Home | History | Annotate | Download | only in CodeGen
      1 //===-- PhiElimination.cpp - Eliminate PHI nodes by inserting copies ------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This pass eliminates machine instruction PHI nodes by inserting copy
     11 // instructions.  This destroys SSA information, but is the desired input for
     12 // some register allocators.
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 #include "PHIEliminationUtils.h"
     17 #include "llvm/ADT/STLExtras.h"
     18 #include "llvm/ADT/SmallPtrSet.h"
     19 #include "llvm/ADT/Statistic.h"
     20 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
     21 #include "llvm/CodeGen/LiveVariables.h"
     22 #include "llvm/CodeGen/MachineDominators.h"
     23 #include "llvm/CodeGen/MachineInstr.h"
     24 #include "llvm/CodeGen/MachineInstrBuilder.h"
     25 #include "llvm/CodeGen/MachineLoopInfo.h"
     26 #include "llvm/CodeGen/MachineRegisterInfo.h"
     27 #include "llvm/CodeGen/Passes.h"
     28 #include "llvm/IR/Function.h"
     29 #include "llvm/Support/CommandLine.h"
     30 #include "llvm/Support/Debug.h"
     31 #include "llvm/Support/raw_ostream.h"
     32 #include "llvm/Target/TargetInstrInfo.h"
     33 #include "llvm/Target/TargetSubtargetInfo.h"
     34 #include <algorithm>
     35 using namespace llvm;
     36 
     37 #define DEBUG_TYPE "phielim"
     38 
     39 static cl::opt<bool>
     40 DisableEdgeSplitting("disable-phi-elim-edge-splitting", cl::init(false),
     41                      cl::Hidden, cl::desc("Disable critical edge splitting "
     42                                           "during PHI elimination"));
     43 
     44 static cl::opt<bool>
     45 SplitAllCriticalEdges("phi-elim-split-all-critical-edges", cl::init(false),
     46                       cl::Hidden, cl::desc("Split all critical edges during "
     47                                            "PHI elimination"));
     48 
     49 static cl::opt<bool> NoPhiElimLiveOutEarlyExit(
     50     "no-phi-elim-live-out-early-exit", cl::init(false), cl::Hidden,
     51     cl::desc("Do not use an early exit if isLiveOutPastPHIs returns true."));
     52 
     53 namespace {
     54   class PHIElimination : public MachineFunctionPass {
     55     MachineRegisterInfo *MRI; // Machine register information
     56     LiveVariables *LV;
     57     LiveIntervals *LIS;
     58 
     59   public:
     60     static char ID; // Pass identification, replacement for typeid
     61     PHIElimination() : MachineFunctionPass(ID) {
     62       initializePHIEliminationPass(*PassRegistry::getPassRegistry());
     63     }
     64 
     65     bool runOnMachineFunction(MachineFunction &Fn) override;
     66     void getAnalysisUsage(AnalysisUsage &AU) const override;
     67 
     68   private:
     69     /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions
     70     /// in predecessor basic blocks.
     71     ///
     72     bool EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB);
     73     void LowerPHINode(MachineBasicBlock &MBB,
     74                       MachineBasicBlock::iterator LastPHIIt);
     75 
     76     /// analyzePHINodes - Gather information about the PHI nodes in
     77     /// here. In particular, we want to map the number of uses of a virtual
     78     /// register which is used in a PHI node. We map that to the BB the
     79     /// vreg is coming from. This is used later to determine when the vreg
     80     /// is killed in the BB.
     81     ///
     82     void analyzePHINodes(const MachineFunction& Fn);
     83 
     84     /// Split critical edges where necessary for good coalescer performance.
     85     bool SplitPHIEdges(MachineFunction &MF, MachineBasicBlock &MBB,
     86                        MachineLoopInfo *MLI);
     87 
     88     // These functions are temporary abstractions around LiveVariables and
     89     // LiveIntervals, so they can go away when LiveVariables does.
