Home | History | Annotate | Download | only in IR
      1 //===-- Verifier.cpp - Implement the Module Verifier -----------------------==//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the function verifier interface, that can be used for some
     11 // sanity checking of input to the system.
     12 //
     13 // Note that this does not provide full `Java style' security and verifications,
     14 // instead it just tries to ensure that code is well-formed.
     15 //
     16 //  * Both of a binary operator's parameters are of the same type
     17 //  * Verify that the indices of mem access instructions match other operands
     18 //  * Verify that arithmetic and other things are only performed on first-class
     19 //    types.  Verify that shifts & logicals only happen on integrals f.e.
     20 //  * All of the constants in a switch statement are of the correct type
     21 //  * The code is in valid SSA form
     22 //  * It should be illegal to put a label into any other type (like a structure)
     23 //    or to return one. [except constant arrays!]
     24 //  * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad
     25 //  * PHI nodes must have an entry for each predecessor, with no extras.
     26 //  * PHI nodes must be the first thing in a basic block, all grouped together
     27 //  * PHI nodes must have at least one entry
     28 //  * All basic blocks should only end with terminator insts, not contain them
     29 //  * The entry node to a function must not have predecessors
     30 //  * All Instructions must be embedded into a basic block
     31 //  * Functions cannot take a void-typed parameter
     32 //  * Verify that a function's argument list agrees with it's declared type.
     33 //  * It is illegal to specify a name for a void value.
     34 //  * It is illegal to have a internal global value with no initializer
     35 //  * It is illegal to have a ret instruction that returns a value that does not
     36 //    agree with the function return value type.
     37 //  * Function call argument types match the function prototype
     38 //  * A landing pad is defined by a landingpad instruction, and can be jumped to
     39 //    only by the unwind edge of an invoke instruction.
     40 //  * A landingpad instruction must be the first non-PHI instruction in the
     41 //    block.
     42 //  * Landingpad instructions must be in a function with a personality function.
     43 //  * All other things that are tested by asserts spread about the code...
     44 //
     45 //===----------------------------------------------------------------------===//
     46 
     47 #include "llvm/IR/Verifier.h"
     48 #include "llvm/ADT/MapVector.h"
     49 #include "llvm/ADT/STLExtras.h"
     50 #include "llvm/ADT/SetVector.h"
     51 #include "llvm/ADT/SmallPtrSet.h"
     52 #include "llvm/ADT/SmallVector.h"
     53 #include "llvm/ADT/StringExtras.h"
     54 #include "llvm/IR/CFG.h"
     55 #include "llvm/IR/CallSite.h"
     56 #include "llvm/IR/CallingConv.h"
     57 #include "llvm/IR/ConstantRange.h"
     58 #include "llvm/IR/Constants.h"
     59 #include "llvm/IR/DataLayout.h"
     60 #include "llvm/IR/DebugInfo.h"
     61 #include "llvm/IR/DerivedTypes.h"
     62 #include "llvm/IR/DiagnosticInfo.h"
     63 #include "llvm/IR/Dominators.h"
     64 #include "llvm/IR/InlineAsm.h"
     65 #include "llvm/IR/InstIterator.h"
     66 #include "llvm/IR/InstVisitor.h"
     67 #include "llvm/IR/IntrinsicInst.h"
     68 #include "llvm/IR/LLVMContext.h"
     69 #include "llvm/IR/Metadata.h"
     70 #include "llvm/IR/Module.h"
     71 #include "llvm/IR/ModuleSlotTracker.h"
     72 #include "llvm/IR/PassManager.h"
     73 #include "llvm/IR/Statepoint.h"
     74 #include "llvm/Pass.h"
     75 #include "llvm/Support/CommandLine.h"
     76 #include "llvm/Support/Debug.h"
     77 #include "llvm/Support/ErrorHandling.h"
     78 #include "llvm/Support/raw_ostream.h"
     79 #include <algorithm>
     80 #include <cstdarg>
     81 using namespace llvm;
     82 
     83 static cl::opt<bool> VerifyDebugInfo("verify-debug-info", cl::init(true));
     84 
     85 namespace {
     86 struct VerifierSupport {
     87   raw_ostream *OS;
     88   const Module *M = nullptr;
     89   Optional<ModuleSlotTracker> MST;
     90 
     91   /// Track the brokenness of the module while recursively visiting.
     92   bool Broken = false;
     93   /// Broken debug info can be "recovered" from by stripping the debug info.
     94   bool BrokenDebugInfo = false;
     95   /// Whether to treat broken debug info as an error.
     96   bool TreatBrokenDebugInfoAsError = true;
     97 
     98   explicit VerifierSupport(raw_ostream *OS) : OS(OS) {}
     99 
    100 private:
    101   template <class NodeTy> void Write(const ilist_iterator<NodeTy> &I) {
    102     Write(&*I);
    103   }
    104 
    105   void Write(const Module *M) {
    106     if (!M)
    107       return;
    108     *OS << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
    109   }
    110 
    111   void Write(const Value *V) {
    112     if (!V)
    113       return;
    114     if (isa<Instruction>(V)) {
    115       V->print(*OS, *MST);
    116       *OS << '\n';
    117     } else {
    118       V->printAsOperand(*OS, true, *MST);
    119       *OS << '\n';
    120     }
    121   }
    122   void Write(ImmutableCallSite CS) {
    123     Write(CS.getInstruction());
    124   }
    125 
    126   void Write(const Metadata *MD) {
    127     if (!MD)
    128       return;
    129     MD->print(*OS, *MST, M);
    130     *OS << '\n';
    131   }
    132 
    133   template <class T> void Write(const MDTupleTypedArrayWrapper<T> &MD) {
    134     Write(MD.get());
    135   }
    136 
    137   void Write(const NamedMDNode *NMD) {
    138     if (!NMD)
    139       return;
    140     NMD->print(*OS, *MST);
    141     *OS << '\n';
    142   }
    143 
    144   void Write(Type *T) {
    145     if (!T)
    146       return;
    147     *OS << ' ' << *T;
    148   }
    149 
    150   void Write(const Comdat *C) {
    151     if (!C)
    152       return;
    153     *OS << *C;
    154   }
    155 
    156   template <typename T> void Write(ArrayRef<T> Vs) {
    157     for (const T &V : Vs)
    158       Write(V);
    159   }
    160 
    161   template <typename T1, typename... Ts>
    162   void WriteTs(const T1 &V1, const Ts &... Vs) {
    163     Write(V1);
    164     WriteTs(Vs...);
    165   }
    166 
    167   template <typename... Ts> void WriteTs() {}
    168 
    169 public:
    170   /// \brief A check failed, so printout out the condition and the message.
    171   ///
    172   /// This provides a nice place to put a breakpoint if you want to see why
    173   /// something is not correct.
    174   void CheckFailed(const Twine &Message) {
    175     if (OS)
    176       *OS << Message << '\n';
    177     Broken = true;
    178   }
    179 
    180   /// \brief A check failed (with values to print).
    181   ///
    182   /// This calls the Message-only version so that the above is easier to set a
    183   /// breakpoint on.
    184   template <typename T1, typename... Ts>
    185   void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) {
    186     CheckFailed(Message);
    187     if (OS)
    188       WriteTs(V1, Vs...);
    189   }
    190 
    191   /// A debug info check failed.
    192   void DebugInfoCheckFailed(const Twine &Message) {
    193     if (OS)
    194       *OS << Message << '\n';
    195     Broken |= TreatBrokenDebugInfoAsError;
    196     BrokenDebugInfo = true;
    197   }
    198 
    199   /// A debug info check failed (with values to print).
    200   template <typename T1, typename... Ts>
    201   void DebugInfoCheckFailed(const Twine &Message, const T1 &V1,
    202                             const Ts &... Vs) {
    203     DebugInfoCheckFailed(Message);
    204     if (OS)
    205       WriteTs(V1, Vs...);
    206   }
    207 };
    208 
    209 class Verifier : public InstVisitor<Verifier>, VerifierSupport {
    210   friend class InstVisitor<Verifier>;
    211 
    212   LLVMContext *Context;
    213   DominatorTree DT;
    214 
    215   /// \brief When verifying a basic block, keep track of all of the
    216   /// instructions we have seen so far.
    217   ///
    218   /// This allows us to do efficient dominance checks for the case when an
    219   /// instruction has an operand that is an instruction in the same block.
    220   SmallPtrSet<Instruction *, 16> InstsInThisBlock;
    221 
    222   /// \brief Keep track of the metadata nodes that have been checked already.
    223   SmallPtrSet<const Metadata *, 32> MDNodes;
    224 
    225   /// Track all DICompileUnits visited.
    226   SmallPtrSet<const Metadata *, 2> CUVisited;
    227 
    228   /// \brief The result type for a landingpad.
    229   Type *LandingPadResultTy;
    230 
    231   /// \brief Whether we've seen a call to @llvm.localescape in this function
    232   /// already.
    233   bool SawFrameEscape;
    234 
    235   /// Stores the count of how many objects were passed to llvm.localescape for a
    236   /// given function and the largest index passed to llvm.localrecover.
    237   DenseMap<Function *, std::pair<unsigned, unsigned>> FrameEscapeInfo;
    238 
    239   // Maps catchswitches and cleanuppads that unwind to siblings to the
    240   // terminators that indicate the unwind, used to detect cycles therein.
    241   MapVector<Instruction *, TerminatorInst *> SiblingFuncletInfo;
    242 
    243   /// Cache of constants visited in search of ConstantExprs.
    244   SmallPtrSet<const Constant *, 32> ConstantExprVisited;
    245 
    246   /// Cache of declarations of the llvm.experimental.deoptimize.<ty> intrinsic.
    247   SmallVector<const Function *, 4> DeoptimizeDeclarations;
    248 
    249   // Verify that this GlobalValue is only used in this module.
    250   // This map is used to avoid visiting uses twice. We can arrive at a user
    251   // twice, if they have multiple operands. In particular for very large
    252   // constant expressions, we can arrive at a particular user many times.
    253   SmallPtrSet<const Value *, 32> GlobalValueVisited;
    254 
    255   void checkAtomicMemAccessSize(const Module *M, Type *Ty,
    256                                 const Instruction *I);
    257 
    258   void updateModule(const Module *NewM) {
    259     if (M == NewM)
    260       return;
    261     MST.emplace(NewM);
    262     M = NewM;
    263   }
    264 
    265 public:
    266   explicit Verifier(raw_ostream *OS, bool ShouldTreatBrokenDebugInfoAsError)
    267       : VerifierSupport(OS), Context(nullptr), LandingPadResultTy(nullptr),
    268         SawFrameEscape(false) {
    269     TreatBrokenDebugInfoAsError = ShouldTreatBrokenDebugInfoAsError;
    270   }
    271 
    272   bool hasBrokenDebugInfo() const { return BrokenDebugInfo; }
    273 
    274   bool verify(const Function &F) {
    275     updateModule(F.getParent());
    276     Context = &M->getContext();
    277 
    278     // First ensure the function is well-enough formed to compute dominance
    279     // information, and directly compute a dominance tree. We don't rely on the
    280     // pass manager to provide this as it isolates us from a potentially
    281     // out-of-date dominator tree and makes it significantly more complex to run
    282     // this code outside of a pass manager.
    283     // FIXME: It's really gross that we have to cast away constness here.
    284     if (!F.empty())
    285       DT.recalculate(const_cast<Function &>(F));
    286 
    287     for (const BasicBlock &BB : F) {
    288       if (!BB.empty() && BB.back().isTerminator())
    289         continue;
    290 
    291       if (OS) {
    292         *OS << "Basic Block in function '" << F.getName()
    293             << "' does not have terminator!\n";
    294         BB.printAsOperand(*OS, true, *MST);
    295         *OS << "\n";
    296       }
    297       return false;
    298     }
    299 
    300     Broken = false;
    301     // FIXME: We strip const here because the inst visitor strips const.
    302     visit(const_cast<Function &>(F));
    303     verifySiblingFuncletUnwinds();
    304     InstsInThisBlock.clear();
    305     LandingPadResultTy = nullptr;
    306     SawFrameEscape = false;
    307     SiblingFuncletInfo.clear();
    308 
    309     return !Broken;
    310   }
    311 
    312   bool verify(const Module &M) {
    313     updateModule(&M);
    314     Context = &M.getContext();
    315     Broken = false;
    316 
    317     // Collect all declarations of the llvm.experimental.deoptimize intrinsic.
    318     for (const Function &F : M)
    319       if (F.getIntrinsicID() == Intrinsic::experimental_deoptimize)
    320         DeoptimizeDeclarations.push_back(&F);
    321 
    322     // Now that we've visited every function, verify that we never asked to
    323     // recover a frame index that wasn't escaped.
    324     verifyFrameRecoverIndices();
    325     for (const GlobalVariable &GV : M.globals())
    326       visitGlobalVariable(GV);
    327 
    328     for (const GlobalAlias &GA : M.aliases())
    329       visitGlobalAlias(GA);
    330 
    331     for (const NamedMDNode &NMD : M.named_metadata())
    332       visitNamedMDNode(NMD);
    333 
    334     for (const StringMapEntry<Comdat> &SMEC : M.getComdatSymbolTable())
    335       visitComdat(SMEC.getValue());
    336 
    337     visitModuleFlags(M);
    338     visitModuleIdents(M);
    339 
    340     verifyCompileUnits();
    341 
    342     verifyDeoptimizeCallingConvs();
    343 
    344     return !Broken;
    345   }
    346 
    347 private:
    348   // Verification methods...
    349   void visitGlobalValue(const GlobalValue &GV);
    350   void visitGlobalVariable(const GlobalVariable &GV);
    351   void visitGlobalAlias(const GlobalAlias &GA);
    352   void visitAliaseeSubExpr(const GlobalAlias &A, const Constant &C);
    353   void visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias *> &Visited,
    354                            const GlobalAlias &A, const Constant &C);
    355   void visitNamedMDNode(const NamedMDNode &NMD);
    356   void visitMDNode(const MDNode &MD);
    357   void visitMetadataAsValue(const MetadataAsValue &MD, Function *F);
    358   void visitValueAsMetadata(const ValueAsMetadata &MD, Function *F);
    359   void visitComdat(const Comdat &C);
    360   void visitModuleIdents(const Module &M);
    361   void visitModuleFlags(const Module &M);
    362   void visitModuleFlag(const MDNode *Op,
    363                        DenseMap<const MDString *, const MDNode *> &SeenIDs,
    364                        SmallVectorImpl<const MDNode *> &Requirements);
    365   void visitFunction(const Function &F);
    366   void visitBasicBlock(BasicBlock &BB);
    367   void visitRangeMetadata(Instruction& I, MDNode* Range, Type* Ty);
    368   void visitDereferenceableMetadata(Instruction& I, MDNode* MD);
    369 
    370   template <class Ty> bool isValidMetadataArray(const MDTuple &N);
    371 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) void visit##CLASS(const CLASS &N);
    372 #include "llvm/IR/Metadata.def"
    373   void visitDIScope(const DIScope &N);
    374   void visitDIVariable(const DIVariable &N);
    375   void visitDILexicalBlockBase(const DILexicalBlockBase &N);
    376   void visitDITemplateParameter(const DITemplateParameter &N);
    377 
    378   void visitTemplateParams(const MDNode &N, const Metadata &RawParams);
    379 
    380   // InstVisitor overrides...
    381   using InstVisitor<Verifier>::visit;
    382   void visit(Instruction &I);
    383 
    384   void visitTruncInst(TruncInst &I);
    385   void visitZExtInst(ZExtInst &I);
    386   void visitSExtInst(SExtInst &I);
    387   void visitFPTruncInst(FPTruncInst &I);
    388   void visitFPExtInst(FPExtInst &I);
    389   void visitFPToUIInst(FPToUIInst &I);
    390   void visitFPToSIInst(FPToSIInst &I);
    391   void visitUIToFPInst(UIToFPInst &I);
    392   void visitSIToFPInst(SIToFPInst &I);
    393   void visitIntToPtrInst(IntToPtrInst &I);
    394   void visitPtrToIntInst(PtrToIntInst &I);
    395   void visitBitCastInst(BitCastInst &I);
    396   void visitAddrSpaceCastInst(AddrSpaceCastInst &I);
    397   void visitPHINode(PHINode &PN);
    398   void visitBinaryOperator(BinaryOperator &B);
    399   void visitICmpInst(ICmpInst &IC);
    400   void visitFCmpInst(FCmpInst &FC);
    401   void visitExtractElementInst(ExtractElementInst &EI);
    402   void visitInsertElementInst(InsertElementInst &EI);
    403   void visitShuffleVectorInst(ShuffleVectorInst &EI);
    404   void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); }
    405   void visitCallInst(CallInst &CI);
    406   void visitInvokeInst(InvokeInst &II);
    407   void visitGetElementPtrInst(GetElementPtrInst &GEP);
    408   void visitLoadInst(LoadInst &LI);
    409   void visitStoreInst(StoreInst &SI);
    410   void verifyDominatesUse(Instruction &I, unsigned i);
    411   void visitInstruction(Instruction &I);
    412   void visitTerminatorInst(TerminatorInst &I);
    413   void visitBranchInst(BranchInst &BI);
    414   void visitReturnInst(ReturnInst &RI);
    415   void visitSwitchInst(SwitchInst &SI);
    416   void visitIndirectBrInst(IndirectBrInst &BI);
    417   void visitSelectInst(SelectInst &SI);
    418   void visitUserOp1(Instruction &I);
    419   void visitUserOp2(Instruction &I) { visitUserOp1(I); }
    420   void visitIntrinsicCallSite(Intrinsic::ID ID, CallSite CS);
    421   template <class DbgIntrinsicTy>
    422   void visitDbgIntrinsic(StringRef Kind, DbgIntrinsicTy &DII);
    423   void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI);
    424   void visitAtomicRMWInst(AtomicRMWInst &RMWI);
    425   void visitFenceInst(FenceInst &FI);
    426   void visitAllocaInst(AllocaInst &AI);
    427   void visitExtractValueInst(ExtractValueInst &EVI);
    428   void visitInsertValueInst(InsertValueInst &IVI);
    429   void visitEHPadPredecessors(Instruction &I);
    430   void visitLandingPadInst(LandingPadInst &LPI);
    431   void visitCatchPadInst(CatchPadInst &CPI);
    432   void visitCatchReturnInst(CatchReturnInst &CatchReturn);
    433   void visitCleanupPadInst(CleanupPadInst &CPI);
    434   void visitFuncletPadInst(FuncletPadInst &FPI);
    435   void visitCatchSwitchInst(CatchSwitchInst &CatchSwitch);
    436   void visitCleanupReturnInst(CleanupReturnInst &CRI);
    437 
    438   void verifyCallSite(CallSite CS);
    439   void verifySwiftErrorCallSite(CallSite CS, const Value *SwiftErrorVal);
    440   void verifySwiftErrorValue(const Value *SwiftErrorVal);
    441   void verifyMustTailCall(CallInst &CI);
    442   bool performTypeCheck(Intrinsic::ID ID, Function *F, Type *Ty, int VT,
    443                         unsigned ArgNo, std::string &Suffix);
    444   bool verifyAttributeCount(AttributeSet Attrs, unsigned Params);
    445   void verifyAttributeTypes(AttributeSet Attrs, unsigned Idx, bool isFunction,
    446                             const Value *V);
    447   void verifyParameterAttrs(AttributeSet Attrs, unsigned Idx, Type *Ty,
    448                             bool isReturnValue, const Value *V);
    449   void verifyFunctionAttrs(FunctionType *FT, AttributeSet Attrs,
    450                            const Value *V);
    451   void verifyFunctionMetadata(ArrayRef<std::pair<unsigned, MDNode *>> MDs);
    452 
    453   void visitConstantExprsRecursively(const Constant *EntryC);
    454   void visitConstantExpr(const ConstantExpr *CE);
    455   void verifyStatepoint(ImmutableCallSite CS);
    456   void verifyFrameRecoverIndices();
    457   void verifySiblingFuncletUnwinds();
    458 
    459   void verifyBitPieceExpression(const DbgInfoIntrinsic &I);
    460 
    461   /// Module-level debug info verification...
    462   void verifyCompileUnits();
    463 
    464   /// Module-level verification that all @llvm.experimental.deoptimize
    465   /// declarations share the same calling convention.
    466   void verifyDeoptimizeCallingConvs();
    467 };
    468 } // End anonymous namespace
    469 
    470 /// We know that cond should be true, if not print an error message.
    471 #define Assert(C, ...) \
    472   do { if (!(C)) { CheckFailed(__VA_ARGS__); return; } } while (0)
    473 
    474 /// We know that a debug info condition should be true, if not print
    475 /// an error message.
    476 #define AssertDI(C, ...) \
    477   do { if (!(C)) { DebugInfoCheckFailed(__VA_ARGS__); return; } } while (0)
    478 
    479 
    480 void Verifier::visit(Instruction &I) {
    481   for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
    482     Assert(I.getOperand(i) != nullptr, "Operand is null", &I);
    483   InstVisitor<Verifier>::visit(I);
    484 }
    485 
    486 // Helper to recursively iterate over indirect users. By
    487 // returning false, the callback can ask to stop recursing
    488 // further.
    489 static void forEachUser(const Value *User,
    490                         SmallPtrSet<const Value *, 32> &Visited,
    491                         llvm::function_ref<bool(const Value *)> Callback) {
    492   if (!Visited.insert(User).second)
    493     return;
    494   for (const Value *TheNextUser : User->materialized_users())
    495     if (Callback(TheNextUser))
    496       forEachUser(TheNextUser, Visited, Callback);
    497 }
    498 
    499 void Verifier::visitGlobalValue(const GlobalValue &GV) {
    500   Assert(!GV.isDeclaration() || GV.hasValidDeclarationLinkage(),
    501          "Global is external, but doesn't have external or weak linkage!", &GV);
    502 
    503   Assert(GV.getAlignment() <= Value::MaximumAlignment,
    504          "huge alignment values are unsupported", &GV);
    505   Assert(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV),
    506          "Only global variables can have appending linkage!", &GV);
    507 
    508   if (GV.hasAppendingLinkage()) {
    509     const GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV);
    510     Assert(GVar && GVar->getValueType()->isArrayTy(),
    511            "Only global arrays can have appending linkage!", GVar);
    512   }
    513 
    514   if (GV.isDeclarationForLinker())
    515     Assert(!GV.hasComdat(), "Declaration may not be in a Comdat!", &GV);
    516 
    517   forEachUser(&GV, GlobalValueVisited, [&](const Value *V) -> bool {
    518     if (const Instruction *I = dyn_cast<Instruction>(V)) {
    519       if (!I->getParent() || !I->getParent()->getParent())
    520         CheckFailed("Global is referenced by parentless instruction!", &GV,
    521                     M, I);
    522       else if (I->getParent()->getParent()->getParent() != M)
    523         CheckFailed("Global is referenced in a different module!", &GV,
    524                     M, I, I->getParent()->getParent(),
    525                     I->getParent()->getParent()->getParent());
    526       return false;
    527     } else if (const Function *F = dyn_cast<Function>(V)) {
    528       if (F->getParent() != M)
    529         CheckFailed("Global is used by function in a different module", &GV,
    530                     M, F, F->getParent());
    531       return false;
    532     }
    533     return true;
    534   });
    535 }
    536 
    537 void Verifier::visitGlobalVariable(const GlobalVariable &GV) {
    538   if (GV.hasInitializer()) {
    539     Assert(GV.getInitializer()->getType() == GV.getValueType(),
    540            "Global variable initializer type does not match global "
    541            "variable type!",
    542            &GV);
    543 
    544     // If the global has common linkage, it must have a zero initializer and
    545     // cannot be constant.
    546     if (GV.hasCommonLinkage()) {
    547       Assert(GV.getInitializer()->isNullValue(),
    548              "'common' global must have a zero initializer!", &GV);
    549       Assert(!GV.isConstant(), "'common' global may not be marked constant!",
    550              &GV);
    551       Assert(!GV.hasComdat(), "'common' global may not be in a Comdat!", &GV);
    552     }
    553   }
    554 
    555   if (GV.hasName() && (GV.getName() == "llvm.global_ctors" ||
    556                        GV.getName() == "llvm.global_dtors")) {
    557     Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(),
    558            "invalid linkage for intrinsic global variable", &GV);
    559     // Don't worry about emitting an error for it not being an array,
    560     // visitGlobalValue will complain on appending non-array.
    561     if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getValueType())) {
    562       StructType *STy = dyn_cast<StructType>(ATy->getElementType());
    563       PointerType *FuncPtrTy =
    564           FunctionType::get(Type::getVoidTy(*Context), false)->getPointerTo();
    565       // FIXME: Reject the 2-field form in LLVM 4.0.
