Home | History | Annotate | Download | only in bench
      1 
      2 // g++-4.4 bench_gemm.cpp -I .. -O2 -DNDEBUG -lrt -fopenmp && OMP_NUM_THREADS=2  ./a.out
      3 // icpc bench_gemm.cpp -I .. -O3 -DNDEBUG -lrt -openmp  && OMP_NUM_THREADS=2  ./a.out
      4 
      5 // Compilation options:
      6 //
      7 // -DSCALAR=std::complex<double>
      8 // -DSCALARA=double or -DSCALARB=double
      9 // -DHAVE_BLAS
     10 // -DDECOUPLED
     11 //
     12 
     13 #include <iostream>
     14 #include <Eigen/Core>
     15 #include <bench/BenchTimer.h>
     16 
     17 using namespace std;
     18 using namespace Eigen;
     19 
     20 #ifndef SCALAR
     21 // #define SCALAR std::complex<float>
     22 #define SCALAR float
     23 #endif
     24 
     25 #ifndef SCALARA
     26 #define SCALARA SCALAR
     27 #endif
     28 
     29 #ifndef SCALARB
     30 #define SCALARB SCALAR
     31 #endif
     32 
     33 typedef SCALAR Scalar;
     34 typedef NumTraits<Scalar>::Real RealScalar;
     35 typedef Matrix<SCALARA,Dynamic,Dynamic> A;
     36 typedef Matrix<SCALARB,Dynamic,Dynamic> B;
     37 typedef Matrix<Scalar,Dynamic,Dynamic> C;
     38 typedef Matrix<RealScalar,Dynamic,Dynamic> M;
     39 
     40 #ifdef HAVE_BLAS
     41 
     42 extern "C" {
     43   #include <Eigen/src/misc/blas.h>
     44 }
     45 
     46 static float fone = 1;
     47 static float fzero = 0;
     48 static double done = 1;
     49 static double szero = 0;
     50 static std::complex<float> cfone = 1;
     51 static std::complex<float> cfzero = 0;
     52 static std::complex<double> cdone = 1;
     53 static std::complex<double> cdzero = 0;
     54 static char notrans = 'N';
     55 static char trans = 'T';
     56 static char nonunit = 'N';
     57 static char lower = 'L';
     58 static char right = 'R';
     59 static int intone = 1;
     60 
     61 void blas_gemm(const MatrixXf& a, const MatrixXf& b, MatrixXf& c)
     62 {
     63   int M = c.rows(); int N = c.cols(); int K = a.cols();
     64   int lda = a.rows(); int ldb = b.rows(); int ldc = c.rows();
     65 
     66   sgemm_(&notrans,&notrans,&M,&N,&K,&fone,
     67          const_cast<float*>(a.data()),&lda,
     68          const_cast<float*>(b.data()),&ldb,&fone,
     69          c.data(),&ldc);
     70 }
     71 
     72 EIGEN_DONT_INLINE void blas_gemm(const MatrixXd& a, const MatrixXd& b, MatrixXd& c)
     73 {
     74   int M = c.rows(); int N = c.cols(); int K = a.cols();
     75   int lda = a.rows(); int ldb = b.rows(); int ldc = c.rows();
     76 
     77   dgemm_(&notrans,&notrans,&M,&N,&K,&done,
     78          const_cast<double*>(a.data()),&lda,
     79          const_cast<double*>(b.data()),&ldb,&done,
     80          c.data(),&ldc);
     81 }
     82 
     83 void blas_gemm(const MatrixXcf& a, const MatrixXcf& b, MatrixXcf& c)
     84 {
     85   int M = c.rows(); int N = c.cols(); int K = a.cols();
     86   int lda = a.rows(); int ldb = b.rows(); int ldc = c.rows();
     87 
     88   cgemm_(&notrans,&notrans,&M,&N,&K,(float*)&cfone,
     89          const_cast<float*>((const float*)a.data()),&lda,
     90          const_cast<float*>((const float*)b.data()),&ldb,(float*)&cfone,
     91          (float*)c.data(),&ldc);
     92 }
     93 
     94 void blas_gemm(const MatrixXcd& a, const MatrixXcd& b, MatrixXcd& c)
     95 {
     96   int M = c.rows(); int N = c.cols(); int K = a.cols();