     90     bool isLiveIn(unsigned Reg, const MachineBasicBlock *MBB);
     91     bool isLiveOutPastPHIs(unsigned Reg, const MachineBasicBlock *MBB);
     92 
     93     typedef std::pair<unsigned, unsigned> BBVRegPair;
     94     typedef DenseMap<BBVRegPair, unsigned> VRegPHIUse;
     95 
     96     VRegPHIUse VRegPHIUseCount;
     97 
     98     // Defs of PHI sources which are implicit_def.
     99     SmallPtrSet<MachineInstr*, 4> ImpDefs;
    100 
    101     // Map reusable lowered PHI node -> incoming join register.
    102     typedef DenseMap<MachineInstr*, unsigned,
    103                      MachineInstrExpressionTrait> LoweredPHIMap;
    104     LoweredPHIMap LoweredPHIs;
    105   };
    106 }
    107 
    108 STATISTIC(NumLowered, "Number of phis lowered");
    109 STATISTIC(NumCriticalEdgesSplit, "Number of critical edges split");
    110 STATISTIC(NumReused, "Number of reused lowered phis");
    111 
    112 char PHIElimination::ID = 0;
    113 char& llvm::PHIEliminationID = PHIElimination::ID;
    114 
    115 INITIALIZE_PASS_BEGIN(PHIElimination, "phi-node-elimination",
    116                       "Eliminate PHI nodes for register allocation",
    117                       false, false)
    118 INITIALIZE_PASS_DEPENDENCY(LiveVariables)
    119 INITIALIZE_PASS_END(PHIElimination, "phi-node-elimination",
    120                     "Eliminate PHI nodes for register allocation", false, false)
    121 
    122 void PHIElimination::getAnalysisUsage(AnalysisUsage &AU) const {
    123   AU.addUsedIfAvailable<LiveVariables>();
    124   AU.addPreserved<LiveVariables>();
    125   AU.addPreserved<SlotIndexes>();
    126   AU.addPreserved<LiveIntervals>();
    127   AU.addPreserved<MachineDominatorTree>();
    128   AU.addPreserved<MachineLoopInfo>();
    129   MachineFunctionPass::getAnalysisUsage(AU);
    130 }
    131 
    132 bool PHIElimination::runOnMachineFunction(MachineFunction &MF) {
    133   MRI = &MF.getRegInfo();
    134   LV = getAnalysisIfAvailable<LiveVariables>();
    135   LIS = getAnalysisIfAvailable<LiveIntervals>();
    136 
    137   bool Changed = false;
    138 
    139   // This pass takes the function out of SSA form.
    140   MRI->leaveSSA();
    141 
    142   // Split critical edges to help the coalescer. This does not yet support
    143   // updating LiveIntervals, so we disable it.
    144   if (!DisableEdgeSplitting && (LV || LIS)) {
    145     MachineLoopInfo *MLI = getAnalysisIfAvailable<MachineLoopInfo>();
    146     for (auto &MBB : MF)
    147       Changed |= SplitPHIEdges(MF, MBB, MLI);
    148   }
    149 
    150   // Populate VRegPHIUseCount
    151   analyzePHINodes(MF);
    152 
    153   // Eliminate PHI instructions by inserting copies into predecessor blocks.
    154   for (auto &MBB : MF)
    155     Changed |= EliminatePHINodes(MF, MBB);
    156 
    157   // Remove dead IMPLICIT_DEF instructions.
    158   for (MachineInstr *DefMI : ImpDefs) {
    159     unsigned DefReg = DefMI->getOperand(0).getReg();
    160     if (MRI->use_nodbg_empty(DefReg)) {
    161       if (LIS)
    162         LIS->RemoveMachineInstrFromMaps(*DefMI);
    163       DefMI->eraseFromParent();
    164     }
    165   }
    166 
    167   // Clean up the lowered PHI instructions.