    566       Assert(STy &&
    567                  (STy->getNumElements() == 2 || STy->getNumElements() == 3) &&
    568                  STy->getTypeAtIndex(0u)->isIntegerTy(32) &&
    569                  STy->getTypeAtIndex(1) == FuncPtrTy,
    570              "wrong type for intrinsic global variable", &GV);
    571       if (STy->getNumElements() == 3) {
    572         Type *ETy = STy->getTypeAtIndex(2);
    573         Assert(ETy->isPointerTy() &&
    574                    cast<PointerType>(ETy)->getElementType()->isIntegerTy(8),
    575                "wrong type for intrinsic global variable", &GV);
    576       }
    577     }
    578   }
    579 
    580   if (GV.hasName() && (GV.getName() == "llvm.used" ||
    581                        GV.getName() == "llvm.compiler.used")) {
    582     Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(),
    583            "invalid linkage for intrinsic global variable", &GV);
    584     Type *GVType = GV.getValueType();
    585     if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) {
    586       PointerType *PTy = dyn_cast<PointerType>(ATy->getElementType());
    587       Assert(PTy, "wrong type for intrinsic global variable", &GV);
    588       if (GV.hasInitializer()) {
    589         const Constant *Init = GV.getInitializer();
    590         const ConstantArray *InitArray = dyn_cast<ConstantArray>(Init);
    591         Assert(InitArray, "wrong initalizer for intrinsic global variable",
    592                Init);
    593         for (Value *Op : InitArray->operands()) {
    594           Value *V = Op->stripPointerCastsNoFollowAliases();
    595           Assert(isa<GlobalVariable>(V) || isa<Function>(V) ||
    596                      isa<GlobalAlias>(V),
    597                  "invalid llvm.used member", V);
    598           Assert(V->hasName(), "members of llvm.used must be named", V);
    599         }
    600       }
    601     }
    602   }
    603 
    604   Assert(!GV.hasDLLImportStorageClass() ||
    605              (GV.isDeclaration() && GV.hasExternalLinkage()) ||
    606              GV.hasAvailableExternallyLinkage(),
    607          "Global is marked as dllimport, but not external", &GV);
    608 
    609   if (!GV.hasInitializer()) {
    610     visitGlobalValue(GV);
    611     return;
    612   }
    613 
    614   // Walk any aggregate initializers looking for bitcasts between address spaces
    615   visitConstantExprsRecursively(GV.getInitializer());
    616 
    617   visitGlobalValue(GV);
    618 }
    619 
    620 void Verifier::visitAliaseeSubExpr(const GlobalAlias &GA, const Constant &C) {
    621   SmallPtrSet<const GlobalAlias*, 4> Visited;
    622   Visited.insert(&GA);
    623   visitAliaseeSubExpr(Visited, GA, C);
    624 }
    625 
    626 void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias*> &Visited,
    627                                    const GlobalAlias &GA, const Constant &C) {
    628   if (const auto *GV = dyn_cast<GlobalValue>(&C)) {
    629     Assert(!GV->isDeclarationForLinker(), "Alias must point to a definition",
    630            &GA);
    631 
    632     if (const auto *GA2 = dyn_cast<GlobalAlias>(GV)) {
    633       Assert(Visited.insert(GA2).second, "Aliases cannot form a cycle", &GA);
    634 
    635       Assert(!GA2->isInterposable(), "Alias cannot point to an interposable alias",
    636              &GA);
    637     } else {
    638       // Only continue verifying subexpressions of GlobalAliases.
    639       // Do not recurse into global initializers.
    640       return;
    641     }
    642   }
    643 
    644   if (const auto *CE = dyn_cast<ConstantExpr>(&C))
    645     visitConstantExprsRecursively(CE);
    646 
    647   for (const Use &U : C.operands()) {
    648     Value *V = &*U;
    649     if (const auto *GA2 = dyn_cast<GlobalAlias>(V))
    650       visitAliaseeSubExpr(Visited, GA, *GA2->getAliasee());
    651     else if (const auto *C2 = dyn_cast<Constant>(V))
    652       visitAliaseeSubExpr(Visited, GA, *C2);
    653   }
    654 }
    655 
    656 void Verifier::visitGlobalAlias(const GlobalAlias &GA) {
    657   Assert(GlobalAlias::isValidLinkage(GA.getLinkage()),
    658          "Alias should have private, internal, linkonce, weak, linkonce_odr, "
    659          "weak_odr, or external linkage!",
    660          &GA);
    661   const Constant *Aliasee = GA.getAliasee();
    662   Assert(Aliasee, "Aliasee cannot be NULL!", &GA);
    663   Assert(GA.getType() == Aliasee->getType(),
    664          "Alias and aliasee types should match!", &GA);
    665 
    666   Assert(isa<GlobalValue>(Aliasee) || isa<ConstantExpr>(Aliasee),
    667          "Aliasee should be either GlobalValue or ConstantExpr", &GA);
    668 
    669   visitAliaseeSubExpr(GA, *Aliasee);
    670 
    671   visitGlobalValue(GA);
    672 }
    673 
    674 void Verifier::visitNamedMDNode(const NamedMDNode &NMD) {
    675   for (const MDNode *MD : NMD.operands()) {
    676     if (NMD.getName() == "llvm.dbg.cu") {
    677       AssertDI(MD && isa<DICompileUnit>(MD), "invalid compile unit", &NMD, MD);
    678     }
    679 
    680     if (!MD)
    681       continue;
    682 
    683     visitMDNode(*MD);
    684   }
    685 }
    686 
    687 void Verifier::visitMDNode(const MDNode &MD) {
    688   // Only visit each node once.  Metadata can be mutually recursive, so this
    689   // avoids infinite recursion here, as well as being an optimization.
    690   if (!MDNodes.insert(&MD).second)
    691     return;
    692 
    693   switch (MD.getMetadataID()) {
    694   default:
    695     llvm_unreachable("Invalid MDNode subclass");
    696   case Metadata::MDTupleKind:
    697     break;
    698 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS)                                  \
    699   case Metadata::CLASS##Kind:                                                  \
    700     visit##CLASS(cast<CLASS>(MD));                                             \
    701     break;
    702 #include "llvm/IR/Metadata.def"
    703   }
    704 
    705   for (const Metadata *Op : MD.operands()) {
    706     if (!Op)
    707       continue;
    708     Assert(!isa<LocalAsMetadata>(Op), "Invalid operand for global metadata!",
    709            &MD, Op);
    710     if (auto *N = dyn_cast<MDNode>(Op)) {
    711       visitMDNode(*N);
    712       continue;
    713     }
    714     if (auto *V = dyn_cast<ValueAsMetadata>(Op)) {
    715       visitValueAsMetadata(*V, nullptr);
    716       continue;
    717     }
    718   }
    719 
    720   // Check these last, so we diagnose problems in operands first.
    721   Assert(!MD.isTemporary(), "Expected no forward declarations!", &MD);
    722   Assert(MD.isResolved(), "All nodes should be resolved!", &MD);
    723 }
    724 
    725 void Verifier::visitValueAsMetadata(const ValueAsMetadata &MD, Function *F) {
    726   Assert(MD.getValue(), "Expected valid value", &MD);
    727   Assert(!MD.getValue()->getType()->isMetadataTy(),
    728          "Unexpected metadata round-trip through values", &MD, MD.getValue());
    729 
    730   auto *L = dyn_cast<LocalAsMetadata>(&MD);
    731   if (!L)
    732     return;
    733 
    734   Assert(F, "function-local metadata used outside a function", L);
    735 
    736   // If this was an instruction, bb, or argument, verify that it is in the
    737   // function that we expect.
    738   Function *ActualF = nullptr;
    739   if (Instruction *I = dyn_cast<Instruction>(L->getValue())) {
    740     Assert(I->getParent(), "function-local metadata not in basic block", L, I);
    741     ActualF = I->getParent()->getParent();
    742   } else if (BasicBlock *BB = dyn_cast<BasicBlock>(L->getValue()))
    743     ActualF = BB->getParent();
    744   else if (Argument *A = dyn_cast<Argument>(L->getValue()))
    745     ActualF = A->getParent();
    746   assert(ActualF && "Unimplemented function local metadata case!");
    747 
    748   Assert(ActualF == F, "function-local metadata used in wrong function", L);
    749 }
    750 
    751 void Verifier::visitMetadataAsValue(const MetadataAsValue &MDV, Function *F) {
    752   Metadata *MD = MDV.getMetadata();
    753   if (auto *N = dyn_cast<MDNode>(MD)) {
    754     visitMDNode(*N);
    755     return;
    756   }
    757 
    758   // Only visit each node once.  Metadata can be mutually recursive, so this
    759   // avoids infinite recursion here, as well as being an optimization.
    760   if (!MDNodes.insert(MD).second)
    761     return;
    762 
    763   if (auto *V = dyn_cast<ValueAsMetadata>(MD))
    764     visitValueAsMetadata(*V, F);
    765 }
    766 
    767 static bool isType(const Metadata *MD) { return !MD || isa<DIType>(MD); }
    768 static bool isScope(const Metadata *MD) { return !MD || isa<DIScope>(MD); }
    769 static bool isDINode(const Metadata *MD) { return !MD || isa<DINode>(MD); }
    770 
    771 template <class Ty>
    772 bool isValidMetadataArrayImpl(const MDTuple &N, bool AllowNull) {
    773   for (Metadata *MD : N.operands()) {
    774     if (MD) {
    775       if (!isa<Ty>(MD))
    776         return false;
    777     } else {
    778       if (!AllowNull)
    779         return false;
    780     }
    781   }
    782   return true;
    783 }
    784 
    785 template <class Ty>
    786 bool isValidMetadataArray(const MDTuple &N) {
    787   return isValidMetadataArrayImpl<Ty>(N, /* AllowNull */ false);
    788 }
    789 
    790 template <class Ty>
    791 bool isValidMetadataNullArray(const MDTuple &N) {
    792   return isValidMetadataArrayImpl<Ty>(N, /* AllowNull */ true);
    793 }
    794 
    795 void Verifier::visitDILocation(const DILocation &N) {
    796   AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
    797            "location requires a valid scope", &N, N.getRawScope());
    798   if (auto *IA = N.getRawInlinedAt())
    799     AssertDI(isa<DILocation>(IA), "inlined-at should be a location", &N, IA);
    800 }
    801 
    802 void Verifier::visitGenericDINode(const GenericDINode &N) {
    803   AssertDI(N.getTag(), "invalid tag", &N);
    804 }
    805 
    806 void Verifier::visitDIScope(const DIScope &N) {
    807   if (auto *F = N.getRawFile())
    808     AssertDI(isa<DIFile>(F), "invalid file", &N, F);
    809 }
    810 
    811 void Verifier::visitDISubrange(const DISubrange &N) {
    812   AssertDI(N.getTag() == dwarf::DW_TAG_subrange_type, "invalid tag", &N);
    813   AssertDI(N.getCount() >= -1, "invalid subrange count", &N);
    814 }
    815 
    816 void Verifier::visitDIEnumerator(const DIEnumerator &N) {
    817   AssertDI(N.getTag() == dwarf::DW_TAG_enumerator, "invalid tag", &N);
    818 }
    819 
    820 void Verifier::visitDIBasicType(const DIBasicType &N) {
    821   AssertDI(N.getTag() == dwarf::DW_TAG_base_type ||
    822                N.getTag() == dwarf::DW_TAG_unspecified_type,
    823            "invalid tag", &N);
    824 }
    825 
    826 void Verifier::visitDIDerivedType(const DIDerivedType &N) {
    827   // Common scope checks.
    828   visitDIScope(N);
    829 
    830   AssertDI(N.getTag() == dwarf::DW_TAG_typedef ||
    831                N.getTag() == dwarf::DW_TAG_pointer_type ||
    832                N.getTag() == dwarf::DW_TAG_ptr_to_member_type ||
    833                N.getTag() == dwarf::DW_TAG_reference_type ||
    834                N.getTag() == dwarf::DW_TAG_rvalue_reference_type ||
    835                N.getTag() == dwarf::DW_TAG_const_type ||
    836                N.getTag() == dwarf::DW_TAG_volatile_type ||
    837                N.getTag() == dwarf::DW_TAG_restrict_type ||
    838                N.getTag() == dwarf::DW_TAG_member ||
    839                N.getTag() == dwarf::DW_TAG_inheritance ||
    840                N.getTag() == dwarf::DW_TAG_friend,
    841            "invalid tag", &N);
    842   if (N.getTag() == dwarf::DW_TAG_ptr_to_member_type) {
    843     AssertDI(isType(N.getRawExtraData()), "invalid pointer to member type", &N,
    844              N.getRawExtraData());
    845   }
    846 
    847   AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
    848   AssertDI(isType(N.getRawBaseType()), "invalid base type", &N,
    849            N.getRawBaseType());
    850 }
    851 
    852 static bool hasConflictingReferenceFlags(unsigned Flags) {
    853   return (Flags & DINode::FlagLValueReference) &&
    854          (Flags & DINode::FlagRValueReference);
    855 }
    856 
    857 void Verifier::visitTemplateParams(const MDNode &N, const Metadata &RawParams) {
    858   auto *Params = dyn_cast<MDTuple>(&RawParams);
    859   AssertDI(Params, "invalid template params", &N, &RawParams);
    860   for (Metadata *Op : Params->operands()) {
    861     AssertDI(Op && isa<DITemplateParameter>(Op), "invalid template parameter",
    862              &N, Params, Op);
    863   }
    864 }
    865 
    866 void Verifier::visitDICompositeType(const DICompositeType &N) {
    867   // Common scope checks.
    868   visitDIScope(N);
    869 
    870   AssertDI(N.getTag() == dwarf::DW_TAG_array_type ||
    871                N.getTag() == dwarf::DW_TAG_structure_type ||
    872                N.getTag() == dwarf::DW_TAG_union_type ||
    873                N.getTag() == dwarf::DW_TAG_enumeration_type ||
    874                N.getTag() == dwarf::DW_TAG_class_type,
    875            "invalid tag", &N);
    876 
    877   AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
    878   AssertDI(isType(N.getRawBaseType()), "invalid base type", &N,
    879            N.getRawBaseType());
    880 
    881   AssertDI(!N.getRawElements() || isa<MDTuple>(N.getRawElements()),
    882            "invalid composite elements", &N, N.getRawElements());
    883   AssertDI(isType(N.getRawVTableHolder()), "invalid vtable holder", &N,
    884            N.getRawVTableHolder());
    885   AssertDI(!hasConflictingReferenceFlags(N.getFlags()),
    886            "invalid reference flags", &N);
    887   if (auto *Params = N.getRawTemplateParams())
    888     visitTemplateParams(N, *Params);
    889 
    890   if (N.getTag() == dwarf::DW_TAG_class_type ||
    891       N.getTag() == dwarf::DW_TAG_union_type) {
    892     AssertDI(N.getFile() && !N.getFile()->getFilename().empty(),
    893              "class/union requires a filename", &N, N.getFile());
    894   }
    895 }
    896 
    897 void Verifier::visitDISubroutineType(const DISubroutineType &N) {
    898   AssertDI(N.getTag() == dwarf::DW_TAG_subroutine_type, "invalid tag", &N);
    899   if (auto *Types = N.getRawTypeArray()) {
    900     AssertDI(isa<MDTuple>(Types), "invalid composite elements", &N, Types);
    901     for (Metadata *Ty : N.getTypeArray()->operands()) {
    902       AssertDI(isType(Ty), "invalid subroutine type ref", &N, Types, Ty);
    903     }
    904   }
    905   AssertDI(!hasConflictingReferenceFlags(N.getFlags()),
    906            "invalid reference flags", &N);
    907 }
    908 
    909 void Verifier::visitDIFile(const DIFile &N) {
    910   AssertDI(N.getTag() == dwarf::DW_TAG_file_type, "invalid tag", &N);
    911 }
    912 
    913 void Verifier::visitDICompileUnit(const DICompileUnit &N) {
    914   AssertDI(N.isDistinct(), "compile units must be distinct", &N);
    915   AssertDI(N.getTag() == dwarf::DW_TAG_compile_unit, "invalid tag", &N);
    916 
    917   // Don't bother verifying the compilation directory or producer string
    918   // as those could be empty.
    919   AssertDI(N.getRawFile() && isa<DIFile>(N.getRawFile()), "invalid file", &N,
    920            N.getRawFile());
    921   AssertDI(!N.getFile()->getFilename().empty(), "invalid filename", &N,
    922            N.getFile());
    923 
    924   AssertDI((N.getEmissionKind() <= DICompileUnit::LastEmissionKind),
    925            "invalid emission kind", &N);
    926 
    927   if (auto *Array = N.getRawEnumTypes()) {
    928     AssertDI(isa<MDTuple>(Array), "invalid enum list", &N, Array);
    929     for (Metadata *Op : N.getEnumTypes()->operands()) {
    930       auto *Enum = dyn_cast_or_null<DICompositeType>(Op);
    931       AssertDI(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type,
    932                "invalid enum type", &N, N.getEnumTypes(), Op);
    933     }
    934   }
    935   if (auto *Array = N.getRawRetainedTypes()) {
    936     AssertDI(isa<MDTuple>(Array), "invalid retained type list", &N, Array);
    937     for (Metadata *Op : N.getRetainedTypes()->operands()) {
    938       AssertDI(Op && (isa<DIType>(Op) ||
    939                       (isa<DISubprogram>(Op) &&
    940                        cast<DISubprogram>(Op)->isDefinition() == false)),
    941                "invalid retained type", &N, Op);
    942     }
    943   }
    944   if (auto *Array = N.getRawGlobalVariables()) {
    945     AssertDI(isa<MDTuple>(Array), "invalid global variable list", &N, Array);
    946     for (Metadata *Op : N.getGlobalVariables()->operands()) {
    947       AssertDI(Op && isa<DIGlobalVariable>(Op), "invalid global variable ref",
    948                &N, Op);
    949     }
    950   }
    951   if (auto *Array = N.getRawImportedEntities()) {
    952     AssertDI(isa<MDTuple>(Array), "invalid imported entity list", &N, Array);
    953     for (Metadata *Op : N.getImportedEntities()->operands()) {
    954       AssertDI(Op && isa<DIImportedEntity>(Op), "invalid imported entity ref",
    955                &N, Op);
    956     }
    957   }
    958   if (auto *Array = N.getRawMacros()) {
    959     AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array);
    960     for (Metadata *Op : N.getMacros()->operands()) {
    961       AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op);
    962     }
    963   }
    964   CUVisited.insert(&N);
    965 }
    966 
    967 void Verifier::visitDISubprogram(const DISubprogram &N) {
    968   AssertDI(N.getTag() == dwarf::DW_TAG_subprogram, "invalid tag", &N);
    969   AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
    970   if (auto *F = N.getRawFile())
    971     AssertDI(isa<DIFile>(F), "invalid file", &N, F);
    972   if (auto *T = N.getRawType())
    973     AssertDI(isa<DISubroutineType>(T), "invalid subroutine type", &N, T);
    974   AssertDI(isType(N.getRawContainingType()), "invalid containing type", &N,
    975            N.getRawContainingType());
    976   if (auto *Params = N.getRawTemplateParams())
    977     visitTemplateParams(N, *Params);
    978   if (auto *S = N.getRawDeclaration())
    979     AssertDI(isa<DISubprogram>(S) && !cast<DISubprogram>(S)->isDefinition(),
    980              "invalid subprogram declaration", &N, S);
    981   if (auto *RawVars = N.getRawVariables()) {
    982     auto *Vars = dyn_cast<MDTuple>(RawVars);
    983     AssertDI(Vars, "invalid variable list", &N, RawVars);
    984     for (Metadata *Op : Vars->operands()) {
    985       AssertDI(Op && isa<DILocalVariable>(Op), "invalid local variable", &N,
    986                Vars, Op);
    987     }
    988   }
    989   AssertDI(!hasConflictingReferenceFlags(N.getFlags()),
    990            "invalid reference flags", &N);
    991 
    992   auto *Unit = N.getRawUnit();
    993   if (N.isDefinition()) {
    994     // Subprogram definitions (not part of the type hierarchy).
    995     AssertDI(N.isDistinct(), "subprogram definitions must be distinct", &N);
    996     AssertDI(Unit, "subprogram definitions must have a compile unit", &N);
    997     AssertDI(isa<DICompileUnit>(Unit), "invalid unit type", &N, Unit);
    998   } else {
    999     // Subprogram declarations (part of the type hierarchy).
   1000     AssertDI(!Unit, "subprogram declarations must not have a compile unit", &N);
   1001   }
   1002 }
   1003 
   1004 void Verifier::visitDILexicalBlockBase(const DILexicalBlockBase &N) {
   1005   AssertDI(N.getTag() == dwarf::DW_TAG_lexical_block, "invalid tag", &N);
   1006   AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
   1007            "invalid local scope", &N, N.getRawScope());
   1008 }
   1009 
   1010 void Verifier::visitDILexicalBlock(const DILexicalBlock &N) {
   1011   visitDILexicalBlockBase(N);
   1012 
   1013   AssertDI(N.getLine() || !N.getColumn(),
   1014            "cannot have column info without line info", &N);
   1015 }
   1016 
   1017 void Verifier::visitDILexicalBlockFile(const DILexicalBlockFile &N) {
   1018   visitDILexicalBlockBase(N);
   1019 }
   1020 
   1021 void Verifier::visitDINamespace(const DINamespace &N) {
   1022   AssertDI(N.getTag() == dwarf::DW_TAG_namespace, "invalid tag", &N);
   1023   if (auto *S = N.getRawScope())
   1024     AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S);
   1025 }
   1026 
   1027 void Verifier::visitDIMacro(const DIMacro &N) {
   1028   AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_define ||
   1029                N.getMacinfoType() == dwarf::DW_MACINFO_undef,
   1030            "invalid macinfo type", &N);
   1031   AssertDI(!N.getName().empty(), "anonymous macro", &N);
   1032   if (!N.getValue().empty()) {
   1033     assert(N.getValue().data()[0] != ' ' && "Macro value has a space prefix");
   1034   }
   1035 }
   1036 
   1037 void Verifier::visitDIMacroFile(const DIMacroFile &N) {
   1038   AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_start_file,
   1039            "invalid macinfo type", &N);
   1040   if (auto *F = N.getRawFile())
   1041     AssertDI(isa<DIFile>(F), "invalid file", &N, F);
   1042 
   1043   if (auto *Array = N.getRawElements()) {
   1044     AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array);
   1045     for (Metadata *Op : N.getElements()->operands()) {
   1046       AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op);
   1047     }
   1048   }
   1049 }
   1050 
   1051 void Verifier::visitDIModule(const DIModule &N) {
   1052   AssertDI(N.getTag() == dwarf::DW_TAG_module, "invalid tag", &N);
   1053   AssertDI(!N.getName().empty(), "anonymous module", &N);
   1054 }
   1055 
   1056 void Verifier::visitDITemplateParameter(const DITemplateParameter &N) {
   1057   AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
   1058 }
   1059 
   1060 void Verifier::visitDITemplateTypeParameter(const DITemplateTypeParameter &N) {
   1061   visitDITemplateParameter(N);
   1062 
   1063   AssertDI(N.getTag() == dwarf::DW_TAG_template_type_parameter, "invalid tag",
   1064            &N);
   1065 }
   1066 
   1067 void Verifier::visitDITemplateValueParameter(
   1068     const DITemplateValueParameter &N) {
   1069   visitDITemplateParameter(N);
   1070 
   1071   AssertDI(N.getTag() == dwarf::DW_TAG_template_value_parameter ||
   1072                N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||
   1073                N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack,
   1074            "invalid tag", &N);
   1075 }
   1076 
   1077 void Verifier::visitDIVariable(const DIVariable &N) {
   1078   if (auto *S = N.getRawScope())
   1079     AssertDI(isa<DIScope>(S), "invalid scope", &N, S);
   1080   AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
   1081   if (auto *F = N.getRawFile())
   1082     AssertDI(isa<DIFile>(F), "invalid file", &N, F);
   1083 }
   1084 
   1085 void Verifier::visitDIGlobalVariable(const DIGlobalVariable &N) {
   1086   // Checks common to all variables.
   1087   visitDIVariable(N);
   1088 
   1089   AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N);
   1090   AssertDI(!N.getName().empty(), "missing global variable name", &N);
   1091   if (auto *V = N.getRawVariable()) {
   1092     AssertDI(isa<ConstantAsMetadata>(V) &&
   1093                  !isa<Function>(cast<ConstantAsMetadata>(V)->getValue()),
   1094              "invalid global varaible ref", &N, V);
   1095     visitConstantExprsRecursively(cast<ConstantAsMetadata>(V)->getValue());
   1096   }
   1097   if (auto *Member = N.getRawStaticDataMemberDeclaration()) {
   1098     AssertDI(isa<DIDerivedType>(Member),
   1099              "invalid static data member declaration", &N, Member);
   1100   }
   1101 }
   1102 
   1103 void Verifier::visitDILocalVariable(const DILocalVariable &N) {
   1104   // Checks common to all variables.
   1105   visitDIVariable(N);
   1106 
   1107   AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N);
   1108   AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
   1109            "local variable requires a valid scope", &N, N.getRawScope());
   1110 }
   1111 
   1112 void Verifier::visitDIExpression(const DIExpression &N) {
   1113   AssertDI(N.isValid(), "invalid expression", &N);
   1114 }
   1115 
   1116 void Verifier::visitDIObjCProperty(const DIObjCProperty &N) {
   1117   AssertDI(N.getTag() == dwarf::DW_TAG_APPLE_property, "invalid tag", &N);
   1118   if (auto *T = N.getRawType())
   1119     AssertDI(isType(T), "invalid type ref", &N, T);
   1120   if (auto *F = N.getRawFile())
   1121     AssertDI(isa<DIFile>(F), "invalid file", &N, F);
   1122 }
   1123 
   1124 void Verifier::visitDIImportedEntity(const DIImportedEntity &N) {
   1125   AssertDI(N.getTag() == dwarf::DW_TAG_imported_module ||
   1126                N.getTag() == dwarf::DW_TAG_imported_declaration,
   1127            "invalid tag", &N);
   1128   if (auto *S = N.getRawScope())
   1129     AssertDI(isa<DIScope>(S), "invalid scope for imported entity", &N, S);
   1130   AssertDI(isDINode(N.getRawEntity()), "invalid imported entity", &N,
   1131            N.getRawEntity());
   1132 }
   1133 
   1134 void Verifier::visitComdat(const Comdat &C) {
   1135   // The Module is invalid if the GlobalValue has private linkage.  Entities
   1136   // with private linkage don't have entries in the symbol table.
   1137   if (const GlobalValue *GV = M->getNamedValue(C.getName()))
   1138     Assert(!GV->hasPrivateLinkage(), "comdat global value has private linkage",
   1139            GV);
   1140 }
   1141 
   1142 void Verifier::visitModuleIdents(const Module &M) {
   1143   const NamedMDNode *Idents = M.getNamedMetadata("llvm.ident");
   1144   if (!Idents)
   1145     return;
   1146 
   1147   // llvm.ident takes a list of metadata entry. Each entry has only one string.
   1148   // Scan each llvm.ident entry and make sure that this requirement is met.
