1 //===-- TwoAddressInstructionPass.cpp - Two-Address instruction pass ------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the TwoAddress instruction pass which is used 11 // by most register allocators. Two-Address instructions are rewritten 12 // from: 13 // 14 // A = B op C 15 // 16 // to: 17 // 18 // A = B 19 // A op= C 20 // 21 // Note that if a register allocator chooses to use this pass, that it 22 // has to be capable of handling the non-SSA nature of these rewritten 23 // virtual registers. 24 // 25 // It is also worth noting that the duplicate operand of the two 26 // address instruction is removed. 27 // 28 //===----------------------------------------------------------------------===// 29 30 #include "llvm/ADT/DenseMap.h" 31 #include "llvm/ADT/STLExtras.h" 32 #include "llvm/ADT/SmallSet.h" 33 #include "llvm/ADT/Statistic.h" 34 #include "llvm/Analysis/AliasAnalysis.h" 35 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 36 #include "llvm/CodeGen/LiveVariables.h" 37 #include "llvm/CodeGen/MachineFunctionPass.h" 38 #include "llvm/CodeGen/MachineInstr.h" 39 #include "llvm/CodeGen/MachineInstrBuilder.h" 40 #include "llvm/CodeGen/MachineRegisterInfo.h" 41 #include "llvm/CodeGen/Passes.h" 42 #include "llvm/IR/Function.h" 43 #include "llvm/MC/MCInstrItineraries.h" 44 #include "llvm/Support/CommandLine.h" 45 #include "llvm/Support/Debug.h" 46 #include "llvm/Support/ErrorHandling.h" 47 #include "llvm/Support/raw_ostream.h" 48 #include "llvm/Target/TargetInstrInfo.h" 49 #include "llvm/Target/TargetMachine.h" 50 #include "llvm/Target/TargetRegisterInfo.h" 51 #include "llvm/Target/TargetSubtargetInfo.h" 52 53 using namespace llvm; 54 55 #define DEBUG_TYPE "twoaddrinstr" 56 57 STATISTIC(NumTwoAddressInstrs, "Number of two-address instructions"); 58 STATISTIC(NumCommuted , "Number of instructions commuted to coalesce"); 59 STATISTIC(NumAggrCommuted , "Number of instructions aggressively commuted"); 60 STATISTIC(NumConvertedTo3Addr, "Number of instructions promoted to 3-address"); 61 STATISTIC(Num3AddrSunk, "Number of 3-address instructions sunk"); 62 STATISTIC(NumReSchedUps, "Number of instructions re-scheduled up"); 63 STATISTIC(NumReSchedDowns, "Number of instructions re-scheduled down"); 64 65 // Temporary flag to disable rescheduling. 66 static cl::opt<bool> 67 EnableRescheduling("twoaddr-reschedule", 68 cl::desc("Coalesce copies by rescheduling (default=true)"), 69 cl::init(true), cl::Hidden); 70 71 namespace { 72 class TwoAddressInstructionPass : public MachineFunctionPass { 73 MachineFunction *MF; 74 const TargetInstrInfo *TII; 75 const TargetRegisterInfo *TRI; 76 const InstrItineraryData *InstrItins; 77 MachineRegisterInfo *MRI; 78 LiveVariables *LV; 79 LiveIntervals *LIS; 80 AliasAnalysis *AA; 81 CodeGenOpt::Level OptLevel; 82 83 // The current basic block being processed. 84 MachineBasicBlock *MBB; 85 86 // Keep track the distance of a MI from the start of the current basic block. 87 DenseMap<MachineInstr*, unsigned> DistanceMap; 88 89 // Set of already processed instructions in the current block. 90 SmallPtrSet<MachineInstr*, 8> Processed; 91 92 // A map from virtual registers to physical registers which are likely targets 93 // to be coalesced to due to copies from physical registers to virtual 94 // registers. e.g. v1024 = move r0. 95 DenseMap<unsigned, unsigned> SrcRegMap; 96 97 // A map from virtual registers to physical registers which are likely targets 98 // to be coalesced to due to copies to physical registers from virtual 99 // registers. e.g. r1 = move v1024. 100 DenseMap<unsigned, unsigned> DstRegMap; 101 102 bool sink3AddrInstruction(MachineInstr *MI, unsigned Reg, 103 MachineBasicBlock::iterator OldPos); 104 105 bool isRevCopyChain(unsigned FromReg, unsigned ToReg, int Maxlen); 106 107 bool noUseAfterLastDef(unsigned Reg, unsigned Dist, unsigned &LastDef); 108 109 bool isProfitableToCommute(unsigned regA, unsigned regB, unsigned regC, 110 MachineInstr *MI, unsigned Dist); 111 112 bool commuteInstruction(MachineInstr *MI, 113 unsigned RegBIdx, unsigned RegCIdx, unsigned Dist); 114 115 bool isProfitableToConv3Addr(unsigned RegA, unsigned RegB); 116 117 bool convertInstTo3Addr(MachineBasicBlock::iterator &mi, 118 MachineBasicBlock::iterator &nmi, 119 unsigned RegA, unsigned RegB, unsigned Dist); 120 121 bool isDefTooClose(unsigned Reg, unsigned Dist, MachineInstr *MI); 122 123 bool rescheduleMIBelowKill(MachineBasicBlock::iterator &mi, 124 MachineBasicBlock::iterator &nmi, 125 unsigned Reg); 126 bool rescheduleKillAboveMI(MachineBasicBlock::iterator &mi, 127 MachineBasicBlock::iterator &nmi, 128 unsigned Reg); 129 130 bool tryInstructionTransform(MachineBasicBlock::iterator &mi, 131 MachineBasicBlock::iterator &nmi, 132 unsigned SrcIdx, unsigned DstIdx, 133 unsigned Dist, bool shouldOnlyCommute); 134 135 bool tryInstructionCommute(MachineInstr *MI, 136 unsigned DstOpIdx, 137 unsigned BaseOpIdx, 138 bool BaseOpKilled, 139 unsigned Dist); 140 void scanUses(unsigned DstReg); 141 142 void processCopy(MachineInstr *MI); 143 144 typedef SmallVector<std::pair<unsigned, unsigned>, 4> TiedPairList; 145 typedef SmallDenseMap<unsigned, TiedPairList> TiedOperandMap; 146 bool collectTiedOperands(MachineInstr *MI, TiedOperandMap&); 147 void processTiedPairs(MachineInstr *MI, TiedPairList&, unsigned &Dist); 148 void eliminateRegSequence(MachineBasicBlock::iterator&); 149 150 public: 151 static char ID; // Pass identification, replacement for typeid 152 TwoAddressInstructionPass() : MachineFunctionPass(ID) { 153 initializeTwoAddressInstructionPassPass(*PassRegistry::getPassRegistry()); 154 } 155 156 void getAnalysisUsage(AnalysisUsage &AU) const override { 157 AU.setPreservesCFG(); 158 AU.addRequired<AAResultsWrapperPass>(); 159 AU.addUsedIfAvailable<LiveVariables>(); 160 AU.addPreserved<LiveVariables>(); 161 AU.addPreserved<SlotIndexes>(); 162 AU.addPreserved<LiveIntervals>(); 163 AU.addPreservedID(MachineLoopInfoID); 164 AU.addPreservedID(MachineDominatorsID); 165 MachineFunctionPass::getAnalysisUsage(AU); 166 } 167 168 /// Pass entry point. 169 bool runOnMachineFunction(MachineFunction&) override; 170 }; 171 } // end anonymous namespace 172 173 char TwoAddressInstructionPass::ID = 0; 174 INITIALIZE_PASS_BEGIN(TwoAddressInstructionPass, "twoaddressinstruction", 175 "Two-Address instruction pass", false, false) 176 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 177 INITIALIZE_PASS_END(TwoAddressInstructionPass, "twoaddressinstruction", 178 "Two-Address instruction pass", false, false) 179 180 char &llvm::TwoAddressInstructionPassID = TwoAddressInstructionPass::ID; 181 182 static bool isPlainlyKilled(MachineInstr *MI, unsigned Reg, LiveIntervals *LIS); 183 184 /// A two-address instruction has been converted to a three-address instruction 185 /// to avoid clobbering a register. Try to sink it past the instruction that 186 /// would kill the above mentioned register to reduce register pressure. 187 bool TwoAddressInstructionPass:: 188 sink3AddrInstruction(MachineInstr *MI, unsigned SavedReg, 189 MachineBasicBlock::iterator OldPos) { 190 // FIXME: Shouldn't we be trying to do this before we three-addressify the 191 // instruction? After this transformation is done, we no longer need 192 // the instruction to be in three-address form. 193 194 // Check if it's safe to move this instruction. 195 bool SeenStore = true; // Be conservative. 196 if (!MI->isSafeToMove(AA, SeenStore)) 197 return false; 198 199 unsigned DefReg = 0; 200 SmallSet<unsigned, 4> UseRegs; 201 202 for (const MachineOperand &MO : MI->operands()) { 203 if (!MO.isReg()) 204 continue; 205 unsigned MOReg = MO.getReg(); 206 if (!MOReg) 207 continue; 208 if (MO.isUse() && MOReg != SavedReg) 209 UseRegs.insert(MO.getReg()); 210 if (!MO.isDef()) 211 continue; 212 if (MO.isImplicit()) 213 // Don't try to move it if it implicitly defines a register. 214 return false; 215 if (DefReg) 216 // For now, don't move any instructions that define multiple registers. 217 return false; 218 DefReg = MO.getReg(); 219 } 220 221 // Find the instruction that kills SavedReg. 