1 2 // g++-4.4 bench_gemm.cpp -I .. -O2 -DNDEBUG -lrt -fopenmp && OMP_NUM_THREADS=2 ./a.out 3 // icpc bench_gemm.cpp -I .. -O3 -DNDEBUG -lrt -openmp && OMP_NUM_THREADS=2 ./a.out 4 5 // Compilation options: 6 // 7 // -DSCALAR=std::complex<double> 8 // -DSCALARA=double or -DSCALARB=double 9 // -DHAVE_BLAS 10 // -DDECOUPLED 11 // 12 13 #include <iostream> 14 #include <Eigen/Core> 15 #include <bench/BenchTimer.h> 16 17 using namespace std; 18 using namespace Eigen; 19 20 #ifndef SCALAR 21 // #define SCALAR std::complex<float> 22 #define SCALAR float 23 #endif 24 25 #ifndef SCALARA 26 #define SCALARA SCALAR 27 #endif 28 29 #ifndef SCALARB 30 #define SCALARB SCALAR 31 #endif 32 33 typedef SCALAR Scalar; 34 typedef NumTraits<Scalar>::Real RealScalar; 35 typedef Matrix<SCALARA,Dynamic,Dynamic> A; 36 typedef Matrix<SCALARB,Dynamic,Dynamic> B; 37 typedef Matrix<Scalar,Dynamic,Dynamic> C; 38 typedef Matrix<RealScalar,Dynamic,Dynamic> M; 39 40 #ifdef HAVE_BLAS 41 42 extern "C" { 43 #include <Eigen/src/misc/blas.h> 44 } 45 46 static float fone = 1; 47 static float fzero = 0; 48 static double done = 1; 49 static double szero = 0; 50 static std::complex<float> cfone = 1; 51 static std::complex<float> cfzero = 0; 52 static std::complex<double> cdone = 1; 53 static std::complex<double> cdzero = 0; 54 static char notrans = 'N'; 55 static char trans = 'T'; 56 static char nonunit = 'N'; 57 static char lower = 'L'; 58 static char right = 'R'; 59 static int intone = 1; 60 61 void blas_gemm(const MatrixXf& a, const MatrixXf& b, MatrixXf& c) 62 { 63 int M = c.rows(); int N = c.cols(); int K = a.cols(); 64 int lda = a.rows(); int ldb = b.rows(); int ldc = c.rows(); 65 66 sgemm_(¬rans,¬rans,&M,&N,&K,&fone, 67 const_cast<float*>(a.data()),&lda, 68 const_cast<float*>(b.data()),&ldb,&fone, 69 c.data(),&ldc); 70 } 71 72 EIGEN_DONT_INLINE void blas_gemm(const MatrixXd& a, const MatrixXd& b, MatrixXd& c) 73 { 74 int M = c.rows(); int N = c.cols(); int K = a.cols(); 75 int lda = a.rows(); int ldb = b.rows(); int ldc = c.rows(); 76 77 dgemm_(¬rans,¬rans,&M,&N,&K,&done, 78 const_cast<double*>(a.data()),&lda, 79 const_cast<double*>(b.data()),&ldb,&done, 80 c.data(),&ldc); 81 } 82 83 void blas_gemm(const MatrixXcf& a, const MatrixXcf& b, MatrixXcf& c) 84 { 85 int M = c.rows(); int N = c.cols(); int K = a.cols(); 86 int lda = a.rows(); int ldb = b.rows(); int ldc = c.rows(); 87 88 cgemm_(¬rans,¬rans,&M,&N,&K,(float*)&cfone, 89 const_cast<float*>((const float*)a.data()),&lda, 90 const_cast<float*>((const float*)b.data()),&ldb,(float*)&cfone, 91 (float*)c.data(),&ldc); 92 } 93 94 void blas_gemm(const MatrixXcd& a, const MatrixXcd& b, MatrixXcd& c) 95 { 96 int M = c.rows(); int N = c.cols(); int K = a.cols(); 97 int lda = a.rows(); int