Home | History | Annotate | Download | only in Utils
      1 //===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This is a utility pass used for testing the InstructionSimplify analysis.
     11 // The analysis is applied to every instruction, and if it simplifies then the
     12 // instruction is replaced by the simplification.  If you are looking for a pass
     13 // that performs serious instruction folding, use the instcombine pass instead.
     14 //
     15 //===----------------------------------------------------------------------===//
     16 
     17 #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
     18 #include "llvm/ADT/SmallString.h"
     19 #include "llvm/ADT/StringMap.h"
     20 #include "llvm/ADT/Triple.h"
     21 #include "llvm/Analysis/TargetLibraryInfo.h"
     22 #include "llvm/Analysis/ValueTracking.h"
     23 #include "llvm/IR/DataLayout.h"
     24 #include "llvm/IR/DiagnosticInfo.h"
     25 #include "llvm/IR/Function.h"
     26 #include "llvm/IR/IRBuilder.h"
     27 #include "llvm/IR/IntrinsicInst.h"
     28 #include "llvm/IR/Intrinsics.h"
     29 #include "llvm/IR/LLVMContext.h"
     30 #include "llvm/IR/Module.h"
     31 #include "llvm/IR/PatternMatch.h"
     32 #include "llvm/Support/CommandLine.h"
     33 #include "llvm/Transforms/Utils/BuildLibCalls.h"
     34 #include "llvm/Transforms/Utils/Local.h"
     35 
     36 using namespace llvm;
     37 using namespace PatternMatch;
     38 
     39 static cl::opt<bool>
     40     ColdErrorCalls("error-reporting-is-cold", cl::init(true), cl::Hidden,
     41                    cl::desc("Treat error-reporting calls as cold"));
     42 
     43 static cl::opt<bool>
     44     EnableUnsafeFPShrink("enable-double-float-shrink", cl::Hidden,
     45                          cl::init(false),
     46                          cl::desc("Enable unsafe double to float "
     47                                   "shrinking for math lib calls"));
     48 
     49 
     50 //===----------------------------------------------------------------------===//
     51 // Helper Functions
     52 //===----------------------------------------------------------------------===//
     53 
     54 static bool ignoreCallingConv(LibFunc::Func Func) {
     55   return Func == LibFunc::abs || Func == LibFunc::labs ||
     56          Func == LibFunc::llabs || Func == LibFunc::strlen;
     57 }
     58 
     59 /// Return true if it only matters that the value is equal or not-equal to zero.
     60 static bool isOnlyUsedInZeroEqualityComparison(Value *V) {
     61   for (User *U : V->users()) {
     62     if (ICmpInst *IC = dyn_cast<ICmpInst>(U))
     63       if (IC->isEquality())
     64         if (Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
     65           if (C->isNullValue())
     66             continue;
     67     // Unknown instruction.
     68     return false;
     69   }
     70   return true;
     71 }
     72 
     73 /// Return true if it is only used in equality comparisons with With.
     74 static bool isOnlyUsedInEqualityComparison(Value *V, Value *With) {
     75   for (User *U : V->users()) {
     76     if (ICmpInst *IC = dyn_cast<ICmpInst>(U))
     77       if (IC->isEquality() && IC->getOperand(1) == With)
     78         continue;
     79     // Unknown instruction.
     80     return false;
     81   }
     82   return true;
     83 }
     84 
     85 static bool callHasFloatingPointArgument(const CallInst *CI) {
     86   return std::any_of(CI->op_begin(), CI->op_end(), [](const Use &OI) {
     87     return OI->getType()->isFloatingPointTy();
     88   });
     89 }
     90 
     91 /// \brief Check whether the overloaded unary floating point function
     92 /// corresponding to \a Ty is available.
     93 static bool hasUnaryFloatFn(const TargetLibraryInfo *TLI, Type *Ty,
     94                             LibFunc::Func DoubleFn, LibFunc::Func FloatFn,
     95                             LibFunc::Func LongDoubleFn) {
     96   switch (Ty->getTypeID()) {
     97   case Type::FloatTyID:
     98     return TLI->has(FloatFn);
     99   case Type::DoubleTyID:
    100     return TLI->has(DoubleFn);
    101   default:
    102     return TLI->has(LongDoubleFn);
    103   }
    104 }
    105 
    106 //===----------------------------------------------------------------------===//
    107 // String and Memory Library Call Optimizations
    108 //===----------------------------------------------------------------------===//
    109 
    110 Value *LibCallSimplifier::optimizeStrCat(CallInst *CI, IRBuilder<> &B) {
    111   // Extract some information from the instruction
    112   Value *Dst = CI->getArgOperand(0);
    113   Value *Src = CI->getArgOperand(1);
    114 
    115   // See if we can get the length of the input string.
    116   uint64_t Len = GetStringLength(Src);
    117   if (Len == 0)
    118     return nullptr;
    119   --Len; // Unbias length.
    120 
    121   // Handle the simple, do-nothing case: strcat(x, "") -> x
    122   if (Len == 0)
    123     return Dst;
    124 
    125   return emitStrLenMemCpy(Src, Dst, Len, B);
    126 }
    127 
    128 Value *LibCallSimplifier::emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len,
    129                                            IRBuilder<> &B) {
    130   // We need to find the end of the destination string.  That's where the
    131   // memory is to be moved to. We just generate a call to strlen.
    132   Value *DstLen = emitStrLen(Dst, B, DL, TLI);
    133   if (!DstLen)
    134     return nullptr;
    135 
    136   // Now that we have the destination's length, we must index into the
    137   // destination's pointer to get the actual memcpy destination (end of
    138   // the string .. we're concatenating).
    139   Value *CpyDst = B.CreateGEP(B.getInt8Ty(), Dst, DstLen, "endptr");
    140 
    141   // We have enough information to now generate the memcpy call to do the
    142   // concatenation for us.  Make a memcpy to copy the nul byte with align = 1.
    143   B.CreateMemCpy(CpyDst, Src,
    144                  ConstantInt::get(DL.getIntPtrType(Src->getContext()), Len + 1),
    145                  1);
    146   return Dst;
    147 }
    148 
    149 Value *LibCallSimplifier::optimizeStrNCat(CallInst *CI, IRBuilder<> &B) {
    150   // Extract some information from the instruction.
    151   Value *Dst = CI->getArgOperand(0);
    152   Value *Src = CI->getArgOperand(1);
    153   uint64_t Len;
    154 
    155   // We don't do anything if length is not constant.
    156   if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2)))
    157     Len = LengthArg->getZExtValue();
    158   else
    159     return nullptr;
    160 
    161   // See if we can get the length of the input string.
    162   uint64_t SrcLen = GetStringLength(Src);
    163   if (SrcLen == 0)
    164     return nullptr;
    165   --SrcLen; // Unbias length.
    166 
    167   // Handle the simple, do-nothing cases:
    168   // strncat(x, "", c) -> x
    169   // strncat(x,  c, 0) -> x
    170   if (SrcLen == 0 || Len == 0)
    171     return Dst;
    172 
    173   // We don't optimize this case.
    174   if (Len < SrcLen)
    175     return nullptr;
    176 
    177   // strncat(x, s, c) -> strcat(x, s)
    178   // s is constant so the strcat can be optimized further.
    179   return emitStrLenMemCpy(Src, Dst, SrcLen, B);
    180 }
    181 
    182 Value *LibCallSimplifier::optimizeStrChr(CallInst *CI, IRBuilder<> &B) {
    183   Function *Callee = CI->getCalledFunction();
    184   FunctionType *FT = Callee->getFunctionType();
    185   Value *SrcStr = CI->getArgOperand(0);
    186 
    187   // If the second operand is non-constant, see if we can compute the length
    188   // of the input string and turn this into memchr.
    189   ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
    190   if (!CharC) {
    191     uint64_t Len = GetStringLength(SrcStr);
    192     if (Len == 0 || !FT->getParamType(1)->isIntegerTy(32)) // memchr needs i32.
    193       return nullptr;
    194 
    195     return emitMemChr(SrcStr, CI->getArgOperand(1), // include nul.
    196                       ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len),
    197                       B, DL, TLI);
    198   }
    199 
    200   // Otherwise, the character is a constant, see if the first argument is
    201   // a string literal.  If so, we can constant fold.
    202   StringRef Str;
    203   if (!getConstantStringInfo(SrcStr, Str)) {
    204     if (CharC->isZero()) // strchr(p, 0) -> p + strlen(p)
    205       return B.CreateGEP(B.getInt8Ty(), SrcStr, emitStrLen(SrcStr, B, DL, TLI),
    206                          "strchr");
    207     return nullptr;
    208   }
    209 
    210   // Compute the offset, make sure to handle the case when we're searching for
    211   // zero (a weird way to spell strlen).
    212   size_t I = (0xFF & CharC->getSExtValue()) == 0
    213                  ? Str.size()
    214                  : Str.find(CharC->getSExtValue());
    215   if (I == StringRef::npos) // Didn't find the char.  strchr returns null.
    216     return Constant::getNullValue(CI->getType());
    217 
    218   // strchr(s+n,c)  -> gep(s+n+i,c)
    219   return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strchr");
    220 }
    221 
    222 Value *LibCallSimplifier::optimizeStrRChr(CallInst *CI, IRBuilder<> &B) {
    223   Value *SrcStr = CI->getArgOperand(0);
    224   ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
    225 
    226   // Cannot fold anything if we're not looking for a constant.
    227   if (!CharC)
    228     return nullptr;
    229 
    230   StringRef Str;
    231   if (!getConstantStringInfo(SrcStr, Str)) {
    232     // strrchr(s, 0) -> strchr(s, 0)
    233     if (CharC->isZero())
    234       return emitStrChr(SrcStr, '\0', B, TLI);
    235     return nullptr;
    236   }
    237 
    238   // Compute the offset.
