Home | History | Annotate | Download | only in InstPrinter
      1 //===-- X86IntelInstPrinter.cpp - Intel assembly instruction printing -----===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file includes code for rendering MCInst instances as Intel-style
     11 // assembly.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "X86IntelInstPrinter.h"
     16 #include "MCTargetDesc/X86BaseInfo.h"
     17 #include "MCTargetDesc/X86MCTargetDesc.h"
     18 #include "X86InstComments.h"
     19 #include "llvm/MC/MCExpr.h"
     20 #include "llvm/MC/MCInst.h"
     21 #include "llvm/MC/MCInstrInfo.h"
     22 #include "llvm/Support/ErrorHandling.h"
     23 #include "llvm/Support/FormattedStream.h"
     24 #include <cctype>
     25 using namespace llvm;
     26 
     27 #define DEBUG_TYPE "asm-printer"
     28 
     29 #include "X86GenAsmWriter1.inc"
     30 
     31 void X86IntelInstPrinter::printRegName(raw_ostream &OS, unsigned RegNo) const {
     32   OS << getRegisterName(RegNo);
     33 }
     34 
     35 void X86IntelInstPrinter::printInst(const MCInst *MI, raw_ostream &OS,
     36                                     StringRef Annot,
     37                                     const MCSubtargetInfo &STI) {
     38   const MCInstrDesc &Desc = MII.get(MI->getOpcode());
     39   uint64_t TSFlags = Desc.TSFlags;
     40 
     41   if (TSFlags & X86II::LOCK)
     42     OS << "\tlock\n";
     43 
     44   printInstruction(MI, OS);
     45 
     46   // Next always print the annotation.
     47   printAnnotation(OS, Annot);
     48 
     49   // If verbose assembly is enabled, we can print some informative comments.
     50   if (CommentStream)
     51     EmitAnyX86InstComments(MI, *CommentStream, getRegisterName);
     52 }
     53 
     54 void X86IntelInstPrinter::printSSEAVXCC(const MCInst *MI, unsigned Op,
     55                                         raw_ostream &O) {
     56   int64_t Imm = MI->getOperand(Op).getImm();
     57   switch (Imm) {
     58   default: llvm_unreachable("Invalid avxcc argument!");
     59   case    0: O << "eq"; break;
     60   case    1: O << "lt"; break;
     61   case    2: O << "le"; break;
     62   case    3: O << "unord"; break;
     63   case    4: O << "neq"; break;
     64   case    5: O << "nlt"; break;
     65   case    6: O << "nle"; break;
     66   case    7: O << "ord"; break;
     67   case    8: O << "eq_uq"; break;
     68   case    9: O << "nge"; break;
     69   case  0xa: O << "ngt"; break;
     70   case  0xb: O << "false"; break;
     71   case  0xc: O << "neq_oq"; break;
     72   case  0xd: O << "ge"; break;
     73   case  0xe: O << "gt"; break;
     74   case  0xf: O << "true"; break;
     75   case 0x10: O << "eq_os"; break;
     76   case 0x11: O << "lt_oq"; break;
     77   case 0x12: O << "le_oq"; break;
     78   case 0x13: O << "unord_s"; break;
     79   case 0x14: O << "neq_us"; break;
     80   case 0x15: O << "nlt_uq"; break;
     81   case 0x16: O << "nle_uq"; break;
     82   case 0x17: O << "ord_s"; break;
     83   case 0x18: O << "eq_us"; break;
     84   case 0x19: O << "nge_uq"; break;
     85   case 0x1a: O << "ngt_uq"; break;
     86   case 0x1b: O << "false_os"; break;
     87   case 0x1c: O << "neq_os"; break;
     88   case 0x1d: O << "ge_oq"; break;
     89   case 0x1e: O << "gt_oq"; break;
     90   case 0x1f: O << "true_us"; break;
     91   }
     92 }
     93 
     94 void X86IntelInstPrinter::printXOPCC(const MCInst *MI, unsigned Op,
     95                                      raw_ostream &O) {
     96   int64_t Imm = MI->getOperand(Op).getImm();
     97   switch (Imm) {
     98   default: llvm_unreachable("Invalid xopcc argument!");
     99   case 0: O << "lt"; break;
    100   case 1: O << "le"; break;
    101   case 2: O << "gt"; break;
    102   case 3: O << "ge"; break;
    103   case 4: O << "eq"; break;
    104   case 5: O << "neq"; break;
    105   case 6: O << "false"; break;
    106   case 7: O << "true"; break;
    107   }
    108 }
    109 
    110 void X86IntelInstPrinter::printRoundingControl(const MCInst *MI, unsigned Op,
    111                                                raw_ostream &O) {
    112   int64_t Imm = MI->getOperand(Op).getImm() & 0x3;
    113   switch (Imm) {
    114   case 0: O << "{rn-sae}"; break;
    115   case 1: O << "{rd-sae}"; break;
    116   case 2: O << "{ru-sae}"; break;
    117   case 3: O << "{rz-sae}"; break;
    118   }
    119 }
    120 
    121 /// printPCRelImm - This is used to print an immediate value that ends up
    122 /// being encoded as a pc-relative value.
