
    344 
    345   // Apply both offsets.
    346   Value = ApplyNonVirtualAndVirtualOffset(*this, Value, NonVirtualOffset,
    347                                           VirtualOffset, Derived, VBase);
    348 
    349   // Cast to the destination type.
    350   Value = Builder.CreateBitCast(Value, BasePtrTy);
    351 
    352   // Build a phi if we needed a null check.
    353   if (NullCheckValue) {
    354     llvm::BasicBlock *notNullBB = Builder.GetInsertBlock();
    355     Builder.CreateBr(endBB);
    356     EmitBlock(endBB);
    357 
    358     llvm::PHINode *PHI = Builder.CreatePHI(BasePtrTy, 2, "cast.result");
    359     PHI->addIncoming(Value.getPointer(), notNullBB);
    360     PHI->addIncoming(llvm::Constant::getNullValue(BasePtrTy), origBB);
    361     Value = Address(PHI, Value.getAlignment());
    362   }
    363 
    364   return Value;
    365 }
    366 
    367 Address
    368 CodeGenFunction::GetAddressOfDerivedClass(Address BaseAddr,
    369                                           const CXXRecordDecl *Derived,
    370                                         CastExpr::path_const_iterator PathBegin,
    371                                           CastExpr::path_const_iterator PathEnd,
    372                                           bool NullCheckValue) {
    373   assert(PathBegin != PathEnd && "Base path should not be empty!");
    374 
    375   QualType DerivedTy =
    376     getContext().getCanonicalType(getContext().getTagDeclType(Derived));
    377   llvm::Type *DerivedPtrTy = ConvertType(DerivedTy)->getPointerTo();
    378 
    379   llvm::Value *NonVirtualOffset =
    380     CGM.GetNonVirtualBaseClassOffset(Derived, PathBegin, PathEnd);
    381 
    382   if (!NonVirtualOffset) {
    383     // No offset, we can just cast back.
    384     return Builder.CreateBitCast(BaseAddr, DerivedPtrTy);
    385   }
    386 
    387   llvm::BasicBlock *CastNull = nullptr;
    388   llvm::BasicBlock *CastNotNull = nullptr;
    389   llvm::BasicBlock *CastEnd = nullptr;
    390 
    391   if (NullCheckValue) {
    392     CastNull = createBasicBlock("cast.null");
    393     CastNotNull = createBasicBlock("cast.notnull");
    394     CastEnd = createBasicBlock("cast.end");
    395 
    396     llvm::Value *IsNull = Builder.CreateIsNull(BaseAddr.getPointer());
    397     Builder.CreateCondBr(IsNull, CastNull, CastNotNull);
    398     EmitBlock(CastNotNull);
    399   }
    400 
    401   // Apply the offset.
    402   llvm::Value *Value = Builder.CreateBitCast(BaseAddr.getPointer(), Int8PtrTy);
    403   Value = Builder.CreateGEP(Value, Builder.CreateNeg(NonVirtualOffset),
    404                             "sub.ptr");
    405 
    406   // Just cast.
    407   Value = Builder.CreateBitCast(Value, DerivedPtrTy);
    408 
    409   // Produce a PHI if we had a null-check.
    410   if (NullCheckValue) {
    411     Builder.CreateBr(CastEnd);
    412     EmitBlock(CastNull);
    413     Builder.CreateBr(CastEnd);
    414     EmitBlock(CastEnd);
    415 
    416     llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2);
    417     PHI->addIncoming(Value, CastNotNull);
    418     PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull);
    419     Value = PHI;
    420   }
    421 
    422   return Address(Value, CGM.getClassPointerAlignment(Derived));
    423 }
    424 
    425 llvm::Value *CodeGenFunction::GetVTTParameter(GlobalDecl GD,
    426                                               bool ForVirtualBase,
    427                                               bool Delegating) {
    428   if (!CGM.getCXXABI().NeedsVTTParameter(GD)) {
    429     // This constructor/destructor does not need a VTT parameter.
    430     return nullptr;
    431   }
    432 
    433   const CXXRecordDecl *RD = cast<CXXMethodDecl>(CurCodeDecl)->getParent();
    434   const CXXRecordDecl *Base = cast<CXXMethodDecl>(GD.getDecl())->getParent();
    435 
    436   llvm::Value *VTT;
    437 
    438   uint64_t SubVTTIndex;
    439 
    440   if (Delegating) {
    441     // If this is a delegating constructor call, just load the VTT.
    442     return LoadCXXVTT();
    443   } else if (RD == Base) {
    444     // If the record matches the base, this is the complete ctor/dtor
    445     // variant calling the base variant in a class with virtual bases.
    446     assert(!CGM.getCXXABI().NeedsVTTParameter(CurGD) &&
    447            "doing no-op VTT offset in base dtor/ctor?");
    448     assert(!ForVirtualBase && "Can't have same class as virtual base!");
    449     SubVTTIndex = 0;
    450   } else {
    451     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
    452     CharUnits BaseOffset = ForVirtualBase ?
    453       Layout.getVBaseClassOffset(Base) :
    454       Layout.getBaseClassOffset(Base);
    455 
    456     SubVTTIndex =
    457       CGM.getVTables().getSubVTTIndex(RD, BaseSubobject(Base, BaseOffset));
    458     assert(SubVTTIndex != 0 && "Sub-VTT index must be greater than zero!");
    459   }
    460 
    461   if (CGM.getCXXABI().NeedsVTTParameter(CurGD)) {
    462     // A VTT parameter was passed to the constructor, use it.
    463     VTT = LoadCXXVTT();
    464     VTT = Builder.CreateConstInBoundsGEP1_64(VTT, SubVTTIndex);
    465   } else {
    466     // We're the complete constructor, so get the VTT by name.
    467     VTT = CGM.getVTables().GetAddrOfVTT(RD);
    468     VTT = Builder.CreateConstInBoundsGEP2_64(VTT, 0, SubVTTIndex);
    469   }
    470 
    471   return VTT;
    472 }
    473 
    474 namespace {
    475   /// Call the destructor for a direct base class.
    476   struct CallBaseDtor final : EHScopeStack::Cleanup {
    477     const CXXRecordDecl *BaseClass;
    478     bool BaseIsVirtual;
    479     CallBaseDtor(const CXXRecordDecl *Base, bool BaseIsVirtual)
    480       : BaseClass(Base), BaseIsVirtual(BaseIsVirtual) {}
    481 
    482     void Emit(CodeGenFunction &CGF, Flags flags) override {
    483       const CXXRecordDecl *DerivedClass =
    484         cast<CXXMethodDecl>(CGF.CurCodeDecl)->getParent();
    485 
    486       const CXXDestructorDecl *D = BaseClass->getDestructor();
    487       Address Addr =
    488         CGF.GetAddressOfDirectBaseInCompleteClass(CGF.LoadCXXThisAddress(),
    489                                                   DerivedClass, BaseClass,
    490                                                   BaseIsVirtual);
    491       CGF.EmitCXXDestructorCall(D, Dtor_Base, BaseIsVirtual,
    492                                 /*Delegating=*/false, Addr);
    493     }
    494   };
    495 
    496   /// A visitor which checks whether an initializer uses 'this' in a
    497   /// way which requires the vtable to be properly set.
    498   struct DynamicThisUseChecker : ConstEvaluatedExprVisitor<DynamicThisUseChecker> {
    499     typedef ConstEvaluatedExprVisitor<DynamicThisUseChecker> super;
    500 
    501     bool UsesThis;
    502 
    503     DynamicThisUseChecker(const ASTContext &C) : super(C), UsesThis(false) {}
    504 
    505     // Black-list all explicit and implicit references to 'this'.
    506     //
    507     // Do we need to worry about external references to 'this' derived
    508     // from arbitrary code?  If so, then anything which runs arbitrary
    509     // external code might potentially access the vtable.
    510     void VisitCXXThisExpr(const CXXThisExpr *E) { UsesThis = true; }
    511   };
    512 } // end anonymous namespace
    513 
    514 static bool BaseInitializerUsesThis(ASTContext &C, const Expr *Init) {
    515   DynamicThisUseChecker Checker(C);
    516   Checker.Visit(Init);
    517   return Checker.UsesThis;
    518 }
    519 
    520 static void EmitBaseInitializer(CodeGenFunction &CGF,
    521                                 const CXXRecordDecl *ClassDecl,
    522                                 CXXCtorInitializer *BaseInit,
    523                                 CXXCtorType CtorType) {
    524   assert(BaseInit->isBaseInitializer() &&
    525          "Must have base initializer!");
    526 
    527   Address ThisPtr = CGF.LoadCXXThisAddress();
    528 
    529   const Type *BaseType = BaseInit->getBaseClass();
    530   CXXRecordDecl *BaseClassDecl =
    531     cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl());
    532 
    533   bool isBaseVirtual = BaseInit->isBaseVirtual();
    534 
    535   // The base constructor doesn't construct virtual bases.
    536   if (CtorType == Ctor_Base && isBaseVirtual)
    537     return;
    538 
    539   // If the initializer for the base (other than the constructor
    540   // itself) accesses 'this' in any way, we need to initialize the
    541   // vtables.
    542   if (BaseInitializerUsesThis(CGF.getContext(), BaseInit->getInit()))
    543     CGF.InitializeVTablePointers(ClassDecl);
    544 
    545   // We can pretend to be a complete class because it only matters for
    546   // virtual bases, and we only do virtual bases for complete ctors.
    547   Address V =
    548     CGF.GetAddressOfDirectBaseInCompleteClass(ThisPtr, ClassDecl,
    549                                               BaseClassDecl,
    550                                               isBaseVirtual);
    551   AggValueSlot AggSlot =
    552     AggValueSlot::forAddr(V, Qualifiers(),
    553                           AggValueSlot::IsDestructed,
    554                           AggValueSlot::DoesNotNeedGCBarriers,
    555                           AggValueSlot::IsNotAliased);
    556 
    557   CGF.EmitAggExpr(BaseInit->getInit(), AggSlot);
    558 
    559   if (CGF.CGM.getLangOpts().Exceptions &&
    560       !BaseClassDecl->hasTrivialDestructor())
    561     CGF.EHStack.pushCleanup<CallBaseDtor>(EHCleanup, BaseClassDecl,
    562                                           isBaseVirtual);
    563 }
    564 
    565 static void EmitAggMemberInitializer(CodeGenFunction &CGF,
    566                                      LValue LHS,
    567                                      Expr *Init,
    568                                      Address ArrayIndexVar,
    569                                      QualType T,
    570                                      ArrayRef<VarDecl *> ArrayIndexes,
    571                                      unsigned Index) {
    572   if (Index == ArrayIndexes.size()) {
    573     LValue LV = LHS;
    574 
    575     if (ArrayIndexVar.isValid()) {
    576       // If we have an array index variable, load it and use it as an offset.
    577       // Then, increment the value.
    578       llvm::Value *Dest = LHS.getPointer();
    579       llvm::Value *ArrayIndex = CGF.Builder.CreateLoad(ArrayIndexVar);
    580       Dest = CGF.Builder.CreateInBoundsGEP(Dest, ArrayIndex, "destaddress");
    581       llvm::Value *Next = llvm::ConstantInt::get(ArrayIndex->getType(), 1);
    582       Next = CGF.Builder.CreateAdd(ArrayIndex, Next, "inc");
    583       CGF.Builder.CreateStore(Next, ArrayIndexVar);
    584 
    585       // Update the LValue.
    586       CharUnits EltSize = CGF.getContext().getTypeSizeInChars(T);
    587       CharUnits Align = LV.getAlignment().alignmentOfArrayElement(EltSize);
    588       LV.setAddress(Address(Dest, Align));
    589     }
    590 
    591     switch (CGF.getEvaluationKind(T)) {
    592     case TEK_Scalar:
    593       CGF.EmitScalarInit(Init, /*decl*/ nullptr, LV, false);
    594       break;
    595     case TEK_Complex:
    596       CGF.EmitComplexExprIntoLValue(Init, LV, /*isInit*/ true);
    597       break;
    598     case TEK_Aggregate: {
    599       AggValueSlot Slot =
    600         AggValueSlot::forLValue(LV,
    601                                 AggValueSlot::IsDestructed,
    602                                 AggValueSlot::DoesNotNeedGCBarriers,
    603                                 AggValueSlot::IsNotAliased);
    604 
    605       CGF.EmitAggExpr(Init, Slot);
    606       break;
    607     }
    608     }
    609 
    610     return;
    611   }
    612 
    613   const ConstantArrayType *Array = CGF.getContext().getAsConstantArrayType(T);
    614   assert(Array && "Array initialization without the array type?");
    615   Address IndexVar = CGF.GetAddrOfLocalVar(ArrayIndexes[Index]);
    616 
    617   // Initialize this index variable to zero.
    618   llvm::Value* Zero
    619     = llvm::Constant::getNullValue(IndexVar.getElementType());
    620   CGF.Builder.CreateStore(Zero, IndexVar);
    621 
    622   // Start the loop with a block that tests the condition.
    623   llvm::BasicBlock *CondBlock = CGF.createBasicBlock("for.cond");
    624   llvm::BasicBlock *AfterFor = CGF.createBasicBlock("for.end");
    625 
    626   CGF.EmitBlock(CondBlock);
    627 
    628   llvm::BasicBlock *ForBody = CGF.createBasicBlock("for.body");
    629   // Generate: if (loop-index < number-of-elements) fall to the loop body,
    630   // otherwise, go to the block after the for-loop.
    631   uint64_t NumElements = Array->getSize().getZExtValue();
    632   llvm::Value *Counter = CGF.Builder.CreateLoad(IndexVar);
    633   llvm::Value *NumElementsPtr =
    634     llvm::ConstantInt::get(Counter->getType(), NumElements);
    635   llvm::Value *IsLess = CGF.Builder.CreateICmpULT(Counter, NumElementsPtr,
    636                                                   "isless");
    637 
    638   // If the condition is true, execute the body.
    639   CGF.Builder.CreateCondBr(IsLess, ForBody, AfterFor);
    640 
    641   CGF.EmitBlock(ForBody);
    642   llvm::BasicBlock *ContinueBlock = CGF.createBasicBlock("for.inc");
    643 
    644   // Inside the loop body recurse to emit the inner loop or, eventually, the
    645   // constructor call.
    646   EmitAggMemberInitializer(CGF, LHS, Init, ArrayIndexVar,
    647                            Array->getElementType(), ArrayIndexes, Index + 1);
    648 
    649   CGF.EmitBlock(ContinueBlock);
    650 
    651   // Emit the increment of the loop counter.
    652   llvm::Value *NextVal = llvm::ConstantInt::get(Counter->getType(), 1);
    653   Counter = CGF.Builder.CreateLoad(IndexVar);
    654   NextVal = CGF.Builder.CreateAdd(Counter, NextVal, "inc");
    655   CGF.Builder.CreateStore(NextVal, IndexVar);
    656 
    657   // Finally, branch back up to the condition for the next iteration.
    658   CGF.EmitBranch(CondBlock);
    659 
    660   // Emit the fall-through block.
    661   CGF.EmitBlock(AfterFor, true);
    662 }
    663 
    664 static bool isMemcpyEquivalentSpecialMember(const CXXMethodDecl *D) {
    665   auto *CD = dyn_cast<CXXConstructorDecl>(D);
    666   if (!(CD && CD->isCopyOrMoveConstructor()) &&
    667       !D->isCopyAssignmentOperator() && !D->isMoveAssignmentOperator())
    668     return false;
    669 
    670   // We can emit a memcpy for a trivial copy or move constructor/assignment.
    671   if (D->isTrivial() && !D->getParent()->mayInsertExtraPadding())
    672     return true;
    673 
    674   // We *must* emit a memcpy for a defaulted union copy or move op.
    675   if (D->getParent()->isUnion() && D->isDefaulted())
    676     return true;
    677 
    678   return false;
    679 }
    680 
    681 static void EmitLValueForAnyFieldInitialization(CodeGenFunction &CGF,
    682                                                 CXXCtorInitializer *MemberInit,
    683                                                 LValue &LHS) {
    684   FieldDecl *Field = MemberInit->getAnyMember();
    685   if (MemberInit->isIndirectMemberInitializer()) {
    686     // If we are initializing an anonymous union field, drill down to the field.
