Home | History | Annotate | Download | only in CodeGen
      1 //===-- TwoAddressInstructionPass.cpp - Two-Address instruction pass ------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the TwoAddress instruction pass which is used
     11 // by most register allocators. Two-Address instructions are rewritten
     12 // from:
     13 //
     14 //     A = B op C
     15 //
     16 // to:
     17 //
     18 //     A = B
     19 //     A op= C
     20 //
     21 // Note that if a register allocator chooses to use this pass, that it
     22 // has to be capable of handling the non-SSA nature of these rewritten
     23 // virtual registers.
     24 //
     25 // It is also worth noting that the duplicate operand of the two
     26 // address instruction is removed.
     27 //
     28 //===----------------------------------------------------------------------===//
     29 
     30 #include "llvm/ADT/DenseMap.h"
     31 #include "llvm/ADT/STLExtras.h"
     32 #include "llvm/ADT/SmallSet.h"
     33 #include "llvm/ADT/Statistic.h"
     34 #include "llvm/Analysis/AliasAnalysis.h"
     35 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
     36 #include "llvm/CodeGen/LiveVariables.h"
     37 #include "llvm/CodeGen/MachineFunctionPass.h"
     38 #include "llvm/CodeGen/MachineInstr.h"
     39 #include "llvm/CodeGen/MachineInstrBuilder.h"
     40 #include "llvm/CodeGen/MachineRegisterInfo.h"
     41 #include "llvm/CodeGen/Passes.h"
     42 #include "llvm/IR/Function.h"
     43 #include "llvm/MC/MCInstrItineraries.h"
     44 #include "llvm/Support/CommandLine.h"
     45 #include "llvm/Support/Debug.h"
     46 #include "llvm/Support/ErrorHandling.h"
     47 #include "llvm/Support/raw_ostream.h"
     48 #include "llvm/Target/TargetInstrInfo.h"
     49 #include "llvm/Target/TargetMachine.h"
     50 #include "llvm/Target/TargetRegisterInfo.h"
     51 #include "llvm/Target/TargetSubtargetInfo.h"
     52 
     53 using namespace llvm;
     54 
     55 #define DEBUG_TYPE "twoaddrinstr"
     56 
     57 STATISTIC(NumTwoAddressInstrs, "Number of two-address instructions");
     58 STATISTIC(NumCommuted        , "Number of instructions commuted to coalesce");
     59 STATISTIC(NumAggrCommuted    , "Number of instructions aggressively commuted");
     60 STATISTIC(NumConvertedTo3Addr, "Number of instructions promoted to 3-address");
     61 STATISTIC(Num3AddrSunk,        "Number of 3-address instructions sunk");
     62 STATISTIC(NumReSchedUps,       "Number of instructions re-scheduled up");
     63 STATISTIC(NumReSchedDowns,     "Number of instructions re-scheduled down");
     64 
     65 // Temporary flag to disable rescheduling.
     66 static cl::opt<bool>
     67 EnableRescheduling("twoaddr-reschedule",
     68                    cl::desc("Coalesce copies by rescheduling (default=true)"),
     69                    cl::init(true), cl::Hidden);
     70 
     71 namespace {
     72 class TwoAddressInstructionPass : public MachineFunctionPass {
     73   MachineFunction *MF;
     74   const TargetInstrInfo *TII;
     75   const TargetRegisterInfo *TRI;
     76   const InstrItineraryData *InstrItins;
     77   MachineRegisterInfo *MRI;
     78   LiveVariables *LV;
     79   LiveIntervals *LIS;
     80   AliasAnalysis *AA;
     81   CodeGenOpt::Level OptLevel;
     82 
     83   // The current basic block being processed.
     84   MachineBasicBlock *MBB;
     85 
     86   // Keep track the distance of a MI from the start of the current basic block.
     87   DenseMap<MachineInstr*, unsigned> DistanceMap;
     88 
     89   // Set of already processed instructions in the current block.
     90   SmallPtrSet<MachineInstr*, 8> Processed;
     91 
     92   // A map from virtual registers to physical registers which are likely targets
     93   // to be coalesced to due to copies from physical registers to virtual
     94   // registers. e.g. v1024 = move r0.
     95   DenseMap<unsigned, unsigned> SrcRegMap;
     96 
     97   // A map from virtual registers to physical registers which are likely targets
     98   // to be coalesced to due to copies to physical registers from virtual
     99   // registers. e.g. r1 = move v1024.
    100   DenseMap<unsigned, unsigned> DstRegMap;
    101 
    102   bool sink3AddrInstruction(MachineInstr *MI, unsigned Reg,
    103                             MachineBasicBlock::iterator OldPos);
    104 
    105   bool isRevCopyChain(unsigned FromReg, unsigned ToReg, int Maxlen);
    106 
    107   bool noUseAfterLastDef(unsigned Reg, unsigned Dist, unsigned &LastDef);
    108 
    109   bool isProfitableToCommute(unsigned regA, unsigned regB, unsigned regC,
    110                              MachineInstr *MI, unsigned Dist);
    111 
    112   bool commuteInstruction(MachineInstr *MI,
    113                           unsigned RegBIdx, unsigned RegCIdx, unsigned Dist);
    114 
    115   bool isProfitableToConv3Addr(unsigned RegA, unsigned RegB);
    116 
    117   bool convertInstTo3Addr(MachineBasicBlock::iterator &mi,
    118                           MachineBasicBlock::iterator &nmi,
    119                           unsigned RegA, unsigned RegB, unsigned Dist);
    120 
    121   bool isDefTooClose(unsigned Reg, unsigned Dist, MachineInstr *MI);
    122 
    123   bool rescheduleMIBelowKill(MachineBasicBlock::iterator &mi,
    124                              MachineBasicBlock::iterator &nmi,
    125                              unsigned Reg);
    126   bool rescheduleKillAboveMI(MachineBasicBlock::iterator &mi,
    127                              MachineBasicBlock::iterator &nmi,
    128                              unsigned Reg);
    129 
    130   bool tryInstructionTransform(MachineBasicBlock::iterator &mi,
    131                                MachineBasicBlock::iterator &nmi,
    132                                unsigned SrcIdx, unsigned DstIdx,
    133                                unsigned Dist, bool shouldOnlyCommute);
    134 
    135   bool tryInstructionCommute(MachineInstr *MI,
    136                              unsigned DstOpIdx,
    137                              unsigned BaseOpIdx,
    138                              bool BaseOpKilled,
    139                              unsigned Dist);
    140   void scanUses(unsigned DstReg);
    141 
    142   void processCopy(MachineInstr *MI);
    143 
    144   typedef SmallVector<std::pair<unsigned, unsigned>, 4> TiedPairList;
    145   typedef SmallDenseMap<unsigned, TiedPairList> TiedOperandMap;
    146   bool collectTiedOperands(MachineInstr *MI, TiedOperandMap&);
    147   void processTiedPairs(MachineInstr *MI, TiedPairList&, unsigned &Dist);
    148   void eliminateRegSequence(MachineBasicBlock::iterator&);
    149 
    150 public:
    151   static char ID; // Pass identification, replacement for typeid
    152   TwoAddressInstructionPass() : MachineFunctionPass(ID) {
    153     initializeTwoAddressInstructionPassPass(*PassRegistry::getPassRegistry());
    154   }
    155 
    156   void getAnalysisUsage(AnalysisUsage &AU) const override {
    157     AU.setPreservesCFG();
    158     AU.addRequired<AAResultsWrapperPass>();
    159     AU.addUsedIfAvailable<LiveVariables>();
    160     AU.addPreserved<LiveVariables>();
    161     AU.addPreserved<SlotIndexes>();
    162     AU.addPreserved<LiveIntervals>();
    163     AU.addPreservedID(MachineLoopInfoID);
    164     AU.addPreservedID(MachineDominatorsID);
    165     MachineFunctionPass::getAnalysisUsage(AU);
    166   }
    167 
    168   /// Pass entry point.
    169   bool runOnMachineFunction(MachineFunction&) override;
    170 };
    171 } // end anonymous namespace
    172 
    173 char TwoAddressInstructionPass::ID = 0;
    174 INITIALIZE_PASS_BEGIN(TwoAddressInstructionPass, "twoaddressinstruction",
    175                 "Two-Address instruction pass", false, false)
    176 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
    177 INITIALIZE_PASS_END(TwoAddressInstructionPass, "twoaddressinstruction",
    178                 "Two-Address instruction pass", false, false)
    179 
    180 char &llvm::TwoAddressInstructionPassID = TwoAddressInstructionPass::ID;
    181 
    182 static bool isPlainlyKilled(MachineInstr *MI, unsigned Reg, LiveIntervals *LIS);
    183 
    184 /// A two-address instruction has been converted to a three-address instruction
    185 /// to avoid clobbering a register. Try to sink it past the instruction that
    186 /// would kill the above mentioned register to reduce register pressure.
    187 bool TwoAddressInstructionPass::
    188 sink3AddrInstruction(MachineInstr *MI, unsigned SavedReg,
    189                      MachineBasicBlock::iterator OldPos) {
    190   // FIXME: Shouldn't we be trying to do this before we three-addressify the
    191   // instruction?  After this transformation is done, we no longer need
    192   // the instruction to be in three-address form.
    193 
    194   // Check if it's safe to move this instruction.
    195   bool SeenStore = true; // Be conservative.
    196   if (!MI->isSafeToMove(AA, SeenStore))
    197     return false;
    198 
    199   unsigned DefReg = 0;
    200   SmallSet<unsigned, 4> UseRegs;
    201 
    202   for (const MachineOperand &MO : MI->operands()) {
    203     if (!MO.isReg())
    204       continue;
    205     unsigned MOReg = MO.getReg();
    206     if (!MOReg)
    207       continue;
    208     if (MO.isUse() && MOReg != SavedReg)
    209       UseRegs.insert(MO.getReg());
    210     if (!MO.isDef())
    211       continue;
    212     if (MO.isImplicit())
    213       // Don't try to move it if it implicitly defines a register.
    214       return false;
    215     if (DefReg)
    216       // For now, don't move any instructions that define multiple registers.
    217       return false;
    218     DefReg = MO.getReg();
    219   }
    220 
    221   // Find the instruction that kills SavedReg.
