1 //===--- CGClass.cpp - Emit LLVM Code for C++ classes -----------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code dealing with C++ code generation of classes 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGBlocks.h" 15 #include "CGCXXABI.h" 16 #include "CGDebugInfo.h" 17 #include "CGRecordLayout.h" 18 #include "CodeGenFunction.h" 19 #include "clang/AST/CXXInheritance.h" 20 #include "clang/AST/DeclTemplate.h" 21 #include "clang/AST/EvaluatedExprVisitor.h" 22 #include "clang/AST/RecordLayout.h" 23 #include "clang/AST/StmtCXX.h" 24 #include "clang/Basic/TargetBuiltins.h" 25 #include "clang/CodeGen/CGFunctionInfo.h" 26 #include "clang/Frontend/CodeGenOptions.h" 27 #include "llvm/IR/Intrinsics.h" 28 #include "llvm/IR/Metadata.h" 29 #include "llvm/Transforms/Utils/SanitizerStats.h" 30 31 using namespace clang; 32 using namespace CodeGen; 33 34 /// Return the best known alignment for an unknown pointer to a 35 /// particular class. 36 CharUnits CodeGenModule::getClassPointerAlignment(const CXXRecordDecl *RD) { 37 if (!RD->isCompleteDefinition()) 38 return CharUnits::One(); // Hopefully won't be used anywhere. 39 40 auto &layout = getContext().getASTRecordLayout(RD); 41 42 // If the class is final, then we know that the pointer points to an 43 // object of that type and can use the full alignment. 44 if (RD->hasAttr<FinalAttr>()) { 45 return layout.getAlignment(); 46 47 // Otherwise, we have to assume it could be a subclass. 48 } else { 49 return layout.getNonVirtualAlignment(); 50 } 51 } 52 53 /// Return the best known alignment for a pointer to a virtual base, 54 /// given the alignment of a pointer to the derived class. 55 CharUnits CodeGenModule::getVBaseAlignment(CharUnits actualDerivedAlign, 56 const CXXRecordDecl *derivedClass, 57 const CXXRecordDecl *vbaseClass) { 58 // The basic idea here is that an underaligned derived pointer might 59 // indicate an underaligned base pointer. 60 61 assert(vbaseClass->isCompleteDefinition()); 62 auto &baseLayout = getContext().getASTRecordLayout(vbaseClass); 63 CharUnits expectedVBaseAlign = baseLayout.getNonVirtualAlignment(); 64 65 return getDynamicOffsetAlignment(actualDerivedAlign, derivedClass, 66 expectedVBaseAlign); 67 } 68 69 CharUnits 70 CodeGenModule::getDynamicOffsetAlignment(CharUnits actualBaseAlign, 71 const CXXRecordDecl *baseDecl, 72 CharUnits expectedTargetAlign) { 73 // If the base is an incomplete type (which is, alas, possible with 74 // member pointers), be pessimistic. 75 if (!baseDecl->isCompleteDefinition()) 76 return std::min(actualBaseAlign, expectedTargetAlign); 77 78 auto &baseLayout = getContext().getASTRecordLayout(baseDecl); 79 CharUnits expectedBaseAlign = baseLayout.getNonVirtualAlignment(); 80 81 // If the class is properly aligned, assume the target offset is, too. 82 // 83 // This actually isn't necessarily the right thing to do --- if the 84 // class is a complete object, but it's only properly aligned for a 85 // base subobject, then the alignments of things relative to it are 86 // probably off as well. (Note that this requires the alignment of 87 // the target to be greater than the NV alignment of the derived 88 // class.) 89 // 90 // However, our approach to this kind of under-alignment can only 91 // ever be best effort; after all, we're never going to propagate 92 // alignments through variables or parameters. Note, in particular, 93 // that constructing a polymorphic type in an address that's less 94 // than pointer-aligned will generally trap in the constructor, 95 // unless we someday add some sort of attribute to change the 96 // assumed alignment of 'this'. So our goal here is pretty much 97 // just to allow the user to explicitly say that a pointer is 98 // under-aligned and then safely access its fields and vtables. 99 if (actualBaseAlign >= expectedBaseAlign) { 100 return expectedTargetAlign; 101 } 102 103 // Otherwise, we might be offset by an arbitrary multiple of the 104 // actual alignment. The correct adjustment is to take the min of 105 // the two alignments. 106 return std::min(actualBaseAlign, expectedTargetAlign); 107 } 108 109 Address CodeGenFunction::LoadCXXThisAddress() { 110 assert(CurFuncDecl && "loading 'this' without a func declaration?"); 111 assert(isa<CXXMethodDecl>(CurFuncDecl)); 112 113 // Lazily compute CXXThisAlignment. 114 if (CXXThisAlignment.isZero()) { 115 // Just use the best known alignment for the parent. 116 // TODO: if we're currently emitting a complete-object ctor/dtor, 117 // we can always use the complete-object alignment. 118 auto RD = cast<CXXMethodDecl>(CurFuncDecl)->getParent(); 119 CXXThisAlignment = CGM.getClassPointerAlignment(RD); 120 } 121 122 return Address(LoadCXXThis(), CXXThisAlignment); 123 } 124 125 /// Emit the address of a field using a member data pointer. 126 /// 127 /// \param E Only used for emergency diagnostics 128 Address 129 CodeGenFunction::EmitCXXMemberDataPointerAddress(const Expr *E, Address base, 130 llvm::Value *memberPtr, 131 const MemberPointerType *memberPtrType, 132 AlignmentSource *alignSource) { 133 // Ask the ABI to compute the actual address. 134 llvm::Value *ptr = 135 CGM.getCXXABI().EmitMemberDataPointerAddress(*this, E, base, 136 memberPtr, memberPtrType); 137 138 QualType memberType = memberPtrType->getPointeeType(); 139 CharUnits memberAlign = getNaturalTypeAlignment(memberType, alignSource); 140 memberAlign = 141 CGM.getDynamicOffsetAlignment(base.getAlignment(), 142 memberPtrType->getClass()->getAsCXXRecordDecl(), 143 memberAlign); 144 return Address(ptr, memberAlign); 145 } 146 147 CharUnits CodeGenModule::computeNonVirtualBaseClassOffset( 148 const CXXRecordDecl *DerivedClass, CastExpr::path_const_iterator Start, 149 CastExpr::path_const_iterator End) { 150 CharUnits Offset = CharUnits::Zero(); 151 152 const ASTContext &Context = getContext(); 153 const CXXRecordDecl *RD = DerivedClass; 154 155 for (CastExpr::path_const_iterator I = Start; I != End; ++I) { 156 const CXXBaseSpecifier *Base = *I; 157 assert(!Base->isVirtual() && "Should not see virtual bases here!"); 158 159 // Get the layout. 160 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 161 162 const CXXRecordDecl *BaseDecl = 163 cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl()); 164 165 // Add the offset. 166 Offset += Layout.getBaseClassOffset(BaseDecl); 167 168 RD = BaseDecl; 169 } 170 171 return Offset; 172 } 173 174 llvm::Constant * 175 CodeGenModule::GetNonVirtualBaseClassOffset(const CXXRecordDecl *ClassDecl, 176 CastExpr::path_const_iterator PathBegin, 177 CastExpr::path_const_iterator PathEnd) { 178 assert(PathBegin != PathEnd && "Base path should not be empty!"); 179 180 CharUnits Offset = 181 computeNonVirtualBaseClassOffset(ClassDecl, PathBegin, PathEnd); 182 if (Offset.isZero()) 183 return nullptr; 184 185 llvm::Type *PtrDiffTy = 186 Types.ConvertType(getContext().getPointerDiffType()); 187 188 return llvm::ConstantInt::get(PtrDiffTy, Offset.getQuantity()); 189 } 190 191 /// Gets the address of a direct base class within a complete object. 192 /// This should only be used for (1) non-virtual bases or (2) virtual bases 193 /// when the type is known to be complete (e.g. in complete destructors). 194 /// 195 /// The object pointed to by 'This' is assumed to be non-null. 196 Address 197 CodeGenFunction::GetAddressOfDirectBaseInCompleteClass(Address This, 198 const CXXRecordDecl *Derived, 199 const CXXRecordDecl *Base, 200 bool BaseIsVirtual) { 201 // 'this' must be a pointer (in some address space) to Derived. 202 assert(This.getElementType() == ConvertType(Derived)); 203 204 // Compute the offset of the virtual base. 205 CharUnits Offset; 206 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(Derived); 207 if (BaseIsVirtual) 208 Offset = Layout.getVBaseClassOffset(Base); 209 else 210 Offset = Layout.getBaseClassOffset(Base); 211 212 // Shift and cast down to the base type. 213 // TODO: for complete types, this should be possible with a GEP. 214 Address V = This; 215 if (!Offset.isZero()) { 216 V = Builder.CreateElementBitCast(V, Int8Ty); 217 V = Builder.CreateConstInBoundsByteGEP(V, Offset); 218 } 219 V = Builder.CreateElementBitCast(V, ConvertType(Base)); 220 221 return V; 222 } 223 224 static Address 225 ApplyNonVirtualAndVirtualOffset(CodeGenFunction &CGF, Address addr, 226 CharUnits nonVirtualOffset, 227 llvm::Value *virtualOffset, 228 const CXXRecordDecl *derivedClass, 229 const CXXRecordDecl *nearestVBase) { 230 // Assert that we have something to do. 231 assert(!nonVirtualOffset.isZero() || virtualOffset != nullptr); 232 233 // Compute the offset from the static and dynamic components. 234 llvm::Value *baseOffset; 235 if (!nonVirtualOffset.isZero()) { 236 baseOffset = llvm::ConstantInt::get(CGF.PtrDiffTy, 237 nonVirtualOffset.getQuantity()); 238 if (virtualOffset) { 239 baseOffset = CGF.Builder.CreateAdd(virtualOffset, baseOffset); 240 } 241 } else { 242 baseOffset = virtualOffset; 243 } 244 245 // Apply the base offset. 246 llvm::Value *ptr = addr.getPointer(); 247 ptr = CGF.Builder.CreateBitCast(ptr, CGF.Int8PtrTy); 248 ptr = CGF.Builder.CreateInBoundsGEP(ptr, baseOffset, "add.ptr"); 249 250 // If we have a virtual component, the alignment of the result will 251 // be relative only to the known alignment of that vbase. 252 CharUnits alignment; 253 if (virtualOffset) { 254 assert(nearestVBase && "virtual offset without vbase?"); 255 alignment = CGF.CGM.getVBaseAlignment(addr.getAlignment(), 256 derivedClass, nearestVBase); 257 } else { 258 alignment = addr.getAlignment(); 259 } 260 alignment = alignment.alignmentAtOffset(nonVirtualOffset); 261 262 return Address(ptr, alignment); 263 } 264 265 Address CodeGenFunction::GetAddressOfBaseClass( 266 Address Value, const CXXRecordDecl *Derived, 267 CastExpr::path_const_iterator PathBegin, 268 CastExpr::path_const_iterator PathEnd, bool NullCheckValue, 269 SourceLocation Loc) { 270 assert(PathBegin != PathEnd && "Base path should not be empty!"); 271 272 CastExpr::path_const_iterator Start = PathBegin; 273 const CXXRecordDecl *VBase = nullptr; 274 275 // Sema has done some convenient canonicalization here: if the 276 // access path involved any virtual steps, the conversion path will 277 // *start* with a step down to the correct virtual base subobject, 278 // and hence will not require any further steps. 279 if ((*Start)->isVirtual()) { 280 VBase = 281 cast<CXXRecordDecl>((*Start)->getType()->getAs<RecordType>()->getDecl()); 282 ++Start; 283 } 284 285 // Compute the static offset of the ultimate destination within its 286 // allocating subobject (the virtual base, if there is one, or else 287 // the "complete" object that we see). 288 CharUnits NonVirtualOffset = CGM.computeNonVirtualBaseClassOffset( 289 VBase ? VBase : Derived, Start, PathEnd); 290 291 // If there's a virtual step, we can sometimes "devirtualize" it. 292 // For now, that's limited to when the derived type is final. 293 // TODO: "devirtualize" this for accesses to known-complete objects. 294 if (VBase && Derived->hasAttr<FinalAttr>()) { 295 const ASTRecordLayout &layout = getContext().getASTRecordLayout(Derived); 296 CharUnits vBaseOffset = layout.getVBaseClassOffset(VBase); 297 NonVirtualOffset += vBaseOffset; 298 VBase = nullptr; // we no longer have a virtual step 299 } 300 301 // Get the base pointer type. 302 llvm::Type *BasePtrTy = 303 ConvertType((PathEnd[-1])->getType())->getPointerTo(); 304 305 QualType DerivedTy = getContext().getRecordType(Derived); 306 CharUnits DerivedAlign = CGM.getClassPointerAlignment(Derived); 307 308 // If the static offset is zero and we don't have a virtual step, 309 // just do a bitcast; null checks are unnecessary. 310 if (NonVirtualOffset.isZero() && !VBase) { 311 if (sanitizePerformTypeCheck()) { 312 EmitTypeCheck(TCK_Upcast, Loc, Value.getPointer(), 313 DerivedTy, DerivedAlign, !NullCheckValue); 314 } 315 return Builder.CreateBitCast(Value, BasePtrTy); 316 } 317 318 llvm::BasicBlock *origBB = nullptr; 319 llvm::BasicBlock *endBB = nullptr; 320 321 // Skip over the offset (and the vtable load) if we're supposed to 322 // null-check the pointer. 323 if (NullCheckValue) { 324 origBB = Builder.GetInsertBlock(); 325 llvm::BasicBlock *notNullBB = createBasicBlock("cast.notnull"); 326 endBB = createBasicBlock("cast.end"); 327 328 llvm::Value *isNull = Builder.CreateIsNull(Value.getPointer()); 329 Builder.CreateCondBr(isNull, endBB, notNullBB); 330 EmitBlock(notNullBB); 331 } 332 333 if (sanitizePerformTypeCheck()) { 334 EmitTypeCheck(VBase ? TCK_UpcastToVirtualBase : TCK_Upcast, Loc, 335 Value.getPointer(), DerivedTy, DerivedAlign, true); 336 } 337 338 // Compute the virtual offset. 339 llvm::Value *VirtualOffset = nullptr; 340 if (VBase) { 341 VirtualOffset = 342 CGM.getCXXABI().GetVirtualBaseClassOffset(*this, Value, Derived, VBase); 343 } 344 345 // Apply both offsets. 346 Value = ApplyNonVirtualAndVirtualOffset(*this, Value, NonVirtualOffset, 347 VirtualOffset, Derived, VBase); 348 349 // Cast to the destination type. 350 Value = Builder.CreateBitCast(Value, BasePtrTy); 351 352 // Build a phi if we needed a null check. 353 if (NullCheckValue) { 354 llvm::BasicBlock *notNullBB = Builder.GetInsertBlock(); 355 Builder.CreateBr(endBB); 356 EmitBlock(endBB); 357 358 llvm::PHINode *PHI = Builder.CreatePHI(BasePtrTy, 2, "cast.result"); 359 PHI->addIncoming(Value.getPointer(), notNullBB); 360 PHI->addIncoming(llvm::Constant::getNullValue(BasePtrTy), origBB); 361 Value = Address(PHI, Value.getAlignment()); 362 } 363 364 return Value; 365 } 366 367 Address 368 CodeGenFunction::GetAddressOfDerivedClass(Address BaseAddr, 369 const CXXRecordDecl *Derived, 370 CastExpr::path_const_iterator PathBegin, 371 CastExpr::path_const_iterator PathEnd, 372 bool NullCheckValue) { 373 assert(PathBegin != PathEnd && "Base path should not be empty!"); 374 375 QualType DerivedTy = 376 getContext().getCanonicalType(getContext().getTagDeclType(Derived)); 377 llvm::Type *DerivedPtrTy = ConvertType(DerivedTy)->getPointerTo(); 378 379 llvm::Value *NonVirtualOffset = 380 CGM.GetNonVirtualBaseClassOffset(Derived, PathBegin, PathEnd); 381 382 if (!NonVirtualOffset) { 383 // No offset, we can just cast back. 384 return Builder.CreateBitCast(BaseAddr, DerivedPtrTy); 385 } 386 387 llvm::BasicBlock *CastNull = nullptr; 388 llvm::BasicBlock *CastNotNull = nullptr; 389 llvm::BasicBlock *CastEnd = nullptr; 390 391 if (NullCheckValue) { 392 CastNull = createBasicBlock("cast.null"); 393 CastNotNull = createBasicBlock("cast.notnull"); 394 CastEnd = createBasicBlock("cast.end"); 395 396 llvm::Value *IsNull = Builder.CreateIsNull(BaseAddr.getPointer()); 397 Builder.CreateCondBr(IsNull, CastNull, CastNotNull); 398 EmitBlock(CastNotNull); 399 } 400 401 // Apply the offset. 