    239   size_t I = (0xFF & CharC->getSExtValue()) == 0
    240                  ? Str.size()
    241                  : Str.rfind(CharC->getSExtValue());
    242   if (I == StringRef::npos) // Didn't find the char. Return null.
    243     return Constant::getNullValue(CI->getType());
    244 
    245   // strrchr(s+n,c) -> gep(s+n+i,c)
    246   return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strrchr");
    247 }
    248 
    249 Value *LibCallSimplifier::optimizeStrCmp(CallInst *CI, IRBuilder<> &B) {
    250   Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
    251   if (Str1P == Str2P) // strcmp(x,x)  -> 0
    252     return ConstantInt::get(CI->getType(), 0);
    253 
    254   StringRef Str1, Str2;
    255   bool HasStr1 = getConstantStringInfo(Str1P, Str1);
    256   bool HasStr2 = getConstantStringInfo(Str2P, Str2);
    257 
    258   // strcmp(x, y)  -> cnst  (if both x and y are constant strings)
    259   if (HasStr1 && HasStr2)
    260     return ConstantInt::get(CI->getType(), Str1.compare(Str2));
    261 
    262   if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x
    263     return B.CreateNeg(
    264         B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType()));
    265 
    266   if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x
    267     return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType());
    268 
    269   // strcmp(P, "x") -> memcmp(P, "x", 2)
    270   uint64_t Len1 = GetStringLength(Str1P);
    271   uint64_t Len2 = GetStringLength(Str2P);
    272   if (Len1 && Len2) {
    273     return emitMemCmp(Str1P, Str2P,
    274                       ConstantInt::get(DL.getIntPtrType(CI->getContext()),
    275                                        std::min(Len1, Len2)),
    276                       B, DL, TLI);
    277   }
    278 
    279   return nullptr;
    280 }
    281 
    282 Value *LibCallSimplifier::optimizeStrNCmp(CallInst *CI, IRBuilder<> &B) {
    283   Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
    284   if (Str1P == Str2P) // strncmp(x,x,n)  -> 0
    285     return ConstantInt::get(CI->getType(), 0);
    286 
    287   // Get the length argument if it is constant.
    288   uint64_t Length;
    289   if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2)))
    290     Length = LengthArg->getZExtValue();
    291   else
    292     return nullptr;
    293 
    294   if (Length == 0) // strncmp(x,y,0)   -> 0
    295     return ConstantInt::get(CI->getType(), 0);
    296 
    297   if (Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1)
    298     return emitMemCmp(Str1P, Str2P, CI->getArgOperand(2), B, DL, TLI);
    299 
    300   StringRef Str1, Str2;
    301   bool HasStr1 = getConstantStringInfo(Str1P, Str1);
    302   bool HasStr2 = getConstantStringInfo(Str2P, Str2);
    303 
    304   // strncmp(x, y)  -> cnst  (if both x and y are constant strings)
    305   if (HasStr1 && HasStr2) {
    306     StringRef SubStr1 = Str1.substr(0, Length);
    307     StringRef SubStr2 = Str2.substr(0, Length);
    308     return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2));
    309   }
    310 
    311   if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x
    312     return B.CreateNeg(
    313         B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType()));
    314 
    315   if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x
    316     return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType());
    317 
    318   return nullptr;
    319 }
    320 
    321 Value *LibCallSimplifier::optimizeStrCpy(CallInst *CI, IRBuilder<> &B) {
    322   Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
    323   if (Dst == Src) // strcpy(x,x)  -> x
    324     return Src;
    325 
    326   // See if we can get the length of the input string.
    327   uint64_t Len = GetStringLength(Src);
    328   if (Len == 0)
    329     return nullptr;
    330 
    331   // We have enough information to now generate the memcpy call to do the
    332   // copy for us.  Make a memcpy to copy the nul byte with align = 1.
    333   B.CreateMemCpy(Dst, Src,
    334                  ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len), 1);
    335   return Dst;
    336 }
    337 
    338 Value *LibCallSimplifier::optimizeStpCpy(CallInst *CI, IRBuilder<> &B) {
    339   Function *Callee = CI->getCalledFunction();
    340   Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
    341   if (Dst == Src) { // stpcpy(x,x)  -> x+strlen(x)
    342     Value *StrLen = emitStrLen(Src, B, DL, TLI);
    343     return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr;
    344   }
    345 
    346   // See if we can get the length of the input string.
    347   uint64_t Len = GetStringLength(Src);
    348   if (Len == 0)
    349     return nullptr;
    350 
    351   Type *PT = Callee->getFunctionType()->getParamType(0);
    352   Value *LenV = ConstantInt::get(DL.getIntPtrType(PT), Len);
    353   Value *DstEnd = B.CreateGEP(B.getInt8Ty(), Dst,
    354                               ConstantInt::get(DL.getIntPtrType(PT), Len - 1));
    355 
    356   // We have enough information to now generate the memcpy call to do the
    357   // copy for us.  Make a memcpy to copy the nul byte with align = 1.
    358   B.CreateMemCpy(Dst, Src, LenV, 1);
    359   return DstEnd;
    360 }
    361 
    362 Value *LibCallSimplifier::optimizeStrNCpy(CallInst *CI, IRBuilder<> &B) {
    363   Function *Callee = CI->getCalledFunction();
    364   Value *Dst = CI->getArgOperand(0);
    365   Value *Src = CI->getArgOperand(1);
    366   Value *LenOp = CI->getArgOperand(2);
    367 
    368   // See if we can get the length of the input string.
    369   uint64_t SrcLen = GetStringLength(Src);
    370   if (SrcLen == 0)
    371     return nullptr;
    372   --SrcLen;
    373 
    374   if (SrcLen == 0) {
    375     // strncpy(x, "", y) -> memset(x, '\0', y, 1)
    376     B.CreateMemSet(Dst, B.getInt8('\0'), LenOp, 1);
    377     return Dst;
    378   }
    379 
    380   uint64_t Len;
    381   if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(LenOp))
    382     Len = LengthArg->getZExtValue();
    383   else
    384     return nullptr;
    385 
    386   if (Len == 0)
    387     return Dst; // strncpy(x, y, 0) -> x
    388 
    389   // Let strncpy handle the zero padding
    390   if (Len > SrcLen + 1)
    391     return nullptr;
    392 
    393   Type *PT = Callee->getFunctionType()->getParamType(0);
    394   // strncpy(x, s, c) -> memcpy(x, s, c, 1) [s and c are constant]
    395   B.CreateMemCpy(Dst, Src, ConstantInt::get(DL.getIntPtrType(PT), Len), 1);
    396 
    397   return Dst;
    398 }
    399 
    400 Value *LibCallSimplifier::optimizeStrLen(CallInst *CI, IRBuilder<> &B) {
    401   Value *Src = CI->getArgOperand(0);
    402 
    403   // Constant folding: strlen("xyz") -> 3
    404   if (uint64_t Len = GetStringLength(Src))
    405     return ConstantInt::get(CI->getType(), Len - 1);
    406 
    407   // If s is a constant pointer pointing to a string literal, we can fold
    408   // strlen(s + x) to strlen(s) - x, when x is known to be in the range
    409   // [0, strlen(s)] or the string has a single null terminator '\0' at the end.
    410   // We only try to simplify strlen when the pointer s points to an array
    411   // of i8. Otherwise, we would need to scale the offset x before doing the
    412   // subtraction. This will make the optimization more complex, and it's not
    413   // very useful because calling strlen for a pointer of other types is
    414   // very uncommon.
    415   if (GEPOperator *GEP = dyn_cast<GEPOperator>(Src)) {
    416     if (!isGEPBasedOnPointerToString(GEP))
    417       return nullptr;
    418 
    419     StringRef Str;
    420     if (getConstantStringInfo(GEP->getOperand(0), Str, 0, false)) {
    421       size_t NullTermIdx = Str.find('\0');
    422 
    423       // If the string does not have '\0', leave it to strlen to compute
    424       // its length.
    425       if (NullTermIdx == StringRef::npos)
    426         return nullptr;
    427 
    428       Value *Offset = GEP->getOperand(2);
    429       unsigned BitWidth = Offset->getType()->getIntegerBitWidth();
    430       APInt KnownZero(BitWidth, 0);
    431       APInt KnownOne(BitWidth, 0);
    432       computeKnownBits(Offset, KnownZero, KnownOne, DL, 0, nullptr, CI,
    433                        nullptr);
    434       KnownZero.flipAllBits();
    435       size_t ArrSize =
    436              cast<ArrayType>(GEP->getSourceElementType())->getNumElements();
    437 
    438       // KnownZero's bits are flipped, so zeros in KnownZero now represent
    439       // bits known to be zeros in Offset, and ones in KnowZero represent
    440       // bits unknown in Offset. Therefore, Offset is known to be in range
    441       // [0, NullTermIdx] when the flipped KnownZero is non-negative and
    442       // unsigned-less-than NullTermIdx.
    443       //
    444       // If Offset is not provably in the range [0, NullTermIdx], we can still
    445       // optimize if we can prove that the program has undefined behavior when
    446       // Offset is outside that range. That is the case when GEP->getOperand(0)
    447       // is a pointer to an object whose memory extent is NullTermIdx+1.
