Home | History | Annotate | Download | only in X86
      1 //===-- X86FloatingPoint.cpp - Floating point Reg -> Stack converter ------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the pass which converts floating point instructions from
     11 // pseudo registers into register stack instructions.  This pass uses live
     12 // variable information to indicate where the FPn registers are used and their
     13 // lifetimes.
     14 //
     15 // The x87 hardware tracks liveness of the stack registers, so it is necessary
     16 // to implement exact liveness tracking between basic blocks. The CFG edges are
     17 // partitioned into bundles where the same FP registers must be live in
     18 // identical stack positions. Instructions are inserted at the end of each basic
     19 // block to rearrange the live registers to match the outgoing bundle.
     20 //
     21 // This approach avoids splitting critical edges at the potential cost of more
     22 // live register shuffling instructions when critical edges are present.
     23 //
     24 //===----------------------------------------------------------------------===//
     25 
     26 #include "X86.h"
     27 #include "X86InstrInfo.h"
     28 #include "llvm/ADT/DepthFirstIterator.h"
     29 #include "llvm/ADT/STLExtras.h"
     30 #include "llvm/ADT/SmallPtrSet.h"
     31 #include "llvm/ADT/SmallSet.h"
     32 #include "llvm/ADT/SmallVector.h"
     33 #include "llvm/ADT/Statistic.h"
     34 #include "llvm/CodeGen/EdgeBundles.h"
     35 #include "llvm/CodeGen/LivePhysRegs.h"
     36 #include "llvm/CodeGen/MachineFunctionPass.h"
     37 #include "llvm/CodeGen/MachineInstrBuilder.h"
     38 #include "llvm/CodeGen/MachineRegisterInfo.h"
     39 #include "llvm/CodeGen/Passes.h"
     40 #include "llvm/IR/InlineAsm.h"
     41 #include "llvm/Support/Debug.h"
     42 #include "llvm/Support/ErrorHandling.h"
     43 #include "llvm/Support/raw_ostream.h"
     44 #include "llvm/Target/TargetInstrInfo.h"
     45 #include "llvm/Target/TargetMachine.h"
     46 #include "llvm/Target/TargetSubtargetInfo.h"
     47 #include <algorithm>
     48 #include <bitset>
     49 using namespace llvm;
     50 
     51 #define DEBUG_TYPE "x86-codegen"
     52 
     53 STATISTIC(NumFXCH, "Number of fxch instructions inserted");
     54 STATISTIC(NumFP  , "Number of floating point instructions");
     55 
     56 namespace {
     57   const unsigned ScratchFPReg = 7;
     58 
     59   struct FPS : public MachineFunctionPass {
     60     static char ID;
     61     FPS() : MachineFunctionPass(ID) {
     62       initializeEdgeBundlesPass(*PassRegistry::getPassRegistry());
     63       // This is really only to keep valgrind quiet.
     64       // The logic in isLive() is too much for it.
     65       memset(Stack, 0, sizeof(Stack));
     66       memset(RegMap, 0, sizeof(RegMap));
     67     }
     68 
     69     void getAnalysisUsage(AnalysisUsage &AU) const override {
     70       AU.setPreservesCFG();
     71       AU.addRequired<EdgeBundles>();
     72       AU.addPreservedID(MachineLoopInfoID);
     73       AU.addPreservedID(MachineDominatorsID);
     74       MachineFunctionPass::getAnalysisUsage(AU);
     75     }
     76 
     77     bool runOnMachineFunction(MachineFunction &MF) override;
     78 
     79     MachineFunctionProperties getRequiredProperties() const override {
     80       return MachineFunctionProperties().set(
     81           MachineFunctionProperties::Property::AllVRegsAllocated);
     82     }
     83 
     84     const char *getPassName() const override { return "X86 FP Stackifier"; }
     85 
     86   private:
     87     const TargetInstrInfo *TII; // Machine instruction info.
     88 
     89     // Two CFG edges are related if they leave the same block, or enter the same
     90     // block. The transitive closure of an edge under this relation is a
     91     // LiveBundle. It represents a set of CFG edges where the live FP stack
     92     // registers must be allocated identically in the x87 stack.
     93     //
     94     // A LiveBundle is usually all the edges leaving a block, or all the edges
     95     // entering a block, but it can contain more edges if critical edges are
     96     // present.
     97     //
     98     // The set of live FP registers in a LiveBundle is calculated by bundleCFG,
     99     // but the exact mapping of FP registers to stack slots is fixed later.
    100     struct LiveBundle {
    101       // Bit mask of live FP registers. Bit 0 = FP0, bit 1 = FP1, &c.
    102       unsigned Mask;
    103 
    104       // Number of pre-assigned live registers in FixStack. This is 0 when the
    105       // stack order has not yet been fixed.
    106       unsigned FixCount;
    107 
    108       // Assigned stack order for live-in registers.
    109       // FixStack[i] == getStackEntry(i) for all i < FixCount.
    110       unsigned char FixStack[8];
    111 
    112       LiveBundle() : Mask(0), FixCount(0) {}
    113 
    114       // Have the live registers been assigned a stack order yet?
    115       bool isFixed() const { return !Mask || FixCount; }
    116     };
    117 
    118     // Numbered LiveBundle structs. LiveBundles[0] is used for all CFG edges
    119     // with no live FP registers.
    120     SmallVector<LiveBundle, 8> LiveBundles;
    121 
    122     // The edge bundle analysis provides indices into the LiveBundles vector.
    123     EdgeBundles *Bundles;
    124 
    125     // Return a bitmask of FP registers in block's live-in list.
    126     static unsigned calcLiveInMask(MachineBasicBlock *MBB) {
    127       unsigned Mask = 0;
    128       for (const auto &LI : MBB->liveins()) {
    129         if (LI.PhysReg < X86::FP0 || LI.PhysReg > X86::FP6)
    130           continue;
    131         Mask |= 1 << (LI.PhysReg - X86::FP0);
    132       }
    133       return Mask;
    134     }
    135 
    136     // Partition all the CFG edges into LiveBundles.
    137     void bundleCFG(MachineFunction &MF);
    138 
    139     MachineBasicBlock *MBB;     // Current basic block
    140 
    141     // The hardware keeps track of how many FP registers are live, so we have
    142     // to model that exactly. Usually, each live register corresponds to an
    143     // FP<n> register, but when dealing with calls, returns, and inline
    144     // assembly, it is sometimes necessary to have live scratch registers.
    145     unsigned Stack[8];          // FP<n> Registers in each stack slot...
    146     unsigned StackTop;          // The current top of the FP stack.
    147 
    148     enum {
    149       NumFPRegs = 8             // Including scratch pseudo-registers.
    150     };
    151 
    152     // For each live FP<n> register, point to its Stack[] entry.
    153     // The first entries correspond to FP0-FP6, the rest are scratch registers
    154     // used when we need slightly different live registers than what the
    155     // register allocator thinks.
    156     unsigned RegMap[NumFPRegs];
    157 
    158     // Set up our stack model to match the incoming registers to MBB.
    159     void setupBlockStack();
    160 
    161     // Shuffle live registers to match the expectations of successor blocks.
    162     void finishBlockStack();
    163 
    164 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
    165     void dumpStack() const {
    166       dbgs() << "Stack contents:";
    167       for (unsigned i = 0; i != StackTop; ++i) {
    168         dbgs() << " FP" << Stack[i];
    169         assert(RegMap[Stack[i]] == i && "Stack[] doesn't match RegMap[]!");
    170       }
    171     }
    172 #endif
    173 
    174     /// getSlot - Return the stack slot number a particular register number is
    175     /// in.
    176     unsigned getSlot(unsigned RegNo) const {
    177       assert(RegNo < NumFPRegs && "Regno out of range!");
    178       return RegMap[RegNo];
    179     }
    180 
    181     /// isLive - Is RegNo currently live in the stack?
    182     bool isLive(unsigned RegNo) const {
    183       unsigned Slot = getSlot(RegNo);
    184       return Slot < StackTop && Stack[Slot] == RegNo;
    185     }
    186 
    187     /// getStackEntry - Return the X86::FP<n> register in register ST(i).
    188     unsigned getStackEntry(unsigned STi) const {
    189       if (STi >= StackTop)
    190         report_fatal_error("Access past stack top!");
    191       return Stack[StackTop-1-STi];
    192     }
    193 
    194     /// getSTReg - Return the X86::ST(i) register which contains the specified
    195     /// FP<RegNo> register.
    196     unsigned getSTReg(unsigned RegNo) const {
    197       return StackTop - 1 - getSlot(RegNo) + X86::ST0;
    198     }
    199 
    200     // pushReg - Push the specified FP<n> register onto the stack.
    201     void pushReg(unsigned Reg) {
    202       assert(Reg < NumFPRegs && "Register number out of range!");
    203       if (StackTop >= 8)
    204         report_fatal_error("Stack overflow!");
    205       Stack[StackTop] = Reg;
    206       RegMap[Reg] = StackTop++;
    207     }
    208 
    209     bool isAtTop(unsigned RegNo) const { return getSlot(RegNo) == StackTop-1; }
    210     void moveToTop(unsigned RegNo, MachineBasicBlock::iterator I) {
    211       DebugLoc dl = I == MBB->end() ? DebugLoc() : I->getDebugLoc();
    212       if (isAtTop(RegNo)) return;
    213 
    214       unsigned STReg = getSTReg(RegNo);
    215       unsigned RegOnTop = getStackEntry(0);
    216 
    217       // Swap the slots the regs are in.
    218       std::swap(RegMap[RegNo], RegMap[RegOnTop]);
    219 
    220       // Swap stack slot contents.
    221       if (RegMap[RegOnTop] >= StackTop)
    222         report_fatal_error("Access past stack top!");
    223       std::swap(Stack[RegMap[RegOnTop]], Stack[StackTop-1]);
    224 
    225       // Emit an fxch to update the runtime processors version of the state.
    226       BuildMI(*MBB, I, dl, TII->get(X86::XCH_F)).addReg(STReg);
    227       ++NumFXCH;
    228     }
    229 
    230     void duplicateToTop(unsigned RegNo, unsigned AsReg,
    231                         MachineBasicBlock::iterator I) {
    232       DebugLoc dl = I == MBB->end() ? DebugLoc() : I->getDebugLoc();
    233       unsigned STReg = getSTReg(RegNo);
    234       pushReg(AsReg);   // New register on top of stack
    235 
    236       BuildMI(*MBB, I, dl, TII->get(X86::LD_Frr)).addReg(STReg);
    237     }
    238 
    239     /// popStackAfter - Pop the current value off of the top of the FP stack
    240     /// after the specified instruction.