402 llvm::Value *Value = Builder.CreateBitCast(BaseAddr.getPointer(), Int8PtrTy); 403 Value = Builder.CreateGEP(Value, Builder.CreateNeg(NonVirtualOffset), 404 "sub.ptr"); 405 406 // Just cast. 407 Value = Builder.CreateBitCast(Value, DerivedPtrTy); 408 409 // Produce a PHI if we had a null-check. 410 if (NullCheckValue) { 411 Builder.CreateBr(CastEnd); 412 EmitBlock(CastNull); 413 Builder.CreateBr(CastEnd); 414 EmitBlock(CastEnd); 415 416 llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2); 417 PHI->addIncoming(Value, CastNotNull); 418 PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull); 419 Value = PHI; 420 } 421 422 return Address(Value, CGM.getClassPointerAlignment(Derived)); 423 } 424 425 llvm::Value *CodeGenFunction::GetVTTParameter(GlobalDecl GD, 426 bool ForVirtualBase, 427 bool Delegating) { 428 if (!CGM.getCXXABI().NeedsVTTParameter(GD)) { 429 // This constructor/destructor does not need a VTT parameter. 430 return nullptr; 431 } 432 433 const CXXRecordDecl *RD = cast<CXXMethodDecl>(CurCodeDecl)->getParent(); 434 const CXXRecordDecl *Base = cast<CXXMethodDecl>(GD.getDecl())->getParent(); 435 436 llvm::Value *VTT; 437 438 uint64_t SubVTTIndex; 439 440 if (Delegating) { 441 // If this is a delegating constructor call, just load the VTT. 442 return LoadCXXVTT(); 443 } else if (RD == Base) { 444 // If the record matches the base, this is the complete ctor/dtor 445 // variant calling the base variant in a class with virtual bases. 446 assert(!CGM.getCXXABI().NeedsVTTParameter(CurGD) && 447 "doing no-op VTT offset in base dtor/ctor?"); 448 assert(!ForVirtualBase && "Can't have same class as virtual base!"); 449 SubVTTIndex = 0; 450 } else { 451 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 452 CharUnits BaseOffset = ForVirtualBase ? 453 Layout.getVBaseClassOffset(Base) : 454 Layout.getBaseClassOffset(Base); 455 456 SubVTTIndex = 457 CGM.getVTables().getSubVTTIndex(RD, BaseSubobject(Base, BaseOffset)); 458 assert(SubVTTIndex != 0 && "Sub-VTT index must be greater than zero!"); 459 } 460 461 if (CGM.getCXXABI().NeedsVTTParameter(CurGD)) { 462 // A VTT parameter was passed to the constructor, use it. 463 VTT = LoadCXXVTT(); 464 VTT = Builder.CreateConstInBoundsGEP1_64(VTT, SubVTTIndex); 465 } else { 466 // We're the complete constructor, so get the VTT by name. 467 VTT = CGM.getVTables().GetAddrOfVTT(RD); 468 VTT = Builder.CreateConstInBoundsGEP2_64(VTT, 0, SubVTTIndex); 469 } 470 471 return VTT; 472 } 473 474 namespace { 475 /// Call the destructor for a direct base class. 476 struct CallBaseDtor final : EHScopeStack::Cleanup { 477 const CXXRecordDecl *BaseClass; 478 bool BaseIsVirtual; 479 CallBaseDtor(const CXXRecordDecl *Base, bool BaseIsVirtual) 480 : BaseClass(Base), BaseIsVirtual(BaseIsVirtual) {} 481 482 void Emit(CodeGenFunction &CGF, Flags flags) override { 483 const CXXRecordDecl *DerivedClass = 484 cast<CXXMethodDecl>(CGF.CurCodeDecl)->getParent(); 485 486 const CXXDestructorDecl *D = BaseClass->getDestructor(); 487 Address Addr = 488 CGF.GetAddressOfDirectBaseInCompleteClass(CGF.LoadCXXThisAddress(), 489 DerivedClass, BaseClass, 490 BaseIsVirtual); 491 CGF.EmitCXXDestructorCall(D, Dtor_Base, BaseIsVirtual, 492 /*Delegating=*/false, Addr); 493 } 494 }; 495 496 /// A visitor which checks whether an initializer uses 'this' in a 497 /// way which requires the vtable to be properly set. 498 struct DynamicThisUseChecker : ConstEvaluatedExprVisitor<DynamicThisUseChecker> { 499 typedef ConstEvaluatedExprVisitor<DynamicThisUseChecker> super; 500 501 bool UsesThis; 502 503 DynamicThisUseChecker(const ASTContext &C) : super(C), UsesThis(false) {} 504 505 // Black-list all explicit and implicit references to 'this'. 506 // 507 // Do we need to worry about external references to 'this' derived 508 // from arbitrary code? If so, then anything which runs arbitrary 509 // external code might potentially access the vtable. 510 void VisitCXXThisExpr(const CXXThisExpr *E) { UsesThis = true; } 511 }; 512 } // end anonymous namespace 513 514 static bool BaseInitializerUsesThis(ASTContext &C, const Expr *Init) { 515 DynamicThisUseChecker Checker(C); 516 Checker.Visit(Init); 517 return Checker.UsesThis; 518 } 519 520 static void EmitBaseInitializer(CodeGenFunction &CGF, 521 const CXXRecordDecl *ClassDecl, 522 CXXCtorInitializer *BaseInit, 523 CXXCtorType CtorType) { 524 assert(BaseInit->isBaseInitializer() && 525 "Must have base initializer!"); 526 527 Address ThisPtr = CGF.LoadCXXThisAddress(); 528 529 const Type *BaseType = BaseInit->getBaseClass(); 530 CXXRecordDecl *BaseClassDecl = 531 cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl()); 532 533 bool isBaseVirtual = BaseInit->isBaseVirtual(); 534 535 // The base constructor doesn't construct virtual bases. 536 if (CtorType == Ctor_Base && isBaseVirtual) 537 return; 538 539 // If the initializer for the base (other than the constructor 540 // itself) accesses 'this' in any way, we need to initialize the 541 // vtables. 542 if (BaseInitializerUsesThis(CGF.getContext(), BaseInit->getInit())) 543 CGF.InitializeVTablePointers(ClassDecl); 544 545 // We can pretend to be a complete class because it only matters for 546 // virtual bases, and we only do virtual bases for complete ctors. 547 Address V = 548 CGF.GetAddressOfDirectBaseInCompleteClass(ThisPtr, ClassDecl, 549 BaseClassDecl, 550 isBaseVirtual); 551 AggValueSlot AggSlot = 552 AggValueSlot::forAddr(V, Qualifiers(), 553 AggValueSlot::IsDestructed, 554 AggValueSlot::DoesNotNeedGCBarriers, 555 AggValueSlot::IsNotAliased); 556 557 CGF.EmitAggExpr(BaseInit->getInit(), AggSlot); 558 559 if (CGF.CGM.getLangOpts().Exceptions && 560 !BaseClassDecl->hasTrivialDestructor()) 561 CGF.EHStack.pushCleanup<CallBaseDtor>(EHCleanup, BaseClassDecl, 562 isBaseVirtual); 563 } 564 565 static void EmitAggMemberInitializer(CodeGenFunction &CGF, 566 LValue LHS, 567 Expr *Init, 568 Address ArrayIndexVar, 569 QualType T, 570 ArrayRef<VarDecl *> ArrayIndexes, 571 unsigned Index) { 572 if (Index == ArrayIndexes.size()) { 573 LValue LV = LHS; 574 575 if (ArrayIndexVar.isValid()) { 576 // If we have an array index variable, load it and use it as an offset. 577 // Then, increment the value. 578 llvm::Value *Dest = LHS.getPointer(); 579 llvm::Value *ArrayIndex = CGF.Builder.CreateLoad(ArrayIndexVar); 580 Dest = CGF.Builder.CreateInBoundsGEP(Dest, ArrayIndex, "destaddress"); 581 llvm::Value *Next = llvm::ConstantInt::get(ArrayIndex->getType(), 1); 582 Next = CGF.Builder.CreateAdd(ArrayIndex, Next, "inc"); 583 CGF.Builder.CreateStore(Next, ArrayIndexVar); 584 585 // Update the LValue. 586 CharUnits EltSize = CGF.getContext().getTypeSizeInChars(T); 587 CharUnits Align = LV.getAlignment().alignmentOfArrayElement(EltSize); 588 LV.setAddress(Address(Dest, Align)); 589 } 590 591 switch (CGF.getEvaluationKind(T)) { 592 case TEK_Scalar: 593 CGF.EmitScalarInit(Init, /*decl*/ nullptr, LV, false); 594 break; 595 case TEK_Complex: 596 CGF.EmitComplexExprIntoLValue(Init, LV, /*isInit*/ true); 597 break; 598 case TEK_Aggregate: { 599 AggValueSlot Slot = 600 AggValueSlot::forLValue(LV, 601 AggValueSlot::IsDestructed, 602 AggValueSlot::DoesNotNeedGCBarriers, 603 AggValueSlot::IsNotAliased); 604 605 CGF.EmitAggExpr(Init, Slot); 606 break; 607 } 608 } 609 610 return; 611 } 612 613 const ConstantArrayType *Array = CGF.getContext().getAsConstantArrayType(T); 614 assert(Array && "Array initialization without the array type?"); 615 Address IndexVar = CGF.GetAddrOfLocalVar(ArrayIndexes[Index]); 616 617 // Initialize this index variable to zero. 618 llvm::Value* Zero 619 = llvm::Constant::getNullValue(IndexVar.getElementType()); 620 CGF.Builder.CreateStore(Zero, IndexVar); 621 622 // Start the loop with a block that tests the condition. 623 llvm::BasicBlock *CondBlock = CGF.createBasicBlock("for.cond"); 624 llvm::BasicBlock *AfterFor = CGF.createBasicBlock("for.end"); 625 626 CGF.EmitBlock(CondBlock); 627 628 llvm::BasicBlock *ForBody = CGF.createBasicBlock("for.body"); 629 // Generate: if (loop-index < number-of-elements) fall to the loop body, 630 // otherwise, go to the block after the for-loop. 631 uint64_t NumElements = Array->getSize().getZExtValue(); 632 llvm::Value *Counter = CGF.Builder.CreateLoad(IndexVar); 633 llvm::Value *NumElementsPtr = 634 llvm::ConstantInt::get(Counter->getType(), NumElements); 635 llvm::Value *IsLess = CGF.Builder.CreateICmpULT(Counter, NumElementsPtr, 636 "isless"); 637 638 // If the condition is true, execute the body. 639 CGF.Builder.CreateCondBr(IsLess, ForBody, AfterFor); 640 641 CGF.EmitBlock(ForBody); 642 llvm::BasicBlock *ContinueBlock = CGF.createBasicBlock("for.inc"); 643 644 // Inside the loop body recurse to emit the inner loop or, eventually, the 645 // constructor call. 646 EmitAggMemberInitializer(CGF, LHS, Init, ArrayIndexVar, 647 Array->getElementType(), ArrayIndexes, Index + 1); 648 649 CGF.EmitBlock(ContinueBlock); 650 651 // Emit the increment of the loop counter. 652 llvm::Value *NextVal = llvm::ConstantInt::get(Counter->getType(), 1); 653 Counter = CGF.Builder.CreateLoad(IndexVar); 654 NextVal = CGF.Builder.CreateAdd(Counter, NextVal, "inc"); 655 CGF.Builder.CreateStore(NextVal, IndexVar); 656 657 // Finally, branch back up to the condition for the next iteration. 658 CGF.EmitBranch(CondBlock); 659 660 // Emit the fall-through block. 661 CGF.EmitBlock(AfterFor, true); 662 } 663 664 static bool isMemcpyEquivalentSpecialMember(const CXXMethodDecl *D) { 665 auto *CD = dyn_cast<CXXConstructorDecl>(D); 666 if (!(CD && CD->isCopyOrMoveConstructor()) && 667 !D->isCopyAssignmentOperator() && !D->isMoveAssignmentOperator()) 668 return false; 669 670 // We can emit a memcpy for a trivial copy or move constructor/assignment. 671 if (D->isTrivial() && !D->getParent()->mayInsertExtraPadding()) 672 return true; 673 674 // We *must* emit a memcpy for a defaulted union copy or move op. 675 if (D->getParent()->isUnion() && D->isDefaulted()) 676 return true; 677 678 return false; 679 } 680 681 static void EmitLValueForAnyFieldInitialization(CodeGenFunction &CGF, 682 CXXCtorInitializer *MemberInit, 683 LValue &LHS) { 684 FieldDecl *Field = MemberInit->getAnyMember(); 685 if (MemberInit->isIndirectMemberInitializer()) { 686 // If we are initializing an anonymous union field, drill down to the field. 687 IndirectFieldDecl *IndirectField = MemberInit->getIndirectMember(); 688 for (const auto *I : IndirectField->chain()) 689 LHS = CGF.EmitLValueForFieldInitialization(LHS, cast<FieldDecl>(I)); 690 } else { 691 LHS = CGF.EmitLValueForFieldInitialization(LHS, Field); 692 } 693 } 694 695 static void EmitMemberInitializer(CodeGenFunction &CGF, 696 const CXXRecordDecl *ClassDecl, 697 CXXCtorInitializer *MemberInit, 698 const CXXConstructorDecl *Constructor, 699 FunctionArgList &Args) { 700 ApplyDebugLocation Loc(CGF, MemberInit->getSourceLocation()); 701 assert(MemberInit->isAnyMemberInitializer() && 702 "Must have member initializer!"); 703 assert(MemberInit->getInit() && "Must have initializer!"); 704 705 // non-static data member initializers. 706 FieldDecl *Field = MemberInit->getAnyMember(); 707 QualType FieldType = Field->getType(); 708 709 llvm::Value *ThisPtr = CGF.LoadCXXThis(); 710 QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl); 711 LValue LHS = CGF.MakeNaturalAlignAddrLValue(ThisPtr, RecordTy); 712 713 EmitLValueForAnyFieldInitialization(CGF, MemberInit, LHS); 714 715 // Special case: if we are in a copy or move constructor, and we are copying 716 // an array of PODs or classes with trivial copy constructors, ignore the 717 // AST and perform the copy we know is equivalent. 718 // FIXME: This is hacky at best... if we had a bit more explicit information 719 // in the AST, we could generalize it more easily. 720 const ConstantArrayType *Array 721 = CGF.getContext().getAsConstantArrayType(FieldType); 722 if (Array && Constructor->isDefaulted() && 723 Constructor->isCopyOrMoveConstructor()) { 724 QualType BaseElementTy = CGF.getContext().getBaseElementType(Array); 725 CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(MemberInit->getInit()); 726 if (BaseElementTy.isPODType(CGF.getContext()) || 727 (CE && isMemcpyEquivalentSpecialMember(CE->getConstructor()))) { 728 unsigned SrcArgIndex = 729 CGF.CGM.getCXXABI().getSrcArgforCopyCtor(Constructor, Args); 730 llvm::Value *SrcPtr 731 = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(Args[SrcArgIndex])); 732 LValue ThisRHSLV = CGF.MakeNaturalAlignAddrLValue(SrcPtr, RecordTy); 733 LValue Src = CGF.EmitLValueForFieldInitialization(ThisRHSLV, Field); 734 735 // Copy the aggregate. 736 CGF.EmitAggregateCopy(LHS.getAddress(), Src.getAddress(), FieldType, 737 LHS.isVolatileQualified()); 738 // Ensure that we destroy the objects if an exception is thrown later in 739 // the constructor. 740 QualType::DestructionKind dtorKind = FieldType.isDestructedType(); 741 if (CGF.needsEHCleanup(dtorKind)) 742 CGF.pushEHDestroy(dtorKind, LHS.getAddress(), FieldType); 743 return; 744 } 745 } 746 747 ArrayRef<VarDecl *> ArrayIndexes; 748 if (MemberInit->getNumArrayIndices()) 749 ArrayIndexes = MemberInit->getArrayIndices(); 750 CGF.EmitInitializerForField(Field, LHS, MemberInit->getInit(), ArrayIndexes); 751 } 752 753 void CodeGenFunction::EmitInitializerForField(FieldDecl *Field, LValue LHS, 754 Expr *Init, ArrayRef<VarDecl *> ArrayIndexes) { 755 QualType FieldType = Field->getType(); 756 switch (getEvaluationKind(FieldType)) { 757 case TEK_Scalar: 758 if (LHS.isSimple()) { 759 EmitExprAsInit(Init, Field, LHS, false); 760 } else { 761 RValue RHS = RValue::get(EmitScalarExpr(Init)); 762 EmitStoreThroughLValue(RHS, LHS); 763 } 764 break; 765 case TEK_Complex: 766 EmitComplexExprIntoLValue(Init, LHS, /*isInit*/ true); 767 break; 768 case TEK_Aggregate: { 769 Address ArrayIndexVar = Address::invalid(); 770 if (ArrayIndexes.size()) { 771 // The LHS is a pointer to the first object we'll be constructing, as 772 // a flat array. 