    448       if ((KnownZero.isNonNegative() && KnownZero.ule(NullTermIdx)) ||
    449           (GEP->isInBounds() && isa<GlobalVariable>(GEP->getOperand(0)) &&
    450            NullTermIdx == ArrSize - 1))
    451         return B.CreateSub(ConstantInt::get(CI->getType(), NullTermIdx),
    452                            Offset);
    453     }
    454 
    455     return nullptr;
    456   }
    457 
    458   // strlen(x?"foo":"bars") --> x ? 3 : 4
    459   if (SelectInst *SI = dyn_cast<SelectInst>(Src)) {
    460     uint64_t LenTrue = GetStringLength(SI->getTrueValue());
    461     uint64_t LenFalse = GetStringLength(SI->getFalseValue());
    462     if (LenTrue && LenFalse) {
    463       Function *Caller = CI->getParent()->getParent();
    464       emitOptimizationRemark(CI->getContext(), "simplify-libcalls", *Caller,
    465                              SI->getDebugLoc(),
    466                              "folded strlen(select) to select of constants");
    467       return B.CreateSelect(SI->getCondition(),
    468                             ConstantInt::get(CI->getType(), LenTrue - 1),
    469                             ConstantInt::get(CI->getType(), LenFalse - 1));
    470     }
    471   }
    472 
    473   // strlen(x) != 0 --> *x != 0
    474   // strlen(x) == 0 --> *x == 0
    475   if (isOnlyUsedInZeroEqualityComparison(CI))
    476     return B.CreateZExt(B.CreateLoad(Src, "strlenfirst"), CI->getType());
    477 
    478   return nullptr;
    479 }
    480 
    481 Value *LibCallSimplifier::optimizeStrPBrk(CallInst *CI, IRBuilder<> &B) {
    482   StringRef S1, S2;
    483   bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
    484   bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
    485 
    486   // strpbrk(s, "") -> nullptr
    487   // strpbrk("", s) -> nullptr
    488   if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
    489     return Constant::getNullValue(CI->getType());
    490 
    491   // Constant folding.
    492   if (HasS1 && HasS2) {
    493     size_t I = S1.find_first_of(S2);
    494     if (I == StringRef::npos) // No match.
    495       return Constant::getNullValue(CI->getType());
    496 
    497     return B.CreateGEP(B.getInt8Ty(), CI->getArgOperand(0), B.getInt64(I),
    498                        "strpbrk");
    499   }
    500 
    501   // strpbrk(s, "a") -> strchr(s, 'a')
    502   if (HasS2 && S2.size() == 1)
    503     return emitStrChr(CI->getArgOperand(0), S2[0], B, TLI);
    504 
    505   return nullptr;
    506 }
    507 
    508 Value *LibCallSimplifier::optimizeStrTo(CallInst *CI, IRBuilder<> &B) {
    509   Value *EndPtr = CI->getArgOperand(1);
    510   if (isa<ConstantPointerNull>(EndPtr)) {
    511     // With a null EndPtr, this function won't capture the main argument.
    512     // It would be readonly too, except that it still may write to errno.
    513     CI->addAttribute(1, Attribute::NoCapture);
    514   }
    515 
    516   return nullptr;
    517 }
    518 
    519 Value *LibCallSimplifier::optimizeStrSpn(CallInst *CI, IRBuilder<> &B) {
    520   StringRef S1, S2;
    521   bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
    522   bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
    523 
    524   // strspn(s, "") -> 0
    525   // strspn("", s) -> 0
    526   if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
    527     return Constant::getNullValue(CI->getType());
    528 
    529   // Constant folding.
    530   if (HasS1 && HasS2) {
    531     size_t Pos = S1.find_first_not_of(S2);
    532     if (Pos == StringRef::npos)
    533       Pos = S1.size();
    534     return ConstantInt::get(CI->getType(), Pos);
    535   }
    536 
    537   return nullptr;
    538 }
    539 
    540 Value *LibCallSimplifier::optimizeStrCSpn(CallInst *CI, IRBuilder<> &B) {
    541   StringRef S1, S2;
    542   bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
    543   bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
    544 
    545   // strcspn("", s) -> 0
    546   if (HasS1 && S1.empty())
    547     return Constant::getNullValue(CI->getType());
    548 
    549   // Constant folding.
    550   if (HasS1 && HasS2) {
    551     size_t Pos = S1.find_first_of(S2);
    552     if (Pos == StringRef::npos)
    553       Pos = S1.size();
    554     return ConstantInt::get(CI->getType(), Pos);
    555   }
    556 
    557   // strcspn(s, "") -> strlen(s)
    558   if (HasS2 && S2.empty())
    559     return emitStrLen(CI->getArgOperand(0), B, DL, TLI);
    560 
    561   return nullptr;
    562 }
    563 
    564 Value *LibCallSimplifier::optimizeStrStr(CallInst *CI, IRBuilder<> &B) {
    565   // fold strstr(x, x) -> x.
    566   if (CI->getArgOperand(0) == CI->getArgOperand(1))
    567     return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
    568 
    569   // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0
    570   if (isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) {
    571     Value *StrLen = emitStrLen(CI->getArgOperand(1), B, DL, TLI);
    572     if (!StrLen)
    573       return nullptr;
    574     Value *StrNCmp = emitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1),
    575                                  StrLen, B, DL, TLI);
    576     if (!StrNCmp)
    577       return nullptr;
    578     for (auto UI = CI->user_begin(), UE = CI->user_end(); UI != UE;) {
    579       ICmpInst *Old = cast<ICmpInst>(*UI++);
    580       Value *Cmp =
    581           B.CreateICmp(Old->getPredicate(), StrNCmp,
    582                        ConstantInt::getNullValue(StrNCmp->getType()), "cmp");
    583       replaceAllUsesWith(Old, Cmp);
    584     }
    585     return CI;
    586   }
    587 
    588   // See if either input string is a constant string.
    589   StringRef SearchStr, ToFindStr;
    590   bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr);
    591   bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr);
    592 
    593   // fold strstr(x, "") -> x.
    594   if (HasStr2 && ToFindStr.empty())
    595     return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
    596 
    597   // If both strings are known, constant fold it.
    598   if (HasStr1 && HasStr2) {
    599     size_t Offset = SearchStr.find(ToFindStr);
    600 
    601     if (Offset == StringRef::npos) // strstr("foo", "bar") -> null
    602       return Constant::getNullValue(CI->getType());
    603 
    604     // strstr("abcd", "bc") -> gep((char*)"abcd", 1)
    605     Value *Result = castToCStr(CI->getArgOperand(0), B);
    606     Result = B.CreateConstInBoundsGEP1_64(Result, Offset, "strstr");
    607     return B.CreateBitCast(Result, CI->getType());
    608   }
    609 
    610   // fold strstr(x, "y") -> strchr(x, 'y').
    611   if (HasStr2 && ToFindStr.size() == 1) {
    612     Value *StrChr = emitStrChr(CI->getArgOperand(0), ToFindStr[0], B, TLI);
    613     return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : nullptr;
    614   }
    615   return nullptr;
    616 }
    617 
    618 Value *LibCallSimplifier::optimizeMemChr(CallInst *CI, IRBuilder<> &B) {
    619   Value *SrcStr = CI->getArgOperand(0);
    620   ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
    621   ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
    622 
    623   // memchr(x, y, 0) -> null
    624   if (LenC && LenC->isNullValue())
    625     return Constant::getNullValue(CI->getType());
    626 
    627   // From now on we need at least constant length and string.
    628   StringRef Str;
    629   if (!LenC || !getConstantStringInfo(SrcStr, Str, 0, /*TrimAtNul=*/false))
    630     return nullptr;
    631 
    632   // Truncate the string to LenC. If Str is smaller than LenC we will still only
    633   // scan the string, as reading past the end of it is undefined and we can just
    634   // return null if we don't find the char.
    635   Str = Str.substr(0, LenC->getZExtValue());
    636 
    637   // If the char is variable but the input str and length are not we can turn
    638   // this memchr call into a simple bit field test. Of course this only works
    639   // when the return value is only checked against null.
    640   //
    641   // It would be really nice to reuse switch lowering here but we can't change
    642   // the CFG at this point.
    643   //
    644   // memchr("\r\n", C, 2) != nullptr -> (C & ((1 << '\r') | (1 << '\n'))) != 0
    645   //   after bounds check.
    646   if (!CharC && !Str.empty() && isOnlyUsedInZeroEqualityComparison(CI)) {
    647     unsigned char Max =
    648         *std::max_element(reinterpret_cast<const unsigned char *>(Str.begin()),
    649                           reinterpret_cast<const unsigned char *>(Str.end()));
    650 
    651     // Make sure the bit field we're about to create fits in a register on the
    652     // target.
    653     // FIXME: On a 64 bit architecture this prevents us from using the
    654     // interesting range of alpha ascii chars. We could do better by emitting
    655     // two bitfields or shifting the range by 64 if no lower chars are used.
    656     if (!DL.fitsInLegalInteger(Max + 1))
    657       return nullptr;
    658 
    659     // For the bit field use a power-of-2 type with at least 8 bits to avoid
    660     // creating unnecessary illegal types.
    661     unsigned char Width = NextPowerOf2(std::max((unsigned char)7, Max));
    662 
    663     // Now build the bit field.
    664     APInt Bitfield(Width, 0);
    665     for (char C : Str)
    666       Bitfield.setBit((unsigned char)C);
    667     Value *BitfieldC = B.getInt(Bitfield);
    668 
    669     // First check that the bit field access is within bounds.
    670     Value *C = B.CreateZExtOrTrunc(CI->getArgOperand(1), BitfieldC->getType());
    671     Value *Bounds = B.CreateICmp(ICmpInst::ICMP_ULT, C, B.getIntN(Width, Width),
    672                                  "memchr.bounds");
    673 
    674     // Create code that checks if the given bit is set in the field.
    675     Value *Shl = B.CreateShl(B.getIntN(Width, 1ULL), C);
    676     Value *Bits = B.CreateIsNotNull(B.CreateAnd(Shl, BitfieldC), "memchr.bits");
    677 
    678     // Finally merge both checks and cast to pointer type. The inttoptr
    679     // implicitly zexts the i1 to intptr type.
    680     return B.CreateIntToPtr(B.CreateAnd(Bounds, Bits, "memchr"), CI->getType());
    681   }
    682 
    683   // Check if all arguments are constants.  If so, we can constant fold.
    684   if (!CharC)
    685     return nullptr;
    686 
    687   // Compute the offset.
    688   size_t I = Str.find(CharC->getSExtValue() & 0xFF);
    689   if (I == StringRef::npos) // Didn't find the char.  memchr returns null.
