1 //===-- PhiElimination.cpp - Eliminate PHI nodes by inserting copies ------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass eliminates machine instruction PHI nodes by inserting copy 11 // instructions. This destroys SSA information, but is the desired input for 12 // some register allocators. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "PHIEliminationUtils.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 21 #include "llvm/CodeGen/LiveVariables.h" 22 #include "llvm/CodeGen/MachineDominators.h" 23 #include "llvm/CodeGen/MachineInstr.h" 24 #include "llvm/CodeGen/MachineInstrBuilder.h" 25 #include "llvm/CodeGen/MachineLoopInfo.h" 26 #include "llvm/CodeGen/MachineRegisterInfo.h" 27 #include "llvm/CodeGen/Passes.h" 28 #include "llvm/IR/Function.h" 29 #include "llvm/Support/CommandLine.h" 30 #include "llvm/Support/Debug.h" 31 #include "llvm/Support/raw_ostream.h" 32 #include "llvm/Target/TargetInstrInfo.h" 33 #include "llvm/Target/TargetSubtargetInfo.h" 34 #include <algorithm> 35 using namespace llvm; 36 37 #define DEBUG_TYPE "phielim" 38 39 static cl::opt<bool> 40 DisableEdgeSplitting("disable-phi-elim-edge-splitting", cl::init(false), 41 cl::Hidden, cl::desc("Disable critical edge splitting " 42 "during PHI elimination")); 43 44 static cl::opt<bool> 45 SplitAllCriticalEdges("phi-elim-split-all-critical-edges", cl::init(false), 46 cl::Hidden, cl::desc("Split all critical edges during " 47 "PHI elimination")); 48 49 static cl::opt<bool> NoPhiElimLiveOutEarlyExit( 50 "no-phi-elim-live-out-early-exit", cl::init(false), cl::Hidden, 51 cl::desc("Do not use an early exit if isLiveOutPastPHIs returns true.")); 52 53 namespace { 54 class PHIElimination : public MachineFunctionPass { 55 MachineRegisterInfo *MRI; // Machine register information 56 LiveVariables *LV; 57 LiveIntervals *LIS; 58 59 public: 60 static char ID; // Pass identification, replacement for typeid 61 PHIElimination() : MachineFunctionPass(ID) { 62 initializePHIEliminationPass(*PassRegistry::getPassRegistry()); 63 } 64 65 bool runOnMachineFunction(MachineFunction &Fn) override; 66 void getAnalysisUsage(AnalysisUsage &AU) const override; 67 68 private: 69 /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions 70 /// in predecessor basic blocks. 71 /// 72 bool EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB); 73 void LowerPHINode(MachineBasicBlock &MBB, 74 MachineBasicBlock::iterator LastPHIIt); 75 76 /// analyzePHINodes - Gather information about the PHI nodes in 77 /// here. In particular, we want to map the number of uses of a virtual 78 /// register which is used in a PHI node. We map that to the BB the 79 /// vreg is coming from. This is used later to determine when the vreg 80 /// is killed in the BB. 81 /// 82 void analyzePHINodes(const MachineFunction& Fn); 83 84 /// Split critical edges where necessary for good coalescer performance. 85 bool SplitPHIEdges(MachineFunction &MF, MachineBasicBlock &MBB, 86 MachineLoopInfo *MLI); 87 88 // These functions are temporary abstractions around LiveVariables and 89 // LiveIntervals, so they can go away when LiveVariables does. 90 bool isLiveIn(unsigned Reg, const MachineBasicBlock *MBB); 91 bool isLiveOutPastPHIs(unsigned Reg, const MachineBasicBlock *MBB); 92 93 typedef std::pair<unsigned, unsigned> BBVRegPair; 94 typedef DenseMap<BBVRegPair, unsigned> VRegPHIUse; 95 96 VRegPHIUse VRegPHIUseCount; 97 98 // Defs of PHI sources which are implicit_def. 99 SmallPtrSet<MachineInstr*, 4> ImpDefs; 100 101 // Map reusable lowered PHI node -> incoming join register. 