773 QualType BaseElementTy = getContext().getBaseElementType(FieldType); 774 llvm::Type *BasePtr = ConvertType(BaseElementTy); 775 BasePtr = llvm::PointerType::getUnqual(BasePtr); 776 Address BaseAddrPtr = Builder.CreateBitCast(LHS.getAddress(), BasePtr); 777 LHS = MakeAddrLValue(BaseAddrPtr, BaseElementTy); 778 779 // Create an array index that will be used to walk over all of the 780 // objects we're constructing. 781 ArrayIndexVar = CreateMemTemp(getContext().getSizeType(), "object.index"); 782 llvm::Value *Zero = 783 llvm::Constant::getNullValue(ArrayIndexVar.getElementType()); 784 Builder.CreateStore(Zero, ArrayIndexVar); 785 786 // Emit the block variables for the array indices, if any. 787 for (unsigned I = 0, N = ArrayIndexes.size(); I != N; ++I) 788 EmitAutoVarDecl(*ArrayIndexes[I]); 789 } 790 791 EmitAggMemberInitializer(*this, LHS, Init, ArrayIndexVar, FieldType, 792 ArrayIndexes, 0); 793 } 794 } 795 796 // Ensure that we destroy this object if an exception is thrown 797 // later in the constructor. 798 QualType::DestructionKind dtorKind = FieldType.isDestructedType(); 799 if (needsEHCleanup(dtorKind)) 800 pushEHDestroy(dtorKind, LHS.getAddress(), FieldType); 801 } 802 803 /// Checks whether the given constructor is a valid subject for the 804 /// complete-to-base constructor delegation optimization, i.e. 805 /// emitting the complete constructor as a simple call to the base 806 /// constructor. 807 static bool IsConstructorDelegationValid(const CXXConstructorDecl *Ctor) { 808 809 // Currently we disable the optimization for classes with virtual 810 // bases because (1) the addresses of parameter variables need to be 811 // consistent across all initializers but (2) the delegate function 812 // call necessarily creates a second copy of the parameter variable. 813 // 814 // The limiting example (purely theoretical AFAIK): 815 // struct A { A(int &c) { c++; } }; 816 // struct B : virtual A { 817 // B(int count) : A(count) { printf("%d\n", count); } 818 // }; 819 // ...although even this example could in principle be emitted as a 820 // delegation since the address of the parameter doesn't escape. 821 if (Ctor->getParent()->getNumVBases()) { 822 // TODO: white-list trivial vbase initializers. This case wouldn't 823 // be subject to the restrictions below. 824 825 // TODO: white-list cases where: 826 // - there are no non-reference parameters to the constructor 827 // - the initializers don't access any non-reference parameters 828 // - the initializers don't take the address of non-reference 829 // parameters 830 // - etc. 831 // If we ever add any of the above cases, remember that: 832 // - function-try-blocks will always blacklist this optimization 833 // - we need to perform the constructor prologue and cleanup in 834 // EmitConstructorBody. 835 836 return false; 837 } 838 839 // We also disable the optimization for variadic functions because 840 // it's impossible to "re-pass" varargs. 841 if (Ctor->getType()->getAs<FunctionProtoType>()->isVariadic()) 842 return false; 843 844 // FIXME: Decide if we can do a delegation of a delegating constructor. 845 if (Ctor->isDelegatingConstructor()) 846 return false; 847 848 return true; 849 } 850 851 // Emit code in ctor (Prologue==true) or dtor (Prologue==false) 852 // to poison the extra field paddings inserted under 853 // -fsanitize-address-field-padding=1|2. 854 void CodeGenFunction::EmitAsanPrologueOrEpilogue(bool Prologue) { 855 ASTContext &Context = getContext(); 856 const CXXRecordDecl *ClassDecl = 857 Prologue ? cast<CXXConstructorDecl>(CurGD.getDecl())->getParent() 858 : cast<CXXDestructorDecl>(CurGD.getDecl())->getParent(); 859 if (!ClassDecl->mayInsertExtraPadding()) return; 860 861 struct SizeAndOffset { 862 uint64_t Size; 863 uint64_t Offset; 864 }; 865 866 unsigned PtrSize = CGM.getDataLayout().getPointerSizeInBits(); 867 const ASTRecordLayout &Info = Context.getASTRecordLayout(ClassDecl); 868 869 // Populate sizes and offsets of fields. 870 SmallVector<SizeAndOffset, 16> SSV(Info.getFieldCount()); 871 for (unsigned i = 0, e = Info.getFieldCount(); i != e; ++i) 872 SSV[i].Offset = 873 Context.toCharUnitsFromBits(Info.getFieldOffset(i)).getQuantity(); 874 875 size_t NumFields = 0; 876 for (const auto *Field : ClassDecl->fields()) { 877 const FieldDecl *D = Field; 878 std::pair<CharUnits, CharUnits> FieldInfo = 879 Context.getTypeInfoInChars(D->getType()); 880 CharUnits FieldSize = FieldInfo.first; 881 assert(NumFields < SSV.size()); 882 SSV[NumFields].Size = D->isBitField() ? 0 : FieldSize.getQuantity(); 883 NumFields++; 884 } 885 assert(NumFields == SSV.size()); 886 if (SSV.size() <= 1) return; 887 888 // We will insert calls to __asan_* run-time functions. 889 // LLVM AddressSanitizer pass may decide to inline them later. 890 llvm::Type *Args[2] = {IntPtrTy, IntPtrTy}; 891 llvm::FunctionType *FTy = 892 llvm::FunctionType::get(CGM.VoidTy, Args, false); 893 llvm::Constant *F = CGM.CreateRuntimeFunction( 894 FTy, Prologue ? "__asan_poison_intra_object_redzone" 895 : "__asan_unpoison_intra_object_redzone"); 896 897 llvm::Value *ThisPtr = LoadCXXThis(); 898 ThisPtr = Builder.CreatePtrToInt(ThisPtr, IntPtrTy); 899 uint64_t TypeSize = Info.getNonVirtualSize().getQuantity(); 900 // For each field check if it has sufficient padding, 901 // if so (un)poison it with a call. 902 for (size_t i = 0; i < SSV.size(); i++) { 903 uint64_t AsanAlignment = 8; 904 uint64_t NextField = i == SSV.size() - 1 ? TypeSize : SSV[i + 1].Offset; 905 uint64_t PoisonSize = NextField - SSV[i].Offset - SSV[i].Size; 906 uint64_t EndOffset = SSV[i].Offset + SSV[i].Size; 907 if (PoisonSize < AsanAlignment || !SSV[i].Size || 908 (NextField % AsanAlignment) != 0) 909 continue; 910 Builder.CreateCall( 911 F, {Builder.CreateAdd(ThisPtr, Builder.getIntN(PtrSize, EndOffset)), 912 Builder.getIntN(PtrSize, PoisonSize)}); 913 } 914 } 915 916 /// EmitConstructorBody - Emits the body of the current constructor. 917 void CodeGenFunction::EmitConstructorBody(FunctionArgList &Args) { 918 EmitAsanPrologueOrEpilogue(true); 919 const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(CurGD.getDecl()); 920 CXXCtorType CtorType = CurGD.getCtorType(); 921 922 assert((CGM.getTarget().getCXXABI().hasConstructorVariants() || 923 CtorType == Ctor_Complete) && 924 "can only generate complete ctor for this ABI"); 925 926 // Before we go any further, try the complete->base constructor 927 // delegation optimization. 928 if (CtorType == Ctor_Complete && IsConstructorDelegationValid(Ctor) && 929 CGM.getTarget().getCXXABI().hasConstructorVariants()) { 930 EmitDelegateCXXConstructorCall(Ctor, Ctor_Base, Args, Ctor->getLocEnd()); 931 return; 932 } 933 934 const FunctionDecl *Definition = nullptr; 935 Stmt *Body = Ctor->getBody(Definition); 936 assert(Definition == Ctor && "emitting wrong constructor body"); 937 938 // Enter the function-try-block before the constructor prologue if 939 // applicable. 940 bool IsTryBody = (Body && isa<CXXTryStmt>(Body)); 941 if (IsTryBody) 942 EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true); 943 944 incrementProfileCounter(Body); 945 946 RunCleanupsScope RunCleanups(*this); 947 948 // TODO: in restricted cases, we can emit the vbase initializers of 949 // a complete ctor and then delegate to the base ctor. 950 951 // Emit the constructor prologue, i.e. the base and member 952 // initializers. 953 EmitCtorPrologue(Ctor, CtorType, Args); 954 955 // Emit the body of the statement. 956 if (IsTryBody) 957 EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock()); 958 else if (Body) 959 EmitStmt(Body); 960 961 // Emit any cleanup blocks associated with the member or base 962 // initializers, which includes (along the exceptional path) the 963 // destructors for those members and bases that were fully 964 // constructed. 965 RunCleanups.ForceCleanup(); 966 967 if (IsTryBody) 968 ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true); 969 } 970 971 namespace { 972 /// RAII object to indicate that codegen is copying the value representation 973 /// instead of the object representation. Useful when copying a struct or 974 /// class which has uninitialized members and we're only performing 975 /// lvalue-to-rvalue conversion on the object but not its members. 976 class CopyingValueRepresentation { 977 public: 978 explicit CopyingValueRepresentation(CodeGenFunction &CGF) 979 : CGF(CGF), OldSanOpts(CGF.SanOpts) { 980 CGF.SanOpts.set(SanitizerKind::Bool, false); 981 CGF.SanOpts.set(SanitizerKind::Enum, false); 982 } 983 ~CopyingValueRepresentation() { 984 CGF.SanOpts = OldSanOpts; 985 } 986 private: 987 CodeGenFunction &CGF; 988 SanitizerSet OldSanOpts; 989 }; 990 } // end anonymous namespace 991 992 namespace { 993 class FieldMemcpyizer { 994 public: 995 FieldMemcpyizer(CodeGenFunction &CGF, const CXXRecordDecl *ClassDecl, 996 const VarDecl *SrcRec) 997 : CGF(CGF), ClassDecl(ClassDecl), SrcRec(SrcRec), 998 RecLayout(CGF.getContext().getASTRecordLayout(ClassDecl)), 999 FirstField(nullptr), LastField(nullptr), FirstFieldOffset(0), 1000 LastFieldOffset(0), LastAddedFieldIndex(0) {} 1001 1002 bool isMemcpyableField(FieldDecl *F) const { 1003 // Never memcpy fields when we are adding poisoned paddings. 1004 if (CGF.getContext().getLangOpts().SanitizeAddressFieldPadding) 1005 return false; 1006 Qualifiers Qual = F->getType().getQualifiers(); 1007 if (Qual.hasVolatile() || Qual.hasObjCLifetime()) 1008 return false; 1009 return true; 1010 } 1011 1012 void addMemcpyableField(FieldDecl *F) { 1013 if (!FirstField) 1014 addInitialField(F); 1015 else 1016 addNextField(F); 1017 } 1018 1019 CharUnits getMemcpySize(uint64_t FirstByteOffset) const { 1020 unsigned LastFieldSize = 1021 LastField->isBitField() ? 1022 LastField->getBitWidthValue(CGF.getContext()) : 1023 CGF.getContext().getTypeSize(LastField->getType()); 1024 uint64_t MemcpySizeBits = 1025 LastFieldOffset + LastFieldSize - FirstByteOffset + 1026 CGF.getContext().getCharWidth() - 1; 1027 CharUnits MemcpySize = 1028 CGF.getContext().toCharUnitsFromBits(MemcpySizeBits); 1029 return MemcpySize; 1030 } 1031 1032 void emitMemcpy() { 1033 // Give the subclass a chance to bail out if it feels the memcpy isn't 1034 // worth it (e.g. Hasn't aggregated enough data). 1035 if (!FirstField) { 1036 return; 1037 } 1038 1039 uint64_t FirstByteOffset; 1040 if (FirstField->isBitField()) { 1041 const CGRecordLayout &RL = 1042 CGF.getTypes().getCGRecordLayout(FirstField->getParent()); 1043 const CGBitFieldInfo &BFInfo = RL.getBitFieldInfo(FirstField); 1044 // FirstFieldOffset is not appropriate for bitfields, 1045 // we need to use the storage offset instead. 1046 FirstByteOffset = CGF.getContext().toBits(BFInfo.StorageOffset); 1047 } else { 1048 FirstByteOffset = FirstFieldOffset; 1049 } 1050 1051 CharUnits MemcpySize = getMemcpySize(FirstByteOffset); 1052 QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl); 1053 Address ThisPtr = CGF.LoadCXXThisAddress(); 1054 LValue DestLV = CGF.MakeAddrLValue(ThisPtr, RecordTy); 1055 LValue Dest = CGF.EmitLValueForFieldInitialization(DestLV, FirstField); 1056 llvm::Value *SrcPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(SrcRec)); 1057 LValue SrcLV = CGF.MakeNaturalAlignAddrLValue(SrcPtr, RecordTy); 1058 LValue Src = CGF.EmitLValueForFieldInitialization(SrcLV, FirstField); 1059 1060 emitMemcpyIR(Dest.isBitField() ? Dest.getBitFieldAddress() : Dest.getAddress(), 1061 Src.isBitField() ? Src.getBitFieldAddress() : Src.getAddress(), 1062 MemcpySize); 1063 reset(); 1064 } 1065 1066 void reset() { 1067 FirstField = nullptr; 1068 } 1069 1070 protected: 1071 CodeGenFunction &CGF; 1072 const CXXRecordDecl *ClassDecl; 1073 1074 private: 1075 void emitMemcpyIR(Address DestPtr, Address SrcPtr, CharUnits Size) { 1076 llvm::PointerType *DPT = DestPtr.getType(); 1077 llvm::Type *DBP = 1078 llvm::Type::getInt8PtrTy(CGF.getLLVMContext(), DPT->getAddressSpace()); 1079 DestPtr = CGF.Builder.CreateBitCast(DestPtr, DBP); 1080 1081 llvm::PointerType *SPT = SrcPtr.getType(); 1082 llvm::Type *SBP = 1083 llvm::Type::getInt8PtrTy(CGF.getLLVMContext(), SPT->getAddressSpace()); 1084 SrcPtr = CGF.Builder.CreateBitCast(SrcPtr, SBP); 1085 1086 CGF.Builder.CreateMemCpy(DestPtr, SrcPtr, Size.getQuantity()); 1087 } 1088 1089 void addInitialField(FieldDecl *F) { 1090 FirstField = F; 1091 LastField = F; 1092 FirstFieldOffset = RecLayout.getFieldOffset(F->getFieldIndex()); 1093 LastFieldOffset = FirstFieldOffset; 1094 LastAddedFieldIndex = F->getFieldIndex(); 1095 } 1096 1097 void addNextField(FieldDecl *F) { 1098 // For the most part, the following invariant will hold: 1099 // F->getFieldIndex() == LastAddedFieldIndex + 1 1100 // The one exception is that Sema won't add a copy-initializer for an 1101 // unnamed bitfield, which will show up here as a gap in the sequence. 1102 assert(F->getFieldIndex() >= LastAddedFieldIndex + 1 && 1103 "Cannot aggregate fields out of order."); 1104 LastAddedFieldIndex = F->getFieldIndex(); 1105 1106 // The 'first' and 'last' fields are chosen by offset, rather than field 1107 // index. This allows the code to support bitfields, as well as regular 1108 // fields. 1109 uint64_t FOffset = RecLayout.getFieldOffset(F->getFieldIndex()); 1110 if (FOffset < FirstFieldOffset) { 1111 FirstField = F; 1112 FirstFieldOffset = FOffset; 1113 } else if (FOffset > LastFieldOffset) { 1114 LastField = F; 1115 LastFieldOffset = FOffset; 1116 } 1117 } 1118 1119 const VarDecl *SrcRec; 1120 const ASTRecordLayout &RecLayout; 1121 FieldDecl *FirstField; 1122 FieldDecl *LastField; 1123 uint64_t FirstFieldOffset, LastFieldOffset; 1124 unsigned LastAddedFieldIndex; 1125 }; 1126 1127 class ConstructorMemcpyizer : public FieldMemcpyizer { 1128 private: 1129 /// Get source argument for copy constructor. Returns null if not a copy 1130 /// constructor. 