    690     return Constant::getNullValue(CI->getType());
    691 
    692   // memchr(s+n,c,l) -> gep(s+n+i,c)
    693   return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "memchr");
    694 }
    695 
    696 Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilder<> &B) {
    697   Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1);
    698 
    699   if (LHS == RHS) // memcmp(s,s,x) -> 0
    700     return Constant::getNullValue(CI->getType());
    701 
    702   // Make sure we have a constant length.
    703   ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
    704   if (!LenC)
    705     return nullptr;
    706   uint64_t Len = LenC->getZExtValue();
    707 
    708   if (Len == 0) // memcmp(s1,s2,0) -> 0
    709     return Constant::getNullValue(CI->getType());
    710 
    711   // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS
    712   if (Len == 1) {
    713     Value *LHSV = B.CreateZExt(B.CreateLoad(castToCStr(LHS, B), "lhsc"),
    714                                CI->getType(), "lhsv");
    715     Value *RHSV = B.CreateZExt(B.CreateLoad(castToCStr(RHS, B), "rhsc"),
    716                                CI->getType(), "rhsv");
    717     return B.CreateSub(LHSV, RHSV, "chardiff");
    718   }
    719 
    720   // memcmp(S1,S2,N/8)==0 -> (*(intN_t*)S1 != *(intN_t*)S2)==0
    721   if (DL.isLegalInteger(Len * 8) && isOnlyUsedInZeroEqualityComparison(CI)) {
    722 
    723     IntegerType *IntType = IntegerType::get(CI->getContext(), Len * 8);
    724     unsigned PrefAlignment = DL.getPrefTypeAlignment(IntType);
    725 
    726     if (getKnownAlignment(LHS, DL, CI) >= PrefAlignment &&
    727         getKnownAlignment(RHS, DL, CI) >= PrefAlignment) {
    728 
    729       Type *LHSPtrTy =
    730           IntType->getPointerTo(LHS->getType()->getPointerAddressSpace());
    731       Type *RHSPtrTy =
    732           IntType->getPointerTo(RHS->getType()->getPointerAddressSpace());
    733 
    734       Value *LHSV =
    735           B.CreateLoad(B.CreateBitCast(LHS, LHSPtrTy, "lhsc"), "lhsv");
    736       Value *RHSV =
    737           B.CreateLoad(B.CreateBitCast(RHS, RHSPtrTy, "rhsc"), "rhsv");
    738 
    739       return B.CreateZExt(B.CreateICmpNE(LHSV, RHSV), CI->getType(), "memcmp");
    740     }
    741   }
    742 
    743   // Constant folding: memcmp(x, y, l) -> cnst (all arguments are constant)
    744   StringRef LHSStr, RHSStr;
    745   if (getConstantStringInfo(LHS, LHSStr) &&
    746       getConstantStringInfo(RHS, RHSStr)) {
    747     // Make sure we're not reading out-of-bounds memory.
    748     if (Len > LHSStr.size() || Len > RHSStr.size())
    749       return nullptr;
    750     // Fold the memcmp and normalize the result.  This way we get consistent
    751     // results across multiple platforms.
    752     uint64_t Ret = 0;
    753     int Cmp = memcmp(LHSStr.data(), RHSStr.data(), Len);
    754     if (Cmp < 0)
    755       Ret = -1;
    756     else if (Cmp > 0)
    757       Ret = 1;
    758     return ConstantInt::get(CI->getType(), Ret);
    759   }
    760 
    761   return nullptr;
    762 }
    763 
    764 Value *LibCallSimplifier::optimizeMemCpy(CallInst *CI, IRBuilder<> &B) {
    765   // memcpy(x, y, n) -> llvm.memcpy(x, y, n, 1)
    766   B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1),
    767                  CI->getArgOperand(2), 1);
    768   return CI->getArgOperand(0);
    769 }
    770 
    771 Value *LibCallSimplifier::optimizeMemMove(CallInst *CI, IRBuilder<> &B) {
    772   // memmove(x, y, n) -> llvm.memmove(x, y, n, 1)
    773   B.CreateMemMove(CI->getArgOperand(0), CI->getArgOperand(1),
    774                   CI->getArgOperand(2), 1);
    775   return CI->getArgOperand(0);
    776 }
    777 
    778 // TODO: Does this belong in BuildLibCalls or should all of those similar
    779 // functions be moved here?
    780 static Value *emitCalloc(Value *Num, Value *Size, const AttributeSet &Attrs,
    781                          IRBuilder<> &B, const TargetLibraryInfo &TLI) {
    782   LibFunc::Func Func;
    783   if (!TLI.getLibFunc("calloc", Func) || !TLI.has(Func))
    784     return nullptr;
    785 
    786   Module *M = B.GetInsertBlock()->getModule();
    787   const DataLayout &DL = M->getDataLayout();
    788   IntegerType *PtrType = DL.getIntPtrType((B.GetInsertBlock()->getContext()));
    789   Value *Calloc = M->getOrInsertFunction("calloc", Attrs, B.getInt8PtrTy(),
    790                                          PtrType, PtrType, nullptr);
    791   CallInst *CI = B.CreateCall(Calloc, { Num, Size }, "calloc");
    792 
    793   if (const auto *F = dyn_cast<Function>(Calloc->stripPointerCasts()))
    794     CI->setCallingConv(F->getCallingConv());
    795 
    796   return CI;
    797 }
    798 
    799 /// Fold memset[_chk](malloc(n), 0, n) --> calloc(1, n).
    800 static Value *foldMallocMemset(CallInst *Memset, IRBuilder<> &B,
    801                                const TargetLibraryInfo &TLI) {
    802   // This has to be a memset of zeros (bzero).
    803   auto *FillValue = dyn_cast<ConstantInt>(Memset->getArgOperand(1));
    804   if (!FillValue || FillValue->getZExtValue() != 0)
    805     return nullptr;
    806 
    807   // TODO: We should handle the case where the malloc has more than one use.
    808   // This is necessary to optimize common patterns such as when the result of
    809   // the malloc is checked against null or when a memset intrinsic is used in
    810   // place of a memset library call.
    811   auto *Malloc = dyn_cast<CallInst>(Memset->getArgOperand(0));
    812   if (!Malloc || !Malloc->hasOneUse())
    813     return nullptr;
    814 
    815   // Is the inner call really malloc()?
    816   Function *InnerCallee = Malloc->getCalledFunction();
    817   LibFunc::Func Func;
    818   if (!TLI.getLibFunc(*InnerCallee, Func) || !TLI.has(Func) ||
    819       Func != LibFunc::malloc)
    820     return nullptr;
    821 
    822   // The memset must cover the same number of bytes that are malloc'd.
    823   if (Memset->getArgOperand(2) != Malloc->getArgOperand(0))
    824     return nullptr;
    825 
    826   // Replace the malloc with a calloc. We need the data layout to know what the
    827   // actual size of a 'size_t' parameter is.
    828   B.SetInsertPoint(Malloc->getParent(), ++Malloc->getIterator());
    829   const DataLayout &DL = Malloc->getModule()->getDataLayout();
    830   IntegerType *SizeType = DL.getIntPtrType(B.GetInsertBlock()->getContext());
    831   Value *Calloc = emitCalloc(ConstantInt::get(SizeType, 1),
    832                              Malloc->getArgOperand(0), Malloc->getAttributes(),
    833                              B, TLI);
    834   if (!Calloc)
    835     return nullptr;
    836 
    837   Malloc->replaceAllUsesWith(Calloc);
    838   Malloc->eraseFromParent();
    839 
    840   return Calloc;
    841 }
    842 
    843 Value *LibCallSimplifier::optimizeMemSet(CallInst *CI, IRBuilder<> &B) {
    844   if (auto *Calloc = foldMallocMemset(CI, B, *TLI))
    845     return Calloc;
    846 
    847   // memset(p, v, n) -> llvm.memset(p, v, n, 1)
    848   Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
    849   B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1);
    850   return CI->getArgOperand(0);
    851 }
    852 
    853 //===----------------------------------------------------------------------===//
    854 // Math Library Optimizations
    855 //===----------------------------------------------------------------------===//
    856 
    857 /// Return a variant of Val with float type.
    858 /// Currently this works in two cases: If Val is an FPExtension of a float
    859 /// value to something bigger, simply return the operand.
    860 /// If Val is a ConstantFP but can be converted to a float ConstantFP without
    861 /// loss of precision do so.
    862 static Value *valueHasFloatPrecision(Value *Val) {
    863   if (FPExtInst *Cast = dyn_cast<FPExtInst>(Val)) {
    864     Value *Op = Cast->getOperand(0);
    865     if (Op->getType()->isFloatTy())
    866       return Op;
    867   }
    868   if (ConstantFP *Const = dyn_cast<ConstantFP>(Val)) {
    869     APFloat F = Const->getValueAPF();
    870     bool losesInfo;
    871     (void)F.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven,
    872                     &losesInfo);
    873     if (!losesInfo)
    874       return ConstantFP::get(Const->getContext(), F);
    875   }
    876   return nullptr;
    877 }
    878 
    879 /// Shrink double -> float for unary functions like 'floor'.
    880 static Value *optimizeUnaryDoubleFP(CallInst *CI, IRBuilder<> &B,
    881                                     bool CheckRetType) {
    882   Function *Callee = CI->getCalledFunction();
    883   // We know this libcall has a valid prototype, but we don't know which.
    884   if (!CI->getType()->isDoubleTy())
    885     return nullptr;
    886 
    887   if (CheckRetType) {
    888     // Check if all the uses for function like 'sin' are converted to float.
    889     for (User *U : CI->users()) {
    890       FPTruncInst *Cast = dyn_cast<FPTruncInst>(U);
    891       if (!Cast || !Cast->getType()->isFloatTy())
    892         return nullptr;
    893     }
    894   }
    895 
    896   // If this is something like 'floor((double)floatval)', convert to floorf.