   1149   for (const MDNode *N : Idents->operands()) {
   1150     Assert(N->getNumOperands() == 1,
   1151            "incorrect number of operands in llvm.ident metadata", N);
   1152     Assert(dyn_cast_or_null<MDString>(N->getOperand(0)),
   1153            ("invalid value for llvm.ident metadata entry operand"
   1154             "(the operand should be a string)"),
   1155            N->getOperand(0));
   1156   }
   1157 }
   1158 
   1159 void Verifier::visitModuleFlags(const Module &M) {
   1160   const NamedMDNode *Flags = M.getModuleFlagsMetadata();
   1161   if (!Flags) return;
   1162 
   1163   // Scan each flag, and track the flags and requirements.
   1164   DenseMap<const MDString*, const MDNode*> SeenIDs;
   1165   SmallVector<const MDNode*, 16> Requirements;
   1166   for (const MDNode *MDN : Flags->operands())
   1167     visitModuleFlag(MDN, SeenIDs, Requirements);
   1168 
   1169   // Validate that the requirements in the module are valid.
   1170   for (const MDNode *Requirement : Requirements) {
   1171     const MDString *Flag = cast<MDString>(Requirement->getOperand(0));
   1172     const Metadata *ReqValue = Requirement->getOperand(1);
   1173 
   1174     const MDNode *Op = SeenIDs.lookup(Flag);
   1175     if (!Op) {
   1176       CheckFailed("invalid requirement on flag, flag is not present in module",
   1177                   Flag);
   1178       continue;
   1179     }
   1180 
   1181     if (Op->getOperand(2) != ReqValue) {
   1182       CheckFailed(("invalid requirement on flag, "
   1183                    "flag does not have the required value"),
   1184                   Flag);
   1185       continue;
   1186     }
   1187   }
   1188 }
   1189 
   1190 void
   1191 Verifier::visitModuleFlag(const MDNode *Op,
   1192                           DenseMap<const MDString *, const MDNode *> &SeenIDs,
   1193                           SmallVectorImpl<const MDNode *> &Requirements) {
   1194   // Each module flag should have three arguments, the merge behavior (a
   1195   // constant int), the flag ID (an MDString), and the value.
   1196   Assert(Op->getNumOperands() == 3,
   1197          "incorrect number of operands in module flag", Op);
   1198   Module::ModFlagBehavior MFB;
   1199   if (!Module::isValidModFlagBehavior(Op->getOperand(0), MFB)) {
   1200     Assert(
   1201         mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(0)),
   1202         "invalid behavior operand in module flag (expected constant integer)",
   1203         Op->getOperand(0));
   1204     Assert(false,
   1205            "invalid behavior operand in module flag (unexpected constant)",
   1206            Op->getOperand(0));
   1207   }
   1208   MDString *ID = dyn_cast_or_null<MDString>(Op->getOperand(1));
   1209   Assert(ID, "invalid ID operand in module flag (expected metadata string)",
   1210          Op->getOperand(1));
   1211 
   1212   // Sanity check the values for behaviors with additional requirements.
   1213   switch (MFB) {
   1214   case Module::Error:
   1215   case Module::Warning:
   1216   case Module::Override:
   1217     // These behavior types accept any value.
   1218     break;
   1219 
   1220   case Module::Require: {
   1221     // The value should itself be an MDNode with two operands, a flag ID (an
   1222     // MDString), and a value.
   1223     MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2));
   1224     Assert(Value && Value->getNumOperands() == 2,
   1225            "invalid value for 'require' module flag (expected metadata pair)",
   1226            Op->getOperand(2));
   1227     Assert(isa<MDString>(Value->getOperand(0)),
   1228            ("invalid value for 'require' module flag "
   1229             "(first value operand should be a string)"),
   1230            Value->getOperand(0));
   1231 
   1232     // Append it to the list of requirements, to check once all module flags are
   1233     // scanned.
   1234     Requirements.push_back(Value);
   1235     break;
   1236   }
   1237 
   1238   case Module::Append:
   1239   case Module::AppendUnique: {
   1240     // These behavior types require the operand be an MDNode.
   1241     Assert(isa<MDNode>(Op->getOperand(2)),
   1242            "invalid value for 'append'-type module flag "
   1243            "(expected a metadata node)",
   1244            Op->getOperand(2));
   1245     break;
   1246   }
   1247   }
   1248 
   1249   // Unless this is a "requires" flag, check the ID is unique.
   1250   if (MFB != Module::Require) {
   1251     bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second;
   1252     Assert(Inserted,
   1253            "module flag identifiers must be unique (or of 'require' type)", ID);
   1254   }
   1255 }
   1256 
   1257 void Verifier::verifyAttributeTypes(AttributeSet Attrs, unsigned Idx,
   1258                                     bool isFunction, const Value *V) {
   1259   unsigned Slot = ~0U;
   1260   for (unsigned I = 0, E = Attrs.getNumSlots(); I != E; ++I)
   1261     if (Attrs.getSlotIndex(I) == Idx) {
   1262       Slot = I;
   1263       break;
   1264     }
   1265 
   1266   assert(Slot != ~0U && "Attribute set inconsistency!");
   1267 
   1268   for (AttributeSet::iterator I = Attrs.begin(Slot), E = Attrs.end(Slot);
   1269          I != E; ++I) {
   1270     if (I->isStringAttribute())
   1271       continue;
   1272 
   1273     if (I->getKindAsEnum() == Attribute::NoReturn ||
   1274         I->getKindAsEnum() == Attribute::NoUnwind ||
   1275         I->getKindAsEnum() == Attribute::NoInline ||
   1276         I->getKindAsEnum() == Attribute::AlwaysInline ||
   1277         I->getKindAsEnum() == Attribute::OptimizeForSize ||
   1278         I->getKindAsEnum() == Attribute::StackProtect ||
   1279         I->getKindAsEnum() == Attribute::StackProtectReq ||
   1280         I->getKindAsEnum() == Attribute::StackProtectStrong ||
   1281         I->getKindAsEnum() == Attribute::SafeStack ||
   1282         I->getKindAsEnum() == Attribute::NoRedZone ||
   1283         I->getKindAsEnum() == Attribute::NoImplicitFloat ||
   1284         I->getKindAsEnum() == Attribute::Naked ||
   1285         I->getKindAsEnum() == Attribute::InlineHint ||
   1286         I->getKindAsEnum() == Attribute::StackAlignment ||
   1287         I->getKindAsEnum() == Attribute::UWTable ||
   1288         I->getKindAsEnum() == Attribute::NonLazyBind ||
   1289         I->getKindAsEnum() == Attribute::ReturnsTwice ||
   1290         I->getKindAsEnum() == Attribute::SanitizeAddress ||
   1291         I->getKindAsEnum() == Attribute::SanitizeThread ||
   1292         I->getKindAsEnum() == Attribute::SanitizeMemory ||
   1293         I->getKindAsEnum() == Attribute::MinSize ||
   1294         I->getKindAsEnum() == Attribute::NoDuplicate ||
   1295         I->getKindAsEnum() == Attribute::Builtin ||
   1296         I->getKindAsEnum() == Attribute::NoBuiltin ||
   1297         I->getKindAsEnum() == Attribute::Cold ||
   1298         I->getKindAsEnum() == Attribute::OptimizeNone ||
   1299         I->getKindAsEnum() == Attribute::JumpTable ||
   1300         I->getKindAsEnum() == Attribute::Convergent ||
   1301         I->getKindAsEnum() == Attribute::ArgMemOnly ||
   1302         I->getKindAsEnum() == Attribute::NoRecurse ||
   1303         I->getKindAsEnum() == Attribute::InaccessibleMemOnly ||
   1304         I->getKindAsEnum() == Attribute::InaccessibleMemOrArgMemOnly ||
   1305         I->getKindAsEnum() == Attribute::AllocSize) {
   1306       if (!isFunction) {
   1307         CheckFailed("Attribute '" + I->getAsString() +
   1308                     "' only applies to functions!", V);
   1309         return;
   1310       }
   1311     } else if (I->getKindAsEnum() == Attribute::ReadOnly ||
   1312                I->getKindAsEnum() == Attribute::WriteOnly ||
   1313                I->getKindAsEnum() == Attribute::ReadNone) {
   1314       if (Idx == 0) {
   1315         CheckFailed("Attribute '" + I->getAsString() +
   1316                     "' does not apply to function returns");
   1317         return;
   1318       }
   1319     } else if (isFunction) {
   1320       CheckFailed("Attribute '" + I->getAsString() +
   1321                   "' does not apply to functions!", V);
   1322       return;
   1323     }
   1324   }
   1325 }
   1326 
   1327 // VerifyParameterAttrs - Check the given attributes for an argument or return
   1328 // value of the specified type.  The value V is printed in error messages.
   1329 void Verifier::verifyParameterAttrs(AttributeSet Attrs, unsigned Idx, Type *Ty,
   1330                                     bool isReturnValue, const Value *V) {
   1331   if (!Attrs.hasAttributes(Idx))
   1332     return;
   1333 
   1334   verifyAttributeTypes(Attrs, Idx, false, V);
   1335 
   1336   if (isReturnValue)
   1337     Assert(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
   1338                !Attrs.hasAttribute(Idx, Attribute::Nest) &&
   1339                !Attrs.hasAttribute(Idx, Attribute::StructRet) &&
   1340                !Attrs.hasAttribute(Idx, Attribute::NoCapture) &&
   1341                !Attrs.hasAttribute(Idx, Attribute::Returned) &&
   1342                !Attrs.hasAttribute(Idx, Attribute::InAlloca) &&
   1343                !Attrs.hasAttribute(Idx, Attribute::SwiftSelf) &&
   1344                !Attrs.hasAttribute(Idx, Attribute::SwiftError),
   1345            "Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
   1346            "'returned', 'swiftself', and 'swifterror' do not apply to return "
   1347            "values!",
   1348            V);
   1349 
   1350   // Check for mutually incompatible attributes.  Only inreg is compatible with
   1351   // sret.
   1352   unsigned AttrCount = 0;
   1353   AttrCount += Attrs.hasAttribute(Idx, Attribute::ByVal);
   1354   AttrCount += Attrs.hasAttribute(Idx, Attribute::InAlloca);
   1355   AttrCount += Attrs.hasAttribute(Idx, Attribute::StructRet) ||
   1356                Attrs.hasAttribute(Idx, Attribute::InReg);
   1357   AttrCount += Attrs.hasAttribute(Idx, Attribute::Nest);
   1358   Assert(AttrCount <= 1, "Attributes 'byval', 'inalloca', 'inreg', 'nest', "
   1359                          "and 'sret' are incompatible!",
   1360          V);
   1361 
   1362   Assert(!(Attrs.hasAttribute(Idx, Attribute::InAlloca) &&
   1363            Attrs.hasAttribute(Idx, Attribute::ReadOnly)),
   1364          "Attributes "
   1365          "'inalloca and readonly' are incompatible!",
   1366          V);
   1367 
   1368   Assert(!(Attrs.hasAttribute(Idx, Attribute::StructRet) &&
   1369            Attrs.hasAttribute(Idx, Attribute::Returned)),
   1370          "Attributes "
   1371          "'sret and returned' are incompatible!",
   1372          V);
   1373 
   1374   Assert(!(Attrs.hasAttribute(Idx, Attribute::ZExt) &&
   1375            Attrs.hasAttribute(Idx, Attribute::SExt)),
   1376          "Attributes "
   1377          "'zeroext and signext' are incompatible!",
   1378          V);
   1379 
   1380   Assert(!(Attrs.hasAttribute(Idx, Attribute::ReadNone) &&
   1381            Attrs.hasAttribute(Idx, Attribute::ReadOnly)),
   1382          "Attributes "
   1383          "'readnone and readonly' are incompatible!",
   1384          V);
   1385 
   1386   Assert(!(Attrs.hasAttribute(Idx, Attribute::ReadNone) &&
   1387            Attrs.hasAttribute(Idx, Attribute::WriteOnly)),
   1388          "Attributes "
   1389          "'readnone and writeonly' are incompatible!",
   1390          V);
   1391 
   1392   Assert(!(Attrs.hasAttribute(Idx, Attribute::ReadOnly) &&
   1393            Attrs.hasAttribute(Idx, Attribute::WriteOnly)),
   1394          "Attributes "
   1395          "'readonly and writeonly' are incompatible!",
   1396          V);
   1397 
   1398   Assert(!(Attrs.hasAttribute(Idx, Attribute::NoInline) &&
   1399            Attrs.hasAttribute(Idx, Attribute::AlwaysInline)),
   1400          "Attributes "
   1401          "'noinline and alwaysinline' are incompatible!",
   1402          V);
   1403 
   1404   Assert(!AttrBuilder(Attrs, Idx)
   1405               .overlaps(AttributeFuncs::typeIncompatible(Ty)),
   1406          "Wrong types for attribute: " +
   1407          AttributeSet::get(*Context, Idx,
   1408                         AttributeFuncs::typeIncompatible(Ty)).getAsString(Idx),
   1409          V);
   1410 
   1411   if (PointerType *PTy = dyn_cast<PointerType>(Ty)) {
   1412     SmallPtrSet<Type*, 4> Visited;
   1413     if (!PTy->getElementType()->isSized(&Visited)) {
   1414       Assert(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
   1415                  !Attrs.hasAttribute(Idx, Attribute::InAlloca),
   1416              "Attributes 'byval' and 'inalloca' do not support unsized types!",
   1417              V);
   1418     }
   1419     if (!isa<PointerType>(PTy->getElementType()))
   1420       Assert(!Attrs.hasAttribute(Idx, Attribute::SwiftError),
   1421              "Attribute 'swifterror' only applies to parameters "
   1422              "with pointer to pointer type!",
   1423              V);
   1424   } else {
   1425     Assert(!Attrs.hasAttribute(Idx, Attribute::ByVal),
   1426            "Attribute 'byval' only applies to parameters with pointer type!",
   1427            V);
   1428     Assert(!Attrs.hasAttribute(Idx, Attribute::SwiftError),
   1429            "Attribute 'swifterror' only applies to parameters "
   1430            "with pointer type!",
   1431            V);
   1432   }
   1433 }
   1434 
   1435 // Check parameter attributes against a function type.
   1436 // The value V is printed in error messages.
   1437 void Verifier::verifyFunctionAttrs(FunctionType *FT, AttributeSet Attrs,
   1438                                    const Value *V) {
   1439   if (Attrs.isEmpty())
   1440     return;
   1441 
   1442   bool SawNest = false;
   1443   bool SawReturned = false;
   1444   bool SawSRet = false;
   1445   bool SawSwiftSelf = false;
   1446   bool SawSwiftError = false;
   1447 
   1448   for (unsigned i = 0, e = Attrs.getNumSlots(); i != e; ++i) {
   1449     unsigned Idx = Attrs.getSlotIndex(i);
   1450 
   1451     Type *Ty;
   1452     if (Idx == 0)
   1453       Ty = FT->getReturnType();
   1454     else if (Idx-1 < FT->getNumParams())
   1455       Ty = FT->getParamType(Idx-1);
   1456     else
   1457       break;  // VarArgs attributes, verified elsewhere.
   1458 
   1459     verifyParameterAttrs(Attrs, Idx, Ty, Idx == 0, V);
   1460 
   1461     if (Idx == 0)
   1462       continue;
   1463 
   1464     if (Attrs.hasAttribute(Idx, Attribute::Nest)) {
   1465       Assert(!SawNest, "More than one parameter has attribute nest!", V);
   1466       SawNest = true;
   1467     }
   1468 
   1469     if (Attrs.hasAttribute(Idx, Attribute::Returned)) {
   1470       Assert(!SawReturned, "More than one parameter has attribute returned!",
   1471              V);
   1472       Assert(Ty->canLosslesslyBitCastTo(FT->getReturnType()),
   1473              "Incompatible "
   1474              "argument and return types for 'returned' attribute",
   1475              V);
   1476       SawReturned = true;
   1477     }
   1478 
   1479     if (Attrs.hasAttribute(Idx, Attribute::StructRet)) {
   1480       Assert(!SawSRet, "Cannot have multiple 'sret' parameters!", V);
   1481       Assert(Idx == 1 || Idx == 2,
   1482              "Attribute 'sret' is not on first or second parameter!", V);
   1483       SawSRet = true;
   1484     }
   1485 
   1486     if (Attrs.hasAttribute(Idx, Attribute::SwiftSelf)) {
   1487       Assert(!SawSwiftSelf, "Cannot have multiple 'swiftself' parameters!", V);
   1488       SawSwiftSelf = true;
   1489     }
   1490 
   1491     if (Attrs.hasAttribute(Idx, Attribute::SwiftError)) {
   1492       Assert(!SawSwiftError, "Cannot have multiple 'swifterror' parameters!",
   1493              V);
   1494       SawSwiftError = true;
   1495     }
   1496 
   1497     if (Attrs.hasAttribute(Idx, Attribute::InAlloca)) {
   1498       Assert(Idx == FT->getNumParams(), "inalloca isn't on the last parameter!",
   1499              V);
   1500     }
   1501   }
   1502 
   1503   if (!Attrs.hasAttributes(AttributeSet::FunctionIndex))
   1504     return;
   1505 
   1506   verifyAttributeTypes(Attrs, AttributeSet::FunctionIndex, true, V);
   1507 
   1508   Assert(
   1509       !(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::ReadNone) &&
   1510         Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::ReadOnly)),
   1511       "Attributes 'readnone and readonly' are incompatible!", V);
   1512 
   1513   Assert(
   1514       !(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::ReadNone) &&
   1515         Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::WriteOnly)),
   1516       "Attributes 'readnone and writeonly' are incompatible!", V);
   1517 
   1518   Assert(
   1519       !(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::ReadOnly) &&
   1520         Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::WriteOnly)),
   1521       "Attributes 'readonly and writeonly' are incompatible!", V);
   1522 
   1523   Assert(
   1524       !(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::ReadNone) &&
   1525         Attrs.hasAttribute(AttributeSet::FunctionIndex,
   1526                            Attribute::InaccessibleMemOrArgMemOnly)),
   1527       "Attributes 'readnone and inaccessiblemem_or_argmemonly' are incompatible!", V);
   1528 
   1529   Assert(
   1530       !(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::ReadNone) &&
   1531         Attrs.hasAttribute(AttributeSet::FunctionIndex,
   1532                            Attribute::InaccessibleMemOnly)),
   1533       "Attributes 'readnone and inaccessiblememonly' are incompatible!", V);
   1534 
   1535   Assert(
   1536       !(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::NoInline) &&
   1537         Attrs.hasAttribute(AttributeSet::FunctionIndex,
   1538                            Attribute::AlwaysInline)),
   1539       "Attributes 'noinline and alwaysinline' are incompatible!", V);
   1540 
   1541   if (Attrs.hasAttribute(AttributeSet::FunctionIndex,
   1542                          Attribute::OptimizeNone)) {
   1543     Assert(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::NoInline),
   1544            "Attribute 'optnone' requires 'noinline'!", V);
   1545 
   1546     Assert(!Attrs.hasAttribute(AttributeSet::FunctionIndex,
   1547                                Attribute::OptimizeForSize),
   1548            "Attributes 'optsize and optnone' are incompatible!", V);
   1549 
   1550     Assert(!Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::MinSize),
   1551            "Attributes 'minsize and optnone' are incompatible!", V);
   1552   }
   1553 
   1554   if (Attrs.hasAttribute(AttributeSet::FunctionIndex,
   1555                          Attribute::JumpTable)) {
   1556     const GlobalValue *GV = cast<GlobalValue>(V);
   1557     Assert(GV->hasGlobalUnnamedAddr(),
   1558            "Attribute 'jumptable' requires 'unnamed_addr'", V);
   1559   }
   1560 
   1561   if (Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::AllocSize)) {
   1562     std::pair<unsigned, Optional<unsigned>> Args =
   1563         Attrs.getAllocSizeArgs(AttributeSet::FunctionIndex);
   1564 
   1565     auto CheckParam = [&](StringRef Name, unsigned ParamNo) {
   1566       if (ParamNo >= FT->getNumParams()) {
   1567         CheckFailed("'allocsize' " + Name + " argument is out of bounds", V);
   1568         return false;
   1569       }
   1570 
   1571       if (!FT->getParamType(ParamNo)->isIntegerTy()) {
   1572         CheckFailed("'allocsize' " + Name +
   1573                         " argument must refer to an integer parameter",
   1574                     V);
   1575         return false;
   1576       }
   1577 
   1578       return true;
   1579     };
   1580 
   1581     if (!CheckParam("element size", Args.first))
   1582       return;
   1583 
   1584     if (Args.second && !CheckParam("number of elements", *Args.second))
   1585       return;
   1586   }
   1587 }
   1588 
   1589 void Verifier::verifyFunctionMetadata(
   1590     ArrayRef<std::pair<unsigned, MDNode *>> MDs) {
   1591   for (const auto &Pair : MDs) {
   1592     if (Pair.first == LLVMContext::MD_prof) {
   1593       MDNode *MD = Pair.second;
   1594       Assert(MD->getNumOperands() == 2,
   1595              "!prof annotations should have exactly 2 operands", MD);
   1596 
   1597       // Check first operand.
   1598       Assert(MD->getOperand(0) != nullptr, "first operand should not be null",
   1599              MD);
   1600       Assert(isa<MDString>(MD->getOperand(0)),
   1601              "expected string with name of the !prof annotation", MD);
   1602       MDString *MDS = cast<MDString>(MD->getOperand(0));
   1603       StringRef ProfName = MDS->getString();
   1604       Assert(ProfName.equals("function_entry_count"),
   1605              "first operand should be 'function_entry_count'", MD);
   1606 
   1607       // Check second operand.
   1608       Assert(MD->getOperand(1) != nullptr, "second operand should not be null",
   1609              MD);
   1610       Assert(isa<ConstantAsMetadata>(MD->getOperand(1)),
   1611              "expected integer argument to function_entry_count", MD);
   1612     }
   1613   }
   1614 }
   1615 
   1616 void Verifier::visitConstantExprsRecursively(const Constant *EntryC) {
   1617   if (!ConstantExprVisited.insert(EntryC).second)
   1618     return;
   1619 
   1620   SmallVector<const Constant *, 16> Stack;
   1621   Stack.push_back(EntryC);
   1622 
   1623   while (!Stack.empty()) {
   1624     const Constant *C = Stack.pop_back_val();
   1625 
   1626     // Check this constant expression.
   1627     if (const auto *CE = dyn_cast<ConstantExpr>(C))
   1628       visitConstantExpr(CE);
   1629 
   1630     if (const auto *GV = dyn_cast<GlobalValue>(C)) {
   1631       // Global Values get visited separately, but we do need to make sure
   1632       // that the global value is in the correct module
   1633       Assert(GV->getParent() == M, "Referencing global in another module!",
   1634              EntryC, M, GV, GV->getParent());
   1635       continue;
   1636     }
   1637 
   1638     // Visit all sub-expressions.
   1639     for (const Use &U : C->operands()) {
   1640       const auto *OpC = dyn_cast<Constant>(U);
   1641       if (!OpC)
   1642         continue;
   1643       if (!ConstantExprVisited.insert(OpC).second)
   1644         continue;
   1645       Stack.push_back(OpC);
   1646     }
   1647   }
   1648 }
   1649 
   1650 void Verifier::visitConstantExpr(const ConstantExpr *CE) {
   1651   if (CE->getOpcode() != Instruction::BitCast)
   1652     return;
   1653 
   1654   Assert(CastInst::castIsValid(Instruction::BitCast, CE->getOperand(0),
   1655                                CE->getType()),
   1656          "Invalid bitcast", CE);
   1657 }
   1658 
   1659 bool Verifier::verifyAttributeCount(AttributeSet Attrs, unsigned Params) {
   1660   if (Attrs.getNumSlots() == 0)
   1661     return true;
   1662 
   1663   unsigned LastSlot = Attrs.getNumSlots() - 1;
   1664   unsigned LastIndex = Attrs.getSlotIndex(LastSlot);
   1665   if (LastIndex <= Params
   1666       || (LastIndex == AttributeSet::FunctionIndex
   1667           && (LastSlot == 0 || Attrs.getSlotIndex(LastSlot - 1) <= Params)))
   1668     return true;
   1669 
   1670   return false;
   1671 }
   1672 
   1673 /// Verify that statepoint intrinsic is well formed.
   1674 void Verifier::verifyStatepoint(ImmutableCallSite CS) {
   1675   assert(CS.getCalledFunction() &&
   1676          CS.getCalledFunction()->getIntrinsicID() ==
   1677            Intrinsic::experimental_gc_statepoint);
   1678 
   1679   const Instruction &CI = *CS.getInstruction();
   1680 
   1681   Assert(!CS.doesNotAccessMemory() && !CS.onlyReadsMemory() &&
   1682          !CS.onlyAccessesArgMemory(),
   1683          "gc.statepoint must read and write all memory to preserve "
   1684          "reordering restrictions required by safepoint semantics",
   1685          &CI);
   1686 
   1687   const Value *IDV = CS.getArgument(0);
   1688   Assert(isa<ConstantInt>(IDV), "gc.statepoint ID must be a constant integer",
   1689          &CI);
   1690 
   1691   const Value *NumPatchBytesV = CS.getArgument(1);
   1692   Assert(isa<ConstantInt>(NumPatchBytesV),
   1693          "gc.statepoint number of patchable bytes must be a constant integer",
   1694          &CI);
   1695   const int64_t NumPatchBytes =
   1696       cast<ConstantInt>(NumPatchBytesV)->getSExtValue();
   1697   assert(isInt<32>(NumPatchBytes) && "NumPatchBytesV is an i32!");
   1698   Assert(NumPatchBytes >= 0, "gc.statepoint number of patchable bytes must be "
   1699                              "positive",
   1700          &CI);
   1701 
   1702   const Value *Target = CS.getArgument(2);
   1703   auto *PT = dyn_cast<PointerType>(Target->getType());
   1704   Assert(PT && PT->getElementType()->isFunctionTy(),
   1705          "gc.statepoint callee must be of function pointer type", &CI, Target);
   1706   FunctionType *TargetFuncType = cast<FunctionType>(PT->getElementType());
   1707 
   1708   const Value *NumCallArgsV = CS.getArgument(3);
   1709   Assert(isa<ConstantInt>(NumCallArgsV),
   1710          "gc.statepoint number of arguments to underlying call "
   1711          "must be constant integer",
   1712          &CI);
   1713   const int NumCallArgs = cast<ConstantInt>(NumCallArgsV)->getZExtValue();
   1714   Assert(NumCallArgs >= 0,
   1715          "gc.statepoint number of arguments to underlying call "
   1716          "must be positive",
   1717          &CI);
   1718   const int NumParams = (int)TargetFuncType->getNumParams();
   1719   if (TargetFuncType->isVarArg()) {
   1720     Assert(NumCallArgs >= NumParams,
   1721            "gc.statepoint mismatch in number of vararg call args", &CI);
   1722 
   1723     // TODO: Remove this limitation
   1724     Assert(TargetFuncType->getReturnType()->isVoidTy(),
   1725            "gc.statepoint doesn't support wrapping non-void "
   1726            "vararg functions yet",
   1727            &CI);
   1728   } else
   1729     Assert(NumCallArgs == NumParams,
   1730            "gc.statepoint mismatch in number of call args", &CI);
   1731 
   1732   const Value *FlagsV = CS.getArgument(4);
   1733   Assert(isa<ConstantInt>(FlagsV),
   1734          "gc.statepoint flags must be constant integer", &CI);
   1735   const uint64_t Flags = cast<ConstantInt>(FlagsV)->getZExtValue();
   1736   Assert((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0,
   1737          "unknown flag used in gc.statepoint flags argument", &CI);
   1738 
   1739   // Verify that the types of the call parameter arguments match
   1740   // the type of the wrapped callee.