1131 static const VarDecl *getTrivialCopySource(CodeGenFunction &CGF, 1132 const CXXConstructorDecl *CD, 1133 FunctionArgList &Args) { 1134 if (CD->isCopyOrMoveConstructor() && CD->isDefaulted()) 1135 return Args[CGF.CGM.getCXXABI().getSrcArgforCopyCtor(CD, Args)]; 1136 return nullptr; 1137 } 1138 1139 // Returns true if a CXXCtorInitializer represents a member initialization 1140 // that can be rolled into a memcpy. 1141 bool isMemberInitMemcpyable(CXXCtorInitializer *MemberInit) const { 1142 if (!MemcpyableCtor) 1143 return false; 1144 FieldDecl *Field = MemberInit->getMember(); 1145 assert(Field && "No field for member init."); 1146 QualType FieldType = Field->getType(); 1147 CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(MemberInit->getInit()); 1148 1149 // Bail out on non-memcpyable, not-trivially-copyable members. 1150 if (!(CE && isMemcpyEquivalentSpecialMember(CE->getConstructor())) && 1151 !(FieldType.isTriviallyCopyableType(CGF.getContext()) || 1152 FieldType->isReferenceType())) 1153 return false; 1154 1155 // Bail out on volatile fields. 1156 if (!isMemcpyableField(Field)) 1157 return false; 1158 1159 // Otherwise we're good. 1160 return true; 1161 } 1162 1163 public: 1164 ConstructorMemcpyizer(CodeGenFunction &CGF, const CXXConstructorDecl *CD, 1165 FunctionArgList &Args) 1166 : FieldMemcpyizer(CGF, CD->getParent(), getTrivialCopySource(CGF, CD, Args)), 1167 ConstructorDecl(CD), 1168 MemcpyableCtor(CD->isDefaulted() && 1169 CD->isCopyOrMoveConstructor() && 1170 CGF.getLangOpts().getGC() == LangOptions::NonGC), 1171 Args(Args) { } 1172 1173 void addMemberInitializer(CXXCtorInitializer *MemberInit) { 1174 if (isMemberInitMemcpyable(MemberInit)) { 1175 AggregatedInits.push_back(MemberInit); 1176 addMemcpyableField(MemberInit->getMember()); 1177 } else { 1178 emitAggregatedInits(); 1179 EmitMemberInitializer(CGF, ConstructorDecl->getParent(), MemberInit, 1180 ConstructorDecl, Args); 1181 } 1182 } 1183 1184 void emitAggregatedInits() { 1185 if (AggregatedInits.size() <= 1) { 1186 // This memcpy is too small to be worthwhile. Fall back on default 1187 // codegen. 1188 if (!AggregatedInits.empty()) { 1189 CopyingValueRepresentation CVR(CGF); 1190 EmitMemberInitializer(CGF, ConstructorDecl->getParent(), 1191 AggregatedInits[0], ConstructorDecl, Args); 1192 AggregatedInits.clear(); 1193 } 1194 reset(); 1195 return; 1196 } 1197 1198 pushEHDestructors(); 1199 emitMemcpy(); 1200 AggregatedInits.clear(); 1201 } 1202 1203 void pushEHDestructors() { 1204 Address ThisPtr = CGF.LoadCXXThisAddress(); 1205 QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl); 1206 LValue LHS = CGF.MakeAddrLValue(ThisPtr, RecordTy); 1207 1208 for (unsigned i = 0; i < AggregatedInits.size(); ++i) { 1209 CXXCtorInitializer *MemberInit = AggregatedInits[i]; 1210 QualType FieldType = MemberInit->getAnyMember()->getType(); 1211 QualType::DestructionKind dtorKind = FieldType.isDestructedType(); 1212 if (!CGF.needsEHCleanup(dtorKind)) 1213 continue; 1214 LValue FieldLHS = LHS; 1215 EmitLValueForAnyFieldInitialization(CGF, MemberInit, FieldLHS); 1216 CGF.pushEHDestroy(dtorKind, FieldLHS.getAddress(), FieldType); 1217 } 1218 } 1219 1220 void finish() { 1221 emitAggregatedInits(); 1222 } 1223 1224 private: 1225 const CXXConstructorDecl *ConstructorDecl; 1226 bool MemcpyableCtor; 1227 FunctionArgList &Args; 1228 SmallVector<CXXCtorInitializer*, 16> AggregatedInits; 1229 }; 1230 1231 class AssignmentMemcpyizer : public FieldMemcpyizer { 1232 private: 1233 // Returns the memcpyable field copied by the given statement, if one 1234 // exists. Otherwise returns null. 1235 FieldDecl *getMemcpyableField(Stmt *S) { 1236 if (!AssignmentsMemcpyable) 1237 return nullptr; 1238 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(S)) { 1239 // Recognise trivial assignments. 1240 if (BO->getOpcode() != BO_Assign) 1241 return nullptr; 1242 MemberExpr *ME = dyn_cast<MemberExpr>(BO->getLHS()); 1243 if (!ME) 1244 return nullptr; 1245 FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl()); 1246 if (!Field || !isMemcpyableField(Field)) 1247 return nullptr; 1248 Stmt *RHS = BO->getRHS(); 1249 if (ImplicitCastExpr *EC = dyn_cast<ImplicitCastExpr>(RHS)) 1250 RHS = EC->getSubExpr(); 1251 if (!RHS) 1252 return nullptr; 1253 MemberExpr *ME2 = dyn_cast<MemberExpr>(RHS); 1254 if (dyn_cast<FieldDecl>(ME2->getMemberDecl()) != Field) 1255 return nullptr; 1256 return Field; 1257 } else if (CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(S)) { 1258 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MCE->getCalleeDecl()); 1259 if (!(MD && isMemcpyEquivalentSpecialMember(MD))) 1260 return nullptr; 1261 MemberExpr *IOA = dyn_cast<MemberExpr>(MCE->getImplicitObjectArgument()); 1262 if (!IOA) 1263 return nullptr; 1264 FieldDecl *Field = dyn_cast<FieldDecl>(IOA->getMemberDecl()); 1265 if (!Field || !isMemcpyableField(Field)) 1266 return nullptr; 1267 MemberExpr *Arg0 = dyn_cast<MemberExpr>(MCE->getArg(0)); 1268 if (!Arg0 || Field != dyn_cast<FieldDecl>(Arg0->getMemberDecl())) 1269 return nullptr; 1270 return Field; 1271 } else if (CallExpr *CE = dyn_cast<CallExpr>(S)) { 1272 FunctionDecl *FD = dyn_cast<FunctionDecl>(CE->getCalleeDecl()); 1273 if (!FD || FD->getBuiltinID() != Builtin::BI__builtin_memcpy) 1274 return nullptr; 1275 Expr *DstPtr = CE->getArg(0); 1276 if (ImplicitCastExpr *DC = dyn_cast<ImplicitCastExpr>(DstPtr)) 1277 DstPtr = DC->getSubExpr(); 1278 UnaryOperator *DUO = dyn_cast<UnaryOperator>(DstPtr); 1279 if (!DUO || DUO->getOpcode() != UO_AddrOf) 1280 return nullptr; 1281 MemberExpr *ME = dyn_cast<MemberExpr>(DUO->getSubExpr()); 1282 if (!ME) 1283 return nullptr; 1284 FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl()); 1285 if (!Field || !isMemcpyableField(Field)) 1286 return nullptr; 1287 Expr *SrcPtr = CE->getArg(1); 1288 if (ImplicitCastExpr *SC = dyn_cast<ImplicitCastExpr>(SrcPtr)) 1289 SrcPtr = SC->getSubExpr(); 1290 UnaryOperator *SUO = dyn_cast<UnaryOperator>(SrcPtr); 1291 if (!SUO || SUO->getOpcode() != UO_AddrOf) 1292 return nullptr; 1293 MemberExpr *ME2 = dyn_cast<MemberExpr>(SUO->getSubExpr()); 1294 if (!ME2 || Field != dyn_cast<FieldDecl>(ME2->getMemberDecl())) 1295 return nullptr; 1296 return Field; 1297 } 1298 1299 return nullptr; 1300 } 1301 1302 bool AssignmentsMemcpyable; 1303 SmallVector<Stmt*, 16> AggregatedStmts; 1304 1305 public: 1306 AssignmentMemcpyizer(CodeGenFunction &CGF, const CXXMethodDecl *AD, 1307 FunctionArgList &Args) 1308 : FieldMemcpyizer(CGF, AD->getParent(), Args[Args.size() - 1]), 1309 AssignmentsMemcpyable(CGF.getLangOpts().getGC() == LangOptions::NonGC) { 1310 assert(Args.size() == 2); 1311 } 1312 1313 void emitAssignment(Stmt *S) { 1314 FieldDecl *F = getMemcpyableField(S); 1315 if (F) { 1316 addMemcpyableField(F); 1317 AggregatedStmts.push_back(S); 1318 } else { 1319 emitAggregatedStmts(); 1320 CGF.EmitStmt(S); 1321 } 1322 } 1323 1324 void emitAggregatedStmts() { 1325 if (AggregatedStmts.size() <= 1) { 1326 if (!AggregatedStmts.empty()) { 1327 CopyingValueRepresentation CVR(CGF); 1328 CGF.EmitStmt(AggregatedStmts[0]); 1329 } 1330 reset(); 1331 } 1332 1333 emitMemcpy(); 1334 AggregatedStmts.clear(); 1335 } 1336 1337 void finish() { 1338 emitAggregatedStmts(); 1339 } 1340 }; 1341 } // end anonymous namespace 1342 1343 static bool isInitializerOfDynamicClass(const CXXCtorInitializer *BaseInit) { 1344 const Type *BaseType = BaseInit->getBaseClass(); 1345 const auto *BaseClassDecl = 1346 cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl()); 1347 return BaseClassDecl->isDynamicClass(); 1348 } 1349 1350 /// EmitCtorPrologue - This routine generates necessary code to initialize 1351 /// base classes and non-static data members belonging to this constructor. 1352 void CodeGenFunction::EmitCtorPrologue(const CXXConstructorDecl *CD, 1353 CXXCtorType CtorType, 1354 FunctionArgList &Args) { 1355 if (CD->isDelegatingConstructor()) 1356 return EmitDelegatingCXXConstructorCall(CD, Args); 1357 1358 const CXXRecordDecl *ClassDecl = CD->getParent(); 1359 1360 CXXConstructorDecl::init_const_iterator B = CD->init_begin(), 1361 E = CD->init_end(); 1362 1363 llvm::BasicBlock *BaseCtorContinueBB = nullptr; 1364 if (ClassDecl->getNumVBases() && 1365 !CGM.getTarget().getCXXABI().hasConstructorVariants()) { 1366 // The ABIs that don't have constructor variants need to put a branch 1367 // before the virtual base initialization code. 1368 BaseCtorContinueBB = 1369 CGM.getCXXABI().EmitCtorCompleteObjectHandler(*this, ClassDecl); 1370 assert(BaseCtorContinueBB); 1371 } 1372 1373 llvm::Value *const OldThis = CXXThisValue; 1374 // Virtual base initializers first. 1375 for (; B != E && (*B)->isBaseInitializer() && (*B)->isBaseVirtual(); B++) { 1376 if (CGM.getCodeGenOpts().StrictVTablePointers && 1377 CGM.getCodeGenOpts().OptimizationLevel > 0 && 1378 isInitializerOfDynamicClass(*B)) 1379 CXXThisValue = Builder.CreateInvariantGroupBarrier(LoadCXXThis()); 1380 EmitBaseInitializer(*this, ClassDecl, *B, CtorType); 1381 } 1382 1383 if (BaseCtorContinueBB) { 1384 // Complete object handler should continue to the remaining initializers. 1385 Builder.CreateBr(BaseCtorContinueBB); 1386 EmitBlock(BaseCtorContinueBB); 1387 } 1388 1389 // Then, non-virtual base initializers. 1390 for (; B != E && (*B)->isBaseInitializer(); B++) { 1391 assert(!(*B)->isBaseVirtual()); 1392 1393 if (CGM.getCodeGenOpts().StrictVTablePointers && 1394 CGM.getCodeGenOpts().OptimizationLevel > 0 && 1395 isInitializerOfDynamicClass(*B)) 1396 CXXThisValue = Builder.CreateInvariantGroupBarrier(LoadCXXThis()); 1397 EmitBaseInitializer(*this, ClassDecl, *B, CtorType); 1398 } 1399 1400 CXXThisValue = OldThis; 1401 1402 InitializeVTablePointers(ClassDecl); 1403 1404 // And finally, initialize class members. 1405 FieldConstructionScope FCS(*this, LoadCXXThisAddress()); 1406 ConstructorMemcpyizer CM(*this, CD, Args); 1407 for (; B != E; B++) { 1408 CXXCtorInitializer *Member = (*B); 1409 assert(!Member->isBaseInitializer()); 1410 assert(Member->isAnyMemberInitializer() && 1411 "Delegating initializer on non-delegating constructor"); 1412 CM.addMemberInitializer(Member); 1413 } 1414 CM.finish(); 1415 } 1416 1417 static bool 1418 FieldHasTrivialDestructorBody(ASTContext &Context, const FieldDecl *Field); 1419 1420 static bool 1421 HasTrivialDestructorBody(ASTContext &Context, 1422 const CXXRecordDecl *BaseClassDecl, 1423 const CXXRecordDecl *MostDerivedClassDecl) 1424 { 1425 // If the destructor is trivial we don't have to check anything else. 1426 if (BaseClassDecl->hasTrivialDestructor()) 1427 return true; 1428 1429 if (!BaseClassDecl->getDestructor()->hasTrivialBody()) 1430 return false; 1431 1432 // Check fields. 1433 for (const auto *Field : BaseClassDecl->fields()) 1434 if (!FieldHasTrivialDestructorBody(Context, Field)) 1435 return false; 1436 1437 // Check non-virtual bases. 1438 for (const auto &I : BaseClassDecl->bases()) { 1439 if (I.isVirtual()) 1440 continue; 1441 1442 const CXXRecordDecl *NonVirtualBase = 1443 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 1444 if (!HasTrivialDestructorBody(Context, NonVirtualBase, 1445 MostDerivedClassDecl)) 1446 return false; 1447 } 1448 1449 if (BaseClassDecl == MostDerivedClassDecl) { 1450 // Check virtual bases. 1451 for (const auto &I : BaseClassDecl->vbases()) { 1452 const CXXRecordDecl *VirtualBase = 1453 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 1454 if (!HasTrivialDestructorBody(Context, VirtualBase, 1455 MostDerivedClassDecl)) 1456 return false; 1457 } 1458 } 1459 1460 return true; 1461 } 1462 1463 static bool 1464 FieldHasTrivialDestructorBody(ASTContext &Context, 1465 const FieldDecl *Field) 1466 { 1467 QualType FieldBaseElementType = Context.getBaseElementType(Field->getType()); 1468 1469 const RecordType *RT = FieldBaseElementType->getAs<RecordType>(); 1470 if (!RT) 1471 return true; 1472 1473 CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 1474 1475 // The destructor for an implicit anonymous union member is never invoked. 1476 if (FieldClassDecl->isUnion() && FieldClassDecl->isAnonymousStructOrUnion()) 1477 return false; 1478 1479 return HasTrivialDestructorBody(Context, FieldClassDecl, FieldClassDecl); 1480 } 1481 1482 /// CanSkipVTablePointerInitialization - Check whether we need to initialize 1483 /// any vtable pointers before calling this destructor. 1484 static bool CanSkipVTablePointerInitialization(CodeGenFunction &CGF, 1485 const CXXDestructorDecl *Dtor) { 1486 const CXXRecordDecl *ClassDecl = Dtor->getParent(); 1487 if (!ClassDecl->isDynamicClass()) 1488 return true; 1489 1490 if (!Dtor->hasTrivialBody()) 1491 return false; 1492 1493 // Check the fields. 1494 for (const auto *Field : ClassDecl->fields()) 1495 if (!FieldHasTrivialDestructorBody(CGF.getContext(), Field)) 1496 return false; 1497 1498 return true; 1499 } 1500 1501 /// EmitDestructorBody - Emits the body of the current destructor. 1502 void CodeGenFunction::EmitDestructorBody(FunctionArgList &Args) { 1503 const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CurGD.getDecl()); 1504 CXXDtorType DtorType = CurGD.getDtorType(); 1505 1506 Stmt *Body = Dtor->getBody(); 1507 if (Body) 1508 incrementProfileCounter(Body); 1509 1510 // The call to operator delete in a deleting destructor happens 1511 // outside of the function-try-block, which means it's always 1512 // possible to delegate the destructor body to the complete 1513 // destructor. Do so. 1514 if (DtorType == Dtor_Deleting) { 1515 EnterDtorCleanups(Dtor, Dtor_Deleting); 1516 EmitCXXDestructorCall(Dtor, Dtor_Complete, /*ForVirtualBase=*/false, 1517 /*Delegating=*/false, LoadCXXThisAddress()); 1518 PopCleanupBlock(); 1519 return; 1520 } 1521 1522 // If the body is a function-try-block, enter the try before 1523 // anything else. 1524 bool isTryBody = (Body && isa<CXXTryStmt>(Body)); 1525 if (isTryBody) 1526 EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true); 1527 EmitAsanPrologueOrEpilogue(false); 1528 1529 // Enter the epilogue cleanups. 