    897   Value *V = valueHasFloatPrecision(CI->getArgOperand(0));
    898   if (V == nullptr)
    899     return nullptr;
    900 
    901   // Propagate fast-math flags from the existing call to the new call.
    902   IRBuilder<>::FastMathFlagGuard Guard(B);
    903   B.setFastMathFlags(CI->getFastMathFlags());
    904 
    905   // floor((double)floatval) -> (double)floorf(floatval)
    906   if (Callee->isIntrinsic()) {
    907     Module *M = CI->getModule();
    908     Intrinsic::ID IID = Callee->getIntrinsicID();
    909     Function *F = Intrinsic::getDeclaration(M, IID, B.getFloatTy());
    910     V = B.CreateCall(F, V);
    911   } else {
    912     // The call is a library call rather than an intrinsic.
    913     V = emitUnaryFloatFnCall(V, Callee->getName(), B, Callee->getAttributes());
    914   }
    915 
    916   return B.CreateFPExt(V, B.getDoubleTy());
    917 }
    918 
    919 /// Shrink double -> float for binary functions like 'fmin/fmax'.
    920 static Value *optimizeBinaryDoubleFP(CallInst *CI, IRBuilder<> &B) {
    921   Function *Callee = CI->getCalledFunction();
    922   // We know this libcall has a valid prototype, but we don't know which.
    923   if (!CI->getType()->isDoubleTy())
    924     return nullptr;
    925 
    926   // If this is something like 'fmin((double)floatval1, (double)floatval2)',
    927   // or fmin(1.0, (double)floatval), then we convert it to fminf.
    928   Value *V1 = valueHasFloatPrecision(CI->getArgOperand(0));
    929   if (V1 == nullptr)
    930     return nullptr;
    931   Value *V2 = valueHasFloatPrecision(CI->getArgOperand(1));
    932   if (V2 == nullptr)
    933     return nullptr;
    934 
    935   // Propagate fast-math flags from the existing call to the new call.
    936   IRBuilder<>::FastMathFlagGuard Guard(B);
    937   B.setFastMathFlags(CI->getFastMathFlags());
    938 
    939   // fmin((double)floatval1, (double)floatval2)
    940   //                      -> (double)fminf(floatval1, floatval2)
    941   // TODO: Handle intrinsics in the same way as in optimizeUnaryDoubleFP().
    942   Value *V = emitBinaryFloatFnCall(V1, V2, Callee->getName(), B,
    943                                    Callee->getAttributes());
    944   return B.CreateFPExt(V, B.getDoubleTy());
    945 }
    946 
    947 Value *LibCallSimplifier::optimizeCos(CallInst *CI, IRBuilder<> &B) {
    948   Function *Callee = CI->getCalledFunction();
    949   Value *Ret = nullptr;
    950   StringRef Name = Callee->getName();
    951   if (UnsafeFPShrink && Name == "cos" && hasFloatVersion(Name))
    952     Ret = optimizeUnaryDoubleFP(CI, B, true);
    953 
    954   // cos(-x) -> cos(x)
    955   Value *Op1 = CI->getArgOperand(0);
    956   if (BinaryOperator::isFNeg(Op1)) {
    957     BinaryOperator *BinExpr = cast<BinaryOperator>(Op1);
    958     return B.CreateCall(Callee, BinExpr->getOperand(1), "cos");
    959   }
    960   return Ret;
    961 }
    962 
    963 static Value *getPow(Value *InnerChain[33], unsigned Exp, IRBuilder<> &B) {
    964   // Multiplications calculated using Addition Chains.
    965   // Refer: http://wwwhomes.uni-bielefeld.de/achim/addition_chain.html
    966 
    967   assert(Exp != 0 && "Incorrect exponent 0 not handled");
    968 
    969   if (InnerChain[Exp])
    970     return InnerChain[Exp];
    971 
    972   static const unsigned AddChain[33][2] = {
    973       {0, 0}, // Unused.
    974       {0, 0}, // Unused (base case = pow1).
    975       {1, 1}, // Unused (pre-computed).
    976       {1, 2},  {2, 2},   {2, 3},  {3, 3},   {2, 5},  {4, 4},
    977       {1, 8},  {5, 5},   {1, 10}, {6, 6},   {4, 9},  {7, 7},
    978       {3, 12}, {8, 8},   {8, 9},  {2, 16},  {1, 18}, {10, 10},
    979       {6, 15}, {11, 11}, {3, 20}, {12, 12}, {8, 17}, {13, 13},
    980       {3, 24}, {14, 14}, {4, 25}, {15, 15}, {3, 28}, {16, 16},
    981   };
    982 
    983   InnerChain[Exp] = B.CreateFMul(getPow(InnerChain, AddChain[Exp][0], B),
    984                                  getPow(InnerChain, AddChain[Exp][1], B));
    985   return InnerChain[Exp];
    986 }
    987 
    988 Value *LibCallSimplifier::optimizePow(CallInst *CI, IRBuilder<> &B) {
    989   Function *Callee = CI->getCalledFunction();
    990   Value *Ret = nullptr;
    991   StringRef Name = Callee->getName();
    992   if (UnsafeFPShrink && Name == "pow" && hasFloatVersion(Name))
    993     Ret = optimizeUnaryDoubleFP(CI, B, true);
    994 
    995   Value *Op1 = CI->getArgOperand(0), *Op2 = CI->getArgOperand(1);
    996   if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) {
    997     // pow(1.0, x) -> 1.0
    998     if (Op1C->isExactlyValue(1.0))
    999       return Op1C;
   1000     // pow(2.0, x) -> exp2(x)
   1001     if (Op1C->isExactlyValue(2.0) &&
   1002         hasUnaryFloatFn(TLI, Op1->getType(), LibFunc::exp2, LibFunc::exp2f,
   1003                         LibFunc::exp2l))
   1004       return emitUnaryFloatFnCall(Op2, TLI->getName(LibFunc::exp2), B,
   1005                                   Callee->getAttributes());
   1006     // pow(10.0, x) -> exp10(x)
   1007     if (Op1C->isExactlyValue(10.0) &&
   1008         hasUnaryFloatFn(TLI, Op1->getType(), LibFunc::exp10, LibFunc::exp10f,
   1009                         LibFunc::exp10l))
   1010       return emitUnaryFloatFnCall(Op2, TLI->getName(LibFunc::exp10), B,
   1011                                   Callee->getAttributes());
   1012   }
   1013 
   1014   // pow(exp(x), y) -> exp(x * y)
   1015   // pow(exp2(x), y) -> exp2(x * y)
   1016   // We enable these only with fast-math. Besides rounding differences, the
   1017   // transformation changes overflow and underflow behavior quite dramatically.
   1018   // Example: x = 1000, y = 0.001.
   1019   // pow(exp(x), y) = pow(inf, 0.001) = inf, whereas exp(x*y) = exp(1).
   1020   auto *OpC = dyn_cast<CallInst>(Op1);
   1021   if (OpC && OpC->hasUnsafeAlgebra() && CI->hasUnsafeAlgebra()) {
   1022     LibFunc::Func Func;
   1023     Function *OpCCallee = OpC->getCalledFunction();
   1024     if (OpCCallee && TLI->getLibFunc(OpCCallee->getName(), Func) &&
   1025         TLI->has(Func) && (Func == LibFunc::exp || Func == LibFunc::exp2)) {
   1026       IRBuilder<>::FastMathFlagGuard Guard(B);
   1027       B.setFastMathFlags(CI->getFastMathFlags());
   1028       Value *FMul = B.CreateFMul(OpC->getArgOperand(0), Op2, "mul");
   1029       return emitUnaryFloatFnCall(FMul, OpCCallee->getName(), B,
   1030                                   OpCCallee->getAttributes());
   1031     }
   1032   }
   1033 
   1034   ConstantFP *Op2C = dyn_cast<ConstantFP>(Op2);
   1035   if (!Op2C)
   1036     return Ret;
   1037 
   1038   if (Op2C->getValueAPF().isZero()) // pow(x, 0.0) -> 1.0
   1039     return ConstantFP::get(CI->getType(), 1.0);
   1040 
   1041   if (Op2C->isExactlyValue(0.5) &&
   1042       hasUnaryFloatFn(TLI, Op2->getType(), LibFunc::sqrt, LibFunc::sqrtf,
   1043                       LibFunc::sqrtl) &&
   1044       hasUnaryFloatFn(TLI, Op2->getType(), LibFunc::fabs, LibFunc::fabsf,
   1045                       LibFunc::fabsl)) {
   1046 
   1047     // In -ffast-math, pow(x, 0.5) -> sqrt(x).
   1048     if (CI->hasUnsafeAlgebra()) {
   1049       IRBuilder<>::FastMathFlagGuard Guard(B);
   1050       B.setFastMathFlags(CI->getFastMathFlags());
   1051       return emitUnaryFloatFnCall(Op1, TLI->getName(LibFunc::sqrt), B,
   1052                                   Callee->getAttributes());
   1053     }
   1054 
   1055     // Expand pow(x, 0.5) to (x == -infinity ? +infinity : fabs(sqrt(x))).
   1056     // This is faster than calling pow, and still handles negative zero
   1057     // and negative infinity correctly.
   1058     // TODO: In finite-only mode, this could be just fabs(sqrt(x)).