    123 void X86IntelInstPrinter::printPCRelImm(const MCInst *MI, unsigned OpNo,
    124                                         raw_ostream &O) {
    125   const MCOperand &Op = MI->getOperand(OpNo);
    126   if (Op.isImm())
    127     O << formatImm(Op.getImm());
    128   else {
    129     assert(Op.isExpr() && "unknown pcrel immediate operand");
    130     // If a symbolic branch target was added as a constant expression then print
    131     // that address in hex.
    132     const MCConstantExpr *BranchTarget = dyn_cast<MCConstantExpr>(Op.getExpr());
    133     int64_t Address;
    134     if (BranchTarget && BranchTarget->evaluateAsAbsolute(Address)) {
    135       O << formatHex((uint64_t)Address);
    136     }
    137     else {
    138       // Otherwise, just print the expression.
    139       Op.getExpr()->print(O, &MAI);
    140     }
    141   }
    142 }
    143 
    144 void X86IntelInstPrinter::printOperand(const MCInst *MI, unsigned OpNo,
    145                                        raw_ostream &O) {
    146   const MCOperand &Op = MI->getOperand(OpNo);
    147   if (Op.isReg()) {
    148     printRegName(O, Op.getReg());
    149   } else if (Op.isImm()) {
    150     O << formatImm((int64_t)Op.getImm());
    151   } else {
    152     assert(Op.isExpr() && "unknown operand kind in printOperand");
    153     Op.getExpr()->print(O, &MAI);
    154   }
    155 }
    156 
    157 void X86IntelInstPrinter::printMemReference(const MCInst *MI, unsigned Op,
    158                                             raw_ostream &O) {
    159   const MCOperand &BaseReg  = MI->getOperand(Op+X86::AddrBaseReg);
    160   unsigned ScaleVal         = MI->getOperand(Op+X86::AddrScaleAmt).getImm();
    161   const MCOperand &IndexReg = MI->getOperand(Op+X86::AddrIndexReg);
    162   const MCOperand &DispSpec = MI->getOperand(Op+X86::AddrDisp);
    163   const MCOperand &SegReg   = MI->getOperand(Op+X86::AddrSegmentReg);
    164 
    165   // If this has a segment register, print it.
    166   if (SegReg.getReg()) {
    167     printOperand(MI, Op+X86::AddrSegmentReg, O);
    168     O << ':';
    169   }
    170 
    171   O << '[';
    172 
    173   bool NeedPlus = false;
    174   if (BaseReg.getReg()) {
    175     printOperand(MI, Op+X86::AddrBaseReg, O);
    176     NeedPlus = true;
    177   }
    178 
    179   if (IndexReg.getReg()) {
    180     if (NeedPlus) O << " + ";
    181     if (ScaleVal != 1)
    182       O << ScaleVal << '*';
    183     printOperand(MI, Op+X86::AddrIndexReg, O);
    184     NeedPlus = true;
    185   }
    186 
    187   if (!DispSpec.isImm()) {
    188     if (NeedPlus) O << " + ";
    189     assert(DispSpec.isExpr() && "non-immediate displacement for LEA?");
    190     DispSpec.getExpr()->print(O, &MAI);
    191   } else {
    192     int64_t DispVal = DispSpec.getImm();
    193     if (DispVal || (!IndexReg.getReg() && !BaseReg.getReg())) {
    194       if (NeedPlus) {
    195         if (DispVal > 0)
    196           O << " + ";
    197         else {
    198           O << " - ";
    199           DispVal = -DispVal;
    200         }
    201       }
    202       O << formatImm(DispVal);
    203     }
    204   }
    205 
    206   O << ']';
    207 }
    208 
    209 void X86IntelInstPrinter::printSrcIdx(const MCInst *MI, unsigned Op,
    210                                       raw_ostream &O) {
    211   const MCOperand &SegReg   = MI->getOperand(Op+1);
    212 
    213   // If this has a segment register, print it.
    214   if (SegReg.getReg()) {
    215     printOperand(MI, Op+1, O);
    216     O << ':';
    217   }
    218   O << '[';
    219   printOperand(MI, Op, O);
    220   O << ']';
    221 }
    222 
    223 void X86IntelInstPrinter::printDstIdx(const MCInst *MI, unsigned Op,
    224                                       raw_ostream &O) {
    225   // DI accesses are always ES-based.
    226   O << "es:[";
    227   printOperand(MI, Op, O);
    228   O << ']';
    229 }
    230 
    231 void X86IntelInstPrinter::printMemOffset(const MCInst *MI, unsigned Op,
    232                                          raw_ostream &O) {
    233   const MCOperand &DispSpec = MI->getOperand(Op);
    234   const MCOperand &SegReg   = MI->getOperand(Op+1);
    235 
    236   // If this has a segment register, print it.
    237   if (SegReg.getReg()) {
    238     printOperand(MI, Op+1, O);
    239     O << ':';
    240   }
    241 
    242   O << '[';
    243 
    244   if (DispSpec.isImm()) {
    245     O << formatImm(DispSpec.getImm());
    246   } else {
    247     assert(DispSpec.isExpr() && "non-immediate displacement?");
    248     DispSpec.getExpr()->print(O, &MAI);
    249   }
    250 
    251   O << ']';
    252 }
    253 
    254 void X86IntelInstPrinter::printU8Imm(const MCInst *MI, unsigned Op,
    255                                      raw_ostream &O) {
    256   O << formatImm(MI->getOperand(Op).getImm() & 0xff);
    257 }
    258