    687     IndirectFieldDecl *IndirectField = MemberInit->getIndirectMember();
    688     for (const auto *I : IndirectField->chain())
    689       LHS = CGF.EmitLValueForFieldInitialization(LHS, cast<FieldDecl>(I));
    690   } else {
    691     LHS = CGF.EmitLValueForFieldInitialization(LHS, Field);
    692   }
    693 }
    694 
    695 static void EmitMemberInitializer(CodeGenFunction &CGF,
    696                                   const CXXRecordDecl *ClassDecl,
    697                                   CXXCtorInitializer *MemberInit,
    698                                   const CXXConstructorDecl *Constructor,
    699                                   FunctionArgList &Args) {
    700   ApplyDebugLocation Loc(CGF, MemberInit->getSourceLocation());
    701   assert(MemberInit->isAnyMemberInitializer() &&
    702          "Must have member initializer!");
    703   assert(MemberInit->getInit() && "Must have initializer!");
    704 
    705   // non-static data member initializers.
    706   FieldDecl *Field = MemberInit->getAnyMember();
    707   QualType FieldType = Field->getType();
    708 
    709   llvm::Value *ThisPtr = CGF.LoadCXXThis();
    710   QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl);
    711   LValue LHS = CGF.MakeNaturalAlignAddrLValue(ThisPtr, RecordTy);
    712 
    713   EmitLValueForAnyFieldInitialization(CGF, MemberInit, LHS);
    714 
    715   // Special case: if we are in a copy or move constructor, and we are copying
    716   // an array of PODs or classes with trivial copy constructors, ignore the
    717   // AST and perform the copy we know is equivalent.
    718   // FIXME: This is hacky at best... if we had a bit more explicit information
    719   // in the AST, we could generalize it more easily.
    720   const ConstantArrayType *Array
    721     = CGF.getContext().getAsConstantArrayType(FieldType);
    722   if (Array && Constructor->isDefaulted() &&
    723       Constructor->isCopyOrMoveConstructor()) {
    724     QualType BaseElementTy = CGF.getContext().getBaseElementType(Array);
    725     CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(MemberInit->getInit());
    726     if (BaseElementTy.isPODType(CGF.getContext()) ||
    727         (CE && isMemcpyEquivalentSpecialMember(CE->getConstructor()))) {
    728       unsigned SrcArgIndex =
    729           CGF.CGM.getCXXABI().getSrcArgforCopyCtor(Constructor, Args);
    730       llvm::Value *SrcPtr
    731         = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(Args[SrcArgIndex]));
    732       LValue ThisRHSLV = CGF.MakeNaturalAlignAddrLValue(SrcPtr, RecordTy);
    733       LValue Src = CGF.EmitLValueForFieldInitialization(ThisRHSLV, Field);
    734 
    735       // Copy the aggregate.
    736       CGF.EmitAggregateCopy(LHS.getAddress(), Src.getAddress(), FieldType,
    737                             LHS.isVolatileQualified());
    738       // Ensure that we destroy the objects if an exception is thrown later in
    739       // the constructor.
    740       QualType::DestructionKind dtorKind = FieldType.isDestructedType();
    741       if (CGF.needsEHCleanup(dtorKind))
    742         CGF.pushEHDestroy(dtorKind, LHS.getAddress(), FieldType);
    743       return;
    744     }
    745   }
    746 
    747   ArrayRef<VarDecl *> ArrayIndexes;
    748   if (MemberInit->getNumArrayIndices())
    749     ArrayIndexes = MemberInit->getArrayIndices();
    750   CGF.EmitInitializerForField(Field, LHS, MemberInit->getInit(), ArrayIndexes);
    751 }
    752 
    753 void CodeGenFunction::EmitInitializerForField(FieldDecl *Field, LValue LHS,
    754                                 Expr *Init, ArrayRef<VarDecl *> ArrayIndexes) {
    755   QualType FieldType = Field->getType();
    756   switch (getEvaluationKind(FieldType)) {
    757   case TEK_Scalar:
    758     if (LHS.isSimple()) {
    759       EmitExprAsInit(Init, Field, LHS, false);
    760     } else {
    761       RValue RHS = RValue::get(EmitScalarExpr(Init));
    762       EmitStoreThroughLValue(RHS, LHS);
    763     }
    764     break;
    765   case TEK_Complex:
    766     EmitComplexExprIntoLValue(Init, LHS, /*isInit*/ true);
    767     break;
    768   case TEK_Aggregate: {
    769     Address ArrayIndexVar = Address::invalid();
    770     if (ArrayIndexes.size()) {
    771       // The LHS is a pointer to the first object we'll be constructing, as
    772       // a flat array.
    773       QualType BaseElementTy = getContext().getBaseElementType(FieldType);
    774       llvm::Type *BasePtr = ConvertType(BaseElementTy);
    775       BasePtr = llvm::PointerType::getUnqual(BasePtr);
    776       Address BaseAddrPtr = Builder.CreateBitCast(LHS.getAddress(), BasePtr);
    777       LHS = MakeAddrLValue(BaseAddrPtr, BaseElementTy);
    778 
    779       // Create an array index that will be used to walk over all of the
    780       // objects we're constructing.
    781       ArrayIndexVar = CreateMemTemp(getContext().getSizeType(), "object.index");
    782       llvm::Value *Zero =
    783         llvm::Constant::getNullValue(ArrayIndexVar.getElementType());
    784       Builder.CreateStore(Zero, ArrayIndexVar);
    785 
    786       // Emit the block variables for the array indices, if any.
    787       for (unsigned I = 0, N = ArrayIndexes.size(); I != N; ++I)
    788         EmitAutoVarDecl(*ArrayIndexes[I]);
    789     }
    790 
    791     EmitAggMemberInitializer(*this, LHS, Init, ArrayIndexVar, FieldType,
    792                              ArrayIndexes, 0);
    793   }
    794   }
    795 
    796   // Ensure that we destroy this object if an exception is thrown
    797   // later in the constructor.
    798   QualType::DestructionKind dtorKind = FieldType.isDestructedType();
    799   if (needsEHCleanup(dtorKind))
    800     pushEHDestroy(dtorKind, LHS.getAddress(), FieldType);
    801 }
    802 
    803 /// Checks whether the given constructor is a valid subject for the
    804 /// complete-to-base constructor delegation optimization, i.e.
    805 /// emitting the complete constructor as a simple call to the base
    806 /// constructor.
    807 static bool IsConstructorDelegationValid(const CXXConstructorDecl *Ctor) {
    808 
    809   // Currently we disable the optimization for classes with virtual
    810   // bases because (1) the addresses of parameter variables need to be
    811   // consistent across all initializers but (2) the delegate function
    812   // call necessarily creates a second copy of the parameter variable.
    813   //
    814   // The limiting example (purely theoretical AFAIK):
    815   //   struct A { A(int &c) { c++; } };
    816   //   struct B : virtual A {
    817   //     B(int count) : A(count) { printf("%d\n", count); }
    818   //   };
    819   // ...although even this example could in principle be emitted as a
    820   // delegation since the address of the parameter doesn't escape.
    821   if (Ctor->getParent()->getNumVBases()) {
    822     // TODO: white-list trivial vbase initializers.  This case wouldn't
    823     // be subject to the restrictions below.
    824 
    825     // TODO: white-list cases where:
    826     //  - there are no non-reference parameters to the constructor
    827     //  - the initializers don't access any non-reference parameters
    828     //  - the initializers don't take the address of non-reference
    829     //    parameters
    830     //  - etc.
    831     // If we ever add any of the above cases, remember that:
    832     //  - function-try-blocks will always blacklist this optimization
    833     //  - we need to perform the constructor prologue and cleanup in
    834     //    EmitConstructorBody.
    835 
    836     return false;
    837   }
    838 
    839   // We also disable the optimization for variadic functions because
    840   // it's impossible to "re-pass" varargs.
    841   if (Ctor->getType()->getAs<FunctionProtoType>()->isVariadic())
    842     return false;
    843 
    844   // FIXME: Decide if we can do a delegation of a delegating constructor.
    845   if (Ctor->isDelegatingConstructor())
    846     return false;
    847 
    848   return true;
    849 }
    850 
    851 // Emit code in ctor (Prologue==true) or dtor (Prologue==false)
    852 // to poison the extra field paddings inserted under
    853 // -fsanitize-address-field-padding=1|2.
    854 void CodeGenFunction::EmitAsanPrologueOrEpilogue(bool Prologue) {
    855   ASTContext &Context = getContext();
    856   const CXXRecordDecl *ClassDecl =
    857       Prologue ? cast<CXXConstructorDecl>(CurGD.getDecl())->getParent()
    858                : cast<CXXDestructorDecl>(CurGD.getDecl())->getParent();
    859   if (!ClassDecl->mayInsertExtraPadding()) return;
    860 
    861   struct SizeAndOffset {
    862     uint64_t Size;
    863     uint64_t Offset;
    864   };
    865 
    866   unsigned PtrSize = CGM.getDataLayout().getPointerSizeInBits();
    867   const ASTRecordLayout &Info = Context.getASTRecordLayout(ClassDecl);
    868 
    869   // Populate sizes and offsets of fields.
    870   SmallVector<SizeAndOffset, 16> SSV(Info.getFieldCount());
    871   for (unsigned i = 0, e = Info.getFieldCount(); i != e; ++i)
    872     SSV[i].Offset =
    873         Context.toCharUnitsFromBits(Info.getFieldOffset(i)).getQuantity();
    874 
    875   size_t NumFields = 0;
    876   for (const auto *Field : ClassDecl->fields()) {
    877     const FieldDecl *D = Field;
    878     std::pair<CharUnits, CharUnits> FieldInfo =
    879         Context.getTypeInfoInChars(D->getType());
    880     CharUnits FieldSize = FieldInfo.first;
    881     assert(NumFields < SSV.size());
    882     SSV[NumFields].Size = D->isBitField() ? 0 : FieldSize.getQuantity();
    883     NumFields++;
    884   }
    885   assert(NumFields == SSV.size());
    886   if (SSV.size() <= 1) return;
    887 
    888   // We will insert calls to __asan_* run-time functions.
    889   // LLVM AddressSanitizer pass may decide to inline them later.
    890   llvm::Type *Args[2] = {IntPtrTy, IntPtrTy};
    891   llvm::FunctionType *FTy =
    892       llvm::FunctionType::get(CGM.VoidTy, Args, false);
    893   llvm::Constant *F = CGM.CreateRuntimeFunction(
    894       FTy, Prologue ? "__asan_poison_intra_object_redzone"
    895                     : "__asan_unpoison_intra_object_redzone");
    896 
    897   llvm::Value *ThisPtr = LoadCXXThis();
    898   ThisPtr = Builder.CreatePtrToInt(ThisPtr, IntPtrTy);
    899   uint64_t TypeSize = Info.getNonVirtualSize().getQuantity();
    900   // For each field check if it has sufficient padding,
    901   // if so (un)poison it with a call.
    902   for (size_t i = 0; i < SSV.size(); i++) {
    903     uint64_t AsanAlignment = 8;
    904     uint64_t NextField = i == SSV.size() - 1 ? TypeSize : SSV[i + 1].Offset;
    905     uint64_t PoisonSize = NextField - SSV[i].Offset - SSV[i].Size;
    906     uint64_t EndOffset = SSV[i].Offset + SSV[i].Size;
    907     if (PoisonSize < AsanAlignment || !SSV[i].Size ||
    908         (NextField % AsanAlignment) != 0)
    909       continue;
    910     Builder.CreateCall(
    911         F, {Builder.CreateAdd(ThisPtr, Builder.getIntN(PtrSize, EndOffset)),
    912             Builder.getIntN(PtrSize, PoisonSize)});
    913   }
    914 }
    915 
    916 /// EmitConstructorBody - Emits the body of the current constructor.
    917 void CodeGenFunction::EmitConstructorBody(FunctionArgList &Args) {
    918   EmitAsanPrologueOrEpilogue(true);
    919   const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(CurGD.getDecl());
    920   CXXCtorType CtorType = CurGD.getCtorType();
    921 
    922   assert((CGM.getTarget().getCXXABI().hasConstructorVariants() ||
    923           CtorType == Ctor_Complete) &&
    924          "can only generate complete ctor for this ABI");
    925 
    926   // Before we go any further, try the complete->base constructor
    927   // delegation optimization.
    928   if (CtorType == Ctor_Complete && IsConstructorDelegationValid(Ctor) &&
    929       CGM.getTarget().getCXXABI().hasConstructorVariants()) {
    930     EmitDelegateCXXConstructorCall(Ctor, Ctor_Base, Args, Ctor->getLocEnd());
    931     return;
    932   }
    933 
    934   const FunctionDecl *Definition = nullptr;
    935   Stmt *Body = Ctor->getBody(Definition);
    936   assert(Definition == Ctor && "emitting wrong constructor body");
    937 
    938   // Enter the function-try-block before the constructor prologue if
    939   // applicable.
    940   bool IsTryBody = (Body && isa<CXXTryStmt>(Body));
    941   if (IsTryBody)
    942     EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true);
    943 
    944   incrementProfileCounter(Body);
    945 
    946   RunCleanupsScope RunCleanups(*this);
    947 
    948   // TODO: in restricted cases, we can emit the vbase initializers of
    949   // a complete ctor and then delegate to the base ctor.
    950 
    951   // Emit the constructor prologue, i.e. the base and member
    952   // initializers.
    953   EmitCtorPrologue(Ctor, CtorType, Args);
    954 
    955   // Emit the body of the statement.
    956   if (IsTryBody)
    957     EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock());
    958   else if (Body)
    959     EmitStmt(Body);
    960 
    961   // Emit any cleanup blocks associated with the member or base
    962   // initializers, which includes (along the exceptional path) the
    963   // destructors for those members and bases that were fully
    964   // constructed.
    965   RunCleanups.ForceCleanup();
    966 
    967   if (IsTryBody)
    968     ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true);
    969 }
    970 
    971 namespace {
    972   /// RAII object to indicate that codegen is copying the value representation
    973   /// instead of the object representation. Useful when copying a struct or
    974   /// class which has uninitialized members and we're only performing
    975   /// lvalue-to-rvalue conversion on the object but not its members.
    976   class CopyingValueRepresentation {
    977   public:
    978     explicit CopyingValueRepresentation(CodeGenFunction &CGF)
    979         : CGF(CGF), OldSanOpts(CGF.SanOpts) {
    980       CGF.SanOpts.set(SanitizerKind::Bool, false);
    981       CGF.SanOpts.set(SanitizerKind::Enum, false);
    982     }
    983     ~CopyingValueRepresentation() {
    984       CGF.SanOpts = OldSanOpts;
    985     }
    986   private:
    987     CodeGenFunction &CGF;
    988     SanitizerSet OldSanOpts;
    989   };
    990 } // end anonymous namespace
    991 
    992 namespace {
    993   class FieldMemcpyizer {
    994   public:
    995     FieldMemcpyizer(CodeGenFunction &CGF, const CXXRecordDecl *ClassDecl,
    996                     const VarDecl *SrcRec)
    997       : CGF(CGF), ClassDecl(ClassDecl), SrcRec(SrcRec),
    998         RecLayout(CGF.getContext().getASTRecordLayout(ClassDecl)),
    999         FirstField(nullptr), LastField(nullptr), FirstFieldOffset(0),
   1000         LastFieldOffset(0), LastAddedFieldIndex(0) {}
   1001 
   1002     bool isMemcpyableField(FieldDecl *F) const {
   1003       // Never memcpy fields when we are adding poisoned paddings.