ldb = b.rows(); int ldc = c.rows(); 98 99 zgemm_(¬rans,¬rans,&M,&N,&K,(double*)&cdone, 100 const_cast<double*>((const double*)a.data()),&lda, 101 const_cast<double*>((const double*)b.data()),&ldb,(double*)&cdone, 102 (double*)c.data(),&ldc); 103 } 104 105 106 107 #endif 108 109 void matlab_cplx_cplx(const M& ar, const M& ai, const M& br, const M& bi, M& cr, M& ci) 110 { 111 cr.noalias() += ar * br; 112 cr.noalias() -= ai * bi; 113 ci.noalias() += ar * bi; 114 ci.noalias() += ai * br; 115 } 116 117 void matlab_real_cplx(const M& a, const M& br, const M& bi, M& cr, M& ci) 118 { 119 cr.noalias() += a * br; 120 ci.noalias() += a * bi; 121 } 122 123 void matlab_cplx_real(const M& ar, const M& ai, const M& b, M& cr, M& ci) 124 { 125 cr.noalias() += ar * b; 126 ci.noalias() += ai * b; 127 } 128 129 template<typename A, typename B, typename C> 130 EIGEN_DONT_INLINE void gemm(const A& a, const B& b, C& c) 131 { 132 c.noalias() += a * b; 133 } 134 135 int main(int argc, char ** argv) 136 { 137 std::ptrdiff_t l1 = internal::queryL1CacheSize(); 138 std::ptrdiff_t l2 = internal::queryTopLevelCacheSize(); 139 std::cout << "L1 cache size = " << (l1>0 ? l1/1024 : -1) << " KB\n"; 140 std::cout << "L2/L3 cache size = " << (l2>0 ? l2/1024 : -1) << " KB\n"; 141 typedef internal::gebp_traits<Scalar,Scalar> Traits; 142 std::cout << "Register blocking = " << Traits::mr << " x " << Traits::nr << "\n"; 143 144 int rep = 1; // number of repetitions per try 145 int tries = 2; // number of tries, we keep the best 146 147 int s = 2048; 148 int m = s; 149 int n = s; 150 int p = s; 151 int cache_size1=-1, cache_size2=l2, cache_size3 = 0; 152 153 bool need_help = false; 154 for (int i=1; i<argc;) 155 { 156 if(argv[i][0]=='-') 157 { 158 if(argv[i][1]=='s') 159 { 160 ++i; 161 s = atoi(argv[i++]); 162 m = n = p = s; 163 if(argv[i][0]!='-') 164 { 165 n = atoi(argv[i++]); 166 p = atoi(argv[i++]); 167 } 168 } 169 else if(argv[i][1]=='c') 170 { 171 ++i; 172 cache_size1 = atoi(argv[i++]); 173 if(argv[i][0]!='-') 174 { 175 cache_size2 = atoi(argv[i++]); 176 if(argv[i][0]!='-') 177 cache_size3 = atoi(argv[i++]); 178 } 179 } 180 else if(argv[i][1]=='t') 181 { 182 ++i; 183 tries = atoi(argv[i++]); 184 } 185 else if(argv[i][1]=='p') 186 { 187 ++i; 188 rep = atoi(argv[i++]); 189 } 190 } 191 else 192 { 193 need_help = true; 194 break; 195 } 196 } 197 198 if(need_help) 199 { 200 std::cout << argv[0] << " -s <matrix sizes> -c <cache sizes> -t <nb tries> -p <nb repeats>\n"; 201 std::cout << " <matrix sizes> : size\n"; 202 std::cout << " <matrix sizes> : rows columns depth\n"; 203 return 1; 204 } 205 206 #if EIGEN_VERSION_AT_LEAST(3,2,90) 207 if(cache_size1>0) 208 setCpuCacheSizes(cache_size1,cache_size2,cache_size3); 209 #endif 210 211 