222 MachineInstr *KillMI = nullptr; 223 if (LIS) { 224 LiveInterval &LI = LIS->getInterval(SavedReg); 225 assert(LI.end() != LI.begin() && 226 "Reg should not have empty live interval."); 227 228 SlotIndex MBBEndIdx = LIS->getMBBEndIdx(MBB).getPrevSlot(); 229 LiveInterval::const_iterator I = LI.find(MBBEndIdx); 230 if (I != LI.end() && I->start < MBBEndIdx) 231 return false; 232 233 --I; 234 KillMI = LIS->getInstructionFromIndex(I->end); 235 } 236 if (!KillMI) { 237 for (MachineOperand &UseMO : MRI->use_nodbg_operands(SavedReg)) { 238 if (!UseMO.isKill()) 239 continue; 240 KillMI = UseMO.getParent(); 241 break; 242 } 243 } 244 245 // If we find the instruction that kills SavedReg, and it is in an 246 // appropriate location, we can try to sink the current instruction 247 // past it. 248 if (!KillMI || KillMI->getParent() != MBB || KillMI == MI || 249 MachineBasicBlock::iterator(KillMI) == OldPos || KillMI->isTerminator()) 250 return false; 251 252 // If any of the definitions are used by another instruction between the 253 // position and the kill use, then it's not safe to sink it. 254 // 255 // FIXME: This can be sped up if there is an easy way to query whether an 256 // instruction is before or after another instruction. Then we can use 257 // MachineRegisterInfo def / use instead. 258 MachineOperand *KillMO = nullptr; 259 MachineBasicBlock::iterator KillPos = KillMI; 260 ++KillPos; 261 262 unsigned NumVisited = 0; 263 for (MachineInstr &OtherMI : llvm::make_range(std::next(OldPos), KillPos)) { 264 // DBG_VALUE cannot be counted against the limit. 265 if (OtherMI.isDebugValue()) 266 continue; 267 if (NumVisited > 30) // FIXME: Arbitrary limit to reduce compile time cost. 268 return false; 269 ++NumVisited; 270 for (unsigned i = 0, e = OtherMI.getNumOperands(); i != e; ++i) { 271 MachineOperand &MO = OtherMI.getOperand(i); 272 if (!MO.isReg()) 273 continue; 274 unsigned MOReg = MO.getReg(); 275 if (!MOReg) 276 continue; 277 if (DefReg == MOReg) 278 return false; 279 280 if (MO.isKill() || (LIS && isPlainlyKilled(&OtherMI, MOReg, LIS))) { 281 if (&OtherMI == KillMI && MOReg == SavedReg) 282 // Save the operand that kills the register. We want to unset the kill 283 // marker if we can sink MI past it. 284 KillMO = &MO; 285 else if (UseRegs.count(MOReg)) 286 // One of the uses is killed before the destination. 287 return false; 288 } 289 } 290 } 291 assert(KillMO && "Didn't find kill"); 292 293 if (!LIS) { 294 // Update kill and LV information. 295 KillMO->setIsKill(false); 296 KillMO = MI->findRegisterUseOperand(SavedReg, false, TRI); 297 KillMO->setIsKill(true); 298 299 if (LV) 300 LV->replaceKillInstruction(SavedReg, *KillMI, *MI); 301 } 302 303 // Move instruction to its destination. 304 MBB->remove(MI); 305 MBB->insert(KillPos, MI); 306 307 if (LIS) 308 LIS->handleMove(*MI); 309 310 ++Num3AddrSunk; 311 return true; 312 } 313 314 /// Return the MachineInstr* if it is the single def of the Reg in current BB. 315 static MachineInstr *getSingleDef(unsigned Reg, MachineBasicBlock *BB, 316 const MachineRegisterInfo *MRI) { 317 MachineInstr *Ret = nullptr; 318 for (MachineInstr &DefMI : MRI->def_instructions(Reg)) { 319 if (DefMI.getParent() != BB || DefMI.isDebugValue()) 320 continue; 321 if (!Ret) 322 Ret = &DefMI; 323 else if (Ret != &DefMI) 324 return nullptr; 325 } 326 return Ret; 327 } 328 329 /// Check if there is a reversed copy chain from FromReg to ToReg: 330 /// %Tmp1 = copy %Tmp2; 331 /// %FromReg = copy %Tmp1; 332 /// %ToReg = add %FromReg ... 333 /// %Tmp2 = copy %ToReg; 334 /// MaxLen specifies the maximum length of the copy chain the func 335 /// can walk through. 336 bool TwoAddressInstructionPass::isRevCopyChain(unsigned FromReg, unsigned ToReg, 337 int Maxlen) { 338 unsigned TmpReg = FromReg; 339 for (int i = 0; i < Maxlen; i++) { 340 MachineInstr *Def = getSingleDef(TmpReg, MBB, MRI); 341 if (!Def || !Def->isCopy()) 342 return false; 343 344 TmpReg = Def->getOperand(1).getReg(); 345 346 if (TmpReg == ToReg) 347 return true; 348 } 349 return false; 350 } 351 352 /// Return true if there are no intervening uses between the last instruction 353 /// in the MBB that defines the specified register and the two-address 354 /// instruction which is being processed. It also returns the last def location 355 /// by reference. 356 bool TwoAddressInstructionPass::noUseAfterLastDef(unsigned Reg, unsigned Dist, 357 unsigned &LastDef) { 358 LastDef = 0; 359 unsigned LastUse = Dist; 360 for (MachineOperand &MO : MRI->reg_operands(Reg)) { 361 MachineInstr *MI = MO.getParent(); 362 if (MI->getParent() != MBB || MI->isDebugValue()) 363 continue; 364 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI); 365 if (DI == DistanceMap.end()) 366 continue; 367 if (MO.isUse() && DI->second < LastUse) 368 LastUse = DI->second; 369 if (MO.isDef() && DI->second > LastDef) 370 LastDef = DI->second; 371 } 372 373 return !(LastUse > LastDef && LastUse < Dist); 374 } 375 376 /// Return true if the specified MI is a copy instruction or an extract_subreg 377 /// instruction. It also returns the source and destination registers and 378 /// whether they are physical registers by reference. 379 static bool isCopyToReg(MachineInstr &MI, const TargetInstrInfo *TII, 380 unsigned &SrcReg, unsigned &DstReg, 381 bool &IsSrcPhys, bool &IsDstPhys) { 382 SrcReg = 0; 383 DstReg = 0; 384 if (MI.isCopy()) { 385 DstReg = MI.getOperand(0).getReg(); 386 SrcReg = MI.getOperand(1).getReg(); 387 } else if (MI.isInsertSubreg() || MI.isSubregToReg()) { 388 DstReg = MI.getOperand(0).getReg(); 389 SrcReg = MI.getOperand(2).getReg(); 390 } else 391 return false; 392 393 IsSrcPhys = TargetRegisterInfo::isPhysicalRegister(SrcReg); 394 IsDstPhys = TargetRegisterInfo::isPhysicalRegister(DstReg); 395 return true; 396 } 397 398 /// Test if the given register value, which is used by the 399 /// given instruction, is killed by the given instruction. 400 static bool isPlainlyKilled(MachineInstr *MI, unsigned Reg, 401 LiveIntervals *LIS) { 402 if (LIS && TargetRegisterInfo::isVirtualRegister(Reg) && 403 !LIS->isNotInMIMap(*MI)) { 404 // FIXME: Sometimes tryInstructionTransform() will add instructions and 405 // test whether they can be folded before keeping them. In this case it 406 // sets a kill before recursively calling tryInstructionTransform() again. 407 // If there is no interval available, we assume that this instruction is 408 // one of those. A kill flag is manually inserted on the operand so the 409 // check below will handle it. 410 LiveInterval &LI = LIS->getInterval(Reg); 411 // This is to match the kill flag version where undefs don't have kill 412 // flags. 413 if (!LI.hasAtLeastOneValue()) 414 return false; 415 416 SlotIndex useIdx = LIS->getInstructionIndex(*MI); 417 LiveInterval::const_iterator I = LI.find(useIdx); 418 assert(I != LI.end() && "Reg must be live-in to use."); 419 return !I->end.isBlock() && SlotIndex::isSameInstr(I->end, useIdx); 420 } 421 422 return MI->killsRegister(Reg); 423 } 424 425 /// Test if the given register value, which is used by the given 426 /// instruction, is killed by the given instruction. This looks through 427 /// coalescable copies to see if the original value is potentially not killed. 428 /// 429 /// For example, in this code: 430 /// 431 /// %reg1034 = copy %reg1024 432 /// %reg1035 = copy %reg1025<kill> 433 /// %reg1036 = add %reg1034<kill>, %reg1035<kill> 434 /// 435 /// %reg1034 is not considered to be killed, since it is copied from a 436 /// register which is not killed. Treating it as not killed lets the 437 /// normal heuristics commute the (two-address) add, which lets 438 /// coalescing eliminate the extra copy. 439 /// 440 /// If allowFalsePositives is true then likely kills are treated as kills even 441 /// if it can't be proven that they are kills. 442 static bool isKilled(MachineInstr &MI, unsigned Reg, 443 const MachineRegisterInfo *MRI, 444 const TargetInstrInfo *TII, 445 LiveIntervals *LIS, 446 bool allowFalsePositives) { 447 MachineInstr *DefMI = &MI; 448 for (;;) { 449 // All uses of physical registers are likely to be kills. 