    168   for (auto &I : LoweredPHIs) {
    169     if (LIS)
    170       LIS->RemoveMachineInstrFromMaps(*I.first);
    171     MF.DeleteMachineInstr(I.first);
    172   }
    173 
    174   LoweredPHIs.clear();
    175   ImpDefs.clear();
    176   VRegPHIUseCount.clear();
    177 
    178   return Changed;
    179 }
    180 
    181 /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in
    182 /// predecessor basic blocks.
    183 ///
    184 bool PHIElimination::EliminatePHINodes(MachineFunction &MF,
    185                                              MachineBasicBlock &MBB) {
    186   if (MBB.empty() || !MBB.front().isPHI())
    187     return false;   // Quick exit for basic blocks without PHIs.
    188 
    189   // Get an iterator to the first instruction after the last PHI node (this may
    190   // also be the end of the basic block).
    191   MachineBasicBlock::iterator LastPHIIt =
    192     std::prev(MBB.SkipPHIsAndLabels(MBB.begin()));
    193 
    194   while (MBB.front().isPHI())
    195     LowerPHINode(MBB, LastPHIIt);
    196 
    197   return true;
    198 }
    199 
    200 /// isImplicitlyDefined - Return true if all defs of VirtReg are implicit-defs.
    201 /// This includes registers with no defs.
    202 static bool isImplicitlyDefined(unsigned VirtReg,
    203                                 const MachineRegisterInfo *MRI) {
    204   for (MachineInstr &DI : MRI->def_instructions(VirtReg))
    205     if (!DI.isImplicitDef())
    206       return false;
    207   return true;
    208 }
    209 
    210 /// isSourceDefinedByImplicitDef - Return true if all sources of the phi node
    211 /// are implicit_def's.
    212 static bool isSourceDefinedByImplicitDef(const MachineInstr *MPhi,
    213                                          const MachineRegisterInfo *MRI) {
    214   for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2)
    215     if (!isImplicitlyDefined(MPhi->getOperand(i).getReg(), MRI))
    216       return false;
    217   return true;
    218 }
    219 
    220 
    221 /// LowerPHINode - Lower the PHI node at the top of the specified block,
    222 ///
    223 void PHIElimination::LowerPHINode(MachineBasicBlock &MBB,
    224                                   MachineBasicBlock::iterator LastPHIIt) {
    225   ++NumLowered;
    226 
    227   MachineBasicBlock::iterator AfterPHIsIt = std::next(LastPHIIt);
    228 
    229   // Unlink the PHI node from the basic block, but don't delete the PHI yet.
    230   MachineInstr *MPhi = MBB.remove(&*MBB.begin());
    231 
    232   unsigned NumSrcs = (MPhi->getNumOperands() - 1) / 2;
    233   unsigned DestReg = MPhi->getOperand(0).getReg();
    234   assert(MPhi->getOperand(0).getSubReg() == 0 && "Can't handle sub-reg PHIs");
    235   bool isDead = MPhi->getOperand(0).isDead();
    236 
    237   // Create a new register for the incoming PHI arguments.
    238   MachineFunction &MF = *MBB.getParent();
    239   unsigned IncomingReg = 0;
    240   bool reusedIncoming = false;  // Is IncomingReg reused from an earlier PHI?
    241 
    242   // Insert a register to register copy at the top of the current block (but
    243   // after any remaining phi nodes) which copies the new incoming register
    244   // into the phi node destination.
    245   const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
    246   if (isSourceDefinedByImplicitDef(MPhi, MRI))
    247     // If all sources of a PHI node are implicit_def, just emit an
    248     // implicit_def instead of a copy.
    249     BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
    250             TII->get(TargetOpcode::IMPLICIT_DEF), DestReg);
    251   else {
    252     // Can we reuse an earlier PHI node? This only happens for critical edges,
    253     // typically those created by tail duplication.
    254     unsigned &entry = LoweredPHIs[MPhi];
    255     if (entry) {
    256       // An identical PHI node was already lowered. Reuse the incoming register.