     97   int lda = a.rows(); int ldb = b.rows(); int ldc = c.rows();
     98 
     99   zgemm_(&notrans,&notrans,&M,&N,&K,(double*)&cdone,
    100          const_cast<double*>((const double*)a.data()),&lda,
    101          const_cast<double*>((const double*)b.data()),&ldb,(double*)&cdone,
    102          (double*)c.data(),&ldc);
    103 }
    104 
    105 
    106 
    107 #endif
    108 
    109 void matlab_cplx_cplx(const M& ar, const M& ai, const M& br, const M& bi, M& cr, M& ci)
    110 {
    111   cr.noalias() += ar * br;
    112   cr.noalias() -= ai * bi;
    113   ci.noalias() += ar * bi;
    114   ci.noalias() += ai * br;
    115 }
    116 
    117 void matlab_real_cplx(const M& a, const M& br, const M& bi, M& cr, M& ci)
    118 {
    119   cr.noalias() += a * br;
    120   ci.noalias() += a * bi;
    121 }
    122 
    123 void matlab_cplx_real(const M& ar, const M& ai, const M& b, M& cr, M& ci)
    124 {
    125   cr.noalias() += ar * b;
    126   ci.noalias() += ai * b;
    127 }
    128 
    129 template<typename A, typename B, typename C>
    130 EIGEN_DONT_INLINE void gemm(const A& a, const B& b, C& c)
    131 {
    132  c.noalias() += a * b;
    133 }
    134 
    135 int main(int argc, char ** argv)
    136 {
    137   std::ptrdiff_t l1 = internal::queryL1CacheSize();
    138   std::ptrdiff_t l2 = internal::queryTopLevelCacheSize();
    139   std::cout << "L1 cache size     = " << (l1>0 ? l1/1024 : -1) << " KB\n";
    140   std::cout << "L2/L3 cache size  = " << (l2>0 ? l2/1024 : -1) << " KB\n";
    141   typedef internal::gebp_traits<Scalar,Scalar> Traits;
    142   std::cout << "Register blocking = " << Traits::mr << " x " << Traits::nr << "\n";
    143 
    144   int rep = 1;    // number of repetitions per try
    145   int tries = 2;  // number of tries, we keep the best
    146 
    147   int s = 2048;
    148   int m = s;
    149   int n = s;
    150   int p = s;
    151   int cache_size1=-1, cache_size2=l2, cache_size3 = 0;
    152 
    153   bool need_help = false;
    154   for (int i=1; i<argc;)
    155   {
    156     if(argv[i][0]=='-')
    157     {
    158       if(argv[i][1]=='s')
    159       {
    160         ++i;
    161         s = atoi(argv[i++]);
    162         m = n = p = s;
    163         if(argv[i][0]!='-')
    164         {
    165           n = atoi(argv[i++]);
    166           p = atoi(argv[i++]);
    167         }
    168       }
    169       else if(argv[i][1]=='c')
    170       {
    171         ++i;
    172         cache_size1 = atoi(argv[i++]);
    173         if(argv[i][0]!='-')
    174         {
    175           cache_size2 = atoi(argv[i++]);
    176           if(argv[i][0]!='-')
    177             cache_size3 = atoi(argv[i++]);
    178         }
    179       }
    180       else if(argv[i][1]=='t')
    181       {
    182         ++i;
    183         tries = atoi(argv[i++]);
    184       }
    185       else if(argv[i][1]=='p')
    186       {
    187         ++i;
    188         rep = atoi(argv[i++]);
    189       }
    190     }
    191     else
    192     {
    193       need_help = true;
    194       break;
    195     }
    196   }
    197 
    198   if(need_help)
    199   {
    200     std::cout << argv[0] << " -s <matrix sizes> -c <cache sizes> -t <nb tries> -p <nb repeats>\n";
    201     std::cout << "   <matrix sizes> : size\n";