    241     void popStackAfter(MachineBasicBlock::iterator &I);
    242 
    243     /// freeStackSlotAfter - Free the specified register from the register
    244     /// stack, so that it is no longer in a register.  If the register is
    245     /// currently at the top of the stack, we just pop the current instruction,
    246     /// otherwise we store the current top-of-stack into the specified slot,
    247     /// then pop the top of stack.
    248     void freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned Reg);
    249 
    250     /// freeStackSlotBefore - Just the pop, no folding. Return the inserted
    251     /// instruction.
    252     MachineBasicBlock::iterator
    253     freeStackSlotBefore(MachineBasicBlock::iterator I, unsigned FPRegNo);
    254 
    255     /// Adjust the live registers to be the set in Mask.
    256     void adjustLiveRegs(unsigned Mask, MachineBasicBlock::iterator I);
    257 
    258     /// Shuffle the top FixCount stack entries such that FP reg FixStack[0] is
    259     /// st(0), FP reg FixStack[1] is st(1) etc.
    260     void shuffleStackTop(const unsigned char *FixStack, unsigned FixCount,
    261                          MachineBasicBlock::iterator I);
    262 
    263     bool processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB);
    264 
    265     void handleCall(MachineBasicBlock::iterator &I);
    266     void handleReturn(MachineBasicBlock::iterator &I);
    267     void handleZeroArgFP(MachineBasicBlock::iterator &I);
    268     void handleOneArgFP(MachineBasicBlock::iterator &I);
    269     void handleOneArgFPRW(MachineBasicBlock::iterator &I);
    270     void handleTwoArgFP(MachineBasicBlock::iterator &I);
    271     void handleCompareFP(MachineBasicBlock::iterator &I);
    272     void handleCondMovFP(MachineBasicBlock::iterator &I);
    273     void handleSpecialFP(MachineBasicBlock::iterator &I);
    274 
    275     // Check if a COPY instruction is using FP registers.
    276     static bool isFPCopy(MachineInstr &MI) {
    277       unsigned DstReg = MI.getOperand(0).getReg();
    278       unsigned SrcReg = MI.getOperand(1).getReg();
    279 
    280       return X86::RFP80RegClass.contains(DstReg) ||
    281         X86::RFP80RegClass.contains(SrcReg);
    282     }
    283 
    284     void setKillFlags(MachineBasicBlock &MBB) const;
    285   };
    286   char FPS::ID = 0;
    287 }
    288 
    289 FunctionPass *llvm::createX86FloatingPointStackifierPass() { return new FPS(); }
    290 
    291 /// getFPReg - Return the X86::FPx register number for the specified operand.
    292 /// For example, this returns 3 for X86::FP3.
    293 static unsigned getFPReg(const MachineOperand &MO) {
    294   assert(MO.isReg() && "Expected an FP register!");
    295   unsigned Reg = MO.getReg();
    296   assert(Reg >= X86::FP0 && Reg <= X86::FP6 && "Expected FP register!");
    297   return Reg - X86::FP0;
    298 }
    299 
    300 /// runOnMachineFunction - Loop over all of the basic blocks, transforming FP
    301 /// register references into FP stack references.
    302 ///
    303 bool FPS::runOnMachineFunction(MachineFunction &MF) {
    304   // We only need to run this pass if there are any FP registers used in this
    305   // function.  If it is all integer, there is nothing for us to do!
    306   bool FPIsUsed = false;
    307 
    308   static_assert(X86::FP6 == X86::FP0+6, "Register enums aren't sorted right!");
    309   const MachineRegisterInfo &MRI = MF.getRegInfo();
    310   for (unsigned i = 0; i <= 6; ++i)
    311     if (!MRI.reg_nodbg_empty(X86::FP0 + i)) {
    312       FPIsUsed = true;
    313       break;
    314     }
    315 
    316   // Early exit.
    317   if (!FPIsUsed) return false;
    318 
    319   Bundles = &getAnalysis<EdgeBundles>();
    320   TII = MF.getSubtarget().getInstrInfo();
    321 
    322   // Prepare cross-MBB liveness.
    323   bundleCFG(MF);
    324 
    325   StackTop = 0;
    326 
    327   // Process the function in depth first order so that we process at least one
    328   // of the predecessors for every reachable block in the function.
    329   SmallPtrSet<MachineBasicBlock*, 8> Processed;
    330   MachineBasicBlock *Entry = &MF.front();
    331 
    332   bool Changed = false;
    333   for (MachineBasicBlock *BB : depth_first_ext(Entry, Processed))
    334     Changed |= processBasicBlock(MF, *BB);
    335 
    336   // Process any unreachable blocks in arbitrary order now.
    337   if (MF.size() != Processed.size())
    338     for (MachineBasicBlock &BB : MF)
    339       if (Processed.insert(&BB).second)
    340         Changed |= processBasicBlock(MF, BB);
    341 
    342   LiveBundles.clear();
    343 
    344   return Changed;
    345 }
    346 
    347 /// bundleCFG - Scan all the basic blocks to determine consistent live-in and
    348 /// live-out sets for the FP registers. Consistent means that the set of
    349 /// registers live-out from a block is identical to the live-in set of all
    350 /// successors. This is not enforced by the normal live-in lists since
    351 /// registers may be implicitly defined, or not used by all successors.
    352 void FPS::bundleCFG(MachineFunction &MF) {
    353   assert(LiveBundles.empty() && "Stale data in LiveBundles");
    354   LiveBundles.resize(Bundles->getNumBundles());
    355 
    356   // Gather the actual live-in masks for all MBBs.
    357   for (MachineBasicBlock &MBB : MF) {
    358     const unsigned Mask = calcLiveInMask(&MBB);
    359     if (!Mask)
    360       continue;
    361     // Update MBB ingoing bundle mask.
    362     LiveBundles[Bundles->getBundle(MBB.getNumber(), false)].Mask |= Mask;
    363   }
    364 }
    365 
    366 /// processBasicBlock - Loop over all of the instructions in the basic block,
    367 /// transforming FP instructions into their stack form.
    368 ///
    369 bool FPS::processBasicBlock(MachineFunction &MF, MachineBasicBlock &BB) {
    370   bool Changed = false;
    371   MBB = &BB;
    372 
    373   setKillFlags(BB);
    374   setupBlockStack();
    375 
    376   for (MachineBasicBlock::iterator I = BB.begin(); I != BB.end(); ++I) {
    377     MachineInstr &MI = *I;
    378     uint64_t Flags = MI.getDesc().TSFlags;
    379 
    380     unsigned FPInstClass = Flags & X86II::FPTypeMask;
    381     if (MI.isInlineAsm())
    382       FPInstClass = X86II::SpecialFP;
    383 
    384     if (MI.isCopy() && isFPCopy(MI))
    385       FPInstClass = X86II::SpecialFP;
    386 
    387     if (MI.isImplicitDef() &&
    388         X86::RFP80RegClass.contains(MI.getOperand(0).getReg()))
    389       FPInstClass = X86II::SpecialFP;
    390 
    391     if (MI.isCall())
    392       FPInstClass = X86II::SpecialFP;
    393 
    394     if (FPInstClass == X86II::NotFP)
    395       continue;  // Efficiently ignore non-fp insts!
    396 
    397     MachineInstr *PrevMI = nullptr;
    398     if (I != BB.begin())
    399       PrevMI = &*std::prev(I);
    400 
    401     ++NumFP;  // Keep track of # of pseudo instrs
    402     DEBUG(dbgs() << "\nFPInst:\t" << MI);
    403 
    404     // Get dead variables list now because the MI pointer may be deleted as part
    405     // of processing!
    406     SmallVector<unsigned, 8> DeadRegs;
    407     for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
    408       const MachineOperand &MO = MI.getOperand(i);
    409       if (MO.isReg() && MO.isDead())
    410         DeadRegs.push_back(MO.getReg());
    411     }
    412 
    413     switch (FPInstClass) {
    414     case X86II::ZeroArgFP:  handleZeroArgFP(I); break;
    415     case X86II::OneArgFP:   handleOneArgFP(I);  break;  // fstp ST(0)
    416     case X86II::OneArgFPRW: handleOneArgFPRW(I); break; // ST(0) = fsqrt(ST(0))
    417     case X86II::TwoArgFP:   handleTwoArgFP(I);  break;
    418     case X86II::CompareFP:  handleCompareFP(I); break;
    419     case X86II::CondMovFP:  handleCondMovFP(I); break;
    420     case X86II::SpecialFP:  handleSpecialFP(I); break;
    421     default: llvm_unreachable("Unknown FP Type!");
    422     }
    423 
    424     // Check to see if any of the values defined by this instruction are dead
    425     // after definition.  If so, pop them.
    426     for (unsigned i = 0, e = DeadRegs.size(); i != e; ++i) {
    427       unsigned Reg = DeadRegs[i];
    428       // Check if Reg is live on the stack. An inline-asm register operand that
    429       // is in the clobber list and marked dead might not be live on the stack.
    430       if (Reg >= X86::FP0 && Reg <= X86::FP6 && isLive(Reg-X86::FP0)) {
    431         DEBUG(dbgs() << "Register FP#" << Reg-X86::FP0 << " is dead!\n");
    432         freeStackSlotAfter(I, Reg-X86::FP0);
    433       }
    434     }
    435 
    436     // Print out all of the instructions expanded to if -debug
    437     DEBUG({
    438       MachineBasicBlock::iterator PrevI = PrevMI;
    439       if (I == PrevI) {
    440         dbgs() << "Just deleted pseudo instruction\n";
    441       } else {
    442         MachineBasicBlock::iterator Start = I;
    443         // Rewind to first instruction newly inserted.
    444         while (Start != BB.begin() && std::prev(Start) != PrevI)
    445           --Start;
    446         dbgs() << "Inserted instructions:\n\t";
    447         Start->print(dbgs());
    448         while (++Start != std::next(I)) {
    449         }
    450       }
    451       dumpStack();
    452     });
    453     (void)PrevMI;
    454 
    455     Changed = true;
    456   }
    457 
    458   finishBlockStack();
    459 
    460   return Changed;
    461 }
    462 
    463 /// setupBlockStack - Use the live bundles to set up our model of the stack
    464 /// to match predecessors' live out stack.