    257       IncomingReg = entry;
    258       reusedIncoming = true;
    259       ++NumReused;
    260       DEBUG(dbgs() << "Reusing " << PrintReg(IncomingReg) << " for " << *MPhi);
    261     } else {
    262       const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(DestReg);
    263       entry = IncomingReg = MF.getRegInfo().createVirtualRegister(RC);
    264     }
    265     BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
    266             TII->get(TargetOpcode::COPY), DestReg)
    267       .addReg(IncomingReg);
    268   }
    269 
    270   // Update live variable information if there is any.
    271   if (LV) {
    272     MachineInstr &PHICopy = *std::prev(AfterPHIsIt);
    273 
    274     if (IncomingReg) {
    275       LiveVariables::VarInfo &VI = LV->getVarInfo(IncomingReg);
    276 
    277       // Increment use count of the newly created virtual register.
    278       LV->setPHIJoin(IncomingReg);
    279 
    280       // When we are reusing the incoming register, it may already have been
    281       // killed in this block. The old kill will also have been inserted at
    282       // AfterPHIsIt, so it appears before the current PHICopy.
    283       if (reusedIncoming)
    284         if (MachineInstr *OldKill = VI.findKill(&MBB)) {
    285           DEBUG(dbgs() << "Remove old kill from " << *OldKill);
    286           LV->removeVirtualRegisterKilled(IncomingReg, *OldKill);
    287           DEBUG(MBB.dump());
    288         }
    289 
    290       // Add information to LiveVariables to know that the incoming value is
    291       // killed.  Note that because the value is defined in several places (once
    292       // each for each incoming block), the "def" block and instruction fields
    293       // for the VarInfo is not filled in.
    294       LV->addVirtualRegisterKilled(IncomingReg, PHICopy);
    295     }
    296 
    297     // Since we are going to be deleting the PHI node, if it is the last use of
    298     // any registers, or if the value itself is dead, we need to move this
    299     // information over to the new copy we just inserted.
    300     LV->removeVirtualRegistersKilled(*MPhi);
    301 
    302     // If the result is dead, update LV.
    303     if (isDead) {
    304       LV->addVirtualRegisterDead(DestReg, PHICopy);
    305       LV->removeVirtualRegisterDead(DestReg, *MPhi);
    306     }
    307   }
    308 
    309   // Update LiveIntervals for the new copy or implicit def.
    310   if (LIS) {
    311     SlotIndex DestCopyIndex =
    312         LIS->InsertMachineInstrInMaps(*std::prev(AfterPHIsIt));
    313 
    314     SlotIndex MBBStartIndex = LIS->getMBBStartIdx(&MBB);
    315     if (IncomingReg) {
    316       // Add the region from the beginning of MBB to the copy instruction to
    317       // IncomingReg's live interval.
    318       LiveInterval &IncomingLI = LIS->createEmptyInterval(IncomingReg);
    319       VNInfo *IncomingVNI = IncomingLI.getVNInfoAt(MBBStartIndex);
    320       if (!IncomingVNI)
    321         IncomingVNI = IncomingLI.getNextValue(MBBStartIndex,
    322                                               LIS->getVNInfoAllocator());
    323       IncomingLI.addSegment(LiveInterval::Segment(MBBStartIndex,
    324                                                   DestCopyIndex.getRegSlot(),
    325                                                   IncomingVNI));
    326     }
    327 
    328     LiveInterval &DestLI = LIS->getInterval(DestReg);
    329     assert(DestLI.begin() != DestLI.end() &&
    330            "PHIs should have nonempty LiveIntervals.");
    331     if (DestLI.endIndex().isDead()) {
    332       // A dead PHI's live range begins and ends at the start of the MBB, but
    333       // the lowered copy, which will still be dead, needs to begin and end at
    334       // the copy instruction.