1530 RunCleanupsScope DtorEpilogue(*this); 1531 1532 // If this is the complete variant, just invoke the base variant; 1533 // the epilogue will destruct the virtual bases. But we can't do 1534 // this optimization if the body is a function-try-block, because 1535 // we'd introduce *two* handler blocks. In the Microsoft ABI, we 1536 // always delegate because we might not have a definition in this TU. 1537 switch (DtorType) { 1538 case Dtor_Comdat: 1539 llvm_unreachable("not expecting a COMDAT"); 1540 1541 case Dtor_Deleting: llvm_unreachable("already handled deleting case"); 1542 1543 case Dtor_Complete: 1544 assert((Body || getTarget().getCXXABI().isMicrosoft()) && 1545 "can't emit a dtor without a body for non-Microsoft ABIs"); 1546 1547 // Enter the cleanup scopes for virtual bases. 1548 EnterDtorCleanups(Dtor, Dtor_Complete); 1549 1550 if (!isTryBody) { 1551 EmitCXXDestructorCall(Dtor, Dtor_Base, /*ForVirtualBase=*/false, 1552 /*Delegating=*/false, LoadCXXThisAddress()); 1553 break; 1554 } 1555 // Fallthrough: act like we're in the base variant. 1556 1557 case Dtor_Base: 1558 assert(Body); 1559 1560 // Enter the cleanup scopes for fields and non-virtual bases. 1561 EnterDtorCleanups(Dtor, Dtor_Base); 1562 1563 // Initialize the vtable pointers before entering the body. 1564 if (!CanSkipVTablePointerInitialization(*this, Dtor)) { 1565 // Insert the llvm.invariant.group.barrier intrinsic before initializing 1566 // the vptrs to cancel any previous assumptions we might have made. 1567 if (CGM.getCodeGenOpts().StrictVTablePointers && 1568 CGM.getCodeGenOpts().OptimizationLevel > 0) 1569 CXXThisValue = Builder.CreateInvariantGroupBarrier(LoadCXXThis()); 1570 InitializeVTablePointers(Dtor->getParent()); 1571 } 1572 1573 if (isTryBody) 1574 EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock()); 1575 else if (Body) 1576 EmitStmt(Body); 1577 else { 1578 assert(Dtor->isImplicit() && "bodyless dtor not implicit"); 1579 // nothing to do besides what's in the epilogue 1580 } 1581 // -fapple-kext must inline any call to this dtor into 1582 // the caller's body. 1583 if (getLangOpts().AppleKext) 1584 CurFn->addFnAttr(llvm::Attribute::AlwaysInline); 1585 1586 break; 1587 } 1588 1589 // Jump out through the epilogue cleanups. 1590 DtorEpilogue.ForceCleanup(); 1591 1592 // Exit the try if applicable. 1593 if (isTryBody) 1594 ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true); 1595 } 1596 1597 void CodeGenFunction::emitImplicitAssignmentOperatorBody(FunctionArgList &Args) { 1598 const CXXMethodDecl *AssignOp = cast<CXXMethodDecl>(CurGD.getDecl()); 1599 const Stmt *RootS = AssignOp->getBody(); 1600 assert(isa<CompoundStmt>(RootS) && 1601 "Body of an implicit assignment operator should be compound stmt."); 1602 const CompoundStmt *RootCS = cast<CompoundStmt>(RootS); 1603 1604 LexicalScope Scope(*this, RootCS->getSourceRange()); 1605 1606 incrementProfileCounter(RootCS); 1607 AssignmentMemcpyizer AM(*this, AssignOp, Args); 1608 for (auto *I : RootCS->body()) 1609 AM.emitAssignment(I); 1610 AM.finish(); 1611 } 1612 1613 namespace { 1614 /// Call the operator delete associated with the current destructor. 1615 struct CallDtorDelete final : EHScopeStack::Cleanup { 1616 CallDtorDelete() {} 1617 1618 void Emit(CodeGenFunction &CGF, Flags flags) override { 1619 const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CGF.CurCodeDecl); 1620 const CXXRecordDecl *ClassDecl = Dtor->getParent(); 1621 CGF.EmitDeleteCall(Dtor->getOperatorDelete(), CGF.LoadCXXThis(), 1622 CGF.getContext().getTagDeclType(ClassDecl)); 1623 } 1624 }; 1625 1626 struct CallDtorDeleteConditional final : EHScopeStack::Cleanup { 1627 llvm::Value *ShouldDeleteCondition; 1628 1629 public: 1630 CallDtorDeleteConditional(llvm::Value *ShouldDeleteCondition) 1631 : ShouldDeleteCondition(ShouldDeleteCondition) { 1632 assert(ShouldDeleteCondition != nullptr); 1633 } 1634 1635 void Emit(CodeGenFunction &CGF, Flags flags) override { 1636 llvm::BasicBlock *callDeleteBB = CGF.createBasicBlock("dtor.call_delete"); 1637 llvm::BasicBlock *continueBB = CGF.createBasicBlock("dtor.continue"); 1638 llvm::Value *ShouldCallDelete 1639 = CGF.Builder.CreateIsNull(ShouldDeleteCondition); 1640 CGF.Builder.CreateCondBr(ShouldCallDelete, continueBB, callDeleteBB); 1641 1642 CGF.EmitBlock(callDeleteBB); 1643 const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CGF.CurCodeDecl); 1644 const CXXRecordDecl *ClassDecl = Dtor->getParent(); 1645 CGF.EmitDeleteCall(Dtor->getOperatorDelete(), CGF.LoadCXXThis(), 1646 CGF.getContext().getTagDeclType(ClassDecl)); 1647 CGF.Builder.CreateBr(continueBB); 1648 1649 CGF.EmitBlock(continueBB); 1650 } 1651 }; 1652 1653 class DestroyField final : public EHScopeStack::Cleanup { 1654 const FieldDecl *field; 1655 CodeGenFunction::Destroyer *destroyer; 1656 bool useEHCleanupForArray; 1657 1658 public: 1659 DestroyField(const FieldDecl *field, CodeGenFunction::Destroyer *destroyer, 1660 bool useEHCleanupForArray) 1661 : field(field), destroyer(destroyer), 1662 useEHCleanupForArray(useEHCleanupForArray) {} 1663 1664 void Emit(CodeGenFunction &CGF, Flags flags) override { 1665 // Find the address of the field. 1666 Address thisValue = CGF.LoadCXXThisAddress(); 1667 QualType RecordTy = CGF.getContext().getTagDeclType(field->getParent()); 1668 LValue ThisLV = CGF.MakeAddrLValue(thisValue, RecordTy); 1669 LValue LV = CGF.EmitLValueForField(ThisLV, field); 1670 assert(LV.isSimple()); 1671 1672 CGF.emitDestroy(LV.getAddress(), field->getType(), destroyer, 1673 flags.isForNormalCleanup() && useEHCleanupForArray); 1674 } 1675 }; 1676 1677 static void EmitSanitizerDtorCallback(CodeGenFunction &CGF, llvm::Value *Ptr, 1678 CharUnits::QuantityType PoisonSize) { 1679 // Pass in void pointer and size of region as arguments to runtime 1680 // function 1681 llvm::Value *Args[] = {CGF.Builder.CreateBitCast(Ptr, CGF.VoidPtrTy), 1682 llvm::ConstantInt::get(CGF.SizeTy, PoisonSize)}; 1683 1684 llvm::Type *ArgTypes[] = {CGF.VoidPtrTy, CGF.SizeTy}; 1685 1686 llvm::FunctionType *FnType = 1687 llvm::FunctionType::get(CGF.VoidTy, ArgTypes, false); 1688 llvm::Value *Fn = 1689 CGF.CGM.CreateRuntimeFunction(FnType, "__sanitizer_dtor_callback"); 1690 CGF.EmitNounwindRuntimeCall(Fn, Args); 1691 } 1692 1693 class SanitizeDtorMembers final : public EHScopeStack::Cleanup { 1694 const CXXDestructorDecl *Dtor; 1695 1696 public: 1697 SanitizeDtorMembers(const CXXDestructorDecl *Dtor) : Dtor(Dtor) {} 1698 1699 // Generate function call for handling object poisoning. 1700 // Disables tail call elimination, to prevent the current stack frame 1701 // from disappearing from the stack trace. 1702 void Emit(CodeGenFunction &CGF, Flags flags) override { 1703 const ASTRecordLayout &Layout = 1704 CGF.getContext().getASTRecordLayout(Dtor->getParent()); 1705 1706 // Nothing to poison. 1707 if (Layout.getFieldCount() == 0) 1708 return; 1709 1710 // Prevent the current stack frame from disappearing from the stack trace. 1711 CGF.CurFn->addFnAttr("disable-tail-calls", "true"); 1712 1713 // Construct pointer to region to begin poisoning, and calculate poison 1714 // size, so that only members declared in this class are poisoned. 1715 ASTContext &Context = CGF.getContext(); 1716 unsigned fieldIndex = 0; 1717 int startIndex = -1; 1718 // RecordDecl::field_iterator Field; 1719 for (const FieldDecl *Field : Dtor->getParent()->fields()) { 1720 // Poison field if it is trivial 1721 if (FieldHasTrivialDestructorBody(Context, Field)) { 1722 // Start sanitizing at this field 1723 if (startIndex < 0) 1724 startIndex = fieldIndex; 1725 1726 // Currently on the last field, and it must be poisoned with the 1727 // current block. 1728 if (fieldIndex == Layout.getFieldCount() - 1) { 1729 PoisonMembers(CGF, startIndex, Layout.getFieldCount()); 1730 } 1731 } else if (startIndex >= 0) { 1732 // No longer within a block of memory to poison, so poison the block 1733 PoisonMembers(CGF, startIndex, fieldIndex); 1734 // Re-set the start index 1735 startIndex = -1; 1736 } 1737 fieldIndex += 1; 1738 } 1739 } 1740 1741 private: 1742 /// \param layoutStartOffset index of the ASTRecordLayout field to 1743 /// start poisoning (inclusive) 1744 /// \param layoutEndOffset index of the ASTRecordLayout field to 1745 /// end poisoning (exclusive) 1746 void PoisonMembers(CodeGenFunction &CGF, unsigned layoutStartOffset, 1747 unsigned layoutEndOffset) { 1748 ASTContext &Context = CGF.getContext(); 1749 const ASTRecordLayout &Layout = 1750 Context.getASTRecordLayout(Dtor->getParent()); 1751 1752 llvm::ConstantInt *OffsetSizePtr = llvm::ConstantInt::get( 1753 CGF.SizeTy, 1754 Context.toCharUnitsFromBits(Layout.getFieldOffset(layoutStartOffset)) 1755 .getQuantity()); 1756 1757 llvm::Value *OffsetPtr = CGF.Builder.CreateGEP( 1758 CGF.Builder.CreateBitCast(CGF.LoadCXXThis(), CGF.Int8PtrTy), 1759 OffsetSizePtr); 1760 1761 CharUnits::QuantityType PoisonSize; 1762 if (layoutEndOffset >= Layout.getFieldCount()) { 1763 PoisonSize = Layout.getNonVirtualSize().getQuantity() - 1764 Context.toCharUnitsFromBits( 1765 Layout.getFieldOffset(layoutStartOffset)) 1766 .getQuantity(); 1767 } else { 1768 PoisonSize = Context.toCharUnitsFromBits( 1769 Layout.getFieldOffset(layoutEndOffset) - 1770 Layout.getFieldOffset(layoutStartOffset)) 1771 .getQuantity(); 1772 } 1773 1774 if (PoisonSize == 0) 1775 return; 1776 1777 EmitSanitizerDtorCallback(CGF, OffsetPtr, PoisonSize); 1778 } 1779 }; 1780 1781 class SanitizeDtorVTable final : public EHScopeStack::Cleanup { 1782 const CXXDestructorDecl *Dtor; 1783 1784 public: 1785 SanitizeDtorVTable(const CXXDestructorDecl *Dtor) : Dtor(Dtor) {} 1786 1787 // Generate function call for handling vtable pointer poisoning. 1788 void Emit(CodeGenFunction &CGF, Flags flags) override { 1789 assert(Dtor->getParent()->isDynamicClass()); 1790 (void)Dtor; 1791 ASTContext &Context = CGF.getContext(); 1792 // Poison vtable and vtable ptr if they exist for this class. 1793 llvm::Value *VTablePtr = CGF.LoadCXXThis(); 1794 1795 CharUnits::QuantityType PoisonSize = 1796 Context.toCharUnitsFromBits(CGF.PointerWidthInBits).getQuantity(); 1797 // Pass in void pointer and size of region as arguments to runtime 1798 // function 1799 EmitSanitizerDtorCallback(CGF, VTablePtr, PoisonSize); 1800 } 1801 }; 1802 } // end anonymous namespace 1803 1804 /// \brief Emit all code that comes at the end of class's 1805 /// destructor. This is to call destructors on members and base classes 1806 /// in reverse order of their construction. 1807 void CodeGenFunction::EnterDtorCleanups(const CXXDestructorDecl *DD, 1808 CXXDtorType DtorType) { 1809 assert((!DD->isTrivial() || DD->hasAttr<DLLExportAttr>()) && 1810 "Should not emit dtor epilogue for non-exported trivial dtor!"); 1811 1812 // The deleting-destructor phase just needs to call the appropriate 1813 // operator delete that Sema picked up. 1814 if (DtorType == Dtor_Deleting) { 1815 assert(DD->getOperatorDelete() && 1816 "operator delete missing - EnterDtorCleanups"); 1817 if (CXXStructorImplicitParamValue) { 1818 // If there is an implicit param to the deleting dtor, it's a boolean 1819 // telling whether we should call delete at the end of the dtor. 1820 EHStack.pushCleanup<CallDtorDeleteConditional>( 1821 NormalAndEHCleanup, CXXStructorImplicitParamValue); 1822 } else { 1823 EHStack.pushCleanup<CallDtorDelete>(NormalAndEHCleanup); 1824 } 1825 return; 1826 } 1827 1828 const CXXRecordDecl *ClassDecl = DD->getParent(); 1829 1830 // Unions have no bases and do not call field destructors. 1831 if (ClassDecl->isUnion()) 1832 return; 1833 1834 // The complete-destructor phase just destructs all the virtual bases. 1835 if (DtorType == Dtor_Complete) { 1836 // Poison the vtable pointer such that access after the base 1837 // and member destructors are invoked is invalid. 1838 if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor && 1839 SanOpts.has(SanitizerKind::Memory) && ClassDecl->getNumVBases() && 1840 ClassDecl->isPolymorphic()) 1841 EHStack.pushCleanup<SanitizeDtorVTable>(NormalAndEHCleanup, DD); 1842 1843 // We push them in the forward order so that they'll be popped in 1844 // the reverse order. 1845 for (const auto &Base : ClassDecl->vbases()) { 1846 CXXRecordDecl *BaseClassDecl 1847 = cast<CXXRecordDecl>(Base.getType()->getAs<RecordType>()->getDecl()); 1848 1849 // Ignore trivial destructors. 1850 if (BaseClassDecl->hasTrivialDestructor()) 1851 continue; 1852 1853 EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup, 1854 BaseClassDecl, 1855 /*BaseIsVirtual*/ true); 1856 } 1857 1858 return; 1859 } 1860 1861 assert(DtorType == Dtor_Base); 1862 // Poison the vtable pointer if it has no virtual bases, but inherits 1863 // virtual functions. 1864 if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor && 1865 SanOpts.has(SanitizerKind::Memory) && !ClassDecl->getNumVBases() && 1866 ClassDecl->isPolymorphic()) 1867 EHStack.pushCleanup<SanitizeDtorVTable>(NormalAndEHCleanup, DD); 1868 1869 // Destroy non-virtual bases. 1870 for (const auto &Base : ClassDecl->bases()) { 1871 // Ignore virtual bases. 1872 if (Base.isVirtual()) 1873 continue; 1874 1875 CXXRecordDecl *BaseClassDecl = Base.getType()->getAsCXXRecordDecl(); 1876 1877 // Ignore trivial destructors. 1878 if (BaseClassDecl->hasTrivialDestructor()) 1879 continue; 1880 1881 EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup, 1882 BaseClassDecl, 1883 /*BaseIsVirtual*/ false); 1884 } 1885 1886 // Poison fields such that access after their destructors are 1887 // invoked, and before the base class destructor runs, is invalid. 1888 if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor && 1889 SanOpts.has(SanitizerKind::Memory)) 1890 EHStack.pushCleanup<SanitizeDtorMembers>(NormalAndEHCleanup, DD); 1891 1892 // Destroy direct fields. 1893 for (const auto *Field : ClassDecl->fields()) { 1894 QualType type = Field->getType(); 1895 QualType::DestructionKind dtorKind = type.isDestructedType(); 1896 if (!dtorKind) continue; 1897 1898 // Anonymous union members do not have their destructors called. 