450 if (TargetRegisterInfo::isPhysicalRegister(Reg) && 451 (allowFalsePositives || MRI->hasOneUse(Reg))) 452 return true; 453 if (!isPlainlyKilled(DefMI, Reg, LIS)) 454 return false; 455 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 456 return true; 457 MachineRegisterInfo::def_iterator Begin = MRI->def_begin(Reg); 458 // If there are multiple defs, we can't do a simple analysis, so just 459 // go with what the kill flag says. 460 if (std::next(Begin) != MRI->def_end()) 461 return true; 462 DefMI = Begin->getParent(); 463 bool IsSrcPhys, IsDstPhys; 464 unsigned SrcReg, DstReg; 465 // If the def is something other than a copy, then it isn't going to 466 // be coalesced, so follow the kill flag. 467 if (!isCopyToReg(*DefMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) 468 return true; 469 Reg = SrcReg; 470 } 471 } 472 473 /// Return true if the specified MI uses the specified register as a two-address 474 /// use. If so, return the destination register by reference. 475 static bool isTwoAddrUse(MachineInstr &MI, unsigned Reg, unsigned &DstReg) { 476 for (unsigned i = 0, NumOps = MI.getNumOperands(); i != NumOps; ++i) { 477 const MachineOperand &MO = MI.getOperand(i); 478 if (!MO.isReg() || !MO.isUse() || MO.getReg() != Reg) 479 continue; 480 unsigned ti; 481 if (MI.isRegTiedToDefOperand(i, &ti)) { 482 DstReg = MI.getOperand(ti).getReg(); 483 return true; 484 } 485 } 486 return false; 487 } 488 489 /// Given a register, if has a single in-basic block use, return the use 490 /// instruction if it's a copy or a two-address use. 491 static 492 MachineInstr *findOnlyInterestingUse(unsigned Reg, MachineBasicBlock *MBB, 493 MachineRegisterInfo *MRI, 494 const TargetInstrInfo *TII, 495 bool &IsCopy, 496 unsigned &DstReg, bool &IsDstPhys) { 497 if (!MRI->hasOneNonDBGUse(Reg)) 498 // None or more than one use. 499 return nullptr; 500 MachineInstr &UseMI = *MRI->use_instr_nodbg_begin(Reg); 501 if (UseMI.getParent() != MBB) 502 return nullptr; 503 unsigned SrcReg; 504 bool IsSrcPhys; 505 if (isCopyToReg(UseMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) { 506 IsCopy = true; 507 return &UseMI; 508 } 509 IsDstPhys = false; 510 if (isTwoAddrUse(UseMI, Reg, DstReg)) { 511 IsDstPhys = TargetRegisterInfo::isPhysicalRegister(DstReg); 512 return &UseMI; 513 } 514 return nullptr; 515 } 516 517 /// Return the physical register the specified virtual register might be mapped 518 /// to. 519 static unsigned 520 getMappedReg(unsigned Reg, DenseMap<unsigned, unsigned> &RegMap) { 521 while (TargetRegisterInfo::isVirtualRegister(Reg)) { 522 DenseMap<unsigned, unsigned>::iterator SI = RegMap.find(Reg); 523 if (SI == RegMap.end()) 524 return 0; 525 Reg = SI->second; 526 } 527 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 528 return Reg; 529 return 0; 530 } 531 532 /// Return true if the two registers are equal or aliased. 533 static bool 534 regsAreCompatible(unsigned RegA, unsigned RegB, const TargetRegisterInfo *TRI) { 535 if (RegA == RegB) 536 return true; 537 if (!RegA || !RegB) 538 return false; 539 return TRI->regsOverlap(RegA, RegB); 540 } 541 542 /// Return true if it's potentially profitable to commute the two-address 543 /// instruction that's being processed. 544 bool 545 TwoAddressInstructionPass:: 546 isProfitableToCommute(unsigned regA, unsigned regB, unsigned regC, 547 MachineInstr *MI, unsigned Dist) { 548 if (OptLevel == CodeGenOpt::None) 549 return false; 550 551 // Determine if it's profitable to commute this two address instruction. In 552 // general, we want no uses between this instruction and the definition of 553 // the two-address register. 554 // e.g. 555 // %reg1028<def> = EXTRACT_SUBREG %reg1027<kill>, 1 556 // %reg1029<def> = MOV8rr %reg1028 557 // %reg1029<def> = SHR8ri %reg1029, 7, %EFLAGS<imp-def,dead> 558 // insert => %reg1030<def> = MOV8rr %reg1028 559 // %reg1030<def> = ADD8rr %reg1028<kill>, %reg1029<kill>, %EFLAGS<imp-def,dead> 560 // In this case, it might not be possible to coalesce the second MOV8rr 561 // instruction if the first one is coalesced. So it would be profitable to 562 // commute it: 563 // %reg1028<def> = EXTRACT_SUBREG %reg1027<kill>, 1 564 // %reg1029<def> = MOV8rr %reg1028 565 // %reg1029<def> = SHR8ri %reg1029, 7, %EFLAGS<imp-def,dead> 566 // insert => %reg1030<def> = MOV8rr %reg1029 567 // %reg1030<def> = ADD8rr %reg1029<kill>, %reg1028<kill>, %EFLAGS<imp-def,dead> 568 569 if (!isPlainlyKilled(MI, regC, LIS)) 570 return false; 571 572 // Ok, we have something like: 573 // %reg1030<def> = ADD8rr %reg1028<kill>, %reg1029<kill>, %EFLAGS<imp-def,dead> 574 // let's see if it's worth commuting it. 575 576 // Look for situations like this: 577 // %reg1024<def> = MOV r1 578 // %reg1025<def> = MOV r0 579 // %reg1026<def> = ADD %reg1024, %reg1025 580 // r0 = MOV %reg1026 581 // Commute the ADD to hopefully eliminate an otherwise unavoidable copy. 582 unsigned ToRegA = getMappedReg(regA, DstRegMap); 583 if (ToRegA) { 584 unsigned FromRegB = getMappedReg(regB, SrcRegMap); 585 unsigned FromRegC = getMappedReg(regC, SrcRegMap); 586 bool CompB = FromRegB && regsAreCompatible(FromRegB, ToRegA, TRI); 587 bool CompC = FromRegC && regsAreCompatible(FromRegC, ToRegA, TRI); 588 589 // Compute if any of the following are true: 590 // -RegB is not tied to a register and RegC is compatible with RegA. 591 // -RegB is tied to the wrong physical register, but RegC is. 592 // -RegB is tied to the wrong physical register, and RegC isn't tied. 593 if ((!FromRegB && CompC) || (FromRegB && !CompB && (!FromRegC || CompC))) 594 return true; 595 // Don't compute if any of the following are true: 596 // -RegC is not tied to a register and RegB is compatible with RegA. 597 // -RegC is tied to the wrong physical register, but RegB is. 598 // -RegC is tied to the wrong physical register, and RegB isn't tied. 599 if ((!FromRegC && CompB) || (FromRegC && !CompC && (!FromRegB || CompB))) 600 return false; 601 } 602 603 // If there is a use of regC between its last def (could be livein) and this 604 // instruction, then bail. 605 unsigned LastDefC = 0; 606 if (!noUseAfterLastDef(regC, Dist, LastDefC)) 607 return false; 608 609 // If there is a use of regB between its last def (could be livein) and this 610 // instruction, then go ahead and make this transformation. 611 unsigned LastDefB = 0; 612 if (!noUseAfterLastDef(regB, Dist, LastDefB)) 613 return true; 614 615 // Look for situation like this: 616 // %reg101 = MOV %reg100 617 // %reg102 = ... 618 // %reg103 = ADD %reg102, %reg101 619 // ... = %reg103 ... 620 // %reg100 = MOV %reg103 621 // If there is a reversed copy chain from reg101 to reg103, commute the ADD 622 // to eliminate an otherwise unavoidable copy. 623 // FIXME: 624 // We can extend the logic further: If an pair of operands in an insn has 625 // been merged, the insn could be regarded as a virtual copy, and the virtual 626 // copy could also be used to construct a copy chain. 627 // To more generally minimize register copies, ideally the logic of two addr 628 // instruction pass should be integrated with register allocation pass where 629 // interference graph is available. 630 if (isRevCopyChain(regC, regA, 3)) 631 return true; 632 633 if (isRevCopyChain(regB, regA, 3)) 634 return false; 635 636 // Since there are no intervening uses for both registers, then commute 637 // if the def of regC is closer. Its live interval is shorter. 638 return LastDefB && LastDefC && LastDefC > LastDefB; 639 } 640 641 /// Commute a two-address instruction and update the basic block, distance map, 642 /// and live variables if needed. Return true if it is successful. 643 bool TwoAddressInstructionPass::commuteInstruction(MachineInstr *MI, 644 unsigned RegBIdx, 645 unsigned RegCIdx, 646 unsigned Dist) { 647 unsigned RegC = MI->getOperand(RegCIdx).getReg(); 648 DEBUG(dbgs() << "2addr: COMMUTING : " << *MI); 649 MachineInstr *NewMI = TII->commuteInstruction(*MI, false, RegBIdx, RegCIdx); 650 651 if (NewMI == nullptr) { 652 DEBUG(dbgs() << "2addr: COMMUTING FAILED!