    222   MachineInstr *KillMI = nullptr;
    223   if (LIS) {
    224     LiveInterval &LI = LIS->getInterval(SavedReg);
    225     assert(LI.end() != LI.begin() &&
    226            "Reg should not have empty live interval.");
    227 
    228     SlotIndex MBBEndIdx = LIS->getMBBEndIdx(MBB).getPrevSlot();
    229     LiveInterval::const_iterator I = LI.find(MBBEndIdx);
    230     if (I != LI.end() && I->start < MBBEndIdx)
    231       return false;
    232 
    233     --I;
    234     KillMI = LIS->getInstructionFromIndex(I->end);
    235   }
    236   if (!KillMI) {
    237     for (MachineOperand &UseMO : MRI->use_nodbg_operands(SavedReg)) {
    238       if (!UseMO.isKill())
    239         continue;
    240       KillMI = UseMO.getParent();
    241       break;
    242     }
    243   }
    244 
    245   // If we find the instruction that kills SavedReg, and it is in an
    246   // appropriate location, we can try to sink the current instruction
    247   // past it.
    248   if (!KillMI || KillMI->getParent() != MBB || KillMI == MI ||
    249       MachineBasicBlock::iterator(KillMI) == OldPos || KillMI->isTerminator())
    250     return false;
    251 
    252   // If any of the definitions are used by another instruction between the
    253   // position and the kill use, then it's not safe to sink it.
    254   //
    255   // FIXME: This can be sped up if there is an easy way to query whether an
    256   // instruction is before or after another instruction. Then we can use
    257   // MachineRegisterInfo def / use instead.
    258   MachineOperand *KillMO = nullptr;
    259   MachineBasicBlock::iterator KillPos = KillMI;
    260   ++KillPos;
    261 
    262   unsigned NumVisited = 0;
    263   for (MachineInstr &OtherMI : llvm::make_range(std::next(OldPos), KillPos)) {
    264     // DBG_VALUE cannot be counted against the limit.
    265     if (OtherMI.isDebugValue())
    266       continue;
    267     if (NumVisited > 30)  // FIXME: Arbitrary limit to reduce compile time cost.
    268       return false;
    269     ++NumVisited;
    270     for (unsigned i = 0, e = OtherMI.getNumOperands(); i != e; ++i) {
    271       MachineOperand &MO = OtherMI.getOperand(i);
    272       if (!MO.isReg())
    273         continue;
    274       unsigned MOReg = MO.getReg();
    275       if (!MOReg)
    276         continue;
    277       if (DefReg == MOReg)
    278         return false;
    279 
    280       if (MO.isKill() || (LIS && isPlainlyKilled(&OtherMI, MOReg, LIS))) {
    281         if (&OtherMI == KillMI && MOReg == SavedReg)
    282           // Save the operand that kills the register. We want to unset the kill
    283           // marker if we can sink MI past it.
    284           KillMO = &MO;
    285         else if (UseRegs.count(MOReg))
    286           // One of the uses is killed before the destination.
    287           return false;
    288       }
    289     }
    290   }
    291   assert(KillMO && "Didn't find kill");
    292 
    293   if (!LIS) {
    294     // Update kill and LV information.
    295     KillMO->setIsKill(false);
    296     KillMO = MI->findRegisterUseOperand(SavedReg, false, TRI);
    297     KillMO->setIsKill(true);
    298 
    299     if (LV)
    300       LV->replaceKillInstruction(SavedReg, *KillMI, *MI);
    301   }
    302 
    303   // Move instruction to its destination.
    304   MBB->remove(MI);
    305   MBB->insert(KillPos, MI);
    306 
    307   if (LIS)
    308     LIS->handleMove(*MI);
    309 
    310   ++Num3AddrSunk;
    311   return true;
    312 }
    313 
    314 /// Return the MachineInstr* if it is the single def of the Reg in current BB.
    315 static MachineInstr *getSingleDef(unsigned Reg, MachineBasicBlock *BB,
    316                                   const MachineRegisterInfo *MRI) {
    317   MachineInstr *Ret = nullptr;
    318   for (MachineInstr &DefMI : MRI->def_instructions(Reg)) {
    319     if (DefMI.getParent() != BB || DefMI.isDebugValue())
    320       continue;
    321     if (!Ret)
    322       Ret = &DefMI;
    323     else if (Ret != &DefMI)
    324       return nullptr;
    325   }
    326   return Ret;
    327 }
    328 
    329 /// Check if there is a reversed copy chain from FromReg to ToReg:
    330 /// %Tmp1 = copy %Tmp2;
    331 /// %FromReg = copy %Tmp1;
    332 /// %ToReg = add %FromReg ...
    333 /// %Tmp2 = copy %ToReg;
    334 /// MaxLen specifies the maximum length of the copy chain the func
    335 /// can walk through.
    336 bool TwoAddressInstructionPass::isRevCopyChain(unsigned FromReg, unsigned ToReg,
    337                                                int Maxlen) {
    338   unsigned TmpReg = FromReg;
    339   for (int i = 0; i < Maxlen; i++) {
    340     MachineInstr *Def = getSingleDef(TmpReg, MBB, MRI);
    341     if (!Def || !Def->isCopy())
    342       return false;
    343 
    344     TmpReg = Def->getOperand(1).getReg();
    345 
    346     if (TmpReg == ToReg)
    347       return true;
    348   }
    349   return false;
    350 }
    351 
    352 /// Return true if there are no intervening uses between the last instruction
    353 /// in the MBB that defines the specified register and the two-address
    354 /// instruction which is being processed. It also returns the last def location
    355 /// by reference.
    356 bool TwoAddressInstructionPass::noUseAfterLastDef(unsigned Reg, unsigned Dist,
    357                                                   unsigned &LastDef) {
    358   LastDef = 0;
    359   unsigned LastUse = Dist;
    360   for (MachineOperand &MO : MRI->reg_operands(Reg)) {
    361     MachineInstr *MI = MO.getParent();
    362     if (MI->getParent() != MBB || MI->isDebugValue())
    363       continue;
    364     DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
    365     if (DI == DistanceMap.end())
    366       continue;
    367     if (MO.isUse() && DI->second < LastUse)
    368       LastUse = DI->second;
    369     if (MO.isDef() && DI->second > LastDef)
    370       LastDef = DI->second;
    371   }
    372 
    373   return !(LastUse > LastDef && LastUse < Dist);
    374 }
    375 
    376 /// Return true if the specified MI is a copy instruction or an extract_subreg
    377 /// instruction. It also returns the source and destination registers and
    378 /// whether they are physical registers by reference.
    379 static bool isCopyToReg(MachineInstr &MI, const TargetInstrInfo *TII,
    380                         unsigned &SrcReg, unsigned &DstReg,
    381                         bool &IsSrcPhys, bool &IsDstPhys) {
    382   SrcReg = 0;
    383   DstReg = 0;
    384   if (MI.isCopy()) {
    385     DstReg = MI.getOperand(0).getReg();
    386     SrcReg = MI.getOperand(1).getReg();
    387   } else if (MI.isInsertSubreg() || MI.isSubregToReg()) {
    388     DstReg = MI.getOperand(0).getReg();
    389     SrcReg = MI.getOperand(2).getReg();
    390   } else
    391     return false;
    392 
    393   IsSrcPhys = TargetRegisterInfo::isPhysicalRegister(SrcReg);
    394   IsDstPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
    395   return true;
    396 }
    397 
    398 /// Test if the given register value, which is used by the
    399 /// given instruction, is killed by the given instruction.
    400 static bool isPlainlyKilled(MachineInstr *MI, unsigned Reg,
    401                             LiveIntervals *LIS) {
    402   if (LIS && TargetRegisterInfo::isVirtualRegister(Reg) &&
    403       !LIS->isNotInMIMap(*MI)) {
    404     // FIXME: Sometimes tryInstructionTransform() will add instructions and
    405     // test whether they can be folded before keeping them. In this case it
    406     // sets a kill before recursively calling tryInstructionTransform() again.
    407     // If there is no interval available, we assume that this instruction is
    408     // one of those. A kill flag is manually inserted on the operand so the
    409     // check below will handle it.
    410     LiveInterval &LI = LIS->getInterval(Reg);
    411     // This is to match the kill flag version where undefs don't have kill
    412     // flags.
    413     if (!LI.hasAtLeastOneValue())
    414       return false;
    415 
    416     SlotIndex useIdx = LIS->getInstructionIndex(*MI);
    417     LiveInterval::const_iterator I = LI.find(useIdx);
    418     assert(I != LI.end() && "Reg must be live-in to use.");
    419     return !I->end.isBlock() && SlotIndex::isSameInstr(I->end, useIdx);
    420   }
    421 
    422   return MI->killsRegister(Reg);
    423 }
    424 
    425 /// Test if the given register value, which is used by the given
    426 /// instruction, is killed by the given instruction. This looks through
    427 /// coalescable copies to see if the original value is potentially not killed.
    428 ///
    429 /// For example, in this code:
    430 ///
    431 ///   %reg1034 = copy %reg1024
    432 ///   %reg1035 = copy %reg1025<kill>
    433 ///   %reg1036 = add %reg1034<kill>, %reg1035<kill>
    434 ///
    435 /// %reg1034 is not considered to be killed, since it is copied from a
    436 /// register which is not killed. Treating it as not killed lets the
    437 /// normal heuristics commute the (two-address) add, which lets
    438 /// coalescing eliminate the extra copy.
    439 ///
    440 /// If allowFalsePositives is true then likely kills are treated as kills even
    441 /// if it can't be proven that they are kills.
    442 static bool isKilled(MachineInstr &MI, unsigned Reg,
    443                      const MachineRegisterInfo *MRI,
    444                      const TargetInstrInfo *TII,
    445                      LiveIntervals *LIS,
    446                      bool allowFalsePositives) {
    447   MachineInstr *DefMI = &MI;
    448   for (;;) {
    449     // All uses of physical registers are likely to be kills.
    450     if (TargetRegisterInfo::isPhysicalRegister(Reg) &&
    451         (allowFalsePositives || MRI->hasOneUse(Reg)))
    452       return true;
    453     if (!isPlainlyKilled(DefMI, Reg, LIS))
    454       return false;
    455     if (TargetRegisterInfo::isPhysicalRegister(Reg))
    456       return true;
    457     MachineRegisterInfo::def_iterator Begin = MRI->def_begin(Reg);
    458     // If there are multiple defs, we can't do a simple analysis, so just
    459     // go with what the kill flag says.
    460     if (std::next(Begin) != MRI->def_end())
    461       return true;
    462     DefMI = Begin->getParent();
    463     bool IsSrcPhys, IsDstPhys;
    464     unsigned SrcReg,  DstReg;
    465     // If the def is something other than a copy, then it isn't going to
    466     // be coalesced, so follow the kill flag.