    465 void FPS::setupBlockStack() {
    466   DEBUG(dbgs() << "\nSetting up live-ins for BB#" << MBB->getNumber()
    467                << " derived from " << MBB->getName() << ".\n");
    468   StackTop = 0;
    469   // Get the live-in bundle for MBB.
    470   const LiveBundle &Bundle =
    471     LiveBundles[Bundles->getBundle(MBB->getNumber(), false)];
    472 
    473   if (!Bundle.Mask) {
    474     DEBUG(dbgs() << "Block has no FP live-ins.\n");
    475     return;
    476   }
    477 
    478   // Depth-first iteration should ensure that we always have an assigned stack.
    479   assert(Bundle.isFixed() && "Reached block before any predecessors");
    480 
    481   // Push the fixed live-in registers.
    482   for (unsigned i = Bundle.FixCount; i > 0; --i) {
    483     MBB->addLiveIn(X86::ST0+i-1);
    484     DEBUG(dbgs() << "Live-in st(" << (i-1) << "): %FP"
    485                  << unsigned(Bundle.FixStack[i-1]) << '\n');
    486     pushReg(Bundle.FixStack[i-1]);
    487   }
    488 
    489   // Kill off unwanted live-ins. This can happen with a critical edge.
    490   // FIXME: We could keep these live registers around as zombies. They may need
    491   // to be revived at the end of a short block. It might save a few instrs.
    492   adjustLiveRegs(calcLiveInMask(MBB), MBB->begin());
    493   DEBUG(MBB->dump());
    494 }
    495 
    496 /// finishBlockStack - Revive live-outs that are implicitly defined out of
    497 /// MBB. Shuffle live registers to match the expected fixed stack of any
    498 /// predecessors, and ensure that all predecessors are expecting the same
    499 /// stack.
    500 void FPS::finishBlockStack() {
    501   // The RET handling below takes care of return blocks for us.
    502   if (MBB->succ_empty())
    503     return;
    504 
    505   DEBUG(dbgs() << "Setting up live-outs for BB#" << MBB->getNumber()
    506                << " derived from " << MBB->getName() << ".\n");
    507 
    508   // Get MBB's live-out bundle.
    509   unsigned BundleIdx = Bundles->getBundle(MBB->getNumber(), true);
    510   LiveBundle &Bundle = LiveBundles[BundleIdx];
    511 
    512   // We may need to kill and define some registers to match successors.
    513   // FIXME: This can probably be combined with the shuffle below.
    514   MachineBasicBlock::iterator Term = MBB->getFirstTerminator();
    515   adjustLiveRegs(Bundle.Mask, Term);
    516 
    517   if (!Bundle.Mask) {
    518     DEBUG(dbgs() << "No live-outs.\n");
    519     return;
    520   }
    521 
    522   // Has the stack order been fixed yet?
    523   DEBUG(dbgs() << "LB#" << BundleIdx << ": ");
    524   if (Bundle.isFixed()) {
    525     DEBUG(dbgs() << "Shuffling stack to match.\n");
    526     shuffleStackTop(Bundle.FixStack, Bundle.FixCount, Term);
    527   } else {
    528     // Not fixed yet, we get to choose.
    529     DEBUG(dbgs() << "Fixing stack order now.\n");
    530     Bundle.FixCount = StackTop;
    531     for (unsigned i = 0; i < StackTop; ++i)
    532       Bundle.FixStack[i] = getStackEntry(i);
    533   }
    534 }
    535 
    536 
    537 //===----------------------------------------------------------------------===//
    538 // Efficient Lookup Table Support
    539 //===----------------------------------------------------------------------===//
    540 
    541 namespace {
    542   struct TableEntry {
    543     uint16_t from;
    544     uint16_t to;
    545     bool operator<(const TableEntry &TE) const { return from < TE.from; }
    546     friend bool operator<(const TableEntry &TE, unsigned V) {
    547       return TE.from < V;
    548     }
    549     friend bool LLVM_ATTRIBUTE_UNUSED operator<(unsigned V,
    550                                                 const TableEntry &TE) {
    551       return V < TE.from;
    552     }
    553   };
    554 }
    555 
    556 static int Lookup(ArrayRef<TableEntry> Table, unsigned Opcode) {
    557   const TableEntry *I = std::lower_bound(Table.begin(), Table.end(), Opcode);
    558   if (I != Table.end() && I->from == Opcode)
    559     return I->to;
    560   return -1;
    561 }
    562 
    563 #ifdef NDEBUG
    564 #define ASSERT_SORTED(TABLE)
    565 #else
    566 #define ASSERT_SORTED(TABLE)                                              \
    567   { static bool TABLE##Checked = false;                                   \
    568     if (!TABLE##Checked) {                                                \
    569        assert(std::is_sorted(std::begin(TABLE), std::end(TABLE)) &&       \
    570               "All lookup tables must be sorted for efficient access!");  \
    571        TABLE##Checked = true;                                             \
    572     }                                                                     \
    573   }
    574 #endif
    575 
    576 //===----------------------------------------------------------------------===//
    577 // Register File -> Register Stack Mapping Methods
    578 //===----------------------------------------------------------------------===//
    579 
    580 // OpcodeTable - Sorted map of register instructions to their stack version.
    581 // The first element is an register file pseudo instruction, the second is the
    582 // concrete X86 instruction which uses the register stack.
    583 //
    584 static const TableEntry OpcodeTable[] = {
    585   { X86::ABS_Fp32     , X86::ABS_F     },
    586   { X86::ABS_Fp64     , X86::ABS_F     },
    587   { X86::ABS_Fp80     , X86::ABS_F     },
    588   { X86::ADD_Fp32m    , X86::ADD_F32m  },
    589   { X86::ADD_Fp64m    , X86::ADD_F64m  },
    590   { X86::ADD_Fp64m32  , X86::ADD_F32m  },
    591   { X86::ADD_Fp80m32  , X86::ADD_F32m  },
    592   { X86::ADD_Fp80m64  , X86::ADD_F64m  },
    593   { X86::ADD_FpI16m32 , X86::ADD_FI16m },
    594   { X86::ADD_FpI16m64 , X86::ADD_FI16m },
    595   { X86::ADD_FpI16m80 , X86::ADD_FI16m },
    596   { X86::ADD_FpI32m32 , X86::ADD_FI32m },
    597   { X86::ADD_FpI32m64 , X86::ADD_FI32m },
    598   { X86::ADD_FpI32m80 , X86::ADD_FI32m },
    599   { X86::CHS_Fp32     , X86::CHS_F     },
    600   { X86::CHS_Fp64     , X86::CHS_F     },
    601   { X86::CHS_Fp80     , X86::CHS_F     },
    602   { X86::CMOVBE_Fp32  , X86::CMOVBE_F  },
    603   { X86::CMOVBE_Fp64  , X86::CMOVBE_F  },
    604   { X86::CMOVBE_Fp80  , X86::CMOVBE_F  },
    605   { X86::CMOVB_Fp32   , X86::CMOVB_F   },
    606   { X86::CMOVB_Fp64   , X86::CMOVB_F  },
    607   { X86::CMOVB_Fp80   , X86::CMOVB_F  },
    608   { X86::CMOVE_Fp32   , X86::CMOVE_F  },
    609   { X86::CMOVE_Fp64   , X86::CMOVE_F   },
    610   { X86::CMOVE_Fp80   , X86::CMOVE_F   },
    611   { X86::CMOVNBE_Fp32 , X86::CMOVNBE_F },
    612   { X86::CMOVNBE_Fp64 , X86::CMOVNBE_F },
    613   { X86::CMOVNBE_Fp80 , X86::CMOVNBE_F },
    614   { X86::CMOVNB_Fp32  , X86::CMOVNB_F  },
    615   { X86::CMOVNB_Fp64  , X86::CMOVNB_F  },
    616   { X86::CMOVNB_Fp80  , X86::CMOVNB_F  },
    617   { X86::CMOVNE_Fp32  , X86::CMOVNE_F  },
    618   { X86::CMOVNE_Fp64  , X86::CMOVNE_F  },
    619   { X86::CMOVNE_Fp80  , X86::CMOVNE_F  },
    620   { X86::CMOVNP_Fp32  , X86::CMOVNP_F  },
    621   { X86::CMOVNP_Fp64  , X86::CMOVNP_F  },
    622   { X86::CMOVNP_Fp80  , X86::CMOVNP_F  },
    623   { X86::CMOVP_Fp32   , X86::CMOVP_F   },
    624   { X86::CMOVP_Fp64   , X86::CMOVP_F   },
    625   { X86::CMOVP_Fp80   , X86::CMOVP_F   },
    626   { X86::COS_Fp32     , X86::COS_F     },
    627   { X86::COS_Fp64     , X86::COS_F     },
    628   { X86::COS_Fp80     , X86::COS_F     },
    629   { X86::DIVR_Fp32m   , X86::DIVR_F32m },
    630   { X86::DIVR_Fp64m   , X86::DIVR_F64m },
    631   { X86::DIVR_Fp64m32 , X86::DIVR_F32m },
    632   { X86::DIVR_Fp80m32 , X86::DIVR_F32m },
    633   { X86::DIVR_Fp80m64 , X86::DIVR_F64m },
    634   { X86::DIVR_FpI16m32, X86::DIVR_FI16m},
    635   { X86::DIVR_FpI16m64, X86::DIVR_FI16m},
    636   { X86::DIVR_FpI16m80, X86::DIVR_FI16m},
    637   { X86::DIVR_FpI32m32, X86::DIVR_FI32m},
    638   { X86::DIVR_FpI32m64, X86::DIVR_FI32m},
    639   { X86::DIVR_FpI32m80, X86::DIVR_FI32m},
    640   { X86::DIV_Fp32m    , X86::DIV_F32m  },