   1004       if (CGF.getContext().getLangOpts().SanitizeAddressFieldPadding)
   1005         return false;
   1006       Qualifiers Qual = F->getType().getQualifiers();
   1007       if (Qual.hasVolatile() || Qual.hasObjCLifetime())
   1008         return false;
   1009       return true;
   1010     }
   1011 
   1012     void addMemcpyableField(FieldDecl *F) {
   1013       if (!FirstField)
   1014         addInitialField(F);
   1015       else
   1016         addNextField(F);
   1017     }
   1018 
   1019     CharUnits getMemcpySize(uint64_t FirstByteOffset) const {
   1020       unsigned LastFieldSize =
   1021         LastField->isBitField() ?
   1022           LastField->getBitWidthValue(CGF.getContext()) :
   1023           CGF.getContext().getTypeSize(LastField->getType());
   1024       uint64_t MemcpySizeBits =
   1025         LastFieldOffset + LastFieldSize - FirstByteOffset +
   1026         CGF.getContext().getCharWidth() - 1;
   1027       CharUnits MemcpySize =
   1028         CGF.getContext().toCharUnitsFromBits(MemcpySizeBits);
   1029       return MemcpySize;
   1030     }
   1031 
   1032     void emitMemcpy() {
   1033       // Give the subclass a chance to bail out if it feels the memcpy isn't
   1034       // worth it (e.g. Hasn't aggregated enough data).
   1035       if (!FirstField) {
   1036         return;
   1037       }
   1038 
   1039       uint64_t FirstByteOffset;
   1040       if (FirstField->isBitField()) {
   1041         const CGRecordLayout &RL =
   1042           CGF.getTypes().getCGRecordLayout(FirstField->getParent());
   1043         const CGBitFieldInfo &BFInfo = RL.getBitFieldInfo(FirstField);
   1044         // FirstFieldOffset is not appropriate for bitfields,
   1045         // we need to use the storage offset instead.
   1046         FirstByteOffset = CGF.getContext().toBits(BFInfo.StorageOffset);
   1047       } else {
   1048         FirstByteOffset = FirstFieldOffset;
   1049       }
   1050 
   1051       CharUnits MemcpySize = getMemcpySize(FirstByteOffset);
   1052       QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl);
   1053       Address ThisPtr = CGF.LoadCXXThisAddress();
   1054       LValue DestLV = CGF.MakeAddrLValue(ThisPtr, RecordTy);
   1055       LValue Dest = CGF.EmitLValueForFieldInitialization(DestLV, FirstField);
   1056       llvm::Value *SrcPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(SrcRec));
   1057       LValue SrcLV = CGF.MakeNaturalAlignAddrLValue(SrcPtr, RecordTy);
   1058       LValue Src = CGF.EmitLValueForFieldInitialization(SrcLV, FirstField);
   1059 
   1060       emitMemcpyIR(Dest.isBitField() ? Dest.getBitFieldAddress() : Dest.getAddress(),
   1061                    Src.isBitField() ? Src.getBitFieldAddress() : Src.getAddress(),
   1062                    MemcpySize);
   1063       reset();
   1064     }
   1065 
   1066     void reset() {
   1067       FirstField = nullptr;
   1068     }
   1069 
   1070   protected:
   1071     CodeGenFunction &CGF;
   1072     const CXXRecordDecl *ClassDecl;
   1073 
   1074   private:
   1075     void emitMemcpyIR(Address DestPtr, Address SrcPtr, CharUnits Size) {
   1076       llvm::PointerType *DPT = DestPtr.getType();
   1077       llvm::Type *DBP =
   1078         llvm::Type::getInt8PtrTy(CGF.getLLVMContext(), DPT->getAddressSpace());
   1079       DestPtr = CGF.Builder.CreateBitCast(DestPtr, DBP);
   1080 
   1081       llvm::PointerType *SPT = SrcPtr.getType();
   1082       llvm::Type *SBP =
   1083         llvm::Type::getInt8PtrTy(CGF.getLLVMContext(), SPT->getAddressSpace());
   1084       SrcPtr = CGF.Builder.CreateBitCast(SrcPtr, SBP);
   1085 
   1086       CGF.Builder.CreateMemCpy(DestPtr, SrcPtr, Size.getQuantity());
   1087     }
   1088 
   1089     void addInitialField(FieldDecl *F) {
   1090       FirstField = F;
   1091       LastField = F;
   1092       FirstFieldOffset = RecLayout.getFieldOffset(F->getFieldIndex());
   1093       LastFieldOffset = FirstFieldOffset;
   1094       LastAddedFieldIndex = F->getFieldIndex();
   1095     }
   1096 
   1097     void addNextField(FieldDecl *F) {
   1098       // For the most part, the following invariant will hold:
   1099       //   F->getFieldIndex() == LastAddedFieldIndex + 1
   1100       // The one exception is that Sema won't add a copy-initializer for an
   1101       // unnamed bitfield, which will show up here as a gap in the sequence.
   1102       assert(F->getFieldIndex() >= LastAddedFieldIndex + 1 &&
   1103              "Cannot aggregate fields out of order.");
   1104       LastAddedFieldIndex = F->getFieldIndex();
   1105 
   1106       // The 'first' and 'last' fields are chosen by offset, rather than field
   1107       // index. This allows the code to support bitfields, as well as regular
   1108       // fields.
   1109       uint64_t FOffset = RecLayout.getFieldOffset(F->getFieldIndex());
   1110       if (FOffset < FirstFieldOffset) {
   1111         FirstField = F;
   1112         FirstFieldOffset = FOffset;
   1113       } else if (FOffset > LastFieldOffset) {
   1114         LastField = F;
   1115         LastFieldOffset = FOffset;
   1116       }
   1117     }
   1118 
   1119     const VarDecl *SrcRec;
   1120     const ASTRecordLayout &RecLayout;
   1121     FieldDecl *FirstField;
   1122     FieldDecl *LastField;
   1123     uint64_t FirstFieldOffset, LastFieldOffset;
   1124     unsigned LastAddedFieldIndex;
   1125   };
   1126 
   1127   class ConstructorMemcpyizer : public FieldMemcpyizer {
   1128   private:
   1129     /// Get source argument for copy constructor. Returns null if not a copy
   1130     /// constructor.
   1131     static const VarDecl *getTrivialCopySource(CodeGenFunction &CGF,
   1132                                                const CXXConstructorDecl *CD,
   1133                                                FunctionArgList &Args) {
   1134       if (CD->isCopyOrMoveConstructor() && CD->isDefaulted())
   1135         return Args[CGF.CGM.getCXXABI().getSrcArgforCopyCtor(CD, Args)];
   1136       return nullptr;
   1137     }
   1138 
   1139     // Returns true if a CXXCtorInitializer represents a member initialization
   1140     // that can be rolled into a memcpy.
   1141     bool isMemberInitMemcpyable(CXXCtorInitializer *MemberInit) const {
   1142       if (!MemcpyableCtor)
   1143         return false;
   1144       FieldDecl *Field = MemberInit->getMember();
   1145       assert(Field && "No field for member init.");
   1146       QualType FieldType = Field->getType();
   1147       CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(MemberInit->getInit());
   1148 
   1149       // Bail out on non-memcpyable, not-trivially-copyable members.
   1150       if (!(CE && isMemcpyEquivalentSpecialMember(CE->getConstructor())) &&
   1151           !(FieldType.isTriviallyCopyableType(CGF.getContext()) ||
   1152             FieldType->isReferenceType()))
   1153         return false;
   1154 
   1155       // Bail out on volatile fields.
   1156       if (!isMemcpyableField(Field))
   1157         return false;
   1158 
   1159       // Otherwise we're good.
   1160       return true;
   1161     }
   1162 
   1163   public:
   1164     ConstructorMemcpyizer(CodeGenFunction &CGF, const CXXConstructorDecl *CD,
   1165                           FunctionArgList &Args)
   1166       : FieldMemcpyizer(CGF, CD->getParent(), getTrivialCopySource(CGF, CD, Args)),
   1167         ConstructorDecl(CD),
   1168         MemcpyableCtor(CD->isDefaulted() &&
   1169                        CD->isCopyOrMoveConstructor() &&
   1170                        CGF.getLangOpts().getGC() == LangOptions::NonGC),
   1171         Args(Args) { }
   1172 
   1173     void addMemberInitializer(CXXCtorInitializer *MemberInit) {
   1174       if (isMemberInitMemcpyable(MemberInit)) {
   1175         AggregatedInits.push_back(MemberInit);
   1176         addMemcpyableField(MemberInit->getMember());
   1177       } else {
   1178         emitAggregatedInits();
   1179         EmitMemberInitializer(CGF, ConstructorDecl->getParent(), MemberInit,
   1180                               ConstructorDecl, Args);
   1181       }
   1182     }
   1183 
   1184     void emitAggregatedInits() {
   1185       if (AggregatedInits.size() <= 1) {
   1186         // This memcpy is too small to be worthwhile. Fall back on default
   1187         // codegen.
   1188         if (!AggregatedInits.empty()) {
   1189           CopyingValueRepresentation CVR(CGF);
   1190           EmitMemberInitializer(CGF, ConstructorDecl->getParent(),
   1191                                 AggregatedInits[0], ConstructorDecl, Args);
   1192           AggregatedInits.clear();
   1193         }
   1194         reset();
   1195         return;
   1196       }
   1197 
   1198       pushEHDestructors();
   1199       emitMemcpy();
   1200       AggregatedInits.clear();
   1201     }
   1202 
   1203     void pushEHDestructors() {
   1204       Address ThisPtr = CGF.LoadCXXThisAddress();
   1205       QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl);
   1206       LValue LHS = CGF.MakeAddrLValue(ThisPtr, RecordTy);
   1207 
   1208       for (unsigned i = 0; i < AggregatedInits.size(); ++i) {
   1209         CXXCtorInitializer *MemberInit = AggregatedInits[i];
   1210         QualType FieldType = MemberInit->getAnyMember()->getType();
   1211         QualType::DestructionKind dtorKind = FieldType.isDestructedType();
   1212         if (!CGF.needsEHCleanup(dtorKind))
   1213           continue;
   1214         LValue FieldLHS = LHS;
   1215         EmitLValueForAnyFieldInitialization(CGF, MemberInit, FieldLHS);
   1216         CGF.pushEHDestroy(dtorKind, FieldLHS.getAddress(), FieldType);
   1217       }
   1218     }
   1219 
   1220     void finish() {
   1221       emitAggregatedInits();
   1222     }
   1223 
   1224   private:
   1225     const CXXConstructorDecl *ConstructorDecl;
   1226     bool MemcpyableCtor;
   1227     FunctionArgList &Args;
   1228     SmallVector<CXXCtorInitializer*, 16> AggregatedInits;
   1229   };
   1230 
   1231   class AssignmentMemcpyizer : public FieldMemcpyizer {
   1232   private:
   1233     // Returns the memcpyable field copied by the given statement, if one
   1234     // exists. Otherwise returns null.
   1235     FieldDecl *getMemcpyableField(Stmt *S) {
   1236       if (!AssignmentsMemcpyable)
   1237         return nullptr;
   1238       if (BinaryOperator *BO = dyn_cast<BinaryOperator>(S)) {
   1239         // Recognise trivial assignments.
   1240         if (BO->getOpcode() != BO_Assign)
   1241           return nullptr;
   1242         MemberExpr *ME = dyn_cast<MemberExpr>(BO->getLHS());
   1243         if (!ME)
   1244           return nullptr;
   1245         FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl());
   1246         if (!Field || !isMemcpyableField(Field))
   1247           return nullptr;
   1248         Stmt *RHS = BO->getRHS();
   1249         if (ImplicitCastExpr *EC = dyn_cast<ImplicitCastExpr>(RHS))
   1250           RHS = EC->getSubExpr();
   1251         if (!RHS)
   1252           return nullptr;
   1253         MemberExpr *ME2 = dyn_cast<MemberExpr>(RHS);
   1254         if (dyn_cast<FieldDecl>(ME2->getMemberDecl()) != Field)
   1255           return nullptr;
   1256         return Field;
   1257       } else if (CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(S)) {
   1258         CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MCE->getCalleeDecl());
   1259         if (!(MD && isMemcpyEquivalentSpecialMember(MD)))
   1260           return nullptr;
   1261         MemberExpr *IOA = dyn_cast<MemberExpr>(MCE->getImplicitObjectArgument());
   1262         if (!IOA)
   1263           return nullptr;
   1264         FieldDecl *Field = dyn_cast<FieldDecl>(IOA->getMemberDecl());
   1265         if (!Field || !isMemcpyableField(Field))
   1266           return nullptr;
   1267         MemberExpr *Arg0 = dyn_cast<MemberExpr>(MCE->getArg(0));
   1268         if (!Arg0 || Field != dyn_cast<FieldDecl>(Arg0->getMemberDecl()))
   1269           return nullptr;
   1270         return Field;
   1271       } else if (CallExpr *CE = dyn_cast<CallExpr>(S)) {
   1272         FunctionDecl *FD = dyn_cast<FunctionDecl>(CE->getCalleeDecl());
   1273         if (!FD || FD->getBuiltinID() != Builtin::BI__builtin_memcpy)
   1274           return nullptr;
   1275         Expr *DstPtr = CE->getArg(0);
   1276         if (ImplicitCastExpr *DC = dyn_cast<ImplicitCastExpr>(DstPtr))
   1277           DstPtr = DC->getSubExpr();
   1278         UnaryOperator *DUO = dyn_cast<UnaryOperator>(DstPtr);
   1279         if (!DUO || DUO->getOpcode() != UO_AddrOf)
   1280           return nullptr;
   1281         MemberExpr *ME = dyn_cast<MemberExpr>(DUO->getSubExpr());
   1282         if (!ME)
   1283           return nullptr;
   1284         FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl());
   1285         if (!Field || !isMemcpyableField(Field))
   1286           return nullptr;
   1287         Expr *SrcPtr = CE->getArg(1);
   1288         if (ImplicitCastExpr *SC = dyn_cast<ImplicitCastExpr>(SrcPtr))
   1289           SrcPtr = SC->getSubExpr();
   1290         UnaryOperator *SUO = dyn_cast<UnaryOperator>(SrcPtr);
   1291         if (!SUO || SUO->getOpcode() != UO_AddrOf)
   1292           return nullptr;
   1293         MemberExpr *ME2 = dyn_cast<MemberExpr>(SUO->getSubExpr());
   1294         if (!ME2 || Field != dyn_cast<FieldDecl>(ME2->getMemberDecl()))
   1295           return nullptr;
   1296         return Field;
   1297       }
   1298 
   1299       return nullptr;
   1300     }
   1301 
   1302     bool AssignmentsMemcpyable;
   1303     SmallVector<Stmt*, 16> AggregatedStmts;
   1304 
   1305   public:
   1306     AssignmentMemcpyizer(CodeGenFunction &CGF, const CXXMethodDecl *AD,
   1307                          FunctionArgList &Args)
   1308       : FieldMemcpyizer(CGF, AD->getParent(), Args[Args.size() - 1]),
   1309         AssignmentsMemcpyable(CGF.getLangOpts().getGC() == LangOptions::NonGC) {
   1310       assert(Args.size() == 2);
   1311     }
   1312 
   1313     void emitAssignment(Stmt *S) {
   1314       FieldDecl *F = getMemcpyableField(S);
   1315       if (F) {
   1316         addMemcpyableField(F);
   1317         AggregatedStmts.push_back(S);
   1318       } else {
   1319         emitAggregatedStmts();
   1320         CGF.EmitStmt(S);
   1321       }
   1322     }
   1323 
   1324     void emitAggregatedStmts() {
   1325       if (AggregatedStmts.size() <= 1) {
   1326         if (!AggregatedStmts.empty()) {
   1327           CopyingValueRepresentation CVR(CGF);
   1328           CGF.EmitStmt(AggregatedStmts[0]);
   1329         }
   1330         reset();
   1331       }
   1332 
   1333       emitMemcpy();
   1334       AggregatedStmts.clear();
   1335     }
   1336 
   1337     void finish() {
   1338       emitAggregatedStmts();
   1339     }
   1340   };
   1341 } // end anonymous namespace
   1342 
   1343 static bool isInitializerOfDynamicClass(const CXXCtorInitializer *BaseInit) {
   1344   const Type *BaseType = BaseInit->getBaseClass();
   1345   const auto *BaseClassDecl =
   1346           cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl());
   1347   return BaseClassDecl->isDynamicClass();
   1348 }
   1349 
   1350 /// EmitCtorPrologue - This routine generates necessary code to initialize
   1351 /// base classes and non-static data members belonging to this constructor.