1899 const RecordType *RT = type->getAsUnionType(); 1900 if (RT && RT->getDecl()->isAnonymousStructOrUnion()) continue; 1901 1902 CleanupKind cleanupKind = getCleanupKind(dtorKind); 1903 EHStack.pushCleanup<DestroyField>(cleanupKind, Field, 1904 getDestroyer(dtorKind), 1905 cleanupKind & EHCleanup); 1906 } 1907 } 1908 1909 /// EmitCXXAggrConstructorCall - Emit a loop to call a particular 1910 /// constructor for each of several members of an array. 1911 /// 1912 /// \param ctor the constructor to call for each element 1913 /// \param arrayType the type of the array to initialize 1914 /// \param arrayBegin an arrayType* 1915 /// \param zeroInitialize true if each element should be 1916 /// zero-initialized before it is constructed 1917 void CodeGenFunction::EmitCXXAggrConstructorCall( 1918 const CXXConstructorDecl *ctor, const ArrayType *arrayType, 1919 Address arrayBegin, const CXXConstructExpr *E, bool zeroInitialize) { 1920 QualType elementType; 1921 llvm::Value *numElements = 1922 emitArrayLength(arrayType, elementType, arrayBegin); 1923 1924 EmitCXXAggrConstructorCall(ctor, numElements, arrayBegin, E, zeroInitialize); 1925 } 1926 1927 /// EmitCXXAggrConstructorCall - Emit a loop to call a particular 1928 /// constructor for each of several members of an array. 1929 /// 1930 /// \param ctor the constructor to call for each element 1931 /// \param numElements the number of elements in the array; 1932 /// may be zero 1933 /// \param arrayBase a T*, where T is the type constructed by ctor 1934 /// \param zeroInitialize true if each element should be 1935 /// zero-initialized before it is constructed 1936 void CodeGenFunction::EmitCXXAggrConstructorCall(const CXXConstructorDecl *ctor, 1937 llvm::Value *numElements, 1938 Address arrayBase, 1939 const CXXConstructExpr *E, 1940 bool zeroInitialize) { 1941 // It's legal for numElements to be zero. This can happen both 1942 // dynamically, because x can be zero in 'new A[x]', and statically, 1943 // because of GCC extensions that permit zero-length arrays. There 1944 // are probably legitimate places where we could assume that this 1945 // doesn't happen, but it's not clear that it's worth it. 1946 llvm::BranchInst *zeroCheckBranch = nullptr; 1947 1948 // Optimize for a constant count. 1949 llvm::ConstantInt *constantCount 1950 = dyn_cast<llvm::ConstantInt>(numElements); 1951 if (constantCount) { 1952 // Just skip out if the constant count is zero. 1953 if (constantCount->isZero()) return; 1954 1955 // Otherwise, emit the check. 1956 } else { 1957 llvm::BasicBlock *loopBB = createBasicBlock("new.ctorloop"); 1958 llvm::Value *iszero = Builder.CreateIsNull(numElements, "isempty"); 1959 zeroCheckBranch = Builder.CreateCondBr(iszero, loopBB, loopBB); 1960 EmitBlock(loopBB); 1961 } 1962 1963 // Find the end of the array. 1964 llvm::Value *arrayBegin = arrayBase.getPointer(); 1965 llvm::Value *arrayEnd = Builder.CreateInBoundsGEP(arrayBegin, numElements, 1966 "arrayctor.end"); 1967 1968 // Enter the loop, setting up a phi for the current location to initialize. 1969 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 1970 llvm::BasicBlock *loopBB = createBasicBlock("arrayctor.loop"); 1971 EmitBlock(loopBB); 1972 llvm::PHINode *cur = Builder.CreatePHI(arrayBegin->getType(), 2, 1973 "arrayctor.cur"); 1974 cur->addIncoming(arrayBegin, entryBB); 1975 1976 // Inside the loop body, emit the constructor call on the array element. 1977 1978 // The alignment of the base, adjusted by the size of a single element, 1979 // provides a conservative estimate of the alignment of every element. 1980 // (This assumes we never start tracking offsetted alignments.) 1981 // 1982 // Note that these are complete objects and so we don't need to 1983 // use the non-virtual size or alignment. 1984 QualType type = getContext().getTypeDeclType(ctor->getParent()); 1985 CharUnits eltAlignment = 1986 arrayBase.getAlignment() 1987 .alignmentOfArrayElement(getContext().getTypeSizeInChars(type)); 1988 Address curAddr = Address(cur, eltAlignment); 1989 1990 // Zero initialize the storage, if requested. 1991 if (zeroInitialize) 1992 EmitNullInitialization(curAddr, type); 1993 1994 // C++ [class.temporary]p4: 1995 // There are two contexts in which temporaries are destroyed at a different 1996 // point than the end of the full-expression. The first context is when a 1997 // default constructor is called to initialize an element of an array. 1998 // If the constructor has one or more default arguments, the destruction of 1999 // every temporary created in a default argument expression is sequenced 2000 // before the construction of the next array element, if any. 2001 2002 { 2003 RunCleanupsScope Scope(*this); 2004 2005 // Evaluate the constructor and its arguments in a regular 2006 // partial-destroy cleanup. 2007 if (getLangOpts().Exceptions && 2008 !ctor->getParent()->hasTrivialDestructor()) { 2009 Destroyer *destroyer = destroyCXXObject; 2010 pushRegularPartialArrayCleanup(arrayBegin, cur, type, eltAlignment, 2011 *destroyer); 2012 } 2013 2014 EmitCXXConstructorCall(ctor, Ctor_Complete, /*ForVirtualBase=*/false, 2015 /*Delegating=*/false, curAddr, E); 2016 } 2017 2018 // Go to the next element. 2019 llvm::Value *next = 2020 Builder.CreateInBoundsGEP(cur, llvm::ConstantInt::get(SizeTy, 1), 2021 "arrayctor.next"); 2022 cur->addIncoming(next, Builder.GetInsertBlock()); 2023 2024 // Check whether that's the end of the loop. 2025 llvm::Value *done = Builder.CreateICmpEQ(next, arrayEnd, "arrayctor.done"); 2026 llvm::BasicBlock *contBB = createBasicBlock("arrayctor.cont"); 2027 Builder.CreateCondBr(done, contBB, loopBB); 2028 2029 // Patch the earlier check to skip over the loop. 2030 if (zeroCheckBranch) zeroCheckBranch->setSuccessor(0, contBB); 2031 2032 EmitBlock(contBB); 2033 } 2034 2035 void CodeGenFunction::destroyCXXObject(CodeGenFunction &CGF, 2036 Address addr, 2037 QualType type) { 2038 const RecordType *rtype = type->castAs<RecordType>(); 2039 const CXXRecordDecl *record = cast<CXXRecordDecl>(rtype->getDecl()); 2040 const CXXDestructorDecl *dtor = record->getDestructor(); 2041 assert(!dtor->isTrivial()); 2042 CGF.EmitCXXDestructorCall(dtor, Dtor_Complete, /*for vbase*/ false, 2043 /*Delegating=*/false, addr); 2044 } 2045 2046 void CodeGenFunction::EmitCXXConstructorCall(const CXXConstructorDecl *D, 2047 CXXCtorType Type, 2048 bool ForVirtualBase, 2049 bool Delegating, Address This, 2050 const CXXConstructExpr *E) { 2051 CallArgList Args; 2052 2053 // Push the this ptr. 2054 Args.add(RValue::get(This.getPointer()), D->getThisType(getContext())); 2055 2056 // If this is a trivial constructor, emit a memcpy now before we lose 2057 // the alignment information on the argument. 2058 // FIXME: It would be better to preserve alignment information into CallArg. 2059 if (isMemcpyEquivalentSpecialMember(D)) { 2060 assert(E->getNumArgs() == 1 && "unexpected argcount for trivial ctor"); 2061 2062 const Expr *Arg = E->getArg(0); 2063 QualType SrcTy = Arg->getType(); 2064 Address Src = EmitLValue(Arg).getAddress(); 2065 QualType DestTy = getContext().getTypeDeclType(D->getParent()); 2066 EmitAggregateCopyCtor(This, Src, DestTy, SrcTy); 2067 return; 2068 } 2069 2070 // Add the rest of the user-supplied arguments. 2071 const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>(); 2072 EmitCallArgs(Args, FPT, E->arguments(), E->getConstructor()); 2073 2074 EmitCXXConstructorCall(D, Type, ForVirtualBase, Delegating, This, Args); 2075 } 2076 2077 static bool canEmitDelegateCallArgs(CodeGenFunction &CGF, 2078 const CXXConstructorDecl *Ctor, 2079 CXXCtorType Type, CallArgList &Args) { 2080 // We can't forward a variadic call. 2081 if (Ctor->isVariadic()) 2082 return false; 2083 2084 if (CGF.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) { 2085 // If the parameters are callee-cleanup, it's not safe to forward. 2086 for (auto *P : Ctor->parameters()) 2087 if (P->getType().isDestructedType()) 2088 return false; 2089 2090 // Likewise if they're inalloca. 2091 const CGFunctionInfo &Info = 2092 CGF.CGM.getTypes().arrangeCXXConstructorCall(Args, Ctor, Type, 0); 2093 if (Info.usesInAlloca()) 2094 return false; 2095 } 2096 2097 // Anything else should be OK. 2098 return true; 2099 } 2100 2101 void CodeGenFunction::EmitCXXConstructorCall(const CXXConstructorDecl *D, 2102 CXXCtorType Type, 2103 bool ForVirtualBase, 2104 bool Delegating, 2105 Address This, 2106 CallArgList &Args) { 2107 const CXXRecordDecl *ClassDecl = D->getParent(); 2108 2109 // C++11 [class.mfct.non-static]p2: 2110 // If a non-static member function of a class X is called for an object that 2111 // is not of type X, or of a type derived from X, the behavior is undefined. 2112 // FIXME: Provide a source location here. 2113 EmitTypeCheck(CodeGenFunction::TCK_ConstructorCall, SourceLocation(), 2114 This.getPointer(), getContext().getRecordType(ClassDecl)); 2115 2116 if (D->isTrivial() && D->isDefaultConstructor()) { 2117 assert(Args.size() == 1 && "trivial default ctor with args"); 2118 return; 2119 } 2120 2121 // If this is a trivial constructor, just emit what's needed. If this is a 2122 // union copy constructor, we must emit a memcpy, because the AST does not 2123 // model that copy. 2124 if (isMemcpyEquivalentSpecialMember(D)) { 2125 assert(Args.size() == 2 && "unexpected argcount for trivial ctor"); 2126 2127 QualType SrcTy = D->getParamDecl(0)->getType().getNonReferenceType(); 2128 Address Src(Args[1].RV.getScalarVal(), getNaturalTypeAlignment(SrcTy)); 2129 QualType DestTy = getContext().getTypeDeclType(ClassDecl); 2130 EmitAggregateCopyCtor(This, Src, DestTy, SrcTy); 2131 return; 2132 } 2133 2134 // Check whether we can actually emit the constructor before trying to do so. 2135 if (auto Inherited = D->getInheritedConstructor()) { 2136 if (getTypes().inheritingCtorHasParams(Inherited, Type) && 2137 !canEmitDelegateCallArgs(*this, D, Type, Args)) { 2138 EmitInlinedInheritingCXXConstructorCall(D, Type, ForVirtualBase, 2139 Delegating, Args); 2140 return; 2141 } 2142 } 2143 2144 // Insert any ABI-specific implicit constructor arguments. 2145 unsigned ExtraArgs = CGM.getCXXABI().addImplicitConstructorArgs( 2146 *this, D, Type, ForVirtualBase, Delegating, Args); 2147 2148 // Emit the call. 2149 llvm::Value *Callee = CGM.getAddrOfCXXStructor(D, getFromCtorType(Type)); 2150 const CGFunctionInfo &Info = 2151 CGM.getTypes().arrangeCXXConstructorCall(Args, D, Type, ExtraArgs); 2152 EmitCall(Info, Callee, ReturnValueSlot(), Args, D); 2153 2154 // Generate vtable assumptions if we're constructing a complete object 2155 // with a vtable. We don't do this for base subobjects for two reasons: 2156 // first, it's incorrect for classes with virtual bases, and second, we're 2157 // about to overwrite the vptrs anyway. 2158 // We also have to make sure if we can refer to vtable: 2159 // - Otherwise we can refer to vtable if it's safe to speculatively emit. 2160 // FIXME: If vtable is used by ctor/dtor, or if vtable is external and we are 2161 // sure that definition of vtable is not hidden, 2162 // then we are always safe to refer to it. 2163 // FIXME: It looks like InstCombine is very inefficient on dealing with 2164 // assumes. Make assumption loads require -fstrict-vtable-pointers temporarily. 2165 if (CGM.getCodeGenOpts().OptimizationLevel > 0 && 2166 ClassDecl->isDynamicClass() && Type != Ctor_Base && 2167 CGM.getCXXABI().canSpeculativelyEmitVTable(ClassDecl) && 2168 CGM.getCodeGenOpts().StrictVTablePointers) 2169 EmitVTableAssumptionLoads(ClassDecl, This); 2170 } 2171 2172 void CodeGenFunction::EmitInheritedCXXConstructorCall( 2173 const CXXConstructorDecl *D, bool ForVirtualBase, Address This, 2174 bool InheritedFromVBase, const CXXInheritedCtorInitExpr *E) { 2175 CallArgList Args; 2176 CallArg ThisArg(RValue::get(This.getPointer()), D->getThisType(getContext()), 2177 /*NeedsCopy=*/false); 2178 2179 // Forward the parameters. 2180 if (InheritedFromVBase && 2181 CGM.getTarget().getCXXABI().hasConstructorVariants()) { 2182 // Nothing to do; this construction is not responsible for constructing 2183 // the base class containing the inherited constructor. 2184 // FIXME: Can we just pass undef's for the remaining arguments if we don't 2185 // have constructor variants? 2186 Args.push_back(ThisArg); 2187 } else if (!CXXInheritedCtorInitExprArgs.empty()) { 2188 // The inheriting constructor was inlined; just inject its arguments. 2189 assert(CXXInheritedCtorInitExprArgs.size() >= D->getNumParams() && 2190 "wrong number of parameters for inherited constructor call"); 2191 Args = CXXInheritedCtorInitExprArgs; 2192 Args[0] = ThisArg; 2193 } else { 2194 // The inheriting constructor was not inlined. Emit delegating arguments. 2195 Args.push_back(ThisArg); 2196 const auto *OuterCtor = cast<CXXConstructorDecl>(CurCodeDecl); 2197 assert(OuterCtor->getNumParams() == D->getNumParams()); 2198 assert(!OuterCtor->isVariadic() && "should have been inlined"); 2199 2200 for (const auto *Param : OuterCtor->parameters()) { 2201 assert(getContext().hasSameUnqualifiedType( 2202 OuterCtor->getParamDecl(Param->getFunctionScopeIndex())->getType(), 2203 Param->getType())); 2204 EmitDelegateCallArg(Args, Param, E->getLocation()); 2205 2206 // Forward __attribute__(pass_object_size). 2207 if (Param->hasAttr<PassObjectSizeAttr>()) { 2208 auto *POSParam = SizeArguments[Param]; 2209 assert(POSParam && "missing pass_object_size value for forwarding"); 2210 EmitDelegateCallArg(Args, POSParam, E->getLocation()); 2211 } 2212 } 2213 } 2214 2215 EmitCXXConstructorCall(D, Ctor_Base, ForVirtualBase, /*Delegating*/false, 2216 This, Args); 2217 } 2218 2219 void CodeGenFunction::EmitInlinedInheritingCXXConstructorCall( 2220 const CXXConstructorDecl *Ctor, CXXCtorType CtorType, bool ForVirtualBase, 2221 bool Delegating, CallArgList &Args) { 2222 InlinedInheritingConstructorScope Scope(*this, GlobalDecl(Ctor, CtorType)); 2223 2224 // Save the arguments to be passed to the inherited constructor. 2225 CXXInheritedCtorInitExprArgs = Args; 2226 2227 FunctionArgList Params; 2228 QualType RetType = BuildFunctionArgList(CurGD, Params); 2229 FnRetTy = RetType; 2230 2231 // Insert any ABI-specific implicit constructor arguments. 2232 CGM.getCXXABI().addImplicitConstructorArgs(*this, Ctor, CtorType, 2233 ForVirtualBase, Delegating, Args); 2234 2235 // Emit a simplified prolog. We only need to emit the implicit params. 