    641   { X86::DIV_Fp64m    , X86::DIV_F64m  },
    642   { X86::DIV_Fp64m32  , X86::DIV_F32m  },
    643   { X86::DIV_Fp80m32  , X86::DIV_F32m  },
    644   { X86::DIV_Fp80m64  , X86::DIV_F64m  },
    645   { X86::DIV_FpI16m32 , X86::DIV_FI16m },
    646   { X86::DIV_FpI16m64 , X86::DIV_FI16m },
    647   { X86::DIV_FpI16m80 , X86::DIV_FI16m },
    648   { X86::DIV_FpI32m32 , X86::DIV_FI32m },
    649   { X86::DIV_FpI32m64 , X86::DIV_FI32m },
    650   { X86::DIV_FpI32m80 , X86::DIV_FI32m },
    651   { X86::ILD_Fp16m32  , X86::ILD_F16m  },
    652   { X86::ILD_Fp16m64  , X86::ILD_F16m  },
    653   { X86::ILD_Fp16m80  , X86::ILD_F16m  },
    654   { X86::ILD_Fp32m32  , X86::ILD_F32m  },
    655   { X86::ILD_Fp32m64  , X86::ILD_F32m  },
    656   { X86::ILD_Fp32m80  , X86::ILD_F32m  },
    657   { X86::ILD_Fp64m32  , X86::ILD_F64m  },
    658   { X86::ILD_Fp64m64  , X86::ILD_F64m  },
    659   { X86::ILD_Fp64m80  , X86::ILD_F64m  },
    660   { X86::ISTT_Fp16m32 , X86::ISTT_FP16m},
    661   { X86::ISTT_Fp16m64 , X86::ISTT_FP16m},
    662   { X86::ISTT_Fp16m80 , X86::ISTT_FP16m},
    663   { X86::ISTT_Fp32m32 , X86::ISTT_FP32m},
    664   { X86::ISTT_Fp32m64 , X86::ISTT_FP32m},
    665   { X86::ISTT_Fp32m80 , X86::ISTT_FP32m},
    666   { X86::ISTT_Fp64m32 , X86::ISTT_FP64m},
    667   { X86::ISTT_Fp64m64 , X86::ISTT_FP64m},
    668   { X86::ISTT_Fp64m80 , X86::ISTT_FP64m},
    669   { X86::IST_Fp16m32  , X86::IST_F16m  },
    670   { X86::IST_Fp16m64  , X86::IST_F16m  },
    671   { X86::IST_Fp16m80  , X86::IST_F16m  },
    672   { X86::IST_Fp32m32  , X86::IST_F32m  },
    673   { X86::IST_Fp32m64  , X86::IST_F32m  },
    674   { X86::IST_Fp32m80  , X86::IST_F32m  },
    675   { X86::IST_Fp64m32  , X86::IST_FP64m },
    676   { X86::IST_Fp64m64  , X86::IST_FP64m },
    677   { X86::IST_Fp64m80  , X86::IST_FP64m },
    678   { X86::LD_Fp032     , X86::LD_F0     },
    679   { X86::LD_Fp064     , X86::LD_F0     },
    680   { X86::LD_Fp080     , X86::LD_F0     },
    681   { X86::LD_Fp132     , X86::LD_F1     },
    682   { X86::LD_Fp164     , X86::LD_F1     },
    683   { X86::LD_Fp180     , X86::LD_F1     },
    684   { X86::LD_Fp32m     , X86::LD_F32m   },
    685   { X86::LD_Fp32m64   , X86::LD_F32m   },
    686   { X86::LD_Fp32m80   , X86::LD_F32m   },
    687   { X86::LD_Fp64m     , X86::LD_F64m   },
    688   { X86::LD_Fp64m80   , X86::LD_F64m   },
    689   { X86::LD_Fp80m     , X86::LD_F80m   },
    690   { X86::MUL_Fp32m    , X86::MUL_F32m  },
    691   { X86::MUL_Fp64m    , X86::MUL_F64m  },
    692   { X86::MUL_Fp64m32  , X86::MUL_F32m  },
    693   { X86::MUL_Fp80m32  , X86::MUL_F32m  },
    694   { X86::MUL_Fp80m64  , X86::MUL_F64m  },
    695   { X86::MUL_FpI16m32 , X86::MUL_FI16m },
    696   { X86::MUL_FpI16m64 , X86::MUL_FI16m },
    697   { X86::MUL_FpI16m80 , X86::MUL_FI16m },
    698   { X86::MUL_FpI32m32 , X86::MUL_FI32m },
    699   { X86::MUL_FpI32m64 , X86::MUL_FI32m },
    700   { X86::MUL_FpI32m80 , X86::MUL_FI32m },
    701   { X86::SIN_Fp32     , X86::SIN_F     },
    702   { X86::SIN_Fp64     , X86::SIN_F     },
    703   { X86::SIN_Fp80     , X86::SIN_F     },
    704   { X86::SQRT_Fp32    , X86::SQRT_F    },
    705   { X86::SQRT_Fp64    , X86::SQRT_F    },
    706   { X86::SQRT_Fp80    , X86::SQRT_F    },
    707   { X86::ST_Fp32m     , X86::ST_F32m   },
    708   { X86::ST_Fp64m     , X86::ST_F64m   },
    709   { X86::ST_Fp64m32   , X86::ST_F32m   },
    710   { X86::ST_Fp80m32   , X86::ST_F32m   },
    711   { X86::ST_Fp80m64   , X86::ST_F64m   },
    712   { X86::ST_FpP80m    , X86::ST_FP80m  },
    713   { X86::SUBR_Fp32m   , X86::SUBR_F32m },
    714   { X86::SUBR_Fp64m   , X86::SUBR_F64m },
    715   { X86::SUBR_Fp64m32 , X86::SUBR_F32m },
    716   { X86::SUBR_Fp80m32 , X86::SUBR_F32m },
    717   { X86::SUBR_Fp80m64 , X86::SUBR_F64m },
    718   { X86::SUBR_FpI16m32, X86::SUBR_FI16m},
    719   { X86::SUBR_FpI16m64, X86::SUBR_FI16m},
    720   { X86::SUBR_FpI16m80, X86::SUBR_FI16m},
    721   { X86::SUBR_FpI32m32, X86::SUBR_FI32m},
    722   { X86::SUBR_FpI32m64, X86::SUBR_FI32m},
    723   { X86::SUBR_FpI32m80, X86::SUBR_FI32m},
    724   { X86::SUB_Fp32m    , X86::SUB_F32m  },
    725   { X86::SUB_Fp64m    , X86::SUB_F64m  },
    726   { X86::SUB_Fp64m32  , X86::SUB_F32m  },
    727   { X86::SUB_Fp80m32  , X86::SUB_F32m  },
    728   { X86::SUB_Fp80m64  , X86::SUB_F64m  },
    729   { X86::SUB_FpI16m32 , X86::SUB_FI16m },
    730   { X86::SUB_FpI16m64 , X86::SUB_FI16m },
    731   { X86::SUB_FpI16m80 , X86::SUB_FI16m },
    732   { X86::SUB_FpI32m32 , X86::SUB_FI32m },
    733   { X86::SUB_FpI32m64 , X86::SUB_FI32m },
    734   { X86::SUB_FpI32m80 , X86::SUB_FI32m },
    735   { X86::TST_Fp32     , X86::TST_F     },
    736   { X86::TST_Fp64     , X86::TST_F     },
    737   { X86::TST_Fp80     , X86::TST_F     },
    738   { X86::UCOM_FpIr32  , X86::UCOM_FIr  },
    739   { X86::UCOM_FpIr64  , X86::UCOM_FIr  },
    740   { X86::UCOM_FpIr80  , X86::UCOM_FIr  },
    741   { X86::UCOM_Fpr32   , X86::UCOM_Fr   },
    742   { X86::UCOM_Fpr64   , X86::UCOM_Fr   },
    743   { X86::UCOM_Fpr80   , X86::UCOM_Fr   },
    744 };
    745 
    746 static unsigned getConcreteOpcode(unsigned Opcode) {
    747   ASSERT_SORTED(OpcodeTable);
    748   int Opc = Lookup(OpcodeTable, Opcode);
    749   assert(Opc != -1 && "FP Stack instruction not in OpcodeTable!");
    750   return Opc;
    751 }
    752 
    753 //===----------------------------------------------------------------------===//
    754 // Helper Methods
    755 //===----------------------------------------------------------------------===//
    756 
    757 // PopTable - Sorted map of instructions to their popping version.  The first
    758 // element is an instruction, the second is the version which pops.
    759 //
    760 static const TableEntry PopTable[] = {
    761   { X86::ADD_FrST0 , X86::ADD_FPrST0  },
    762 
    763   { X86::DIVR_FrST0, X86::DIVR_FPrST0 },
    764   { X86::DIV_FrST0 , X86::DIV_FPrST0  },
    765 
    766   { X86::IST_F16m  , X86::IST_FP16m   },
    767   { X86::IST_F32m  , X86::IST_FP32m   },
    768 
    769   { X86::MUL_FrST0 , X86::MUL_FPrST0  },
    770 
    771   { X86::ST_F32m   , X86::ST_FP32m    },
    772   { X86::ST_F64m   , X86::ST_FP64m    },
    773   { X86::ST_Frr    , X86::ST_FPrr     },
    774 
    775   { X86::SUBR_FrST0, X86::SUBR_FPrST0 },
    776   { X86::SUB_FrST0 , X86::SUB_FPrST0  },
    777 
    778   { X86::UCOM_FIr  , X86::UCOM_FIPr   },
    779 
    780   { X86::UCOM_FPr  , X86::UCOM_FPPr   },
    781   { X86::UCOM_Fr   , X86::UCOM_FPr    },
    782 };
    783 
    784 /// popStackAfter - Pop the current value off of the top of the FP stack after
    785 /// the specified instruction.  This attempts to be sneaky and combine the pop
    786 /// into the instruction itself if possible.  The iterator is left pointing to
    787 /// the last instruction, be it a new pop instruction inserted, or the old
    788 /// instruction if it was modified in place.
    789 ///
    790 void FPS::popStackAfter(MachineBasicBlock::iterator &I) {
    791   MachineInstr &MI = *I;
    792   const DebugLoc &dl = MI.getDebugLoc();
    793   ASSERT_SORTED(PopTable);
    794   if (StackTop == 0)
    795     report_fatal_error("Cannot pop empty stack!");
    796   RegMap[Stack[--StackTop]] = ~0;     // Update state
    797 
    798   // Check to see if there is a popping version of this instruction...
    799   int Opcode = Lookup(PopTable, I->getOpcode());
    800   if (Opcode != -1) {
    801     I->setDesc(TII->get(Opcode));
    802     if (Opcode == X86::UCOM_FPPr)
    803       I->RemoveOperand(0);
    804   } else {    // Insert an explicit pop
    805     I = BuildMI(*MBB, ++I, dl, TII->get(X86::ST_FPrr)).addReg(X86::ST0);
    806   }
    807 }
    808 
    809 /// freeStackSlotAfter - Free the specified register from the register stack, so
    810 /// that it is no longer in a register.  If the register is currently at the top
    811 /// of the stack, we just pop the current instruction, otherwise we store the
    812 /// current top-of-stack into the specified slot, then pop the top of stack.