   1741   for (int i = 0; i < NumParams; i++) {
   1742     Type *ParamType = TargetFuncType->getParamType(i);
   1743     Type *ArgType = CS.getArgument(5 + i)->getType();
   1744     Assert(ArgType == ParamType,
   1745            "gc.statepoint call argument does not match wrapped "
   1746            "function type",
   1747            &CI);
   1748   }
   1749 
   1750   const int EndCallArgsInx = 4 + NumCallArgs;
   1751 
   1752   const Value *NumTransitionArgsV = CS.getArgument(EndCallArgsInx+1);
   1753   Assert(isa<ConstantInt>(NumTransitionArgsV),
   1754          "gc.statepoint number of transition arguments "
   1755          "must be constant integer",
   1756          &CI);
   1757   const int NumTransitionArgs =
   1758       cast<ConstantInt>(NumTransitionArgsV)->getZExtValue();
   1759   Assert(NumTransitionArgs >= 0,
   1760          "gc.statepoint number of transition arguments must be positive", &CI);
   1761   const int EndTransitionArgsInx = EndCallArgsInx + 1 + NumTransitionArgs;
   1762 
   1763   const Value *NumDeoptArgsV = CS.getArgument(EndTransitionArgsInx+1);
   1764   Assert(isa<ConstantInt>(NumDeoptArgsV),
   1765          "gc.statepoint number of deoptimization arguments "
   1766          "must be constant integer",
   1767          &CI);
   1768   const int NumDeoptArgs = cast<ConstantInt>(NumDeoptArgsV)->getZExtValue();
   1769   Assert(NumDeoptArgs >= 0, "gc.statepoint number of deoptimization arguments "
   1770                             "must be positive",
   1771          &CI);
   1772 
   1773   const int ExpectedNumArgs =
   1774       7 + NumCallArgs + NumTransitionArgs + NumDeoptArgs;
   1775   Assert(ExpectedNumArgs <= (int)CS.arg_size(),
   1776          "gc.statepoint too few arguments according to length fields", &CI);
   1777 
   1778   // Check that the only uses of this gc.statepoint are gc.result or
   1779   // gc.relocate calls which are tied to this statepoint and thus part
   1780   // of the same statepoint sequence
   1781   for (const User *U : CI.users()) {
   1782     const CallInst *Call = dyn_cast<const CallInst>(U);
   1783     Assert(Call, "illegal use of statepoint token", &CI, U);
   1784     if (!Call) continue;
   1785     Assert(isa<GCRelocateInst>(Call) || isa<GCResultInst>(Call),
   1786            "gc.result or gc.relocate are the only value uses"
   1787            "of a gc.statepoint",
   1788            &CI, U);
   1789     if (isa<GCResultInst>(Call)) {
   1790       Assert(Call->getArgOperand(0) == &CI,
   1791              "gc.result connected to wrong gc.statepoint", &CI, Call);
   1792     } else if (isa<GCRelocateInst>(Call)) {
   1793       Assert(Call->getArgOperand(0) == &CI,
   1794              "gc.relocate connected to wrong gc.statepoint", &CI, Call);
   1795     }
   1796   }
   1797 
   1798   // Note: It is legal for a single derived pointer to be listed multiple
   1799   // times.  It's non-optimal, but it is legal.  It can also happen after
   1800   // insertion if we strip a bitcast away.
   1801   // Note: It is really tempting to check that each base is relocated and
   1802   // that a derived pointer is never reused as a base pointer.  This turns
   1803   // out to be problematic since optimizations run after safepoint insertion
   1804   // can recognize equality properties that the insertion logic doesn't know
   1805   // about.  See example statepoint.ll in the verifier subdirectory
   1806 }
   1807 
   1808 void Verifier::verifyFrameRecoverIndices() {
   1809   for (auto &Counts : FrameEscapeInfo) {
   1810     Function *F = Counts.first;
   1811     unsigned EscapedObjectCount = Counts.second.first;
   1812     unsigned MaxRecoveredIndex = Counts.second.second;
   1813     Assert(MaxRecoveredIndex <= EscapedObjectCount,
   1814            "all indices passed to llvm.localrecover must be less than the "
   1815            "number of arguments passed ot llvm.localescape in the parent "
   1816            "function",
   1817            F);
   1818   }
   1819 }
   1820 
   1821 static Instruction *getSuccPad(TerminatorInst *Terminator) {
   1822   BasicBlock *UnwindDest;
   1823   if (auto *II = dyn_cast<InvokeInst>(Terminator))
   1824     UnwindDest = II->getUnwindDest();
   1825   else if (auto *CSI = dyn_cast<CatchSwitchInst>(Terminator))
   1826     UnwindDest = CSI->getUnwindDest();
   1827   else
   1828     UnwindDest = cast<CleanupReturnInst>(Terminator)->getUnwindDest();
   1829   return UnwindDest->getFirstNonPHI();
   1830 }
   1831 
   1832 void Verifier::verifySiblingFuncletUnwinds() {
   1833   SmallPtrSet<Instruction *, 8> Visited;
   1834   SmallPtrSet<Instruction *, 8> Active;
   1835   for (const auto &Pair : SiblingFuncletInfo) {
   1836     Instruction *PredPad = Pair.first;
   1837     if (Visited.count(PredPad))
   1838       continue;
   1839     Active.insert(PredPad);
   1840     TerminatorInst *Terminator = Pair.second;
   1841     do {
   1842       Instruction *SuccPad = getSuccPad(Terminator);
   1843       if (Active.count(SuccPad)) {
   1844         // Found a cycle; report error
   1845         Instruction *CyclePad = SuccPad;
   1846         SmallVector<Instruction *, 8> CycleNodes;
   1847         do {
   1848           CycleNodes.push_back(CyclePad);
   1849           TerminatorInst *CycleTerminator = SiblingFuncletInfo[CyclePad];
   1850           if (CycleTerminator != CyclePad)
   1851             CycleNodes.push_back(CycleTerminator);
   1852           CyclePad = getSuccPad(CycleTerminator);
   1853         } while (CyclePad != SuccPad);
   1854         Assert(false, "EH pads can't handle each other's exceptions",
   1855                ArrayRef<Instruction *>(CycleNodes));
   1856       }
   1857       // Don't re-walk a node we've already checked
   1858       if (!Visited.insert(SuccPad).second)
   1859         break;
   1860       // Walk to this successor if it has a map entry.
   1861       PredPad = SuccPad;
   1862       auto TermI = SiblingFuncletInfo.find(PredPad);
   1863       if (TermI == SiblingFuncletInfo.end())
   1864         break;
   1865       Terminator = TermI->second;
   1866       Active.insert(PredPad);
   1867     } while (true);
   1868     // Each node only has one successor, so we've walked all the active
   1869     // nodes' successors.
   1870     Active.clear();
   1871   }
   1872 }
   1873 
   1874 // visitFunction - Verify that a function is ok.
   1875 //
   1876 void Verifier::visitFunction(const Function &F) {
   1877   visitGlobalValue(F);
   1878 
   1879   // Check function arguments.
   1880   FunctionType *FT = F.getFunctionType();
   1881   unsigned NumArgs = F.arg_size();
   1882 
   1883   Assert(Context == &F.getContext(),
   1884          "Function context does not match Module context!", &F);
   1885 
   1886   Assert(!F.hasCommonLinkage(), "Functions may not have common linkage", &F);
   1887   Assert(FT->getNumParams() == NumArgs,
   1888          "# formal arguments must match # of arguments for function type!", &F,
   1889          FT);
   1890   Assert(F.getReturnType()->isFirstClassType() ||
   1891              F.getReturnType()->isVoidTy() || F.getReturnType()->isStructTy(),
   1892          "Functions cannot return aggregate values!", &F);
   1893 
   1894   Assert(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(),
   1895          "Invalid struct return type!", &F);
   1896 
   1897   AttributeSet Attrs = F.getAttributes();
   1898 
   1899   Assert(verifyAttributeCount(Attrs, FT->getNumParams()),
   1900          "Attribute after last parameter!", &F);
   1901 
   1902   // Check function attributes.
   1903   verifyFunctionAttrs(FT, Attrs, &F);
   1904 
   1905   // On function declarations/definitions, we do not support the builtin
   1906   // attribute. We do not check this in VerifyFunctionAttrs since that is
   1907   // checking for Attributes that can/can not ever be on functions.
   1908   Assert(!Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::Builtin),
   1909          "Attribute 'builtin' can only be applied to a callsite.", &F);
   1910 
   1911   // Check that this function meets the restrictions on this calling convention.
   1912   // Sometimes varargs is used for perfectly forwarding thunks, so some of these
   1913   // restrictions can be lifted.
   1914   switch (F.getCallingConv()) {
   1915   default:
   1916   case CallingConv::C:
   1917     break;
   1918   case CallingConv::Fast:
   1919   case CallingConv::Cold:
   1920   case CallingConv::Intel_OCL_BI:
   1921   case CallingConv::PTX_Kernel:
   1922   case CallingConv::PTX_Device:
   1923     Assert(!F.isVarArg(), "Calling convention does not support varargs or "
   1924                           "perfect forwarding!",
   1925            &F);
   1926     break;
   1927   }
   1928 
   1929   bool isLLVMdotName = F.getName().size() >= 5 &&
   1930                        F.getName().substr(0, 5) == "llvm.";
   1931 
   1932   // Check that the argument values match the function type for this function...
   1933   unsigned i = 0;
   1934   for (const Argument &Arg : F.args()) {
   1935     Assert(Arg.getType() == FT->getParamType(i),
   1936            "Argument value does not match function argument type!", &Arg,
   1937            FT->getParamType(i));
   1938     Assert(Arg.getType()->isFirstClassType(),
   1939            "Function arguments must have first-class types!", &Arg);
   1940     if (!isLLVMdotName) {
   1941       Assert(!Arg.getType()->isMetadataTy(),
   1942              "Function takes metadata but isn't an intrinsic", &Arg, &F);
   1943       Assert(!Arg.getType()->isTokenTy(),
   1944              "Function takes token but isn't an intrinsic", &Arg, &F);
   1945     }
   1946 
   1947     // Check that swifterror argument is only used by loads and stores.
   1948     if (Attrs.hasAttribute(i+1, Attribute::SwiftError)) {
   1949       verifySwiftErrorValue(&Arg);
   1950     }
   1951     ++i;
   1952   }
   1953 
   1954   if (!isLLVMdotName)
   1955     Assert(!F.getReturnType()->isTokenTy(),
   1956            "Functions returns a token but isn't an intrinsic", &F);
   1957 
   1958   // Get the function metadata attachments.
   1959   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
   1960   F.getAllMetadata(MDs);
   1961   assert(F.hasMetadata() != MDs.empty() && "Bit out-of-sync");
   1962   verifyFunctionMetadata(MDs);
   1963 
   1964   // Check validity of the personality function
   1965   if (F.hasPersonalityFn()) {
   1966     auto *Per = dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts());
   1967     if (Per)
   1968       Assert(Per->getParent() == F.getParent(),
   1969              "Referencing personality function in another module!",
   1970              &F, F.getParent(), Per, Per->getParent());
   1971   }
   1972 
   1973   if (F.isMaterializable()) {
   1974     // Function has a body somewhere we can't see.
   1975     Assert(MDs.empty(), "unmaterialized function cannot have metadata", &F,
   1976            MDs.empty() ? nullptr : MDs.front().second);
   1977   } else if (F.isDeclaration()) {
   1978     for (const auto &I : MDs) {
   1979       AssertDI(I.first != LLVMContext::MD_dbg,
   1980                "function declaration may not have a !dbg attachment", &F);
   1981       Assert(I.first != LLVMContext::MD_prof,
   1982              "function declaration may not have a !prof attachment", &F);
   1983 
   1984       // Verify the metadata itself.
   1985       visitMDNode(*I.second);
   1986     }
   1987     Assert(!F.hasPersonalityFn(),
   1988            "Function declaration shouldn't have a personality routine", &F);
   1989   } else {
   1990     // Verify that this function (which has a body) is not named "llvm.*".  It
   1991     // is not legal to define intrinsics.
   1992     Assert(!isLLVMdotName, "llvm intrinsics cannot be defined!", &F);
   1993 
   1994     // Check the entry node
   1995     const BasicBlock *Entry = &F.getEntryBlock();
   1996     Assert(pred_empty(Entry),
   1997            "Entry block to function must not have predecessors!", Entry);
   1998 
   1999     // The address of the entry block cannot be taken, unless it is dead.
   2000     if (Entry->hasAddressTaken()) {
   2001       Assert(!BlockAddress::lookup(Entry)->isConstantUsed(),
   2002              "blockaddress may not be used with the entry block!", Entry);
   2003     }
   2004 
   2005     unsigned NumDebugAttachments = 0, NumProfAttachments = 0;
   2006     // Visit metadata attachments.
   2007     for (const auto &I : MDs) {
   2008       // Verify that the attachment is legal.
   2009       switch (I.first) {
   2010       default:
   2011         break;
   2012       case LLVMContext::MD_dbg:
   2013         ++NumDebugAttachments;
   2014         AssertDI(NumDebugAttachments == 1,
   2015                  "function must have a single !dbg attachment", &F, I.second);
   2016         AssertDI(isa<DISubprogram>(I.second),
   2017                  "function !dbg attachment must be a subprogram", &F, I.second);
   2018         break;
   2019       case LLVMContext::MD_prof:
   2020         ++NumProfAttachments;
   2021         Assert(NumProfAttachments == 1,
   2022                "function must have a single !prof attachment", &F, I.second);
   2023         break;
   2024       }
   2025 
   2026       // Verify the metadata itself.
   2027       visitMDNode(*I.second);
   2028     }
   2029   }
   2030 
   2031   // If this function is actually an intrinsic, verify that it is only used in
   2032   // direct call/invokes, never having its "address taken".
   2033   // Only do this if the module is materialized, otherwise we don't have all the
   2034   // uses.
   2035   if (F.getIntrinsicID() && F.getParent()->isMaterialized()) {
   2036     const User *U;
   2037     if (F.hasAddressTaken(&U))
   2038       Assert(0, "Invalid user of intrinsic instruction!", U);
   2039   }
   2040 
   2041   Assert(!F.hasDLLImportStorageClass() ||
   2042              (F.isDeclaration() && F.hasExternalLinkage()) ||
   2043              F.hasAvailableExternallyLinkage(),
   2044          "Function is marked as dllimport, but not external.", &F);
   2045 
   2046   auto *N = F.getSubprogram();
   2047   if (!N)
   2048     return;
   2049 
   2050   visitDISubprogram(*N);
   2051 
   2052   // Check that all !dbg attachments lead to back to N (or, at least, another
   2053   // subprogram that describes the same function).
   2054   //
   2055   // FIXME: Check this incrementally while visiting !dbg attachments.
   2056   // FIXME: Only check when N is the canonical subprogram for F.
   2057   SmallPtrSet<const MDNode *, 32> Seen;
   2058   for (auto &BB : F)
   2059     for (auto &I : BB) {
   2060       // Be careful about using DILocation here since we might be dealing with
   2061       // broken code (this is the Verifier after all).
   2062       DILocation *DL =
   2063           dyn_cast_or_null<DILocation>(I.getDebugLoc().getAsMDNode());
   2064       if (!DL)
   2065         continue;
   2066       if (!Seen.insert(DL).second)
   2067         continue;
   2068 
   2069       DILocalScope *Scope = DL->getInlinedAtScope();
   2070       if (Scope && !Seen.insert(Scope).second)
   2071         continue;
   2072 
   2073       DISubprogram *SP = Scope ? Scope->getSubprogram() : nullptr;
   2074 
   2075       // Scope and SP could be the same MDNode and we don't want to skip
   2076       // validation in that case
   2077       if (SP && ((Scope != SP) && !Seen.insert(SP).second))
   2078         continue;
   2079 
   2080       // FIXME: Once N is canonical, check "SP == &N".
   2081       Assert(SP->describes(&F),
   2082              "!dbg attachment points at wrong subprogram for function", N, &F,
   2083              &I, DL, Scope, SP);
   2084     }
   2085 }
   2086 
   2087 // verifyBasicBlock - Verify that a basic block is well formed...
   2088 //
   2089 void Verifier::visitBasicBlock(BasicBlock &BB) {
   2090   InstsInThisBlock.clear();
   2091 
   2092   // Ensure that basic blocks have terminators!
   2093   Assert(BB.getTerminator(), "Basic Block does not have terminator!", &BB);
   2094 
   2095   // Check constraints that this basic block imposes on all of the PHI nodes in
   2096   // it.
   2097   if (isa<PHINode>(BB.front())) {
   2098     SmallVector<BasicBlock*, 8> Preds(pred_begin(&BB), pred_end(&BB));
   2099     SmallVector<std::pair<BasicBlock*, Value*>, 8> Values;
   2100     std::sort(Preds.begin(), Preds.end());
   2101     PHINode *PN;
   2102     for (BasicBlock::iterator I = BB.begin(); (PN = dyn_cast<PHINode>(I));++I) {
   2103       // Ensure that PHI nodes have at least one entry!
   2104       Assert(PN->getNumIncomingValues() != 0,
   2105              "PHI nodes must have at least one entry.  If the block is dead, "
   2106              "the PHI should be removed!",
   2107              PN);
   2108       Assert(PN->getNumIncomingValues() == Preds.size(),
   2109              "PHINode should have one entry for each predecessor of its "
   2110              "parent basic block!",
   2111              PN);
   2112 
   2113       // Get and sort all incoming values in the PHI node...
   2114       Values.clear();
   2115       Values.reserve(PN->getNumIncomingValues());
   2116       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
   2117         Values.push_back(std::make_pair(PN->getIncomingBlock(i),
   2118                                         PN->getIncomingValue(i)));
   2119       std::sort(Values.begin(), Values.end());
   2120 
   2121       for (unsigned i = 0, e = Values.size(); i != e; ++i) {
   2122         // Check to make sure that if there is more than one entry for a
   2123         // particular basic block in this PHI node, that the incoming values are
   2124         // all identical.
   2125         //
   2126         Assert(i == 0 || Values[i].first != Values[i - 1].first ||
   2127                    Values[i].second == Values[i - 1].second,
   2128                "PHI node has multiple entries for the same basic block with "
   2129                "different incoming values!",
   2130                PN, Values[i].first, Values[i].second, Values[i - 1].second);
   2131 
   2132         // Check to make sure that the predecessors and PHI node entries are
   2133         // matched up.
   2134         Assert(Values[i].first == Preds[i],
   2135                "PHI node entries do not match predecessors!", PN,
   2136                Values[i].first, Preds[i]);
   2137       }
   2138     }
   2139   }
   2140 
   2141   // Check that all instructions have their parent pointers set up correctly.
   2142   for (auto &I : BB)
   2143   {
   2144     Assert(I.getParent() == &BB, "Instruction has bogus parent pointer!");
   2145   }
   2146 }
   2147 
   2148 void Verifier::visitTerminatorInst(TerminatorInst &I) {
   2149   // Ensure that terminators only exist at the end of the basic block.
   2150   Assert(&I == I.getParent()->getTerminator(),
   2151          "Terminator found in the middle of a basic block!", I.getParent());
   2152   visitInstruction(I);
   2153 }
   2154 
   2155 void Verifier::visitBranchInst(BranchInst &BI) {
   2156   if (BI.isConditional()) {
   2157     Assert(BI.getCondition()->getType()->isIntegerTy(1),
   2158            "Branch condition is not 'i1' type!", &BI, BI.getCondition());
   2159   }
   2160   visitTerminatorInst(BI);
   2161 }
   2162 
   2163 void Verifier::visitReturnInst(ReturnInst &RI) {
   2164   Function *F = RI.getParent()->getParent();
   2165   unsigned N = RI.getNumOperands();
   2166   if (F->getReturnType()->isVoidTy())
   2167     Assert(N == 0,
   2168            "Found return instr that returns non-void in Function of void "
   2169            "return type!",
   2170            &RI, F->getReturnType());
   2171   else
   2172     Assert(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(),
   2173            "Function return type does not match operand "
   2174            "type of return inst!",
   2175            &RI, F->getReturnType());
   2176 
   2177   // Check to make sure that the return value has necessary properties for
   2178   // terminators...
   2179   visitTerminatorInst(RI);
   2180 }
   2181 
   2182 void Verifier::visitSwitchInst(SwitchInst &SI) {
   2183   // Check to make sure that all of the constants in the switch instruction
   2184   // have the same type as the switched-on value.
   2185   Type *SwitchTy = SI.getCondition()->getType();
   2186   SmallPtrSet<ConstantInt*, 32> Constants;
   2187   for (auto &Case : SI.cases()) {
   2188     Assert(Case.getCaseValue()->getType() == SwitchTy,
   2189            "Switch constants must all be same type as switch value!", &SI);
   2190     Assert(Constants.insert(Case.getCaseValue()).second,
   2191            "Duplicate integer as switch case", &SI, Case.getCaseValue());
   2192   }
   2193 
   2194   visitTerminatorInst(SI);
   2195 }
   2196 
   2197 void Verifier::visitIndirectBrInst(IndirectBrInst &BI) {
   2198   Assert(BI.getAddress()->getType()->isPointerTy(),
   2199          "Indirectbr operand must have pointer type!", &BI);
   2200   for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i)
   2201     Assert(BI.getDestination(i)->getType()->isLabelTy(),
   2202            "Indirectbr destinations must all have pointer type!", &BI);
   2203 
   2204   visitTerminatorInst(BI);
   2205 }
   2206 
   2207 void Verifier::visitSelectInst(SelectInst &SI) {
   2208   Assert(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1),
   2209                                          SI.getOperand(2)),
   2210          "Invalid operands for select instruction!", &SI);
   2211 
   2212   Assert(SI.getTrueValue()->getType() == SI.getType(),
   2213          "Select values must have same type as select instruction!", &SI);
   2214   visitInstruction(SI);
   2215 }
   2216 
   2217 /// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of
   2218 /// a pass, if any exist, it's an error.