102 typedef DenseMap<MachineInstr*, unsigned, 103 MachineInstrExpressionTrait> LoweredPHIMap; 104 LoweredPHIMap LoweredPHIs; 105 }; 106 } 107 108 STATISTIC(NumLowered, "Number of phis lowered"); 109 STATISTIC(NumCriticalEdgesSplit, "Number of critical edges split"); 110 STATISTIC(NumReused, "Number of reused lowered phis"); 111 112 char PHIElimination::ID = 0; 113 char& llvm::PHIEliminationID = PHIElimination::ID; 114 115 INITIALIZE_PASS_BEGIN(PHIElimination, "phi-node-elimination", 116 "Eliminate PHI nodes for register allocation", 117 false, false) 118 INITIALIZE_PASS_DEPENDENCY(LiveVariables) 119 INITIALIZE_PASS_END(PHIElimination, "phi-node-elimination", 120 "Eliminate PHI nodes for register allocation", false, false) 121 122 void PHIElimination::getAnalysisUsage(AnalysisUsage &AU) const { 123 AU.addUsedIfAvailable<LiveVariables>(); 124 AU.addPreserved<LiveVariables>(); 125 AU.addPreserved<SlotIndexes>(); 126 AU.addPreserved<LiveIntervals>(); 127 AU.addPreserved<MachineDominatorTree>(); 128 AU.addPreserved<MachineLoopInfo>(); 129 MachineFunctionPass::getAnalysisUsage(AU); 130 } 131 132 bool PHIElimination::runOnMachineFunction(MachineFunction &MF) { 133 MRI = &MF.getRegInfo(); 134 LV = getAnalysisIfAvailable<LiveVariables>(); 135 LIS = getAnalysisIfAvailable<LiveIntervals>(); 136 137 bool Changed = false; 138 139 // This pass takes the function out of SSA form. 140 MRI->leaveSSA(); 141 142 // Split critical edges to help the coalescer. This does not yet support 143 // updating LiveIntervals, so we disable it. 144 if (!DisableEdgeSplitting && (LV || LIS)) { 145 MachineLoopInfo *MLI = getAnalysisIfAvailable<MachineLoopInfo>(); 146 for (auto &MBB : MF) 147 Changed |= SplitPHIEdges(MF, MBB, MLI); 148 } 149 150 // Populate VRegPHIUseCount 151 analyzePHINodes(MF); 152 153 // Eliminate PHI instructions by inserting copies into predecessor blocks. 154 for (auto &MBB : MF) 155 Changed |= EliminatePHINodes(MF, MBB); 156 157 // Remove dead IMPLICIT_DEF instructions. 158 for (MachineInstr *DefMI : ImpDefs) { 159 unsigned DefReg = DefMI->getOperand(0).getReg(); 160 if (MRI->use_nodbg_empty(DefReg)) { 161 if (LIS) 162 LIS->RemoveMachineInstrFromMaps(*DefMI); 163 DefMI->eraseFromParent(); 164 } 165 } 166 167 // Clean up the lowered PHI instructions. 168 for (auto &I : LoweredPHIs) { 169 if (LIS) 170 LIS->RemoveMachineInstrFromMaps(*I.first); 171 MF.DeleteMachineInstr(I.first); 172 } 173 174 LoweredPHIs.clear(); 175 ImpDefs.clear(); 176 VRegPHIUseCount.clear(); 177 178 return Changed; 179 } 180 181 /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in 182 /// predecessor basic blocks. 183 /// 184 bool PHIElimination::EliminatePHINodes(MachineFunction &MF, 185 MachineBasicBlock &MBB) { 186 if (MBB.empty() || !MBB.front().isPHI()) 187 return false; // Quick exit for basic blocks without PHIs. 188 189 // Get an iterator to the first instruction after the last PHI node (this may 190 // also be the end of the basic block). 191 MachineBasicBlock::iterator LastPHIIt = 192 std::prev(MBB.SkipPHIsAndLabels(MBB.begin())); 193 194 while (MBB.front().isPHI()) 195 LowerPHINode(MBB, LastPHIIt); 196 197 return true; 198 } 199 200 /// isImplicitlyDefined - Return true if all defs of VirtReg are implicit-defs. 201 /// This includes registers with no defs. 202 static bool isImplicitlyDefined(unsigned VirtReg, 203 const MachineRegisterInfo *MRI) { 204 for (MachineInstr &DI : MRI->def_instructions(VirtReg)) 205 if (!DI.isImplicitDef()) 206 return false; 207 return