    813 void FPS::freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned FPRegNo) {
    814   if (getStackEntry(0) == FPRegNo) {  // already at the top of stack? easy.
    815     popStackAfter(I);
    816     return;
    817   }
    818 
    819   // Otherwise, store the top of stack into the dead slot, killing the operand
    820   // without having to add in an explicit xchg then pop.
    821   //
    822   I = freeStackSlotBefore(++I, FPRegNo);
    823 }
    824 
    825 /// freeStackSlotBefore - Free the specified register without trying any
    826 /// folding.
    827 MachineBasicBlock::iterator
    828 FPS::freeStackSlotBefore(MachineBasicBlock::iterator I, unsigned FPRegNo) {
    829   unsigned STReg    = getSTReg(FPRegNo);
    830   unsigned OldSlot  = getSlot(FPRegNo);
    831   unsigned TopReg   = Stack[StackTop-1];
    832   Stack[OldSlot]    = TopReg;
    833   RegMap[TopReg]    = OldSlot;
    834   RegMap[FPRegNo]   = ~0;
    835   Stack[--StackTop] = ~0;
    836   return BuildMI(*MBB, I, DebugLoc(), TII->get(X86::ST_FPrr))
    837       .addReg(STReg)
    838       .getInstr();
    839 }
    840 
    841 /// adjustLiveRegs - Kill and revive registers such that exactly the FP
    842 /// registers with a bit in Mask are live.
    843 void FPS::adjustLiveRegs(unsigned Mask, MachineBasicBlock::iterator I) {
    844   unsigned Defs = Mask;
    845   unsigned Kills = 0;
    846   for (unsigned i = 0; i < StackTop; ++i) {
    847     unsigned RegNo = Stack[i];
    848     if (!(Defs & (1 << RegNo)))
    849       // This register is live, but we don't want it.
    850       Kills |= (1 << RegNo);
    851     else
    852       // We don't need to imp-def this live register.
    853       Defs &= ~(1 << RegNo);
    854   }
    855   assert((Kills & Defs) == 0 && "Register needs killing and def'ing?");
    856 
    857   // Produce implicit-defs for free by using killed registers.
    858   while (Kills && Defs) {
    859     unsigned KReg = countTrailingZeros(Kills);
    860     unsigned DReg = countTrailingZeros(Defs);
    861     DEBUG(dbgs() << "Renaming %FP" << KReg << " as imp %FP" << DReg << "\n");
    862     std::swap(Stack[getSlot(KReg)], Stack[getSlot(DReg)]);
    863     std::swap(RegMap[KReg], RegMap[DReg]);
    864     Kills &= ~(1 << KReg);
    865     Defs &= ~(1 << DReg);
    866   }
    867 
    868   // Kill registers by popping.
    869   if (Kills && I != MBB->begin()) {
    870     MachineBasicBlock::iterator I2 = std::prev(I);
    871     while (StackTop) {
    872       unsigned KReg = getStackEntry(0);
    873       if (!(Kills & (1 << KReg)))
    874         break;
    875       DEBUG(dbgs() << "Popping %FP" << KReg << "\n");
    876       popStackAfter(I2);
    877       Kills &= ~(1 << KReg);
    878     }
    879   }
    880 
    881   // Manually kill the rest.
    882   while (Kills) {
    883     unsigned KReg = countTrailingZeros(Kills);
    884     DEBUG(dbgs() << "Killing %FP" << KReg << "\n");
    885     freeStackSlotBefore(I, KReg);
    886     Kills &= ~(1 << KReg);
    887   }
    888 
    889   // Load zeros for all the imp-defs.
    890   while(Defs) {
    891     unsigned DReg = countTrailingZeros(Defs);
    892     DEBUG(dbgs() << "Defining %FP" << DReg << " as 0\n");
    893     BuildMI(*MBB, I, DebugLoc(), TII->get(X86::LD_F0));
    894     pushReg(DReg);
    895     Defs &= ~(1 << DReg);
    896   }
    897 
    898   // Now we should have the correct registers live.
    899   DEBUG(dumpStack());
    900   assert(StackTop == countPopulation(Mask) && "Live count mismatch");
    901 }
    902 
    903 /// shuffleStackTop - emit fxch instructions before I to shuffle the top
    904 /// FixCount entries into the order given by FixStack.
    905 /// FIXME: Is there a better algorithm than insertion sort?
    906 void FPS::shuffleStackTop(const unsigned char *FixStack,
    907                           unsigned FixCount,
    908                           MachineBasicBlock::iterator I) {
    909   // Move items into place, starting from the desired stack bottom.
    910   while (FixCount--) {
    911     // Old register at position FixCount.
    912     unsigned OldReg = getStackEntry(FixCount);
    913     // Desired register at position FixCount.
    914     unsigned Reg = FixStack[FixCount];
    915     if (Reg == OldReg)
    916       continue;
    917     // (Reg st0) (OldReg st0) = (Reg OldReg st0)
    918     moveToTop(Reg, I);
    919     if (FixCount > 0)
    920       moveToTop(OldReg, I);
    921   }
    922   DEBUG(dumpStack());
    923 }
    924 
    925 
    926 //===----------------------------------------------------------------------===//
    927 // Instruction transformation implementation
    928 //===----------------------------------------------------------------------===//
    929 
    930 void FPS::handleCall(MachineBasicBlock::iterator &I) {
    931   unsigned STReturns = 0;
    932 
    933   for (const auto &MO : I->operands()) {
    934     if (!MO.isReg())
    935       continue;
    936 
    937     unsigned R = MO.getReg() - X86::FP0;
    938 
    939     if (R < 8) {
    940       assert(MO.isDef() && MO.isImplicit());
    941       STReturns |= 1 << R;
    942     }
    943   }
    944 
    945   unsigned N = countTrailingOnes(STReturns);
    946 
    947   // FP registers used for function return must be consecutive starting at
    948   // FP0.
    949   assert(STReturns == 0 || (isMask_32(STReturns) && N <= 2));
    950 
    951   for (unsigned I = 0; I < N; ++I)
    952     pushReg(N - I - 1);
    953 }
    954 
    955 /// If RET has an FP register use operand, pass the first one in ST(0) and
    956 /// the second one in ST(1).
    957 void FPS::handleReturn(MachineBasicBlock::iterator &I) {
    958   MachineInstr &MI = *I;
    959 
    960   // Find the register operands.
    961   unsigned FirstFPRegOp = ~0U, SecondFPRegOp = ~0U;
    962   unsigned LiveMask = 0;
    963 
    964   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
    965     MachineOperand &Op = MI.getOperand(i);
    966     if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
    967       continue;
    968     // FP Register uses must be kills unless there are two uses of the same
    969     // register, in which case only one will be a kill.
    970     assert(Op.isUse() &&
    971            (Op.isKill() ||                    // Marked kill.
    972             getFPReg(Op) == FirstFPRegOp ||   // Second instance.
    973             MI.killsRegister(Op.getReg())) && // Later use is marked kill.
    974            "Ret only defs operands, and values aren't live beyond it");
    975 
    976     if (FirstFPRegOp == ~0U)
    977       FirstFPRegOp = getFPReg(Op);
    978     else {
    979       assert(SecondFPRegOp == ~0U && "More than two fp operands!");
    980       SecondFPRegOp = getFPReg(Op);
    981     }
    982     LiveMask |= (1 << getFPReg(Op));
    983 
    984     // Remove the operand so that later passes don't see it.
    985     MI.RemoveOperand(i);
    986     --i;
    987     --e;
    988   }
    989 
    990   // We may have been carrying spurious live-ins, so make sure only the
    991   // returned registers are left live.
    992   adjustLiveRegs(LiveMask, MI);
    993   if (!LiveMask) return;  // Quick check to see if any are possible.
    994 
    995   // There are only four possibilities here:
    996   // 1) we are returning a single FP value.  In this case, it has to be in
    997   //    ST(0) already, so just declare success by removing the value from the
    998   //    FP Stack.
    999   if (SecondFPRegOp == ~0U) {
   1000     // Assert that the top of stack contains the right FP register.
   1001     assert(StackTop == 1 && FirstFPRegOp == getStackEntry(0) &&
   1002            "Top of stack not the right register for RET!");
   1003 
   1004     // Ok, everything is good, mark the value as not being on the stack
   1005     // anymore so that our assertion about the stack being empty at end of
   1006     // block doesn't fire.
   1007     StackTop = 0;
   1008     return;
   1009   }
   1010 
   1011   // Otherwise, we are returning two values:
   1012   // 2) If returning the same value for both, we only have one thing in the FP
   1013   //    stack.  Consider:  RET FP1, FP1
   1014   if (StackTop == 1) {
   1015     assert(FirstFPRegOp == SecondFPRegOp && FirstFPRegOp == getStackEntry(0)&&
   1016            "Stack misconfiguration for RET!");
   1017 
   1018     // Duplicate the TOS so that we return it twice.  Just pick some other FPx
   1019     // register to hold it.
   1020     unsigned NewReg = ScratchFPReg;
   1021     duplicateToTop(FirstFPRegOp, NewReg, MI);
   1022     FirstFPRegOp = NewReg;
   1023   }
   1024 
   1025   /// Okay we know we have two different FPx operands now:
   1026   assert(StackTop == 2 && "Must have two values live!");
   1027 
   1028   /// 3) If SecondFPRegOp is currently in ST(0) and FirstFPRegOp is currently
   1029   ///    in ST(1).  In this case, emit an fxch.
   1030   if (getStackEntry(0) == SecondFPRegOp) {
   1031     assert(getStackEntry(1) == FirstFPRegOp && "Unknown regs live");
   1032     moveToTop(FirstFPRegOp, MI);
   1033   }
   1034 
   1035   /// 4) Finally, FirstFPRegOp must be in ST(0) and SecondFPRegOp must be in
   1036   /// ST(1).  Just remove both from our understanding of the stack and return.
   1037   assert(getStackEntry(0) == FirstFPRegOp && "Unknown regs live");
   1038   assert(getStackEntry(1) == SecondFPRegOp && "Unknown regs live");
   1039   StackTop = 0;
   1040 }
   1041 
   1042 /// handleZeroArgFP - ST(0) = fld0    ST(0) = flds <mem>
   1043 ///
   1044 void FPS::handleZeroArgFP(MachineBasicBlock::iterator &I) {
   1045   MachineInstr &MI = *I;
   1046   unsigned DestReg = getFPReg(MI.getOperand(0));
   1047 
   1048   // Change from the pseudo instruction to the concrete instruction.