\n"); 653 return false; 654 } 655 656 DEBUG(dbgs() << "2addr: COMMUTED TO: " << *NewMI); 657 assert(NewMI == MI && 658 "TargetInstrInfo::commuteInstruction() should not return a new " 659 "instruction unless it was requested."); 660 661 // Update source register map. 662 unsigned FromRegC = getMappedReg(RegC, SrcRegMap); 663 if (FromRegC) { 664 unsigned RegA = MI->getOperand(0).getReg(); 665 SrcRegMap[RegA] = FromRegC; 666 } 667 668 return true; 669 } 670 671 /// Return true if it is profitable to convert the given 2-address instruction 672 /// to a 3-address one. 673 bool 674 TwoAddressInstructionPass::isProfitableToConv3Addr(unsigned RegA,unsigned RegB){ 675 // Look for situations like this: 676 // %reg1024<def> = MOV r1 677 // %reg1025<def> = MOV r0 678 // %reg1026<def> = ADD %reg1024, %reg1025 679 // r2 = MOV %reg1026 680 // Turn ADD into a 3-address instruction to avoid a copy. 681 unsigned FromRegB = getMappedReg(RegB, SrcRegMap); 682 if (!FromRegB) 683 return false; 684 unsigned ToRegA = getMappedReg(RegA, DstRegMap); 685 return (ToRegA && !regsAreCompatible(FromRegB, ToRegA, TRI)); 686 } 687 688 /// Convert the specified two-address instruction into a three address one. 689 /// Return true if this transformation was successful. 690 bool 691 TwoAddressInstructionPass::convertInstTo3Addr(MachineBasicBlock::iterator &mi, 692 MachineBasicBlock::iterator &nmi, 693 unsigned RegA, unsigned RegB, 694 unsigned Dist) { 695 // FIXME: Why does convertToThreeAddress() need an iterator reference? 696 MachineFunction::iterator MFI = MBB->getIterator(); 697 MachineInstr *NewMI = TII->convertToThreeAddress(MFI, *mi, LV); 698 assert(MBB->getIterator() == MFI && 699 "convertToThreeAddress changed iterator reference"); 700 if (!NewMI) 701 return false; 702 703 DEBUG(dbgs() << "2addr: CONVERTING 2-ADDR: " << *mi); 704 DEBUG(dbgs() << "2addr: TO 3-ADDR: " << *NewMI); 705 bool Sunk = false; 706 707 if (LIS) 708 LIS->ReplaceMachineInstrInMaps(*mi, *NewMI); 709 710 if (NewMI->findRegisterUseOperand(RegB, false, TRI)) 711 // FIXME: Temporary workaround. If the new instruction doesn't 712 // uses RegB, convertToThreeAddress must have created more 713 // then one instruction. 714 Sunk = sink3AddrInstruction(NewMI, RegB, mi); 715 716 MBB->erase(mi); // Nuke the old inst. 717 718 if (!Sunk) { 719 DistanceMap.insert(std::make_pair(NewMI, Dist)); 720 mi = NewMI; 721 nmi = std::next(mi); 722 } 723 724 // Update source and destination register maps. 725 SrcRegMap.erase(RegA); 726 DstRegMap.erase(RegB); 727 return true; 728 } 729 730 /// Scan forward recursively for only uses, update maps if the use is a copy or 731 /// a two-address instruction. 732 void 733 TwoAddressInstructionPass::scanUses(unsigned DstReg) { 734 SmallVector<unsigned, 4> VirtRegPairs; 735 bool IsDstPhys; 736 bool IsCopy = false; 737 unsigned NewReg = 0; 738 unsigned Reg = DstReg; 739 while (MachineInstr *UseMI = findOnlyInterestingUse(Reg, MBB, MRI, TII,IsCopy, 740 NewReg, IsDstPhys)) { 741 if (IsCopy && !Processed.insert(UseMI).second) 742 break; 743 744 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UseMI); 745 if (DI != DistanceMap.end()) 746 // Earlier in the same MBB.Reached via a back edge. 747 break; 748 749 if (IsDstPhys) { 750 VirtRegPairs.push_back(NewReg); 751 break; 752 } 753 bool isNew = SrcRegMap.insert(std::make_pair(NewReg, Reg)).second; 754 if (!isNew) 755 assert(SrcRegMap[NewReg] == Reg && "Can't map to two src registers!"); 756 VirtRegPairs.push_back(NewReg); 757 Reg = NewReg; 758 } 759 760 if (!VirtRegPairs.empty()) { 761 unsigned ToReg = VirtRegPairs.back(); 762 VirtRegPairs.pop_back(); 763 while (!VirtRegPairs.empty()) { 764 unsigned FromReg = VirtRegPairs.back(); 765 VirtRegPairs.pop_back(); 766 bool isNew = DstRegMap.insert(std::make_pair(FromReg, ToReg)).second; 767 if (!isNew) 768 assert(DstRegMap[FromReg] == ToReg &&"Can't map to two dst registers!"); 769 ToReg = FromReg; 770 } 771 bool isNew = DstRegMap.insert(std::make_pair(DstReg, ToReg)).second; 772 if (!isNew) 773 assert(DstRegMap[DstReg] == ToReg && "Can't map to two dst registers!"); 774 } 775 } 776 777 /// If the specified instruction is not yet processed, process it if it's a 778 /// copy. For a copy instruction, we find the physical registers the 779 /// source and destination registers might be mapped to. These are kept in 780 /// point-to maps used to determine future optimizations. e.g. 781 /// v1024 = mov r0 782 /// v1025 = mov r1 783 /// v1026 = add v1024, v1025 784 /// r1 = mov r1026 785 /// If 'add' is a two-address instruction, v1024, v1026 are both potentially 786 /// coalesced to r0 (from the input side). v1025 is mapped to r1. v1026 is 787 /// potentially joined with r1 on the output side. It's worthwhile to commute 788 /// 'add' to eliminate a copy. 789 void TwoAddressInstructionPass::processCopy(MachineInstr *MI) { 790 if (Processed.count(MI)) 791 return; 792 793 bool IsSrcPhys, IsDstPhys; 794 unsigned SrcReg, DstReg; 795 if (!isCopyToReg(*MI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) 796 return; 797 798 if (IsDstPhys && !IsSrcPhys) 799 DstRegMap.insert(std::make_pair(SrcReg, DstReg)); 800 else if (!IsDstPhys && IsSrcPhys) { 801 bool isNew = SrcRegMap.insert(std::make_pair(DstReg, SrcReg)).second; 802 if (!isNew) 803 assert(SrcRegMap[DstReg] == SrcReg && 804 "Can't map to two src physical registers!"); 805 806 scanUses(DstReg); 807 } 808 809 Processed.insert(MI); 810 } 811 812 /// If there is one more local instruction that reads 'Reg' and it kills 'Reg, 813 /// consider moving the instruction below the kill instruction in order to 814 /// eliminate the need for the copy. 815 bool TwoAddressInstructionPass:: 816 rescheduleMIBelowKill(MachineBasicBlock::iterator &mi, 817 MachineBasicBlock::iterator &nmi, 818 unsigned Reg) { 819 // Bail immediately if we don't have LV or LIS available. We use them to find 820 // kills efficiently. 821 if (!LV && !LIS) 822 return false; 823 824 MachineInstr *MI = &*mi; 825 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI); 826 if (DI == DistanceMap.end()) 827 // Must be created from unfolded load. Don't waste time trying this. 828 return false; 829 830 MachineInstr *KillMI = nullptr; 831 if (LIS) { 832 LiveInterval &LI = LIS->getInterval(Reg); 833 assert(LI.end() != LI.begin() && 834 "Reg should not have empty live interval."); 835 836 SlotIndex MBBEndIdx = LIS->getMBBEndIdx(MBB).getPrevSlot(); 837 LiveInterval::const_iterator I = LI.find(MBBEndIdx); 838 if (I != LI.end() && I->start < MBBEndIdx) 839 return false; 840 841 --I; 842 KillMI = LIS->getInstructionFromIndex(I->end); 843 } else { 844 KillMI = LV->getVarInfo(Reg).findKill(MBB); 845 } 846 if (!KillMI || MI == KillMI || KillMI->isCopy() || KillMI->isCopyLike()) 847 // Don't mess with copies, they may be coalesced later. 848 return false; 849 850 if (KillMI->hasUnmodeledSideEffects() || KillMI->isCall() || 851 KillMI->isBranch() || KillMI->isTerminator()) 852 // Don't move pass calls, etc. 853 return false; 854 855 unsigned DstReg; 856 if (isTwoAddrUse(*KillMI, Reg, DstReg)) 857 return false; 858 859 bool SeenStore = true; 860 if (!MI->isSafeToMove(AA, SeenStore)) 861 return false; 862 863 if (TII->getInstrLatency(InstrItins, *MI) > 1) 864 // FIXME: Needs more sophisticated heuristics. 865 return false; 866 867 SmallSet<unsigned, 2> Uses; 868 SmallSet<unsigned, 2> Kills; 869 SmallSet<unsigned, 2> Defs; 870 for (const MachineOperand &MO : MI->operands()) { 871 if (!MO.isReg()) 872 continue; 873 unsigned MOReg = MO.getReg(); 874 if (!MOReg) 875 continue; 876 if (MO.isDef()) 877 Defs.insert(MOReg); 878 else { 879 Uses.insert(MOReg); 880 if (MOReg != Reg && (MO.isKill() || 881 (LIS && isPlainlyKilled(MI, MOReg, LIS)))) 882 Kills.insert(MOReg); 883 } 884 } 885 886 // Move the copies connected to MI down as well. 887 MachineBasicBlock::iterator Begin = MI; 888 MachineBasicBlock::iterator AfterMI = std::next(Begin); 889 890 MachineBasicBlock::iterator End = AfterMI; 891 while (End->isCopy() && Defs.count(End->getOperand(1).getReg())) { 892 Defs.insert(End->getOperand(0).getReg()); 893 ++End; 894 } 895 896 // Check if the reschedule will not break depedencies. 