    202     std::cout << "   <matrix sizes> : rows columns depth\n";
    203     return 1;
    204   }
    205 
    206 #if EIGEN_VERSION_AT_LEAST(3,2,90)
    207   if(cache_size1>0)
    208     setCpuCacheSizes(cache_size1,cache_size2,cache_size3);
    209 #endif
    210 
    211   A a(m,p); a.setRandom();
    212   B b(p,n); b.setRandom();
    213   C c(m,n); c.setOnes();
    214   C rc = c;
    215 
    216   std::cout << "Matrix sizes = " << m << "x" << p << " * " << p << "x" << n << "\n";
    217   std::ptrdiff_t mc(m), nc(n), kc(p);
    218   internal::computeProductBlockingSizes<Scalar,Scalar>(kc, mc, nc);
    219   std::cout << "blocking size (mc x kc) = " << mc << " x " << kc << "\n";
    220 
    221   C r = c;
    222 
    223   // check the parallel product is correct
    224   #if defined EIGEN_HAS_OPENMP
    225   Eigen::initParallel();
    226   int procs = omp_get_max_threads();
    227   if(procs>1)
    228   {
    229     #ifdef HAVE_BLAS
    230     blas_gemm(a,b,r);
    231     #else
    232     omp_set_num_threads(1);
    233     r.noalias() += a * b;
    234     omp_set_num_threads(procs);
    235     #endif
    236     c.noalias() += a * b;
    237     if(!r.isApprox(c)) std::cerr << "Warning, your parallel product is crap!\n\n";
    238   }
    239   #elif defined HAVE_BLAS
    240     blas_gemm(a,b,r);
    241     c.noalias() += a * b;
    242     if(!r.isApprox(c)) {
    243       std::cout << r  - c << "\n";
    244       std::cerr << "Warning, your product is crap!\n\n";
    245     }
    246   #else
    247     if(1.*m*n*p<2000.*2000*2000)
    248     {
    249       gemm(a,b,c);
    250       r.noalias() += a.cast<Scalar>() .lazyProduct( b.cast<Scalar>() );
    251       if(!r.isApprox(c)) {
    252         std::cout << r - c << "\n";
    253         std::cerr << "Warning, your product is crap!\n\n";
    254       }
    255     }
    256   #endif
    257 
    258   #ifdef HAVE_BLAS
    259   BenchTimer tblas;
    260   c = rc;
    261   BENCH(tblas, tries, rep, blas_gemm(a,b,c));
    262   std::cout << "blas  cpu         " << tblas.best(CPU_TIMER)/rep  << "s  \t" << (double(m)*n*p*rep*2/tblas.best(CPU_TIMER))*1e-9  <<  " GFLOPS \t(" << tblas.total(CPU_TIMER)  << "s)\n";
    263   std::cout << "blas  real        " << tblas.best(REAL_TIMER)/rep << "s  \t" << (double(m)*n*p*rep*2/tblas.best(REAL_TIMER))*1e-9 <<  " GFLOPS \t(" << tblas.total(REAL_TIMER) << "s)\n";
    264   #endif
    265 
    266   BenchTimer tmt;
    267   c = rc;
    268   BENCH(tmt, tries, rep, gemm(a,b,c));
    269   std::cout << "eigen cpu         " << tmt.best(CPU_TIMER)/rep  << "s  \t" << (double(m)*n*p*rep*2/tmt.best(CPU_TIMER))*1e-9  <<  " GFLOPS \t(" << tmt.total(CPU_TIMER)  << "s)\n";
    270   std::cout << "eigen real        " << tmt.best(REAL_TIMER)/rep << "s  \t" << (double(m)*n*p*rep*2/tmt.best(REAL_TIMER))*1e-9 <<  " GFLOPS \t(" << tmt.total(REAL_TIMER) << "s)\n";
    271 
    272   #ifdef EIGEN_HAS_OPENMP
    273   if(procs>1)
    274   {
    275     BenchTimer tmono;
    276     omp_set_num_threads(1);
    277     Eigen::setNbThreads(1);
    278     c = rc;
    279     BENCH(tmono, tries, rep, gemm(a,b,c));
    280     std::cout << "eigen mono cpu    " << tmono.best(CPU_TIMER)/rep  << "s  \t" << (double(m)*n*p*rep*2/tmono.best(CPU_TIMER))*1e-9  <<  " GFLOPS \t(" << tmono.total(CPU_TIMER)  << "s)\n";