   1049   MI.RemoveOperand(0); // Remove the explicit ST(0) operand
   1050   MI.setDesc(TII->get(getConcreteOpcode(MI.getOpcode())));
   1051 
   1052   // Result gets pushed on the stack.
   1053   pushReg(DestReg);
   1054 }
   1055 
   1056 /// handleOneArgFP - fst <mem>, ST(0)
   1057 ///
   1058 void FPS::handleOneArgFP(MachineBasicBlock::iterator &I) {
   1059   MachineInstr &MI = *I;
   1060   unsigned NumOps = MI.getDesc().getNumOperands();
   1061   assert((NumOps == X86::AddrNumOperands + 1 || NumOps == 1) &&
   1062          "Can only handle fst* & ftst instructions!");
   1063 
   1064   // Is this the last use of the source register?
   1065   unsigned Reg = getFPReg(MI.getOperand(NumOps - 1));
   1066   bool KillsSrc = MI.killsRegister(X86::FP0 + Reg);
   1067 
   1068   // FISTP64m is strange because there isn't a non-popping versions.
   1069   // If we have one _and_ we don't want to pop the operand, duplicate the value
   1070   // on the stack instead of moving it.  This ensure that popping the value is
   1071   // always ok.
   1072   // Ditto FISTTP16m, FISTTP32m, FISTTP64m, ST_FpP80m.
   1073   //
   1074   if (!KillsSrc && (MI.getOpcode() == X86::IST_Fp64m32 ||
   1075                     MI.getOpcode() == X86::ISTT_Fp16m32 ||
   1076                     MI.getOpcode() == X86::ISTT_Fp32m32 ||
   1077                     MI.getOpcode() == X86::ISTT_Fp64m32 ||
   1078                     MI.getOpcode() == X86::IST_Fp64m64 ||
   1079                     MI.getOpcode() == X86::ISTT_Fp16m64 ||
   1080                     MI.getOpcode() == X86::ISTT_Fp32m64 ||
   1081                     MI.getOpcode() == X86::ISTT_Fp64m64 ||
   1082                     MI.getOpcode() == X86::IST_Fp64m80 ||
   1083                     MI.getOpcode() == X86::ISTT_Fp16m80 ||
   1084                     MI.getOpcode() == X86::ISTT_Fp32m80 ||
   1085                     MI.getOpcode() == X86::ISTT_Fp64m80 ||
   1086                     MI.getOpcode() == X86::ST_FpP80m)) {
   1087     duplicateToTop(Reg, ScratchFPReg, I);
   1088   } else {
   1089     moveToTop(Reg, I);            // Move to the top of the stack...
   1090   }
   1091 
   1092   // Convert from the pseudo instruction to the concrete instruction.
   1093   MI.RemoveOperand(NumOps - 1); // Remove explicit ST(0) operand
   1094   MI.setDesc(TII->get(getConcreteOpcode(MI.getOpcode())));
   1095 
   1096   if (MI.getOpcode() == X86::IST_FP64m || MI.getOpcode() == X86::ISTT_FP16m ||
   1097       MI.getOpcode() == X86::ISTT_FP32m || MI.getOpcode() == X86::ISTT_FP64m ||
   1098       MI.getOpcode() == X86::ST_FP80m) {
   1099     if (StackTop == 0)
   1100       report_fatal_error("Stack empty??");
   1101     --StackTop;
   1102   } else if (KillsSrc) { // Last use of operand?
   1103     popStackAfter(I);
   1104   }
   1105 }
   1106 
   1107 
   1108 /// handleOneArgFPRW: Handle instructions that read from the top of stack and
   1109 /// replace the value with a newly computed value.  These instructions may have
   1110 /// non-fp operands after their FP operands.
   1111 ///
   1112 ///  Examples:
   1113 ///     R1 = fchs R2
   1114 ///     R1 = fadd R2, [mem]
   1115 ///
   1116 void FPS::handleOneArgFPRW(MachineBasicBlock::iterator &I) {
   1117   MachineInstr &MI = *I;
   1118 #ifndef NDEBUG
   1119   unsigned NumOps = MI.getDesc().getNumOperands();
   1120   assert(NumOps >= 2 && "FPRW instructions must have 2 ops!!");
   1121 #endif
   1122 
   1123   // Is this the last use of the source register?
   1124   unsigned Reg = getFPReg(MI.getOperand(1));
   1125   bool KillsSrc = MI.killsRegister(X86::FP0 + Reg);
   1126 
   1127   if (KillsSrc) {
   1128     // If this is the last use of the source register, just make sure it's on
   1129     // the top of the stack.
   1130     moveToTop(Reg, I);
   1131     if (StackTop == 0)
   1132       report_fatal_error("Stack cannot be empty!");
   1133     --StackTop;
   1134     pushReg(getFPReg(MI.getOperand(0)));
   1135   } else {
   1136     // If this is not the last use of the source register, _copy_ it to the top
   1137     // of the stack.
   1138     duplicateToTop(Reg, getFPReg(MI.getOperand(0)), I);
   1139   }
   1140 
   1141   // Change from the pseudo instruction to the concrete instruction.
   1142   MI.RemoveOperand(1); // Drop the source operand.
   1143   MI.RemoveOperand(0); // Drop the destination operand.
   1144   MI.setDesc(TII->get(getConcreteOpcode(MI.getOpcode())));
   1145 }
   1146 
   1147 
   1148 //===----------------------------------------------------------------------===//
   1149 // Define tables of various ways to map pseudo instructions
   1150 //
   1151 
   1152 // ForwardST0Table - Map: A = B op C  into: ST(0) = ST(0) op ST(i)
   1153 static const TableEntry ForwardST0Table[] = {
   1154   { X86::ADD_Fp32  , X86::ADD_FST0r },
   1155   { X86::ADD_Fp64  , X86::ADD_FST0r },
   1156   { X86::ADD_Fp80  , X86::ADD_FST0r },
   1157   { X86::DIV_Fp32  , X86::DIV_FST0r },
   1158   { X86::DIV_Fp64  , X86::DIV_FST0r },
   1159   { X86::DIV_Fp80  , X86::DIV_FST0r },
   1160   { X86::MUL_Fp32  , X86::MUL_FST0r },
   1161   { X86::MUL_Fp64  , X86::MUL_FST0r },
   1162   { X86::MUL_Fp80  , X86::MUL_FST0r },
   1163   { X86::SUB_Fp32  , X86::SUB_FST0r },
   1164   { X86::SUB_Fp64  , X86::SUB_FST0r },
   1165   { X86::SUB_Fp80  , X86::SUB_FST0r },
   1166 };
   1167 
   1168 // ReverseST0Table - Map: A = B op C  into: ST(0) = ST(i) op ST(0)
   1169 static const TableEntry ReverseST0Table[] = {
   1170   { X86::ADD_Fp32  , X86::ADD_FST0r  },   // commutative
   1171   { X86::ADD_Fp64  , X86::ADD_FST0r  },   // commutative
   1172   { X86::ADD_Fp80  , X86::ADD_FST0r  },   // commutative
   1173   { X86::DIV_Fp32  , X86::DIVR_FST0r },
   1174   { X86::DIV_Fp64  , X86::DIVR_FST0r },
   1175   { X86::DIV_Fp80  , X86::DIVR_FST0r },
   1176   { X86::MUL_Fp32  , X86::MUL_FST0r  },   // commutative
   1177   { X86::MUL_Fp64  , X86::MUL_FST0r  },   // commutative
   1178   { X86::MUL_Fp80  , X86::MUL_FST0r  },   // commutative
   1179   { X86::SUB_Fp32  , X86::SUBR_FST0r },
   1180   { X86::SUB_Fp64  , X86::SUBR_FST0r },
   1181   { X86::SUB_Fp80  , X86::SUBR_FST0r },
   1182 };
   1183 
   1184 // ForwardSTiTable - Map: A = B op C  into: ST(i) = ST(0) op ST(i)
   1185 static const TableEntry ForwardSTiTable[] = {
   1186   { X86::ADD_Fp32  , X86::ADD_FrST0  },   // commutative
   1187   { X86::ADD_Fp64  , X86::ADD_FrST0  },   // commutative
   1188   { X86::ADD_Fp80  , X86::ADD_FrST0  },   // commutative
   1189   { X86::DIV_Fp32  , X86::DIVR_FrST0 },
   1190   { X86::DIV_Fp64  , X86::DIVR_FrST0 },
   1191   { X86::DIV_Fp80  , X86::DIVR_FrST0 },
   1192   { X86::MUL_Fp32  , X86::MUL_FrST0  },   // commutative
   1193   { X86::MUL_Fp64  , X86::MUL_FrST0  },   // commutative
   1194   { X86::MUL_Fp80  , X86::MUL_FrST0  },   // commutative
   1195   { X86::SUB_Fp32  , X86::SUBR_FrST0 },
   1196   { X86::SUB_Fp64  , X86::SUBR_FrST0 },
   1197   { X86::SUB_Fp80  , X86::SUBR_FrST0 },
   1198 };
   1199 
   1200 // ReverseSTiTable - Map: A = B op C  into: ST(i) = ST(i) op ST(0)
   1201 static const TableEntry ReverseSTiTable[] = {
   1202   { X86::ADD_Fp32  , X86::ADD_FrST0 },
   1203   { X86::ADD_Fp64  , X86::ADD_FrST0 },
   1204   { X86::ADD_Fp80  , X86::ADD_FrST0 },
   1205   { X86::DIV_Fp32  , X86::DIV_FrST0 },
   1206   { X86::DIV_Fp64  , X86::DIV_FrST0 },
   1207   { X86::DIV_Fp80  , X86::DIV_FrST0 },
   1208   { X86::MUL_Fp32  , X86::MUL_FrST0 },
   1209   { X86::MUL_Fp64  , X86::MUL_FrST0 },
   1210   { X86::MUL_Fp80  , X86::MUL_FrST0 },
   1211   { X86::SUB_Fp32  , X86::SUB_FrST0 },
   1212   { X86::SUB_Fp64  , X86::SUB_FrST0 },
   1213   { X86::SUB_Fp80  , X86::SUB_FrST0 },
   1214 };
   1215 
   1216 
   1217 /// handleTwoArgFP - Handle instructions like FADD and friends which are virtual
   1218 /// instructions which need to be simplified and possibly transformed.