A a(m,p); a.setRandom(); 212 B b(p,n); b.setRandom(); 213 C c(m,n); c.setOnes(); 214 C rc = c; 215 216 std::cout << "Matrix sizes = " << m << "x" << p << " * " << p << "x" << n << "\n"; 217 std::ptrdiff_t mc(m), nc(n), kc(p); 218 internal::computeProductBlockingSizes<Scalar,Scalar>(kc, mc, nc); 219 std::cout << "blocking size (mc x kc) = " << mc << " x " << kc << "\n"; 220 221 C r = c; 222 223 // check the parallel product is correct 224 #if defined EIGEN_HAS_OPENMP 225 Eigen::initParallel(); 226 int procs = omp_get_max_threads(); 227 if(procs>1) 228 { 229 #ifdef HAVE_BLAS 230 blas_gemm(a,b,r); 231 #else 232 omp_set_num_threads(1); 233 r.noalias() += a * b; 234 omp_set_num_threads(procs); 235 #endif 236 c.noalias() += a * b; 237 if(!r.isApprox(c)) std::cerr << "Warning, your parallel product is crap!\n\n"; 238 } 239 #elif defined HAVE_BLAS 240 blas_gemm(a,b,r); 241 c.noalias() += a * b; 242 if(!r.isApprox(c)) { 243 std::cout << r - c << "\n"; 244 std::cerr << "Warning, your product is crap!\n\n"; 245 } 246 #else 247 if(1.*m*n*p<2000.*2000*2000) 248 { 249 gemm(a,b,c); 250 r.noalias() += a.cast<Scalar>() .lazyProduct( b.cast<Scalar>() ); 251 if(!r.isApprox(c)) { 252 std::cout << r - c << "\n"; 253 std::cerr << "Warning, your product is crap!\n\n"; 254 } 255 } 256 #endif 257 258 #ifdef HAVE_BLAS 259 BenchTimer tblas; 260 c = rc; 261 BENCH(tblas, tries, rep, blas_gemm(a,b,c)); 262 std::cout << "blas cpu " << tblas.best(CPU_TIMER)/rep << "s \t" << (double(m)*n*p*rep*2/tblas.best(CPU_TIMER))*1e-9 << " GFLOPS \t(" << tblas.total(CPU_TIMER) << "s)\n"; 263 std::cout << "blas real " << tblas.best(REAL_TIMER)/rep << "s \t" << (double(m)*n*p*rep*2/tblas.best(REAL_TIMER))*1e-9 << " GFLOPS \t(" << tblas.total(REAL_TIMER) << "s)\n"; 264 #endif 265 266 BenchTimer tmt; 267 c = rc; 268 BENCH(tmt, tries, rep, gemm(a,b,c)); 269 std::cout << "eigen cpu " << tmt.best(CPU_TIMER)/rep << "s \t" << (double(m)*n*p*rep*2/tmt.best(CPU_TIMER))*1e-9 << " GFLOPS \t(" << tmt.total(CPU_TIMER) << "s)\n"; 270 std::cout << "eigen real " << tmt.best(REAL_TIMER)/rep << "s \t" << (double(m)*n*p*rep*2/tmt.best(REAL_TIMER))*1e-9 << " GFLOPS \t(" << tmt.total(REAL_TIMER) << "s)\n"; 271 272 #ifdef EIGEN_HAS_OPENMP 273 if(procs>1) 274 { 275 BenchTimer tmono; 276 omp_set_num_threads(1); 277 Eigen::setNbThreads(1); 278 c = rc; 279 BENCH(tmono, tries, rep, gemm(a,b,c)); 280 std::cout << "eigen mono cpu " << tmono.best(CPU_TIMER)/rep << "s \t" << (double(m)*n*p*rep*2/tmono.best(CPU_TIMER))*1e-9 << " GFLOPS \t(" << tmono.total(CPU_TIMER) << "s)\n"; 281 std::cout << "eigen mono real " << tmono.best(REAL_TIMER)/rep << "s \t" << (double(m)*n*p*rep*2/tmono.best(REAL_TIMER))*1e-9 << " GFLOPS \t(" << tmono.total(REAL_TIMER) << "s)\n"; 282 std::cout << "mt speed up x" << tmono.best(CPU_TIMER) / tmt.best(REAL_TIMER) << " => " << (100.0*tmono.best(CPU_TIMER) / tmt.best(REAL_TIMER))/procs << "%\n"; 283 } 284 #endif 285 286 if(1.