2236 assert(Args.size() >= Params.size() && "too few arguments for call"); 2237 for (unsigned I = 0, N = Args.size(); I != N; ++I) { 2238 if (I < Params.size() && isa<ImplicitParamDecl>(Params[I])) { 2239 const RValue &RV = Args[I].RV; 2240 assert(!RV.isComplex() && "complex indirect params not supported"); 2241 ParamValue Val = RV.isScalar() 2242 ? ParamValue::forDirect(RV.getScalarVal()) 2243 : ParamValue::forIndirect(RV.getAggregateAddress()); 2244 EmitParmDecl(*Params[I], Val, I + 1); 2245 } 2246 } 2247 2248 // Create a return value slot if the ABI implementation wants one. 2249 // FIXME: This is dumb, we should ask the ABI not to try to set the return 2250 // value instead. 2251 if (!RetType->isVoidType()) 2252 ReturnValue = CreateIRTemp(RetType, "retval.inhctor"); 2253 2254 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 2255 CXXThisValue = CXXABIThisValue; 2256 2257 // Directly emit the constructor initializers. 2258 EmitCtorPrologue(Ctor, CtorType, Params); 2259 } 2260 2261 void CodeGenFunction::EmitVTableAssumptionLoad(const VPtr &Vptr, Address This) { 2262 llvm::Value *VTableGlobal = 2263 CGM.getCXXABI().getVTableAddressPoint(Vptr.Base, Vptr.VTableClass); 2264 if (!VTableGlobal) 2265 return; 2266 2267 // We can just use the base offset in the complete class. 2268 CharUnits NonVirtualOffset = Vptr.Base.getBaseOffset(); 2269 2270 if (!NonVirtualOffset.isZero()) 2271 This = 2272 ApplyNonVirtualAndVirtualOffset(*this, This, NonVirtualOffset, nullptr, 2273 Vptr.VTableClass, Vptr.NearestVBase); 2274 2275 llvm::Value *VPtrValue = 2276 GetVTablePtr(This, VTableGlobal->getType(), Vptr.VTableClass); 2277 llvm::Value *Cmp = 2278 Builder.CreateICmpEQ(VPtrValue, VTableGlobal, "cmp.vtables"); 2279 Builder.CreateAssumption(Cmp); 2280 } 2281 2282 void CodeGenFunction::EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, 2283 Address This) { 2284 if (CGM.getCXXABI().doStructorsInitializeVPtrs(ClassDecl)) 2285 for (const VPtr &Vptr : getVTablePointers(ClassDecl)) 2286 EmitVTableAssumptionLoad(Vptr, This); 2287 } 2288 2289 void 2290 CodeGenFunction::EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D, 2291 Address This, Address Src, 2292 const CXXConstructExpr *E) { 2293 const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>(); 2294 2295 CallArgList Args; 2296 2297 // Push the this ptr. 2298 Args.add(RValue::get(This.getPointer()), D->getThisType(getContext())); 2299 2300 // Push the src ptr. 2301 QualType QT = *(FPT->param_type_begin()); 2302 llvm::Type *t = CGM.getTypes().ConvertType(QT); 2303 Src = Builder.CreateBitCast(Src, t); 2304 Args.add(RValue::get(Src.getPointer()), QT); 2305 2306 // Skip over first argument (Src). 2307 EmitCallArgs(Args, FPT, drop_begin(E->arguments(), 1), E->getConstructor(), 2308 /*ParamsToSkip*/ 1); 2309 2310 EmitCXXConstructorCall(D, Ctor_Complete, false, false, This, Args); 2311 } 2312 2313 void 2314 CodeGenFunction::EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor, 2315 CXXCtorType CtorType, 2316 const FunctionArgList &Args, 2317 SourceLocation Loc) { 2318 CallArgList DelegateArgs; 2319 2320 FunctionArgList::const_iterator I = Args.begin(), E = Args.end(); 2321 assert(I != E && "no parameters to constructor"); 2322 2323 // this 2324 Address This = LoadCXXThisAddress(); 2325 DelegateArgs.add(RValue::get(This.getPointer()), (*I)->getType()); 2326 ++I; 2327 2328 // FIXME: The location of the VTT parameter in the parameter list is 2329 // specific to the Itanium ABI and shouldn't be hardcoded here. 2330 if (CGM.getCXXABI().NeedsVTTParameter(CurGD)) { 2331 assert(I != E && "cannot skip vtt parameter, already done with args"); 2332 assert((*I)->getType()->isPointerType() && 2333 "skipping parameter not of vtt type"); 2334 ++I; 2335 } 2336 2337 // Explicit arguments. 2338 for (; I != E; ++I) { 2339 const VarDecl *param = *I; 2340 // FIXME: per-argument source location 2341 EmitDelegateCallArg(DelegateArgs, param, Loc); 2342 } 2343 2344 EmitCXXConstructorCall(Ctor, CtorType, /*ForVirtualBase=*/false, 2345 /*Delegating=*/true, This, DelegateArgs); 2346 } 2347 2348 namespace { 2349 struct CallDelegatingCtorDtor final : EHScopeStack::Cleanup { 2350 const CXXDestructorDecl *Dtor; 2351 Address Addr; 2352 CXXDtorType Type; 2353 2354 CallDelegatingCtorDtor(const CXXDestructorDecl *D, Address Addr, 2355 CXXDtorType Type) 2356 : Dtor(D), Addr(Addr), Type(Type) {} 2357 2358 void Emit(CodeGenFunction &CGF, Flags flags) override { 2359 CGF.EmitCXXDestructorCall(Dtor, Type, /*ForVirtualBase=*/false, 2360 /*Delegating=*/true, Addr); 2361 } 2362 }; 2363 } // end anonymous namespace 2364 2365 void 2366 CodeGenFunction::EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor, 2367 const FunctionArgList &Args) { 2368 assert(Ctor->isDelegatingConstructor()); 2369 2370 Address ThisPtr = LoadCXXThisAddress(); 2371 2372 AggValueSlot AggSlot = 2373 AggValueSlot::forAddr(ThisPtr, Qualifiers(), 2374 AggValueSlot::IsDestructed, 2375 AggValueSlot::DoesNotNeedGCBarriers, 2376 AggValueSlot::IsNotAliased); 2377 2378 EmitAggExpr(Ctor->init_begin()[0]->getInit(), AggSlot); 2379 2380 const CXXRecordDecl *ClassDecl = Ctor->getParent(); 2381 if (CGM.getLangOpts().Exceptions && !ClassDecl->hasTrivialDestructor()) { 2382 CXXDtorType Type = 2383 CurGD.getCtorType() == Ctor_Complete ? Dtor_Complete : Dtor_Base; 2384 2385 EHStack.pushCleanup<CallDelegatingCtorDtor>(EHCleanup, 2386 ClassDecl->getDestructor(), 2387 ThisPtr, Type); 2388 } 2389 } 2390 2391 void CodeGenFunction::EmitCXXDestructorCall(const CXXDestructorDecl *DD, 2392 CXXDtorType Type, 2393 bool ForVirtualBase, 2394 bool Delegating, 2395 Address This) { 2396 CGM.getCXXABI().EmitDestructorCall(*this, DD, Type, ForVirtualBase, 2397 Delegating, This); 2398 } 2399 2400 namespace { 2401 struct CallLocalDtor final : EHScopeStack::Cleanup { 2402 const CXXDestructorDecl *Dtor; 2403 Address Addr; 2404 2405 CallLocalDtor(const CXXDestructorDecl *D, Address Addr) 2406 : Dtor(D), Addr(Addr) {} 2407 2408 void Emit(CodeGenFunction &CGF, Flags flags) override { 2409 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, 2410 /*ForVirtualBase=*/false, 2411 /*Delegating=*/false, Addr); 2412 } 2413 }; 2414 } // end anonymous namespace 2415 2416 void CodeGenFunction::PushDestructorCleanup(const CXXDestructorDecl *D, 2417 Address Addr) { 2418 EHStack.pushCleanup<CallLocalDtor>(NormalAndEHCleanup, D, Addr); 2419 } 2420 2421 void CodeGenFunction::PushDestructorCleanup(QualType T, Address Addr) { 2422 CXXRecordDecl *ClassDecl = T->getAsCXXRecordDecl(); 2423 if (!ClassDecl) return; 2424 if (ClassDecl->hasTrivialDestructor()) return; 2425 2426 const CXXDestructorDecl *D = ClassDecl->getDestructor(); 2427 assert(D && D->isUsed() && "destructor not marked as used!"); 2428 PushDestructorCleanup(D, Addr); 2429 } 2430 2431 void CodeGenFunction::InitializeVTablePointer(const VPtr &Vptr) { 2432 // Compute the address point. 2433 llvm::Value *VTableAddressPoint = 2434 CGM.getCXXABI().getVTableAddressPointInStructor( 2435 *this, Vptr.VTableClass, Vptr.Base, Vptr.NearestVBase); 2436 2437 if (!VTableAddressPoint) 2438 return; 2439 2440 // Compute where to store the address point. 2441 llvm::Value *VirtualOffset = nullptr; 2442 CharUnits NonVirtualOffset = CharUnits::Zero(); 2443 2444 if (CGM.getCXXABI().isVirtualOffsetNeededForVTableField(*this, Vptr)) { 2445 // We need to use the virtual base offset offset because the virtual base 2446 // might have a different offset in the most derived class. 2447 2448 VirtualOffset = CGM.getCXXABI().GetVirtualBaseClassOffset( 2449 *this, LoadCXXThisAddress(), Vptr.VTableClass, Vptr.NearestVBase); 2450 NonVirtualOffset = Vptr.OffsetFromNearestVBase; 2451 } else { 2452 // We can just use the base offset in the complete class. 2453 NonVirtualOffset = Vptr.Base.getBaseOffset(); 2454 } 2455 2456 // Apply the offsets. 2457 Address VTableField = LoadCXXThisAddress(); 2458 2459 if (!NonVirtualOffset.isZero() || VirtualOffset) 2460 VTableField = ApplyNonVirtualAndVirtualOffset( 2461 *this, VTableField, NonVirtualOffset, VirtualOffset, Vptr.VTableClass, 2462 Vptr.NearestVBase); 2463 2464 // Finally, store the address point. Use the same LLVM types as the field to 2465 // support optimization. 2466 llvm::Type *VTablePtrTy = 2467 llvm::FunctionType::get(CGM.Int32Ty, /*isVarArg=*/true) 2468 ->getPointerTo() 2469 ->getPointerTo(); 2470 VTableField = Builder.CreateBitCast(VTableField, VTablePtrTy->getPointerTo()); 2471 VTableAddressPoint = Builder.CreateBitCast(VTableAddressPoint, VTablePtrTy); 2472 2473 llvm::StoreInst *Store = Builder.CreateStore(VTableAddressPoint, VTableField); 2474 CGM.DecorateInstructionWithTBAA(Store, CGM.getTBAAInfoForVTablePtr()); 2475 if (CGM.getCodeGenOpts().OptimizationLevel > 0 && 2476 CGM.getCodeGenOpts().StrictVTablePointers) 2477 CGM.DecorateInstructionWithInvariantGroup(Store, Vptr.VTableClass); 2478 } 2479 2480 CodeGenFunction::VPtrsVector 2481 CodeGenFunction::getVTablePointers(const CXXRecordDecl *VTableClass) { 2482 CodeGenFunction::VPtrsVector VPtrsResult; 2483 VisitedVirtualBasesSetTy VBases; 2484 getVTablePointers(BaseSubobject(VTableClass, CharUnits::Zero()), 2485 /*NearestVBase=*/nullptr, 2486 /*OffsetFromNearestVBase=*/CharUnits::Zero(), 2487 /*BaseIsNonVirtualPrimaryBase=*/false, VTableClass, VBases, 2488 VPtrsResult); 2489 return VPtrsResult; 2490 } 2491 2492 void CodeGenFunction::getVTablePointers(BaseSubobject Base, 2493 const CXXRecordDecl *NearestVBase, 2494 CharUnits OffsetFromNearestVBase, 2495 bool BaseIsNonVirtualPrimaryBase, 2496 const CXXRecordDecl *VTableClass, 2497 VisitedVirtualBasesSetTy &VBases, 2498 VPtrsVector &Vptrs) { 2499 // If this base is a non-virtual primary base the address point has already 2500 // been set. 2501 if (!BaseIsNonVirtualPrimaryBase) { 2502 // Initialize the vtable pointer for this base. 2503 VPtr Vptr = {Base, NearestVBase, OffsetFromNearestVBase, VTableClass}; 2504 Vptrs.push_back(Vptr); 2505 } 2506 2507 const CXXRecordDecl *RD = Base.getBase(); 2508 2509 // Traverse bases. 2510 for (const auto &I : RD->bases()) { 2511 CXXRecordDecl *BaseDecl 2512 = cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl()); 2513 2514 // Ignore classes without a vtable. 2515 if (!BaseDecl->isDynamicClass()) 2516 continue; 2517 2518 CharUnits BaseOffset; 2519 CharUnits BaseOffsetFromNearestVBase; 2520 bool BaseDeclIsNonVirtualPrimaryBase; 2521 2522 if (I.isVirtual()) { 2523 // Check if we've visited this virtual base before. 2524 if (!VBases.insert(BaseDecl).second) 2525 continue; 2526 2527 const ASTRecordLayout &Layout = 2528 getContext().getASTRecordLayout(VTableClass); 2529 2530 BaseOffset = Layout.getVBaseClassOffset(BaseDecl); 2531 BaseOffsetFromNearestVBase = CharUnits::Zero(); 2532 BaseDeclIsNonVirtualPrimaryBase = false; 2533 } else { 2534 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 2535 2536 BaseOffset = Base.getBaseOffset() + Layout.getBaseClassOffset(BaseDecl); 2537 BaseOffsetFromNearestVBase = 2538 OffsetFromNearestVBase + Layout.getBaseClassOffset(BaseDecl); 2539 BaseDeclIsNonVirtualPrimaryBase = Layout.getPrimaryBase() == BaseDecl; 2540 } 2541 2542 getVTablePointers( 2543 BaseSubobject(BaseDecl, BaseOffset), 2544 I.isVirtual() ? BaseDecl : NearestVBase, BaseOffsetFromNearestVBase, 2545 BaseDeclIsNonVirtualPrimaryBase, VTableClass, VBases, Vptrs); 2546 } 2547 } 2548 2549 void CodeGenFunction::InitializeVTablePointers(const CXXRecordDecl *RD) { 2550 // Ignore classes without a vtable. 2551 if (!RD->isDynamicClass()) 2552 return; 2553 2554 // Initialize the vtable pointers for this class and all of its bases. 2555 if (CGM.getCXXABI().doStructorsInitializeVPtrs(RD)) 2556 for (const VPtr &Vptr : getVTablePointers(RD)) 2557 InitializeVTablePointer(Vptr); 2558 2559 if (RD->getNumVBases()) 2560 CGM.getCXXABI().initializeHiddenVirtualInheritanceMembers(*this, RD); 2561 } 2562 2563 llvm::Value *CodeGenFunction::GetVTablePtr(Address This, 2564 llvm::Type *VTableTy, 2565 const CXXRecordDecl *RD) { 2566 Address VTablePtrSrc = Builder.CreateElementBitCast(This, VTableTy); 2567 llvm::Instruction *VTable = Builder.CreateLoad(VTablePtrSrc, "vtable"); 2568 CGM.DecorateInstructionWithTBAA(VTable, CGM.getTBAAInfoForVTablePtr()); 2569 2570 if (CGM.getCodeGenOpts().OptimizationLevel > 0 && 2571 CGM.getCodeGenOpts().StrictVTablePointers) 2572 CGM.DecorateInstructionWithInvariantGroup(VTable, RD); 2573 2574 return VTable; 2575 } 2576 2577 // If a class has a single non-virtual base and does not introduce or override 2578 // virtual member functions or fields, it will have the same layout as its base. 2579 // This function returns the least derived such class. 2580 // 2581 // Casting an instance of a base class to such a derived class is technically 2582 // undefined behavior, but it is a relatively common hack for introducing member 2583 // functions on class instances with specific properties (e.g. llvm::Operator) 2584 // that works under most compilers and should not have security implications, so 2585 // we allow it by default. It can be disabled with -fsanitize=cfi-cast-strict. 2586 static const CXXRecordDecl * 2587 LeastDerivedClassWithSameLayout(const CXXRecordDecl *RD) { 2588 if (!RD->field_empty()) 2589 return RD; 2590 2591 if (RD->getNumVBases() != 0) 2592 return RD; 2593 2594 if (RD->getNumBases() != 1) 2595 return RD; 2596 2597 for (const CXXMethodDecl *MD : RD->methods()) { 2598 if (MD->isVirtual()) { 2599 // Virtual member functions are only ok if they are implicit destructors 2600 // because the implicit destructor will have the same semantics as the 2601 // base class's destructor if no fields are added. 