    335       VNInfo *OrigDestVNI = DestLI.getVNInfoAt(MBBStartIndex);
    336       assert(OrigDestVNI && "PHI destination should be live at block entry.");
    337       DestLI.removeSegment(MBBStartIndex, MBBStartIndex.getDeadSlot());
    338       DestLI.createDeadDef(DestCopyIndex.getRegSlot(),
    339                            LIS->getVNInfoAllocator());
    340       DestLI.removeValNo(OrigDestVNI);
    341     } else {
    342       // Otherwise, remove the region from the beginning of MBB to the copy
    343       // instruction from DestReg's live interval.
    344       DestLI.removeSegment(MBBStartIndex, DestCopyIndex.getRegSlot());
    345       VNInfo *DestVNI = DestLI.getVNInfoAt(DestCopyIndex.getRegSlot());
    346       assert(DestVNI && "PHI destination should be live at its definition.");
    347       DestVNI->def = DestCopyIndex.getRegSlot();
    348     }
    349   }
    350 
    351   // Adjust the VRegPHIUseCount map to account for the removal of this PHI node.
    352   for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2)
    353     --VRegPHIUseCount[BBVRegPair(MPhi->getOperand(i+1).getMBB()->getNumber(),
    354                                  MPhi->getOperand(i).getReg())];
    355 
    356   // Now loop over all of the incoming arguments, changing them to copy into the
    357   // IncomingReg register in the corresponding predecessor basic block.
    358   SmallPtrSet<MachineBasicBlock*, 8> MBBsInsertedInto;
    359   for (int i = NumSrcs - 1; i >= 0; --i) {
    360     unsigned SrcReg = MPhi->getOperand(i*2+1).getReg();
    361     unsigned SrcSubReg = MPhi->getOperand(i*2+1).getSubReg();
    362     bool SrcUndef = MPhi->getOperand(i*2+1).isUndef() ||
    363       isImplicitlyDefined(SrcReg, MRI);
    364     assert(TargetRegisterInfo::isVirtualRegister(SrcReg) &&
    365            "Machine PHI Operands must all be virtual registers!");
    366 
    367     // Get the MachineBasicBlock equivalent of the BasicBlock that is the source
    368     // path the PHI.
    369     MachineBasicBlock &opBlock = *MPhi->getOperand(i*2+2).getMBB();
    370 
    371     // Check to make sure we haven't already emitted the copy for this block.
    372     // This can happen because PHI nodes may have multiple entries for the same
    373     // basic block.
    374     if (!MBBsInsertedInto.insert(&opBlock).second)
    375       continue;  // If the copy has already been emitted, we're done.
    376 
    377     // Find a safe location to insert the copy, this may be the first terminator
    378     // in the block (or end()).
    379     MachineBasicBlock::iterator InsertPos =
    380       findPHICopyInsertPoint(&opBlock, &MBB, SrcReg);
    381 
    382     // Insert the copy.
    383     MachineInstr *NewSrcInstr = nullptr;
    384     if (!reusedIncoming && IncomingReg) {
    385       if (SrcUndef) {
    386         // The source register is undefined, so there is no need for a real
    387         // COPY, but we still need to ensure joint dominance by defs.
    388         // Insert an IMPLICIT_DEF instruction.
    389         NewSrcInstr = BuildMI(opBlock, InsertPos, MPhi->getDebugLoc(),
    390                               TII->get(TargetOpcode::IMPLICIT_DEF),
    391                               IncomingReg);
    392 
    393         // Clean up the old implicit-def, if there even was one.
    394         if (MachineInstr *DefMI = MRI->getVRegDef(SrcReg))
    395           if (DefMI->isImplicitDef())
    396             ImpDefs.insert(DefMI);
    397       } else {
    398         NewSrcInstr = BuildMI(opBlock, InsertPos, MPhi->getDebugLoc(),
    399                             TII->get(TargetOpcode::COPY), IncomingReg)
    400                         .addReg(SrcReg, 0, SrcSubReg);
    401       }
    402     }
    403 
    404     // We only need to update the LiveVariables kill of SrcReg if this was the
    405     // last PHI use of SrcReg to be lowered on this CFG edge and it is not live
    406     // out of the predecessor. We can also ignore undef sources.