   1219 ///
   1220 /// Result: ST(0) = fsub  ST(0), ST(i)
   1221 ///         ST(i) = fsub  ST(0), ST(i)
   1222 ///         ST(0) = fsubr ST(0), ST(i)
   1223 ///         ST(i) = fsubr ST(0), ST(i)
   1224 ///
   1225 void FPS::handleTwoArgFP(MachineBasicBlock::iterator &I) {
   1226   ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
   1227   ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
   1228   MachineInstr &MI = *I;
   1229 
   1230   unsigned NumOperands = MI.getDesc().getNumOperands();
   1231   assert(NumOperands == 3 && "Illegal TwoArgFP instruction!");
   1232   unsigned Dest = getFPReg(MI.getOperand(0));
   1233   unsigned Op0 = getFPReg(MI.getOperand(NumOperands - 2));
   1234   unsigned Op1 = getFPReg(MI.getOperand(NumOperands - 1));
   1235   bool KillsOp0 = MI.killsRegister(X86::FP0 + Op0);
   1236   bool KillsOp1 = MI.killsRegister(X86::FP0 + Op1);
   1237   DebugLoc dl = MI.getDebugLoc();
   1238 
   1239   unsigned TOS = getStackEntry(0);
   1240 
   1241   // One of our operands must be on the top of the stack.  If neither is yet, we
   1242   // need to move one.
   1243   if (Op0 != TOS && Op1 != TOS) {   // No operand at TOS?
   1244     // We can choose to move either operand to the top of the stack.  If one of
   1245     // the operands is killed by this instruction, we want that one so that we
   1246     // can update right on top of the old version.
   1247     if (KillsOp0) {
   1248       moveToTop(Op0, I);         // Move dead operand to TOS.
   1249       TOS = Op0;
   1250     } else if (KillsOp1) {
   1251       moveToTop(Op1, I);
   1252       TOS = Op1;
   1253     } else {
   1254       // All of the operands are live after this instruction executes, so we
   1255       // cannot update on top of any operand.  Because of this, we must
   1256       // duplicate one of the stack elements to the top.  It doesn't matter
   1257       // which one we pick.
   1258       //
   1259       duplicateToTop(Op0, Dest, I);
   1260       Op0 = TOS = Dest;
   1261       KillsOp0 = true;
   1262     }
   1263   } else if (!KillsOp0 && !KillsOp1) {
   1264     // If we DO have one of our operands at the top of the stack, but we don't
   1265     // have a dead operand, we must duplicate one of the operands to a new slot
   1266     // on the stack.
   1267     duplicateToTop(Op0, Dest, I);
   1268     Op0 = TOS = Dest;
   1269     KillsOp0 = true;
   1270   }
   1271 
   1272   // Now we know that one of our operands is on the top of the stack, and at
   1273   // least one of our operands is killed by this instruction.
   1274   assert((TOS == Op0 || TOS == Op1) && (KillsOp0 || KillsOp1) &&
   1275          "Stack conditions not set up right!");
   1276 
   1277   // We decide which form to use based on what is on the top of the stack, and
   1278   // which operand is killed by this instruction.
   1279   ArrayRef<TableEntry> InstTable;
   1280   bool isForward = TOS == Op0;
   1281   bool updateST0 = (TOS == Op0 && !KillsOp1) || (TOS == Op1 && !KillsOp0);
   1282   if (updateST0) {
   1283     if (isForward)
   1284       InstTable = ForwardST0Table;
   1285     else
   1286       InstTable = ReverseST0Table;
   1287   } else {
   1288     if (isForward)
   1289       InstTable = ForwardSTiTable;
   1290     else
   1291       InstTable = ReverseSTiTable;
   1292   }
   1293 
   1294   int Opcode = Lookup(InstTable, MI.getOpcode());
   1295   assert(Opcode != -1 && "Unknown TwoArgFP pseudo instruction!");
   1296 
   1297   // NotTOS - The register which is not on the top of stack...
   1298   unsigned NotTOS = (TOS == Op0) ? Op1 : Op0;
   1299 
   1300   // Replace the old instruction with a new instruction
   1301   MBB->remove(&*I++);
   1302   I = BuildMI(*MBB, I, dl, TII->get(Opcode)).addReg(getSTReg(NotTOS));
   1303 
   1304   // If both operands are killed, pop one off of the stack in addition to
   1305   // overwriting the other one.
   1306   if (KillsOp0 && KillsOp1 && Op0 != Op1) {
   1307     assert(!updateST0 && "Should have updated other operand!");
   1308     popStackAfter(I);   // Pop the top of stack
   1309   }
   1310 
   1311   // Update stack information so that we know the destination register is now on
   1312   // the stack.
   1313   unsigned UpdatedSlot = getSlot(updateST0 ? TOS : NotTOS);
   1314   assert(UpdatedSlot < StackTop && Dest < 7);
   1315   Stack[UpdatedSlot]   = Dest;
   1316   RegMap[Dest]         = UpdatedSlot;
   1317   MBB->getParent()->DeleteMachineInstr(&MI); // Remove the old instruction
   1318 }
   1319 
   1320 /// handleCompareFP - Handle FUCOM and FUCOMI instructions, which have two FP
   1321 /// register arguments and no explicit destinations.
   1322 ///
   1323 void FPS::handleCompareFP(MachineBasicBlock::iterator &I) {
   1324   ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
   1325   ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
   1326   MachineInstr &MI = *I;
   1327 
   1328   unsigned NumOperands = MI.getDesc().getNumOperands();
   1329   assert(NumOperands == 2 && "Illegal FUCOM* instruction!");
   1330   unsigned Op0 = getFPReg(MI.getOperand(NumOperands - 2));
   1331   unsigned Op1 = getFPReg(MI.getOperand(NumOperands - 1));
   1332   bool KillsOp0 = MI.killsRegister(X86::FP0 + Op0);
   1333   bool KillsOp1 = MI.killsRegister(X86::FP0 + Op1);
   1334 
   1335   // Make sure the first operand is on the top of stack, the other one can be
   1336   // anywhere.
   1337   moveToTop(Op0, I);
   1338 
   1339   // Change from the pseudo instruction to the concrete instruction.
   1340   MI.getOperand(0).setReg(getSTReg(Op1));
   1341   MI.RemoveOperand(1);
   1342   MI.setDesc(TII->get(getConcreteOpcode(MI.getOpcode())));
   1343 
   1344   // If any of the operands are killed by this instruction, free them.
   1345   if (KillsOp0) freeStackSlotAfter(I, Op0);
   1346   if (KillsOp1 && Op0 != Op1) freeStackSlotAfter(I, Op1);
   1347 }
   1348 
   1349 /// handleCondMovFP - Handle two address conditional move instructions.  These
   1350 /// instructions move a st(i) register to st(0) iff a condition is true.  These
   1351 /// instructions require that the first operand is at the top of the stack, but
   1352 /// otherwise don't modify the stack at all.
   1353 void FPS::handleCondMovFP(MachineBasicBlock::iterator &I) {
   1354   MachineInstr &MI = *I;
   1355 
   1356   unsigned Op0 = getFPReg(MI.getOperand(0));
   1357   unsigned Op1 = getFPReg(MI.getOperand(2));
   1358   bool KillsOp1 = MI.killsRegister(X86::FP0 + Op1);
   1359 
   1360   // The first operand *must* be on the top of the stack.
   1361   moveToTop(Op0, I);
   1362 
   1363   // Change the second operand to the stack register that the operand is in.
   1364   // Change from the pseudo instruction to the concrete instruction.
   1365   MI.RemoveOperand(0);
   1366   MI.RemoveOperand(1);
   1367   MI.getOperand(0).setReg(getSTReg(Op1));
   1368   MI.setDesc(TII->get(getConcreteOpcode(MI.getOpcode())));
   1369 
   1370   // If we kill the second operand, make sure to pop it from the stack.
   1371   if (Op0 != Op1 && KillsOp1) {
   1372     // Get this value off of the register stack.
   1373     freeStackSlotAfter(I, Op1);
   1374   }
   1375 }
   1376 
   1377 
   1378 /// handleSpecialFP - Handle special instructions which behave unlike other
   1379 /// floating point instructions.  This is primarily intended for use by pseudo
   1380 /// instructions.
   1381 ///
   1382 void FPS::handleSpecialFP(MachineBasicBlock::iterator &Inst) {
   1383   MachineInstr &MI = *Inst;
   1384 
   1385   if (MI.isCall()) {
   1386     handleCall(Inst);
   1387     return;
   1388   }
   1389 
   1390   if (MI.isReturn()) {
   1391     handleReturn(Inst);
   1392     return;
   1393   }
   1394 
   1395   switch (MI.getOpcode()) {
   1396   default: llvm_unreachable("Unknown SpecialFP instruction!");
   1397   case TargetOpcode::COPY: {
   1398     // We handle three kinds of copies: FP <- FP, FP <- ST, and ST <- FP.
   1399     const MachineOperand &MO1 = MI.getOperand(1);
   1400     const MachineOperand &MO0 = MI.getOperand(0);
   1401     bool KillsSrc = MI.killsRegister(MO1.getReg());
   1402 
   1403     // FP <- FP copy.
   1404     unsigned DstFP = getFPReg(MO0);
   1405     unsigned SrcFP = getFPReg(MO1);
   1406     assert(isLive(SrcFP) && "Cannot copy dead register");
   1407     if (KillsSrc) {
   1408       // If the input operand is killed, we can just change the owner of the
   1409       // incoming stack slot into the result.
   1410       unsigned Slot = getSlot(SrcFP);
   1411       Stack[Slot] = DstFP;
   1412       RegMap[DstFP] = Slot;
   1413     } else {
   1414       // For COPY we just duplicate the specified value to a new stack slot.
   1415       // This could be made better, but would require substantial changes.
   1416       duplicateToTop(SrcFP, DstFP, Inst);
   1417     }
   1418     break;
   1419   }
   1420 
   1421   case TargetOpcode::IMPLICIT_DEF: {
   1422     // All FP registers must be explicitly defined, so load a 0 instead.
   1423     unsigned Reg = MI.getOperand(0).getReg() - X86::FP0;
   1424     DEBUG(dbgs() << "Emitting LD_F0 for implicit FP" << Reg << '\n');
   1425     BuildMI(*MBB, Inst, MI.getDebugLoc(), TII->get(X86::LD_F0));
   1426     pushReg(Reg);
   1427     break;
   1428   }
   1429 
   1430   case TargetOpcode::INLINEASM: {
   1431     // The inline asm MachineInstr currently only *uses* FP registers for the
   1432     // 'f' constraint.  These should be turned into the current ST(x) register
   1433     // in the machine instr.