897 unsigned NumVisited = 0; 898 MachineBasicBlock::iterator KillPos = KillMI; 899 ++KillPos; 900 for (MachineInstr &OtherMI : llvm::make_range(End, KillPos)) { 901 // DBG_VALUE cannot be counted against the limit. 902 if (OtherMI.isDebugValue()) 903 continue; 904 if (NumVisited > 10) // FIXME: Arbitrary limit to reduce compile time cost. 905 return false; 906 ++NumVisited; 907 if (OtherMI.hasUnmodeledSideEffects() || OtherMI.isCall() || 908 OtherMI.isBranch() || OtherMI.isTerminator()) 909 // Don't move pass calls, etc. 910 return false; 911 for (const MachineOperand &MO : OtherMI.operands()) { 912 if (!MO.isReg()) 913 continue; 914 unsigned MOReg = MO.getReg(); 915 if (!MOReg) 916 continue; 917 if (MO.isDef()) { 918 if (Uses.count(MOReg)) 919 // Physical register use would be clobbered. 920 return false; 921 if (!MO.isDead() && Defs.count(MOReg)) 922 // May clobber a physical register def. 923 // FIXME: This may be too conservative. It's ok if the instruction 924 // is sunken completely below the use. 925 return false; 926 } else { 927 if (Defs.count(MOReg)) 928 return false; 929 bool isKill = 930 MO.isKill() || (LIS && isPlainlyKilled(&OtherMI, MOReg, LIS)); 931 if (MOReg != Reg && 932 ((isKill && Uses.count(MOReg)) || Kills.count(MOReg))) 933 // Don't want to extend other live ranges and update kills. 934 return false; 935 if (MOReg == Reg && !isKill) 936 // We can't schedule across a use of the register in question. 937 return false; 938 // Ensure that if this is register in question, its the kill we expect. 939 assert((MOReg != Reg || &OtherMI == KillMI) && 940 "Found multiple kills of a register in a basic block"); 941 } 942 } 943 } 944 945 // Move debug info as well. 946 while (Begin != MBB->begin() && std::prev(Begin)->isDebugValue()) 947 --Begin; 948 949 nmi = End; 950 MachineBasicBlock::iterator InsertPos = KillPos; 951 if (LIS) { 952 // We have to move the copies first so that the MBB is still well-formed 953 // when calling handleMove(). 954 for (MachineBasicBlock::iterator MBBI = AfterMI; MBBI != End;) { 955 auto CopyMI = MBBI++; 956 MBB->splice(InsertPos, MBB, CopyMI); 957 LIS->handleMove(*CopyMI); 958 InsertPos = CopyMI; 959 } 960 End = std::next(MachineBasicBlock::iterator(MI)); 961 } 962 963 // Copies following MI may have been moved as well. 964 MBB->splice(InsertPos, MBB, Begin, End); 965 DistanceMap.erase(DI); 966 967 // Update live variables 968 if (LIS) { 969 LIS->handleMove(*MI); 970 } else { 971 LV->removeVirtualRegisterKilled(Reg, *KillMI); 972 LV->addVirtualRegisterKilled(Reg, *MI); 973 } 974 975 DEBUG(dbgs() << "\trescheduled below kill: " << *KillMI); 976 return true; 977 } 978 979 /// Return true if the re-scheduling will put the given instruction too close 980 /// to the defs of its register dependencies. 981 bool TwoAddressInstructionPass::isDefTooClose(unsigned Reg, unsigned Dist, 982 MachineInstr *MI) { 983 for (MachineInstr &DefMI : MRI->def_instructions(Reg)) { 984 if (DefMI.getParent() != MBB || DefMI.isCopy() || DefMI.isCopyLike()) 985 continue; 986 if (&DefMI == MI) 987 return true; // MI is defining something KillMI uses 988 DenseMap<MachineInstr*, unsigned>::iterator DDI = DistanceMap.find(&DefMI); 989 if (DDI == DistanceMap.end()) 990 return true; // Below MI 991 unsigned DefDist = DDI->second; 992 assert(Dist > DefDist && "Visited def already?"); 993 if (TII->getInstrLatency(InstrItins, DefMI) > (Dist - DefDist)) 994 return true; 995 } 996 return false; 997 } 998 999 /// If there is one more local instruction that reads 'Reg' and it kills 'Reg, 1000 /// consider moving the kill instruction above the current two-address 1001 /// instruction in order to eliminate the need for the copy. 1002 bool TwoAddressInstructionPass:: 1003 rescheduleKillAboveMI(MachineBasicBlock::iterator &mi, 1004 MachineBasicBlock::iterator &nmi, 1005 unsigned Reg) { 1006 // Bail immediately if we don't have LV or LIS available. We use them to find 1007 // kills efficiently. 1008 if (!LV && !LIS) 1009 return false; 1010 1011 MachineInstr *MI = &*mi; 1012 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI); 1013 if (DI == DistanceMap.end()) 1014 // Must be created from unfolded load. Don't waste time trying this. 1015 return false; 1016 1017 MachineInstr *KillMI = nullptr; 1018 if (LIS) { 1019 LiveInterval &LI = LIS->getInterval(Reg); 1020 assert(LI.end() != LI.begin() && 1021 "Reg should not have empty live interval."); 1022 1023 SlotIndex MBBEndIdx = LIS->getMBBEndIdx(MBB).getPrevSlot(); 1024 LiveInterval::const_iterator I = LI.find(MBBEndIdx); 1025 if (I != LI.end() && I->start < MBBEndIdx) 1026 return false; 1027 1028 --I; 1029 KillMI = LIS->getInstructionFromIndex(I->end); 1030 } else { 1031 KillMI = LV->getVarInfo(Reg).findKill(MBB); 1032 } 1033 if (!KillMI || MI == KillMI || KillMI->isCopy() || KillMI->isCopyLike()) 1034 // Don't mess with copies, they may be coalesced later. 1035 return false; 1036 1037 unsigned DstReg; 1038 if (isTwoAddrUse(*KillMI, Reg, DstReg)) 1039 return false; 1040 1041 bool SeenStore = true; 1042 if (!KillMI->isSafeToMove(AA, SeenStore)) 1043 return false; 1044 1045 SmallSet<unsigned, 2> Uses; 1046 SmallSet<unsigned, 2> Kills; 1047 SmallSet<unsigned, 2> Defs; 1048 SmallSet<unsigned, 2> LiveDefs; 1049 for (const MachineOperand &MO : KillMI->operands()) { 1050 if (!MO.isReg()) 1051 continue; 1052 unsigned MOReg = MO.getReg(); 1053 if (MO.isUse()) { 1054 if (!MOReg) 1055 continue; 1056 if (isDefTooClose(MOReg, DI->second, MI)) 1057 return false; 1058 bool isKill = MO.isKill() || (LIS && isPlainlyKilled(KillMI, MOReg, LIS)); 1059 if (MOReg == Reg && !isKill) 1060 return false; 1061 Uses.insert(MOReg); 1062 if (isKill && MOReg != Reg) 1063 Kills.insert(MOReg); 1064 } else if (TargetRegisterInfo::isPhysicalRegister(MOReg)) { 1065 Defs.insert(MOReg); 1066 if (!MO.isDead()) 1067 LiveDefs.insert(MOReg); 1068 } 1069 } 1070 1071 // Check if the reschedule will not break depedencies. 1072 unsigned NumVisited = 0; 1073 for (MachineInstr &OtherMI : 1074 llvm::make_range(mi, MachineBasicBlock::iterator(KillMI))) { 1075 // DBG_VALUE cannot be counted against the limit. 1076 if (OtherMI.isDebugValue()) 1077 continue; 1078 if (NumVisited > 10) // FIXME: Arbitrary limit to reduce compile time cost. 1079 return false; 1080 ++NumVisited; 1081 if (OtherMI.hasUnmodeledSideEffects() || OtherMI.isCall() || 1082 OtherMI.isBranch() || OtherMI.isTerminator()) 1083 // Don't move pass calls, etc. 1084 return false; 1085 SmallVector<unsigned, 2> OtherDefs; 1086 for (const MachineOperand &MO : OtherMI.operands()) { 1087 if (!MO.isReg()) 1088 continue; 1089 unsigned MOReg = MO.getReg(); 1090 if (!MOReg) 1091 continue; 1092 if (MO.isUse()) { 1093 if (Defs.count(MOReg)) 1094 // Moving KillMI can clobber the physical register if the def has 1095 // not been seen. 1096 return false; 1097 if (Kills.count(MOReg)) 1098 // Don't want to extend other live ranges and update kills. 1099 return false; 1100 if (&OtherMI != MI && MOReg == Reg && 1101 !(MO.isKill() || (LIS && isPlainlyKilled(&OtherMI, MOReg, LIS)))) 1102 // We can't schedule across a use of the register in question. 1103 return false; 1104 } else { 1105 OtherDefs.push_back(MOReg); 1106 } 1107 } 1108 1109 for (unsigned i = 0, e = OtherDefs.size(); i != e; ++i) { 1110 unsigned MOReg = OtherDefs[i]; 1111 if (Uses.count(MOReg)) 1112 return false; 1113 if (TargetRegisterInfo::isPhysicalRegister(MOReg) && 1114 LiveDefs.count(MOReg)) 1115 return false; 1116 // Physical register def is seen. 1117 Defs.erase(MOReg); 1118 } 1119 } 1120 1121 // Move the old kill above MI, don't forget to move debug info as well. 1122 MachineBasicBlock::iterator InsertPos = mi; 1123 while (InsertPos != MBB->begin() && std::prev(InsertPos)->isDebugValue()) 1124 --InsertPos; 1125 MachineBasicBlock::iterator From = KillMI; 1126 MachineBasicBlock::iterator To = std::next(From); 1127 while (std::prev(From)->isDebugValue()) 1128 --From; 1129 MBB->splice(InsertPos, MBB, From, To); 1130 1131 nmi = std::prev(InsertPos); // Backtrack so we process the moved instr. 