*m*n*p<30*30*30) 287 { 288 BenchTimer tmt; 289 c = rc; 290 BENCH(tmt, tries, rep, c.noalias()+=a.lazyProduct(b)); 291 std::cout << "lazy cpu " << tmt.best(CPU_TIMER)/rep << "s \t" << (double(m)*n*p*rep*2/tmt.best(CPU_TIMER))*1e-9 << " GFLOPS \t(" << tmt.total(CPU_TIMER) << "s)\n"; 292 std::cout << "lazy real " << tmt.best(REAL_TIMER)/rep << "s \t" << (double(m)*n*p*rep*2/tmt.best(REAL_TIMER))*1e-9 << " GFLOPS \t(" << tmt.total(REAL_TIMER) << "s)\n"; 293 } 294 295 #ifdef DECOUPLED 296 if((NumTraits<A::Scalar>::IsComplex) && (NumTraits<B::Scalar>::IsComplex)) 297 { 298 M ar(m,p); ar.setRandom(); 299 M ai(m,p); ai.setRandom(); 300 M br(p,n); br.setRandom(); 301 M bi(p,n); bi.setRandom(); 302 M cr(m,n); cr.setRandom(); 303 M ci(m,n); ci.setRandom(); 304 305 BenchTimer t; 306 BENCH(t, tries, rep, matlab_cplx_cplx(ar,ai,br,bi,cr,ci)); 307 std::cout << "\"matlab\" cpu " << t.best(CPU_TIMER)/rep << "s \t" << (double(m)*n*p*rep*2/t.best(CPU_TIMER))*1e-9 << " GFLOPS \t(" << t.total(CPU_TIMER) << "s)\n"; 308 std::cout << "\"matlab\" real " << t.best(REAL_TIMER)/rep << "s \t" << (double(m)*n*p*rep*2/t.best(REAL_TIMER))*1e-9 << " GFLOPS \t(" << t.total(REAL_TIMER) << "s)\n"; 309 } 310 if((!NumTraits<A::Scalar>::IsComplex) && (NumTraits<B::Scalar>::IsComplex)) 311 { 312 M a(m,p); a.setRandom(); 313 M br(p,n); br.setRandom(); 314 M bi(p,n); bi.setRandom(); 315 M cr(m,n); cr.setRandom(); 316 M ci(m,n); ci.setRandom(); 317 318 BenchTimer t; 319 BENCH(t, tries, rep, matlab_real_cplx(a,br,bi,cr,ci)); 320 std::cout << "\"matlab\" cpu " << t.best(CPU_TIMER)/rep << "s \t" << (double(m)*n*p*rep*2/t.best(CPU_TIMER))*1e-9 << " GFLOPS \t(" << t.total(CPU_TIMER) << "s)\n"; 321 std::cout << "\"matlab\" real " << t.best(REAL_TIMER)/rep << "s \t" << (double(m)*n*p*rep*2/t.best(REAL_TIMER))*1e-9 << " GFLOPS \t(" << t.total(REAL_TIMER) << "s)\n"; 322 } 323 if((NumTraits<A::Scalar>::IsComplex) && (!NumTraits<B::Scalar>::IsComplex)) 324 { 325 M ar(m,p); ar.setRandom(); 326 M ai(m,p); ai.setRandom(); 327 M b(p,n); b.setRandom(); 328 M cr(m,n); cr.setRandom(); 329 M ci(m,n); ci.setRandom(); 330 331 BenchTimer t; 332 BENCH(t, tries, rep, matlab_cplx_real(ar,ai,b,cr,ci)); 333 std::cout << "\"matlab\" cpu " << t.best(CPU_TIMER)/rep << "s \t" << (double(m)*n*p*rep*2/t.best(CPU_TIMER))*1e-9 << " GFLOPS \t(" << t.total(CPU_TIMER) << "s)\n"; 334 std::cout << "\"matlab\" real " << t.best(REAL_TIMER)/rep << "s \t" << (double(m)*n*p*rep*2/t.best(REAL_TIMER))*1e-9 << " GFLOPS \t(" << t.total(REAL_TIMER) << "s)\n"; 335 } 336 #endif 337 338 return 0; 339 } 340 341