    467     if (!isCopyToReg(*DefMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys))
    468       return true;
    469     Reg = SrcReg;
    470   }
    471 }
    472 
    473 /// Return true if the specified MI uses the specified register as a two-address
    474 /// use. If so, return the destination register by reference.
    475 static bool isTwoAddrUse(MachineInstr &MI, unsigned Reg, unsigned &DstReg) {
    476   for (unsigned i = 0, NumOps = MI.getNumOperands(); i != NumOps; ++i) {
    477     const MachineOperand &MO = MI.getOperand(i);
    478     if (!MO.isReg() || !MO.isUse() || MO.getReg() != Reg)
    479       continue;
    480     unsigned ti;
    481     if (MI.isRegTiedToDefOperand(i, &ti)) {
    482       DstReg = MI.getOperand(ti).getReg();
    483       return true;
    484     }
    485   }
    486   return false;
    487 }
    488 
    489 /// Given a register, if has a single in-basic block use, return the use
    490 /// instruction if it's a copy or a two-address use.
    491 static
    492 MachineInstr *findOnlyInterestingUse(unsigned Reg, MachineBasicBlock *MBB,
    493                                      MachineRegisterInfo *MRI,
    494                                      const TargetInstrInfo *TII,
    495                                      bool &IsCopy,
    496                                      unsigned &DstReg, bool &IsDstPhys) {
    497   if (!MRI->hasOneNonDBGUse(Reg))
    498     // None or more than one use.
    499     return nullptr;
    500   MachineInstr &UseMI = *MRI->use_instr_nodbg_begin(Reg);
    501   if (UseMI.getParent() != MBB)
    502     return nullptr;
    503   unsigned SrcReg;
    504   bool IsSrcPhys;
    505   if (isCopyToReg(UseMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) {
    506     IsCopy = true;
    507     return &UseMI;
    508   }
    509   IsDstPhys = false;
    510   if (isTwoAddrUse(UseMI, Reg, DstReg)) {
    511     IsDstPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
    512     return &UseMI;
    513   }
    514   return nullptr;
    515 }
    516 
    517 /// Return the physical register the specified virtual register might be mapped
    518 /// to.
    519 static unsigned
    520 getMappedReg(unsigned Reg, DenseMap<unsigned, unsigned> &RegMap) {
    521   while (TargetRegisterInfo::isVirtualRegister(Reg))  {
    522     DenseMap<unsigned, unsigned>::iterator SI = RegMap.find(Reg);
    523     if (SI == RegMap.end())
    524       return 0;
    525     Reg = SI->second;
    526   }
    527   if (TargetRegisterInfo::isPhysicalRegister(Reg))
    528     return Reg;
    529   return 0;
    530 }
    531 
    532 /// Return true if the two registers are equal or aliased.
    533 static bool
    534 regsAreCompatible(unsigned RegA, unsigned RegB, const TargetRegisterInfo *TRI) {
    535   if (RegA == RegB)
    536     return true;
    537   if (!RegA || !RegB)
    538     return false;
    539   return TRI->regsOverlap(RegA, RegB);
    540 }
    541 
    542 /// Return true if it's potentially profitable to commute the two-address
    543 /// instruction that's being processed.
    544 bool
    545 TwoAddressInstructionPass::
    546 isProfitableToCommute(unsigned regA, unsigned regB, unsigned regC,
    547                       MachineInstr *MI, unsigned Dist) {
    548   if (OptLevel == CodeGenOpt::None)
    549     return false;
    550 
    551   // Determine if it's profitable to commute this two address instruction. In
    552   // general, we want no uses between this instruction and the definition of
    553   // the two-address register.
    554   // e.g.
    555   // %reg1028<def> = EXTRACT_SUBREG %reg1027<kill>, 1
    556   // %reg1029<def> = MOV8rr %reg1028
    557   // %reg1029<def> = SHR8ri %reg1029, 7, %EFLAGS<imp-def,dead>
    558   // insert => %reg1030<def> = MOV8rr %reg1028
    559   // %reg1030<def> = ADD8rr %reg1028<kill>, %reg1029<kill>, %EFLAGS<imp-def,dead>
    560   // In this case, it might not be possible to coalesce the second MOV8rr
    561   // instruction if the first one is coalesced. So it would be profitable to
    562   // commute it:
    563   // %reg1028<def> = EXTRACT_SUBREG %reg1027<kill>, 1
    564   // %reg1029<def> = MOV8rr %reg1028
    565   // %reg1029<def> = SHR8ri %reg1029, 7, %EFLAGS<imp-def,dead>
    566   // insert => %reg1030<def> = MOV8rr %reg1029
    567   // %reg1030<def> = ADD8rr %reg1029<kill>, %reg1028<kill>, %EFLAGS<imp-def,dead>
    568 
    569   if (!isPlainlyKilled(MI, regC, LIS))
    570     return false;
    571 
    572   // Ok, we have something like:
    573   // %reg1030<def> = ADD8rr %reg1028<kill>, %reg1029<kill>, %EFLAGS<imp-def,dead>
    574   // let's see if it's worth commuting it.
    575 
    576   // Look for situations like this:
    577   // %reg1024<def> = MOV r1
    578   // %reg1025<def> = MOV r0
    579   // %reg1026<def> = ADD %reg1024, %reg1025
    580   // r0            = MOV %reg1026
    581   // Commute the ADD to hopefully eliminate an otherwise unavoidable copy.
    582   unsigned ToRegA = getMappedReg(regA, DstRegMap);
    583   if (ToRegA) {
    584     unsigned FromRegB = getMappedReg(regB, SrcRegMap);
    585     unsigned FromRegC = getMappedReg(regC, SrcRegMap);
    586     bool CompB = FromRegB && regsAreCompatible(FromRegB, ToRegA, TRI);
    587     bool CompC = FromRegC && regsAreCompatible(FromRegC, ToRegA, TRI);
    588 
    589     // Compute if any of the following are true:
    590     // -RegB is not tied to a register and RegC is compatible with RegA.
    591     // -RegB is tied to the wrong physical register, but RegC is.
    592     // -RegB is tied to the wrong physical register, and RegC isn't tied.
    593     if ((!FromRegB && CompC) || (FromRegB && !CompB && (!FromRegC || CompC)))
    594       return true;
    595     // Don't compute if any of the following are true:
    596     // -RegC is not tied to a register and RegB is compatible with RegA.
    597     // -RegC is tied to the wrong physical register, but RegB is.
    598     // -RegC is tied to the wrong physical register, and RegB isn't tied.
    599     if ((!FromRegC && CompB) || (FromRegC && !CompC && (!FromRegB || CompB)))
    600       return false;
    601   }
    602 
    603   // If there is a use of regC between its last def (could be livein) and this
    604   // instruction, then bail.
    605   unsigned LastDefC = 0;
    606   if (!noUseAfterLastDef(regC, Dist, LastDefC))
    607     return false;
    608 
    609   // If there is a use of regB between its last def (could be livein) and this
    610   // instruction, then go ahead and make this transformation.
    611   unsigned LastDefB = 0;
    612   if (!noUseAfterLastDef(regB, Dist, LastDefB))
    613     return true;
    614 
    615   // Look for situation like this:
    616   // %reg101 = MOV %reg100
    617   // %reg102 = ...
    618   // %reg103 = ADD %reg102, %reg101
    619   // ... = %reg103 ...
    620   // %reg100 = MOV %reg103
    621   // If there is a reversed copy chain from reg101 to reg103, commute the ADD
    622   // to eliminate an otherwise unavoidable copy.
    623   // FIXME:
    624   // We can extend the logic further: If an pair of operands in an insn has
    625   // been merged, the insn could be regarded as a virtual copy, and the virtual
    626   // copy could also be used to construct a copy chain.
    627   // To more generally minimize register copies, ideally the logic of two addr
    628   // instruction pass should be integrated with register allocation pass where
    629   // interference graph is available.
    630   if (isRevCopyChain(regC, regA, 3))
    631     return true;
    632 
    633   if (isRevCopyChain(regB, regA, 3))
    634     return false;
    635 
    636   // Since there are no intervening uses for both registers, then commute
    637   // if the def of regC is closer. Its live interval is shorter.
    638   return LastDefB && LastDefC && LastDefC > LastDefB;
    639 }
    640 
    641 /// Commute a two-address instruction and update the basic block, distance map,
    642 /// and live variables if needed. Return true if it is successful.
    643 bool TwoAddressInstructionPass::commuteInstruction(MachineInstr *MI,
    644                                                    unsigned RegBIdx,
    645                                                    unsigned RegCIdx,
    646                                                    unsigned Dist) {
    647   unsigned RegC = MI->getOperand(RegCIdx).getReg();
    648   DEBUG(dbgs() << "2addr: COMMUTING  : " << *MI);
    649   MachineInstr *NewMI = TII->commuteInstruction(*MI, false, RegBIdx, RegCIdx);
    650 
    651   if (NewMI == nullptr) {
    652     DEBUG(dbgs() << "2addr: COMMUTING FAILED!\n");
    653     return false;
    654   }
    655 
    656   DEBUG(dbgs() << "2addr: COMMUTED TO: " << *NewMI);
    657   assert(NewMI == MI &&
    658          "TargetInstrInfo::commuteInstruction() should not return a new "
    659          "instruction unless it was requested.");
    660 
    661   // Update source register map.
    662   unsigned FromRegC = getMappedReg(RegC, SrcRegMap);
    663   if (FromRegC) {
    664     unsigned RegA = MI->getOperand(0).getReg();
    665     SrcRegMap[RegA] = FromRegC;
    666   }
    667 
    668   return true;
    669 }
    670 
    671 /// Return true if it is profitable to convert the given 2-address instruction
    672 /// to a 3-address one.
    673 bool
    674 TwoAddressInstructionPass::isProfitableToConv3Addr(unsigned RegA,unsigned RegB){
    675   // Look for situations like this:
    676   // %reg1024<def> = MOV r1
    677   // %reg1025<def> = MOV r0
    678   // %reg1026<def> = ADD %reg1024, %reg1025
    679   // r2            = MOV %reg1026
    680   // Turn ADD into a 3-address instruction to avoid a copy.
    681   unsigned FromRegB = getMappedReg(RegB, SrcRegMap);
    682   if (!FromRegB)
    683     return false;
    684   unsigned ToRegA = getMappedReg(RegA, DstRegMap);
    685   return (ToRegA && !regsAreCompatible(FromRegB, ToRegA, TRI));
    686 }
    687 
    688 /// Convert the specified two-address instruction into a three address one.