1132 DistanceMap.erase(DI); 1133 1134 // Update live variables 1135 if (LIS) { 1136 LIS->handleMove(*KillMI); 1137 } else { 1138 LV->removeVirtualRegisterKilled(Reg, *KillMI); 1139 LV->addVirtualRegisterKilled(Reg, *MI); 1140 } 1141 1142 DEBUG(dbgs() << "\trescheduled kill: " << *KillMI); 1143 return true; 1144 } 1145 1146 /// Tries to commute the operand 'BaseOpIdx' and some other operand in the 1147 /// given machine instruction to improve opportunities for coalescing and 1148 /// elimination of a register to register copy. 1149 /// 1150 /// 'DstOpIdx' specifies the index of MI def operand. 1151 /// 'BaseOpKilled' specifies if the register associated with 'BaseOpIdx' 1152 /// operand is killed by the given instruction. 1153 /// The 'Dist' arguments provides the distance of MI from the start of the 1154 /// current basic block and it is used to determine if it is profitable 1155 /// to commute operands in the instruction. 1156 /// 1157 /// Returns true if the transformation happened. Otherwise, returns false. 1158 bool TwoAddressInstructionPass::tryInstructionCommute(MachineInstr *MI, 1159 unsigned DstOpIdx, 1160 unsigned BaseOpIdx, 1161 bool BaseOpKilled, 1162 unsigned Dist) { 1163 unsigned DstOpReg = MI->getOperand(DstOpIdx).getReg(); 1164 unsigned BaseOpReg = MI->getOperand(BaseOpIdx).getReg(); 1165 unsigned OpsNum = MI->getDesc().getNumOperands(); 1166 unsigned OtherOpIdx = MI->getDesc().getNumDefs(); 1167 for (; OtherOpIdx < OpsNum; OtherOpIdx++) { 1168 // The call of findCommutedOpIndices below only checks if BaseOpIdx 1169 // and OtherOpIdx are commutable, it does not really search for 1170 // other commutable operands and does not change the values of passed 1171 // variables. 1172 if (OtherOpIdx == BaseOpIdx || 1173 !TII->findCommutedOpIndices(*MI, BaseOpIdx, OtherOpIdx)) 1174 continue; 1175 1176 unsigned OtherOpReg = MI->getOperand(OtherOpIdx).getReg(); 1177 bool AggressiveCommute = false; 1178 1179 // If OtherOp dies but BaseOp does not, swap the OtherOp and BaseOp 1180 // operands. This makes the live ranges of DstOp and OtherOp joinable. 1181 bool DoCommute = 1182 !BaseOpKilled && isKilled(*MI, OtherOpReg, MRI, TII, LIS, false); 1183 1184 if (!DoCommute && 1185 isProfitableToCommute(DstOpReg, BaseOpReg, OtherOpReg, MI, Dist)) { 1186 DoCommute = true; 1187 AggressiveCommute = true; 1188 } 1189 1190 // If it's profitable to commute, try to do so. 1191 if (DoCommute && commuteInstruction(MI, BaseOpIdx, OtherOpIdx, Dist)) { 1192 ++NumCommuted; 1193 if (AggressiveCommute) 1194 ++NumAggrCommuted; 1195 return true; 1196 } 1197 } 1198 return false; 1199 } 1200 1201 /// For the case where an instruction has a single pair of tied register 1202 /// operands, attempt some transformations that may either eliminate the tied 1203 /// operands or improve the opportunities for coalescing away the register copy. 1204 /// Returns true if no copy needs to be inserted to untie mi's operands 1205 /// (either because they were untied, or because mi was rescheduled, and will 1206 /// be visited again later). If the shouldOnlyCommute flag is true, only 1207 /// instruction commutation is attempted. 1208 bool TwoAddressInstructionPass:: 1209 tryInstructionTransform(MachineBasicBlock::iterator &mi, 1210 MachineBasicBlock::iterator &nmi, 1211 unsigned SrcIdx, unsigned DstIdx, 1212 unsigned Dist, bool shouldOnlyCommute) { 1213 if (OptLevel == CodeGenOpt::None) 1214 return false; 1215 1216 MachineInstr &MI = *mi; 1217 unsigned regA = MI.getOperand(DstIdx).getReg(); 1218 unsigned regB = MI.getOperand(SrcIdx).getReg(); 1219 1220 assert(TargetRegisterInfo::isVirtualRegister(regB) && 1221 "cannot make instruction into two-address form"); 1222 bool regBKilled = isKilled(MI, regB, MRI, TII, LIS, true); 1223 1224 if (TargetRegisterInfo::isVirtualRegister(regA)) 1225 scanUses(regA); 1226 1227 bool Commuted = tryInstructionCommute(&MI, DstIdx, SrcIdx, regBKilled, Dist); 1228 1229 // If the instruction is convertible to 3 Addr, instead 1230 // of returning try 3 Addr transformation aggresively and 1231 // use this variable to check later. Because it might be better. 1232 // For example, we can just use `leal (%rsi,%rdi), %eax` and `ret` 1233 // instead of the following code. 1234 // addl %esi, %edi 1235 // movl %edi, %eax 1236 // ret 1237 if (Commuted && !MI.isConvertibleTo3Addr()) 1238 return false; 1239 1240 if (shouldOnlyCommute) 1241 return false; 1242 1243 // If there is one more use of regB later in the same MBB, consider 1244 // re-schedule this MI below it. 1245 if (!Commuted && EnableRescheduling && rescheduleMIBelowKill(mi, nmi, regB)) { 1246 ++NumReSchedDowns; 1247 return true; 1248 } 1249 1250 // If we commuted, regB may have changed so we should re-sample it to avoid 1251 // confusing the three address conversion below. 1252 if (Commuted) { 1253 regB = MI.getOperand(SrcIdx).getReg(); 1254 regBKilled = isKilled(MI, regB, MRI, TII, LIS, true); 1255 } 1256 1257 if (MI.isConvertibleTo3Addr()) { 1258 // This instruction is potentially convertible to a true 1259 // three-address instruction. Check if it is profitable. 1260 if (!regBKilled || isProfitableToConv3Addr(regA, regB)) { 1261 // Try to convert it. 1262 if (convertInstTo3Addr(mi, nmi, regA, regB, Dist)) { 1263 ++NumConvertedTo3Addr; 1264 return true; // Done with this instruction. 1265 } 1266 } 1267 } 1268 1269 // Return if it is commuted but 3 addr conversion is failed. 1270 if (Commuted) 1271 return false; 1272 1273 // If there is one more use of regB later in the same MBB, consider 1274 // re-schedule it before this MI if it's legal. 1275 if (EnableRescheduling && rescheduleKillAboveMI(mi, nmi, regB)) { 1276 ++NumReSchedUps; 1277 return true; 1278 } 1279 1280 // If this is an instruction with a load folded into it, try unfolding 1281 // the load, e.g. avoid this: 1282 // movq %rdx, %rcx 1283 // addq (%rax), %rcx 1284 // in favor of this: 1285 // movq (%rax), %rcx 1286 // addq %rdx, %rcx 1287 // because it's preferable to schedule a load than a register copy. 1288 if (MI.mayLoad() && !regBKilled) { 1289 // Determine if a load can be unfolded. 1290 unsigned LoadRegIndex; 1291 unsigned NewOpc = 1292 TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(), 1293 /*UnfoldLoad=*/true, 1294 /*UnfoldStore=*/false, 1295 &LoadRegIndex); 1296 if (NewOpc != 0) { 1297 const MCInstrDesc &UnfoldMCID = TII->get(NewOpc); 1298 if (UnfoldMCID.getNumDefs() == 1) { 1299 // Unfold the load. 1300 DEBUG(dbgs() << "2addr: UNFOLDING: " << MI); 1301 const TargetRegisterClass *RC = 1302 TRI->getAllocatableClass( 1303 TII->getRegClass(UnfoldMCID, LoadRegIndex, TRI, *MF)); 1304 unsigned Reg = MRI->createVirtualRegister(RC); 1305 SmallVector<MachineInstr *, 2> NewMIs; 1306 if (!TII->unfoldMemoryOperand(*MF, MI, Reg, 1307 /*UnfoldLoad=*/true, 1308 /*UnfoldStore=*/false, NewMIs)) { 1309 DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n"); 1310 return false; 1311 } 1312 assert(NewMIs.size() == 2 && 1313 "Unfolded a load into multiple instructions!"); 1314 // The load was previously folded, so this is the only use. 1315 NewMIs[1]->addRegisterKilled(Reg, TRI); 1316 1317 // Tentatively insert the instructions into the block so that they 1318 // look "normal" to the transformation logic. 1319 MBB->insert(mi, NewMIs[0]); 1320 MBB->insert(mi, NewMIs[1]); 1321 1322 DEBUG(dbgs() << "2addr: NEW LOAD: " << *NewMIs[0] 1323 << "2addr: NEW INST: " << *NewMIs[1]); 1324 1325 // Transform the instruction, now that it no longer has a load. 1326 unsigned NewDstIdx = NewMIs[1]->findRegisterDefOperandIdx(regA); 1327 unsigned NewSrcIdx = NewMIs[1]->findRegisterUseOperandIdx(regB); 1328 MachineBasicBlock::iterator NewMI = NewMIs[1]; 1329 bool TransformResult = 1330 tryInstructionTransform(NewMI, mi, NewSrcIdx, NewDstIdx, Dist, true); 1331 (void)TransformResult; 1332 assert(!TransformResult && 1333 "tryInstructionTransform() should return false."); 1334 if (NewMIs[1]->getOperand(NewSrcIdx).isKill()) { 1335 // Success, or at least we made an improvement. Keep the unfolded 1336 // instructions and discard the original. 