true; 208 } 209 210 /// isSourceDefinedByImplicitDef - Return true if all sources of the phi node 211 /// are implicit_def's. 212 static bool isSourceDefinedByImplicitDef(const MachineInstr *MPhi, 213 const MachineRegisterInfo *MRI) { 214 for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2) 215 if (!isImplicitlyDefined(MPhi->getOperand(i).getReg(), MRI)) 216 return false; 217 return true; 218 } 219 220 221 /// LowerPHINode - Lower the PHI node at the top of the specified block, 222 /// 223 void PHIElimination::LowerPHINode(MachineBasicBlock &MBB, 224 MachineBasicBlock::iterator LastPHIIt) { 225 ++NumLowered; 226 227 MachineBasicBlock::iterator AfterPHIsIt = std::next(LastPHIIt); 228 229 // Unlink the PHI node from the basic block, but don't delete the PHI yet. 230 MachineInstr *MPhi = MBB.remove(&*MBB.begin()); 231 232 unsigned NumSrcs = (MPhi->getNumOperands() - 1) / 2; 233 unsigned DestReg = MPhi->getOperand(0).getReg(); 234 assert(MPhi->getOperand(0).getSubReg() == 0 && "Can't handle sub-reg PHIs"); 235 bool isDead = MPhi->getOperand(0).isDead(); 236 237 // Create a new register for the incoming PHI arguments. 238 MachineFunction &MF = *MBB.getParent(); 239 unsigned IncomingReg = 0; 240 bool reusedIncoming = false; // Is IncomingReg reused from an earlier PHI? 241 242 // Insert a register to register copy at the top of the current block (but 243 // after any remaining phi nodes) which copies the new incoming register 244 // into the phi node destination. 245 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 246 if (isSourceDefinedByImplicitDef(MPhi, MRI)) 247 // If all sources of a PHI node are implicit_def, just emit an 248 // implicit_def instead of a copy. 249 BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(), 250 TII->get(TargetOpcode::IMPLICIT_DEF), DestReg); 251 else { 252 // Can we reuse an earlier PHI node? This only happens for critical edges, 253 // typically those created by tail duplication. 254 unsigned &entry = LoweredPHIs[MPhi]; 255 if (entry) { 256 // An identical PHI node was already lowered. Reuse the incoming register. 257 IncomingReg = entry; 258 reusedIncoming = true; 259 ++NumReused; 260 DEBUG(dbgs() << "Reusing " << PrintReg(IncomingReg) << " for " << *MPhi); 261 } else { 262 const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(DestReg); 263 entry = IncomingReg = MF.getRegInfo().createVirtualRegister(RC); 264 } 265 BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(), 266 TII->get(TargetOpcode::COPY), DestReg) 267 .addReg(IncomingReg); 268 } 269 270 // Update live variable information if there is any. 271 if (LV) { 272 MachineInstr &PHICopy = *std::prev(AfterPHIsIt); 273 274 if (IncomingReg) { 275 LiveVariables::VarInfo &VI = LV->getVarInfo(IncomingReg); 276 277 // Increment use count of the newly created virtual register. 278 LV->setPHIJoin(IncomingReg); 279 280 // When we are reusing the incoming register, it may already have been 281 // killed in this block. The old kill will also have been inserted at 282 // AfterPHIsIt, so it appears before the current PHICopy. 283 if (reusedIncoming) 284 if (MachineInstr *OldKill = VI.findKill(&MBB)) { 285 DEBUG(dbgs() << "Remove old kill from " << *OldKill); 286 LV->removeVirtualRegisterKilled(IncomingReg, *OldKill); 287 DEBUG(MBB.dump()); 288 } 289 290 // Add information to LiveVariables to know that the incoming value is 291 // killed. Note that because the value is defined in several places (once 292 // each for each incoming block), the "def" block and instruction fields 293 // for the VarInfo is not filled in. 294 LV->addVirtualRegisterKilled(IncomingReg, PHICopy); 295 } 296 297 // Since we are going to be deleting the PHI node, if it is the last use of 298 // any registers, or if the value itself is dead, we need to move this 299 // information over to the new copy we just inserted. 