    689 /// Return true if this transformation was successful.
    690 bool
    691 TwoAddressInstructionPass::convertInstTo3Addr(MachineBasicBlock::iterator &mi,
    692                                               MachineBasicBlock::iterator &nmi,
    693                                               unsigned RegA, unsigned RegB,
    694                                               unsigned Dist) {
    695   // FIXME: Why does convertToThreeAddress() need an iterator reference?
    696   MachineFunction::iterator MFI = MBB->getIterator();
    697   MachineInstr *NewMI = TII->convertToThreeAddress(MFI, *mi, LV);
    698   assert(MBB->getIterator() == MFI &&
    699          "convertToThreeAddress changed iterator reference");
    700   if (!NewMI)
    701     return false;
    702 
    703   DEBUG(dbgs() << "2addr: CONVERTING 2-ADDR: " << *mi);
    704   DEBUG(dbgs() << "2addr:         TO 3-ADDR: " << *NewMI);
    705   bool Sunk = false;
    706 
    707   if (LIS)
    708     LIS->ReplaceMachineInstrInMaps(*mi, *NewMI);
    709 
    710   if (NewMI->findRegisterUseOperand(RegB, false, TRI))
    711     // FIXME: Temporary workaround. If the new instruction doesn't
    712     // uses RegB, convertToThreeAddress must have created more
    713     // then one instruction.
    714     Sunk = sink3AddrInstruction(NewMI, RegB, mi);
    715 
    716   MBB->erase(mi); // Nuke the old inst.
    717 
    718   if (!Sunk) {
    719     DistanceMap.insert(std::make_pair(NewMI, Dist));
    720     mi = NewMI;
    721     nmi = std::next(mi);
    722   }
    723 
    724   // Update source and destination register maps.
    725   SrcRegMap.erase(RegA);
    726   DstRegMap.erase(RegB);
    727   return true;
    728 }
    729 
    730 /// Scan forward recursively for only uses, update maps if the use is a copy or
    731 /// a two-address instruction.
    732 void
    733 TwoAddressInstructionPass::scanUses(unsigned DstReg) {
    734   SmallVector<unsigned, 4> VirtRegPairs;
    735   bool IsDstPhys;
    736   bool IsCopy = false;
    737   unsigned NewReg = 0;
    738   unsigned Reg = DstReg;
    739   while (MachineInstr *UseMI = findOnlyInterestingUse(Reg, MBB, MRI, TII,IsCopy,
    740                                                       NewReg, IsDstPhys)) {
    741     if (IsCopy && !Processed.insert(UseMI).second)
    742       break;
    743 
    744     DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UseMI);
    745     if (DI != DistanceMap.end())
    746       // Earlier in the same MBB.Reached via a back edge.
    747       break;
    748 
    749     if (IsDstPhys) {
    750       VirtRegPairs.push_back(NewReg);
    751       break;
    752     }
    753     bool isNew = SrcRegMap.insert(std::make_pair(NewReg, Reg)).second;
    754     if (!isNew)
    755       assert(SrcRegMap[NewReg] == Reg && "Can't map to two src registers!");
    756     VirtRegPairs.push_back(NewReg);
    757     Reg = NewReg;
    758   }
    759 
    760   if (!VirtRegPairs.empty()) {
    761     unsigned ToReg = VirtRegPairs.back();
    762     VirtRegPairs.pop_back();
    763     while (!VirtRegPairs.empty()) {
    764       unsigned FromReg = VirtRegPairs.back();
    765       VirtRegPairs.pop_back();
    766       bool isNew = DstRegMap.insert(std::make_pair(FromReg, ToReg)).second;
    767       if (!isNew)
    768         assert(DstRegMap[FromReg] == ToReg &&"Can't map to two dst registers!");
    769       ToReg = FromReg;
    770     }
    771     bool isNew = DstRegMap.insert(std::make_pair(DstReg, ToReg)).second;
    772     if (!isNew)
    773       assert(DstRegMap[DstReg] == ToReg && "Can't map to two dst registers!");
    774   }
    775 }
    776 
    777 /// If the specified instruction is not yet processed, process it if it's a
    778 /// copy. For a copy instruction, we find the physical registers the
    779 /// source and destination registers might be mapped to. These are kept in
    780 /// point-to maps used to determine future optimizations. e.g.
    781 /// v1024 = mov r0
    782 /// v1025 = mov r1
    783 /// v1026 = add v1024, v1025
    784 /// r1    = mov r1026
    785 /// If 'add' is a two-address instruction, v1024, v1026 are both potentially
    786 /// coalesced to r0 (from the input side). v1025 is mapped to r1. v1026 is
    787 /// potentially joined with r1 on the output side. It's worthwhile to commute
    788 /// 'add' to eliminate a copy.
    789 void TwoAddressInstructionPass::processCopy(MachineInstr *MI) {
    790   if (Processed.count(MI))
    791     return;
    792 
    793   bool IsSrcPhys, IsDstPhys;
    794   unsigned SrcReg, DstReg;
    795   if (!isCopyToReg(*MI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys))
    796     return;
    797 
    798   if (IsDstPhys && !IsSrcPhys)
    799     DstRegMap.insert(std::make_pair(SrcReg, DstReg));
    800   else if (!IsDstPhys && IsSrcPhys) {
    801     bool isNew = SrcRegMap.insert(std::make_pair(DstReg, SrcReg)).second;
    802     if (!isNew)
    803       assert(SrcRegMap[DstReg] == SrcReg &&
    804              "Can't map to two src physical registers!");
    805 
    806     scanUses(DstReg);
    807   }
    808 
    809   Processed.insert(MI);
    810 }
    811 
    812 /// If there is one more local instruction that reads 'Reg' and it kills 'Reg,
    813 /// consider moving the instruction below the kill instruction in order to
    814 /// eliminate the need for the copy.
    815 bool TwoAddressInstructionPass::
    816 rescheduleMIBelowKill(MachineBasicBlock::iterator &mi,
    817                       MachineBasicBlock::iterator &nmi,
    818                       unsigned Reg) {
    819   // Bail immediately if we don't have LV or LIS available. We use them to find
    820   // kills efficiently.
    821   if (!LV && !LIS)
    822     return false;
    823 
    824   MachineInstr *MI = &*mi;
    825   DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
    826   if (DI == DistanceMap.end())
    827     // Must be created from unfolded load. Don't waste time trying this.
    828     return false;
    829 
    830   MachineInstr *KillMI = nullptr;
    831   if (LIS) {
    832     LiveInterval &LI = LIS->getInterval(Reg);
    833     assert(LI.end() != LI.begin() &&
    834            "Reg should not have empty live interval.");
    835 
    836     SlotIndex MBBEndIdx = LIS->getMBBEndIdx(MBB).getPrevSlot();
    837     LiveInterval::const_iterator I = LI.find(MBBEndIdx);
    838     if (I != LI.end() && I->start < MBBEndIdx)
    839       return false;
    840 
    841     --I;
    842     KillMI = LIS->getInstructionFromIndex(I->end);
    843   } else {
    844     KillMI = LV->getVarInfo(Reg).findKill(MBB);
    845   }
    846   if (!KillMI || MI == KillMI || KillMI->isCopy() || KillMI->isCopyLike())
    847     // Don't mess with copies, they may be coalesced later.
    848     return false;
    849 
    850   if (KillMI->hasUnmodeledSideEffects() || KillMI->isCall() ||
    851       KillMI->isBranch() || KillMI->isTerminator())
    852     // Don't move pass calls, etc.
    853     return false;
    854 
    855   unsigned DstReg;
    856   if (isTwoAddrUse(*KillMI, Reg, DstReg))
    857     return false;
    858 
    859   bool SeenStore = true;
    860   if (!MI->isSafeToMove(AA, SeenStore))
    861     return false;
    862 
    863   if (TII->getInstrLatency(InstrItins, *MI) > 1)
    864     // FIXME: Needs more sophisticated heuristics.
    865     return false;
    866 
    867   SmallSet<unsigned, 2> Uses;
    868   SmallSet<unsigned, 2> Kills;
    869   SmallSet<unsigned, 2> Defs;
    870   for (const MachineOperand &MO : MI->operands()) {
    871     if (!MO.isReg())
    872       continue;
    873     unsigned MOReg = MO.getReg();
    874     if (!MOReg)
    875       continue;
    876     if (MO.isDef())
    877       Defs.insert(MOReg);
    878     else {
    879       Uses.insert(MOReg);
    880       if (MOReg != Reg && (MO.isKill() ||
    881                            (LIS && isPlainlyKilled(MI, MOReg, LIS))))
    882         Kills.insert(MOReg);
    883     }
    884   }
    885 
    886   // Move the copies connected to MI down as well.
    887   MachineBasicBlock::iterator Begin = MI;
    888   MachineBasicBlock::iterator AfterMI = std::next(Begin);
    889 
    890   MachineBasicBlock::iterator End = AfterMI;
    891   while (End->isCopy() && Defs.count(End->getOperand(1).getReg())) {
    892     Defs.insert(End->getOperand(0).getReg());
    893     ++End;
    894   }
    895 
    896   // Check if the reschedule will not break depedencies.
    897   unsigned NumVisited = 0;
    898   MachineBasicBlock::iterator KillPos = KillMI;
    899   ++KillPos;
    900   for (MachineInstr &OtherMI : llvm::make_range(End, KillPos)) {
    901     // DBG_VALUE cannot be counted against the limit.
    902     if (OtherMI.isDebugValue())
    903       continue;
    904     if (NumVisited > 10)  // FIXME: Arbitrary limit to reduce compile time cost.
    905       return false;
    906     ++NumVisited;
    907     if (OtherMI.hasUnmodeledSideEffects() || OtherMI.isCall() ||
    908         OtherMI.isBranch() || OtherMI.isTerminator())
    909       // Don't move pass calls, etc.
    910       return false;
    911     for (const MachineOperand &MO : OtherMI.operands()) {
    912       if (!MO.isReg())
    913         continue;
    914       unsigned MOReg = MO.getReg();
    915       if (!MOReg)
    916         continue;
    917       if (MO.isDef()) {
    918         if (Uses.count(MOReg))
    919           // Physical register use would be clobbered.
    920           return false;
    921         if (!MO.isDead() && Defs.count(MOReg))
    922           // May clobber a physical register def.
    923           // FIXME: This may be too conservative. It's ok if the instruction
    924           // is sunken completely below the use.