   1434     //
   1435     // There are special rules for x87 inline assembly. The compiler must know
   1436     // exactly how many registers are popped and pushed implicitly by the asm.
   1437     // Otherwise it is not possible to restore the stack state after the inline
   1438     // asm.
   1439     //
   1440     // There are 3 kinds of input operands:
   1441     //
   1442     // 1. Popped inputs. These must appear at the stack top in ST0-STn. A
   1443     //    popped input operand must be in a fixed stack slot, and it is either
   1444     //    tied to an output operand, or in the clobber list. The MI has ST use
   1445     //    and def operands for these inputs.
   1446     //
   1447     // 2. Fixed inputs. These inputs appear in fixed stack slots, but are
   1448     //    preserved by the inline asm. The fixed stack slots must be STn-STm
   1449     //    following the popped inputs. A fixed input operand cannot be tied to
   1450     //    an output or appear in the clobber list. The MI has ST use operands
   1451     //    and no defs for these inputs.
   1452     //
   1453     // 3. Preserved inputs. These inputs use the "f" constraint which is
   1454     //    represented as an FP register. The inline asm won't change these
   1455     //    stack slots.
   1456     //
   1457     // Outputs must be in ST registers, FP outputs are not allowed. Clobbered
   1458     // registers do not count as output operands. The inline asm changes the
   1459     // stack as if it popped all the popped inputs and then pushed all the
   1460     // output operands.
   1461 
   1462     // Scan the assembly for ST registers used, defined and clobbered. We can
   1463     // only tell clobbers from defs by looking at the asm descriptor.
   1464     unsigned STUses = 0, STDefs = 0, STClobbers = 0, STDeadDefs = 0;
   1465     unsigned NumOps = 0;
   1466     SmallSet<unsigned, 1> FRegIdx;
   1467     unsigned RCID;
   1468 
   1469     for (unsigned i = InlineAsm::MIOp_FirstOperand, e = MI.getNumOperands();
   1470          i != e && MI.getOperand(i).isImm(); i += 1 + NumOps) {
   1471       unsigned Flags = MI.getOperand(i).getImm();
   1472 
   1473       NumOps = InlineAsm::getNumOperandRegisters(Flags);
   1474       if (NumOps != 1)
   1475         continue;
   1476       const MachineOperand &MO = MI.getOperand(i + 1);
   1477       if (!MO.isReg())
   1478         continue;
   1479       unsigned STReg = MO.getReg() - X86::FP0;
   1480       if (STReg >= 8)
   1481         continue;
   1482 
   1483       // If the flag has a register class constraint, this must be an operand
   1484       // with constraint "f". Record its index and continue.
   1485       if (InlineAsm::hasRegClassConstraint(Flags, RCID)) {
   1486         FRegIdx.insert(i + 1);
   1487         continue;
   1488       }
   1489 
   1490       switch (InlineAsm::getKind(Flags)) {
   1491       case InlineAsm::Kind_RegUse:
   1492         STUses |= (1u << STReg);
   1493         break;
   1494       case InlineAsm::Kind_RegDef:
   1495       case InlineAsm::Kind_RegDefEarlyClobber:
   1496         STDefs |= (1u << STReg);
   1497         if (MO.isDead())
   1498           STDeadDefs |= (1u << STReg);
   1499         break;
   1500       case InlineAsm::Kind_Clobber:
   1501         STClobbers |= (1u << STReg);
   1502         break;
   1503       default:
   1504         break;
   1505       }
   1506     }
   1507 
   1508     if (STUses && !isMask_32(STUses))
   1509       MI.emitError("fixed input regs must be last on the x87 stack");
   1510     unsigned NumSTUses = countTrailingOnes(STUses);
   1511 
   1512     // Defs must be contiguous from the stack top. ST0-STn.
   1513     if (STDefs && !isMask_32(STDefs)) {
   1514       MI.emitError("output regs must be last on the x87 stack");
   1515       STDefs = NextPowerOf2(STDefs) - 1;
   1516     }
   1517     unsigned NumSTDefs = countTrailingOnes(STDefs);
   1518 
   1519     // So must the clobbered stack slots. ST0-STm, m >= n.
   1520     if (STClobbers && !isMask_32(STDefs | STClobbers))
   1521       MI.emitError("clobbers must be last on the x87 stack");
   1522 
   1523     // Popped inputs are the ones that are also clobbered or defined.
   1524     unsigned STPopped = STUses & (STDefs | STClobbers);
   1525     if (STPopped && !isMask_32(STPopped))
   1526       MI.emitError("implicitly popped regs must be last on the x87 stack");
   1527     unsigned NumSTPopped = countTrailingOnes(STPopped);
   1528 
   1529     DEBUG(dbgs() << "Asm uses " << NumSTUses << " fixed regs, pops "
   1530                  << NumSTPopped << ", and defines " << NumSTDefs << " regs.\n");
   1531 
   1532 #ifndef NDEBUG
   1533     // If any input operand uses constraint "f", all output register
   1534     // constraints must be early-clobber defs.
   1535     for (unsigned I = 0, E = MI.getNumOperands(); I < E; ++I)
   1536       if (FRegIdx.count(I)) {
   1537         assert((1 << getFPReg(MI.getOperand(I)) & STDefs) == 0 &&
   1538                "Operands with constraint \"f\" cannot overlap with defs");
   1539       }
   1540 #endif
   1541 
   1542     // Collect all FP registers (register operands with constraints "t", "u",
   1543     // and "f") to kill afer the instruction.
   1544     unsigned FPKills = ((1u << NumFPRegs) - 1) & ~0xff;
   1545     for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
   1546       MachineOperand &Op = MI.getOperand(i);
   1547       if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
   1548         continue;
   1549       unsigned FPReg = getFPReg(Op);
   1550 
   1551       // If we kill this operand, make sure to pop it from the stack after the
   1552       // asm.  We just remember it for now, and pop them all off at the end in
   1553       // a batch.
   1554       if (Op.isUse() && Op.isKill())
   1555         FPKills |= 1U << FPReg;
   1556     }
   1557 
   1558     // Do not include registers that are implicitly popped by defs/clobbers.
   1559     FPKills &= ~(STDefs | STClobbers);
   1560 
   1561     // Now we can rearrange the live registers to match what was requested.
   1562     unsigned char STUsesArray[8];
   1563 
   1564     for (unsigned I = 0; I < NumSTUses; ++I)
   1565       STUsesArray[I] = I;
   1566 
   1567     shuffleStackTop(STUsesArray, NumSTUses, Inst);
   1568     DEBUG({dbgs() << "Before asm: "; dumpStack();});
   1569 
   1570     // With the stack layout fixed, rewrite the FP registers.
   1571     for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
   1572       MachineOperand &Op = MI.getOperand(i);
   1573       if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
   1574         continue;
   1575 
   1576       unsigned FPReg = getFPReg(Op);
   1577 
   1578       if (FRegIdx.count(i))
   1579         // Operand with constraint "f".
   1580         Op.setReg(getSTReg(FPReg));
   1581       else
   1582         // Operand with a single register class constraint ("t" or "u").
   1583         Op.setReg(X86::ST0 + FPReg);
   1584     }
   1585 
   1586     // Simulate the inline asm popping its inputs and pushing its outputs.
   1587     StackTop -= NumSTPopped;
   1588 
   1589     for (unsigned i = 0; i < NumSTDefs; ++i)
   1590       pushReg(NumSTDefs - i - 1);
   1591 
   1592     // If this asm kills any FP registers (is the last use of them) we must
   1593     // explicitly emit pop instructions for them.  Do this now after the asm has
   1594     // executed so that the ST(x) numbers are not off (which would happen if we
   1595     // did this inline with operand rewriting).
   1596     //
   1597     // Note: this might be a non-optimal pop sequence.  We might be able to do
   1598     // better by trying to pop in stack order or something.
   1599     while (FPKills) {
   1600       unsigned FPReg = countTrailingZeros(FPKills);
   1601       if (isLive(FPReg))
   1602         freeStackSlotAfter(Inst, FPReg);
   1603       FPKills &= ~(1U << FPReg);
   1604     }
   1605 
   1606     // Don't delete the inline asm!
   1607     return;
   1608   }
   1609   }
   1610 
   1611   Inst = MBB->erase(Inst);  // Remove the pseudo instruction
   1612 
   1613   // We want to leave I pointing to the previous instruction, but what if we
   1614   // just erased the first instruction?
   1615   if (Inst == MBB->begin()) {
   1616     DEBUG(dbgs() << "Inserting dummy KILL\n");
   1617     Inst = BuildMI(*MBB, Inst, DebugLoc(), TII->get(TargetOpcode::KILL));
   1618   } else
   1619     --Inst;
   1620 }
   1621 
   1622 void FPS::setKillFlags(MachineBasicBlock &MBB) const {
   1623   const TargetRegisterInfo *TRI =
   1624       MBB.getParent()->getSubtarget().getRegisterInfo();
   1625   LivePhysRegs LPR(TRI);
   1626 
   1627   LPR.addLiveOuts(MBB);
   1628 
   1629   for (MachineBasicBlock::reverse_iterator I = MBB.rbegin(), E = MBB.rend();
   1630        I != E; ++I) {
   1631     if (I->isDebugValue())
   1632       continue;
   1633 
   1634     std::bitset<8> Defs;
   1635     SmallVector<MachineOperand *, 2> Uses;
   1636     MachineInstr &MI = *I;
   1637 
   1638     for (auto &MO : I->operands()) {
   1639       if (!MO.isReg())
   1640         continue;
   1641 
   1642       unsigned Reg = MO.getReg() - X86::FP0;
   1643 
   1644       if (Reg >= 8)
   1645         continue;
   1646 
   1647       if (MO.isDef()) {
   1648         Defs.set(Reg);
   1649         if (!LPR.contains(MO.getReg()))
   1650           MO.setIsDead();
   1651       } else
   1652         Uses.push_back(&MO);
   1653     }
   1654 
   1655     for (auto *MO : Uses)
   1656       if (Defs.test(getFPReg(*MO)) || !LPR.contains(MO->getReg()))
   1657         MO->setIsKill();
   1658 
   1659     LPR.stepBackward(MI);
   1660   }
   1661 }
   1662