    407     if (LV && !SrcUndef &&
    408         !VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)] &&
    409         !LV->isLiveOut(SrcReg, opBlock)) {
    410       // We want to be able to insert a kill of the register if this PHI (aka,
    411       // the copy we just inserted) is the last use of the source value. Live
    412       // variable analysis conservatively handles this by saying that the value
    413       // is live until the end of the block the PHI entry lives in. If the value
    414       // really is dead at the PHI copy, there will be no successor blocks which
    415       // have the value live-in.
    416 
    417       // Okay, if we now know that the value is not live out of the block, we
    418       // can add a kill marker in this block saying that it kills the incoming
    419       // value!
    420 
    421       // In our final twist, we have to decide which instruction kills the
    422       // register.  In most cases this is the copy, however, terminator
    423       // instructions at the end of the block may also use the value. In this
    424       // case, we should mark the last such terminator as being the killing
    425       // block, not the copy.
    426       MachineBasicBlock::iterator KillInst = opBlock.end();
    427       MachineBasicBlock::iterator FirstTerm = opBlock.getFirstTerminator();
    428       for (MachineBasicBlock::iterator Term = FirstTerm;
    429           Term != opBlock.end(); ++Term) {
    430         if (Term->readsRegister(SrcReg))
    431           KillInst = Term;
    432       }
    433 
    434       if (KillInst == opBlock.end()) {
    435         // No terminator uses the register.
    436 
    437         if (reusedIncoming || !IncomingReg) {
    438           // We may have to rewind a bit if we didn't insert a copy this time.
    439           KillInst = FirstTerm;
    440           while (KillInst != opBlock.begin()) {
    441             --KillInst;
    442             if (KillInst->isDebugValue())
    443               continue;
    444             if (KillInst->readsRegister(SrcReg))
    445               break;
    446           }
    447         } else {
    448           // We just inserted this copy.
    449           KillInst = std::prev(InsertPos);
    450         }
    451       }
    452       assert(KillInst->readsRegister(SrcReg) && "Cannot find kill instruction");
    453 
    454       // Finally, mark it killed.
    455       LV->addVirtualRegisterKilled(SrcReg, *KillInst);
    456 
    457       // This vreg no longer lives all of the way through opBlock.
    458       unsigned opBlockNum = opBlock.getNumber();
    459       LV->getVarInfo(SrcReg).AliveBlocks.reset(opBlockNum);
    460     }
    461 
    462     if (LIS) {
    463       if (NewSrcInstr) {
    464         LIS->InsertMachineInstrInMaps(*NewSrcInstr);
    465         LIS->addSegmentToEndOfBlock(IncomingReg, *NewSrcInstr);
    466       }
    467 
    468       if (!SrcUndef &&
    469           !VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)]) {
    470         LiveInterval &SrcLI = LIS->getInterval(SrcReg);
    471 
    472         bool isLiveOut = false;
    473         for (MachineBasicBlock::succ_iterator SI = opBlock.succ_begin(),
    474              SE = opBlock.succ_end(); SI != SE; ++SI) {
    475           SlotIndex startIdx = LIS->getMBBStartIdx(*SI);
    476           VNInfo *VNI = SrcLI.getVNInfoAt(startIdx);
    477 
    478           // Definitions by other PHIs are not truly live-in for our purposes.
    479           if (VNI && VNI->def != startIdx) {
    480             isLiveOut = true;
    481             break;
    482           }
    483         }
    484 
    485         if (!isLiveOut) {
    486           MachineBasicBlock::iterator KillInst = opBlock.end();
    487           MachineBasicBlock::iterator FirstTerm = opBlock.getFirstTerminator();
    488           for (MachineBasicBlock::iterator Term = FirstTerm;
    489               Term != opBlock.end(); ++Term) {
    490             if (Term->readsRegister(SrcReg))
    491               KillInst = Term;
    492           }
    493 
    494           if (KillInst == opBlock.end()) {
    495             // No terminator uses the register.