    925           return false;
    926       } else {
    927         if (Defs.count(MOReg))
    928           return false;
    929         bool isKill =
    930             MO.isKill() || (LIS && isPlainlyKilled(&OtherMI, MOReg, LIS));
    931         if (MOReg != Reg &&
    932             ((isKill && Uses.count(MOReg)) || Kills.count(MOReg)))
    933           // Don't want to extend other live ranges and update kills.
    934           return false;
    935         if (MOReg == Reg && !isKill)
    936           // We can't schedule across a use of the register in question.
    937           return false;
    938         // Ensure that if this is register in question, its the kill we expect.
    939         assert((MOReg != Reg || &OtherMI == KillMI) &&
    940                "Found multiple kills of a register in a basic block");
    941       }
    942     }
    943   }
    944 
    945   // Move debug info as well.
    946   while (Begin != MBB->begin() && std::prev(Begin)->isDebugValue())
    947     --Begin;
    948 
    949   nmi = End;
    950   MachineBasicBlock::iterator InsertPos = KillPos;
    951   if (LIS) {
    952     // We have to move the copies first so that the MBB is still well-formed
    953     // when calling handleMove().
    954     for (MachineBasicBlock::iterator MBBI = AfterMI; MBBI != End;) {
    955       auto CopyMI = MBBI++;
    956       MBB->splice(InsertPos, MBB, CopyMI);
    957       LIS->handleMove(*CopyMI);
    958       InsertPos = CopyMI;
    959     }
    960     End = std::next(MachineBasicBlock::iterator(MI));
    961   }
    962 
    963   // Copies following MI may have been moved as well.
    964   MBB->splice(InsertPos, MBB, Begin, End);
    965   DistanceMap.erase(DI);
    966 
    967   // Update live variables
    968   if (LIS) {
    969     LIS->handleMove(*MI);
    970   } else {
    971     LV->removeVirtualRegisterKilled(Reg, *KillMI);
    972     LV->addVirtualRegisterKilled(Reg, *MI);
    973   }
    974 
    975   DEBUG(dbgs() << "\trescheduled below kill: " << *KillMI);
    976   return true;
    977 }
    978 
    979 /// Return true if the re-scheduling will put the given instruction too close
    980 /// to the defs of its register dependencies.
    981 bool TwoAddressInstructionPass::isDefTooClose(unsigned Reg, unsigned Dist,
    982                                               MachineInstr *MI) {
    983   for (MachineInstr &DefMI : MRI->def_instructions(Reg)) {
    984     if (DefMI.getParent() != MBB || DefMI.isCopy() || DefMI.isCopyLike())
    985       continue;
    986     if (&DefMI == MI)
    987       return true; // MI is defining something KillMI uses
    988     DenseMap<MachineInstr*, unsigned>::iterator DDI = DistanceMap.find(&DefMI);
    989     if (DDI == DistanceMap.end())
    990       return true;  // Below MI
    991     unsigned DefDist = DDI->second;
    992     assert(Dist > DefDist && "Visited def already?");
    993     if (TII->getInstrLatency(InstrItins, DefMI) > (Dist - DefDist))
    994       return true;
    995   }
    996   return false;
    997 }
    998 
    999 /// If there is one more local instruction that reads 'Reg' and it kills 'Reg,
   1000 /// consider moving the kill instruction above the current two-address
   1001 /// instruction in order to eliminate the need for the copy.
   1002 bool TwoAddressInstructionPass::
   1003 rescheduleKillAboveMI(MachineBasicBlock::iterator &mi,
   1004                       MachineBasicBlock::iterator &nmi,
   1005                       unsigned Reg) {
   1006   // Bail immediately if we don't have LV or LIS available. We use them to find
   1007   // kills efficiently.
   1008   if (!LV && !LIS)
   1009     return false;
   1010 
   1011   MachineInstr *MI = &*mi;
   1012   DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
   1013   if (DI == DistanceMap.end())
   1014     // Must be created from unfolded load. Don't waste time trying this.
   1015     return false;
   1016 
   1017   MachineInstr *KillMI = nullptr;
   1018   if (LIS) {
   1019     LiveInterval &LI = LIS->getInterval(Reg);
   1020     assert(LI.end() != LI.begin() &&
   1021            "Reg should not have empty live interval.");
   1022 
   1023     SlotIndex MBBEndIdx = LIS->getMBBEndIdx(MBB).getPrevSlot();
   1024     LiveInterval::const_iterator I = LI.find(MBBEndIdx);
   1025     if (I != LI.end() && I->start < MBBEndIdx)
   1026       return false;
   1027 
   1028     --I;
   1029     KillMI = LIS->getInstructionFromIndex(I->end);
   1030   } else {
   1031     KillMI = LV->getVarInfo(Reg).findKill(MBB);
   1032   }
   1033   if (!KillMI || MI == KillMI || KillMI->isCopy() || KillMI->isCopyLike())
   1034     // Don't mess with copies, they may be coalesced later.
   1035     return false;
   1036 
   1037   unsigned DstReg;
   1038   if (isTwoAddrUse(*KillMI, Reg, DstReg))
   1039     return false;
   1040 
   1041   bool SeenStore = true;
   1042   if (!KillMI->isSafeToMove(AA, SeenStore))
   1043     return false;
   1044 
   1045   SmallSet<unsigned, 2> Uses;
   1046   SmallSet<unsigned, 2> Kills;
   1047   SmallSet<unsigned, 2> Defs;
   1048   SmallSet<unsigned, 2> LiveDefs;
   1049   for (const MachineOperand &MO : KillMI->operands()) {
   1050     if (!MO.isReg())
   1051       continue;
   1052     unsigned MOReg = MO.getReg();
   1053     if (MO.isUse()) {
   1054       if (!MOReg)
   1055         continue;
   1056       if (isDefTooClose(MOReg, DI->second, MI))
   1057         return false;
   1058       bool isKill = MO.isKill() || (LIS && isPlainlyKilled(KillMI, MOReg, LIS));
   1059       if (MOReg == Reg && !isKill)
   1060         return false;
   1061       Uses.insert(MOReg);
   1062       if (isKill && MOReg != Reg)
   1063         Kills.insert(MOReg);
   1064     } else if (TargetRegisterInfo::isPhysicalRegister(MOReg)) {
   1065       Defs.insert(MOReg);
   1066       if (!MO.isDead())
   1067         LiveDefs.insert(MOReg);
   1068     }
   1069   }
   1070 
   1071   // Check if the reschedule will not break depedencies.
   1072   unsigned NumVisited = 0;
   1073   for (MachineInstr &OtherMI :
   1074        llvm::make_range(mi, MachineBasicBlock::iterator(KillMI))) {
   1075     // DBG_VALUE cannot be counted against the limit.
   1076     if (OtherMI.isDebugValue())
   1077       continue;
   1078     if (NumVisited > 10)  // FIXME: Arbitrary limit to reduce compile time cost.
   1079       return false;
   1080     ++NumVisited;
   1081     if (OtherMI.hasUnmodeledSideEffects() || OtherMI.isCall() ||
   1082         OtherMI.isBranch() || OtherMI.isTerminator())
   1083       // Don't move pass calls, etc.
   1084       return false;
   1085     SmallVector<unsigned, 2> OtherDefs;
   1086     for (const MachineOperand &MO : OtherMI.operands()) {
   1087       if (!MO.isReg())
   1088         continue;
   1089       unsigned MOReg = MO.getReg();
   1090       if (!MOReg)
   1091         continue;
   1092       if (MO.isUse()) {
   1093         if (Defs.count(MOReg))
   1094           // Moving KillMI can clobber the physical register if the def has
   1095           // not been seen.
   1096           return false;
   1097         if (Kills.count(MOReg))
   1098           // Don't want to extend other live ranges and update kills.
   1099           return false;
   1100         if (&OtherMI != MI && MOReg == Reg &&
   1101             !(MO.isKill() || (LIS && isPlainlyKilled(&OtherMI, MOReg, LIS))))
   1102           // We can't schedule across a use of the register in question.
   1103           return false;
   1104       } else {
   1105         OtherDefs.push_back(MOReg);
   1106       }
   1107     }
   1108 
   1109     for (unsigned i = 0, e = OtherDefs.size(); i != e; ++i) {
   1110       unsigned MOReg = OtherDefs[i];
   1111       if (Uses.count(MOReg))
   1112         return false;
   1113       if (TargetRegisterInfo::isPhysicalRegister(MOReg) &&
   1114           LiveDefs.count(MOReg))
   1115         return false;
   1116       // Physical register def is seen.
   1117       Defs.erase(MOReg);
   1118     }
   1119   }
   1120 
   1121   // Move the old kill above MI, don't forget to move debug info as well.
   1122   MachineBasicBlock::iterator InsertPos = mi;
   1123   while (InsertPos != MBB->begin() && std::prev(InsertPos)->isDebugValue())
   1124     --InsertPos;
   1125   MachineBasicBlock::iterator From = KillMI;
   1126   MachineBasicBlock::iterator To = std::next(From);
   1127   while (std::prev(From)->isDebugValue())
   1128     --From;
   1129   MBB->splice(InsertPos, MBB, From, To);
   1130 
   1131   nmi = std::prev(InsertPos); // Backtrack so we process the moved instr.
   1132   DistanceMap.erase(DI);
   1133 
   1134   // Update live variables
   1135   if (LIS) {
   1136     LIS->handleMove(*KillMI);
   1137   } else {
   1138     LV->removeVirtualRegisterKilled(Reg, *KillMI);
   1139     LV->addVirtualRegisterKilled(Reg, *MI);
   1140   }
   1141 
   1142   DEBUG(dbgs() << "\trescheduled kill: " << *KillMI);
   1143   return true;
   1144 }
   1145 
   1146 /// Tries to commute the operand 'BaseOpIdx' and some other operand in the
   1147 /// given machine instruction to improve opportunities for coalescing and
   1148 /// elimination of a register to register copy.
   1149 ///
   1150 /// 'DstOpIdx' specifies the index of MI def operand.
   1151 /// 'BaseOpKilled' specifies if the register associated with 'BaseOpIdx'
   1152 /// operand is killed by the given instruction.
   1153 /// The 'Dist' arguments provides the distance of MI from the start of the
   1154 /// current basic block and it is used to determine if it is profitable
   1155 /// to commute operands in the instruction.
   1156 ///
   1157 /// Returns true if the transformation happened. Otherwise, returns false.