   1352 void CodeGenFunction::EmitCtorPrologue(const CXXConstructorDecl *CD,
   1353                                        CXXCtorType CtorType,
   1354                                        FunctionArgList &Args) {
   1355   if (CD->isDelegatingConstructor())
   1356     return EmitDelegatingCXXConstructorCall(CD, Args);
   1357 
   1358   const CXXRecordDecl *ClassDecl = CD->getParent();
   1359 
   1360   CXXConstructorDecl::init_const_iterator B = CD->init_begin(),
   1361                                           E = CD->init_end();
   1362 
   1363   llvm::BasicBlock *BaseCtorContinueBB = nullptr;
   1364   if (ClassDecl->getNumVBases() &&
   1365       !CGM.getTarget().getCXXABI().hasConstructorVariants()) {
   1366     // The ABIs that don't have constructor variants need to put a branch
   1367     // before the virtual base initialization code.
   1368     BaseCtorContinueBB =
   1369       CGM.getCXXABI().EmitCtorCompleteObjectHandler(*this, ClassDecl);
   1370     assert(BaseCtorContinueBB);
   1371   }
   1372 
   1373   llvm::Value *const OldThis = CXXThisValue;
   1374   // Virtual base initializers first.
   1375   for (; B != E && (*B)->isBaseInitializer() && (*B)->isBaseVirtual(); B++) {
   1376     if (CGM.getCodeGenOpts().StrictVTablePointers &&
   1377         CGM.getCodeGenOpts().OptimizationLevel > 0 &&
   1378         isInitializerOfDynamicClass(*B))
   1379       CXXThisValue = Builder.CreateInvariantGroupBarrier(LoadCXXThis());
   1380     EmitBaseInitializer(*this, ClassDecl, *B, CtorType);
   1381   }
   1382 
   1383   if (BaseCtorContinueBB) {
   1384     // Complete object handler should continue to the remaining initializers.
   1385     Builder.CreateBr(BaseCtorContinueBB);
   1386     EmitBlock(BaseCtorContinueBB);
   1387   }
   1388 
   1389   // Then, non-virtual base initializers.
   1390   for (; B != E && (*B)->isBaseInitializer(); B++) {
   1391     assert(!(*B)->isBaseVirtual());
   1392 
   1393     if (CGM.getCodeGenOpts().StrictVTablePointers &&
   1394         CGM.getCodeGenOpts().OptimizationLevel > 0 &&
   1395         isInitializerOfDynamicClass(*B))
   1396       CXXThisValue = Builder.CreateInvariantGroupBarrier(LoadCXXThis());
   1397     EmitBaseInitializer(*this, ClassDecl, *B, CtorType);
   1398   }
   1399 
   1400   CXXThisValue = OldThis;
   1401 
   1402   InitializeVTablePointers(ClassDecl);
   1403 
   1404   // And finally, initialize class members.
   1405   FieldConstructionScope FCS(*this, LoadCXXThisAddress());
   1406   ConstructorMemcpyizer CM(*this, CD, Args);
   1407   for (; B != E; B++) {
   1408     CXXCtorInitializer *Member = (*B);
   1409     assert(!Member->isBaseInitializer());
   1410     assert(Member->isAnyMemberInitializer() &&
   1411            "Delegating initializer on non-delegating constructor");
   1412     CM.addMemberInitializer(Member);
   1413   }
   1414   CM.finish();
   1415 }
   1416 
   1417 static bool
   1418 FieldHasTrivialDestructorBody(ASTContext &Context, const FieldDecl *Field);
   1419 
   1420 static bool
   1421 HasTrivialDestructorBody(ASTContext &Context,
   1422                          const CXXRecordDecl *BaseClassDecl,
   1423                          const CXXRecordDecl *MostDerivedClassDecl)
   1424 {
   1425   // If the destructor is trivial we don't have to check anything else.
   1426   if (BaseClassDecl->hasTrivialDestructor())
   1427     return true;
   1428 
   1429   if (!BaseClassDecl->getDestructor()->hasTrivialBody())
   1430     return false;
   1431 
   1432   // Check fields.
   1433   for (const auto *Field : BaseClassDecl->fields())
   1434     if (!FieldHasTrivialDestructorBody(Context, Field))
   1435       return false;
   1436 
   1437   // Check non-virtual bases.
   1438   for (const auto &I : BaseClassDecl->bases()) {
   1439     if (I.isVirtual())
   1440       continue;
   1441 
   1442     const CXXRecordDecl *NonVirtualBase =
   1443       cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
   1444     if (!HasTrivialDestructorBody(Context, NonVirtualBase,
   1445                                   MostDerivedClassDecl))
   1446       return false;
   1447   }
   1448 
   1449   if (BaseClassDecl == MostDerivedClassDecl) {
   1450     // Check virtual bases.
   1451     for (const auto &I : BaseClassDecl->vbases()) {
   1452       const CXXRecordDecl *VirtualBase =
   1453         cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
   1454       if (!HasTrivialDestructorBody(Context, VirtualBase,
   1455                                     MostDerivedClassDecl))
   1456         return false;
   1457     }
   1458   }
   1459 
   1460   return true;
   1461 }
   1462 
   1463 static bool
   1464 FieldHasTrivialDestructorBody(ASTContext &Context,
   1465                                           const FieldDecl *Field)
   1466 {
   1467   QualType FieldBaseElementType = Context.getBaseElementType(Field->getType());
   1468 
   1469   const RecordType *RT = FieldBaseElementType->getAs<RecordType>();
   1470   if (!RT)
   1471     return true;
   1472 
   1473   CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
   1474 
   1475   // The destructor for an implicit anonymous union member is never invoked.
   1476   if (FieldClassDecl->isUnion() && FieldClassDecl->isAnonymousStructOrUnion())
   1477     return false;
   1478 
   1479   return HasTrivialDestructorBody(Context, FieldClassDecl, FieldClassDecl);
   1480 }
   1481 
   1482 /// CanSkipVTablePointerInitialization - Check whether we need to initialize
   1483 /// any vtable pointers before calling this destructor.
   1484 static bool CanSkipVTablePointerInitialization(CodeGenFunction &CGF,
   1485                                                const CXXDestructorDecl *Dtor) {
   1486   const CXXRecordDecl *ClassDecl = Dtor->getParent();
   1487   if (!ClassDecl->isDynamicClass())
   1488     return true;
   1489 
   1490   if (!Dtor->hasTrivialBody())
   1491     return false;
   1492 
   1493   // Check the fields.
   1494   for (const auto *Field : ClassDecl->fields())
   1495     if (!FieldHasTrivialDestructorBody(CGF.getContext(), Field))
   1496       return false;
   1497 
   1498   return true;
   1499 }
   1500 
   1501 /// EmitDestructorBody - Emits the body of the current destructor.
   1502 void CodeGenFunction::EmitDestructorBody(FunctionArgList &Args) {
   1503   const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CurGD.getDecl());
   1504   CXXDtorType DtorType = CurGD.getDtorType();
   1505 
   1506   Stmt *Body = Dtor->getBody();
   1507   if (Body)
   1508     incrementProfileCounter(Body);
   1509 
   1510   // The call to operator delete in a deleting destructor happens
   1511   // outside of the function-try-block, which means it's always
   1512   // possible to delegate the destructor body to the complete
   1513   // destructor.  Do so.
   1514   if (DtorType == Dtor_Deleting) {
   1515     EnterDtorCleanups(Dtor, Dtor_Deleting);
   1516     EmitCXXDestructorCall(Dtor, Dtor_Complete, /*ForVirtualBase=*/false,
   1517                           /*Delegating=*/false, LoadCXXThisAddress());
   1518     PopCleanupBlock();
   1519     return;
   1520   }
   1521 
   1522   // If the body is a function-try-block, enter the try before
   1523   // anything else.
   1524   bool isTryBody = (Body && isa<CXXTryStmt>(Body));
   1525   if (isTryBody)
   1526     EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true);
   1527   EmitAsanPrologueOrEpilogue(false);
   1528 
   1529   // Enter the epilogue cleanups.
   1530   RunCleanupsScope DtorEpilogue(*this);
   1531 
   1532   // If this is the complete variant, just invoke the base variant;
   1533   // the epilogue will destruct the virtual bases.  But we can't do
   1534   // this optimization if the body is a function-try-block, because
   1535   // we'd introduce *two* handler blocks.  In the Microsoft ABI, we
   1536   // always delegate because we might not have a definition in this TU.
   1537   switch (DtorType) {
   1538   case Dtor_Comdat:
   1539     llvm_unreachable("not expecting a COMDAT");
   1540 
   1541   case Dtor_Deleting: llvm_unreachable("already handled deleting case");
   1542 
   1543   case Dtor_Complete:
   1544     assert((Body || getTarget().getCXXABI().isMicrosoft()) &&
   1545            "can't emit a dtor without a body for non-Microsoft ABIs");
   1546 
   1547     // Enter the cleanup scopes for virtual bases.
   1548     EnterDtorCleanups(Dtor, Dtor_Complete);
   1549 
   1550     if (!isTryBody) {
   1551       EmitCXXDestructorCall(Dtor, Dtor_Base, /*ForVirtualBase=*/false,
   1552                             /*Delegating=*/false, LoadCXXThisAddress());
   1553       break;
   1554     }
   1555     // Fallthrough: act like we're in the base variant.
   1556 
   1557   case Dtor_Base:
   1558     assert(Body);
   1559 
   1560     // Enter the cleanup scopes for fields and non-virtual bases.
   1561     EnterDtorCleanups(Dtor, Dtor_Base);
   1562 
   1563     // Initialize the vtable pointers before entering the body.
   1564     if (!CanSkipVTablePointerInitialization(*this, Dtor)) {
   1565       // Insert the llvm.invariant.group.barrier intrinsic before initializing
   1566       // the vptrs to cancel any previous assumptions we might have made.
   1567       if (CGM.getCodeGenOpts().StrictVTablePointers &&
   1568           CGM.getCodeGenOpts().OptimizationLevel > 0)
   1569         CXXThisValue = Builder.CreateInvariantGroupBarrier(LoadCXXThis());
   1570       InitializeVTablePointers(Dtor->getParent());
   1571     }
   1572 
   1573     if (isTryBody)
   1574       EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock());
   1575     else if (Body)
   1576       EmitStmt(Body);
   1577     else {
   1578       assert(Dtor->isImplicit() && "bodyless dtor not implicit");
   1579       // nothing to do besides what's in the epilogue
   1580     }
   1581     // -fapple-kext must inline any call to this dtor into
   1582     // the caller's body.
   1583     if (getLangOpts().AppleKext)
   1584       CurFn->addFnAttr(llvm::Attribute::AlwaysInline);
   1585 
   1586     break;
   1587   }
   1588 
   1589   // Jump out through the epilogue cleanups.
   1590   DtorEpilogue.ForceCleanup();
   1591 
   1592   // Exit the try if applicable.
   1593   if (isTryBody)
   1594     ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true);
   1595 }
   1596 
   1597 void CodeGenFunction::emitImplicitAssignmentOperatorBody(FunctionArgList &Args) {
   1598   const CXXMethodDecl *AssignOp = cast<CXXMethodDecl>(CurGD.getDecl());
   1599   const Stmt *RootS = AssignOp->getBody();
   1600   assert(isa<CompoundStmt>(RootS) &&
   1601          "Body of an implicit assignment operator should be compound stmt.");
   1602   const CompoundStmt *RootCS = cast<CompoundStmt>(RootS);
   1603 
   1604   LexicalScope Scope(*this, RootCS->getSourceRange());
   1605 
   1606   incrementProfileCounter(RootCS);
   1607   AssignmentMemcpyizer AM(*this, AssignOp, Args);
   1608   for (auto *I : RootCS->body())
   1609     AM.emitAssignment(I);
   1610   AM.finish();
   1611 }
   1612 
   1613 namespace {
   1614   /// Call the operator delete associated with the current destructor.
   1615   struct CallDtorDelete final : EHScopeStack::Cleanup {
   1616     CallDtorDelete() {}
   1617 
   1618     void Emit(CodeGenFunction &CGF, Flags flags) override {
   1619       const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CGF.CurCodeDecl);
   1620       const CXXRecordDecl *ClassDecl = Dtor->getParent();
   1621       CGF.EmitDeleteCall(Dtor->getOperatorDelete(), CGF.LoadCXXThis(),
   1622                          CGF.getContext().getTagDeclType(ClassDecl));
   1623     }
   1624   };
   1625 
   1626   struct CallDtorDeleteConditional final : EHScopeStack::Cleanup {
   1627     llvm::Value *ShouldDeleteCondition;
   1628 
   1629   public:
   1630     CallDtorDeleteConditional(llvm::Value *ShouldDeleteCondition)
   1631         : ShouldDeleteCondition(ShouldDeleteCondition) {
   1632       assert(ShouldDeleteCondition != nullptr);
   1633     }
   1634 
   1635     void Emit(CodeGenFunction &CGF, Flags flags) override {
   1636       llvm::BasicBlock *callDeleteBB = CGF.createBasicBlock("dtor.call_delete");
   1637       llvm::BasicBlock *continueBB = CGF.createBasicBlock("dtor.continue");
   1638       llvm::Value *ShouldCallDelete
   1639         = CGF.Builder.CreateIsNull(ShouldDeleteCondition);
   1640       CGF.Builder.CreateCondBr(ShouldCallDelete, continueBB, callDeleteBB);
   1641 
   1642       CGF.EmitBlock(callDeleteBB);
   1643       const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CGF.CurCodeDecl);
   1644       const CXXRecordDecl *ClassDecl = Dtor->getParent();
   1645       CGF.EmitDeleteCall(Dtor->getOperatorDelete(), CGF.LoadCXXThis(),
   1646                          CGF.getContext().getTagDeclType(ClassDecl));
   1647       CGF.Builder.CreateBr(continueBB);
   1648 
   1649       CGF.EmitBlock(continueBB);
   1650     }
   1651   };
   1652 
   1653   class DestroyField  final : public EHScopeStack::Cleanup {
   1654     const FieldDecl *field;
   1655     CodeGenFunction::Destroyer *destroyer;
   1656     bool useEHCleanupForArray;
   1657 
   1658   public:
   1659     DestroyField(const FieldDecl *field, CodeGenFunction::Destroyer *destroyer,
   1660                  bool useEHCleanupForArray)
   1661         : field(field), destroyer(destroyer),
   1662           useEHCleanupForArray(useEHCleanupForArray) {}
   1663 
   1664     void Emit(CodeGenFunction &CGF, Flags flags) override {
   1665       // Find the address of the field.
   1666       Address thisValue = CGF.LoadCXXThisAddress();
   1667       QualType RecordTy = CGF.getContext().getTagDeclType(field->getParent());
   1668       LValue ThisLV = CGF.MakeAddrLValue(thisValue, RecordTy);
   1669       LValue LV = CGF.EmitLValueForField(ThisLV, field);
   1670       assert(LV.isSimple());
   1671 
   1672       CGF.emitDestroy(LV.getAddress(), field->getType(), destroyer,
   1673                       flags.isForNormalCleanup() && useEHCleanupForArray);
   1674     }
   1675   };
   1676 
   1677  static void EmitSanitizerDtorCallback(CodeGenFunction &CGF, llvm::Value *Ptr,
   1678              CharUnits::QuantityType PoisonSize) {
   1679    // Pass in void pointer and size of region as arguments to runtime
   1680    // function
   1681    llvm::Value *Args[] = {CGF.Builder.CreateBitCast(Ptr, CGF.VoidPtrTy),
   1682                           llvm::ConstantInt::get(CGF.SizeTy, PoisonSize)};
   1683 
   1684    llvm::Type *ArgTypes[] = {CGF.VoidPtrTy, CGF.SizeTy};
   1685 
   1686    llvm::FunctionType *FnType =
   1687        llvm::FunctionType::get(CGF.VoidTy, ArgTypes, false);
   1688    llvm::Value *Fn =
   1689        CGF.CGM.CreateRuntimeFunction(FnType, "__sanitizer_dtor_callback");
   1690    CGF.EmitNounwindRuntimeCall(Fn, Args);
   1691  }
   1692 
   1693   class SanitizeDtorMembers final : public EHScopeStack::Cleanup {
   1694     const CXXDestructorDecl *Dtor;
   1695 
   1696   public:
   1697     SanitizeDtorMembers(const CXXDestructorDecl *Dtor) : Dtor(Dtor) {}
   1698 
   1699     // Generate function call for handling object poisoning.