   1059     Value *Inf = ConstantFP::getInfinity(CI->getType());
   1060     Value *NegInf = ConstantFP::getInfinity(CI->getType(), true);
   1061     Value *Sqrt = emitUnaryFloatFnCall(Op1, "sqrt", B, Callee->getAttributes());
   1062     Value *FAbs =
   1063         emitUnaryFloatFnCall(Sqrt, "fabs", B, Callee->getAttributes());
   1064     Value *FCmp = B.CreateFCmpOEQ(Op1, NegInf);
   1065     Value *Sel = B.CreateSelect(FCmp, Inf, FAbs);
   1066     return Sel;
   1067   }
   1068 
   1069   if (Op2C->isExactlyValue(1.0)) // pow(x, 1.0) -> x
   1070     return Op1;
   1071   if (Op2C->isExactlyValue(2.0)) // pow(x, 2.0) -> x*x
   1072     return B.CreateFMul(Op1, Op1, "pow2");
   1073   if (Op2C->isExactlyValue(-1.0)) // pow(x, -1.0) -> 1.0/x
   1074     return B.CreateFDiv(ConstantFP::get(CI->getType(), 1.0), Op1, "powrecip");
   1075 
   1076   // In -ffast-math, generate repeated fmul instead of generating pow(x, n).
   1077   if (CI->hasUnsafeAlgebra()) {
   1078     APFloat V = abs(Op2C->getValueAPF());
   1079     // We limit to a max of 7 fmul(s). Thus max exponent is 32.
   1080     // This transformation applies to integer exponents only.
   1081     if (V.compare(APFloat(V.getSemantics(), 32.0)) == APFloat::cmpGreaterThan ||
   1082         !V.isInteger())
   1083       return nullptr;
   1084 
   1085     // We will memoize intermediate products of the Addition Chain.
   1086     Value *InnerChain[33] = {nullptr};
   1087     InnerChain[1] = Op1;
   1088     InnerChain[2] = B.CreateFMul(Op1, Op1);
   1089 
   1090     // We cannot readily convert a non-double type (like float) to a double.
   1091     // So we first convert V to something which could be converted to double.
   1092     bool ignored;
   1093     V.convert(APFloat::IEEEdouble, APFloat::rmTowardZero, &ignored);
   1094 
   1095     // TODO: Should the new instructions propagate the 'fast' flag of the pow()?
   1096     Value *FMul = getPow(InnerChain, V.convertToDouble(), B);
   1097     // For negative exponents simply compute the reciprocal.
   1098     if (Op2C->isNegative())
   1099       FMul = B.CreateFDiv(ConstantFP::get(CI->getType(), 1.0), FMul);
   1100     return FMul;
   1101   }
   1102 
   1103   return nullptr;
   1104 }
   1105 
   1106 Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilder<> &B) {
   1107   Function *Callee = CI->getCalledFunction();
   1108   Value *Ret = nullptr;
   1109   StringRef Name = Callee->getName();
   1110   if (UnsafeFPShrink && Name == "exp2" && hasFloatVersion(Name))
   1111     Ret = optimizeUnaryDoubleFP(CI, B, true);
   1112 
   1113   Value *Op = CI->getArgOperand(0);
   1114   // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x))  if sizeof(x) <= 32
   1115   // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x))  if sizeof(x) < 32
   1116   LibFunc::Func LdExp = LibFunc::ldexpl;
   1117   if (Op->getType()->isFloatTy())
   1118     LdExp = LibFunc::ldexpf;
   1119   else if (Op->getType()->isDoubleTy())
   1120     LdExp = LibFunc::ldexp;
   1121 
   1122   if (TLI->has(LdExp)) {
   1123     Value *LdExpArg = nullptr;
   1124     if (SIToFPInst *OpC = dyn_cast<SIToFPInst>(Op)) {
   1125       if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() <= 32)
   1126         LdExpArg = B.CreateSExt(OpC->getOperand(0), B.getInt32Ty());
   1127     } else if (UIToFPInst *OpC = dyn_cast<UIToFPInst>(Op)) {
   1128       if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() < 32)
   1129         LdExpArg = B.CreateZExt(OpC->getOperand(0), B.getInt32Ty());
   1130     }
   1131 
   1132     if (LdExpArg) {
   1133       Constant *One = ConstantFP::get(CI->getContext(), APFloat(1.0f));
   1134       if (!Op->getType()->isFloatTy())
   1135         One = ConstantExpr::getFPExtend(One, Op->getType());
   1136 
   1137       Module *M = CI->getModule();
   1138       Value *NewCallee =
   1139           M->getOrInsertFunction(TLI->getName(LdExp), Op->getType(),
   1140                                  Op->getType(), B.getInt32Ty(), nullptr);
   1141       CallInst *CI = B.CreateCall(NewCallee, {One, LdExpArg});
   1142       if (const Function *F = dyn_cast<Function>(Callee->stripPointerCasts()))
   1143         CI->setCallingConv(F->getCallingConv());
   1144 
   1145       return CI;
   1146     }
   1147   }
   1148   return Ret;
   1149 }
   1150 
   1151 Value *LibCallSimplifier::optimizeFabs(CallInst *CI, IRBuilder<> &B) {
   1152   Function *Callee = CI->getCalledFunction();
   1153   Value *Ret = nullptr;
   1154   StringRef Name = Callee->getName();
   1155   if (Name == "fabs" && hasFloatVersion(Name))
   1156     Ret = optimizeUnaryDoubleFP(CI, B, false);
   1157 
   1158   Value *Op = CI->getArgOperand(0);
   1159   if (Instruction *I = dyn_cast<Instruction>(Op)) {
   1160     // Fold fabs(x * x) -> x * x; any squared FP value must already be positive.
   1161     if (I->getOpcode() == Instruction::FMul)
   1162       if (I->getOperand(0) == I->getOperand(1))
   1163         return Op;
   1164   }
   1165   return Ret;
   1166 }
   1167 
   1168 Value *LibCallSimplifier::optimizeFMinFMax(CallInst *CI, IRBuilder<> &B) {
   1169   Function *Callee = CI->getCalledFunction();
   1170   // If we can shrink the call to a float function rather than a double
   1171   // function, do that first.
   1172   StringRef Name = Callee->getName();
   1173   if ((Name == "fmin" || Name == "fmax") && hasFloatVersion(Name))
   1174     if (Value *Ret = optimizeBinaryDoubleFP(CI, B))
   1175       return Ret;
   1176 
   1177   IRBuilder<>::FastMathFlagGuard Guard(B);
   1178   FastMathFlags FMF;
   1179   if (CI->hasUnsafeAlgebra()) {
   1180     // Unsafe algebra sets all fast-math-flags to true.
   1181     FMF.setUnsafeAlgebra();
   1182   } else {
   1183     // At a minimum, no-nans-fp-math must be true.
   1184     if (!CI->hasNoNaNs())
   1185       return nullptr;
   1186     // No-signed-zeros is implied by the definitions of fmax/fmin themselves:
   1187     // "Ideally, fmax would be sensitive to the sign of zero, for example
   1188     // fmax(-0. 0, +0. 0) would return +0; however, implementation in software
   1189     // might be impractical."
   1190     FMF.setNoSignedZeros();
   1191     FMF.setNoNaNs();
   1192   }
   1193   B.setFastMathFlags(FMF);
   1194 
   1195   // We have a relaxed floating-point environment. We can ignore NaN-handling
   1196   // and transform to a compare and select. We do not have to consider errno or
   1197   // exceptions, because fmin/fmax do not have those.
   1198   Value *Op0 = CI->getArgOperand(0);
   1199   Value *Op1 = CI->getArgOperand(1);
   1200   Value *Cmp = Callee->getName().startswith("fmin") ?
   1201     B.CreateFCmpOLT(Op0, Op1) : B.CreateFCmpOGT(Op0, Op1);
   1202   return B.CreateSelect(Cmp, Op0, Op1);
   1203 }
   1204 
   1205 Value *LibCallSimplifier::optimizeLog(CallInst *CI, IRBuilder<> &B) {
   1206   Function *Callee = CI->getCalledFunction();
   1207   Value *Ret = nullptr;
   1208   StringRef Name = Callee->getName();
   1209   if (UnsafeFPShrink && hasFloatVersion(Name))
   1210     Ret = optimizeUnaryDoubleFP(CI, B, true);
   1211 
   1212   if (!CI->hasUnsafeAlgebra())
   1213     return Ret;
   1214   Value *Op1 = CI->getArgOperand(0);
   1215   auto *OpC = dyn_cast<CallInst>(Op1);
   1216 
   1217   // The earlier call must also be unsafe in order to do these transforms.
   1218   if (!OpC || !OpC->hasUnsafeAlgebra())
   1219     return Ret;
   1220 
   1221   // log(pow(x,y)) -> y*log(x)
   1222   // This is only applicable to log, log2, log10.
   1223   if (Name != "log" && Name != "log2" && Name != "log10")
   1224     return Ret;
   1225 
   1226   IRBuilder<>::FastMathFlagGuard Guard(B);
   1227   FastMathFlags FMF;
   1228   FMF.setUnsafeAlgebra();
   1229   B.setFastMathFlags(FMF);
   1230 
   1231   LibFunc::Func Func;
   1232   Function *F = OpC->getCalledFunction();
   1233   if (F && ((TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) &&
   1234       Func == LibFunc::pow) || F->getIntrinsicID() == Intrinsic::pow))
   1235     return B.CreateFMul(OpC->getArgOperand(1),
   1236       emitUnaryFloatFnCall(OpC->getOperand(0), Callee->getName(), B,
   1237                            Callee->getAttributes()), "mul");
   1238 
   1239   // log(exp2(y)) -> y*log(2)
   1240   if (F && Name == "log" && TLI->getLibFunc(F->getName(), Func) &&
   1241       TLI->has(Func) && Func == LibFunc::exp2)
   1242     return B.CreateFMul(
   1243         OpC->getArgOperand(0),
   1244         emitUnaryFloatFnCall(ConstantFP::get(CI->getType(), 2.0),
   1245                              Callee->getName(), B, Callee->getAttributes()),
   1246         "logmul");
   1247   return Ret;
   1248 }
   1249 
   1250 Value *LibCallSimplifier::optimizeSqrt(CallInst *CI, IRBuilder<> &B) {
   1251   Function *Callee = CI->getCalledFunction();
   1252   Value *Ret = nullptr;
   1253   if (TLI->has(LibFunc::sqrtf) && (Callee->getName() == "sqrt" ||
   1254                                    Callee->getIntrinsicID() == Intrinsic::sqrt))
   1255     Ret = optimizeUnaryDoubleFP(CI, B, true);
   1256 
   1257   if (!CI->hasUnsafeAlgebra())
   1258     return Ret;
   1259 
   1260   Instruction *I = dyn_cast<Instruction>(CI->getArgOperand(0));
   1261   if (!I || I->getOpcode() != Instruction::FMul || !I->hasUnsafeAlgebra())
   1262     return Ret;
   1263 
   1264   // We're looking for a repeated factor in a multiplication tree,
   1265   // so we can do this fold: sqrt(x * x) -> fabs(x);
   1266   // or this fold: sqrt((x * x) * y) -> fabs(x) * sqrt(y).