300 LV->removeVirtualRegistersKilled(*MPhi); 301 302 // If the result is dead, update LV. 303 if (isDead) { 304 LV->addVirtualRegisterDead(DestReg, PHICopy); 305 LV->removeVirtualRegisterDead(DestReg, *MPhi); 306 } 307 } 308 309 // Update LiveIntervals for the new copy or implicit def. 310 if (LIS) { 311 SlotIndex DestCopyIndex = 312 LIS->InsertMachineInstrInMaps(*std::prev(AfterPHIsIt)); 313 314 SlotIndex MBBStartIndex = LIS->getMBBStartIdx(&MBB); 315 if (IncomingReg) { 316 // Add the region from the beginning of MBB to the copy instruction to 317 // IncomingReg's live interval. 318 LiveInterval &IncomingLI = LIS->createEmptyInterval(IncomingReg); 319 VNInfo *IncomingVNI = IncomingLI.getVNInfoAt(MBBStartIndex); 320 if (!IncomingVNI) 321 IncomingVNI = IncomingLI.getNextValue(MBBStartIndex, 322 LIS->getVNInfoAllocator()); 323 IncomingLI.addSegment(LiveInterval::Segment(MBBStartIndex, 324 DestCopyIndex.getRegSlot(), 325 IncomingVNI)); 326 } 327 328 LiveInterval &DestLI = LIS->getInterval(DestReg); 329 assert(DestLI.begin() != DestLI.end() && 330 "PHIs should have nonempty LiveIntervals."); 331 if (DestLI.endIndex().isDead()) { 332 // A dead PHI's live range begins and ends at the start of the MBB, but 333 // the lowered copy, which will still be dead, needs to begin and end at 334 // the copy instruction. 335 VNInfo *OrigDestVNI = DestLI.getVNInfoAt(MBBStartIndex); 336 assert(OrigDestVNI && "PHI destination should be live at block entry."); 337 DestLI.removeSegment(MBBStartIndex, MBBStartIndex.getDeadSlot()); 338 DestLI.createDeadDef(DestCopyIndex.getRegSlot(), 339 LIS->getVNInfoAllocator()); 340 DestLI.removeValNo(OrigDestVNI); 341 } else { 342 // Otherwise, remove the region from the beginning of MBB to the copy 343 // instruction from DestReg's live interval. 344 DestLI.removeSegment(MBBStartIndex, DestCopyIndex.getRegSlot()); 345 VNInfo *DestVNI = DestLI.getVNInfoAt(DestCopyIndex.getRegSlot()); 346 assert(DestVNI && "PHI destination should be live at its definition."); 347 DestVNI->def = DestCopyIndex.getRegSlot(); 348 } 349 } 350 351 // Adjust the VRegPHIUseCount map to account for the removal of this PHI node. 352 for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2) 353 --VRegPHIUseCount[BBVRegPair(MPhi->getOperand(i+1).getMBB()->getNumber(), 354 MPhi->getOperand(i).getReg())]; 355 356 // Now loop over all of the incoming arguments, changing them to copy into the 357 // IncomingReg register in the corresponding predecessor basic block. 358 SmallPtrSet<MachineBasicBlock*, 8> MBBsInsertedInto; 359 for (int i = NumSrcs - 1; i >= 0; --i) { 360 unsigned SrcReg = MPhi->getOperand(i*2+1).getReg(); 361 unsigned SrcSubReg = MPhi->getOperand(i*2+1).getSubReg(); 362 bool SrcUndef = MPhi->getOperand(i*2+1).isUndef() || 363 isImplicitlyDefined(SrcReg, MRI); 364 assert(TargetRegisterInfo::isVirtualRegister(SrcReg) && 365 "Machine PHI Operands must all be virtual registers!"); 366 367 // Get the MachineBasicBlock equivalent of the BasicBlock that is the source 368 // path the PHI. 369 MachineBasicBlock &opBlock = *MPhi->getOperand(i*2+2).getMBB(); 370 371 // Check to make sure we haven't already emitted the copy for this block. 