1337 if (LV) { 1338 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 1339 MachineOperand &MO = MI.getOperand(i); 1340 if (MO.isReg() && 1341 TargetRegisterInfo::isVirtualRegister(MO.getReg())) { 1342 if (MO.isUse()) { 1343 if (MO.isKill()) { 1344 if (NewMIs[0]->killsRegister(MO.getReg())) 1345 LV->replaceKillInstruction(MO.getReg(), MI, *NewMIs[0]); 1346 else { 1347 assert(NewMIs[1]->killsRegister(MO.getReg()) && 1348 "Kill missing after load unfold!"); 1349 LV->replaceKillInstruction(MO.getReg(), MI, *NewMIs[1]); 1350 } 1351 } 1352 } else if (LV->removeVirtualRegisterDead(MO.getReg(), MI)) { 1353 if (NewMIs[1]->registerDefIsDead(MO.getReg())) 1354 LV->addVirtualRegisterDead(MO.getReg(), *NewMIs[1]); 1355 else { 1356 assert(NewMIs[0]->registerDefIsDead(MO.getReg()) && 1357 "Dead flag missing after load unfold!"); 1358 LV->addVirtualRegisterDead(MO.getReg(), *NewMIs[0]); 1359 } 1360 } 1361 } 1362 } 1363 LV->addVirtualRegisterKilled(Reg, *NewMIs[1]); 1364 } 1365 1366 SmallVector<unsigned, 4> OrigRegs; 1367 if (LIS) { 1368 for (const MachineOperand &MO : MI.operands()) { 1369 if (MO.isReg()) 1370 OrigRegs.push_back(MO.getReg()); 1371 } 1372 } 1373 1374 MI.eraseFromParent(); 1375 1376 // Update LiveIntervals. 1377 if (LIS) { 1378 MachineBasicBlock::iterator Begin(NewMIs[0]); 1379 MachineBasicBlock::iterator End(NewMIs[1]); 1380 LIS->repairIntervalsInRange(MBB, Begin, End, OrigRegs); 1381 } 1382 1383 mi = NewMIs[1]; 1384 } else { 1385 // Transforming didn't eliminate the tie and didn't lead to an 1386 // improvement. Clean up the unfolded instructions and keep the 1387 // original. 1388 DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n"); 1389 NewMIs[0]->eraseFromParent(); 1390 NewMIs[1]->eraseFromParent(); 1391 } 1392 } 1393 } 1394 } 1395 1396 return false; 1397 } 1398 1399 // Collect tied operands of MI that need to be handled. 1400 // Rewrite trivial cases immediately. 1401 // Return true if any tied operands where found, including the trivial ones. 1402 bool TwoAddressInstructionPass:: 1403 collectTiedOperands(MachineInstr *MI, TiedOperandMap &TiedOperands) { 1404 const MCInstrDesc &MCID = MI->getDesc(); 1405 bool AnyOps = false; 1406 unsigned NumOps = MI->getNumOperands(); 1407 1408 for (unsigned SrcIdx = 0; SrcIdx < NumOps; ++SrcIdx) { 1409 unsigned DstIdx = 0; 1410 if (!MI->isRegTiedToDefOperand(SrcIdx, &DstIdx)) 1411 continue; 1412 AnyOps = true; 1413 MachineOperand &SrcMO = MI->getOperand(SrcIdx); 1414 MachineOperand &DstMO = MI->getOperand(DstIdx); 1415 unsigned SrcReg = SrcMO.getReg(); 1416 unsigned DstReg = DstMO.getReg(); 1417 // Tied constraint already satisfied? 1418 if (SrcReg == DstReg) 1419 continue; 1420 1421 assert(SrcReg && SrcMO.isUse() && "two address instruction invalid"); 1422 1423 // Deal with <undef> uses immediately - simply rewrite the src operand. 1424 if (SrcMO.isUndef() && !DstMO.getSubReg()) { 1425 // Constrain the DstReg register class if required. 1426 if (TargetRegisterInfo::isVirtualRegister(DstReg)) 1427 if (const TargetRegisterClass *RC = TII->getRegClass(MCID, SrcIdx, 1428 TRI, *MF)) 1429 MRI->constrainRegClass(DstReg, RC); 1430 SrcMO.setReg(DstReg); 1431 SrcMO.setSubReg(0); 1432 DEBUG(dbgs() << "\t\trewrite undef:\t" << *MI); 1433 continue; 1434 } 1435 TiedOperands[SrcReg].push_back(std::make_pair(SrcIdx, DstIdx)); 1436 } 1437 return AnyOps; 1438 } 1439 1440 // Process a list of tied MI operands that all use the same source register. 1441 // The tied pairs are of the form (SrcIdx, DstIdx). 1442 void 1443 TwoAddressInstructionPass::processTiedPairs(MachineInstr *MI, 1444 TiedPairList &TiedPairs, 1445 unsigned &Dist) { 1446 bool IsEarlyClobber = false; 1447 for (unsigned tpi = 0, tpe = TiedPairs.size(); tpi != tpe; ++tpi) { 1448 const MachineOperand &DstMO = MI->getOperand(TiedPairs[tpi].second); 1449 IsEarlyClobber |= DstMO.isEarlyClobber(); 1450 } 1451 1452 bool RemovedKillFlag = false; 1453 bool AllUsesCopied = true; 1454 unsigned LastCopiedReg = 0; 1455 SlotIndex LastCopyIdx; 1456 unsigned RegB = 0; 1457 unsigned SubRegB = 0; 1458 for (unsigned tpi = 0, tpe = TiedPairs.size(); tpi != tpe; ++tpi) { 1459 unsigned SrcIdx = TiedPairs[tpi].first; 1460 unsigned DstIdx = TiedPairs[tpi].second; 1461 1462 const MachineOperand &DstMO = MI->getOperand(DstIdx); 1463 unsigned RegA = DstMO.getReg(); 1464 1465 // Grab RegB from the instruction because it may have changed if the 1466 // instruction was commuted. 1467 RegB = MI->getOperand(SrcIdx).getReg(); 1468 SubRegB = MI->getOperand(SrcIdx).getSubReg(); 1469 1470 if (RegA == RegB) { 1471 // The register is tied to multiple destinations (or else we would 1472 // not have continued this far), but this use of the register 1473 // already matches the tied destination. Leave it. 1474 AllUsesCopied = false; 1475 continue; 1476 } 1477 LastCopiedReg = RegA; 1478 1479 assert(TargetRegisterInfo::isVirtualRegister(RegB) && 1480 "cannot make instruction into two-address form"); 1481 1482 #ifndef NDEBUG 1483 // First, verify that we don't have a use of "a" in the instruction 1484 // (a = b + a for example) because our transformation will not 1485 // work. This should never occur because we are in SSA form. 1486 for (unsigned i = 0; i != MI->getNumOperands(); ++i) 1487 assert(i == DstIdx || 1488 !MI->getOperand(i).isReg() || 1489 MI->getOperand(i).getReg() != RegA); 1490 #endif 1491 1492 // Emit a copy. 1493 MachineInstrBuilder MIB = BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), 1494 TII->get(TargetOpcode::COPY), RegA); 1495 // If this operand is folding a truncation, the truncation now moves to the 1496 // copy so that the register classes remain valid for the operands. 1497 MIB.addReg(RegB, 0, SubRegB); 1498 const TargetRegisterClass *RC = MRI->getRegClass(RegB); 1499 if (SubRegB) { 1500 if (TargetRegisterInfo::isVirtualRegister(RegA)) { 1501 assert(TRI->getMatchingSuperRegClass(RC, MRI->getRegClass(RegA), 1502 SubRegB) && 1503 "tied subregister must be a truncation"); 1504 // The superreg class will not be used to constrain the subreg class. 1505 RC = nullptr; 1506 } 1507 else { 1508 assert(TRI->getMatchingSuperReg(RegA, SubRegB, MRI->getRegClass(RegB)) 1509 && "tied subregister must be a truncation"); 1510 } 1511 } 1512 1513 // Update DistanceMap. 1514 MachineBasicBlock::iterator PrevMI = MI; 1515 --PrevMI; 1516 DistanceMap.insert(std::make_pair(&*PrevMI, Dist)); 1517 DistanceMap[MI] = ++Dist; 1518 1519 if (LIS) { 1520 LastCopyIdx = LIS->InsertMachineInstrInMaps(*PrevMI).getRegSlot(); 1521 1522 if (TargetRegisterInfo::isVirtualRegister(RegA)) { 1523 LiveInterval &LI = LIS->getInterval(RegA); 1524 VNInfo *VNI = LI.getNextValue(LastCopyIdx, LIS->getVNInfoAllocator()); 1525 SlotIndex endIdx = 1526 LIS->getInstructionIndex(*MI).getRegSlot(IsEarlyClobber); 1527 LI.addSegment(LiveInterval::Segment(LastCopyIdx, endIdx, VNI)); 1528 } 1529 } 1530 1531 DEBUG(dbgs() << "\t\tprepend:\t" << *MIB); 1532 1533 MachineOperand &MO = MI->getOperand(SrcIdx); 1534 assert(MO.isReg() && MO.getReg() == RegB && MO.isUse() && 1535 "inconsistent operand info for 2-reg pass"); 1536 if (MO.isKill()) { 1537 MO.setIsKill(false); 1538 RemovedKillFlag = true; 1539 } 1540 1541 // Make sure regA is a legal regclass for the SrcIdx operand. 1542 if (TargetRegisterInfo::isVirtualRegister(RegA) && 1543 TargetRegisterInfo::isVirtualRegister(RegB)) 1544 MRI->constrainRegClass(RegA, RC); 1545 MO.setReg(RegA); 1546 // The getMatchingSuper asserts guarantee that the register class projected 1547 // by SubRegB is compatible with RegA with no subregister. So regardless of 1548 // whether the dest oper writes a subreg, the source oper should not. 1549 MO.setSubReg(0); 1550 1551 // Propagate SrcRegMap. 1552 SrcRegMap[RegA] = RegB; 1553 } 1554 1555 if (AllUsesCopied) { 1556 if (!IsEarlyClobber) { 1557 // Replace other (un-tied) uses of regB with LastCopiedReg. 1558 for (MachineOperand &MO : MI->operands()) { 1559 if (MO.isReg() && MO.getReg() == RegB && MO.getSubReg() == SubRegB && 1560 MO.isUse()) { 1561 if (MO.isKill()) { 1562 MO.setIsKill(false); 1563 RemovedKillFlag = true; 1564 } 1565 MO.setReg(LastCopiedReg); 1566 MO.setSubReg(0); 1567 } 1568 } 1569 } 1570 1571 // Update live variables for regB. 1572 if (RemovedKillFlag && LV && LV->getVarInfo(RegB).removeKill(*MI)) { 1573 MachineBasicBlock::iterator PrevMI = MI; 1574 --PrevMI; 1575 LV->addVirtualRegisterKilled(RegB, *PrevMI); 1576 } 1577 1578 // Update LiveIntervals. 