   1267   Value *Op0 = I->getOperand(0);
   1268   Value *Op1 = I->getOperand(1);
   1269   Value *RepeatOp = nullptr;
   1270   Value *OtherOp = nullptr;
   1271   if (Op0 == Op1) {
   1272     // Simple match: the operands of the multiply are identical.
   1273     RepeatOp = Op0;
   1274   } else {
   1275     // Look for a more complicated pattern: one of the operands is itself
   1276     // a multiply, so search for a common factor in that multiply.
   1277     // Note: We don't bother looking any deeper than this first level or for
   1278     // variations of this pattern because instcombine's visitFMUL and/or the
   1279     // reassociation pass should give us this form.
   1280     Value *OtherMul0, *OtherMul1;
   1281     if (match(Op0, m_FMul(m_Value(OtherMul0), m_Value(OtherMul1)))) {
   1282       // Pattern: sqrt((x * y) * z)
   1283       if (OtherMul0 == OtherMul1 &&
   1284           cast<Instruction>(Op0)->hasUnsafeAlgebra()) {
   1285         // Matched: sqrt((x * x) * z)
   1286         RepeatOp = OtherMul0;
   1287         OtherOp = Op1;
   1288       }
   1289     }
   1290   }
   1291   if (!RepeatOp)
   1292     return Ret;
   1293 
   1294   // Fast math flags for any created instructions should match the sqrt
   1295   // and multiply.
   1296   IRBuilder<>::FastMathFlagGuard Guard(B);
   1297   B.setFastMathFlags(I->getFastMathFlags());
   1298 
   1299   // If we found a repeated factor, hoist it out of the square root and
   1300   // replace it with the fabs of that factor.
   1301   Module *M = Callee->getParent();
   1302   Type *ArgType = I->getType();
   1303   Value *Fabs = Intrinsic::getDeclaration(M, Intrinsic::fabs, ArgType);
   1304   Value *FabsCall = B.CreateCall(Fabs, RepeatOp, "fabs");
   1305   if (OtherOp) {
   1306     // If we found a non-repeated factor, we still need to get its square
   1307     // root. We then multiply that by the value that was simplified out
   1308     // of the square root calculation.
   1309     Value *Sqrt = Intrinsic::getDeclaration(M, Intrinsic::sqrt, ArgType);
   1310     Value *SqrtCall = B.CreateCall(Sqrt, OtherOp, "sqrt");
   1311     return B.CreateFMul(FabsCall, SqrtCall);
   1312   }
   1313   return FabsCall;
   1314 }
   1315 
   1316 // TODO: Generalize to handle any trig function and its inverse.
   1317 Value *LibCallSimplifier::optimizeTan(CallInst *CI, IRBuilder<> &B) {
   1318   Function *Callee = CI->getCalledFunction();
   1319   Value *Ret = nullptr;
   1320   StringRef Name = Callee->getName();
   1321   if (UnsafeFPShrink && Name == "tan" && hasFloatVersion(Name))
   1322     Ret = optimizeUnaryDoubleFP(CI, B, true);
   1323 
   1324   Value *Op1 = CI->getArgOperand(0);
   1325   auto *OpC = dyn_cast<CallInst>(Op1);
   1326   if (!OpC)
   1327     return Ret;
   1328 
   1329   // Both calls must allow unsafe optimizations in order to remove them.
   1330   if (!CI->hasUnsafeAlgebra() || !OpC->hasUnsafeAlgebra())
   1331     return Ret;
   1332 
   1333   // tan(atan(x)) -> x
   1334   // tanf(atanf(x)) -> x
   1335   // tanl(atanl(x)) -> x
   1336   LibFunc::Func Func;
   1337   Function *F = OpC->getCalledFunction();
   1338   if (F && TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) &&
   1339       ((Func == LibFunc::atan && Callee->getName() == "tan") ||
   1340        (Func == LibFunc::atanf && Callee->getName() == "tanf") ||
   1341        (Func == LibFunc::atanl && Callee->getName() == "tanl")))
   1342     Ret = OpC->getArgOperand(0);
   1343   return Ret;
   1344 }
   1345 
   1346 static bool isTrigLibCall(CallInst *CI) {
   1347   // We can only hope to do anything useful if we can ignore things like errno
   1348   // and floating-point exceptions.
   1349   // We already checked the prototype.
   1350   return CI->hasFnAttr(Attribute::NoUnwind) &&
   1351          CI->hasFnAttr(Attribute::ReadNone);
   1352 }
   1353 
   1354 static void insertSinCosCall(IRBuilder<> &B, Function *OrigCallee, Value *Arg,
   1355                              bool UseFloat, Value *&Sin, Value *&Cos,
   1356                              Value *&SinCos) {
   1357   Type *ArgTy = Arg->getType();
   1358   Type *ResTy;
   1359   StringRef Name;
   1360 
   1361   Triple T(OrigCallee->getParent()->getTargetTriple());
   1362   if (UseFloat) {
   1363     Name = "__sincospif_stret";
   1364 
   1365     assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for now");
   1366     // x86_64 can't use {float, float} since that would be returned in both
   1367     // xmm0 and xmm1, which isn't what a real struct would do.
   1368     ResTy = T.getArch() == Triple::x86_64
   1369     ? static_cast<Type *>(VectorType::get(ArgTy, 2))
   1370     : static_cast<Type *>(StructType::get(ArgTy, ArgTy, nullptr));
   1371   } else {
   1372     Name = "__sincospi_stret";
   1373     ResTy = StructType::get(ArgTy, ArgTy, nullptr);
   1374   }
   1375 
   1376   Module *M = OrigCallee->getParent();
   1377   Value *Callee = M->getOrInsertFunction(Name, OrigCallee->getAttributes(),
   1378                                          ResTy, ArgTy, nullptr);
   1379 
   1380   if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) {
   1381     // If the argument is an instruction, it must dominate all uses so put our
   1382     // sincos call there.
   1383     B.SetInsertPoint(ArgInst->getParent(), ++ArgInst->getIterator());
   1384   } else {
   1385     // Otherwise (e.g. for a constant) the beginning of the function is as
   1386     // good a place as any.
   1387     BasicBlock &EntryBB = B.GetInsertBlock()->getParent()->getEntryBlock();
   1388     B.SetInsertPoint(&EntryBB, EntryBB.begin());
   1389   }
   1390 
   1391   SinCos = B.CreateCall(Callee, Arg, "sincospi");
   1392 
   1393   if (SinCos->getType()->isStructTy()) {
   1394     Sin = B.CreateExtractValue(SinCos, 0, "sinpi");
   1395     Cos = B.CreateExtractValue(SinCos, 1, "cospi");
   1396   } else {
   1397     Sin = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 0),
   1398                                  "sinpi");
   1399     Cos = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 1),
   1400                                  "cospi");
   1401   }
   1402 }
   1403 
   1404 Value *LibCallSimplifier::optimizeSinCosPi(CallInst *CI, IRBuilder<> &B) {
   1405   // Make sure the prototype is as expected, otherwise the rest of the
   1406   // function is probably invalid and likely to abort.
   1407   if (!isTrigLibCall(CI))
   1408     return nullptr;
   1409 
   1410   Value *Arg = CI->getArgOperand(0);
   1411   SmallVector<CallInst *, 1> SinCalls;
   1412   SmallVector<CallInst *, 1> CosCalls;
   1413   SmallVector<CallInst *, 1> SinCosCalls;
   1414 
   1415   bool IsFloat = Arg->getType()->isFloatTy();
   1416 
   1417   // Look for all compatible sinpi, cospi and sincospi calls with the same
   1418   // argument. If there are enough (in some sense) we can make the
   1419   // substitution.
   1420   Function *F = CI->getFunction();
   1421   for (User *U : Arg->users())
   1422     classifyArgUse(U, F, IsFloat, SinCalls, CosCalls, SinCosCalls);
   1423 
   1424   // It's only worthwhile if both sinpi and cospi are actually used.
   1425   if (SinCosCalls.empty() && (SinCalls.empty() || CosCalls.empty()))
   1426     return nullptr;
   1427 
   1428   Value *Sin, *Cos, *SinCos;
   1429   insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos, SinCos);
   1430 
   1431   replaceTrigInsts(SinCalls, Sin);
   1432   replaceTrigInsts(CosCalls, Cos);
   1433   replaceTrigInsts(SinCosCalls, SinCos);
   1434 
   1435   return nullptr;
   1436 }
   1437 
   1438 void LibCallSimplifier::classifyArgUse(
   1439     Value *Val, Function *F, bool IsFloat,
   1440     SmallVectorImpl<CallInst *> &SinCalls,
   1441     SmallVectorImpl<CallInst *> &CosCalls,
   1442     SmallVectorImpl<CallInst *> &SinCosCalls) {
   1443   CallInst *CI = dyn_cast<CallInst>(Val);
   1444 
   1445   if (!CI)
   1446     return;
   1447 
   1448   // Don't consider calls in other functions.