372 // This can happen because PHI nodes may have multiple entries for the same 373 // basic block. 374 if (!MBBsInsertedInto.insert(&opBlock).second) 375 continue; // If the copy has already been emitted, we're done. 376 377 // Find a safe location to insert the copy, this may be the first terminator 378 // in the block (or end()). 379 MachineBasicBlock::iterator InsertPos = 380 findPHICopyInsertPoint(&opBlock, &MBB, SrcReg); 381 382 // Insert the copy. 383 MachineInstr *NewSrcInstr = nullptr; 384 if (!reusedIncoming && IncomingReg) { 385 if (SrcUndef) { 386 // The source register is undefined, so there is no need for a real 387 // COPY, but we still need to ensure joint dominance by defs. 388 // Insert an IMPLICIT_DEF instruction. 389 NewSrcInstr = BuildMI(opBlock, InsertPos, MPhi->getDebugLoc(), 390 TII->get(TargetOpcode::IMPLICIT_DEF), 391 IncomingReg); 392 393 // Clean up the old implicit-def, if there even was one. 394 if (MachineInstr *DefMI = MRI->getVRegDef(SrcReg)) 395 if (DefMI->isImplicitDef()) 396 ImpDefs.insert(DefMI); 397 } else { 398 NewSrcInstr = BuildMI(opBlock, InsertPos, MPhi->getDebugLoc(), 399 TII->get(TargetOpcode::COPY), IncomingReg) 400 .addReg(SrcReg, 0, SrcSubReg); 401 } 402 } 403 404 // We only need to update the LiveVariables kill of SrcReg if this was the 405 // last PHI use of SrcReg to be lowered on this CFG edge and it is not live 406 // out of the predecessor. We can also ignore undef sources. 407 if (LV && !SrcUndef && 408 !VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)] && 409 !LV->isLiveOut(SrcReg, opBlock)) { 410 // We want to be able to insert a kill of the register if this PHI (aka, 411 // the copy we just inserted) is the last use of the source value. Live 412 // variable analysis conservatively handles this by saying that the value 413 // is live until the end of the block the PHI entry lives in. If the value 414 // really is dead at the PHI copy, there will be no successor blocks which 415 // have the value live-in. 416 417 // Okay, if we now know that the value is not live out of the block, we 418 // can add a kill marker in this block saying that it kills the incoming 419 // value! 420 421 // In our final twist, we have to decide which instruction kills the 422 // register. In most cases this is the copy, however, terminator 423 // instructions at the end of the block may also use the value. In this 424 // case, we should mark the last such terminator as being the killing 425 // block, not the copy. 426 MachineBasicBlock::iterator KillInst = opBlock.end(); 427 MachineBasicBlock::iterator FirstTerm = opBlock.getFirstTerminator(); 428 for (MachineBasicBlock::iterator Term = FirstTerm; 429 Term != opBlock.end(); ++Term) { 430 if (Term->readsRegister(SrcReg)) 431 KillInst = Term; 432 } 433 434 if (KillInst == opBlock.end()) { 435 // No terminator uses the register. 436 437 if (reusedIncoming || !IncomingReg) { 438 // We may have to rewind a bit if we didn't insert a copy this time. 439 KillInst = FirstTerm; 440 while (KillInst != opBlock.begin()) { 441 --KillInst; 442 if (KillInst->isDebugValue()) 443 continue; 444 if (KillInst->readsRegister(SrcReg)) 445 break; 446 } 447 } else { 448 // We just inserted this copy. 449 KillInst = std::prev(InsertPos); 450 } 451 } 452 assert(KillInst->readsRegister(SrcReg) && "Cannot find kill instruction"); 453 454 // Finally, mark it killed. 455 LV->addVirtualRegisterKilled(SrcReg, *KillInst); 456 457 // This vreg no longer lives all of the way through opBlock. 