1 //===-- PPCTargetTransformInfo.cpp - PPC specific TTI ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "PPCTargetTransformInfo.h" 11 #include "llvm/Analysis/TargetTransformInfo.h" 12 #include "llvm/CodeGen/BasicTTIImpl.h" 13 #include "llvm/Support/CommandLine.h" 14 #include "llvm/Support/Debug.h" 15 #include "llvm/Target/CostTable.h" 16 #include "llvm/Target/TargetLowering.h" 17 using namespace llvm; 18 19 #define DEBUG_TYPE "ppctti" 20 21 static cl::opt<bool> DisablePPCConstHoist("disable-ppc-constant-hoisting", 22 cl::desc("disable constant hoisting on PPC"), cl::init(false), cl::Hidden); 23 24 // This is currently only used for the data prefetch pass which is only enabled 25 // for BG/Q by default. 26 static cl::opt<unsigned> 27 CacheLineSize("ppc-loop-prefetch-cache-line", cl::Hidden, cl::init(64), 28 cl::desc("The loop prefetch cache line size")); 29 30 //===----------------------------------------------------------------------===// 31 // 32 // PPC cost model. 33 // 34 //===----------------------------------------------------------------------===// 35 36 TargetTransformInfo::PopcntSupportKind 37 PPCTTIImpl::getPopcntSupport(unsigned TyWidth) { 38 assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2"); 39 if (ST->hasPOPCNTD() != PPCSubtarget::POPCNTD_Unavailable && TyWidth <= 64) 40 return ST->hasPOPCNTD() == PPCSubtarget::POPCNTD_Slow ? 41 TTI::PSK_SlowHardware : TTI::PSK_FastHardware; 42 return TTI::PSK_Software; 43 } 44 45 int PPCTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty) { 46 if (DisablePPCConstHoist) 47 return BaseT::getIntImmCost(Imm, Ty); 48 49 assert(Ty->isIntegerTy()); 50 51 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 52 if (BitSize == 0) 53 return ~0U; 54 55 if (Imm == 0) 56 return TTI::TCC_Free; 57 58 if (Imm.getBitWidth() <= 64) { 59 if (isInt<16>(Imm.getSExtValue())) 60 return TTI::TCC_Basic; 61 62 if (isInt<32>(Imm.getSExtValue())) { 63 // A constant that can be materialized using lis. 64 if ((Imm.getZExtValue() & 0xFFFF) == 0) 65 return TTI::TCC_Basic; 66 67 return 2 * TTI::TCC_Basic; 68 } 69 } 70 71 return 4 * TTI::TCC_Basic; 72 } 73 74 int PPCTTIImpl::getIntImmCost(Intrinsic::ID IID, unsigned Idx, const APInt &Imm, 75 Type *Ty) { 76 if (DisablePPCConstHoist) 77 return BaseT::getIntImmCost(IID, Idx, Imm, Ty); 78 79 assert(Ty->isIntegerTy()); 80 81 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 82 if (BitSize == 0) 83 return ~0U; 84 85 switch (IID) { 86 default: 87 return TTI::TCC_Free; 88 case Intrinsic::sadd_with_overflow: 89 case Intrinsic::uadd_with_overflow: 90 case Intrinsic::ssub_with_overflow: 91 case Intrinsic::usub_with_overflow: 92 if ((Idx == 1) && Imm.getBitWidth() <= 64 && isInt<16>(Imm.getSExtValue())) 93 return TTI::TCC_Free; 94 break; 95 case Intrinsic::experimental_stackmap: 96 if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue()))) 97 return TTI::TCC_Free; 98 break; 99 case Intrinsic::experimental_patchpoint_void: 100 case Intrinsic::experimental_patchpoint_i64: 101 if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue()))) 102 return TTI::TCC_Free; 103 break; 104 } 105 return PPCTTIImpl::getIntImmCost(Imm, Ty); 106 } 107 108 int PPCTTIImpl::getIntImmCost(unsigned Opcode, unsigned Idx, const APInt &Imm, 109 Type *Ty) { 110 if (DisablePPCConstHoist) 111 return BaseT::getIntImmCost(Opcode, Idx, Imm, Ty); 112 113 assert(Ty->isIntegerTy()); 114 115 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 116 if (BitSize == 0) 117 return ~0U; 118 119 unsigned ImmIdx = ~0U; 120 bool ShiftedFree = false, RunFree = false, UnsignedFree = false, 121 ZeroFree = false; 122 switch (Opcode) { 123 default: 124 return TTI::TCC_Free; 125 case Instruction::GetElementPtr: 126 // Always hoist the base address of a GetElementPtr. This prevents the 127 // creation of new constants for every base constant that gets constant 128 // folded with the offset. 