2602 if (isa<CXXDestructorDecl>(MD) && MD->isImplicit()) 2603 continue; 2604 return RD; 2605 } 2606 } 2607 2608 return LeastDerivedClassWithSameLayout( 2609 RD->bases_begin()->getType()->getAsCXXRecordDecl()); 2610 } 2611 2612 void CodeGenFunction::EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD, 2613 llvm::Value *VTable, 2614 SourceLocation Loc) { 2615 if (CGM.getCodeGenOpts().WholeProgramVTables && 2616 CGM.HasHiddenLTOVisibility(RD)) { 2617 llvm::Metadata *MD = 2618 CGM.CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 2619 llvm::Value *TypeId = 2620 llvm::MetadataAsValue::get(CGM.getLLVMContext(), MD); 2621 2622 llvm::Value *CastedVTable = Builder.CreateBitCast(VTable, Int8PtrTy); 2623 llvm::Value *TypeTest = 2624 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test), 2625 {CastedVTable, TypeId}); 2626 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::assume), TypeTest); 2627 } 2628 2629 if (SanOpts.has(SanitizerKind::CFIVCall)) 2630 EmitVTablePtrCheckForCall(RD, VTable, CodeGenFunction::CFITCK_VCall, Loc); 2631 } 2632 2633 void CodeGenFunction::EmitVTablePtrCheckForCall(const CXXRecordDecl *RD, 2634 llvm::Value *VTable, 2635 CFITypeCheckKind TCK, 2636 SourceLocation Loc) { 2637 if (!SanOpts.has(SanitizerKind::CFICastStrict)) 2638 RD = LeastDerivedClassWithSameLayout(RD); 2639 2640 EmitVTablePtrCheck(RD, VTable, TCK, Loc); 2641 } 2642 2643 void CodeGenFunction::EmitVTablePtrCheckForCast(QualType T, 2644 llvm::Value *Derived, 2645 bool MayBeNull, 2646 CFITypeCheckKind TCK, 2647 SourceLocation Loc) { 2648 if (!getLangOpts().CPlusPlus) 2649 return; 2650 2651 auto *ClassTy = T->getAs<RecordType>(); 2652 if (!ClassTy) 2653 return; 2654 2655 const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassTy->getDecl()); 2656 2657 if (!ClassDecl->isCompleteDefinition() || !ClassDecl->isDynamicClass()) 2658 return; 2659 2660 if (!SanOpts.has(SanitizerKind::CFICastStrict)) 2661 ClassDecl = LeastDerivedClassWithSameLayout(ClassDecl); 2662 2663 llvm::BasicBlock *ContBlock = nullptr; 2664 2665 if (MayBeNull) { 2666 llvm::Value *DerivedNotNull = 2667 Builder.CreateIsNotNull(Derived, "cast.nonnull"); 2668 2669 llvm::BasicBlock *CheckBlock = createBasicBlock("cast.check"); 2670 ContBlock = createBasicBlock("cast.cont"); 2671 2672 Builder.CreateCondBr(DerivedNotNull, CheckBlock, ContBlock); 2673 2674 EmitBlock(CheckBlock); 2675 } 2676 2677 llvm::Value *VTable = 2678 GetVTablePtr(Address(Derived, getPointerAlign()), Int8PtrTy, ClassDecl); 2679 2680 EmitVTablePtrCheck(ClassDecl, VTable, TCK, Loc); 2681 2682 if (MayBeNull) { 2683 Builder.CreateBr(ContBlock); 2684 EmitBlock(ContBlock); 2685 } 2686 } 2687 2688 void CodeGenFunction::EmitVTablePtrCheck(const CXXRecordDecl *RD, 2689 llvm::Value *VTable, 2690 CFITypeCheckKind TCK, 2691 SourceLocation Loc) { 2692 if (!CGM.getCodeGenOpts().SanitizeCfiCrossDso && 2693 !CGM.HasHiddenLTOVisibility(RD)) 2694 return; 2695 2696 std::string TypeName = RD->getQualifiedNameAsString(); 2697 if (getContext().getSanitizerBlacklist().isBlacklistedType(TypeName)) 2698 return; 2699 2700 SanitizerScope SanScope(this); 2701 llvm::SanitizerStatKind SSK; 2702 switch (TCK) { 2703 case CFITCK_VCall: 2704 SSK = llvm::SanStat_CFI_VCall; 2705 break; 2706 case CFITCK_NVCall: 2707 SSK = llvm::SanStat_CFI_NVCall; 2708 break; 2709 case CFITCK_DerivedCast: 2710 SSK = llvm::SanStat_CFI_DerivedCast; 2711 break; 2712 case CFITCK_UnrelatedCast: 2713 SSK = llvm::SanStat_CFI_UnrelatedCast; 2714 break; 2715 case CFITCK_ICall: 2716 llvm_unreachable("not expecting CFITCK_ICall"); 2717 } 2718 EmitSanitizerStatReport(SSK); 2719 2720 llvm::Metadata *MD = 2721 CGM.CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 2722 llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD); 2723 2724 llvm::Value *CastedVTable = Builder.CreateBitCast(VTable, Int8PtrTy); 2725 llvm::Value *TypeTest = Builder.CreateCall( 2726 CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedVTable, TypeId}); 2727 2728 SanitizerMask M; 2729 switch (TCK) { 2730 case CFITCK_VCall: 2731 M = SanitizerKind::CFIVCall; 2732 break; 2733 case CFITCK_NVCall: 2734 M = SanitizerKind::CFINVCall; 2735 break; 2736 case CFITCK_DerivedCast: 2737 M = SanitizerKind::CFIDerivedCast; 2738 break; 2739 case CFITCK_UnrelatedCast: 2740 M = SanitizerKind::CFIUnrelatedCast; 2741 break; 2742 case CFITCK_ICall: 2743 llvm_unreachable("not expecting CFITCK_ICall"); 2744 } 2745 2746 llvm::Constant *StaticData[] = { 2747 llvm::ConstantInt::get(Int8Ty, TCK), 2748 EmitCheckSourceLocation(Loc), 2749 EmitCheckTypeDescriptor(QualType(RD->getTypeForDecl(), 0)), 2750 }; 2751 2752 auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD); 2753 if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) { 2754 EmitCfiSlowPathCheck(M, TypeTest, CrossDsoTypeId, CastedVTable, StaticData); 2755 return; 2756 } 2757 2758 if (CGM.getCodeGenOpts().SanitizeTrap.has(M)) { 2759 EmitTrapCheck(TypeTest); 2760 return; 2761 } 2762 2763 llvm::Value *AllVtables = llvm::MetadataAsValue::get( 2764 CGM.getLLVMContext(), 2765 llvm::MDString::get(CGM.getLLVMContext(), "all-vtables")); 2766 llvm::Value *ValidVtable = Builder.CreateCall( 2767 CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedVTable, AllVtables}); 2768 EmitCheck(std::make_pair(TypeTest, M), "cfi_check_fail", StaticData, 2769 {CastedVTable, ValidVtable}); 2770 } 2771 2772 bool CodeGenFunction::ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD) { 2773 if (!CGM.getCodeGenOpts().WholeProgramVTables || 2774 !SanOpts.has(SanitizerKind::CFIVCall) || 2775 !CGM.getCodeGenOpts().SanitizeTrap.has(SanitizerKind::CFIVCall) || 2776 !CGM.HasHiddenLTOVisibility(RD)) 2777 return false; 2778 2779 std::string TypeName = RD->getQualifiedNameAsString(); 2780 return !getContext().getSanitizerBlacklist().isBlacklistedType(TypeName); 2781 } 2782 2783 llvm::Value *CodeGenFunction::EmitVTableTypeCheckedLoad( 2784 const CXXRecordDecl *RD, llvm::Value *VTable, uint64_t VTableByteOffset) { 2785 SanitizerScope SanScope(this); 2786 2787 EmitSanitizerStatReport(llvm::SanStat_CFI_VCall); 2788 2789 llvm::Metadata *MD = 2790 CGM.CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 2791 llvm::Value *TypeId = llvm::MetadataAsValue::get(CGM.getLLVMContext(), MD); 2792 2793 llvm::Value *CastedVTable = Builder.CreateBitCast(VTable, Int8PtrTy); 2794 llvm::Value *CheckedLoad = Builder.CreateCall( 2795 CGM.getIntrinsic(llvm::Intrinsic::type_checked_load), 2796 {CastedVTable, llvm::ConstantInt::get(Int32Ty, VTableByteOffset), 2797 TypeId}); 2798 llvm::Value *CheckResult = Builder.CreateExtractValue(CheckedLoad, 1); 2799 2800 EmitCheck(std::make_pair(CheckResult, SanitizerKind::CFIVCall), 2801 "cfi_check_fail", nullptr, nullptr); 2802 2803 return Builder.CreateBitCast( 2804 Builder.CreateExtractValue(CheckedLoad, 0), 2805 cast<llvm::PointerType>(VTable->getType())->getElementType()); 2806 } 2807 2808 // FIXME: Ideally Expr::IgnoreParenNoopCasts should do this, but it doesn't do 2809 // quite what we want. 2810 static const Expr *skipNoOpCastsAndParens(const Expr *E) { 2811 while (true) { 2812 if (const ParenExpr *PE = dyn_cast<ParenExpr>(E)) { 2813 E = PE->getSubExpr(); 2814 continue; 2815 } 2816 2817 if (const CastExpr *CE = dyn_cast<CastExpr>(E)) { 2818 if (CE->getCastKind() == CK_NoOp) { 2819 E = CE->getSubExpr(); 2820 continue; 2821 } 2822 } 2823 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 2824 if (UO->getOpcode() == UO_Extension) { 2825 E = UO->getSubExpr(); 2826 continue; 2827 } 2828 } 2829 return E; 2830 } 2831 } 2832 2833 bool 2834 CodeGenFunction::CanDevirtualizeMemberFunctionCall(const Expr *Base, 2835 const CXXMethodDecl *MD) { 2836 // When building with -fapple-kext, all calls must go through the vtable since 2837 // the kernel linker can do runtime patching of vtables. 2838 if (getLangOpts().AppleKext) 2839 return false; 2840 2841 // If the most derived class is marked final, we know that no subclass can 2842 // override this member function and so we can devirtualize it. For example: 2843 // 2844 // struct A { virtual void f(); } 2845 // struct B final : A { }; 2846 // 2847 // void f(B *b) { 2848 // b->f(); 2849 // } 2850 // 2851 const CXXRecordDecl *MostDerivedClassDecl = Base->getBestDynamicClassType(); 2852 if (MostDerivedClassDecl->hasAttr<FinalAttr>()) 2853 return true; 2854 2855 // If the member function is marked 'final', we know that it can't be 2856 // overridden and can therefore devirtualize it. 2857 if (MD->hasAttr<FinalAttr>()) 2858 return true; 2859 2860 // Similarly, if the class itself is marked 'final' it can't be overridden 2861 // and we can therefore devirtualize the member function call. 2862 if (MD->getParent()->hasAttr<FinalAttr>()) 2863 return true; 2864 2865 Base = skipNoOpCastsAndParens(Base); 2866 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) { 2867 if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl())) { 2868 // This is a record decl. We know the type and can devirtualize it. 2869 return VD->getType()->isRecordType(); 2870 } 2871 2872 return false; 2873 } 2874 2875 // We can devirtualize calls on an object accessed by a class member access 2876 // expression, since by C++11 [basic.life]p6 we know that it can't refer to 2877 // a derived class object constructed in the same location. 2878 if (const MemberExpr *ME = dyn_cast<MemberExpr>(Base)) 2879 if (const ValueDecl *VD = dyn_cast<ValueDecl>(ME->getMemberDecl())) 2880 return VD->getType()->isRecordType(); 2881 2882 // We can always devirtualize calls on temporary object expressions. 2883 if (isa<CXXConstructExpr>(Base)) 2884 return true; 2885 2886 // And calls on bound temporaries. 2887 if (isa<CXXBindTemporaryExpr>(Base)) 2888 return true; 2889 2890 // Check if this is a call expr that returns a record type. 2891 if (const CallExpr *CE = dyn_cast<CallExpr>(Base)) 2892 return CE->getCallReturnType(getContext())->isRecordType(); 2893 2894 // We can't devirtualize the call. 2895 return false; 2896 } 2897 2898 void CodeGenFunction::EmitForwardingCallToLambda( 2899 const CXXMethodDecl *callOperator, 2900 CallArgList &callArgs) { 2901 // Get the address of the call operator. 2902 const CGFunctionInfo &calleeFnInfo = 2903 CGM.getTypes().arrangeCXXMethodDeclaration(callOperator); 2904 llvm::Value *callee = 2905 CGM.GetAddrOfFunction(GlobalDecl(callOperator), 2906 CGM.getTypes().GetFunctionType(calleeFnInfo)); 2907 2908 // Prepare the return slot. 2909 const FunctionProtoType *FPT = 2910 callOperator->getType()->castAs<FunctionProtoType>(); 2911 QualType resultType = FPT->getReturnType(); 2912 ReturnValueSlot returnSlot; 2913 if (!resultType->isVoidType() && 2914 calleeFnInfo.getReturnInfo().getKind() == ABIArgInfo::Indirect && 2915 !hasScalarEvaluationKind(calleeFnInfo.getReturnType())) 2916 returnSlot = ReturnValueSlot(ReturnValue, resultType.isVolatileQualified()); 2917 2918 // We don't need to separately arrange the call arguments because 2919 // the call can't be variadic anyway --- it's impossible to forward 2920 // variadic arguments. 2921 2922 // Now emit our call. 2923 RValue RV = EmitCall(calleeFnInfo, callee, returnSlot, 2924 callArgs, callOperator); 2925 2926 // If necessary, copy the returned value into the slot. 2927 if (!resultType->isVoidType() && returnSlot.isNull()) 2928 EmitReturnOfRValue(RV, resultType); 2929 else 2930 EmitBranchThroughCleanup(ReturnBlock); 2931 } 2932 2933 void CodeGenFunction::EmitLambdaBlockInvokeBody() { 2934 const BlockDecl *BD = BlockInfo->getBlockDecl(); 2935 const VarDecl *variable = BD->capture_begin()->getVariable(); 2936 const CXXRecordDecl *Lambda = variable->getType()->getAsCXXRecordDecl(); 2937 2938 // Start building arguments for forwarding call 2939 CallArgList CallArgs; 2940 2941 QualType ThisType = getContext().getPointerType(getContext().getRecordType(Lambda)); 2942 Address ThisPtr = GetAddrOfBlockDecl(variable, false); 2943 CallArgs.add(RValue::get(ThisPtr.getPointer()), ThisType); 2944 2945 // Add the rest of the parameters. 2946 for (auto param : BD->parameters()) 2947 EmitDelegateCallArg(CallArgs, param, param->getLocStart()); 2948 2949 assert(!Lambda->isGenericLambda() && 2950 "generic lambda interconversion to block not implemented"); 2951 EmitForwardingCallToLambda(Lambda->getLambdaCallOperator(), CallArgs); 2952 } 2953 2954 void CodeGenFunction::EmitLambdaToBlockPointerBody(FunctionArgList &Args) { 2955 if (cast<CXXMethodDecl>(CurCodeDecl)->isVariadic()) { 2956 // FIXME: Making this work correctly is nasty because it requires either 2957 // cloning the body of the call operator or making the call operator forward. 2958 CGM.ErrorUnsupported(CurCodeDecl, "lambda conversion to variadic function"); 2959 return; 2960 } 2961 2962 EmitFunctionBody(Args, cast<FunctionDecl>(CurGD.getDecl())->getBody()); 2963 } 2964 2965 void CodeGenFunction::EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD) { 2966 const CXXRecordDecl *Lambda = MD->getParent(); 2967 2968 // Start building arguments for forwarding call 2969 CallArgList CallArgs; 2970 2971 QualType ThisType = getContext().getPointerType(getContext().getRecordType(Lambda)); 2972 llvm::Value *ThisPtr = llvm::UndefValue::get(getTypes().ConvertType(ThisType)); 2973 CallArgs.add(RValue::get(ThisPtr), ThisType); 2974 2975 // Add the rest of the parameters. 2976 for (auto Param : MD->parameters()) 2977 EmitDelegateCallArg(CallArgs, Param, Param->getLocStart()); 2978 2979 const CXXMethodDecl *CallOp = Lambda->getLambdaCallOperator(); 2980 // For a generic lambda, find the corresponding call operator specialization 2981 // to which the call to the static-invoker shall be forwarded. 2982 if (Lambda->isGenericLambda()) { 2983 assert(MD->isFunctionTemplateSpecialization()); 2984 const TemplateArgumentList *TAL = MD->getTemplateSpecializationArgs(); 2985 FunctionTemplateDecl *CallOpTemplate = CallOp->getDescribedFunctionTemplate(); 2986 void *InsertPos = nullptr; 2987 FunctionDecl *CorrespondingCallOpSpecialization = 2988 CallOpTemplate->findSpecialization(TAL->asArray(), InsertPos); 2989 assert(CorrespondingCallOpSpecialization); 2990 CallOp = cast<CXXMethodDecl>(CorrespondingCallOpSpecialization); 2991 } 2992 EmitForwardingCallToLambda(CallOp, CallArgs); 2993 } 2994 2995 void CodeGenFunction::EmitLambdaStaticInvokeFunction(const CXXMethodDecl *MD) { 2996 if (MD->isVariadic()) { 2997 // FIXME: Making this work correctly is nasty because it requires either 2998 // cloning the body of the call operator or making the call operator forward. 2999 CGM.ErrorUnsupported(MD, "lambda conversion to variadic function"); 3000 return; 3001 } 3002 3003 EmitLambdaDelegatingInvokeBody(MD); 3004 } 3005