   1700     // Disables tail call elimination, to prevent the current stack frame
   1701     // from disappearing from the stack trace.
   1702     void Emit(CodeGenFunction &CGF, Flags flags) override {
   1703       const ASTRecordLayout &Layout =
   1704           CGF.getContext().getASTRecordLayout(Dtor->getParent());
   1705 
   1706       // Nothing to poison.
   1707       if (Layout.getFieldCount() == 0)
   1708         return;
   1709 
   1710       // Prevent the current stack frame from disappearing from the stack trace.
   1711       CGF.CurFn->addFnAttr("disable-tail-calls", "true");
   1712 
   1713       // Construct pointer to region to begin poisoning, and calculate poison
   1714       // size, so that only members declared in this class are poisoned.
   1715       ASTContext &Context = CGF.getContext();
   1716       unsigned fieldIndex = 0;
   1717       int startIndex = -1;
   1718       // RecordDecl::field_iterator Field;
   1719       for (const FieldDecl *Field : Dtor->getParent()->fields()) {
   1720         // Poison field if it is trivial
   1721         if (FieldHasTrivialDestructorBody(Context, Field)) {
   1722           // Start sanitizing at this field
   1723           if (startIndex < 0)
   1724             startIndex = fieldIndex;
   1725 
   1726           // Currently on the last field, and it must be poisoned with the
   1727           // current block.
   1728           if (fieldIndex == Layout.getFieldCount() - 1) {
   1729             PoisonMembers(CGF, startIndex, Layout.getFieldCount());
   1730           }
   1731         } else if (startIndex >= 0) {
   1732           // No longer within a block of memory to poison, so poison the block
   1733           PoisonMembers(CGF, startIndex, fieldIndex);
   1734           // Re-set the start index
   1735           startIndex = -1;
   1736         }
   1737         fieldIndex += 1;
   1738       }
   1739     }
   1740 
   1741   private:
   1742     /// \param layoutStartOffset index of the ASTRecordLayout field to
   1743     ///     start poisoning (inclusive)
   1744     /// \param layoutEndOffset index of the ASTRecordLayout field to
   1745     ///     end poisoning (exclusive)
   1746     void PoisonMembers(CodeGenFunction &CGF, unsigned layoutStartOffset,
   1747                      unsigned layoutEndOffset) {
   1748       ASTContext &Context = CGF.getContext();
   1749       const ASTRecordLayout &Layout =
   1750           Context.getASTRecordLayout(Dtor->getParent());
   1751 
   1752       llvm::ConstantInt *OffsetSizePtr = llvm::ConstantInt::get(
   1753           CGF.SizeTy,
   1754           Context.toCharUnitsFromBits(Layout.getFieldOffset(layoutStartOffset))
   1755               .getQuantity());
   1756 
   1757       llvm::Value *OffsetPtr = CGF.Builder.CreateGEP(
   1758           CGF.Builder.CreateBitCast(CGF.LoadCXXThis(), CGF.Int8PtrTy),
   1759           OffsetSizePtr);
   1760 
   1761       CharUnits::QuantityType PoisonSize;
   1762       if (layoutEndOffset >= Layout.getFieldCount()) {
   1763         PoisonSize = Layout.getNonVirtualSize().getQuantity() -
   1764                      Context.toCharUnitsFromBits(
   1765                                 Layout.getFieldOffset(layoutStartOffset))
   1766                          .getQuantity();
   1767       } else {
   1768         PoisonSize = Context.toCharUnitsFromBits(
   1769                                 Layout.getFieldOffset(layoutEndOffset) -
   1770                                 Layout.getFieldOffset(layoutStartOffset))
   1771                          .getQuantity();
   1772       }
   1773 
   1774       if (PoisonSize == 0)
   1775         return;
   1776 
   1777       EmitSanitizerDtorCallback(CGF, OffsetPtr, PoisonSize);
   1778     }
   1779   };
   1780 
   1781  class SanitizeDtorVTable final : public EHScopeStack::Cleanup {
   1782     const CXXDestructorDecl *Dtor;
   1783 
   1784   public:
   1785     SanitizeDtorVTable(const CXXDestructorDecl *Dtor) : Dtor(Dtor) {}
   1786 
   1787     // Generate function call for handling vtable pointer poisoning.
   1788     void Emit(CodeGenFunction &CGF, Flags flags) override {
   1789       assert(Dtor->getParent()->isDynamicClass());
   1790       (void)Dtor;
   1791       ASTContext &Context = CGF.getContext();
   1792       // Poison vtable and vtable ptr if they exist for this class.
   1793       llvm::Value *VTablePtr = CGF.LoadCXXThis();
   1794 
   1795       CharUnits::QuantityType PoisonSize =
   1796           Context.toCharUnitsFromBits(CGF.PointerWidthInBits).getQuantity();
   1797       // Pass in void pointer and size of region as arguments to runtime
   1798       // function
   1799       EmitSanitizerDtorCallback(CGF, VTablePtr, PoisonSize);
   1800     }
   1801  };
   1802 } // end anonymous namespace
   1803 
   1804 /// \brief Emit all code that comes at the end of class's
   1805 /// destructor. This is to call destructors on members and base classes
   1806 /// in reverse order of their construction.
   1807 void CodeGenFunction::EnterDtorCleanups(const CXXDestructorDecl *DD,
   1808                                         CXXDtorType DtorType) {
   1809   assert((!DD->isTrivial() || DD->hasAttr<DLLExportAttr>()) &&
   1810          "Should not emit dtor epilogue for non-exported trivial dtor!");
   1811 
   1812   // The deleting-destructor phase just needs to call the appropriate
   1813   // operator delete that Sema picked up.
   1814   if (DtorType == Dtor_Deleting) {
   1815     assert(DD->getOperatorDelete() &&
   1816            "operator delete missing - EnterDtorCleanups");
   1817     if (CXXStructorImplicitParamValue) {
   1818       // If there is an implicit param to the deleting dtor, it's a boolean
   1819       // telling whether we should call delete at the end of the dtor.
   1820       EHStack.pushCleanup<CallDtorDeleteConditional>(
   1821           NormalAndEHCleanup, CXXStructorImplicitParamValue);
   1822     } else {
   1823       EHStack.pushCleanup<CallDtorDelete>(NormalAndEHCleanup);
   1824     }
   1825     return;
   1826   }
   1827 
   1828   const CXXRecordDecl *ClassDecl = DD->getParent();
   1829 
   1830   // Unions have no bases and do not call field destructors.
   1831   if (ClassDecl->isUnion())
   1832     return;
   1833 
   1834   // The complete-destructor phase just destructs all the virtual bases.
   1835   if (DtorType == Dtor_Complete) {
   1836     // Poison the vtable pointer such that access after the base
   1837     // and member destructors are invoked is invalid.
   1838     if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor &&
   1839         SanOpts.has(SanitizerKind::Memory) && ClassDecl->getNumVBases() &&
   1840         ClassDecl->isPolymorphic())
   1841       EHStack.pushCleanup<SanitizeDtorVTable>(NormalAndEHCleanup, DD);
   1842 
   1843     // We push them in the forward order so that they'll be popped in
   1844     // the reverse order.
   1845     for (const auto &Base : ClassDecl->vbases()) {
   1846       CXXRecordDecl *BaseClassDecl
   1847         = cast<CXXRecordDecl>(Base.getType()->getAs<RecordType>()->getDecl());
   1848 
   1849       // Ignore trivial destructors.
   1850       if (BaseClassDecl->hasTrivialDestructor())
   1851         continue;
   1852 
   1853       EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup,
   1854                                         BaseClassDecl,
   1855                                         /*BaseIsVirtual*/ true);
   1856     }
   1857 
   1858     return;
   1859   }
   1860 
   1861   assert(DtorType == Dtor_Base);
   1862   // Poison the vtable pointer if it has no virtual bases, but inherits
   1863   // virtual functions.
   1864   if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor &&
   1865       SanOpts.has(SanitizerKind::Memory) && !ClassDecl->getNumVBases() &&
   1866       ClassDecl->isPolymorphic())
   1867     EHStack.pushCleanup<SanitizeDtorVTable>(NormalAndEHCleanup, DD);
   1868 
   1869   // Destroy non-virtual bases.
   1870   for (const auto &Base : ClassDecl->bases()) {
   1871     // Ignore virtual bases.
   1872     if (Base.isVirtual())
   1873       continue;
   1874 
   1875     CXXRecordDecl *BaseClassDecl = Base.getType()->getAsCXXRecordDecl();
   1876 
   1877     // Ignore trivial destructors.
   1878     if (BaseClassDecl->hasTrivialDestructor())
   1879       continue;
   1880 
   1881     EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup,
   1882                                       BaseClassDecl,
   1883                                       /*BaseIsVirtual*/ false);
   1884   }
   1885 
   1886   // Poison fields such that access after their destructors are
   1887   // invoked, and before the base class destructor runs, is invalid.
   1888   if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor &&
   1889       SanOpts.has(SanitizerKind::Memory))
   1890     EHStack.pushCleanup<SanitizeDtorMembers>(NormalAndEHCleanup, DD);
   1891 
   1892   // Destroy direct fields.
   1893   for (const auto *Field : ClassDecl->fields()) {
   1894     QualType type = Field->getType();
   1895     QualType::DestructionKind dtorKind = type.isDestructedType();
   1896     if (!dtorKind) continue;
   1897 
   1898     // Anonymous union members do not have their destructors called.
   1899     const RecordType *RT = type->getAsUnionType();
   1900     if (RT && RT->getDecl()->isAnonymousStructOrUnion()) continue;
   1901 
   1902     CleanupKind cleanupKind = getCleanupKind(dtorKind);
   1903     EHStack.pushCleanup<DestroyField>(cleanupKind, Field,
   1904                                       getDestroyer(dtorKind),
   1905                                       cleanupKind & EHCleanup);
   1906   }
   1907 }
   1908 
   1909 /// EmitCXXAggrConstructorCall - Emit a loop to call a particular
   1910 /// constructor for each of several members of an array.
   1911 ///
   1912 /// \param ctor the constructor to call for each element
   1913 /// \param arrayType the type of the array to initialize
   1914 /// \param arrayBegin an arrayType*
   1915 /// \param zeroInitialize true if each element should be
   1916 ///   zero-initialized before it is constructed
   1917 void CodeGenFunction::EmitCXXAggrConstructorCall(
   1918     const CXXConstructorDecl *ctor, const ArrayType *arrayType,
   1919     Address arrayBegin, const CXXConstructExpr *E, bool zeroInitialize) {
   1920   QualType elementType;
   1921   llvm::Value *numElements =
   1922     emitArrayLength(arrayType, elementType, arrayBegin);
   1923 
   1924   EmitCXXAggrConstructorCall(ctor, numElements, arrayBegin, E, zeroInitialize);
   1925 }
   1926 
   1927 /// EmitCXXAggrConstructorCall - Emit a loop to call a particular
   1928 /// constructor for each of several members of an array.
   1929 ///
   1930 /// \param ctor the constructor to call for each element
   1931 /// \param numElements the number of elements in the array;
   1932 ///   may be zero
   1933 /// \param arrayBase a T*, where T is the type constructed by ctor
   1934 /// \param zeroInitialize true if each element should be
   1935 ///   zero-initialized before it is constructed
   1936 void CodeGenFunction::EmitCXXAggrConstructorCall(const CXXConstructorDecl *ctor,
   1937                                                  llvm::Value *numElements,
   1938                                                  Address arrayBase,
   1939                                                  const CXXConstructExpr *E,
   1940                                                  bool zeroInitialize) {
   1941   // It's legal for numElements to be zero.  This can happen both
   1942   // dynamically, because x can be zero in 'new A[x]', and statically,
   1943   // because of GCC extensions that permit zero-length arrays.  There
   1944   // are probably legitimate places where we could assume that this
   1945   // doesn't happen, but it's not clear that it's worth it.
   1946   llvm::BranchInst *zeroCheckBranch = nullptr;
   1947 
   1948   // Optimize for a constant count.
   1949   llvm::ConstantInt *constantCount
   1950     = dyn_cast<llvm::ConstantInt>(numElements);
   1951   if (constantCount) {
   1952     // Just skip out if the constant count is zero.
   1953     if (constantCount->isZero()) return;
   1954 
   1955   // Otherwise, emit the check.
   1956   } else {
   1957     llvm::BasicBlock *loopBB = createBasicBlock("new.ctorloop");
   1958     llvm::Value *iszero = Builder.CreateIsNull(numElements, "isempty");
   1959     zeroCheckBranch = Builder.CreateCondBr(iszero, loopBB, loopBB);
   1960     EmitBlock(loopBB);
   1961   }
   1962 
   1963   // Find the end of the array.
   1964   llvm::Value *arrayBegin = arrayBase.getPointer();
   1965   llvm::Value *arrayEnd = Builder.CreateInBoundsGEP(arrayBegin, numElements,
   1966                                                     "arrayctor.end");
   1967 
   1968   // Enter the loop, setting up a phi for the current location to initialize.
   1969   llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
   1970   llvm::BasicBlock *loopBB = createBasicBlock("arrayctor.loop");
   1971   EmitBlock(loopBB);
   1972   llvm::PHINode *cur = Builder.CreatePHI(arrayBegin->getType(), 2,
   1973                                          "arrayctor.cur");
   1974   cur->addIncoming(arrayBegin, entryBB);
   1975 
   1976   // Inside the loop body, emit the constructor call on the array element.
   1977 
   1978   // The alignment of the base, adjusted by the size of a single element,
   1979   // provides a conservative estimate of the alignment of every element.
   1980   // (This assumes we never start tracking offsetted alignments.)
   1981   //
   1982   // Note that these are complete objects and so we don't need to
   1983   // use the non-virtual size or alignment.
   1984   QualType type = getContext().getTypeDeclType(ctor->getParent());
   1985   CharUnits eltAlignment =
   1986     arrayBase.getAlignment()
   1987              .alignmentOfArrayElement(getContext().getTypeSizeInChars(type));
   1988   Address curAddr = Address(cur, eltAlignment);
   1989 
   1990   // Zero initialize the storage, if requested.
   1991   if (zeroInitialize)
   1992     EmitNullInitialization(curAddr, type);
   1993 
   1994   // C++ [class.temporary]p4:
   1995   // There are two contexts in which temporaries are destroyed at a different
   1996   // point than the end of the full-expression. The first context is when a
   1997   // default constructor is called to initialize an element of an array.
   1998   // If the constructor has one or more default arguments, the destruction of
   1999   // every temporary created in a default argument expression is sequenced
   2000   // before the construction of the next array element, if any.
   2001 
   2002   {
   2003     RunCleanupsScope Scope(*this);
   2004 
   2005     // Evaluate the constructor and its arguments in a regular
   2006     // partial-destroy cleanup.
   2007     if (getLangOpts().Exceptions &&
   2008         !ctor->getParent()->hasTrivialDestructor()) {
   2009       Destroyer *destroyer = destroyCXXObject;
   2010       pushRegularPartialArrayCleanup(arrayBegin, cur, type, eltAlignment,
   2011                                      *destroyer);
   2012     }
   2013 
   2014     EmitCXXConstructorCall(ctor, Ctor_Complete, /*ForVirtualBase=*/false,
   2015                            /*Delegating=*/false, curAddr, E);
   2016   }
   2017 
   2018   // Go to the next element.