   1158 bool TwoAddressInstructionPass::tryInstructionCommute(MachineInstr *MI,
   1159                                                       unsigned DstOpIdx,
   1160                                                       unsigned BaseOpIdx,
   1161                                                       bool BaseOpKilled,
   1162                                                       unsigned Dist) {
   1163   unsigned DstOpReg = MI->getOperand(DstOpIdx).getReg();
   1164   unsigned BaseOpReg = MI->getOperand(BaseOpIdx).getReg();
   1165   unsigned OpsNum = MI->getDesc().getNumOperands();
   1166   unsigned OtherOpIdx = MI->getDesc().getNumDefs();
   1167   for (; OtherOpIdx < OpsNum; OtherOpIdx++) {
   1168     // The call of findCommutedOpIndices below only checks if BaseOpIdx
   1169     // and OtherOpIdx are commutable, it does not really search for
   1170     // other commutable operands and does not change the values of passed
   1171     // variables.
   1172     if (OtherOpIdx == BaseOpIdx ||
   1173         !TII->findCommutedOpIndices(*MI, BaseOpIdx, OtherOpIdx))
   1174       continue;
   1175 
   1176     unsigned OtherOpReg = MI->getOperand(OtherOpIdx).getReg();
   1177     bool AggressiveCommute = false;
   1178 
   1179     // If OtherOp dies but BaseOp does not, swap the OtherOp and BaseOp
   1180     // operands. This makes the live ranges of DstOp and OtherOp joinable.
   1181     bool DoCommute =
   1182         !BaseOpKilled && isKilled(*MI, OtherOpReg, MRI, TII, LIS, false);
   1183 
   1184     if (!DoCommute &&
   1185         isProfitableToCommute(DstOpReg, BaseOpReg, OtherOpReg, MI, Dist)) {
   1186       DoCommute = true;
   1187       AggressiveCommute = true;
   1188     }
   1189 
   1190     // If it's profitable to commute, try to do so.
   1191     if (DoCommute && commuteInstruction(MI, BaseOpIdx, OtherOpIdx, Dist)) {
   1192       ++NumCommuted;
   1193       if (AggressiveCommute)
   1194         ++NumAggrCommuted;
   1195       return true;
   1196     }
   1197   }
   1198   return false;
   1199 }
   1200 
   1201 /// For the case where an instruction has a single pair of tied register
   1202 /// operands, attempt some transformations that may either eliminate the tied
   1203 /// operands or improve the opportunities for coalescing away the register copy.
   1204 /// Returns true if no copy needs to be inserted to untie mi's operands
   1205 /// (either because they were untied, or because mi was rescheduled, and will
   1206 /// be visited again later). If the shouldOnlyCommute flag is true, only
   1207 /// instruction commutation is attempted.
   1208 bool TwoAddressInstructionPass::
   1209 tryInstructionTransform(MachineBasicBlock::iterator &mi,
   1210                         MachineBasicBlock::iterator &nmi,
   1211                         unsigned SrcIdx, unsigned DstIdx,
   1212                         unsigned Dist, bool shouldOnlyCommute) {
   1213   if (OptLevel == CodeGenOpt::None)
   1214     return false;
   1215 
   1216   MachineInstr &MI = *mi;
   1217   unsigned regA = MI.getOperand(DstIdx).getReg();
   1218   unsigned regB = MI.getOperand(SrcIdx).getReg();
   1219 
   1220   assert(TargetRegisterInfo::isVirtualRegister(regB) &&
   1221          "cannot make instruction into two-address form");
   1222   bool regBKilled = isKilled(MI, regB, MRI, TII, LIS, true);
   1223 
   1224   if (TargetRegisterInfo::isVirtualRegister(regA))
   1225     scanUses(regA);
   1226 
   1227   bool Commuted = tryInstructionCommute(&MI, DstIdx, SrcIdx, regBKilled, Dist);
   1228 
   1229   // If the instruction is convertible to 3 Addr, instead
   1230   // of returning try 3 Addr transformation aggresively and
   1231   // use this variable to check later. Because it might be better.
   1232   // For example, we can just use `leal (%rsi,%rdi), %eax` and `ret`
   1233   // instead of the following code.
   1234   //   addl     %esi, %edi
   1235   //   movl     %edi, %eax
   1236   //   ret
   1237   if (Commuted && !MI.isConvertibleTo3Addr())
   1238     return false;
   1239 
   1240   if (shouldOnlyCommute)
   1241     return false;
   1242 
   1243   // If there is one more use of regB later in the same MBB, consider
   1244   // re-schedule this MI below it.
   1245   if (!Commuted && EnableRescheduling && rescheduleMIBelowKill(mi, nmi, regB)) {
   1246     ++NumReSchedDowns;
   1247     return true;
   1248   }
   1249 
   1250   // If we commuted, regB may have changed so we should re-sample it to avoid
   1251   // confusing the three address conversion below.
   1252   if (Commuted) {
   1253     regB = MI.getOperand(SrcIdx).getReg();
   1254     regBKilled = isKilled(MI, regB, MRI, TII, LIS, true);
   1255   }
   1256 
   1257   if (MI.isConvertibleTo3Addr()) {
   1258     // This instruction is potentially convertible to a true
   1259     // three-address instruction.  Check if it is profitable.
   1260     if (!regBKilled || isProfitableToConv3Addr(regA, regB)) {
   1261       // Try to convert it.
   1262       if (convertInstTo3Addr(mi, nmi, regA, regB, Dist)) {
   1263         ++NumConvertedTo3Addr;
   1264         return true; // Done with this instruction.
   1265       }
   1266     }
   1267   }
   1268 
   1269   // Return if it is commuted but 3 addr conversion is failed.
   1270   if (Commuted)
   1271     return false;
   1272 
   1273   // If there is one more use of regB later in the same MBB, consider
   1274   // re-schedule it before this MI if it's legal.
   1275   if (EnableRescheduling && rescheduleKillAboveMI(mi, nmi, regB)) {
   1276     ++NumReSchedUps;
   1277     return true;
   1278   }
   1279 
   1280   // If this is an instruction with a load folded into it, try unfolding
   1281   // the load, e.g. avoid this:
   1282   //   movq %rdx, %rcx
   1283   //   addq (%rax), %rcx
   1284   // in favor of this:
   1285   //   movq (%rax), %rcx
   1286   //   addq %rdx, %rcx
   1287   // because it's preferable to schedule a load than a register copy.
   1288   if (MI.mayLoad() && !regBKilled) {
   1289     // Determine if a load can be unfolded.
   1290     unsigned LoadRegIndex;
   1291     unsigned NewOpc =
   1292       TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(),
   1293                                       /*UnfoldLoad=*/true,
   1294                                       /*UnfoldStore=*/false,
   1295                                       &LoadRegIndex);
   1296     if (NewOpc != 0) {
   1297       const MCInstrDesc &UnfoldMCID = TII->get(NewOpc);
   1298       if (UnfoldMCID.getNumDefs() == 1) {
   1299         // Unfold the load.
   1300         DEBUG(dbgs() << "2addr:   UNFOLDING: " << MI);
   1301         const TargetRegisterClass *RC =
   1302           TRI->getAllocatableClass(
   1303             TII->getRegClass(UnfoldMCID, LoadRegIndex, TRI, *MF));
   1304         unsigned Reg = MRI->createVirtualRegister(RC);
   1305         SmallVector<MachineInstr *, 2> NewMIs;
   1306         if (!TII->unfoldMemoryOperand(*MF, MI, Reg,
   1307                                       /*UnfoldLoad=*/true,
   1308                                       /*UnfoldStore=*/false, NewMIs)) {
   1309           DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n");
   1310           return false;
   1311         }
   1312         assert(NewMIs.size() == 2 &&
   1313                "Unfolded a load into multiple instructions!");
   1314         // The load was previously folded, so this is the only use.
   1315         NewMIs[1]->addRegisterKilled(Reg, TRI);
   1316 
   1317         // Tentatively insert the instructions into the block so that they
   1318         // look "normal" to the transformation logic.
   1319         MBB->insert(mi, NewMIs[0]);
   1320         MBB->insert(mi, NewMIs[1]);
   1321 
   1322         DEBUG(dbgs() << "2addr:    NEW LOAD: " << *NewMIs[0]
   1323                      << "2addr:    NEW INST: " << *NewMIs[1]);
   1324 
   1325         // Transform the instruction, now that it no longer has a load.
   1326         unsigned NewDstIdx = NewMIs[1]->findRegisterDefOperandIdx(regA);
   1327         unsigned NewSrcIdx = NewMIs[1]->findRegisterUseOperandIdx(regB);
   1328         MachineBasicBlock::iterator NewMI = NewMIs[1];
   1329         bool TransformResult =
   1330           tryInstructionTransform(NewMI, mi, NewSrcIdx, NewDstIdx, Dist, true);
   1331         (void)TransformResult;
   1332         assert(!TransformResult &&
   1333                "tryInstructionTransform() should return false.");
   1334         if (NewMIs[1]->getOperand(NewSrcIdx).isKill()) {
   1335           // Success, or at least we made an improvement. Keep the unfolded
   1336           // instructions and discard the original.
   1337           if (LV) {
   1338             for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
   1339               MachineOperand &MO = MI.getOperand(i);
   1340               if (MO.isReg() &&
   1341                   TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
   1342                 if (MO.isUse()) {
   1343                   if (MO.isKill()) {
   1344                     if (NewMIs[0]->killsRegister(MO.getReg()))
   1345                       LV->replaceKillInstruction(MO.getReg(), MI, *NewMIs[0]);
   1346                     else {
   1347                       assert(NewMIs[1]->killsRegister(MO.getReg()) &&
   1348                              "Kill missing after load unfold!");
   1349                       LV->replaceKillInstruction(MO.getReg(), MI, *NewMIs[1]);
   1350                     }
   1351                   }
   1352                 } else if (LV->removeVirtualRegisterDead(MO.getReg(), MI)) {
   1353                   if (NewMIs[1]->registerDefIsDead(MO.getReg()))
   1354                     LV->addVirtualRegisterDead(MO.getReg(), *NewMIs[1]);
   1355                   else {
   1356                     assert(NewMIs[0]->registerDefIsDead(MO.getReg()) &&
   1357                            "Dead flag missing after load unfold!");
   1358                     LV->addVirtualRegisterDead(MO.getReg(), *NewMIs[0]);
   1359                   }
   1360                 }
   1361               }
   1362             }
   1363             LV->addVirtualRegisterKilled(Reg, *NewMIs[1]);
   1364           }
   1365 
   1366           SmallVector<unsigned, 4> OrigRegs;
   1367           if (LIS) {
   1368             for (const MachineOperand &MO : MI.operands()) {
   1369               if (MO.isReg())
   1370                 OrigRegs.push_back(MO.getReg());
   1371             }
   1372           }
   1373 
   1374           MI.eraseFromParent();
   1375 
   1376           // Update LiveIntervals.