129 if (Idx == 0) 130 return 2 * TTI::TCC_Basic; 131 return TTI::TCC_Free; 132 case Instruction::And: 133 RunFree = true; // (for the rotate-and-mask instructions) 134 // Fallthrough... 135 case Instruction::Add: 136 case Instruction::Or: 137 case Instruction::Xor: 138 ShiftedFree = true; 139 // Fallthrough... 140 case Instruction::Sub: 141 case Instruction::Mul: 142 case Instruction::Shl: 143 case Instruction::LShr: 144 case Instruction::AShr: 145 ImmIdx = 1; 146 break; 147 case Instruction::ICmp: 148 UnsignedFree = true; 149 ImmIdx = 1; 150 // Fallthrough... (zero comparisons can use record-form instructions) 151 case Instruction::Select: 152 ZeroFree = true; 153 break; 154 case Instruction::PHI: 155 case Instruction::Call: 156 case Instruction::Ret: 157 case Instruction::Load: 158 case Instruction::Store: 159 break; 160 } 161 162 if (ZeroFree && Imm == 0) 163 return TTI::TCC_Free; 164 165 if (Idx == ImmIdx && Imm.getBitWidth() <= 64) { 166 if (isInt<16>(Imm.getSExtValue())) 167 return TTI::TCC_Free; 168 169 if (RunFree) { 170 if (Imm.getBitWidth() <= 32 && 171 (isShiftedMask_32(Imm.getZExtValue()) || 172 isShiftedMask_32(~Imm.getZExtValue()))) 173 return TTI::TCC_Free; 174 175 if (ST->isPPC64() && 176 (isShiftedMask_64(Imm.getZExtValue()) || 177 isShiftedMask_64(~Imm.getZExtValue()))) 178 return TTI::TCC_Free; 179 } 180 181 if (UnsignedFree && isUInt<16>(Imm.getZExtValue())) 182 return TTI::TCC_Free; 183 184 if (ShiftedFree && (Imm.getZExtValue() & 0xFFFF) == 0) 185 return TTI::TCC_Free; 186 } 187 188 return PPCTTIImpl::getIntImmCost(Imm, Ty); 189 } 190 191 void PPCTTIImpl::getUnrollingPreferences(Loop *L, 192 TTI::UnrollingPreferences &UP) { 193 if (ST->getDarwinDirective() == PPC::DIR_A2) { 194 // The A2 is in-order with a deep pipeline, and concatenation unrolling 195 // helps expose latency-hiding opportunities to the instruction scheduler. 196 UP.Partial = UP.Runtime = true; 197 198 // We unroll a lot on the A2 (hundreds of instructions), and the benefits 199 // often outweigh the cost of a division to compute the trip count. 200 UP.AllowExpensiveTripCount = true; 201 } 202 203 BaseT::getUnrollingPreferences(L, UP); 204 } 205 206 bool PPCTTIImpl::enableAggressiveInterleaving(bool LoopHasReductions) { 207 // On the A2, always unroll aggressively. For QPX unaligned loads, we depend 208 // on combining the loads generated for consecutive accesses, and failure to 209 // do so is particularly expensive. This makes it much more likely (compared 210 // to only using concatenation unrolling). 211 if (ST->getDarwinDirective() == PPC::DIR_A2) 212 return true; 213 214 return LoopHasReductions; 215 } 216 217 bool PPCTTIImpl::enableInterleavedAccessVectorization() { 218 return true; 219 } 220 221 unsigned PPCTTIImpl::getNumberOfRegisters(bool Vector) { 222 if (Vector && !ST->hasAltivec() && !ST->hasQPX()) 223 return 0; 224 return ST->hasVSX() ? 64 : 32; 225 } 226 227 unsigned PPCTTIImpl::getRegisterBitWidth(bool Vector) { 228 if (Vector) { 229 if (ST->hasQPX()) return 256; 230 if (ST->hasAltivec()) return 128; 231 return 0; 232 } 233 234 if (ST->isPPC64()) 235 return 64; 236 return 32; 237 238 } 239 240 unsigned PPCTTIImpl::getCacheLineSize() { 241 // This is currently only used for the data prefetch pass which is only 242 // enabled for BG/Q by default. 243 return CacheLineSize; 244 } 245 246 unsigned PPCTTIImpl::getPrefetchDistance() { 247 // This seems like a reasonable default for the BG/Q (this pass is enabled, by 248 // default, only on the BG/Q). 