   2019   llvm::Value *next =
   2020     Builder.CreateInBoundsGEP(cur, llvm::ConstantInt::get(SizeTy, 1),
   2021                               "arrayctor.next");
   2022   cur->addIncoming(next, Builder.GetInsertBlock());
   2023 
   2024   // Check whether that's the end of the loop.
   2025   llvm::Value *done = Builder.CreateICmpEQ(next, arrayEnd, "arrayctor.done");
   2026   llvm::BasicBlock *contBB = createBasicBlock("arrayctor.cont");
   2027   Builder.CreateCondBr(done, contBB, loopBB);
   2028 
   2029   // Patch the earlier check to skip over the loop.
   2030   if (zeroCheckBranch) zeroCheckBranch->setSuccessor(0, contBB);
   2031 
   2032   EmitBlock(contBB);
   2033 }
   2034 
   2035 void CodeGenFunction::destroyCXXObject(CodeGenFunction &CGF,
   2036                                        Address addr,
   2037                                        QualType type) {
   2038   const RecordType *rtype = type->castAs<RecordType>();
   2039   const CXXRecordDecl *record = cast<CXXRecordDecl>(rtype->getDecl());
   2040   const CXXDestructorDecl *dtor = record->getDestructor();
   2041   assert(!dtor->isTrivial());
   2042   CGF.EmitCXXDestructorCall(dtor, Dtor_Complete, /*for vbase*/ false,
   2043                             /*Delegating=*/false, addr);
   2044 }
   2045 
   2046 void CodeGenFunction::EmitCXXConstructorCall(const CXXConstructorDecl *D,
   2047                                              CXXCtorType Type,
   2048                                              bool ForVirtualBase,
   2049                                              bool Delegating, Address This,
   2050                                              const CXXConstructExpr *E) {
   2051   CallArgList Args;
   2052 
   2053   // Push the this ptr.
   2054   Args.add(RValue::get(This.getPointer()), D->getThisType(getContext()));
   2055 
   2056   // If this is a trivial constructor, emit a memcpy now before we lose
   2057   // the alignment information on the argument.
   2058   // FIXME: It would be better to preserve alignment information into CallArg.
   2059   if (isMemcpyEquivalentSpecialMember(D)) {
   2060     assert(E->getNumArgs() == 1 && "unexpected argcount for trivial ctor");
   2061 
   2062     const Expr *Arg = E->getArg(0);
   2063     QualType SrcTy = Arg->getType();
   2064     Address Src = EmitLValue(Arg).getAddress();
   2065     QualType DestTy = getContext().getTypeDeclType(D->getParent());
   2066     EmitAggregateCopyCtor(This, Src, DestTy, SrcTy);
   2067     return;
   2068   }
   2069 
   2070   // Add the rest of the user-supplied arguments.
   2071   const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>();
   2072   EmitCallArgs(Args, FPT, E->arguments(), E->getConstructor());
   2073 
   2074   EmitCXXConstructorCall(D, Type, ForVirtualBase, Delegating, This, Args);
   2075 }
   2076 
   2077 static bool canEmitDelegateCallArgs(CodeGenFunction &CGF,
   2078                                     const CXXConstructorDecl *Ctor,
   2079                                     CXXCtorType Type, CallArgList &Args) {
   2080   // We can't forward a variadic call.
   2081   if (Ctor->isVariadic())
   2082     return false;
   2083 
   2084   if (CGF.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
   2085     // If the parameters are callee-cleanup, it's not safe to forward.
   2086     for (auto *P : Ctor->parameters())
   2087       if (P->getType().isDestructedType())
   2088         return false;
   2089 
   2090     // Likewise if they're inalloca.
   2091     const CGFunctionInfo &Info =
   2092         CGF.CGM.getTypes().arrangeCXXConstructorCall(Args, Ctor, Type, 0);
   2093     if (Info.usesInAlloca())
   2094       return false;
   2095   }
   2096 
   2097   // Anything else should be OK.
   2098   return true;
   2099 }
   2100 
   2101 void CodeGenFunction::EmitCXXConstructorCall(const CXXConstructorDecl *D,
   2102                                              CXXCtorType Type,
   2103                                              bool ForVirtualBase,
   2104                                              bool Delegating,
   2105                                              Address This,
   2106                                              CallArgList &Args) {
   2107   const CXXRecordDecl *ClassDecl = D->getParent();
   2108 
   2109   // C++11 [class.mfct.non-static]p2:
   2110   //   If a non-static member function of a class X is called for an object that
   2111   //   is not of type X, or of a type derived from X, the behavior is undefined.
   2112   // FIXME: Provide a source location here.
   2113   EmitTypeCheck(CodeGenFunction::TCK_ConstructorCall, SourceLocation(),
   2114                 This.getPointer(), getContext().getRecordType(ClassDecl));
   2115 
   2116   if (D->isTrivial() && D->isDefaultConstructor()) {
   2117     assert(Args.size() == 1 && "trivial default ctor with args");
   2118     return;
   2119   }
   2120 
   2121   // If this is a trivial constructor, just emit what's needed. If this is a
   2122   // union copy constructor, we must emit a memcpy, because the AST does not
   2123   // model that copy.
   2124   if (isMemcpyEquivalentSpecialMember(D)) {
   2125     assert(Args.size() == 2 && "unexpected argcount for trivial ctor");
   2126 
   2127     QualType SrcTy = D->getParamDecl(0)->getType().getNonReferenceType();
   2128     Address Src(Args[1].RV.getScalarVal(), getNaturalTypeAlignment(SrcTy));
   2129     QualType DestTy = getContext().getTypeDeclType(ClassDecl);
   2130     EmitAggregateCopyCtor(This, Src, DestTy, SrcTy);
   2131     return;
   2132   }
   2133 
   2134   // Check whether we can actually emit the constructor before trying to do so.
   2135   if (auto Inherited = D->getInheritedConstructor()) {
   2136     if (getTypes().inheritingCtorHasParams(Inherited, Type) &&
   2137         !canEmitDelegateCallArgs(*this, D, Type, Args)) {
   2138       EmitInlinedInheritingCXXConstructorCall(D, Type, ForVirtualBase,
   2139                                               Delegating, Args);
   2140       return;
   2141     }
   2142   }
   2143 
   2144   // Insert any ABI-specific implicit constructor arguments.
   2145   unsigned ExtraArgs = CGM.getCXXABI().addImplicitConstructorArgs(
   2146       *this, D, Type, ForVirtualBase, Delegating, Args);
   2147 
   2148   // Emit the call.
   2149   llvm::Value *Callee = CGM.getAddrOfCXXStructor(D, getFromCtorType(Type));
   2150   const CGFunctionInfo &Info =
   2151       CGM.getTypes().arrangeCXXConstructorCall(Args, D, Type, ExtraArgs);
   2152   EmitCall(Info, Callee, ReturnValueSlot(), Args, D);
   2153 
   2154   // Generate vtable assumptions if we're constructing a complete object
   2155   // with a vtable.  We don't do this for base subobjects for two reasons:
   2156   // first, it's incorrect for classes with virtual bases, and second, we're
   2157   // about to overwrite the vptrs anyway.
   2158   // We also have to make sure if we can refer to vtable:
   2159   // - Otherwise we can refer to vtable if it's safe to speculatively emit.
   2160   // FIXME: If vtable is used by ctor/dtor, or if vtable is external and we are
   2161   // sure that definition of vtable is not hidden,
   2162   // then we are always safe to refer to it.
   2163   // FIXME: It looks like InstCombine is very inefficient on dealing with
   2164   // assumes. Make assumption loads require -fstrict-vtable-pointers temporarily.
   2165   if (CGM.getCodeGenOpts().OptimizationLevel > 0 &&
   2166       ClassDecl->isDynamicClass() && Type != Ctor_Base &&
   2167       CGM.getCXXABI().canSpeculativelyEmitVTable(ClassDecl) &&
   2168       CGM.getCodeGenOpts().StrictVTablePointers)
   2169     EmitVTableAssumptionLoads(ClassDecl, This);
   2170 }
   2171 
   2172 void CodeGenFunction::EmitInheritedCXXConstructorCall(
   2173     const CXXConstructorDecl *D, bool ForVirtualBase, Address This,
   2174     bool InheritedFromVBase, const CXXInheritedCtorInitExpr *E) {
   2175   CallArgList Args;
   2176   CallArg ThisArg(RValue::get(This.getPointer()), D->getThisType(getContext()),
   2177                   /*NeedsCopy=*/false);
   2178 
   2179   // Forward the parameters.
   2180   if (InheritedFromVBase &&
   2181       CGM.getTarget().getCXXABI().hasConstructorVariants()) {
   2182     // Nothing to do; this construction is not responsible for constructing
   2183     // the base class containing the inherited constructor.
   2184     // FIXME: Can we just pass undef's for the remaining arguments if we don't
   2185     // have constructor variants?
   2186     Args.push_back(ThisArg);
   2187   } else if (!CXXInheritedCtorInitExprArgs.empty()) {
   2188     // The inheriting constructor was inlined; just inject its arguments.
   2189     assert(CXXInheritedCtorInitExprArgs.size() >= D->getNumParams() &&
   2190            "wrong number of parameters for inherited constructor call");
   2191     Args = CXXInheritedCtorInitExprArgs;
   2192     Args[0] = ThisArg;
   2193   } else {
   2194     // The inheriting constructor was not inlined. Emit delegating arguments.
   2195     Args.push_back(ThisArg);
   2196     const auto *OuterCtor = cast<CXXConstructorDecl>(CurCodeDecl);
   2197     assert(OuterCtor->getNumParams() == D->getNumParams());
   2198     assert(!OuterCtor->isVariadic() && "should have been inlined");
   2199 
   2200     for (const auto *Param : OuterCtor->parameters()) {
   2201       assert(getContext().hasSameUnqualifiedType(
   2202           OuterCtor->getParamDecl(Param->getFunctionScopeIndex())->getType(),
   2203           Param->getType()));
   2204       EmitDelegateCallArg(Args, Param, E->getLocation());
   2205 
   2206       // Forward __attribute__(pass_object_size).
   2207       if (Param->hasAttr<PassObjectSizeAttr>()) {
   2208         auto *POSParam = SizeArguments[Param];
   2209         assert(POSParam && "missing pass_object_size value for forwarding");
   2210         EmitDelegateCallArg(Args, POSParam, E->getLocation());
   2211       }
   2212     }
   2213   }
   2214 
   2215   EmitCXXConstructorCall(D, Ctor_Base, ForVirtualBase, /*Delegating*/false,
   2216                          This, Args);
   2217 }
   2218 
   2219 void CodeGenFunction::EmitInlinedInheritingCXXConstructorCall(
   2220     const CXXConstructorDecl *Ctor, CXXCtorType CtorType, bool ForVirtualBase,
   2221     bool Delegating, CallArgList &Args) {
   2222   InlinedInheritingConstructorScope Scope(*this, GlobalDecl(Ctor, CtorType));
   2223 
   2224   // Save the arguments to be passed to the inherited constructor.
   2225   CXXInheritedCtorInitExprArgs = Args;
   2226 
   2227   FunctionArgList Params;
   2228   QualType RetType = BuildFunctionArgList(CurGD, Params);
   2229   FnRetTy = RetType;
   2230 
   2231   // Insert any ABI-specific implicit constructor arguments.
   2232   CGM.getCXXABI().addImplicitConstructorArgs(*this, Ctor, CtorType,
   2233                                              ForVirtualBase, Delegating, Args);
   2234 
   2235   // Emit a simplified prolog. We only need to emit the implicit params.
   2236   assert(Args.size() >= Params.size() && "too few arguments for call");
   2237   for (unsigned I = 0, N = Args.size(); I != N; ++I) {
   2238     if (I < Params.size() && isa<ImplicitParamDecl>(Params[I])) {
   2239       const RValue &RV = Args[I].RV;
   2240       assert(!RV.isComplex() && "complex indirect params not supported");
   2241       ParamValue Val = RV.isScalar()
   2242                            ? ParamValue::forDirect(RV.getScalarVal())
   2243                            : ParamValue::forIndirect(RV.getAggregateAddress());
   2244       EmitParmDecl(*Params[I], Val, I + 1);
   2245     }
   2246   }
   2247 
   2248   // Create a return value slot if the ABI implementation wants one.
   2249   // FIXME: This is dumb, we should ask the ABI not to try to set the return
   2250   // value instead.
   2251   if (!RetType->isVoidType())
   2252     ReturnValue = CreateIRTemp(RetType, "retval.inhctor");
   2253 
   2254   CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
   2255   CXXThisValue = CXXABIThisValue;
   2256 
   2257   // Directly emit the constructor initializers.
   2258   EmitCtorPrologue(Ctor, CtorType, Params);
   2259 }
   2260 
   2261 void CodeGenFunction::EmitVTableAssumptionLoad(const VPtr &Vptr, Address This) {
   2262   llvm::Value *VTableGlobal =
   2263       CGM.getCXXABI().getVTableAddressPoint(Vptr.Base, Vptr.VTableClass);
   2264   if (!VTableGlobal)
   2265     return;
   2266 
   2267   // We can just use the base offset in the complete class.
   2268   CharUnits NonVirtualOffset = Vptr.Base.getBaseOffset();
   2269 
   2270   if (!NonVirtualOffset.isZero())
   2271     This =
   2272         ApplyNonVirtualAndVirtualOffset(*this, This, NonVirtualOffset, nullptr,
   2273                                         Vptr.VTableClass, Vptr.NearestVBase);
   2274 
   2275   llvm::Value *VPtrValue =
   2276       GetVTablePtr(This, VTableGlobal->getType(), Vptr.VTableClass);
   2277   llvm::Value *Cmp =
   2278       Builder.CreateICmpEQ(VPtrValue, VTableGlobal, "cmp.vtables");
   2279   Builder.CreateAssumption(Cmp);
   2280 }
   2281 
   2282 void CodeGenFunction::EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl,
   2283                                                 Address This) {
   2284   if (CGM.getCXXABI().doStructorsInitializeVPtrs(ClassDecl))
   2285     for (const VPtr &Vptr : getVTablePointers(ClassDecl))
   2286       EmitVTableAssumptionLoad(Vptr, This);
   2287 }
   2288 
   2289 void
   2290 CodeGenFunction::EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
   2291                                                 Address This, Address Src,
   2292                                                 const CXXConstructExpr *E) {
   2293   const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>();
   2294 
   2295   CallArgList Args;
   2296 
   2297   // Push the this ptr.
   2298   Args.add(RValue::get(This.getPointer()), D->getThisType(getContext()));
   2299 
   2300   // Push the src ptr.
   2301   QualType QT = *(FPT->param_type_begin());
   2302   llvm::Type *t = CGM.getTypes().ConvertType(QT);
   2303   Src = Builder.CreateBitCast(Src, t);
   2304   Args.add(RValue::get(Src.getPointer()), QT);
   2305 
   2306   // Skip over first argument (Src).
   2307   EmitCallArgs(Args, FPT, drop_begin(E->arguments(), 1), E->getConstructor(),
   2308                /*ParamsToSkip*/ 1);
   2309 
   2310   EmitCXXConstructorCall(D, Ctor_Complete, false, false, This, Args);
   2311 }
   2312 
   2313 void
   2314 CodeGenFunction::EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
   2315                                                 CXXCtorType CtorType,
   2316                                                 const FunctionArgList &Args,
   2317                                                 SourceLocation Loc) {
   2318   CallArgList DelegateArgs;
   2319 
   2320   FunctionArgList::const_iterator I = Args.begin(), E = Args.end();
   2321   assert(I != E && "no parameters to constructor");
   2322 
   2323   // this
   2324   Address This = LoadCXXThisAddress();
   2325   DelegateArgs.add(RValue::get(This.getPointer()), (*I)->getType());
   2326   ++I;
   2327 
   2328   // FIXME: The location of the VTT parameter in the parameter list is
   2329   // specific to the Itanium ABI and shouldn't be hardcoded here.
   2330   if (CGM.getCXXABI().NeedsVTTParameter(CurGD)) {
   2331     assert(I != E && "cannot skip vtt parameter, already done with args");
   2332     assert((*I)->getType()->isPointerType() &&
   2333            "skipping parameter not of vtt type");
   2334     ++I;
   2335   }
   2336 
   2337   // Explicit arguments.