   1377           if (LIS) {
   1378             MachineBasicBlock::iterator Begin(NewMIs[0]);
   1379             MachineBasicBlock::iterator End(NewMIs[1]);
   1380             LIS->repairIntervalsInRange(MBB, Begin, End, OrigRegs);
   1381           }
   1382 
   1383           mi = NewMIs[1];
   1384         } else {
   1385           // Transforming didn't eliminate the tie and didn't lead to an
   1386           // improvement. Clean up the unfolded instructions and keep the
   1387           // original.
   1388           DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n");
   1389           NewMIs[0]->eraseFromParent();
   1390           NewMIs[1]->eraseFromParent();
   1391         }
   1392       }
   1393     }
   1394   }
   1395 
   1396   return false;
   1397 }
   1398 
   1399 // Collect tied operands of MI that need to be handled.
   1400 // Rewrite trivial cases immediately.
   1401 // Return true if any tied operands where found, including the trivial ones.
   1402 bool TwoAddressInstructionPass::
   1403 collectTiedOperands(MachineInstr *MI, TiedOperandMap &TiedOperands) {
   1404   const MCInstrDesc &MCID = MI->getDesc();
   1405   bool AnyOps = false;
   1406   unsigned NumOps = MI->getNumOperands();
   1407 
   1408   for (unsigned SrcIdx = 0; SrcIdx < NumOps; ++SrcIdx) {
   1409     unsigned DstIdx = 0;
   1410     if (!MI->isRegTiedToDefOperand(SrcIdx, &DstIdx))
   1411       continue;
   1412     AnyOps = true;
   1413     MachineOperand &SrcMO = MI->getOperand(SrcIdx);
   1414     MachineOperand &DstMO = MI->getOperand(DstIdx);
   1415     unsigned SrcReg = SrcMO.getReg();
   1416     unsigned DstReg = DstMO.getReg();
   1417     // Tied constraint already satisfied?
   1418     if (SrcReg == DstReg)
   1419       continue;
   1420 
   1421     assert(SrcReg && SrcMO.isUse() && "two address instruction invalid");
   1422 
   1423     // Deal with <undef> uses immediately - simply rewrite the src operand.
   1424     if (SrcMO.isUndef() && !DstMO.getSubReg()) {
   1425       // Constrain the DstReg register class if required.
   1426       if (TargetRegisterInfo::isVirtualRegister(DstReg))
   1427         if (const TargetRegisterClass *RC = TII->getRegClass(MCID, SrcIdx,
   1428                                                              TRI, *MF))
   1429           MRI->constrainRegClass(DstReg, RC);
   1430       SrcMO.setReg(DstReg);
   1431       SrcMO.setSubReg(0);
   1432       DEBUG(dbgs() << "\t\trewrite undef:\t" << *MI);
   1433       continue;
   1434     }
   1435     TiedOperands[SrcReg].push_back(std::make_pair(SrcIdx, DstIdx));
   1436   }
   1437   return AnyOps;
   1438 }
   1439 
   1440 // Process a list of tied MI operands that all use the same source register.
   1441 // The tied pairs are of the form (SrcIdx, DstIdx).
   1442 void
   1443 TwoAddressInstructionPass::processTiedPairs(MachineInstr *MI,
   1444                                             TiedPairList &TiedPairs,
   1445                                             unsigned &Dist) {
   1446   bool IsEarlyClobber = false;
   1447   for (unsigned tpi = 0, tpe = TiedPairs.size(); tpi != tpe; ++tpi) {
   1448     const MachineOperand &DstMO = MI->getOperand(TiedPairs[tpi].second);
   1449     IsEarlyClobber |= DstMO.isEarlyClobber();
   1450   }
   1451 
   1452   bool RemovedKillFlag = false;
   1453   bool AllUsesCopied = true;
   1454   unsigned LastCopiedReg = 0;
   1455   SlotIndex LastCopyIdx;
   1456   unsigned RegB = 0;
   1457   unsigned SubRegB = 0;
   1458   for (unsigned tpi = 0, tpe = TiedPairs.size(); tpi != tpe; ++tpi) {
   1459     unsigned SrcIdx = TiedPairs[tpi].first;
   1460     unsigned DstIdx = TiedPairs[tpi].second;
   1461 
   1462     const MachineOperand &DstMO = MI->getOperand(DstIdx);
   1463     unsigned RegA = DstMO.getReg();
   1464 
   1465     // Grab RegB from the instruction because it may have changed if the
   1466     // instruction was commuted.
   1467     RegB = MI->getOperand(SrcIdx).getReg();
   1468     SubRegB = MI->getOperand(SrcIdx).getSubReg();
   1469 
   1470     if (RegA == RegB) {
   1471       // The register is tied to multiple destinations (or else we would
   1472       // not have continued this far), but this use of the register
   1473       // already matches the tied destination.  Leave it.
   1474       AllUsesCopied = false;
   1475       continue;
   1476     }
   1477     LastCopiedReg = RegA;
   1478 
   1479     assert(TargetRegisterInfo::isVirtualRegister(RegB) &&
   1480            "cannot make instruction into two-address form");
   1481 
   1482 #ifndef NDEBUG
   1483     // First, verify that we don't have a use of "a" in the instruction
   1484     // (a = b + a for example) because our transformation will not
   1485     // work. This should never occur because we are in SSA form.
   1486     for (unsigned i = 0; i != MI->getNumOperands(); ++i)
   1487       assert(i == DstIdx ||
   1488              !MI->getOperand(i).isReg() ||
   1489              MI->getOperand(i).getReg() != RegA);
   1490 #endif
   1491 
   1492     // Emit a copy.
   1493     MachineInstrBuilder MIB = BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
   1494                                       TII->get(TargetOpcode::COPY), RegA);
   1495     // If this operand is folding a truncation, the truncation now moves to the
   1496     // copy so that the register classes remain valid for the operands.
   1497     MIB.addReg(RegB, 0, SubRegB);
   1498     const TargetRegisterClass *RC = MRI->getRegClass(RegB);
   1499     if (SubRegB) {
   1500       if (TargetRegisterInfo::isVirtualRegister(RegA)) {
   1501         assert(TRI->getMatchingSuperRegClass(RC, MRI->getRegClass(RegA),
   1502                                              SubRegB) &&
   1503                "tied subregister must be a truncation");
   1504         // The superreg class will not be used to constrain the subreg class.
   1505         RC = nullptr;
   1506       }
   1507       else {
   1508         assert(TRI->getMatchingSuperReg(RegA, SubRegB, MRI->getRegClass(RegB))
   1509                && "tied subregister must be a truncation");
   1510       }
   1511     }
   1512 
   1513     // Update DistanceMap.
   1514     MachineBasicBlock::iterator PrevMI = MI;
   1515     --PrevMI;
   1516     DistanceMap.insert(std::make_pair(&*PrevMI, Dist));
   1517     DistanceMap[MI] = ++Dist;
   1518 
   1519     if (LIS) {
   1520       LastCopyIdx = LIS->InsertMachineInstrInMaps(*PrevMI).getRegSlot();
   1521 
   1522       if (TargetRegisterInfo::isVirtualRegister(RegA)) {
   1523         LiveInterval &LI = LIS->getInterval(RegA);
   1524         VNInfo *VNI = LI.getNextValue(LastCopyIdx, LIS->getVNInfoAllocator());
   1525         SlotIndex endIdx =
   1526             LIS->getInstructionIndex(*MI).getRegSlot(IsEarlyClobber);
   1527         LI.addSegment(LiveInterval::Segment(LastCopyIdx, endIdx, VNI));
   1528       }
   1529     }
   1530 
   1531     DEBUG(dbgs() << "\t\tprepend:\t" << *MIB);
   1532 
   1533     MachineOperand &MO = MI->getOperand(SrcIdx);
   1534     assert(MO.isReg() && MO.getReg() == RegB && MO.isUse() &&
   1535            "inconsistent operand info for 2-reg pass");
   1536     if (MO.isKill()) {
   1537       MO.setIsKill(false);
   1538       RemovedKillFlag = true;
   1539     }
   1540 
   1541     // Make sure regA is a legal regclass for the SrcIdx operand.
   1542     if (TargetRegisterInfo::isVirtualRegister(RegA) &&
   1543         TargetRegisterInfo::isVirtualRegister(RegB))
   1544       MRI->constrainRegClass(RegA, RC);
   1545     MO.setReg(RegA);
   1546     // The getMatchingSuper asserts guarantee that the register class projected
   1547     // by SubRegB is compatible with RegA with no subregister. So regardless of
   1548     // whether the dest oper writes a subreg, the source oper should not.
   1549     MO.setSubReg(0);
   1550 
   1551     // Propagate SrcRegMap.
   1552     SrcRegMap[RegA] = RegB;
   1553   }
   1554 
   1555   if (AllUsesCopied) {
   1556     if (!IsEarlyClobber) {
   1557       // Replace other (un-tied) uses of regB with LastCopiedReg.
   1558       for (MachineOperand &MO : MI->operands()) {
   1559         if (MO.isReg() && MO.getReg() == RegB && MO.getSubReg() == SubRegB &&
   1560             MO.isUse()) {
   1561           if (MO.isKill()) {
   1562             MO.setIsKill(false);
   1563             RemovedKillFlag = true;
   1564           }
   1565           MO.setReg(LastCopiedReg);
   1566           MO.setSubReg(0);
   1567         }
   1568       }
   1569     }
   1570 
   1571     // Update live variables for regB.
   1572     if (RemovedKillFlag && LV && LV->getVarInfo(RegB).removeKill(*MI)) {
   1573       MachineBasicBlock::iterator PrevMI = MI;
   1574       --PrevMI;
   1575       LV->addVirtualRegisterKilled(RegB, *PrevMI);
   1576     }
   1577 
   1578     // Update LiveIntervals.