   2219 ///
   2220 void Verifier::visitUserOp1(Instruction &I) {
   2221   Assert(0, "User-defined operators should not live outside of a pass!", &I);
   2222 }
   2223 
   2224 void Verifier::visitTruncInst(TruncInst &I) {
   2225   // Get the source and destination types
   2226   Type *SrcTy = I.getOperand(0)->getType();
   2227   Type *DestTy = I.getType();
   2228 
   2229   // Get the size of the types in bits, we'll need this later
   2230   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
   2231   unsigned DestBitSize = DestTy->getScalarSizeInBits();
   2232 
   2233   Assert(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I);
   2234   Assert(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I);
   2235   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
   2236          "trunc source and destination must both be a vector or neither", &I);
   2237   Assert(SrcBitSize > DestBitSize, "DestTy too big for Trunc", &I);
   2238 
   2239   visitInstruction(I);
   2240 }
   2241 
   2242 void Verifier::visitZExtInst(ZExtInst &I) {
   2243   // Get the source and destination types
   2244   Type *SrcTy = I.getOperand(0)->getType();
   2245   Type *DestTy = I.getType();
   2246 
   2247   // Get the size of the types in bits, we'll need this later
   2248   Assert(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I);
   2249   Assert(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I);
   2250   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
   2251          "zext source and destination must both be a vector or neither", &I);
   2252   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
   2253   unsigned DestBitSize = DestTy->getScalarSizeInBits();
   2254 
   2255   Assert(SrcBitSize < DestBitSize, "Type too small for ZExt", &I);
   2256 
   2257   visitInstruction(I);
   2258 }
   2259 
   2260 void Verifier::visitSExtInst(SExtInst &I) {
   2261   // Get the source and destination types
   2262   Type *SrcTy = I.getOperand(0)->getType();
   2263   Type *DestTy = I.getType();
   2264 
   2265   // Get the size of the types in bits, we'll need this later
   2266   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
   2267   unsigned DestBitSize = DestTy->getScalarSizeInBits();
   2268 
   2269   Assert(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I);
   2270   Assert(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I);
   2271   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
   2272          "sext source and destination must both be a vector or neither", &I);
   2273   Assert(SrcBitSize < DestBitSize, "Type too small for SExt", &I);
   2274 
   2275   visitInstruction(I);
   2276 }
   2277 
   2278 void Verifier::visitFPTruncInst(FPTruncInst &I) {
   2279   // Get the source and destination types
   2280   Type *SrcTy = I.getOperand(0)->getType();
   2281   Type *DestTy = I.getType();
   2282   // Get the size of the types in bits, we'll need this later
   2283   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
   2284   unsigned DestBitSize = DestTy->getScalarSizeInBits();
   2285 
   2286   Assert(SrcTy->isFPOrFPVectorTy(), "FPTrunc only operates on FP", &I);
   2287   Assert(DestTy->isFPOrFPVectorTy(), "FPTrunc only produces an FP", &I);
   2288   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
   2289          "fptrunc source and destination must both be a vector or neither", &I);
   2290   Assert(SrcBitSize > DestBitSize, "DestTy too big for FPTrunc", &I);
   2291 
   2292   visitInstruction(I);
   2293 }
   2294 
   2295 void Verifier::visitFPExtInst(FPExtInst &I) {
   2296   // Get the source and destination types
   2297   Type *SrcTy = I.getOperand(0)->getType();
   2298   Type *DestTy = I.getType();
   2299 
   2300   // Get the size of the types in bits, we'll need this later
   2301   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
   2302   unsigned DestBitSize = DestTy->getScalarSizeInBits();
   2303 
   2304   Assert(SrcTy->isFPOrFPVectorTy(), "FPExt only operates on FP", &I);
   2305   Assert(DestTy->isFPOrFPVectorTy(), "FPExt only produces an FP", &I);
   2306   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
   2307          "fpext source and destination must both be a vector or neither", &I);
   2308   Assert(SrcBitSize < DestBitSize, "DestTy too small for FPExt", &I);
   2309 
   2310   visitInstruction(I);
   2311 }
   2312 
   2313 void Verifier::visitUIToFPInst(UIToFPInst &I) {
   2314   // Get the source and destination types
   2315   Type *SrcTy = I.getOperand(0)->getType();
   2316   Type *DestTy = I.getType();
   2317 
   2318   bool SrcVec = SrcTy->isVectorTy();
   2319   bool DstVec = DestTy->isVectorTy();
   2320 
   2321   Assert(SrcVec == DstVec,
   2322          "UIToFP source and dest must both be vector or scalar", &I);
   2323   Assert(SrcTy->isIntOrIntVectorTy(),
   2324          "UIToFP source must be integer or integer vector", &I);
   2325   Assert(DestTy->isFPOrFPVectorTy(), "UIToFP result must be FP or FP vector",
   2326          &I);
   2327 
   2328   if (SrcVec && DstVec)
   2329     Assert(cast<VectorType>(SrcTy)->getNumElements() ==
   2330                cast<VectorType>(DestTy)->getNumElements(),
   2331            "UIToFP source and dest vector length mismatch", &I);
   2332 
   2333   visitInstruction(I);
   2334 }
   2335 
   2336 void Verifier::visitSIToFPInst(SIToFPInst &I) {
   2337   // Get the source and destination types
   2338   Type *SrcTy = I.getOperand(0)->getType();
   2339   Type *DestTy = I.getType();
   2340 
   2341   bool SrcVec = SrcTy->isVectorTy();
   2342   bool DstVec = DestTy->isVectorTy();
   2343 
   2344   Assert(SrcVec == DstVec,
   2345          "SIToFP source and dest must both be vector or scalar", &I);
   2346   Assert(SrcTy->isIntOrIntVectorTy(),
   2347          "SIToFP source must be integer or integer vector", &I);
   2348   Assert(DestTy->isFPOrFPVectorTy(), "SIToFP result must be FP or FP vector",
   2349          &I);
   2350 
   2351   if (SrcVec && DstVec)
   2352     Assert(cast<VectorType>(SrcTy)->getNumElements() ==
   2353                cast<VectorType>(DestTy)->getNumElements(),
   2354            "SIToFP source and dest vector length mismatch", &I);
   2355 
   2356   visitInstruction(I);
   2357 }
   2358 
   2359 void Verifier::visitFPToUIInst(FPToUIInst &I) {
   2360   // Get the source and destination types
   2361   Type *SrcTy = I.getOperand(0)->getType();
   2362   Type *DestTy = I.getType();
   2363 
   2364   bool SrcVec = SrcTy->isVectorTy();
   2365   bool DstVec = DestTy->isVectorTy();
   2366 
   2367   Assert(SrcVec == DstVec,
   2368          "FPToUI source and dest must both be vector or scalar", &I);
   2369   Assert(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector",
   2370          &I);
   2371   Assert(DestTy->isIntOrIntVectorTy(),
   2372          "FPToUI result must be integer or integer vector", &I);
   2373 
   2374   if (SrcVec && DstVec)
   2375     Assert(cast<VectorType>(SrcTy)->getNumElements() ==
   2376                cast<VectorType>(DestTy)->getNumElements(),
   2377            "FPToUI source and dest vector length mismatch", &I);
   2378 
   2379   visitInstruction(I);
   2380 }
   2381 
   2382 void Verifier::visitFPToSIInst(FPToSIInst &I) {
   2383   // Get the source and destination types
   2384   Type *SrcTy = I.getOperand(0)->getType();
   2385   Type *DestTy = I.getType();
   2386 
   2387   bool SrcVec = SrcTy->isVectorTy();
   2388   bool DstVec = DestTy->isVectorTy();
   2389 
   2390   Assert(SrcVec == DstVec,
   2391          "FPToSI source and dest must both be vector or scalar", &I);
   2392   Assert(SrcTy->isFPOrFPVectorTy(), "FPToSI source must be FP or FP vector",
   2393          &I);
   2394   Assert(DestTy->isIntOrIntVectorTy(),
   2395          "FPToSI result must be integer or integer vector", &I);
   2396 
   2397   if (SrcVec && DstVec)
   2398     Assert(cast<VectorType>(SrcTy)->getNumElements() ==
   2399                cast<VectorType>(DestTy)->getNumElements(),
   2400            "FPToSI source and dest vector length mismatch", &I);
   2401 
   2402   visitInstruction(I);
   2403 }
   2404 
   2405 void Verifier::visitPtrToIntInst(PtrToIntInst &I) {
   2406   // Get the source and destination types
   2407   Type *SrcTy = I.getOperand(0)->getType();
   2408   Type *DestTy = I.getType();
   2409 
   2410   Assert(SrcTy->getScalarType()->isPointerTy(),
   2411          "PtrToInt source must be pointer", &I);
   2412   Assert(DestTy->getScalarType()->isIntegerTy(),
   2413          "PtrToInt result must be integral", &I);
   2414   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "PtrToInt type mismatch",
   2415          &I);
   2416 
   2417   if (SrcTy->isVectorTy()) {
   2418     VectorType *VSrc = dyn_cast<VectorType>(SrcTy);
   2419     VectorType *VDest = dyn_cast<VectorType>(DestTy);
   2420     Assert(VSrc->getNumElements() == VDest->getNumElements(),
   2421            "PtrToInt Vector width mismatch", &I);
   2422   }
   2423 
   2424   visitInstruction(I);
   2425 }
   2426 
   2427 void Verifier::visitIntToPtrInst(IntToPtrInst &I) {
   2428   // Get the source and destination types
   2429   Type *SrcTy = I.getOperand(0)->getType();
   2430   Type *DestTy = I.getType();
   2431 
   2432   Assert(SrcTy->getScalarType()->isIntegerTy(),
   2433          "IntToPtr source must be an integral", &I);
   2434   Assert(DestTy->getScalarType()->isPointerTy(),
   2435          "IntToPtr result must be a pointer", &I);
   2436   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "IntToPtr type mismatch",
   2437          &I);
   2438   if (SrcTy->isVectorTy()) {
   2439     VectorType *VSrc = dyn_cast<VectorType>(SrcTy);
   2440     VectorType *VDest = dyn_cast<VectorType>(DestTy);
   2441     Assert(VSrc->getNumElements() == VDest->getNumElements(),
   2442            "IntToPtr Vector width mismatch", &I);
   2443   }
   2444   visitInstruction(I);
   2445 }
   2446 
   2447 void Verifier::visitBitCastInst(BitCastInst &I) {
   2448   Assert(
   2449       CastInst::castIsValid(Instruction::BitCast, I.getOperand(0), I.getType()),
   2450       "Invalid bitcast", &I);
   2451   visitInstruction(I);
   2452 }
   2453 
   2454 void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &I) {
   2455   Type *SrcTy = I.getOperand(0)->getType();
   2456   Type *DestTy = I.getType();
   2457 
   2458   Assert(SrcTy->isPtrOrPtrVectorTy(), "AddrSpaceCast source must be a pointer",
   2459          &I);
   2460   Assert(DestTy->isPtrOrPtrVectorTy(), "AddrSpaceCast result must be a pointer",
   2461          &I);
   2462   Assert(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace(),
   2463          "AddrSpaceCast must be between different address spaces", &I);
   2464   if (SrcTy->isVectorTy())
   2465     Assert(SrcTy->getVectorNumElements() == DestTy->getVectorNumElements(),
   2466            "AddrSpaceCast vector pointer number of elements mismatch", &I);
   2467   visitInstruction(I);
   2468 }
   2469 
   2470 /// visitPHINode - Ensure that a PHI node is well formed.
   2471 ///
   2472 void Verifier::visitPHINode(PHINode &PN) {
   2473   // Ensure that the PHI nodes are all grouped together at the top of the block.
   2474   // This can be tested by checking whether the instruction before this is
   2475   // either nonexistent (because this is begin()) or is a PHI node.  If not,
   2476   // then there is some other instruction before a PHI.
   2477   Assert(&PN == &PN.getParent()->front() ||
   2478              isa<PHINode>(--BasicBlock::iterator(&PN)),
   2479          "PHI nodes not grouped at top of basic block!", &PN, PN.getParent());
   2480 
   2481   // Check that a PHI doesn't yield a Token.
   2482   Assert(!PN.getType()->isTokenTy(), "PHI nodes cannot have token type!");
   2483 
   2484   // Check that all of the values of the PHI node have the same type as the
   2485   // result, and that the incoming blocks are really basic blocks.
   2486   for (Value *IncValue : PN.incoming_values()) {
   2487     Assert(PN.getType() == IncValue->getType(),
   2488            "PHI node operands are not the same type as the result!", &PN);
   2489   }
   2490 
   2491   // All other PHI node constraints are checked in the visitBasicBlock method.
   2492 
   2493   visitInstruction(PN);
   2494 }
   2495 
   2496 void Verifier::verifyCallSite(CallSite CS) {
   2497   Instruction *I = CS.getInstruction();
   2498 
   2499   Assert(CS.getCalledValue()->getType()->isPointerTy(),
   2500          "Called function must be a pointer!", I);
   2501   PointerType *FPTy = cast<PointerType>(CS.getCalledValue()->getType());
   2502 
   2503   Assert(FPTy->getElementType()->isFunctionTy(),
   2504          "Called function is not pointer to function type!", I);
   2505 
   2506   Assert(FPTy->getElementType() == CS.getFunctionType(),
   2507          "Called function is not the same type as the call!", I);
   2508 
   2509   FunctionType *FTy = CS.getFunctionType();
   2510 
   2511   // Verify that the correct number of arguments are being passed
   2512   if (FTy->isVarArg())
   2513     Assert(CS.arg_size() >= FTy->getNumParams(),
   2514            "Called function requires more parameters than were provided!", I);
   2515   else
   2516     Assert(CS.arg_size() == FTy->getNumParams(),
   2517            "Incorrect number of arguments passed to called function!", I);
   2518 
   2519   // Verify that all arguments to the call match the function type.
   2520   for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
   2521     Assert(CS.getArgument(i)->getType() == FTy->getParamType(i),
   2522            "Call parameter type does not match function signature!",
   2523            CS.getArgument(i), FTy->getParamType(i), I);
   2524 
   2525   AttributeSet Attrs = CS.getAttributes();
   2526 
   2527   Assert(verifyAttributeCount(Attrs, CS.arg_size()),
   2528          "Attribute after last parameter!", I);
   2529 
   2530   // Verify call attributes.
   2531   verifyFunctionAttrs(FTy, Attrs, I);
   2532 
   2533   // Conservatively check the inalloca argument.
   2534   // We have a bug if we can find that there is an underlying alloca without
   2535   // inalloca.
   2536   if (CS.hasInAllocaArgument()) {
   2537     Value *InAllocaArg = CS.getArgument(FTy->getNumParams() - 1);
   2538     if (auto AI = dyn_cast<AllocaInst>(InAllocaArg->stripInBoundsOffsets()))
   2539       Assert(AI->isUsedWithInAlloca(),
   2540              "inalloca argument for call has mismatched alloca", AI, I);
   2541   }
   2542 
   2543   // For each argument of the callsite, if it has the swifterror argument,
   2544   // make sure the underlying alloca has swifterror as well.
   2545   for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
   2546     if (CS.paramHasAttr(i+1, Attribute::SwiftError)) {
   2547       Value *SwiftErrorArg = CS.getArgument(i);
   2548       auto AI = dyn_cast<AllocaInst>(SwiftErrorArg->stripInBoundsOffsets());
   2549       Assert(AI, "swifterror argument should come from alloca", AI, I);
   2550       if (AI)
   2551         Assert(AI->isSwiftError(),
   2552                "swifterror argument for call has mismatched alloca", AI, I);
   2553     }
   2554 
   2555   if (FTy->isVarArg()) {
   2556     // FIXME? is 'nest' even legal here?
   2557     bool SawNest = false;
   2558     bool SawReturned = false;
   2559 
   2560     for (unsigned Idx = 1; Idx < 1 + FTy->getNumParams(); ++Idx) {
   2561       if (Attrs.hasAttribute(Idx, Attribute::Nest))
   2562         SawNest = true;
   2563       if (Attrs.hasAttribute(Idx, Attribute::Returned))
   2564         SawReturned = true;
   2565     }
   2566 
   2567     // Check attributes on the varargs part.
   2568     for (unsigned Idx = 1 + FTy->getNumParams(); Idx <= CS.arg_size(); ++Idx) {
   2569       Type *Ty = CS.getArgument(Idx-1)->getType();
   2570       verifyParameterAttrs(Attrs, Idx, Ty, false, I);
   2571 
   2572       if (Attrs.hasAttribute(Idx, Attribute::Nest)) {
   2573         Assert(!SawNest, "More than one parameter has attribute nest!", I);
   2574         SawNest = true;
   2575       }
   2576 
   2577       if (Attrs.hasAttribute(Idx, Attribute::Returned)) {
   2578         Assert(!SawReturned, "More than one parameter has attribute returned!",
   2579                I);
   2580         Assert(Ty->canLosslesslyBitCastTo(FTy->getReturnType()),
   2581                "Incompatible argument and return types for 'returned' "
   2582                "attribute",
   2583                I);
   2584         SawReturned = true;
   2585       }
   2586 
   2587       Assert(!Attrs.hasAttribute(Idx, Attribute::StructRet),
   2588              "Attribute 'sret' cannot be used for vararg call arguments!", I);
   2589 
   2590       if (Attrs.hasAttribute(Idx, Attribute::InAlloca))
   2591         Assert(Idx == CS.arg_size(), "inalloca isn't on the last argument!", I);
   2592     }
   2593   }
   2594 
   2595   // Verify that there's no metadata unless it's a direct call to an intrinsic.
   2596   if (CS.getCalledFunction() == nullptr ||
   2597       !CS.getCalledFunction()->getName().startswith("llvm.")) {
   2598     for (Type *ParamTy : FTy->params()) {
   2599       Assert(!ParamTy->isMetadataTy(),
   2600              "Function has metadata parameter but isn't an intrinsic", I);
   2601       Assert(!ParamTy->isTokenTy(),
   2602              "Function has token parameter but isn't an intrinsic", I);
   2603     }
   2604   }
   2605 
   2606   // Verify that indirect calls don't return tokens.
   2607   if (CS.getCalledFunction() == nullptr)
   2608     Assert(!FTy->getReturnType()->isTokenTy(),
   2609            "Return type cannot be token for indirect call!");
   2610 
   2611   if (Function *F = CS.getCalledFunction())
   2612     if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
   2613       visitIntrinsicCallSite(ID, CS);
   2614 
   2615   // Verify that a callsite has at most one "deopt", at most one "funclet" and
   2616   // at most one "gc-transition" operand bundle.
   2617   bool FoundDeoptBundle = false, FoundFuncletBundle = false,
   2618        FoundGCTransitionBundle = false;
   2619   for (unsigned i = 0, e = CS.getNumOperandBundles(); i < e; ++i) {
   2620     OperandBundleUse BU = CS.getOperandBundleAt(i);
   2621     uint32_t Tag = BU.getTagID();
   2622     if (Tag == LLVMContext::OB_deopt) {
   2623       Assert(!FoundDeoptBundle, "Multiple deopt operand bundles", I);
   2624       FoundDeoptBundle = true;
   2625     } else if (Tag == LLVMContext::OB_gc_transition) {
   2626       Assert(!FoundGCTransitionBundle, "Multiple gc-transition operand bundles",
   2627              I);
   2628       FoundGCTransitionBundle = true;
   2629     } else if (Tag == LLVMContext::OB_funclet) {
   2630       Assert(!FoundFuncletBundle, "Multiple funclet operand bundles", I);
   2631       FoundFuncletBundle = true;
   2632       Assert(BU.Inputs.size() == 1,
   2633              "Expected exactly one funclet bundle operand", I);
   2634       Assert(isa<FuncletPadInst>(BU.Inputs.front()),
   2635              "Funclet bundle operands should correspond to a FuncletPadInst",
   2636              I);
   2637     }
   2638   }
   2639 
   2640   // Verify that each inlinable callsite of a debug-info-bearing function in a
   2641   // debug-info-bearing function has a debug location attached to it. Failure to
   2642   // do so causes assertion failures when the inliner sets up inline scope info.
   2643   if (I->getFunction()->getSubprogram() && CS.getCalledFunction() &&
   2644       CS.getCalledFunction()->getSubprogram())
   2645     Assert(I->getDebugLoc(), "inlinable function call in a function with debug "
   2646                              "info must have a !dbg location",
   2647            I);
   2648 
   2649   visitInstruction(*I);
   2650 }
   2651 
   2652 /// Two types are "congruent" if they are identical, or if they are both pointer
   2653 /// types with different pointee types and the same address space.
   2654 static bool isTypeCongruent(Type *L, Type *R) {
   2655   if (L == R)
   2656     return true;
   2657   PointerType *PL = dyn_cast<PointerType>(L);
   2658   PointerType *PR = dyn_cast<PointerType>(R);
   2659   if (!PL || !PR)
   2660     return false;
   2661   return PL->getAddressSpace() == PR->getAddressSpace();
   2662 }
   2663 
   2664 static AttrBuilder getParameterABIAttributes(int I, AttributeSet Attrs) {
   2665   static const Attribute::AttrKind ABIAttrs[] = {
   2666       Attribute::StructRet, Attribute::ByVal, Attribute::InAlloca,
   2667       Attribute::InReg, Attribute::Returned, Attribute::SwiftSelf,
   2668       Attribute::SwiftError};
   2669   AttrBuilder Copy;
   2670   for (auto AK : ABIAttrs) {
   2671     if (Attrs.hasAttribute(I + 1, AK))
   2672       Copy.addAttribute(AK);
   2673   }
   2674   if (Attrs.hasAttribute(I + 1, Attribute::Alignment))
   2675     Copy.addAlignmentAttr(Attrs.getParamAlignment(I + 1));
   2676   return Copy;
   2677 }
   2678 
   2679 void Verifier::verifyMustTailCall(CallInst &CI) {
   2680   Assert(!CI.isInlineAsm(), "cannot use musttail call with inline asm", &CI);
   2681 
   2682   // - The caller and callee prototypes must match.  Pointer types of
   2683   //   parameters or return types may differ in pointee type, but not
   2684   //   address space.
   2685   Function *F = CI.getParent()->getParent();
   2686   FunctionType *CallerTy = F->getFunctionType();
   2687   FunctionType *CalleeTy = CI.getFunctionType();
   2688   Assert(CallerTy->getNumParams() == CalleeTy->getNumParams(),
   2689          "cannot guarantee tail call due to mismatched parameter counts", &CI);
   2690   Assert(CallerTy->isVarArg() == CalleeTy->isVarArg(),
   2691          "cannot guarantee tail call due to mismatched varargs", &CI);
   2692   Assert(isTypeCongruent(CallerTy->getReturnType(), CalleeTy->getReturnType()),
   2693          "cannot guarantee tail call due to mismatched return types", &CI);
   2694   for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
   2695     Assert(
   2696         isTypeCongruent(CallerTy->getParamType(I), CalleeTy->getParamType(I)),
   2697         "cannot guarantee tail call due to mismatched parameter types", &CI);
   2698   }
   2699 
   2700   // - The calling conventions of the caller and callee must match.
   2701   Assert(F->getCallingConv() == CI.getCallingConv(),
   2702          "cannot guarantee tail call due to mismatched calling conv", &CI);
   2703 
   2704   // - All ABI-impacting function attributes, such as sret, byval, inreg,
   2705   //   returned, and inalloca, must match.
   2706   AttributeSet CallerAttrs = F->getAttributes();
   2707   AttributeSet CalleeAttrs = CI.getAttributes();
   2708   for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
   2709     AttrBuilder CallerABIAttrs = getParameterABIAttributes(I, CallerAttrs);
   2710     AttrBuilder CalleeABIAttrs = getParameterABIAttributes(I, CalleeAttrs);
   2711     Assert(CallerABIAttrs == CalleeABIAttrs,
   2712            "cannot guarantee tail call due to mismatched ABI impacting "
   2713            "function attributes",
   2714            &CI, CI.getOperand(I));
   2715   }
   2716 
   2717   // - The call must immediately precede a :ref:`ret <i_ret>` instruction,
   2718   //   or a pointer bitcast followed by a ret instruction.
   2719   // - The ret instruction must return the (possibly bitcasted) value
   2720   //   produced by the call or void.
   2721   Value *RetVal = &CI;
   2722   Instruction *Next = CI.getNextNode();
   2723 
   2724   // Handle the optional bitcast.
   2725   if (BitCastInst *BI = dyn_cast_or_null<BitCastInst>(Next)) {
   2726     Assert(BI->getOperand(0) == RetVal,
   2727            "bitcast following musttail call must use the call", BI);
   2728     RetVal = BI;
   2729     Next = BI->getNextNode();
   2730   }
   2731 
   2732   // Check the return.
   2733   ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Next);
   2734   Assert(Ret, "musttail call must be precede a ret with an optional bitcast",
   2735          &CI);
   2736   Assert(!Ret->getReturnValue() || Ret->getReturnValue() == RetVal,
   2737          "musttail call result must be returned", Ret);
   2738 }
   2739 
   2740 void Verifier::visitCallInst(CallInst &CI) {
   2741   verifyCallSite(&CI);
   2742 
   2743   if (CI.isMustTailCall())
   2744     verifyMustTailCall(CI);
   2745 }
   2746 
   2747 void Verifier::visitInvokeInst(InvokeInst &II) {
   2748   verifyCallSite(&II);
   2749 
   2750   // Verify that the first non-PHI instruction of the unwind destination is an
   2751   // exception handling instruction.
   2752   Assert(
   2753       II.getUnwindDest()->isEHPad(),
   2754       "The unwind destination does not have an exception handling instruction!",
   2755       &II);
   2756 
   2757   visitTerminatorInst(II);
   2758 }
   2759 
   2760 /// visitBinaryOperator - Check that both arguments to the binary operator are
   2761 /// of the same type!
   2762 ///
   2763 void Verifier::visitBinaryOperator(BinaryOperator &B) {
   2764   Assert(B.getOperand(0)->getType() == B.getOperand(1)->getType(),
   2765          "Both operands to a binary operator are not of the same type!", &B);
   2766 
   2767   switch (B.getOpcode()) {
   2768   // Check that integer arithmetic operators are only used with
   2769   // integral operands.
   2770   case Instruction::Add:
   2771   case Instruction::Sub:
   2772   case Instruction::Mul:
   2773   case Instruction::SDiv:
   2774   case Instruction::UDiv:
   2775   case Instruction::SRem:
   2776   case Instruction::URem:
   2777     Assert(B.getType()->isIntOrIntVectorTy(),
   2778            "Integer arithmetic operators only work with integral types!", &B);
   2779     Assert(B.getType() == B.getOperand(0)->getType(),
   2780            "Integer arithmetic operators must have same type "
   2781            "for operands and result!",
   2782            &B);
   2783     break;
   2784   // Check that floating-point arithmetic operators are only used with
   2785   // floating-point operands.
   2786   case Instruction::FAdd:
   2787   case Instruction::FSub:
   2788   case Instruction::FMul:
   2789   case Instruction::FDiv:
   2790   case Instruction::FRem:
   2791     Assert(B.getType()->isFPOrFPVectorTy(),
   2792            "Floating-point arithmetic operators only work with "
   2793            "floating-point types!",
   2794            &B);
   2795     Assert(B.getType() == B.getOperand(0)->getType(),
   2796            "Floating-point arithmetic operators must have same type "
   2797            "for operands and result!",
   2798            &B);
   2799     break;
   2800   // Check that logical operators are only used with integral operands.
   2801   case Instruction::And:
   2802   case Instruction::Or:
   2803   case Instruction::Xor:
   2804     Assert(B.getType()->isIntOrIntVectorTy(),
   2805            "Logical operators only work with integral types!", &B);
   2806     Assert(B.getType() == B.getOperand(0)->getType(),
   2807            "Logical operators must have same type for operands and result!",
   2808            &B);
   2809     break;
   2810   case Instruction::Shl:
   2811   case Instruction::LShr:
   2812   case Instruction::AShr:
   2813     Assert(B.getType()->isIntOrIntVectorTy(),
   2814            "Shifts only work with integral types!", &B);
   2815     Assert(B.getType() == B.getOperand(0)->getType(),
   2816            "Shift return type must be same as operands!", &B);
   2817     break;
   2818   default:
   2819     llvm_unreachable("Unknown BinaryOperator opcode!");
   2820   }
   2821 
   2822   visitInstruction(B);
   2823 }
   2824 
   2825 void Verifier::visitICmpInst(ICmpInst &IC) {
   2826   // Check that the operands are the same type
   2827   Type *Op0Ty = IC.getOperand(0)->getType();
   2828   Type *Op1Ty = IC.getOperand(1)->getType();
   2829   Assert(Op0Ty == Op1Ty,
   2830          "Both operands to ICmp instruction are not of the same type!", &IC);
   2831   // Check that the operands are the right type
   2832   Assert(Op0Ty->isIntOrIntVectorTy() || Op0Ty->getScalarType()->isPointerTy(),
   2833          "Invalid operand types for ICmp instruction", &IC);
   2834   // Check that the predicate is valid.