249 return 300; 250 } 251 252 unsigned PPCTTIImpl::getMaxInterleaveFactor(unsigned VF) { 253 unsigned Directive = ST->getDarwinDirective(); 254 // The 440 has no SIMD support, but floating-point instructions 255 // have a 5-cycle latency, so unroll by 5x for latency hiding. 256 if (Directive == PPC::DIR_440) 257 return 5; 258 259 // The A2 has no SIMD support, but floating-point instructions 260 // have a 6-cycle latency, so unroll by 6x for latency hiding. 261 if (Directive == PPC::DIR_A2) 262 return 6; 263 264 // FIXME: For lack of any better information, do no harm... 265 if (Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500) 266 return 1; 267 268 // For P7 and P8, floating-point instructions have a 6-cycle latency and 269 // there are two execution units, so unroll by 12x for latency hiding. 270 // FIXME: the same for P9 as previous gen until POWER9 scheduling is ready 271 if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8 || 272 Directive == PPC::DIR_PWR9) 273 return 12; 274 275 // For most things, modern systems have two execution units (and 276 // out-of-order execution). 277 return 2; 278 } 279 280 int PPCTTIImpl::getArithmeticInstrCost( 281 unsigned Opcode, Type *Ty, TTI::OperandValueKind Op1Info, 282 TTI::OperandValueKind Op2Info, TTI::OperandValueProperties Opd1PropInfo, 283 TTI::OperandValueProperties Opd2PropInfo) { 284 assert(TLI->InstructionOpcodeToISD(Opcode) && "Invalid opcode"); 285 286 // Fallback to the default implementation. 287 return BaseT::getArithmeticInstrCost(Opcode, Ty, Op1Info, Op2Info, 288 Opd1PropInfo, Opd2PropInfo); 289 } 290 291 int PPCTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index, 292 Type *SubTp) { 293 // Legalize the type. 294 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp); 295 296 // PPC, for both Altivec/VSX and QPX, support cheap arbitrary permutations 297 // (at least in the sense that there need only be one non-loop-invariant 298 // instruction). We need one such shuffle instruction for each actual 299 // register (this is not true for arbitrary shuffles, but is true for the 300 // structured types of shuffles covered by TTI::ShuffleKind). 301 return LT.first; 302 } 303 304 int PPCTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src) { 305 assert(TLI->InstructionOpcodeToISD(Opcode) && "Invalid opcode"); 306 307 return BaseT::getCastInstrCost(Opcode, Dst, Src); 308 } 309 310 int PPCTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy) { 311 return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy); 312 } 313 314 int PPCTTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) { 315 assert(Val->isVectorTy() && "This must be a vector type"); 316 317 int ISD = TLI->InstructionOpcodeToISD(Opcode); 318 assert(ISD && "Invalid opcode"); 319 320 if (ST->hasVSX() && Val->getScalarType()->isDoubleTy()) { 321 // Double-precision scalars are already located in index #0. 322 if (Index == 0) 323 return 0; 324 325 return BaseT::getVectorInstrCost(Opcode, Val, Index); 326 } else if (ST->hasQPX() && Val->getScalarType()->isFloatingPointTy()) { 327 // Floating point scalars are already located in index #0. 328 if (Index == 0) 329 return 0; 330 331 return BaseT::getVectorInstrCost(Opcode, Val, Index); 332 } 333 334 // Estimated cost of a load-hit-store delay. This was obtained 335 // experimentally as a minimum needed to prevent unprofitable 336 // vectorization for the paq8p benchmark. It may need to be 337 // raised further if other unprofitable cases remain. 338 unsigned LHSPenalty = 2; 339 if (ISD == ISD::INSERT_VECTOR_ELT) 340 LHSPenalty += 7; 341 342 // Vector element insert/extract with Altivec is very expensive, 343 // because they require store and reload with the attendant 344 // processor stall for load-hit-store. Until VSX is available, 345 // these need to be estimated as very costly. 