    496 
    497             if (reusedIncoming || !IncomingReg) {
    498               // We may have to rewind a bit if we didn't just insert a copy.
    499               KillInst = FirstTerm;
    500               while (KillInst != opBlock.begin()) {
    501                 --KillInst;
    502                 if (KillInst->isDebugValue())
    503                   continue;
    504                 if (KillInst->readsRegister(SrcReg))
    505                   break;
    506               }
    507             } else {
    508               // We just inserted this copy.
    509               KillInst = std::prev(InsertPos);
    510             }
    511           }
    512           assert(KillInst->readsRegister(SrcReg) &&
    513                  "Cannot find kill instruction");
    514 
    515           SlotIndex LastUseIndex = LIS->getInstructionIndex(*KillInst);
    516           SrcLI.removeSegment(LastUseIndex.getRegSlot(),
    517                               LIS->getMBBEndIdx(&opBlock));
    518         }
    519       }
    520     }
    521   }
    522 
    523   // Really delete the PHI instruction now, if it is not in the LoweredPHIs map.
    524   if (reusedIncoming || !IncomingReg) {
    525     if (LIS)
    526       LIS->RemoveMachineInstrFromMaps(*MPhi);
    527     MF.DeleteMachineInstr(MPhi);
    528   }
    529 }
    530 
    531 /// analyzePHINodes - Gather information about the PHI nodes in here. In
    532 /// particular, we want to map the number of uses of a virtual register which is
    533 /// used in a PHI node. We map that to the BB the vreg is coming from. This is
    534 /// used later to determine when the vreg is killed in the BB.
    535 ///
    536 void PHIElimination::analyzePHINodes(const MachineFunction& MF) {
    537   for (const auto &MBB : MF)
    538     for (const auto &BBI : MBB) {
    539       if (!BBI.isPHI())
    540         break;
    541       for (unsigned i = 1, e = BBI.getNumOperands(); i != e; i += 2)
    542         ++VRegPHIUseCount[BBVRegPair(BBI.getOperand(i+1).getMBB()->getNumber(),
    543                                      BBI.getOperand(i).getReg())];
    544     }
    545 }
    546 
    547 bool PHIElimination::SplitPHIEdges(MachineFunction &MF,
    548                                    MachineBasicBlock &MBB,
    549                                    MachineLoopInfo *MLI) {
    550   if (MBB.empty() || !MBB.front().isPHI() || MBB.isEHPad())
    551     return false;   // Quick exit for basic blocks without PHIs.
    552 
    553   const MachineLoop *CurLoop = MLI ? MLI->getLoopFor(&MBB) : nullptr;
    554   bool IsLoopHeader = CurLoop && &MBB == CurLoop->getHeader();
    555 
    556   bool Changed = false;
    557   for (MachineBasicBlock::iterator BBI = MBB.begin(), BBE = MBB.end();
    558        BBI != BBE && BBI->isPHI(); ++BBI) {
    559     for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) {
    560       unsigned Reg = BBI->getOperand(i).getReg();
    561       MachineBasicBlock *PreMBB = BBI->getOperand(i+1).getMBB();
    562       // Is there a critical edge from PreMBB to MBB?
    563       if (PreMBB->succ_size() == 1)
    564         continue;
    565 
    566       // Avoid splitting backedges of loops. It would introduce small
    567       // out-of-line blocks into the loop which is very bad for code placement.
    568       if (PreMBB == &MBB && !SplitAllCriticalEdges)
    569         continue;
    570       const MachineLoop *PreLoop = MLI ? MLI->getLoopFor(PreMBB) : nullptr;
    571       if (IsLoopHeader && PreLoop == CurLoop && !SplitAllCriticalEdges)
    572         continue;
    573 
    574       // LV doesn't consider a phi use live-out, so isLiveOut only returns true
    575       // when the source register is live-out for some other reason than a phi
    576       // use. That means the copy we will insert in PreMBB won't be a kill, and
    577       // there is a risk it may not be coalesced away.