   2835   Assert(IC.getPredicate() >= CmpInst::FIRST_ICMP_PREDICATE &&
   2836              IC.getPredicate() <= CmpInst::LAST_ICMP_PREDICATE,
   2837          "Invalid predicate in ICmp instruction!", &IC);
   2838 
   2839   visitInstruction(IC);
   2840 }
   2841 
   2842 void Verifier::visitFCmpInst(FCmpInst &FC) {
   2843   // Check that the operands are the same type
   2844   Type *Op0Ty = FC.getOperand(0)->getType();
   2845   Type *Op1Ty = FC.getOperand(1)->getType();
   2846   Assert(Op0Ty == Op1Ty,
   2847          "Both operands to FCmp instruction are not of the same type!", &FC);
   2848   // Check that the operands are the right type
   2849   Assert(Op0Ty->isFPOrFPVectorTy(),
   2850          "Invalid operand types for FCmp instruction", &FC);
   2851   // Check that the predicate is valid.
   2852   Assert(FC.getPredicate() >= CmpInst::FIRST_FCMP_PREDICATE &&
   2853              FC.getPredicate() <= CmpInst::LAST_FCMP_PREDICATE,
   2854          "Invalid predicate in FCmp instruction!", &FC);
   2855 
   2856   visitInstruction(FC);
   2857 }
   2858 
   2859 void Verifier::visitExtractElementInst(ExtractElementInst &EI) {
   2860   Assert(
   2861       ExtractElementInst::isValidOperands(EI.getOperand(0), EI.getOperand(1)),
   2862       "Invalid extractelement operands!", &EI);
   2863   visitInstruction(EI);
   2864 }
   2865 
   2866 void Verifier::visitInsertElementInst(InsertElementInst &IE) {
   2867   Assert(InsertElementInst::isValidOperands(IE.getOperand(0), IE.getOperand(1),
   2868                                             IE.getOperand(2)),
   2869          "Invalid insertelement operands!", &IE);
   2870   visitInstruction(IE);
   2871 }
   2872 
   2873 void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) {
   2874   Assert(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1),
   2875                                             SV.getOperand(2)),
   2876          "Invalid shufflevector operands!", &SV);
   2877   visitInstruction(SV);
   2878 }
   2879 
   2880 void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) {
   2881   Type *TargetTy = GEP.getPointerOperandType()->getScalarType();
   2882 
   2883   Assert(isa<PointerType>(TargetTy),
   2884          "GEP base pointer is not a vector or a vector of pointers", &GEP);
   2885   Assert(GEP.getSourceElementType()->isSized(), "GEP into unsized type!", &GEP);
   2886   SmallVector<Value*, 16> Idxs(GEP.idx_begin(), GEP.idx_end());
   2887   Type *ElTy =
   2888       GetElementPtrInst::getIndexedType(GEP.getSourceElementType(), Idxs);
   2889   Assert(ElTy, "Invalid indices for GEP pointer type!", &GEP);
   2890 
   2891   Assert(GEP.getType()->getScalarType()->isPointerTy() &&
   2892              GEP.getResultElementType() == ElTy,
   2893          "GEP is not of right type for indices!", &GEP, ElTy);
   2894 
   2895   if (GEP.getType()->isVectorTy()) {
   2896     // Additional checks for vector GEPs.
   2897     unsigned GEPWidth = GEP.getType()->getVectorNumElements();
   2898     if (GEP.getPointerOperandType()->isVectorTy())
   2899       Assert(GEPWidth == GEP.getPointerOperandType()->getVectorNumElements(),
   2900              "Vector GEP result width doesn't match operand's", &GEP);
   2901     for (Value *Idx : Idxs) {
   2902       Type *IndexTy = Idx->getType();
   2903       if (IndexTy->isVectorTy()) {
   2904         unsigned IndexWidth = IndexTy->getVectorNumElements();
   2905         Assert(IndexWidth == GEPWidth, "Invalid GEP index vector width", &GEP);
   2906       }
   2907       Assert(IndexTy->getScalarType()->isIntegerTy(),
   2908              "All GEP indices should be of integer type");
   2909     }
   2910   }
   2911   visitInstruction(GEP);
   2912 }
   2913 
   2914 static bool isContiguous(const ConstantRange &A, const ConstantRange &B) {
   2915   return A.getUpper() == B.getLower() || A.getLower() == B.getUpper();
   2916 }
   2917 
   2918 void Verifier::visitRangeMetadata(Instruction& I,
   2919                                   MDNode* Range, Type* Ty) {
   2920   assert(Range &&
   2921          Range == I.getMetadata(LLVMContext::MD_range) &&
   2922          "precondition violation");
   2923 
   2924   unsigned NumOperands = Range->getNumOperands();
   2925   Assert(NumOperands % 2 == 0, "Unfinished range!", Range);
   2926   unsigned NumRanges = NumOperands / 2;
   2927   Assert(NumRanges >= 1, "It should have at least one range!", Range);
   2928 
   2929   ConstantRange LastRange(1); // Dummy initial value
   2930   for (unsigned i = 0; i < NumRanges; ++i) {
   2931     ConstantInt *Low =
   2932         mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i));
   2933     Assert(Low, "The lower limit must be an integer!", Low);
   2934     ConstantInt *High =
   2935         mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i + 1));
   2936     Assert(High, "The upper limit must be an integer!", High);
   2937     Assert(High->getType() == Low->getType() && High->getType() == Ty,
   2938            "Range types must match instruction type!", &I);
   2939 
   2940     APInt HighV = High->getValue();
   2941     APInt LowV = Low->getValue();
   2942     ConstantRange CurRange(LowV, HighV);
   2943     Assert(!CurRange.isEmptySet() && !CurRange.isFullSet(),
   2944            "Range must not be empty!", Range);
   2945     if (i != 0) {
   2946       Assert(CurRange.intersectWith(LastRange).isEmptySet(),
   2947              "Intervals are overlapping", Range);
   2948       Assert(LowV.sgt(LastRange.getLower()), "Intervals are not in order",
   2949              Range);
   2950       Assert(!isContiguous(CurRange, LastRange), "Intervals are contiguous",
   2951              Range);
   2952     }
   2953     LastRange = ConstantRange(LowV, HighV);
   2954   }
   2955   if (NumRanges > 2) {
   2956     APInt FirstLow =
   2957         mdconst::dyn_extract<ConstantInt>(Range->getOperand(0))->getValue();
   2958     APInt FirstHigh =
   2959         mdconst::dyn_extract<ConstantInt>(Range->getOperand(1))->getValue();
   2960     ConstantRange FirstRange(FirstLow, FirstHigh);
   2961     Assert(FirstRange.intersectWith(LastRange).isEmptySet(),
   2962            "Intervals are overlapping", Range);
   2963     Assert(!isContiguous(FirstRange, LastRange), "Intervals are contiguous",
   2964            Range);
   2965   }
   2966 }
   2967 
   2968 void Verifier::checkAtomicMemAccessSize(const Module *M, Type *Ty,
   2969                                         const Instruction *I) {
   2970   unsigned Size = M->getDataLayout().getTypeSizeInBits(Ty);
   2971   Assert(Size >= 8, "atomic memory access' size must be byte-sized", Ty, I);
   2972   Assert(!(Size & (Size - 1)),
   2973          "atomic memory access' operand must have a power-of-two size", Ty, I);
   2974 }
   2975 
   2976 void Verifier::visitLoadInst(LoadInst &LI) {
   2977   PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType());
   2978   Assert(PTy, "Load operand must be a pointer.", &LI);
   2979   Type *ElTy = LI.getType();
   2980   Assert(LI.getAlignment() <= Value::MaximumAlignment,
   2981          "huge alignment values are unsupported", &LI);
   2982   Assert(ElTy->isSized(), "loading unsized types is not allowed", &LI);
   2983   if (LI.isAtomic()) {
   2984     Assert(LI.getOrdering() != AtomicOrdering::Release &&
   2985                LI.getOrdering() != AtomicOrdering::AcquireRelease,
   2986            "Load cannot have Release ordering", &LI);
   2987     Assert(LI.getAlignment() != 0,
   2988            "Atomic load must specify explicit alignment", &LI);
   2989     Assert(ElTy->isIntegerTy() || ElTy->isPointerTy() ||
   2990                ElTy->isFloatingPointTy(),
   2991            "atomic load operand must have integer, pointer, or floating point "
   2992            "type!",
   2993            ElTy, &LI);
   2994     checkAtomicMemAccessSize(M, ElTy, &LI);
   2995   } else {
   2996     Assert(LI.getSynchScope() == CrossThread,
   2997            "Non-atomic load cannot have SynchronizationScope specified", &LI);
   2998   }
   2999 
   3000   visitInstruction(LI);
   3001 }
   3002 
   3003 void Verifier::visitStoreInst(StoreInst &SI) {
   3004   PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType());
   3005   Assert(PTy, "Store operand must be a pointer.", &SI);
   3006   Type *ElTy = PTy->getElementType();
   3007   Assert(ElTy == SI.getOperand(0)->getType(),
   3008          "Stored value type does not match pointer operand type!", &SI, ElTy);
   3009   Assert(SI.getAlignment() <= Value::MaximumAlignment,
   3010          "huge alignment values are unsupported", &SI);
   3011   Assert(ElTy->isSized(), "storing unsized types is not allowed", &SI);
   3012   if (SI.isAtomic()) {
   3013     Assert(SI.getOrdering() != AtomicOrdering::Acquire &&
   3014                SI.getOrdering() != AtomicOrdering::AcquireRelease,
   3015            "Store cannot have Acquire ordering", &SI);
   3016     Assert(SI.getAlignment() != 0,
   3017            "Atomic store must specify explicit alignment", &SI);
   3018     Assert(ElTy->isIntegerTy() || ElTy->isPointerTy() ||
   3019                ElTy->isFloatingPointTy(),
   3020            "atomic store operand must have integer, pointer, or floating point "
   3021            "type!",
   3022            ElTy, &SI);
   3023     checkAtomicMemAccessSize(M, ElTy, &SI);
   3024   } else {
   3025     Assert(SI.getSynchScope() == CrossThread,
   3026            "Non-atomic store cannot have SynchronizationScope specified", &SI);
   3027   }
   3028   visitInstruction(SI);
   3029 }
   3030 
   3031 /// Check that SwiftErrorVal is used as a swifterror argument in CS.
   3032 void Verifier::verifySwiftErrorCallSite(CallSite CS,
   3033                                         const Value *SwiftErrorVal) {
   3034   unsigned Idx = 0;
   3035   for (CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
   3036        I != E; ++I, ++Idx) {
   3037     if (*I == SwiftErrorVal) {
   3038       Assert(CS.paramHasAttr(Idx+1, Attribute::SwiftError),
   3039              "swifterror value when used in a callsite should be marked "
   3040              "with swifterror attribute",
   3041               SwiftErrorVal, CS);
   3042     }
   3043   }
   3044 }
   3045 
   3046 void Verifier::verifySwiftErrorValue(const Value *SwiftErrorVal) {
   3047   // Check that swifterror value is only used by loads, stores, or as
   3048   // a swifterror argument.
   3049   for (const User *U : SwiftErrorVal->users()) {
   3050     Assert(isa<LoadInst>(U) || isa<StoreInst>(U) || isa<CallInst>(U) ||
   3051            isa<InvokeInst>(U),
   3052            "swifterror value can only be loaded and stored from, or "
   3053            "as a swifterror argument!",
   3054            SwiftErrorVal, U);
   3055     // If it is used by a store, check it is the second operand.
   3056     if (auto StoreI = dyn_cast<StoreInst>(U))
   3057       Assert(StoreI->getOperand(1) == SwiftErrorVal,
   3058              "swifterror value should be the second operand when used "
   3059              "by stores", SwiftErrorVal, U);
   3060     if (auto CallI = dyn_cast<CallInst>(U))
   3061       verifySwiftErrorCallSite(const_cast<CallInst*>(CallI), SwiftErrorVal);
   3062     if (auto II = dyn_cast<InvokeInst>(U))
   3063       verifySwiftErrorCallSite(const_cast<InvokeInst*>(II), SwiftErrorVal);
   3064   }
   3065 }
   3066 
   3067 void Verifier::visitAllocaInst(AllocaInst &AI) {
   3068   SmallPtrSet<Type*, 4> Visited;
   3069   PointerType *PTy = AI.getType();
   3070   Assert(PTy->getAddressSpace() == 0,
   3071          "Allocation instruction pointer not in the generic address space!",
   3072          &AI);
   3073   Assert(AI.getAllocatedType()->isSized(&Visited),
   3074          "Cannot allocate unsized type", &AI);
   3075   Assert(AI.getArraySize()->getType()->isIntegerTy(),
   3076          "Alloca array size must have integer type", &AI);
   3077   Assert(AI.getAlignment() <= Value::MaximumAlignment,
   3078          "huge alignment values are unsupported", &AI);
   3079 
   3080   if (AI.isSwiftError()) {
   3081     verifySwiftErrorValue(&AI);
   3082   }
   3083 
   3084   visitInstruction(AI);
   3085 }
   3086 
   3087 void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) {
   3088 
   3089   // FIXME: more conditions???
   3090   Assert(CXI.getSuccessOrdering() != AtomicOrdering::NotAtomic,
   3091          "cmpxchg instructions must be atomic.", &CXI);
   3092   Assert(CXI.getFailureOrdering() != AtomicOrdering::NotAtomic,
   3093          "cmpxchg instructions must be atomic.", &CXI);
   3094   Assert(CXI.getSuccessOrdering() != AtomicOrdering::Unordered,
   3095          "cmpxchg instructions cannot be unordered.", &CXI);
   3096   Assert(CXI.getFailureOrdering() != AtomicOrdering::Unordered,
   3097          "cmpxchg instructions cannot be unordered.", &CXI);
   3098   Assert(!isStrongerThan(CXI.getFailureOrdering(), CXI.getSuccessOrdering()),
   3099          "cmpxchg instructions failure argument shall be no stronger than the "
   3100          "success argument",
   3101          &CXI);
   3102   Assert(CXI.getFailureOrdering() != AtomicOrdering::Release &&
   3103              CXI.getFailureOrdering() != AtomicOrdering::AcquireRelease,
   3104          "cmpxchg failure ordering cannot include release semantics", &CXI);
   3105 
   3106   PointerType *PTy = dyn_cast<PointerType>(CXI.getOperand(0)->getType());
   3107   Assert(PTy, "First cmpxchg operand must be a pointer.", &CXI);
   3108   Type *ElTy = PTy->getElementType();
   3109   Assert(ElTy->isIntegerTy() || ElTy->isPointerTy(),
   3110         "cmpxchg operand must have integer or pointer type",
   3111          ElTy, &CXI);
   3112   checkAtomicMemAccessSize(M, ElTy, &CXI);
   3113   Assert(ElTy == CXI.getOperand(1)->getType(),
   3114          "Expected value type does not match pointer operand type!", &CXI,
   3115          ElTy);
   3116   Assert(ElTy == CXI.getOperand(2)->getType(),
   3117          "Stored value type does not match pointer operand type!", &CXI, ElTy);
   3118   visitInstruction(CXI);
   3119 }
   3120 
   3121 void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) {
   3122   Assert(RMWI.getOrdering() != AtomicOrdering::NotAtomic,
   3123          "atomicrmw instructions must be atomic.", &RMWI);
   3124   Assert(RMWI.getOrdering() != AtomicOrdering::Unordered,
   3125          "atomicrmw instructions cannot be unordered.", &RMWI);
   3126   PointerType *PTy = dyn_cast<PointerType>(RMWI.getOperand(0)->getType());
   3127   Assert(PTy, "First atomicrmw operand must be a pointer.", &RMWI);
   3128   Type *ElTy = PTy->getElementType();
   3129   Assert(ElTy->isIntegerTy(), "atomicrmw operand must have integer type!",
   3130          &RMWI, ElTy);
   3131   checkAtomicMemAccessSize(M, ElTy, &RMWI);
   3132   Assert(ElTy == RMWI.getOperand(1)->getType(),
   3133          "Argument value type does not match pointer operand type!", &RMWI,
   3134          ElTy);
   3135   Assert(AtomicRMWInst::FIRST_BINOP <= RMWI.getOperation() &&
   3136              RMWI.getOperation() <= AtomicRMWInst::LAST_BINOP,
   3137          "Invalid binary operation!", &RMWI);
   3138   visitInstruction(RMWI);
   3139 }
   3140 
   3141 void Verifier::visitFenceInst(FenceInst &FI) {
   3142   const AtomicOrdering Ordering = FI.getOrdering();
   3143   Assert(Ordering == AtomicOrdering::Acquire ||
   3144              Ordering == AtomicOrdering::Release ||
   3145              Ordering == AtomicOrdering::AcquireRelease ||
   3146              Ordering == AtomicOrdering::SequentiallyConsistent,
   3147          "fence instructions may only have acquire, release, acq_rel, or "
   3148          "seq_cst ordering.",
   3149          &FI);
   3150   visitInstruction(FI);
   3151 }
   3152 
   3153 void Verifier::visitExtractValueInst(ExtractValueInst &EVI) {
   3154   Assert(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(),
   3155                                           EVI.getIndices()) == EVI.getType(),
   3156          "Invalid ExtractValueInst operands!", &EVI);
   3157 
   3158   visitInstruction(EVI);
   3159 }
   3160 
   3161 void Verifier::visitInsertValueInst(InsertValueInst &IVI) {
   3162   Assert(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(),
   3163                                           IVI.getIndices()) ==
   3164              IVI.getOperand(1)->getType(),
   3165          "Invalid InsertValueInst operands!", &IVI);
   3166 
   3167   visitInstruction(IVI);
   3168 }
   3169 
   3170 static Value *getParentPad(Value *EHPad) {
   3171   if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad))
   3172     return FPI->getParentPad();
   3173 
   3174   return cast<CatchSwitchInst>(EHPad)->getParentPad();
   3175 }
   3176 
   3177 void Verifier::visitEHPadPredecessors(Instruction &I) {
   3178   assert(I.isEHPad());
   3179 
   3180   BasicBlock *BB = I.getParent();
   3181   Function *F = BB->getParent();
   3182 
   3183   Assert(BB != &F->getEntryBlock(), "EH pad cannot be in entry block.", &I);
   3184 
   3185   if (auto *LPI = dyn_cast<LandingPadInst>(&I)) {
   3186     // The landingpad instruction defines its parent as a landing pad block. The
   3187     // landing pad block may be branched to only by the unwind edge of an
   3188     // invoke.
   3189     for (BasicBlock *PredBB : predecessors(BB)) {
   3190       const auto *II = dyn_cast<InvokeInst>(PredBB->getTerminator());
   3191       Assert(II && II->getUnwindDest() == BB && II->getNormalDest() != BB,
   3192              "Block containing LandingPadInst must be jumped to "
   3193              "only by the unwind edge of an invoke.",
   3194              LPI);
   3195     }
   3196     return;
   3197   }
   3198   if (auto *CPI = dyn_cast<CatchPadInst>(&I)) {
   3199     if (!pred_empty(BB))
   3200       Assert(BB->getUniquePredecessor() == CPI->getCatchSwitch()->getParent(),
   3201              "Block containg CatchPadInst must be jumped to "
   3202              "only by its catchswitch.",
   3203              CPI);
   3204     Assert(BB != CPI->getCatchSwitch()->getUnwindDest(),
   3205            "Catchswitch cannot unwind to one of its catchpads",
   3206            CPI->getCatchSwitch(), CPI);
   3207     return;
   3208   }
   3209 
   3210   // Verify that each pred has a legal terminator with a legal to/from EH
   3211   // pad relationship.
   3212   Instruction *ToPad = &I;
   3213   Value *ToPadParent = getParentPad(ToPad);
   3214   for (BasicBlock *PredBB : predecessors(BB)) {
   3215     TerminatorInst *TI = PredBB->getTerminator();
   3216     Value *FromPad;
   3217     if (auto *II = dyn_cast<InvokeInst>(TI)) {
   3218       Assert(II->getUnwindDest() == BB && II->getNormalDest() != BB,
   3219              "EH pad must be jumped to via an unwind edge", ToPad, II);
   3220       if (auto Bundle = II->getOperandBundle(LLVMContext::OB_funclet))
   3221         FromPad = Bundle->Inputs[0];
   3222       else
   3223         FromPad = ConstantTokenNone::get(II->getContext());
   3224     } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
   3225       FromPad = CRI->getOperand(0);
   3226       Assert(FromPad != ToPadParent, "A cleanupret must exit its cleanup", CRI);
   3227     } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
   3228       FromPad = CSI;
   3229     } else {
   3230       Assert(false, "EH pad must be jumped to via an unwind edge", ToPad, TI);
   3231     }
   3232 
   3233     // The edge may exit from zero or more nested pads.
   3234     SmallSet<Value *, 8> Seen;
   3235     for (;; FromPad = getParentPad(FromPad)) {
   3236       Assert(FromPad != ToPad,
   3237              "EH pad cannot handle exceptions raised within it", FromPad, TI);
   3238       if (FromPad == ToPadParent) {
   3239         // This is a legal unwind edge.
   3240         break;
   3241       }
   3242       Assert(!isa<ConstantTokenNone>(FromPad),
   3243              "A single unwind edge may only enter one EH pad", TI);
   3244       Assert(Seen.insert(FromPad).second,
   3245              "EH pad jumps through a cycle of pads", FromPad);
   3246     }
   3247   }
   3248 }
   3249 
   3250 void Verifier::visitLandingPadInst(LandingPadInst &LPI) {
   3251   // The landingpad instruction is ill-formed if it doesn't have any clauses and
   3252   // isn't a cleanup.
   3253   Assert(LPI.getNumClauses() > 0 || LPI.isCleanup(),
   3254          "LandingPadInst needs at least one clause or to be a cleanup.", &LPI);
   3255 
   3256   visitEHPadPredecessors(LPI);
   3257 
   3258   if (!LandingPadResultTy)
   3259     LandingPadResultTy = LPI.getType();
   3260   else
   3261     Assert(LandingPadResultTy == LPI.getType(),
   3262            "The landingpad instruction should have a consistent result type "
   3263            "inside a function.",
   3264            &LPI);
   3265 
   3266   Function *F = LPI.getParent()->getParent();
   3267   Assert(F->hasPersonalityFn(),
   3268          "LandingPadInst needs to be in a function with a personality.", &LPI);
   3269 
   3270   // The landingpad instruction must be the first non-PHI instruction in the
   3271   // block.
   3272   Assert(LPI.getParent()->getLandingPadInst() == &LPI,
   3273          "LandingPadInst not the first non-PHI instruction in the block.",
   3274          &LPI);
   3275 
   3276   for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) {
   3277     Constant *Clause = LPI.getClause(i);
   3278     if (LPI.isCatch(i)) {
   3279       Assert(isa<PointerType>(Clause->getType()),
   3280              "Catch operand does not have pointer type!", &LPI);
   3281     } else {
   3282       Assert(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI);
   3283       Assert(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause),
   3284              "Filter operand is not an array of constants!", &LPI);
   3285     }
   3286   }
   3287 
   3288   visitInstruction(LPI);
   3289 }
   3290 
   3291 void Verifier::visitCatchPadInst(CatchPadInst &CPI) {
   3292   BasicBlock *BB = CPI.getParent();
   3293 
   3294   Function *F = BB->getParent();
   3295   Assert(F->hasPersonalityFn(),
   3296          "CatchPadInst needs to be in a function with a personality.", &CPI);
   3297 
   3298   Assert(isa<CatchSwitchInst>(CPI.getParentPad()),
   3299          "CatchPadInst needs to be directly nested in a CatchSwitchInst.",
   3300          CPI.getParentPad());
   3301 
   3302   // The catchpad instruction must be the first non-PHI instruction in the
   3303   // block.
   3304   Assert(BB->getFirstNonPHI() == &CPI,
   3305          "CatchPadInst not the first non-PHI instruction in the block.", &CPI);
   3306 
   3307   visitEHPadPredecessors(CPI);
   3308   visitFuncletPadInst(CPI);
   3309 }
   3310 
   3311 void Verifier::visitCatchReturnInst(CatchReturnInst &CatchReturn) {
   3312   Assert(isa<CatchPadInst>(CatchReturn.getOperand(0)),
   3313          "CatchReturnInst needs to be provided a CatchPad", &CatchReturn,
   3314          CatchReturn.getOperand(0));
   3315 
   3316   visitTerminatorInst(CatchReturn);
   3317 }
   3318 
   3319 void Verifier::visitCleanupPadInst(CleanupPadInst &CPI) {
   3320   BasicBlock *BB = CPI.getParent();
   3321 
   3322   Function *F = BB->getParent();
   3323   Assert(F->hasPersonalityFn(),
   3324          "CleanupPadInst needs to be in a function with a personality.", &CPI);
   3325 
   3326   // The cleanuppad instruction must be the first non-PHI instruction in the
   3327   // block.