458 unsigned opBlockNum = opBlock.getNumber(); 459 LV->getVarInfo(SrcReg).AliveBlocks.reset(opBlockNum); 460 } 461 462 if (LIS) { 463 if (NewSrcInstr) { 464 LIS->InsertMachineInstrInMaps(*NewSrcInstr); 465 LIS->addSegmentToEndOfBlock(IncomingReg, *NewSrcInstr); 466 } 467 468 if (!SrcUndef && 469 !VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)]) { 470 LiveInterval &SrcLI = LIS->getInterval(SrcReg); 471 472 bool isLiveOut = false; 473 for (MachineBasicBlock::succ_iterator SI = opBlock.succ_begin(), 474 SE = opBlock.succ_end(); SI != SE; ++SI) { 475 SlotIndex startIdx = LIS->getMBBStartIdx(*SI); 476 VNInfo *VNI = SrcLI.getVNInfoAt(startIdx); 477 478 // Definitions by other PHIs are not truly live-in for our purposes. 479 if (VNI && VNI->def != startIdx) { 480 isLiveOut = true; 481 break; 482 } 483 } 484 485 if (!isLiveOut) { 486 MachineBasicBlock::iterator KillInst = opBlock.end(); 487 MachineBasicBlock::iterator FirstTerm = opBlock.getFirstTerminator(); 488 for (MachineBasicBlock::iterator Term = FirstTerm; 489 Term != opBlock.end(); ++Term) { 490 if (Term->readsRegister(SrcReg)) 491 KillInst = Term; 492 } 493 494 if (KillInst == opBlock.end()) { 495 // No terminator uses the register. 496 497 if (reusedIncoming || !IncomingReg) { 498 // We may have to rewind a bit if we didn't just insert a copy. 499 KillInst = FirstTerm; 500 while (KillInst != opBlock.begin()) { 501 --KillInst; 502 if (KillInst->isDebugValue()) 503 continue; 504 if (KillInst->readsRegister(SrcReg)) 505 break; 506 } 507 } else { 508 // We just inserted this copy. 509 KillInst = std::prev(InsertPos); 510 } 511 } 512 assert(KillInst->readsRegister(SrcReg) && 513 "Cannot find kill instruction"); 514 515 SlotIndex LastUseIndex = LIS->getInstructionIndex(*KillInst); 516 SrcLI.removeSegment(LastUseIndex.getRegSlot(), 517 LIS->getMBBEndIdx(&opBlock)); 518 } 519 } 520 } 521 } 522 523 // Really delete the PHI instruction now, if it is not in the LoweredPHIs map. 524 if (reusedIncoming || !IncomingReg) { 525 if (LIS) 526 LIS->RemoveMachineInstrFromMaps(*MPhi); 527 MF.DeleteMachineInstr(MPhi); 528 } 529 } 530 531 /// analyzePHINodes - Gather information about the PHI nodes in here. In 532 /// particular, we want to map the number of uses of a virtual register which is 533 /// used in a PHI node. We map that to the BB the vreg is coming from. This is 534 /// used later to determine when the vreg is killed in the BB. 535 /// 536 void PHIElimination::analyzePHINodes(const MachineFunction& MF) { 537 for (const auto &MBB : MF) 538 for (const auto &BBI : MBB) { 539 if (!BBI.isPHI()) 540 break; 541 for (unsigned i = 1, e = BBI.getNumOperands(); i != e; i += 2) 542 ++VRegPHIUseCount[BBVRegPair(BBI.getOperand(i+1).getMBB()->getNumber(), 543 BBI.getOperand(i).getReg())]; 544 } 545 } 546 547 bool PHIElimination::SplitPHIEdges(MachineFunction &MF, 548 MachineBasicBlock &MBB, 549 MachineLoopInfo *MLI) { 550 if (MBB.empty() || !MBB.front().isPHI() || MBB.isEHPad()) 551 return false; // Quick exit for basic blocks without PHIs. 552 553 const MachineLoop *CurLoop = MLI ? MLI->getLoopFor(&MBB) : nullptr; 554 bool IsLoopHeader = CurLoop && &MBB == CurLoop->getHeader(); 555 556 bool Changed = false; 557 for (MachineBasicBlock::iterator BBI = MBB.begin(), BBE = MBB.end(); 558 BBI != BBE && BBI->isPHI(); ++BBI) { 559 for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) { 560 unsigned Reg = BBI->getOperand(i).getReg(); 561 MachineBasicBlock *PreMBB = BBI->getOperand(i+1).getMBB(); 562 // Is there a critical edge from PreMBB to MBB? 563 if (PreMBB->succ_size() == 1) 564 continue; 565 566 // Avoid splitting backedges of loops. It would introduce small 567 // out-of-line blocks into the loop which is very bad for code placement. 