1579 if (LIS) { 1580 LiveInterval &LI = LIS->getInterval(RegB); 1581 SlotIndex MIIdx = LIS->getInstructionIndex(*MI); 1582 LiveInterval::const_iterator I = LI.find(MIIdx); 1583 assert(I != LI.end() && "RegB must be live-in to use."); 1584 1585 SlotIndex UseIdx = MIIdx.getRegSlot(IsEarlyClobber); 1586 if (I->end == UseIdx) 1587 LI.removeSegment(LastCopyIdx, UseIdx); 1588 } 1589 1590 } else if (RemovedKillFlag) { 1591 // Some tied uses of regB matched their destination registers, so 1592 // regB is still used in this instruction, but a kill flag was 1593 // removed from a different tied use of regB, so now we need to add 1594 // a kill flag to one of the remaining uses of regB. 1595 for (MachineOperand &MO : MI->operands()) { 1596 if (MO.isReg() && MO.getReg() == RegB && MO.isUse()) { 1597 MO.setIsKill(true); 1598 break; 1599 } 1600 } 1601 } 1602 } 1603 1604 /// Reduce two-address instructions to two operands. 1605 bool TwoAddressInstructionPass::runOnMachineFunction(MachineFunction &Func) { 1606 MF = &Func; 1607 const TargetMachine &TM = MF->getTarget(); 1608 MRI = &MF->getRegInfo(); 1609 TII = MF->getSubtarget().getInstrInfo(); 1610 TRI = MF->getSubtarget().getRegisterInfo(); 1611 InstrItins = MF->getSubtarget().getInstrItineraryData(); 1612 LV = getAnalysisIfAvailable<LiveVariables>(); 1613 LIS = getAnalysisIfAvailable<LiveIntervals>(); 1614 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 1615 OptLevel = TM.getOptLevel(); 1616 1617 bool MadeChange = false; 1618 1619 DEBUG(dbgs() << "********** REWRITING TWO-ADDR INSTRS **********\n"); 1620 DEBUG(dbgs() << "********** Function: " 1621 << MF->getName() << '\n'); 1622 1623 // This pass takes the function out of SSA form. 1624 MRI->leaveSSA(); 1625 1626 TiedOperandMap TiedOperands; 1627 for (MachineFunction::iterator MBBI = MF->begin(), MBBE = MF->end(); 1628 MBBI != MBBE; ++MBBI) { 1629 MBB = &*MBBI; 1630 unsigned Dist = 0; 1631 DistanceMap.clear(); 1632 SrcRegMap.clear(); 1633 DstRegMap.clear(); 1634 Processed.clear(); 1635 for (MachineBasicBlock::iterator mi = MBB->begin(), me = MBB->end(); 1636 mi != me; ) { 1637 MachineBasicBlock::iterator nmi = std::next(mi); 1638 if (mi->isDebugValue()) { 1639 mi = nmi; 1640 continue; 1641 } 1642 1643 // Expand REG_SEQUENCE instructions. This will position mi at the first 1644 // expanded instruction. 1645 if (mi->isRegSequence()) 1646 eliminateRegSequence(mi); 1647 1648 DistanceMap.insert(std::make_pair(&*mi, ++Dist)); 1649 1650 processCopy(&*mi); 1651 1652 // First scan through all the tied register uses in this instruction 1653 // and record a list of pairs of tied operands for each register. 1654 if (!collectTiedOperands(&*mi, TiedOperands)) { 1655 mi = nmi; 1656 continue; 1657 } 1658 1659 ++NumTwoAddressInstrs; 1660 MadeChange = true; 1661 DEBUG(dbgs() << '\t' << *mi); 1662 1663 // If the instruction has a single pair of tied operands, try some 1664 // transformations that may either eliminate the tied operands or 1665 // improve the opportunities for coalescing away the register copy. 1666 if (TiedOperands.size() == 1) { 1667 SmallVectorImpl<std::pair<unsigned, unsigned> > &TiedPairs 1668 = TiedOperands.begin()->second; 1669 if (TiedPairs.size() == 1) { 1670 unsigned SrcIdx = TiedPairs[0].first; 1671 unsigned DstIdx = TiedPairs[0].second; 1672 unsigned SrcReg = mi->getOperand(SrcIdx).getReg(); 1673 unsigned DstReg = mi->getOperand(DstIdx).getReg(); 1674 if (SrcReg != DstReg && 1675 tryInstructionTransform(mi, nmi, SrcIdx, DstIdx, Dist, false)) { 1676 // The tied operands have been eliminated or shifted further down 1677 // the block to ease elimination. Continue processing with 'nmi'. 1678 TiedOperands.clear(); 1679 mi = nmi; 1680 continue; 1681 } 1682 } 1683 } 1684 1685 // Now iterate over the information collected above. 1686 for (auto &TO : TiedOperands) { 1687 processTiedPairs(&*mi, TO.second, Dist); 1688 DEBUG(dbgs() << "\t\trewrite to:\t" << *mi); 1689 } 1690 1691 // Rewrite INSERT_SUBREG as COPY now that we no longer need SSA form. 1692 if (mi->isInsertSubreg()) { 1693 // From %reg = INSERT_SUBREG %reg, %subreg, subidx 1694 // To %reg:subidx = COPY %subreg 1695 unsigned SubIdx = mi->getOperand(3).getImm(); 1696 mi->RemoveOperand(3); 1697 assert(mi->getOperand(0).getSubReg() == 0 && "Unexpected subreg idx"); 1698 mi->getOperand(0).setSubReg(SubIdx); 1699 mi->getOperand(0).setIsUndef(mi->getOperand(1).isUndef()); 1700 mi->RemoveOperand(1); 1701 mi->setDesc(TII->get(TargetOpcode::COPY)); 1702 DEBUG(dbgs() << "\t\tconvert to:\t" << *mi); 1703 } 1704 1705 // Clear TiedOperands here instead of at the top of the loop 1706 // since most instructions do not have tied operands. 1707 TiedOperands.clear(); 1708 mi = nmi; 1709 } 1710 } 1711 1712 if (LIS) 1713 MF->verify(this, "After two-address instruction pass"); 1714 1715 return MadeChange; 1716 } 1717 1718 /// Eliminate a REG_SEQUENCE instruction as part of the de-ssa process. 1719 /// 1720 /// The instruction is turned into a sequence of sub-register copies: 1721 /// 1722 /// %dst = REG_SEQUENCE %v1, ssub0, %v2, ssub1 1723 /// 1724 /// Becomes: 1725 /// 1726 /// %dst:ssub0<def,undef> = COPY %v1 1727 /// %dst:ssub1<def> = COPY %v2 1728 /// 1729 void TwoAddressInstructionPass:: 1730 eliminateRegSequence(MachineBasicBlock::iterator &MBBI) { 1731 MachineInstr &MI = *MBBI; 1732 unsigned DstReg = MI.getOperand(0).getReg(); 1733 if (MI.getOperand(0).getSubReg() || 1734 TargetRegisterInfo::isPhysicalRegister(DstReg) || 1735 !(MI.getNumOperands() & 1)) { 1736 DEBUG(dbgs() << "Illegal REG_SEQUENCE instruction:" << MI); 1737 llvm_unreachable(nullptr); 1738 } 1739 1740 SmallVector<unsigned, 4> OrigRegs; 1741 if (LIS) { 1742 OrigRegs.push_back(MI.getOperand(0).getReg()); 1743 for (unsigned i = 1, e = MI.getNumOperands(); i < e; i += 2) 1744 OrigRegs.push_back(MI.getOperand(i).getReg()); 1745 } 1746 1747 bool DefEmitted = false; 1748 for (unsigned i = 1, e = MI.getNumOperands(); i < e; i += 2) { 1749 MachineOperand &UseMO = MI.getOperand(i); 1750 unsigned SrcReg = UseMO.getReg(); 1751 unsigned SubIdx = MI.getOperand(i+1).getImm(); 1752 // Nothing needs to be inserted for <undef> operands. 1753 if (UseMO.isUndef()) 1754 continue; 1755 1756 // Defer any kill flag to the last operand using SrcReg. Otherwise, we 1757 // might insert a COPY that uses SrcReg after is was killed. 1758 bool isKill = UseMO.isKill(); 1759 if (isKill) 1760 for (unsigned j = i + 2; j < e; j += 2) 1761 if (MI.getOperand(j).getReg() == SrcReg) { 1762 MI.getOperand(j).setIsKill(); 1763 UseMO.setIsKill(false); 1764 isKill = false; 1765 break; 1766 } 1767 1768 // Insert the sub-register copy. 1769 MachineInstr *CopyMI = BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), 1770 TII->get(TargetOpcode::COPY)) 1771 .addReg(DstReg, RegState::Define, SubIdx) 1772 .addOperand(UseMO); 1773 1774 // The first def needs an <undef> flag because there is no live register 1775 // before it. 1776 if (!DefEmitted) { 1777 CopyMI->getOperand(0).setIsUndef(true); 1778 // Return an iterator pointing to the first inserted instr. 1779 MBBI = CopyMI; 1780 } 1781 DefEmitted = true; 1782 1783 // Update LiveVariables' kill info. 1784 if (LV && isKill && !TargetRegisterInfo::isPhysicalRegister(SrcReg)) 1785 LV->replaceKillInstruction(SrcReg, MI, *CopyMI); 1786 1787 DEBUG(dbgs() << "Inserted: " << *CopyMI); 1788 } 1789 1790 MachineBasicBlock::iterator EndMBBI = 1791 std::next(MachineBasicBlock::iterator(MI)); 1792 1793 if (!DefEmitted) { 1794 DEBUG(dbgs() << "Turned: " << MI << " into an IMPLICIT_DEF"); 1795 MI.setDesc(TII->get(TargetOpcode::IMPLICIT_DEF)); 1796 for (int j = MI.getNumOperands() - 1, ee = 0; j > ee; --j) 1797 MI.RemoveOperand(j); 1798 } else { 1799 DEBUG(dbgs() << "Eliminated: " << MI); 1800 MI.eraseFromParent(); 1801 } 1802 1803 // Udpate LiveIntervals. 1804 if (LIS) 1805 LIS->repairIntervalsInRange(MBB, MBBI, EndMBBI, OrigRegs); 1806 } 1807