    281     std::cout << "eigen mono real   " << tmono.best(REAL_TIMER)/rep << "s  \t" << (double(m)*n*p*rep*2/tmono.best(REAL_TIMER))*1e-9 <<  " GFLOPS \t(" << tmono.total(REAL_TIMER) << "s)\n";
    282     std::cout << "mt speed up x" << tmono.best(CPU_TIMER) / tmt.best(REAL_TIMER)  << " => " << (100.0*tmono.best(CPU_TIMER) / tmt.best(REAL_TIMER))/procs << "%\n";
    283   }
    284   #endif
    285 
    286   if(1.*m*n*p<30*30*30)
    287   {
    288       BenchTimer tmt;
    289       c = rc;
    290       BENCH(tmt, tries, rep, c.noalias()+=a.lazyProduct(b));
    291       std::cout << "lazy cpu         " << tmt.best(CPU_TIMER)/rep  << "s  \t" << (double(m)*n*p*rep*2/tmt.best(CPU_TIMER))*1e-9  <<  " GFLOPS \t(" << tmt.total(CPU_TIMER)  << "s)\n";
    292       std::cout << "lazy real        " << tmt.best(REAL_TIMER)/rep << "s  \t" << (double(m)*n*p*rep*2/tmt.best(REAL_TIMER))*1e-9 <<  " GFLOPS \t(" << tmt.total(REAL_TIMER) << "s)\n";
    293   }
    294 
    295   #ifdef DECOUPLED
    296   if((NumTraits<A::Scalar>::IsComplex) && (NumTraits<B::Scalar>::IsComplex))
    297   {
    298     M ar(m,p); ar.setRandom();
    299     M ai(m,p); ai.setRandom();
    300     M br(p,n); br.setRandom();
    301     M bi(p,n); bi.setRandom();
    302     M cr(m,n); cr.setRandom();
    303     M ci(m,n); ci.setRandom();
    304 
    305     BenchTimer t;
    306     BENCH(t, tries, rep, matlab_cplx_cplx(ar,ai,br,bi,cr,ci));
    307     std::cout << "\"matlab\" cpu    " << t.best(CPU_TIMER)/rep  << "s  \t" << (double(m)*n*p*rep*2/t.best(CPU_TIMER))*1e-9  <<  " GFLOPS \t(" << t.total(CPU_TIMER)  << "s)\n";
    308     std::cout << "\"matlab\" real   " << t.best(REAL_TIMER)/rep << "s  \t" << (double(m)*n*p*rep*2/t.best(REAL_TIMER))*1e-9 <<  " GFLOPS \t(" << t.total(REAL_TIMER) << "s)\n";
    309   }
    310   if((!NumTraits<A::Scalar>::IsComplex) && (NumTraits<B::Scalar>::IsComplex))
    311   {
    312     M a(m,p);  a.setRandom();
    313     M br(p,n); br.setRandom();
    314     M bi(p,n); bi.setRandom();
    315     M cr(m,n); cr.setRandom();
    316     M ci(m,n); ci.setRandom();
    317 
    318     BenchTimer t;
    319     BENCH(t, tries, rep, matlab_real_cplx(a,br,bi,cr,ci));
    320     std::cout << "\"matlab\" cpu    " << t.best(CPU_TIMER)/rep  << "s  \t" << (double(m)*n*p*rep*2/t.best(CPU_TIMER))*1e-9  <<  " GFLOPS \t(" << t.total(CPU_TIMER)  << "s)\n";
    321     std::cout << "\"matlab\" real   " << t.best(REAL_TIMER)/rep << "s  \t" << (double(m)*n*p*rep*2/t.best(REAL_TIMER))*1e-9 <<  " GFLOPS \t(" << t.total(REAL_TIMER) << "s)\n";
    322   }
    323   if((NumTraits<A::Scalar>::IsComplex) && (!NumTraits<B::Scalar>::IsComplex))
    324   {
    325     M ar(m,p); ar.setRandom();
    326     M ai(m,p); ai.setRandom();
    327     M b(p,n);  b.setRandom();
    328     M cr(m,n); cr.setRandom();
    329     M ci(m,n); ci.setRandom();
    330 
    331     BenchTimer t;
    332     BENCH(t, tries, rep, matlab_cplx_real(ar,ai,b,cr,ci));
    333     std::cout << "\"matlab\" cpu    " << t.best(CPU_TIMER)/rep  << "s  \t" << (double(m)*n*p*rep*2/t.best(CPU_TIMER))*1e-9  <<  " GFLOPS \t(" << t.total(CPU_TIMER)  << "s)\n";
    334     std::cout << "\"matlab\" real   " << t.best(REAL_TIMER)/rep << "s  \t" << (double(m)*n*p*rep*2/t.best(REAL_TIMER))*1e-9 <<  " GFLOPS \t(" << t.total(REAL_TIMER) << "s)\n";
    335   }
    336   #endif
    337 
    338   return 0;
    339 }
    340 
    341