   3328   Assert(BB->getFirstNonPHI() == &CPI,
   3329          "CleanupPadInst not the first non-PHI instruction in the block.",
   3330          &CPI);
   3331 
   3332   auto *ParentPad = CPI.getParentPad();
   3333   Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),
   3334          "CleanupPadInst has an invalid parent.", &CPI);
   3335 
   3336   visitEHPadPredecessors(CPI);
   3337   visitFuncletPadInst(CPI);
   3338 }
   3339 
   3340 void Verifier::visitFuncletPadInst(FuncletPadInst &FPI) {
   3341   User *FirstUser = nullptr;
   3342   Value *FirstUnwindPad = nullptr;
   3343   SmallVector<FuncletPadInst *, 8> Worklist({&FPI});
   3344   SmallSet<FuncletPadInst *, 8> Seen;
   3345 
   3346   while (!Worklist.empty()) {
   3347     FuncletPadInst *CurrentPad = Worklist.pop_back_val();
   3348     Assert(Seen.insert(CurrentPad).second,
   3349            "FuncletPadInst must not be nested within itself", CurrentPad);
   3350     Value *UnresolvedAncestorPad = nullptr;
   3351     for (User *U : CurrentPad->users()) {
   3352       BasicBlock *UnwindDest;
   3353       if (auto *CRI = dyn_cast<CleanupReturnInst>(U)) {
   3354         UnwindDest = CRI->getUnwindDest();
   3355       } else if (auto *CSI = dyn_cast<CatchSwitchInst>(U)) {
   3356         // We allow catchswitch unwind to caller to nest
   3357         // within an outer pad that unwinds somewhere else,
   3358         // because catchswitch doesn't have a nounwind variant.
   3359         // See e.g. SimplifyCFGOpt::SimplifyUnreachable.
   3360         if (CSI->unwindsToCaller())
   3361           continue;
   3362         UnwindDest = CSI->getUnwindDest();
   3363       } else if (auto *II = dyn_cast<InvokeInst>(U)) {
   3364         UnwindDest = II->getUnwindDest();
   3365       } else if (isa<CallInst>(U)) {
   3366         // Calls which don't unwind may be found inside funclet
   3367         // pads that unwind somewhere else.  We don't *require*
   3368         // such calls to be annotated nounwind.
   3369         continue;
   3370       } else if (auto *CPI = dyn_cast<CleanupPadInst>(U)) {
   3371         // The unwind dest for a cleanup can only be found by
   3372         // recursive search.  Add it to the worklist, and we'll
   3373         // search for its first use that determines where it unwinds.
   3374         Worklist.push_back(CPI);
   3375         continue;
   3376       } else {
   3377         Assert(isa<CatchReturnInst>(U), "Bogus funclet pad use", U);
   3378         continue;
   3379       }
   3380 
   3381       Value *UnwindPad;
   3382       bool ExitsFPI;
   3383       if (UnwindDest) {
   3384         UnwindPad = UnwindDest->getFirstNonPHI();
   3385         if (!cast<Instruction>(UnwindPad)->isEHPad())
   3386           continue;
   3387         Value *UnwindParent = getParentPad(UnwindPad);
   3388         // Ignore unwind edges that don't exit CurrentPad.
   3389         if (UnwindParent == CurrentPad)
   3390           continue;
   3391         // Determine whether the original funclet pad is exited,
   3392         // and if we are scanning nested pads determine how many
   3393         // of them are exited so we can stop searching their
   3394         // children.
   3395         Value *ExitedPad = CurrentPad;
   3396         ExitsFPI = false;
   3397         do {
   3398           if (ExitedPad == &FPI) {
   3399             ExitsFPI = true;
   3400             // Now we can resolve any ancestors of CurrentPad up to
   3401             // FPI, but not including FPI since we need to make sure
   3402             // to check all direct users of FPI for consistency.
   3403             UnresolvedAncestorPad = &FPI;
   3404             break;
   3405           }
   3406           Value *ExitedParent = getParentPad(ExitedPad);
   3407           if (ExitedParent == UnwindParent) {
   3408             // ExitedPad is the ancestor-most pad which this unwind
   3409             // edge exits, so we can resolve up to it, meaning that
   3410             // ExitedParent is the first ancestor still unresolved.
   3411             UnresolvedAncestorPad = ExitedParent;
   3412             break;
   3413           }
   3414           ExitedPad = ExitedParent;
   3415         } while (!isa<ConstantTokenNone>(ExitedPad));
   3416       } else {
   3417         // Unwinding to caller exits all pads.
   3418         UnwindPad = ConstantTokenNone::get(FPI.getContext());
   3419         ExitsFPI = true;
   3420         UnresolvedAncestorPad = &FPI;
   3421       }
   3422 
   3423       if (ExitsFPI) {
   3424         // This unwind edge exits FPI.  Make sure it agrees with other
   3425         // such edges.
   3426         if (FirstUser) {
   3427           Assert(UnwindPad == FirstUnwindPad, "Unwind edges out of a funclet "
   3428                                               "pad must have the same unwind "
   3429                                               "dest",
   3430                  &FPI, U, FirstUser);
   3431         } else {
   3432           FirstUser = U;
   3433           FirstUnwindPad = UnwindPad;
   3434           // Record cleanup sibling unwinds for verifySiblingFuncletUnwinds
   3435           if (isa<CleanupPadInst>(&FPI) && !isa<ConstantTokenNone>(UnwindPad) &&
   3436               getParentPad(UnwindPad) == getParentPad(&FPI))
   3437             SiblingFuncletInfo[&FPI] = cast<TerminatorInst>(U);
   3438         }
   3439       }
   3440       // Make sure we visit all uses of FPI, but for nested pads stop as
   3441       // soon as we know where they unwind to.
   3442       if (CurrentPad != &FPI)
   3443         break;
   3444     }
   3445     if (UnresolvedAncestorPad) {
   3446       if (CurrentPad == UnresolvedAncestorPad) {
   3447         // When CurrentPad is FPI itself, we don't mark it as resolved even if
   3448         // we've found an unwind edge that exits it, because we need to verify
   3449         // all direct uses of FPI.
   3450         assert(CurrentPad == &FPI);
   3451         continue;
   3452       }
   3453       // Pop off the worklist any nested pads that we've found an unwind
   3454       // destination for.  The pads on the worklist are the uncles,
   3455       // great-uncles, etc. of CurrentPad.  We've found an unwind destination
   3456       // for all ancestors of CurrentPad up to but not including
   3457       // UnresolvedAncestorPad.
   3458       Value *ResolvedPad = CurrentPad;
   3459       while (!Worklist.empty()) {
   3460         Value *UnclePad = Worklist.back();
   3461         Value *AncestorPad = getParentPad(UnclePad);
   3462         // Walk ResolvedPad up the ancestor list until we either find the
   3463         // uncle's parent or the last resolved ancestor.
   3464         while (ResolvedPad != AncestorPad) {
   3465           Value *ResolvedParent = getParentPad(ResolvedPad);
   3466           if (ResolvedParent == UnresolvedAncestorPad) {
   3467             break;
   3468           }
   3469           ResolvedPad = ResolvedParent;
   3470         }
   3471         // If the resolved ancestor search didn't find the uncle's parent,
   3472         // then the uncle is not yet resolved.
   3473         if (ResolvedPad != AncestorPad)
   3474           break;
   3475         // This uncle is resolved, so pop it from the worklist.
   3476         Worklist.pop_back();
   3477       }
   3478     }
   3479   }
   3480 
   3481   if (FirstUnwindPad) {
   3482     if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FPI.getParentPad())) {
   3483       BasicBlock *SwitchUnwindDest = CatchSwitch->getUnwindDest();
   3484       Value *SwitchUnwindPad;
   3485       if (SwitchUnwindDest)
   3486         SwitchUnwindPad = SwitchUnwindDest->getFirstNonPHI();
   3487       else
   3488         SwitchUnwindPad = ConstantTokenNone::get(FPI.getContext());
   3489       Assert(SwitchUnwindPad == FirstUnwindPad,
   3490              "Unwind edges out of a catch must have the same unwind dest as "
   3491              "the parent catchswitch",
   3492              &FPI, FirstUser, CatchSwitch);
   3493     }
   3494   }
   3495 
   3496   visitInstruction(FPI);
   3497 }
   3498 
   3499 void Verifier::visitCatchSwitchInst(CatchSwitchInst &CatchSwitch) {
   3500   BasicBlock *BB = CatchSwitch.getParent();
   3501 
   3502   Function *F = BB->getParent();
   3503   Assert(F->hasPersonalityFn(),
   3504          "CatchSwitchInst needs to be in a function with a personality.",
   3505          &CatchSwitch);
   3506 
   3507   // The catchswitch instruction must be the first non-PHI instruction in the
   3508   // block.
   3509   Assert(BB->getFirstNonPHI() == &CatchSwitch,
   3510          "CatchSwitchInst not the first non-PHI instruction in the block.",
   3511          &CatchSwitch);
   3512 
   3513   auto *ParentPad = CatchSwitch.getParentPad();
   3514   Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),
   3515          "CatchSwitchInst has an invalid parent.", ParentPad);
   3516 
   3517   if (BasicBlock *UnwindDest = CatchSwitch.getUnwindDest()) {
   3518     Instruction *I = UnwindDest->getFirstNonPHI();
   3519     Assert(I->isEHPad() && !isa<LandingPadInst>(I),
   3520            "CatchSwitchInst must unwind to an EH block which is not a "
   3521            "landingpad.",
   3522            &CatchSwitch);
   3523 
   3524     // Record catchswitch sibling unwinds for verifySiblingFuncletUnwinds
   3525     if (getParentPad(I) == ParentPad)
   3526       SiblingFuncletInfo[&CatchSwitch] = &CatchSwitch;
   3527   }
   3528 
   3529   Assert(CatchSwitch.getNumHandlers() != 0,
   3530          "CatchSwitchInst cannot have empty handler list", &CatchSwitch);
   3531 
   3532   for (BasicBlock *Handler : CatchSwitch.handlers()) {
   3533     Assert(isa<CatchPadInst>(Handler->getFirstNonPHI()),
   3534            "CatchSwitchInst handlers must be catchpads", &CatchSwitch, Handler);
   3535   }
   3536 
   3537   visitEHPadPredecessors(CatchSwitch);
   3538   visitTerminatorInst(CatchSwitch);
   3539 }
   3540 
   3541 void Verifier::visitCleanupReturnInst(CleanupReturnInst &CRI) {
   3542   Assert(isa<CleanupPadInst>(CRI.getOperand(0)),
   3543          "CleanupReturnInst needs to be provided a CleanupPad", &CRI,
   3544          CRI.getOperand(0));
   3545 
   3546   if (BasicBlock *UnwindDest = CRI.getUnwindDest()) {
   3547     Instruction *I = UnwindDest->getFirstNonPHI();
   3548     Assert(I->isEHPad() && !isa<LandingPadInst>(I),
   3549            "CleanupReturnInst must unwind to an EH block which is not a "
   3550            "landingpad.",
   3551            &CRI);
   3552   }
   3553 
   3554   visitTerminatorInst(CRI);
   3555 }
   3556 
   3557 void Verifier::verifyDominatesUse(Instruction &I, unsigned i) {
   3558   Instruction *Op = cast<Instruction>(I.getOperand(i));
   3559   // If the we have an invalid invoke, don't try to compute the dominance.
   3560   // We already reject it in the invoke specific checks and the dominance
   3561   // computation doesn't handle multiple edges.
   3562   if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) {
   3563     if (II->getNormalDest() == II->getUnwindDest())
   3564       return;
   3565   }
   3566 
   3567   // Quick check whether the def has already been encountered in the same block.
   3568   // PHI nodes are not checked to prevent accepting preceeding PHIs, because PHI
   3569   // uses are defined to happen on the incoming edge, not at the instruction.
   3570   //
   3571   // FIXME: If this operand is a MetadataAsValue (wrapping a LocalAsMetadata)
   3572   // wrapping an SSA value, assert that we've already encountered it.  See
   3573   // related FIXME in Mapper::mapLocalAsMetadata in ValueMapper.cpp.
   3574   if (!isa<PHINode>(I) && InstsInThisBlock.count(Op))
   3575     return;
   3576 
   3577   const Use &U = I.getOperandUse(i);
   3578   Assert(DT.dominates(Op, U),
   3579          "Instruction does not dominate all uses!", Op, &I);
   3580 }
   3581 
   3582 void Verifier::visitDereferenceableMetadata(Instruction& I, MDNode* MD) {
   3583   Assert(I.getType()->isPointerTy(), "dereferenceable, dereferenceable_or_null "
   3584          "apply only to pointer types", &I);
   3585   Assert(isa<LoadInst>(I),
   3586          "dereferenceable, dereferenceable_or_null apply only to load"
   3587          " instructions, use attributes for calls or invokes", &I);
   3588   Assert(MD->getNumOperands() == 1, "dereferenceable, dereferenceable_or_null "
   3589          "take one operand!", &I);
   3590   ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(MD->getOperand(0));
   3591   Assert(CI && CI->getType()->isIntegerTy(64), "dereferenceable, "
   3592          "dereferenceable_or_null metadata value must be an i64!", &I);
   3593 }
   3594 
   3595 /// verifyInstruction - Verify that an instruction is well formed.
   3596 ///
   3597 void Verifier::visitInstruction(Instruction &I) {
   3598   BasicBlock *BB = I.getParent();
   3599   Assert(BB, "Instruction not embedded in basic block!", &I);
   3600 
   3601   if (!isa<PHINode>(I)) {   // Check that non-phi nodes are not self referential
   3602     for (User *U : I.users()) {
   3603       Assert(U != (User *)&I || !DT.isReachableFromEntry(BB),
   3604              "Only PHI nodes may reference their own value!", &I);
   3605     }
   3606   }
   3607 
   3608   // Check that void typed values don't have names
   3609   Assert(!I.getType()->isVoidTy() || !I.hasName(),
   3610          "Instruction has a name, but provides a void value!", &I);
   3611 
   3612   // Check that the return value of the instruction is either void or a legal
   3613   // value type.
   3614   Assert(I.getType()->isVoidTy() || I.getType()->isFirstClassType(),
   3615          "Instruction returns a non-scalar type!", &I);
   3616 
   3617   // Check that the instruction doesn't produce metadata. Calls are already
   3618   // checked against the callee type.
   3619   Assert(!I.getType()->isMetadataTy() || isa<CallInst>(I) || isa<InvokeInst>(I),
   3620          "Invalid use of metadata!", &I);
   3621 
   3622   // Check that all uses of the instruction, if they are instructions
   3623   // themselves, actually have parent basic blocks.  If the use is not an
   3624   // instruction, it is an error!
   3625   for (Use &U : I.uses()) {
   3626     if (Instruction *Used = dyn_cast<Instruction>(U.getUser()))
   3627       Assert(Used->getParent() != nullptr,
   3628              "Instruction referencing"
   3629              " instruction not embedded in a basic block!",
   3630              &I, Used);
   3631     else {
   3632       CheckFailed("Use of instruction is not an instruction!", U);
   3633       return;
   3634     }
   3635   }
   3636 
   3637   for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
   3638     Assert(I.getOperand(i) != nullptr, "Instruction has null operand!", &I);
   3639 
   3640     // Check to make sure that only first-class-values are operands to
   3641     // instructions.
   3642     if (!I.getOperand(i)->getType()->isFirstClassType()) {
   3643       Assert(0, "Instruction operands must be first-class values!", &I);
   3644     }
   3645 
   3646     if (Function *F = dyn_cast<Function>(I.getOperand(i))) {
   3647       // Check to make sure that the "address of" an intrinsic function is never
   3648       // taken.
   3649       Assert(
   3650           !F->isIntrinsic() ||
   3651               i == (isa<CallInst>(I) ? e - 1 : isa<InvokeInst>(I) ? e - 3 : 0),
   3652           "Cannot take the address of an intrinsic!", &I);
   3653       Assert(
   3654           !F->isIntrinsic() || isa<CallInst>(I) ||
   3655               F->getIntrinsicID() == Intrinsic::donothing ||
   3656               F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void ||
   3657               F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64 ||
   3658               F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint,
   3659           "Cannot invoke an intrinsic other than donothing, patchpoint or "
   3660           "statepoint",
   3661           &I);
   3662       Assert(F->getParent() == M, "Referencing function in another module!",
   3663              &I, M, F, F->getParent());
   3664     } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) {
   3665       Assert(OpBB->getParent() == BB->getParent(),
   3666              "Referring to a basic block in another function!", &I);
   3667     } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) {
   3668       Assert(OpArg->getParent() == BB->getParent(),
   3669              "Referring to an argument in another function!", &I);
   3670     } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) {
   3671       Assert(GV->getParent() == M, "Referencing global in another module!", &I, M, GV, GV->getParent());
   3672     } else if (isa<Instruction>(I.getOperand(i))) {
   3673       verifyDominatesUse(I, i);
   3674     } else if (isa<InlineAsm>(I.getOperand(i))) {
   3675       Assert((i + 1 == e && isa<CallInst>(I)) ||
   3676                  (i + 3 == e && isa<InvokeInst>(I)),
   3677              "Cannot take the address of an inline asm!", &I);
   3678     } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i))) {
   3679       if (CE->getType()->isPtrOrPtrVectorTy()) {
   3680         // If we have a ConstantExpr pointer, we need to see if it came from an
   3681         // illegal bitcast (inttoptr <constant int> )
   3682         visitConstantExprsRecursively(CE);
   3683       }
   3684     }
   3685   }
   3686 
   3687   if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) {
   3688     Assert(I.getType()->isFPOrFPVectorTy(),
   3689            "fpmath requires a floating point result!", &I);
   3690     Assert(MD->getNumOperands() == 1, "fpmath takes one operand!", &I);
   3691     if (ConstantFP *CFP0 =
   3692             mdconst::dyn_extract_or_null<ConstantFP>(MD->getOperand(0))) {
   3693       const APFloat &Accuracy = CFP0->getValueAPF();
   3694       Assert(&Accuracy.getSemantics() == &APFloat::IEEEsingle,
   3695              "fpmath accuracy must have float type", &I);
   3696       Assert(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(),
   3697              "fpmath accuracy not a positive number!", &I);
   3698     } else {
   3699       Assert(false, "invalid fpmath accuracy!", &I);
   3700     }
   3701   }
   3702 
   3703   if (MDNode *Range = I.getMetadata(LLVMContext::MD_range)) {
   3704     Assert(isa<LoadInst>(I) || isa<CallInst>(I) || isa<InvokeInst>(I),
   3705            "Ranges are only for loads, calls and invokes!", &I);
   3706     visitRangeMetadata(I, Range, I.getType());
   3707   }
   3708 
   3709   if (I.getMetadata(LLVMContext::MD_nonnull)) {
   3710     Assert(I.getType()->isPointerTy(), "nonnull applies only to pointer types",
   3711            &I);
   3712     Assert(isa<LoadInst>(I),
   3713            "nonnull applies only to load instructions, use attributes"
   3714            " for calls or invokes",
   3715            &I);
   3716   }
   3717 
   3718   if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable))
   3719     visitDereferenceableMetadata(I, MD);
   3720 
   3721   if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable_or_null))
   3722     visitDereferenceableMetadata(I, MD);
   3723 
   3724   if (MDNode *AlignMD = I.getMetadata(LLVMContext::MD_align)) {
   3725     Assert(I.getType()->isPointerTy(), "align applies only to pointer types",
   3726            &I);
   3727     Assert(isa<LoadInst>(I), "align applies only to load instructions, "
   3728            "use attributes for calls or invokes", &I);
   3729     Assert(AlignMD->getNumOperands() == 1, "align takes one operand!", &I);
   3730     ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(AlignMD->getOperand(0));
   3731     Assert(CI && CI->getType()->isIntegerTy(64),
   3732            "align metadata value must be an i64!", &I);
   3733     uint64_t Align = CI->getZExtValue();
   3734     Assert(isPowerOf2_64(Align),
   3735            "align metadata value must be a power of 2!", &I);
   3736     Assert(Align <= Value::MaximumAlignment,
   3737            "alignment is larger that implementation defined limit", &I);
   3738   }
   3739 
   3740   if (MDNode *N = I.getDebugLoc().getAsMDNode()) {
   3741     AssertDI(isa<DILocation>(N), "invalid !dbg metadata attachment", &I, N);
   3742     visitMDNode(*N);
   3743   }
   3744 
   3745   if (auto *DII = dyn_cast<DbgInfoIntrinsic>(&I))
   3746     verifyBitPieceExpression(*DII);
   3747 
   3748   InstsInThisBlock.insert(&I);
   3749 }
   3750 
   3751 /// Allow intrinsics to be verified in different ways.
   3752 void Verifier::visitIntrinsicCallSite(Intrinsic::ID ID, CallSite CS) {
   3753   Function *IF = CS.getCalledFunction();
   3754   Assert(IF->isDeclaration(), "Intrinsic functions should never be defined!",
   3755          IF);
   3756 
   3757   // Verify that the intrinsic prototype lines up with what the .td files
   3758   // describe.
   3759   FunctionType *IFTy = IF->getFunctionType();
   3760   bool IsVarArg = IFTy->isVarArg();
   3761 
   3762   SmallVector<Intrinsic::IITDescriptor, 8> Table;
   3763   getIntrinsicInfoTableEntries(ID, Table);
   3764   ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
   3765 
   3766   SmallVector<Type *, 4> ArgTys;
   3767   Assert(!Intrinsic::matchIntrinsicType(IFTy->getReturnType(),
   3768                                         TableRef, ArgTys),
   3769          "Intrinsic has incorrect return type!", IF);
   3770   for (unsigned i = 0, e = IFTy->getNumParams(); i != e; ++i)
   3771     Assert(!Intrinsic::matchIntrinsicType(IFTy->getParamType(i),
   3772                                           TableRef, ArgTys),
   3773            "Intrinsic has incorrect argument type!", IF);
   3774 
   3775   // Verify if the intrinsic call matches the vararg property.
   3776   if (IsVarArg)
   3777     Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef),
   3778            "Intrinsic was not defined with variable arguments!", IF);
   3779   else
   3780     Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef),
   3781            "Callsite was not defined with variable arguments!", IF);
   3782 
   3783   // All descriptors should be absorbed by now.
   3784   Assert(TableRef.empty(), "Intrinsic has too few arguments!", IF);
   3785 
   3786   // Now that we have the intrinsic ID and the actual argument types (and we
   3787   // know they are legal for the intrinsic!) get the intrinsic name through the
   3788   // usual means.  This allows us to verify the mangling of argument types into
   3789   // the name.
   3790   const std::string ExpectedName = Intrinsic::getName(ID, ArgTys);
   3791   Assert(ExpectedName == IF->getName(),
   3792          "Intrinsic name not mangled correctly for type arguments! "
   3793          "Should be: " +
   3794              ExpectedName,
   3795          IF);
   3796 
   3797   // If the intrinsic takes MDNode arguments, verify that they are either global
   3798   // or are local to *this* function.
   3799   for (Value *V : CS.args())
   3800     if (auto *MD = dyn_cast<MetadataAsValue>(V))
   3801       visitMetadataAsValue(*MD, CS.getCaller());
   3802 
   3803   switch (ID) {
   3804   default:
   3805     break;
   3806   case Intrinsic::ctlz:  // llvm.ctlz
   3807   case Intrinsic::cttz:  // llvm.cttz
   3808     Assert(isa<ConstantInt>(CS.getArgOperand(1)),
   3809            "is_zero_undef argument of bit counting intrinsics must be a "
   3810            "constant int",
   3811            CS);
   3812     break;
   3813   case Intrinsic::dbg_declare: // llvm.dbg.declare
   3814     Assert(isa<MetadataAsValue>(CS.getArgOperand(0)),
   3815            "invalid llvm.dbg.declare intrinsic call 1", CS);
   3816     visitDbgIntrinsic("declare", cast<DbgDeclareInst>(*CS.getInstruction()));
   3817     break;
   3818   case Intrinsic::dbg_value: // llvm.dbg.value
   3819     visitDbgIntrinsic("value", cast<DbgValueInst>(*CS.getInstruction()));
   3820     break;
   3821   case Intrinsic::memcpy:
   3822   case Intrinsic::memmove:
   3823   case Intrinsic::memset: {
   3824     ConstantInt *AlignCI = dyn_cast<ConstantInt>(CS.getArgOperand(3));
   3825     Assert(AlignCI,
   3826            "alignment argument of memory intrinsics must be a constant int",
   3827            CS);
   3828     const APInt &AlignVal = AlignCI->getValue();
   3829     Assert(AlignCI->isZero() || AlignVal.isPowerOf2(),
   3830            "alignment argument of memory intrinsics must be a power of 2", CS);
   3831     Assert(isa<ConstantInt>(CS.getArgOperand(4)),
   3832            "isvolatile argument of memory intrinsics must be a constant int",
   3833            CS);
   3834     break;
   3835   }
   3836   case Intrinsic::gcroot:
   3837   case Intrinsic::gcwrite:
   3838   case Intrinsic::gcread:
   3839     if (ID == Intrinsic::gcroot) {
   3840       AllocaInst *AI =
   3841         dyn_cast<AllocaInst>(CS.getArgOperand(0)->stripPointerCasts());
   3842       Assert(AI, "llvm.gcroot parameter #1 must be an alloca.", CS);
   3843       Assert(isa<Constant>(CS.getArgOperand(1)),
   3844              "llvm.gcroot parameter #2 must be a constant.", CS);
   3845       if (!AI->getAllocatedType()->isPointerTy()) {
   3846         Assert(!isa<ConstantPointerNull>(CS.getArgOperand(1)),
   3847                "llvm.gcroot parameter #1 must either be a pointer alloca, "
   3848                "or argument #2 must be a non-null constant.",
   3849                CS);
   3850       }
   3851     }
   3852 
   3853     Assert(CS.getParent()->getParent()->hasGC(),
   3854            "Enclosing function does not use GC.", CS);
   3855     break;
   3856   case Intrinsic::init_trampoline:
   3857     Assert(isa<Function>(CS.getArgOperand(1)->stripPointerCasts()),
   3858            "llvm.init_trampoline parameter #2 must resolve to a function.",
   3859            CS);
   3860     break;
   3861   case Intrinsic::prefetch:
   3862     Assert(isa<ConstantInt>(CS.getArgOperand(1)) &&
   3863                isa<ConstantInt>(CS.getArgOperand(2)) &&
   3864                cast<ConstantInt>(CS.getArgOperand(1))->getZExtValue() < 2 &&
   3865                cast<ConstantInt>(CS.getArgOperand(2))->getZExtValue() < 4,
   3866            "invalid arguments to llvm.prefetch", CS);
   3867     break;
   3868   case Intrinsic::stackprotector:
   3869     Assert(isa<AllocaInst>(CS.getArgOperand(1)->stripPointerCasts()),
   3870            "llvm.stackprotector parameter #2 must resolve to an alloca.", CS);
   3871     break;
   3872   case Intrinsic::lifetime_start:
   3873   case Intrinsic::lifetime_end:
   3874   case Intrinsic::invariant_start:
   3875     Assert(isa<ConstantInt>(CS.getArgOperand(0)),
   3876            "size argument of memory use markers must be a constant integer",
   3877            CS);
   3878     break;
   3879   case Intrinsic::invariant_end:
   3880     Assert(isa<ConstantInt>(CS.getArgOperand(1)),
   3881            "llvm.invariant.end parameter #2 must be a constant integer", CS);
   3882     break;
   3883 
   3884   case Intrinsic::localescape: {
   3885     BasicBlock *BB = CS.getParent();
   3886     Assert(BB == &BB->getParent()->front(),
   3887            "llvm.localescape used outside of entry block", CS);
   3888     Assert(!SawFrameEscape,
   3889            "multiple calls to llvm.localescape in one function", CS);
   3890     for (Value *Arg : CS.args()) {
   3891       if (isa<ConstantPointerNull>(Arg))
   3892         continue; // Null values are allowed as placeholders.