   2338   for (; I != E; ++I) {
   2339     const VarDecl *param = *I;
   2340     // FIXME: per-argument source location
   2341     EmitDelegateCallArg(DelegateArgs, param, Loc);
   2342   }
   2343 
   2344   EmitCXXConstructorCall(Ctor, CtorType, /*ForVirtualBase=*/false,
   2345                          /*Delegating=*/true, This, DelegateArgs);
   2346 }
   2347 
   2348 namespace {
   2349   struct CallDelegatingCtorDtor final : EHScopeStack::Cleanup {
   2350     const CXXDestructorDecl *Dtor;
   2351     Address Addr;
   2352     CXXDtorType Type;
   2353 
   2354     CallDelegatingCtorDtor(const CXXDestructorDecl *D, Address Addr,
   2355                            CXXDtorType Type)
   2356       : Dtor(D), Addr(Addr), Type(Type) {}
   2357 
   2358     void Emit(CodeGenFunction &CGF, Flags flags) override {
   2359       CGF.EmitCXXDestructorCall(Dtor, Type, /*ForVirtualBase=*/false,
   2360                                 /*Delegating=*/true, Addr);
   2361     }
   2362   };
   2363 } // end anonymous namespace
   2364 
   2365 void
   2366 CodeGenFunction::EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
   2367                                                   const FunctionArgList &Args) {
   2368   assert(Ctor->isDelegatingConstructor());
   2369 
   2370   Address ThisPtr = LoadCXXThisAddress();
   2371 
   2372   AggValueSlot AggSlot =
   2373     AggValueSlot::forAddr(ThisPtr, Qualifiers(),
   2374                           AggValueSlot::IsDestructed,
   2375                           AggValueSlot::DoesNotNeedGCBarriers,
   2376                           AggValueSlot::IsNotAliased);
   2377 
   2378   EmitAggExpr(Ctor->init_begin()[0]->getInit(), AggSlot);
   2379 
   2380   const CXXRecordDecl *ClassDecl = Ctor->getParent();
   2381   if (CGM.getLangOpts().Exceptions && !ClassDecl->hasTrivialDestructor()) {
   2382     CXXDtorType Type =
   2383       CurGD.getCtorType() == Ctor_Complete ? Dtor_Complete : Dtor_Base;
   2384 
   2385     EHStack.pushCleanup<CallDelegatingCtorDtor>(EHCleanup,
   2386                                                 ClassDecl->getDestructor(),
   2387                                                 ThisPtr, Type);
   2388   }
   2389 }
   2390 
   2391 void CodeGenFunction::EmitCXXDestructorCall(const CXXDestructorDecl *DD,
   2392                                             CXXDtorType Type,
   2393                                             bool ForVirtualBase,
   2394                                             bool Delegating,
   2395                                             Address This) {
   2396   CGM.getCXXABI().EmitDestructorCall(*this, DD, Type, ForVirtualBase,
   2397                                      Delegating, This);
   2398 }
   2399 
   2400 namespace {
   2401   struct CallLocalDtor final : EHScopeStack::Cleanup {
   2402     const CXXDestructorDecl *Dtor;
   2403     Address Addr;
   2404 
   2405     CallLocalDtor(const CXXDestructorDecl *D, Address Addr)
   2406       : Dtor(D), Addr(Addr) {}
   2407 
   2408     void Emit(CodeGenFunction &CGF, Flags flags) override {
   2409       CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
   2410                                 /*ForVirtualBase=*/false,
   2411                                 /*Delegating=*/false, Addr);
   2412     }
   2413   };
   2414 } // end anonymous namespace
   2415 
   2416 void CodeGenFunction::PushDestructorCleanup(const CXXDestructorDecl *D,
   2417                                             Address Addr) {
   2418   EHStack.pushCleanup<CallLocalDtor>(NormalAndEHCleanup, D, Addr);
   2419 }
   2420 
   2421 void CodeGenFunction::PushDestructorCleanup(QualType T, Address Addr) {
   2422   CXXRecordDecl *ClassDecl = T->getAsCXXRecordDecl();
   2423   if (!ClassDecl) return;
   2424   if (ClassDecl->hasTrivialDestructor()) return;
   2425 
   2426   const CXXDestructorDecl *D = ClassDecl->getDestructor();
   2427   assert(D && D->isUsed() && "destructor not marked as used!");
   2428   PushDestructorCleanup(D, Addr);
   2429 }
   2430 
   2431 void CodeGenFunction::InitializeVTablePointer(const VPtr &Vptr) {
   2432   // Compute the address point.
   2433   llvm::Value *VTableAddressPoint =
   2434       CGM.getCXXABI().getVTableAddressPointInStructor(
   2435           *this, Vptr.VTableClass, Vptr.Base, Vptr.NearestVBase);
   2436 
   2437   if (!VTableAddressPoint)
   2438     return;
   2439 
   2440   // Compute where to store the address point.
   2441   llvm::Value *VirtualOffset = nullptr;
   2442   CharUnits NonVirtualOffset = CharUnits::Zero();
   2443 
   2444   if (CGM.getCXXABI().isVirtualOffsetNeededForVTableField(*this, Vptr)) {
   2445     // We need to use the virtual base offset offset because the virtual base
   2446     // might have a different offset in the most derived class.
   2447 
   2448     VirtualOffset = CGM.getCXXABI().GetVirtualBaseClassOffset(
   2449         *this, LoadCXXThisAddress(), Vptr.VTableClass, Vptr.NearestVBase);
   2450     NonVirtualOffset = Vptr.OffsetFromNearestVBase;
   2451   } else {
   2452     // We can just use the base offset in the complete class.
   2453     NonVirtualOffset = Vptr.Base.getBaseOffset();
   2454   }
   2455 
   2456   // Apply the offsets.
   2457   Address VTableField = LoadCXXThisAddress();
   2458 
   2459   if (!NonVirtualOffset.isZero() || VirtualOffset)
   2460     VTableField = ApplyNonVirtualAndVirtualOffset(
   2461         *this, VTableField, NonVirtualOffset, VirtualOffset, Vptr.VTableClass,
   2462         Vptr.NearestVBase);
   2463 
   2464   // Finally, store the address point. Use the same LLVM types as the field to
   2465   // support optimization.
   2466   llvm::Type *VTablePtrTy =
   2467       llvm::FunctionType::get(CGM.Int32Ty, /*isVarArg=*/true)
   2468           ->getPointerTo()
   2469           ->getPointerTo();
   2470   VTableField = Builder.CreateBitCast(VTableField, VTablePtrTy->getPointerTo());
   2471   VTableAddressPoint = Builder.CreateBitCast(VTableAddressPoint, VTablePtrTy);
   2472 
   2473   llvm::StoreInst *Store = Builder.CreateStore(VTableAddressPoint, VTableField);
   2474   CGM.DecorateInstructionWithTBAA(Store, CGM.getTBAAInfoForVTablePtr());
   2475   if (CGM.getCodeGenOpts().OptimizationLevel > 0 &&
   2476       CGM.getCodeGenOpts().StrictVTablePointers)
   2477     CGM.DecorateInstructionWithInvariantGroup(Store, Vptr.VTableClass);
   2478 }
   2479 
   2480 CodeGenFunction::VPtrsVector
   2481 CodeGenFunction::getVTablePointers(const CXXRecordDecl *VTableClass) {
   2482   CodeGenFunction::VPtrsVector VPtrsResult;
   2483   VisitedVirtualBasesSetTy VBases;
   2484   getVTablePointers(BaseSubobject(VTableClass, CharUnits::Zero()),
   2485                     /*NearestVBase=*/nullptr,
   2486                     /*OffsetFromNearestVBase=*/CharUnits::Zero(),
   2487                     /*BaseIsNonVirtualPrimaryBase=*/false, VTableClass, VBases,
   2488                     VPtrsResult);
   2489   return VPtrsResult;
   2490 }
   2491 
   2492 void CodeGenFunction::getVTablePointers(BaseSubobject Base,
   2493                                         const CXXRecordDecl *NearestVBase,
   2494                                         CharUnits OffsetFromNearestVBase,
   2495                                         bool BaseIsNonVirtualPrimaryBase,
   2496                                         const CXXRecordDecl *VTableClass,
   2497                                         VisitedVirtualBasesSetTy &VBases,
   2498                                         VPtrsVector &Vptrs) {
   2499   // If this base is a non-virtual primary base the address point has already
   2500   // been set.
   2501   if (!BaseIsNonVirtualPrimaryBase) {
   2502     // Initialize the vtable pointer for this base.
   2503     VPtr Vptr = {Base, NearestVBase, OffsetFromNearestVBase, VTableClass};
   2504     Vptrs.push_back(Vptr);
   2505   }
   2506 
   2507   const CXXRecordDecl *RD = Base.getBase();
   2508 
   2509   // Traverse bases.
   2510   for (const auto &I : RD->bases()) {
   2511     CXXRecordDecl *BaseDecl
   2512       = cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl());
   2513 
   2514     // Ignore classes without a vtable.
   2515     if (!BaseDecl->isDynamicClass())
   2516       continue;
   2517 
   2518     CharUnits BaseOffset;
   2519     CharUnits BaseOffsetFromNearestVBase;
   2520     bool BaseDeclIsNonVirtualPrimaryBase;
   2521 
   2522     if (I.isVirtual()) {
   2523       // Check if we've visited this virtual base before.
   2524       if (!VBases.insert(BaseDecl).second)
   2525         continue;
   2526 
   2527       const ASTRecordLayout &Layout =
   2528         getContext().getASTRecordLayout(VTableClass);
   2529 
   2530       BaseOffset = Layout.getVBaseClassOffset(BaseDecl);
   2531       BaseOffsetFromNearestVBase = CharUnits::Zero();
   2532       BaseDeclIsNonVirtualPrimaryBase = false;
   2533     } else {
   2534       const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
   2535 
   2536       BaseOffset = Base.getBaseOffset() + Layout.getBaseClassOffset(BaseDecl);
   2537       BaseOffsetFromNearestVBase =
   2538         OffsetFromNearestVBase + Layout.getBaseClassOffset(BaseDecl);
   2539       BaseDeclIsNonVirtualPrimaryBase = Layout.getPrimaryBase() == BaseDecl;
   2540     }
   2541 
   2542     getVTablePointers(
   2543         BaseSubobject(BaseDecl, BaseOffset),
   2544         I.isVirtual() ? BaseDecl : NearestVBase, BaseOffsetFromNearestVBase,
   2545         BaseDeclIsNonVirtualPrimaryBase, VTableClass, VBases, Vptrs);
   2546   }
   2547 }
   2548 
   2549 void CodeGenFunction::InitializeVTablePointers(const CXXRecordDecl *RD) {
   2550   // Ignore classes without a vtable.
   2551   if (!RD->isDynamicClass())
   2552     return;
   2553 
   2554   // Initialize the vtable pointers for this class and all of its bases.
   2555   if (CGM.getCXXABI().doStructorsInitializeVPtrs(RD))
   2556     for (const VPtr &Vptr : getVTablePointers(RD))
   2557       InitializeVTablePointer(Vptr);
   2558 
   2559   if (RD->getNumVBases())
   2560     CGM.getCXXABI().initializeHiddenVirtualInheritanceMembers(*this, RD);
   2561 }
   2562 
   2563 llvm::Value *CodeGenFunction::GetVTablePtr(Address This,
   2564                                            llvm::Type *VTableTy,
   2565                                            const CXXRecordDecl *RD) {
   2566   Address VTablePtrSrc = Builder.CreateElementBitCast(This, VTableTy);
   2567   llvm::Instruction *VTable = Builder.CreateLoad(VTablePtrSrc, "vtable");
   2568   CGM.DecorateInstructionWithTBAA(VTable, CGM.getTBAAInfoForVTablePtr());
   2569 
   2570   if (CGM.getCodeGenOpts().OptimizationLevel > 0 &&
   2571       CGM.getCodeGenOpts().StrictVTablePointers)
   2572     CGM.DecorateInstructionWithInvariantGroup(VTable, RD);
   2573 
   2574   return VTable;
   2575 }
   2576 
   2577 // If a class has a single non-virtual base and does not introduce or override
   2578 // virtual member functions or fields, it will have the same layout as its base.
   2579 // This function returns the least derived such class.
   2580 //
   2581 // Casting an instance of a base class to such a derived class is technically
   2582 // undefined behavior, but it is a relatively common hack for introducing member
   2583 // functions on class instances with specific properties (e.g. llvm::Operator)
   2584 // that works under most compilers and should not have security implications, so
   2585 // we allow it by default. It can be disabled with -fsanitize=cfi-cast-strict.
   2586 static const CXXRecordDecl *
   2587 LeastDerivedClassWithSameLayout(const CXXRecordDecl *RD) {
   2588   if (!RD->field_empty())
   2589     return RD;
   2590 
   2591   if (RD->getNumVBases() != 0)
   2592     return RD;
   2593 
   2594   if (RD->getNumBases() != 1)
   2595     return RD;
   2596 
   2597   for (const CXXMethodDecl *MD : RD->methods()) {
   2598     if (MD->isVirtual()) {
   2599       // Virtual member functions are only ok if they are implicit destructors
   2600       // because the implicit destructor will have the same semantics as the
   2601       // base class's destructor if no fields are added.