   1579     if (LIS) {
   1580       LiveInterval &LI = LIS->getInterval(RegB);
   1581       SlotIndex MIIdx = LIS->getInstructionIndex(*MI);
   1582       LiveInterval::const_iterator I = LI.find(MIIdx);
   1583       assert(I != LI.end() && "RegB must be live-in to use.");
   1584 
   1585       SlotIndex UseIdx = MIIdx.getRegSlot(IsEarlyClobber);
   1586       if (I->end == UseIdx)
   1587         LI.removeSegment(LastCopyIdx, UseIdx);
   1588     }
   1589 
   1590   } else if (RemovedKillFlag) {
   1591     // Some tied uses of regB matched their destination registers, so
   1592     // regB is still used in this instruction, but a kill flag was
   1593     // removed from a different tied use of regB, so now we need to add
   1594     // a kill flag to one of the remaining uses of regB.
   1595     for (MachineOperand &MO : MI->operands()) {
   1596       if (MO.isReg() && MO.getReg() == RegB && MO.isUse()) {
   1597         MO.setIsKill(true);
   1598         break;
   1599       }
   1600     }
   1601   }
   1602 }
   1603 
   1604 /// Reduce two-address instructions to two operands.
   1605 bool TwoAddressInstructionPass::runOnMachineFunction(MachineFunction &Func) {
   1606   MF = &Func;
   1607   const TargetMachine &TM = MF->getTarget();
   1608   MRI = &MF->getRegInfo();
   1609   TII = MF->getSubtarget().getInstrInfo();
   1610   TRI = MF->getSubtarget().getRegisterInfo();
   1611   InstrItins = MF->getSubtarget().getInstrItineraryData();
   1612   LV = getAnalysisIfAvailable<LiveVariables>();
   1613   LIS = getAnalysisIfAvailable<LiveIntervals>();
   1614   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
   1615   OptLevel = TM.getOptLevel();
   1616 
   1617   bool MadeChange = false;
   1618 
   1619   DEBUG(dbgs() << "********** REWRITING TWO-ADDR INSTRS **********\n");
   1620   DEBUG(dbgs() << "********** Function: "
   1621         << MF->getName() << '\n');
   1622 
   1623   // This pass takes the function out of SSA form.
   1624   MRI->leaveSSA();
   1625 
   1626   TiedOperandMap TiedOperands;
   1627   for (MachineFunction::iterator MBBI = MF->begin(), MBBE = MF->end();
   1628        MBBI != MBBE; ++MBBI) {
   1629     MBB = &*MBBI;
   1630     unsigned Dist = 0;
   1631     DistanceMap.clear();
   1632     SrcRegMap.clear();
   1633     DstRegMap.clear();
   1634     Processed.clear();
   1635     for (MachineBasicBlock::iterator mi = MBB->begin(), me = MBB->end();
   1636          mi != me; ) {
   1637       MachineBasicBlock::iterator nmi = std::next(mi);
   1638       if (mi->isDebugValue()) {
   1639         mi = nmi;
   1640         continue;
   1641       }
   1642 
   1643       // Expand REG_SEQUENCE instructions. This will position mi at the first
   1644       // expanded instruction.
   1645       if (mi->isRegSequence())
   1646         eliminateRegSequence(mi);
   1647 
   1648       DistanceMap.insert(std::make_pair(&*mi, ++Dist));
   1649 
   1650       processCopy(&*mi);
   1651 
   1652       // First scan through all the tied register uses in this instruction
   1653       // and record a list of pairs of tied operands for each register.
   1654       if (!collectTiedOperands(&*mi, TiedOperands)) {
   1655         mi = nmi;
   1656         continue;
   1657       }
   1658 
   1659       ++NumTwoAddressInstrs;
   1660       MadeChange = true;
   1661       DEBUG(dbgs() << '\t' << *mi);
   1662 
   1663       // If the instruction has a single pair of tied operands, try some
   1664       // transformations that may either eliminate the tied operands or
   1665       // improve the opportunities for coalescing away the register copy.
   1666       if (TiedOperands.size() == 1) {
   1667         SmallVectorImpl<std::pair<unsigned, unsigned> > &TiedPairs
   1668           = TiedOperands.begin()->second;
   1669         if (TiedPairs.size() == 1) {
   1670           unsigned SrcIdx = TiedPairs[0].first;
   1671           unsigned DstIdx = TiedPairs[0].second;
   1672           unsigned SrcReg = mi->getOperand(SrcIdx).getReg();
   1673           unsigned DstReg = mi->getOperand(DstIdx).getReg();
   1674           if (SrcReg != DstReg &&
   1675               tryInstructionTransform(mi, nmi, SrcIdx, DstIdx, Dist, false)) {
   1676             // The tied operands have been eliminated or shifted further down
   1677             // the block to ease elimination. Continue processing with 'nmi'.
   1678             TiedOperands.clear();
   1679             mi = nmi;
   1680             continue;
   1681           }
   1682         }
   1683       }
   1684 
   1685       // Now iterate over the information collected above.
   1686       for (auto &TO : TiedOperands) {
   1687         processTiedPairs(&*mi, TO.second, Dist);
   1688         DEBUG(dbgs() << "\t\trewrite to:\t" << *mi);
   1689       }
   1690 
   1691       // Rewrite INSERT_SUBREG as COPY now that we no longer need SSA form.
   1692       if (mi->isInsertSubreg()) {
   1693         // From %reg = INSERT_SUBREG %reg, %subreg, subidx
   1694         // To   %reg:subidx = COPY %subreg
   1695         unsigned SubIdx = mi->getOperand(3).getImm();
   1696         mi->RemoveOperand(3);
   1697         assert(mi->getOperand(0).getSubReg() == 0 && "Unexpected subreg idx");
   1698         mi->getOperand(0).setSubReg(SubIdx);
   1699         mi->getOperand(0).setIsUndef(mi->getOperand(1).isUndef());
   1700         mi->RemoveOperand(1);
   1701         mi->setDesc(TII->get(TargetOpcode::COPY));
   1702         DEBUG(dbgs() << "\t\tconvert to:\t" << *mi);
   1703       }
   1704 
   1705       // Clear TiedOperands here instead of at the top of the loop
   1706       // since most instructions do not have tied operands.
   1707       TiedOperands.clear();
   1708       mi = nmi;
   1709     }
   1710   }
   1711 
   1712   if (LIS)
   1713     MF->verify(this, "After two-address instruction pass");
   1714 
   1715   return MadeChange;
   1716 }
   1717 
   1718 /// Eliminate a REG_SEQUENCE instruction as part of the de-ssa process.
   1719 ///
   1720 /// The instruction is turned into a sequence of sub-register copies:
   1721 ///
   1722 ///   %dst = REG_SEQUENCE %v1, ssub0, %v2, ssub1
   1723 ///
   1724 /// Becomes:
   1725 ///
   1726 ///   %dst:ssub0<def,undef> = COPY %v1
   1727 ///   %dst:ssub1<def> = COPY %v2
   1728 ///
   1729 void TwoAddressInstructionPass::
   1730 eliminateRegSequence(MachineBasicBlock::iterator &MBBI) {
   1731   MachineInstr &MI = *MBBI;
   1732   unsigned DstReg = MI.getOperand(0).getReg();
   1733   if (MI.getOperand(0).getSubReg() ||
   1734       TargetRegisterInfo::isPhysicalRegister(DstReg) ||
   1735       !(MI.getNumOperands() & 1)) {
   1736     DEBUG(dbgs() << "Illegal REG_SEQUENCE instruction:" << MI);
   1737     llvm_unreachable(nullptr);
   1738   }
   1739 
   1740   SmallVector<unsigned, 4> OrigRegs;
   1741   if (LIS) {
   1742     OrigRegs.push_back(MI.getOperand(0).getReg());
   1743     for (unsigned i = 1, e = MI.getNumOperands(); i < e; i += 2)
   1744       OrigRegs.push_back(MI.getOperand(i).getReg());
   1745   }
   1746 
   1747   bool DefEmitted = false;
   1748   for (unsigned i = 1, e = MI.getNumOperands(); i < e; i += 2) {
   1749     MachineOperand &UseMO = MI.getOperand(i);
   1750     unsigned SrcReg = UseMO.getReg();
   1751     unsigned SubIdx = MI.getOperand(i+1).getImm();
   1752     // Nothing needs to be inserted for <undef> operands.
   1753     if (UseMO.isUndef())
   1754       continue;
   1755 
   1756     // Defer any kill flag to the last operand using SrcReg. Otherwise, we
   1757     // might insert a COPY that uses SrcReg after is was killed.
   1758     bool isKill = UseMO.isKill();
   1759     if (isKill)
   1760       for (unsigned j = i + 2; j < e; j += 2)
   1761         if (MI.getOperand(j).getReg() == SrcReg) {
   1762           MI.getOperand(j).setIsKill();
   1763           UseMO.setIsKill(false);
   1764           isKill = false;
   1765           break;
   1766         }
   1767 
   1768     // Insert the sub-register copy.
   1769     MachineInstr *CopyMI = BuildMI(*MI.getParent(), MI, MI.getDebugLoc(),
   1770                                    TII->get(TargetOpcode::COPY))
   1771                                .addReg(DstReg, RegState::Define, SubIdx)
   1772                                .addOperand(UseMO);
   1773 
   1774     // The first def needs an <undef> flag because there is no live register
   1775     // before it.
   1776     if (!DefEmitted) {
   1777       CopyMI->getOperand(0).setIsUndef(true);
   1778       // Return an iterator pointing to the first inserted instr.
   1779       MBBI = CopyMI;
   1780     }
   1781     DefEmitted = true;
   1782 
   1783     // Update LiveVariables' kill info.
   1784     if (LV && isKill && !TargetRegisterInfo::isPhysicalRegister(SrcReg))
   1785       LV->replaceKillInstruction(SrcReg, MI, *CopyMI);
   1786 
   1787     DEBUG(dbgs() << "Inserted: " << *CopyMI);
   1788   }
   1789 
   1790   MachineBasicBlock::iterator EndMBBI =
   1791       std::next(MachineBasicBlock::iterator(MI));
   1792 
   1793   if (!DefEmitted) {
   1794     DEBUG(dbgs() << "Turned: " << MI << " into an IMPLICIT_DEF");
   1795     MI.setDesc(TII->get(TargetOpcode::IMPLICIT_DEF));
   1796     for (int j = MI.getNumOperands() - 1, ee = 0; j > ee; --j)
   1797       MI.RemoveOperand(j);
   1798   } else {
   1799     DEBUG(dbgs() << "Eliminated: " << MI);
   1800     MI.eraseFromParent();
   1801   }
   1802 
   1803   // Udpate LiveIntervals.
   1804   if (LIS)
   1805     LIS->repairIntervalsInRange(MBB, MBBI, EndMBBI, OrigRegs);
   1806 }
   1807