   3893       auto *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts());
   3894       Assert(AI && AI->isStaticAlloca(),
   3895              "llvm.localescape only accepts static allocas", CS);
   3896     }
   3897     FrameEscapeInfo[BB->getParent()].first = CS.getNumArgOperands();
   3898     SawFrameEscape = true;
   3899     break;
   3900   }
   3901   case Intrinsic::localrecover: {
   3902     Value *FnArg = CS.getArgOperand(0)->stripPointerCasts();
   3903     Function *Fn = dyn_cast<Function>(FnArg);
   3904     Assert(Fn && !Fn->isDeclaration(),
   3905            "llvm.localrecover first "
   3906            "argument must be function defined in this module",
   3907            CS);
   3908     auto *IdxArg = dyn_cast<ConstantInt>(CS.getArgOperand(2));
   3909     Assert(IdxArg, "idx argument of llvm.localrecover must be a constant int",
   3910            CS);
   3911     auto &Entry = FrameEscapeInfo[Fn];
   3912     Entry.second = unsigned(
   3913         std::max(uint64_t(Entry.second), IdxArg->getLimitedValue(~0U) + 1));
   3914     break;
   3915   }
   3916 
   3917   case Intrinsic::experimental_gc_statepoint:
   3918     Assert(!CS.isInlineAsm(),
   3919            "gc.statepoint support for inline assembly unimplemented", CS);
   3920     Assert(CS.getParent()->getParent()->hasGC(),
   3921            "Enclosing function does not use GC.", CS);
   3922 
   3923     verifyStatepoint(CS);
   3924     break;
   3925   case Intrinsic::experimental_gc_result: {
   3926     Assert(CS.getParent()->getParent()->hasGC(),
   3927            "Enclosing function does not use GC.", CS);
   3928     // Are we tied to a statepoint properly?
   3929     CallSite StatepointCS(CS.getArgOperand(0));
   3930     const Function *StatepointFn =
   3931       StatepointCS.getInstruction() ? StatepointCS.getCalledFunction() : nullptr;
   3932     Assert(StatepointFn && StatepointFn->isDeclaration() &&
   3933                StatepointFn->getIntrinsicID() ==
   3934                    Intrinsic::experimental_gc_statepoint,
   3935            "gc.result operand #1 must be from a statepoint", CS,
   3936            CS.getArgOperand(0));
   3937 
   3938     // Assert that result type matches wrapped callee.
   3939     const Value *Target = StatepointCS.getArgument(2);
   3940     auto *PT = cast<PointerType>(Target->getType());
   3941     auto *TargetFuncType = cast<FunctionType>(PT->getElementType());
   3942     Assert(CS.getType() == TargetFuncType->getReturnType(),
   3943            "gc.result result type does not match wrapped callee", CS);
   3944     break;
   3945   }
   3946   case Intrinsic::experimental_gc_relocate: {
   3947     Assert(CS.getNumArgOperands() == 3, "wrong number of arguments", CS);
   3948 
   3949     Assert(isa<PointerType>(CS.getType()->getScalarType()),
   3950            "gc.relocate must return a pointer or a vector of pointers", CS);
   3951 
   3952     // Check that this relocate is correctly tied to the statepoint
   3953 
   3954     // This is case for relocate on the unwinding path of an invoke statepoint
   3955     if (LandingPadInst *LandingPad =
   3956           dyn_cast<LandingPadInst>(CS.getArgOperand(0))) {
   3957 
   3958       const BasicBlock *InvokeBB =
   3959           LandingPad->getParent()->getUniquePredecessor();
   3960 
   3961       // Landingpad relocates should have only one predecessor with invoke
   3962       // statepoint terminator
   3963       Assert(InvokeBB, "safepoints should have unique landingpads",
   3964              LandingPad->getParent());
   3965       Assert(InvokeBB->getTerminator(), "safepoint block should be well formed",
   3966              InvokeBB);
   3967       Assert(isStatepoint(InvokeBB->getTerminator()),
   3968              "gc relocate should be linked to a statepoint", InvokeBB);
   3969     }
   3970     else {
   3971       // In all other cases relocate should be tied to the statepoint directly.
   3972       // This covers relocates on a normal return path of invoke statepoint and
   3973       // relocates of a call statepoint.
   3974       auto Token = CS.getArgOperand(0);
   3975       Assert(isa<Instruction>(Token) && isStatepoint(cast<Instruction>(Token)),
   3976              "gc relocate is incorrectly tied to the statepoint", CS, Token);
   3977     }
   3978 
   3979     // Verify rest of the relocate arguments.
   3980 
   3981     ImmutableCallSite StatepointCS(
   3982         cast<GCRelocateInst>(*CS.getInstruction()).getStatepoint());
   3983 
   3984     // Both the base and derived must be piped through the safepoint.
   3985     Value* Base = CS.getArgOperand(1);
   3986     Assert(isa<ConstantInt>(Base),
   3987            "gc.relocate operand #2 must be integer offset", CS);
   3988 
   3989     Value* Derived = CS.getArgOperand(2);
   3990     Assert(isa<ConstantInt>(Derived),
   3991            "gc.relocate operand #3 must be integer offset", CS);
   3992 
   3993     const int BaseIndex = cast<ConstantInt>(Base)->getZExtValue();
   3994     const int DerivedIndex = cast<ConstantInt>(Derived)->getZExtValue();
   3995     // Check the bounds
   3996     Assert(0 <= BaseIndex && BaseIndex < (int)StatepointCS.arg_size(),
   3997            "gc.relocate: statepoint base index out of bounds", CS);
   3998     Assert(0 <= DerivedIndex && DerivedIndex < (int)StatepointCS.arg_size(),
   3999            "gc.relocate: statepoint derived index out of bounds", CS);
   4000 
   4001     // Check that BaseIndex and DerivedIndex fall within the 'gc parameters'
   4002     // section of the statepoint's argument.
   4003     Assert(StatepointCS.arg_size() > 0,
   4004            "gc.statepoint: insufficient arguments");
   4005     Assert(isa<ConstantInt>(StatepointCS.getArgument(3)),
   4006            "gc.statement: number of call arguments must be constant integer");
   4007     const unsigned NumCallArgs =
   4008         cast<ConstantInt>(StatepointCS.getArgument(3))->getZExtValue();
   4009     Assert(StatepointCS.arg_size() > NumCallArgs + 5,
   4010            "gc.statepoint: mismatch in number of call arguments");
   4011     Assert(isa<ConstantInt>(StatepointCS.getArgument(NumCallArgs + 5)),
   4012            "gc.statepoint: number of transition arguments must be "
   4013            "a constant integer");
   4014     const int NumTransitionArgs =
   4015         cast<ConstantInt>(StatepointCS.getArgument(NumCallArgs + 5))
   4016             ->getZExtValue();
   4017     const int DeoptArgsStart = 4 + NumCallArgs + 1 + NumTransitionArgs + 1;
   4018     Assert(isa<ConstantInt>(StatepointCS.getArgument(DeoptArgsStart)),
   4019            "gc.statepoint: number of deoptimization arguments must be "
   4020            "a constant integer");
   4021     const int NumDeoptArgs =
   4022         cast<ConstantInt>(StatepointCS.getArgument(DeoptArgsStart))
   4023             ->getZExtValue();
   4024     const int GCParamArgsStart = DeoptArgsStart + 1 + NumDeoptArgs;
   4025     const int GCParamArgsEnd = StatepointCS.arg_size();
   4026     Assert(GCParamArgsStart <= BaseIndex && BaseIndex < GCParamArgsEnd,
   4027            "gc.relocate: statepoint base index doesn't fall within the "
   4028            "'gc parameters' section of the statepoint call",
   4029            CS);
   4030     Assert(GCParamArgsStart <= DerivedIndex && DerivedIndex < GCParamArgsEnd,
   4031            "gc.relocate: statepoint derived index doesn't fall within the "
   4032            "'gc parameters' section of the statepoint call",
   4033            CS);
   4034 
   4035     // Relocated value must be either a pointer type or vector-of-pointer type,
   4036     // but gc_relocate does not need to return the same pointer type as the
   4037     // relocated pointer. It can be casted to the correct type later if it's
   4038     // desired. However, they must have the same address space and 'vectorness'
   4039     GCRelocateInst &Relocate = cast<GCRelocateInst>(*CS.getInstruction());
   4040     Assert(Relocate.getDerivedPtr()->getType()->getScalarType()->isPointerTy(),
   4041            "gc.relocate: relocated value must be a gc pointer", CS);
   4042 
   4043     auto ResultType = CS.getType();
   4044     auto DerivedType = Relocate.getDerivedPtr()->getType();
   4045     Assert(ResultType->isVectorTy() == DerivedType->isVectorTy(),
   4046            "gc.relocate: vector relocates to vector and pointer to pointer",
   4047            CS);
   4048     Assert(
   4049         ResultType->getPointerAddressSpace() ==
   4050             DerivedType->getPointerAddressSpace(),
   4051         "gc.relocate: relocating a pointer shouldn't change its address space",
   4052         CS);
   4053     break;
   4054   }
   4055   case Intrinsic::eh_exceptioncode:
   4056   case Intrinsic::eh_exceptionpointer: {
   4057     Assert(isa<CatchPadInst>(CS.getArgOperand(0)),
   4058            "eh.exceptionpointer argument must be a catchpad", CS);
   4059     break;
   4060   }
   4061   case Intrinsic::masked_load: {
   4062     Assert(CS.getType()->isVectorTy(), "masked_load: must return a vector", CS);
   4063 
   4064     Value *Ptr = CS.getArgOperand(0);
   4065     //Value *Alignment = CS.getArgOperand(1);
   4066     Value *Mask = CS.getArgOperand(2);
   4067     Value *PassThru = CS.getArgOperand(3);
   4068     Assert(Mask->getType()->isVectorTy(),
   4069            "masked_load: mask must be vector", CS);
   4070 
   4071     // DataTy is the overloaded type
   4072     Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType();
   4073     Assert(DataTy == CS.getType(),
   4074            "masked_load: return must match pointer type", CS);
   4075     Assert(PassThru->getType() == DataTy,
   4076            "masked_load: pass through and data type must match", CS);
   4077     Assert(Mask->getType()->getVectorNumElements() ==
   4078            DataTy->getVectorNumElements(),
   4079            "masked_load: vector mask must be same length as data", CS);
   4080     break;
   4081   }
   4082   case Intrinsic::masked_store: {
   4083     Value *Val = CS.getArgOperand(0);
   4084     Value *Ptr = CS.getArgOperand(1);
   4085     //Value *Alignment = CS.getArgOperand(2);
   4086     Value *Mask = CS.getArgOperand(3);
   4087     Assert(Mask->getType()->isVectorTy(),
   4088            "masked_store: mask must be vector", CS);
   4089 
   4090     // DataTy is the overloaded type
   4091     Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType();
   4092     Assert(DataTy == Val->getType(),
   4093            "masked_store: storee must match pointer type", CS);
   4094     Assert(Mask->getType()->getVectorNumElements() ==
   4095            DataTy->getVectorNumElements(),
   4096            "masked_store: vector mask must be same length as data", CS);
   4097     break;
   4098   }
   4099 
   4100   case Intrinsic::experimental_guard: {
   4101     Assert(CS.isCall(), "experimental_guard cannot be invoked", CS);
   4102     Assert(CS.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1,
   4103            "experimental_guard must have exactly one "
   4104            "\"deopt\" operand bundle");
   4105     break;
   4106   }
   4107 
   4108   case Intrinsic::experimental_deoptimize: {
   4109     Assert(CS.isCall(), "experimental_deoptimize cannot be invoked", CS);
   4110     Assert(CS.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1,
   4111            "experimental_deoptimize must have exactly one "
   4112            "\"deopt\" operand bundle");
   4113     Assert(CS.getType() == CS.getInstruction()->getFunction()->getReturnType(),
   4114            "experimental_deoptimize return type must match caller return type");
   4115 
   4116     if (CS.isCall()) {
   4117       auto *DeoptCI = CS.getInstruction();
   4118       auto *RI = dyn_cast<ReturnInst>(DeoptCI->getNextNode());
   4119       Assert(RI,
   4120              "calls to experimental_deoptimize must be followed by a return");
   4121 
   4122       if (!CS.getType()->isVoidTy() && RI)
   4123         Assert(RI->getReturnValue() == DeoptCI,
   4124                "calls to experimental_deoptimize must be followed by a return "
   4125                "of the value computed by experimental_deoptimize");
   4126     }
   4127 
   4128     break;
   4129   }
   4130   };
   4131 }
   4132 
   4133 /// \brief Carefully grab the subprogram from a local scope.
   4134 ///
   4135 /// This carefully grabs the subprogram from a local scope, avoiding the
   4136 /// built-in assertions that would typically fire.
   4137 static DISubprogram *getSubprogram(Metadata *LocalScope) {
   4138   if (!LocalScope)
   4139     return nullptr;
   4140 
   4141   if (auto *SP = dyn_cast<DISubprogram>(LocalScope))
   4142     return SP;
   4143 
   4144   if (auto *LB = dyn_cast<DILexicalBlockBase>(LocalScope))
   4145     return getSubprogram(LB->getRawScope());
   4146 
   4147   // Just return null; broken scope chains are checked elsewhere.
   4148   assert(!isa<DILocalScope>(LocalScope) && "Unknown type of local scope");
   4149   return nullptr;
   4150 }
   4151 
   4152 template <class DbgIntrinsicTy>
   4153 void Verifier::visitDbgIntrinsic(StringRef Kind, DbgIntrinsicTy &DII) {
   4154   auto *MD = cast<MetadataAsValue>(DII.getArgOperand(0))->getMetadata();
   4155   AssertDI(isa<ValueAsMetadata>(MD) ||
   4156              (isa<MDNode>(MD) && !cast<MDNode>(MD)->getNumOperands()),
   4157          "invalid llvm.dbg." + Kind + " intrinsic address/value", &DII, MD);
   4158   AssertDI(isa<DILocalVariable>(DII.getRawVariable()),
   4159          "invalid llvm.dbg." + Kind + " intrinsic variable", &DII,
   4160          DII.getRawVariable());
   4161   AssertDI(isa<DIExpression>(DII.getRawExpression()),
   4162          "invalid llvm.dbg." + Kind + " intrinsic expression", &DII,
   4163          DII.getRawExpression());
   4164 
   4165   // Ignore broken !dbg attachments; they're checked elsewhere.
   4166   if (MDNode *N = DII.getDebugLoc().getAsMDNode())
   4167     if (!isa<DILocation>(N))
   4168       return;
   4169 
   4170   BasicBlock *BB = DII.getParent();
   4171   Function *F = BB ? BB->getParent() : nullptr;
   4172 
   4173   // The scopes for variables and !dbg attachments must agree.
   4174   DILocalVariable *Var = DII.getVariable();
   4175   DILocation *Loc = DII.getDebugLoc();
   4176   Assert(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment",
   4177          &DII, BB, F);
   4178 
   4179   DISubprogram *VarSP = getSubprogram(Var->getRawScope());
   4180   DISubprogram *LocSP = getSubprogram(Loc->getRawScope());
   4181   if (!VarSP || !LocSP)
   4182     return; // Broken scope chains are checked elsewhere.
   4183 
   4184   Assert(VarSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind +
   4185                              " variable and !dbg attachment",
   4186          &DII, BB, F, Var, Var->getScope()->getSubprogram(), Loc,
   4187          Loc->getScope()->getSubprogram());
   4188 }
   4189 
   4190 static uint64_t getVariableSize(const DILocalVariable &V) {
   4191   // Be careful of broken types (checked elsewhere).
   4192   const Metadata *RawType = V.getRawType();
   4193   while (RawType) {
   4194     // Try to get the size directly.
   4195     if (auto *T = dyn_cast<DIType>(RawType))
   4196       if (uint64_t Size = T->getSizeInBits())
   4197         return Size;
   4198 
   4199     if (auto *DT = dyn_cast<DIDerivedType>(RawType)) {
   4200       // Look at the base type.
   4201       RawType = DT->getRawBaseType();
   4202       continue;
   4203     }
   4204 
   4205     // Missing type or size.
   4206     break;
   4207   }
   4208 
   4209   // Fail gracefully.
   4210   return 0;
   4211 }
   4212 
   4213 void Verifier::verifyBitPieceExpression(const DbgInfoIntrinsic &I) {
   4214   DILocalVariable *V;
   4215   DIExpression *E;
   4216   if (auto *DVI = dyn_cast<DbgValueInst>(&I)) {
   4217     V = dyn_cast_or_null<DILocalVariable>(DVI->getRawVariable());
   4218     E = dyn_cast_or_null<DIExpression>(DVI->getRawExpression());
   4219   } else {
   4220     auto *DDI = cast<DbgDeclareInst>(&I);
   4221     V = dyn_cast_or_null<DILocalVariable>(DDI->getRawVariable());
   4222     E = dyn_cast_or_null<DIExpression>(DDI->getRawExpression());
   4223   }
   4224 
   4225   // We don't know whether this intrinsic verified correctly.
   4226   if (!V || !E || !E->isValid())
   4227     return;
   4228 
   4229   // Nothing to do if this isn't a bit piece expression.
   4230   if (!E->isBitPiece())
   4231     return;
   4232 
   4233   // The frontend helps out GDB by emitting the members of local anonymous
   4234   // unions as artificial local variables with shared storage. When SROA splits
   4235   // the storage for artificial local variables that are smaller than the entire
   4236   // union, the overhang piece will be outside of the allotted space for the
   4237   // variable and this check fails.
   4238   // FIXME: Remove this check as soon as clang stops doing this; it hides bugs.
   4239   if (V->isArtificial())
   4240     return;
   4241 
   4242   // If there's no size, the type is broken, but that should be checked
   4243   // elsewhere.
   4244   uint64_t VarSize = getVariableSize(*V);
   4245   if (!VarSize)
   4246     return;
   4247 
   4248   unsigned PieceSize = E->getBitPieceSize();
   4249   unsigned PieceOffset = E->getBitPieceOffset();
   4250   Assert(PieceSize + PieceOffset <= VarSize,
   4251          "piece is larger than or outside of variable", &I, V, E);
   4252   Assert(PieceSize != VarSize, "piece covers entire variable", &I, V, E);
   4253 }
   4254 
   4255 void Verifier::verifyCompileUnits() {
   4256   auto *CUs = M->getNamedMetadata("llvm.dbg.cu");
   4257   SmallPtrSet<const Metadata *, 2> Listed;
   4258   if (CUs)
   4259     Listed.insert(CUs->op_begin(), CUs->op_end());
   4260   Assert(
   4261       std::all_of(CUVisited.begin(), CUVisited.end(),
   4262                   [&Listed](const Metadata *CU) { return Listed.count(CU); }),
   4263       "All DICompileUnits must be listed in llvm.dbg.cu");
   4264   CUVisited.clear();
   4265 }
   4266 
   4267 void Verifier::verifyDeoptimizeCallingConvs() {
   4268   if (DeoptimizeDeclarations.empty())
   4269     return;
   4270 
   4271   const Function *First = DeoptimizeDeclarations[0];
   4272   for (auto *F : makeArrayRef(DeoptimizeDeclarations).slice(1)) {
   4273     Assert(First->getCallingConv() == F->getCallingConv(),
   4274            "All llvm.experimental.deoptimize declarations must have the same "
   4275            "calling convention",
   4276            First, F);
   4277   }
   4278 }
   4279 
   4280 //===----------------------------------------------------------------------===//
   4281 //  Implement the public interfaces to this file...
   4282 //===----------------------------------------------------------------------===//
   4283 
   4284 bool llvm::verifyFunction(const Function &f, raw_ostream *OS) {
   4285   Function &F = const_cast<Function &>(f);
   4286 
   4287   // Don't use a raw_null_ostream.  Printing IR is expensive.
   4288   Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/true);
   4289 
   4290   // Note that this function's return value is inverted from what you would
   4291   // expect of a function called "verify".
   4292   return !V.verify(F);
   4293 }
   4294 
   4295 bool llvm::verifyModule(const Module &M, raw_ostream *OS,
   4296                         bool *BrokenDebugInfo) {
   4297   // Don't use a raw_null_ostream.  Printing IR is expensive.
   4298   Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/!BrokenDebugInfo);
   4299 
   4300   bool Broken = false;
   4301   for (const Function &F : M)
   4302     Broken |= !V.verify(F);
   4303 
   4304   Broken |= !V.verify(M);
   4305   if (BrokenDebugInfo)
   4306     *BrokenDebugInfo = V.hasBrokenDebugInfo();
   4307   // Note that this function's return value is inverted from what you would
   4308   // expect of a function called "verify".
   4309   return Broken;
   4310 }
   4311 
   4312 namespace {
   4313 struct VerifierLegacyPass : public FunctionPass {
   4314   static char ID;
   4315 
   4316   Verifier V;
   4317   bool FatalErrors = true;
   4318 
   4319   VerifierLegacyPass()
   4320       : FunctionPass(ID),
   4321         V(&dbgs(), /*ShouldTreatBrokenDebugInfoAsError=*/false) {
   4322     initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
   4323   }
   4324   explicit VerifierLegacyPass(bool FatalErrors)
   4325       : FunctionPass(ID),
   4326         V(&dbgs(), /*ShouldTreatBrokenDebugInfoAsError=*/false),
   4327         FatalErrors(FatalErrors) {
   4328     initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
   4329   }
   4330 
   4331   bool runOnFunction(Function &F) override {
   4332     if (!V.verify(F) && FatalErrors)
   4333       report_fatal_error("Broken function found, compilation aborted!");
   4334 
   4335     return false;
   4336   }
   4337 
   4338   bool doFinalization(Module &M) override {
   4339     bool HasErrors = false;
   4340     for (Function &F : M)
   4341       if (F.isDeclaration())
   4342         HasErrors |= !V.verify(F);
   4343 
   4344     HasErrors |= !V.verify(M);
   4345     if (FatalErrors) {
   4346       if (HasErrors)
   4347         report_fatal_error("Broken module found, compilation aborted!");
   4348       assert(!V.hasBrokenDebugInfo() && "Module contains invalid debug info");
   4349     }
   4350 
   4351     // Strip broken debug info.
   4352     if (V.hasBrokenDebugInfo()) {
   4353       DiagnosticInfoIgnoringInvalidDebugMetadata DiagInvalid(M);
   4354       M.getContext().diagnose(DiagInvalid);
   4355       if (!StripDebugInfo(M))
   4356         report_fatal_error("Failed to strip malformed debug info");
   4357     }
   4358     return false;
   4359   }
   4360 
   4361   void getAnalysisUsage(AnalysisUsage &AU) const override {
   4362     AU.setPreservesAll();
   4363   }
   4364 };
   4365 }
   4366 
   4367 char VerifierLegacyPass::ID = 0;
   4368 INITIALIZE_PASS(VerifierLegacyPass, "verify", "Module Verifier", false, false)
   4369 
   4370 FunctionPass *llvm::createVerifierPass(bool FatalErrors) {
   4371   return new VerifierLegacyPass(FatalErrors);
   4372 }
   4373 
   4374 char VerifierAnalysis::PassID;
   4375 VerifierAnalysis::Result VerifierAnalysis::run(Module &M,
   4376                                                ModuleAnalysisManager &) {
   4377   Result Res;
   4378   Res.IRBroken = llvm::verifyModule(M, &dbgs(), &Res.DebugInfoBroken);
   4379   return Res;
   4380 }
   4381 
   4382 VerifierAnalysis::Result VerifierAnalysis::run(Function &F,
   4383                                                FunctionAnalysisManager &) {
   4384   return { llvm::verifyFunction(F, &dbgs()), false };
   4385 }
   4386 
   4387 PreservedAnalyses VerifierPass::run(Module &M, ModuleAnalysisManager &AM) {
   4388   auto Res = AM.getResult<VerifierAnalysis>(M);
   4389   if (FatalErrors) {
   4390     if (Res.IRBroken)
   4391       report_fatal_error("Broken module found, compilation aborted!");
   4392     assert(!Res.DebugInfoBroken && "Module contains invalid debug info");
   4393   }
   4394 
   4395   // Strip broken debug info.
   4396   if (Res.DebugInfoBroken) {
   4397     DiagnosticInfoIgnoringInvalidDebugMetadata DiagInvalid(M);
   4398     M.getContext().diagnose(DiagInvalid);
   4399     if (!StripDebugInfo(M))
   4400       report_fatal_error("Failed to strip malformed debug info");
   4401   }
   4402   return PreservedAnalyses::all();
   4403 }
   4404 
   4405 PreservedAnalyses VerifierPass::run(Function &F, FunctionAnalysisManager &AM) {
   4406   auto res = AM.getResult<VerifierAnalysis>(F);
   4407   if (res.IRBroken && FatalErrors)
   4408     report_fatal_error("Broken function found, compilation aborted!");
   4409 
   4410   return PreservedAnalyses::all();
   4411 }
   4412