   2602       if (isa<CXXDestructorDecl>(MD) && MD->isImplicit())
   2603         continue;
   2604       return RD;
   2605     }
   2606   }
   2607 
   2608   return LeastDerivedClassWithSameLayout(
   2609       RD->bases_begin()->getType()->getAsCXXRecordDecl());
   2610 }
   2611 
   2612 void CodeGenFunction::EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD,
   2613                                                    llvm::Value *VTable,
   2614                                                    SourceLocation Loc) {
   2615   if (CGM.getCodeGenOpts().WholeProgramVTables &&
   2616       CGM.HasHiddenLTOVisibility(RD)) {
   2617     llvm::Metadata *MD =
   2618         CGM.CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
   2619     llvm::Value *TypeId =
   2620         llvm::MetadataAsValue::get(CGM.getLLVMContext(), MD);
   2621 
   2622     llvm::Value *CastedVTable = Builder.CreateBitCast(VTable, Int8PtrTy);
   2623     llvm::Value *TypeTest =
   2624         Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test),
   2625                            {CastedVTable, TypeId});
   2626     Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::assume), TypeTest);
   2627   }
   2628 
   2629   if (SanOpts.has(SanitizerKind::CFIVCall))
   2630     EmitVTablePtrCheckForCall(RD, VTable, CodeGenFunction::CFITCK_VCall, Loc);
   2631 }
   2632 
   2633 void CodeGenFunction::EmitVTablePtrCheckForCall(const CXXRecordDecl *RD,
   2634                                                 llvm::Value *VTable,
   2635                                                 CFITypeCheckKind TCK,
   2636                                                 SourceLocation Loc) {
   2637   if (!SanOpts.has(SanitizerKind::CFICastStrict))
   2638     RD = LeastDerivedClassWithSameLayout(RD);
   2639 
   2640   EmitVTablePtrCheck(RD, VTable, TCK, Loc);
   2641 }
   2642 
   2643 void CodeGenFunction::EmitVTablePtrCheckForCast(QualType T,
   2644                                                 llvm::Value *Derived,
   2645                                                 bool MayBeNull,
   2646                                                 CFITypeCheckKind TCK,
   2647                                                 SourceLocation Loc) {
   2648   if (!getLangOpts().CPlusPlus)
   2649     return;
   2650 
   2651   auto *ClassTy = T->getAs<RecordType>();
   2652   if (!ClassTy)
   2653     return;
   2654 
   2655   const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassTy->getDecl());
   2656 
   2657   if (!ClassDecl->isCompleteDefinition() || !ClassDecl->isDynamicClass())
   2658     return;
   2659 
   2660   if (!SanOpts.has(SanitizerKind::CFICastStrict))
   2661     ClassDecl = LeastDerivedClassWithSameLayout(ClassDecl);
   2662 
   2663   llvm::BasicBlock *ContBlock = nullptr;
   2664 
   2665   if (MayBeNull) {
   2666     llvm::Value *DerivedNotNull =
   2667         Builder.CreateIsNotNull(Derived, "cast.nonnull");
   2668 
   2669     llvm::BasicBlock *CheckBlock = createBasicBlock("cast.check");
   2670     ContBlock = createBasicBlock("cast.cont");
   2671 
   2672     Builder.CreateCondBr(DerivedNotNull, CheckBlock, ContBlock);
   2673 
   2674     EmitBlock(CheckBlock);
   2675   }
   2676 
   2677   llvm::Value *VTable =
   2678     GetVTablePtr(Address(Derived, getPointerAlign()), Int8PtrTy, ClassDecl);
   2679 
   2680   EmitVTablePtrCheck(ClassDecl, VTable, TCK, Loc);
   2681 
   2682   if (MayBeNull) {
   2683     Builder.CreateBr(ContBlock);
   2684     EmitBlock(ContBlock);
   2685   }
   2686 }
   2687 
   2688 void CodeGenFunction::EmitVTablePtrCheck(const CXXRecordDecl *RD,
   2689                                          llvm::Value *VTable,
   2690                                          CFITypeCheckKind TCK,
   2691                                          SourceLocation Loc) {
   2692   if (!CGM.getCodeGenOpts().SanitizeCfiCrossDso &&
   2693       !CGM.HasHiddenLTOVisibility(RD))
   2694     return;
   2695 
   2696   std::string TypeName = RD->getQualifiedNameAsString();
   2697   if (getContext().getSanitizerBlacklist().isBlacklistedType(TypeName))
   2698     return;
   2699 
   2700   SanitizerScope SanScope(this);
   2701   llvm::SanitizerStatKind SSK;
   2702   switch (TCK) {
   2703   case CFITCK_VCall:
   2704     SSK = llvm::SanStat_CFI_VCall;
   2705     break;
   2706   case CFITCK_NVCall:
   2707     SSK = llvm::SanStat_CFI_NVCall;
   2708     break;
   2709   case CFITCK_DerivedCast:
   2710     SSK = llvm::SanStat_CFI_DerivedCast;
   2711     break;
   2712   case CFITCK_UnrelatedCast:
   2713     SSK = llvm::SanStat_CFI_UnrelatedCast;
   2714     break;
   2715   case CFITCK_ICall:
   2716     llvm_unreachable("not expecting CFITCK_ICall");
   2717   }
   2718   EmitSanitizerStatReport(SSK);
   2719 
   2720   llvm::Metadata *MD =
   2721       CGM.CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
   2722   llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD);
   2723 
   2724   llvm::Value *CastedVTable = Builder.CreateBitCast(VTable, Int8PtrTy);
   2725   llvm::Value *TypeTest = Builder.CreateCall(
   2726       CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedVTable, TypeId});
   2727 
   2728   SanitizerMask M;
   2729   switch (TCK) {
   2730   case CFITCK_VCall:
   2731     M = SanitizerKind::CFIVCall;
   2732     break;
   2733   case CFITCK_NVCall:
   2734     M = SanitizerKind::CFINVCall;
   2735     break;
   2736   case CFITCK_DerivedCast:
   2737     M = SanitizerKind::CFIDerivedCast;
   2738     break;
   2739   case CFITCK_UnrelatedCast:
   2740     M = SanitizerKind::CFIUnrelatedCast;
   2741     break;
   2742   case CFITCK_ICall:
   2743     llvm_unreachable("not expecting CFITCK_ICall");
   2744   }
   2745 
   2746   llvm::Constant *StaticData[] = {
   2747       llvm::ConstantInt::get(Int8Ty, TCK),
   2748       EmitCheckSourceLocation(Loc),
   2749       EmitCheckTypeDescriptor(QualType(RD->getTypeForDecl(), 0)),
   2750   };
   2751 
   2752   auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD);
   2753   if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) {
   2754     EmitCfiSlowPathCheck(M, TypeTest, CrossDsoTypeId, CastedVTable, StaticData);
   2755     return;
   2756   }
   2757 
   2758   if (CGM.getCodeGenOpts().SanitizeTrap.has(M)) {
   2759     EmitTrapCheck(TypeTest);
   2760     return;
   2761   }
   2762 
   2763   llvm::Value *AllVtables = llvm::MetadataAsValue::get(
   2764       CGM.getLLVMContext(),
   2765       llvm::MDString::get(CGM.getLLVMContext(), "all-vtables"));
   2766   llvm::Value *ValidVtable = Builder.CreateCall(
   2767       CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedVTable, AllVtables});
   2768   EmitCheck(std::make_pair(TypeTest, M), "cfi_check_fail", StaticData,
   2769             {CastedVTable, ValidVtable});
   2770 }
   2771 
   2772 bool CodeGenFunction::ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD) {
   2773   if (!CGM.getCodeGenOpts().WholeProgramVTables ||
   2774       !SanOpts.has(SanitizerKind::CFIVCall) ||
   2775       !CGM.getCodeGenOpts().SanitizeTrap.has(SanitizerKind::CFIVCall) ||
   2776       !CGM.HasHiddenLTOVisibility(RD))
   2777     return false;
   2778 
   2779   std::string TypeName = RD->getQualifiedNameAsString();
   2780   return !getContext().getSanitizerBlacklist().isBlacklistedType(TypeName);
   2781 }
   2782 
   2783 llvm::Value *CodeGenFunction::EmitVTableTypeCheckedLoad(
   2784     const CXXRecordDecl *RD, llvm::Value *VTable, uint64_t VTableByteOffset) {
   2785   SanitizerScope SanScope(this);
   2786 
   2787   EmitSanitizerStatReport(llvm::SanStat_CFI_VCall);
   2788 
   2789   llvm::Metadata *MD =
   2790       CGM.CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
   2791   llvm::Value *TypeId = llvm::MetadataAsValue::get(CGM.getLLVMContext(), MD);
   2792 
   2793   llvm::Value *CastedVTable = Builder.CreateBitCast(VTable, Int8PtrTy);
   2794   llvm::Value *CheckedLoad = Builder.CreateCall(
   2795       CGM.getIntrinsic(llvm::Intrinsic::type_checked_load),
   2796       {CastedVTable, llvm::ConstantInt::get(Int32Ty, VTableByteOffset),
   2797        TypeId});
   2798   llvm::Value *CheckResult = Builder.CreateExtractValue(CheckedLoad, 1);
   2799 
   2800   EmitCheck(std::make_pair(CheckResult, SanitizerKind::CFIVCall),
   2801             "cfi_check_fail", nullptr, nullptr);
   2802 
   2803   return Builder.CreateBitCast(
   2804       Builder.CreateExtractValue(CheckedLoad, 0),
   2805       cast<llvm::PointerType>(VTable->getType())->getElementType());
   2806 }
   2807 
   2808 // FIXME: Ideally Expr::IgnoreParenNoopCasts should do this, but it doesn't do
   2809 // quite what we want.
   2810 static const Expr *skipNoOpCastsAndParens(const Expr *E) {
   2811   while (true) {
   2812     if (const ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
   2813       E = PE->getSubExpr();
   2814       continue;
   2815     }
   2816 
   2817     if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
   2818       if (CE->getCastKind() == CK_NoOp) {
   2819         E = CE->getSubExpr();
   2820         continue;
   2821       }
   2822     }
   2823     if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
   2824       if (UO->getOpcode() == UO_Extension) {
   2825         E = UO->getSubExpr();
   2826         continue;
   2827       }
   2828     }
   2829     return E;
   2830   }
   2831 }
   2832 
   2833 bool
   2834 CodeGenFunction::CanDevirtualizeMemberFunctionCall(const Expr *Base,
   2835                                                    const CXXMethodDecl *MD) {
   2836   // When building with -fapple-kext, all calls must go through the vtable since
   2837   // the kernel linker can do runtime patching of vtables.
   2838   if (getLangOpts().AppleKext)
   2839     return false;
   2840 
   2841   // If the most derived class is marked final, we know that no subclass can
   2842   // override this member function and so we can devirtualize it. For example:
   2843   //
   2844   // struct A { virtual void f(); }
   2845   // struct B final : A { };
   2846   //
   2847   // void f(B *b) {
   2848   //   b->f();
   2849   // }
   2850   //
   2851   const CXXRecordDecl *MostDerivedClassDecl = Base->getBestDynamicClassType();
   2852   if (MostDerivedClassDecl->hasAttr<FinalAttr>())
   2853     return true;
   2854 
   2855   // If the member function is marked 'final', we know that it can't be
   2856   // overridden and can therefore devirtualize it.
   2857   if (MD->hasAttr<FinalAttr>())
   2858     return true;
   2859 
   2860   // Similarly, if the class itself is marked 'final' it can't be overridden
   2861   // and we can therefore devirtualize the member function call.
   2862   if (MD->getParent()->hasAttr<FinalAttr>())
   2863     return true;
   2864 
   2865   Base = skipNoOpCastsAndParens(Base);
   2866   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) {
   2867     if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl())) {
   2868       // This is a record decl. We know the type and can devirtualize it.
   2869       return VD->getType()->isRecordType();
   2870     }
   2871 
   2872     return false;
   2873   }
   2874 
   2875   // We can devirtualize calls on an object accessed by a class member access
   2876   // expression, since by C++11 [basic.life]p6 we know that it can't refer to
   2877   // a derived class object constructed in the same location.
   2878   if (const MemberExpr *ME = dyn_cast<MemberExpr>(Base))
   2879     if (const ValueDecl *VD = dyn_cast<ValueDecl>(ME->getMemberDecl()))
   2880       return VD->getType()->isRecordType();
   2881 
   2882   // We can always devirtualize calls on temporary object expressions.
   2883   if (isa<CXXConstructExpr>(Base))
   2884     return true;
   2885 
   2886   // And calls on bound temporaries.
   2887   if (isa<CXXBindTemporaryExpr>(Base))
   2888     return true;
   2889 
   2890   // Check if this is a call expr that returns a record type.
   2891   if (const CallExpr *CE = dyn_cast<CallExpr>(Base))
   2892     return CE->getCallReturnType(getContext())->isRecordType();
   2893 
   2894   // We can't devirtualize the call.
   2895   return false;
   2896 }
   2897 
   2898 void CodeGenFunction::EmitForwardingCallToLambda(
   2899                                       const CXXMethodDecl *callOperator,
   2900                                       CallArgList &callArgs) {
   2901   // Get the address of the call operator.
   2902   const CGFunctionInfo &calleeFnInfo =
   2903     CGM.getTypes().arrangeCXXMethodDeclaration(callOperator);
   2904   llvm::Value *callee =
   2905     CGM.GetAddrOfFunction(GlobalDecl(callOperator),
   2906                           CGM.getTypes().GetFunctionType(calleeFnInfo));
   2907 
   2908   // Prepare the return slot.
   2909   const FunctionProtoType *FPT =
   2910     callOperator->getType()->castAs<FunctionProtoType>();
   2911   QualType resultType = FPT->getReturnType();
   2912   ReturnValueSlot returnSlot;
   2913   if (!resultType->isVoidType() &&
   2914       calleeFnInfo.getReturnInfo().getKind() == ABIArgInfo::Indirect &&
   2915       !hasScalarEvaluationKind(calleeFnInfo.getReturnType()))
   2916     returnSlot = ReturnValueSlot(ReturnValue, resultType.isVolatileQualified());
   2917 
   2918   // We don't need to separately arrange the call arguments because
   2919   // the call can't be variadic anyway --- it's impossible to forward
   2920   // variadic arguments.
   2921 
   2922   // Now emit our call.
   2923   RValue RV = EmitCall(calleeFnInfo, callee, returnSlot,
   2924                        callArgs, callOperator);
   2925 
   2926   // If necessary, copy the returned value into the slot.
   2927   if (!resultType->isVoidType() && returnSlot.isNull())
   2928     EmitReturnOfRValue(RV, resultType);
   2929   else
   2930     EmitBranchThroughCleanup(ReturnBlock);
   2931 }
   2932 
   2933 void CodeGenFunction::EmitLambdaBlockInvokeBody() {
   2934   const BlockDecl *BD = BlockInfo->getBlockDecl();
   2935   const VarDecl *variable = BD->capture_begin()->getVariable();
   2936   const CXXRecordDecl *Lambda = variable->getType()->getAsCXXRecordDecl();
   2937 
   2938   // Start building arguments for forwarding call
   2939   CallArgList CallArgs;
   2940 
   2941   QualType ThisType = getContext().getPointerType(getContext().getRecordType(Lambda));
   2942   Address ThisPtr = GetAddrOfBlockDecl(variable, false);
   2943   CallArgs.add(RValue::get(ThisPtr.getPointer()), ThisType);
   2944 
   2945   // Add the rest of the parameters.
   2946   for (auto param : BD->parameters())
   2947     EmitDelegateCallArg(CallArgs, param, param->getLocStart());
   2948 
   2949   assert(!Lambda->isGenericLambda() &&
   2950             "generic lambda interconversion to block not implemented");
   2951   EmitForwardingCallToLambda(Lambda->getLambdaCallOperator(), CallArgs);
   2952 }
   2953 
   2954 void CodeGenFunction::EmitLambdaToBlockPointerBody(FunctionArgList &Args) {
   2955   if (cast<CXXMethodDecl>(CurCodeDecl)->isVariadic()) {
   2956     // FIXME: Making this work correctly is nasty because it requires either
   2957     // cloning the body of the call operator or making the call operator forward.
   2958     CGM.ErrorUnsupported(CurCodeDecl, "lambda conversion to variadic function");
   2959     return;
   2960   }
   2961 
   2962   EmitFunctionBody(Args, cast<FunctionDecl>(CurGD.getDecl())->getBody());
   2963 }
   2964 
   2965 void CodeGenFunction::EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD) {
   2966   const CXXRecordDecl *Lambda = MD->getParent();
   2967 
   2968   // Start building arguments for forwarding call
   2969   CallArgList CallArgs;
   2970 
   2971   QualType ThisType = getContext().getPointerType(getContext().getRecordType(Lambda));
   2972   llvm::Value *ThisPtr = llvm::UndefValue::get(getTypes().ConvertType(ThisType));
   2973   CallArgs.add(RValue::get(ThisPtr), ThisType);
   2974 
   2975   // Add the rest of the parameters.
   2976   for (auto Param : MD->parameters())
   2977     EmitDelegateCallArg(CallArgs, Param, Param->getLocStart());
   2978 
   2979   const CXXMethodDecl *CallOp = Lambda->getLambdaCallOperator();
   2980   // For a generic lambda, find the corresponding call operator specialization
   2981   // to which the call to the static-invoker shall be forwarded.
   2982   if (Lambda->isGenericLambda()) {
   2983     assert(MD->isFunctionTemplateSpecialization());
   2984     const TemplateArgumentList *TAL = MD->getTemplateSpecializationArgs();
   2985     FunctionTemplateDecl *CallOpTemplate = CallOp->getDescribedFunctionTemplate();
   2986     void *InsertPos = nullptr;
   2987     FunctionDecl *CorrespondingCallOpSpecialization =
   2988         CallOpTemplate->findSpecialization(TAL->asArray(), InsertPos);
   2989     assert(CorrespondingCallOpSpecialization);
   2990     CallOp = cast<CXXMethodDecl>(CorrespondingCallOpSpecialization);
   2991   }
   2992   EmitForwardingCallToLambda(CallOp, CallArgs);
   2993 }
   2994 
   2995 void CodeGenFunction::EmitLambdaStaticInvokeFunction(const CXXMethodDecl *MD) {
   2996   if (MD->isVariadic()) {
   2997     // FIXME: Making this work correctly is nasty because it requires either
   2998     // cloning the body of the call operator or making the call operator forward.
   2999     CGM.ErrorUnsupported(MD, "lambda conversion to variadic function");
   3000     return;
   3001   }
   3002 
   3003   EmitLambdaDelegatingInvokeBody(MD);
   3004 }
   3005