568 if (PreMBB == &MBB && !SplitAllCriticalEdges) 569 continue; 570 const MachineLoop *PreLoop = MLI ? MLI->getLoopFor(PreMBB) : nullptr; 571 if (IsLoopHeader && PreLoop == CurLoop && !SplitAllCriticalEdges) 572 continue; 573 574 // LV doesn't consider a phi use live-out, so isLiveOut only returns true 575 // when the source register is live-out for some other reason than a phi 576 // use. That means the copy we will insert in PreMBB won't be a kill, and 577 // there is a risk it may not be coalesced away. 578 // 579 // If the copy would be a kill, there is no need to split the edge. 580 bool ShouldSplit = isLiveOutPastPHIs(Reg, PreMBB); 581 if (!ShouldSplit && !NoPhiElimLiveOutEarlyExit) 582 continue; 583 if (ShouldSplit) { 584 DEBUG(dbgs() << PrintReg(Reg) << " live-out before critical edge BB#" 585 << PreMBB->getNumber() << " -> BB#" << MBB.getNumber() 586 << ": " << *BBI); 587 } 588 589 // If Reg is not live-in to MBB, it means it must be live-in to some 590 // other PreMBB successor, and we can avoid the interference by splitting 591 // the edge. 592 // 593 // If Reg *is* live-in to MBB, the interference is inevitable and a copy 594 // is likely to be left after coalescing. If we are looking at a loop 595 // exiting edge, split it so we won't insert code in the loop, otherwise 596 // don't bother. 597 ShouldSplit = ShouldSplit && !isLiveIn(Reg, &MBB); 598 599 // Check for a loop exiting edge. 600 if (!ShouldSplit && CurLoop != PreLoop) { 601 DEBUG({ 602 dbgs() << "Split wouldn't help, maybe avoid loop copies?\n"; 603 if (PreLoop) dbgs() << "PreLoop: " << *PreLoop; 604 if (CurLoop) dbgs() << "CurLoop: " << *CurLoop; 605 }); 606 // This edge could be entering a loop, exiting a loop, or it could be 607 // both: Jumping directly form one loop to the header of a sibling 608 // loop. 609 // Split unless this edge is entering CurLoop from an outer loop. 610 ShouldSplit = PreLoop && !PreLoop->contains(CurLoop); 611 } 612 if (!ShouldSplit && !SplitAllCriticalEdges) 613 continue; 614 if (!PreMBB->SplitCriticalEdge(&MBB, *this)) { 615 DEBUG(dbgs() << "Failed to split critical edge.\n"); 616 continue; 617 } 618 Changed = true; 619 ++NumCriticalEdgesSplit; 620 } 621 } 622 return Changed; 623 } 624 625 bool PHIElimination::isLiveIn(unsigned Reg, const MachineBasicBlock *MBB) { 626 assert((LV || LIS) && 627 "isLiveIn() requires either LiveVariables or LiveIntervals"); 628 if (LIS) 629 return LIS->isLiveInToMBB(LIS->getInterval(Reg), MBB); 630 else 631 return LV->isLiveIn(Reg, *MBB); 632 } 633 634 bool PHIElimination::isLiveOutPastPHIs(unsigned Reg, 635 const MachineBasicBlock *MBB) { 636 assert((LV || LIS) && 637 "isLiveOutPastPHIs() requires either LiveVariables or LiveIntervals"); 638 // LiveVariables considers uses in PHIs to be in the predecessor basic block, 639 // so that a register used only in a PHI is not live out of the block. In 640 // contrast, LiveIntervals considers uses in PHIs to be on the edge rather than 641 // in the predecessor basic block, so that a register used only in a PHI is live 642 // out of the block. 643 if (LIS) { 644 const LiveInterval &LI = LIS->getInterval(Reg); 645 for (const MachineBasicBlock *SI : MBB->successors()) 646 if (LI.liveAt(LIS->getMBBStartIdx(SI))) 647 return true; 648 return false; 649 } else { 650 return LV->isLiveOut(Reg, *MBB); 651 } 652 } 653