346 if (ISD == ISD::EXTRACT_VECTOR_ELT || 347 ISD == ISD::INSERT_VECTOR_ELT) 348 return LHSPenalty + BaseT::getVectorInstrCost(Opcode, Val, Index); 349 350 return BaseT::getVectorInstrCost(Opcode, Val, Index); 351 } 352 353 int PPCTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment, 354 unsigned AddressSpace) { 355 // Legalize the type. 356 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Src); 357 assert((Opcode == Instruction::Load || Opcode == Instruction::Store) && 358 "Invalid Opcode"); 359 360 int Cost = BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace); 361 362 // Aligned loads and stores are easy. 363 unsigned SrcBytes = LT.second.getStoreSize(); 364 if (!SrcBytes || !Alignment || Alignment >= SrcBytes) 365 return Cost; 366 367 bool IsAltivecType = ST->hasAltivec() && 368 (LT.second == MVT::v16i8 || LT.second == MVT::v8i16 || 369 LT.second == MVT::v4i32 || LT.second == MVT::v4f32); 370 bool IsVSXType = ST->hasVSX() && 371 (LT.second == MVT::v2f64 || LT.second == MVT::v2i64); 372 bool IsQPXType = ST->hasQPX() && 373 (LT.second == MVT::v4f64 || LT.second == MVT::v4f32); 374 375 // If we can use the permutation-based load sequence, then this is also 376 // relatively cheap (not counting loop-invariant instructions): one load plus 377 // one permute (the last load in a series has extra cost, but we're 378 // neglecting that here). Note that on the P7, we could do unaligned loads 379 // for Altivec types using the VSX instructions, but that's more expensive 380 // than using the permutation-based load sequence. On the P8, that's no 381 // longer true. 382 if (Opcode == Instruction::Load && 383 ((!ST->hasP8Vector() && IsAltivecType) || IsQPXType) && 384 Alignment >= LT.second.getScalarType().getStoreSize()) 385 return Cost + LT.first; // Add the cost of the permutations. 386 387 // For VSX, we can do unaligned loads and stores on Altivec/VSX types. On the 388 // P7, unaligned vector loads are more expensive than the permutation-based 389 // load sequence, so that might be used instead, but regardless, the net cost 390 // is about the same (not counting loop-invariant instructions). 391 if (IsVSXType || (ST->hasVSX() && IsAltivecType)) 392 return Cost; 393 394 // PPC in general does not support unaligned loads and stores. They'll need 395 // to be decomposed based on the alignment factor. 396 397 // Add the cost of each scalar load or store. 398 Cost += LT.first*(SrcBytes/Alignment-1); 399 400 // For a vector type, there is also scalarization overhead (only for 401 // stores, loads are expanded using the vector-load + permutation sequence, 402 // which is much less expensive). 403 if (Src->isVectorTy() && Opcode == Instruction::Store) 404 for (int i = 0, e = Src->getVectorNumElements(); i < e; ++i) 405 Cost += getVectorInstrCost(Instruction::ExtractElement, Src, i); 406 407 return Cost; 408 } 409 410 int PPCTTIImpl::getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy, 411 unsigned Factor, 412 ArrayRef<unsigned> Indices, 413 unsigned Alignment, 414 unsigned AddressSpace) { 415 assert(isa<VectorType>(VecTy) && 416 "Expect a vector type for interleaved memory op"); 417 418 // Legalize the type. 419 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, VecTy); 420 421 // Firstly, the cost of load/store operation. 422 int Cost = getMemoryOpCost(Opcode, VecTy, Alignment, AddressSpace); 423 424 // PPC, for both Altivec/VSX and QPX, support cheap arbitrary permutations 425 // (at least in the sense that there need only be one non-loop-invariant 426 // instruction). For each result vector, we need one shuffle per incoming 427 // vector (except that the first shuffle can take two incoming vectors 428 // because it does not need to take itself). 429 Cost += Factor*(LT.first-1); 430 431 return Cost; 432 } 433 434