    578       //
    579       // If the copy would be a kill, there is no need to split the edge.
    580       bool ShouldSplit = isLiveOutPastPHIs(Reg, PreMBB);
    581       if (!ShouldSplit && !NoPhiElimLiveOutEarlyExit)
    582         continue;
    583       if (ShouldSplit) {
    584         DEBUG(dbgs() << PrintReg(Reg) << " live-out before critical edge BB#"
    585                      << PreMBB->getNumber() << " -> BB#" << MBB.getNumber()
    586                      << ": " << *BBI);
    587       }
    588 
    589       // If Reg is not live-in to MBB, it means it must be live-in to some
    590       // other PreMBB successor, and we can avoid the interference by splitting
    591       // the edge.
    592       //
    593       // If Reg *is* live-in to MBB, the interference is inevitable and a copy
    594       // is likely to be left after coalescing. If we are looking at a loop
    595       // exiting edge, split it so we won't insert code in the loop, otherwise
    596       // don't bother.
    597       ShouldSplit = ShouldSplit && !isLiveIn(Reg, &MBB);
    598 
    599       // Check for a loop exiting edge.
    600       if (!ShouldSplit && CurLoop != PreLoop) {
    601         DEBUG({
    602           dbgs() << "Split wouldn't help, maybe avoid loop copies?\n";
    603           if (PreLoop) dbgs() << "PreLoop: " << *PreLoop;
    604           if (CurLoop) dbgs() << "CurLoop: " << *CurLoop;
    605         });
    606         // This edge could be entering a loop, exiting a loop, or it could be
    607         // both: Jumping directly form one loop to the header of a sibling
    608         // loop.
    609         // Split unless this edge is entering CurLoop from an outer loop.
    610         ShouldSplit = PreLoop && !PreLoop->contains(CurLoop);
    611       }
    612       if (!ShouldSplit && !SplitAllCriticalEdges)
    613         continue;
    614       if (!PreMBB->SplitCriticalEdge(&MBB, *this)) {
    615         DEBUG(dbgs() << "Failed to split critical edge.\n");
    616         continue;
    617       }
    618       Changed = true;
    619       ++NumCriticalEdgesSplit;
    620     }
    621   }
    622   return Changed;
    623 }
    624 
    625 bool PHIElimination::isLiveIn(unsigned Reg, const MachineBasicBlock *MBB) {
    626   assert((LV || LIS) &&
    627          "isLiveIn() requires either LiveVariables or LiveIntervals");
    628   if (LIS)
    629     return LIS->isLiveInToMBB(LIS->getInterval(Reg), MBB);
    630   else
    631     return LV->isLiveIn(Reg, *MBB);
    632 }
    633 
    634 bool PHIElimination::isLiveOutPastPHIs(unsigned Reg,
    635                                        const MachineBasicBlock *MBB) {
    636   assert((LV || LIS) &&
    637          "isLiveOutPastPHIs() requires either LiveVariables or LiveIntervals");
    638   // LiveVariables considers uses in PHIs to be in the predecessor basic block,
    639   // so that a register used only in a PHI is not live out of the block. In
    640   // contrast, LiveIntervals considers uses in PHIs to be on the edge rather than
    641   // in the predecessor basic block, so that a register used only in a PHI is live
    642   // out of the block.
    643   if (LIS) {
    644     const LiveInterval &LI = LIS->getInterval(Reg);
    645     for (const MachineBasicBlock *SI : MBB->successors())
    646       if (LI.liveAt(LIS->getMBBStartIdx(SI)))
    647         return true;
    648     return false;
    649   } else {
    650     return LV->isLiveOut(Reg, *MBB);
    651   }
    652 }
    653