   1449   if (CI->getFunction() != F)
   1450     return;
   1451 
   1452   Function *Callee = CI->getCalledFunction();
   1453   LibFunc::Func Func;
   1454   if (!Callee || !TLI->getLibFunc(*Callee, Func) || !TLI->has(Func) ||
   1455       !isTrigLibCall(CI))
   1456     return;
   1457 
   1458   if (IsFloat) {
   1459     if (Func == LibFunc::sinpif)
   1460       SinCalls.push_back(CI);
   1461     else if (Func == LibFunc::cospif)
   1462       CosCalls.push_back(CI);
   1463     else if (Func == LibFunc::sincospif_stret)
   1464       SinCosCalls.push_back(CI);
   1465   } else {
   1466     if (Func == LibFunc::sinpi)
   1467       SinCalls.push_back(CI);
   1468     else if (Func == LibFunc::cospi)
   1469       CosCalls.push_back(CI);
   1470     else if (Func == LibFunc::sincospi_stret)
   1471       SinCosCalls.push_back(CI);
   1472   }
   1473 }
   1474 
   1475 void LibCallSimplifier::replaceTrigInsts(SmallVectorImpl<CallInst *> &Calls,
   1476                                          Value *Res) {
   1477   for (CallInst *C : Calls)
   1478     replaceAllUsesWith(C, Res);
   1479 }
   1480 
   1481 //===----------------------------------------------------------------------===//
   1482 // Integer Library Call Optimizations
   1483 //===----------------------------------------------------------------------===//
   1484 
   1485 Value *LibCallSimplifier::optimizeFFS(CallInst *CI, IRBuilder<> &B) {
   1486   Function *Callee = CI->getCalledFunction();
   1487   Value *Op = CI->getArgOperand(0);
   1488 
   1489   // Constant fold.
   1490   if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
   1491     if (CI->isZero()) // ffs(0) -> 0.
   1492       return B.getInt32(0);
   1493     // ffs(c) -> cttz(c)+1
   1494     return B.getInt32(CI->getValue().countTrailingZeros() + 1);
   1495   }
   1496 
   1497   // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0
   1498   Type *ArgType = Op->getType();
   1499   Value *F =
   1500       Intrinsic::getDeclaration(Callee->getParent(), Intrinsic::cttz, ArgType);
   1501   Value *V = B.CreateCall(F, {Op, B.getTrue()}, "cttz");
   1502   V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1));
   1503   V = B.CreateIntCast(V, B.getInt32Ty(), false);
   1504 
   1505   Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType));
   1506   return B.CreateSelect(Cond, V, B.getInt32(0));
   1507 }
   1508 
   1509 Value *LibCallSimplifier::optimizeAbs(CallInst *CI, IRBuilder<> &B) {
   1510   // abs(x) -> x >s -1 ? x : -x
   1511   Value *Op = CI->getArgOperand(0);
   1512   Value *Pos =
   1513       B.CreateICmpSGT(Op, Constant::getAllOnesValue(Op->getType()), "ispos");
   1514   Value *Neg = B.CreateNeg(Op, "neg");
   1515   return B.CreateSelect(Pos, Op, Neg);
   1516 }
   1517 
   1518 Value *LibCallSimplifier::optimizeIsDigit(CallInst *CI, IRBuilder<> &B) {
   1519   // isdigit(c) -> (c-'0') <u 10
   1520   Value *Op = CI->getArgOperand(0);
   1521   Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp");
   1522   Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit");
   1523   return B.CreateZExt(Op, CI->getType());
   1524 }
   1525 
   1526 Value *LibCallSimplifier::optimizeIsAscii(CallInst *CI, IRBuilder<> &B) {
   1527   // isascii(c) -> c <u 128
   1528   Value *Op = CI->getArgOperand(0);
   1529   Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii");
   1530   return B.CreateZExt(Op, CI->getType());
   1531 }
   1532 
   1533 Value *LibCallSimplifier::optimizeToAscii(CallInst *CI, IRBuilder<> &B) {
   1534   // toascii(c) -> c & 0x7f
   1535   return B.CreateAnd(CI->getArgOperand(0),
   1536                      ConstantInt::get(CI->getType(), 0x7F));
   1537 }
   1538 
   1539 //===----------------------------------------------------------------------===//
   1540 // Formatting and IO Library Call Optimizations
   1541 //===----------------------------------------------------------------------===//
   1542 
   1543 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg);
   1544 
   1545 Value *LibCallSimplifier::optimizeErrorReporting(CallInst *CI, IRBuilder<> &B,
   1546                                                  int StreamArg) {
   1547   Function *Callee = CI->getCalledFunction();
   1548   // Error reporting calls should be cold, mark them as such.
   1549   // This applies even to non-builtin calls: it is only a hint and applies to
   1550   // functions that the frontend might not understand as builtins.
   1551 
   1552   // This heuristic was suggested in:
   1553   // Improving Static Branch Prediction in a Compiler
   1554   // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu
   1555   // Proceedings of PACT'98, Oct. 1998, IEEE
   1556   if (!CI->hasFnAttr(Attribute::Cold) &&
   1557       isReportingError(Callee, CI, StreamArg)) {
   1558     CI->addAttribute(AttributeSet::FunctionIndex, Attribute::Cold);
   1559   }
   1560 
   1561   return nullptr;
   1562 }
   1563 
   1564 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg) {
   1565   if (!ColdErrorCalls || !Callee || !Callee->isDeclaration())
   1566     return false;
   1567 
   1568   if (StreamArg < 0)
   1569     return true;
   1570 
   1571   // These functions might be considered cold, but only if their stream
   1572   // argument is stderr.
   1573 
   1574   if (StreamArg >= (int)CI->getNumArgOperands())
   1575     return false;
   1576   LoadInst *LI = dyn_cast<LoadInst>(CI->getArgOperand(StreamArg));
   1577   if (!LI)
   1578     return false;
   1579   GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand());
   1580   if (!GV || !GV->isDeclaration())
   1581     return false;
   1582   return GV->getName() == "stderr";
   1583 }
   1584 
   1585 Value *LibCallSimplifier::optimizePrintFString(CallInst *CI, IRBuilder<> &B) {
   1586   // Check for a fixed format string.
   1587   StringRef FormatStr;
   1588   if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr))
   1589     return nullptr;
   1590 
   1591   // Empty format string -> noop.
   1592   if (FormatStr.empty()) // Tolerate printf's declared void.
   1593     return CI->use_empty() ? (Value *)CI : ConstantInt::get(CI->getType(), 0);
   1594 
   1595   // Do not do any of the following transformations if the printf return value
   1596   // is used, in general the printf return value is not compatible with either
   1597   // putchar() or puts().
   1598   if (!CI->use_empty())
   1599     return nullptr;
   1600 
   1601   // printf("x") -> putchar('x'), even for "%" and "%%".
   1602   if (FormatStr.size() == 1 || FormatStr == "%%")
   1603     return emitPutChar(B.getInt32(FormatStr[0]), B, TLI);
   1604 
   1605   // printf("%s", "a") --> putchar('a')
   1606   if (FormatStr == "%s" && CI->getNumArgOperands() > 1) {
   1607     StringRef ChrStr;
   1608     if (!getConstantStringInfo(CI->getOperand(1), ChrStr))
   1609       return nullptr;
   1610     if (ChrStr.size() != 1)
   1611       return nullptr;
   1612     return emitPutChar(B.getInt32(ChrStr[0]), B, TLI);
   1613   }
   1614 
   1615   // printf("foo\n") --> puts("foo")
   1616   if (FormatStr[FormatStr.size() - 1] == '\n' &&
   1617       FormatStr.find('%') == StringRef::npos) { // No format characters.
   1618     // Create a string literal with no \n on it.  We expect the constant merge
   1619     // pass to be run after this pass, to merge duplicate strings.
   1620     FormatStr = FormatStr.drop_back();
   1621     Value *GV = B.CreateGlobalString(FormatStr, "str");
   1622     return emitPutS(GV, B, TLI);
   1623   }
   1624 
   1625   // Optimize specific format strings.
   1626   // printf("%c", chr) --> putchar(chr)
   1627   if (FormatStr == "%c" && CI->getNumArgOperands() > 1 &&
   1628       CI->getArgOperand(1)->getType()->isIntegerTy())
   1629     return emitPutChar(CI->getArgOperand(1), B, TLI);
   1630 
   1631   // printf("%s\n", str) --> puts(str)
   1632   if (FormatStr == "%s\n" && CI->getNumArgOperands() > 1 &&
   1633       CI->getArgOperand(1)->getType()->isPointerTy())
   1634     return emitPutS(CI->getArgOperand(1), B, TLI);
   1635   return nullptr;
   1636 }
   1637 
   1638 Value *LibCallSimplifier::optimizePrintF(CallInst *CI, IRBuilder<> &B) {
   1639 
   1640   Function *Callee = CI->getCalledFunction();
   1641   FunctionType *FT = Callee->getFunctionType();
   1642   if (Value *V = optimizePrintFString(CI, B)) {
   1643     return V;
   1644   }
   1645 
   1646   // printf(format, ...) -> iprintf(format, ...) if no floating point
   1647   // arguments.
   1648   if (TLI->has(LibFunc::iprintf) && !callHasFloatingPointArgument(CI)) {
   1649     Module *M = B.GetInsertBlock()->getParent()->getParent();
   1650     Constant *IPrintFFn =
   1651         M->getOrInsertFunction("iprintf", FT, Callee->getAttributes());
   1652     CallInst *New = cast<CallInst>(CI->clone());
   1653     New->setCalledFunction(IPrintFFn);
   1654     B.Insert(New);
   1655     return New;
   1656   }
   1657   return nullptr;
   1658 }
   1659 
   1660 Value *LibCallSimplifier::optimizeSPrintFString(CallInst *CI, IRBuilder<> &B) {
   1661   // Check for a fixed format string.
   1662   StringRef FormatStr;
   1663   if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
   1664     return nullptr;
   1665 
   1666   // If we just have a format string (nothing else crazy) transform it.
   1667   if (CI->getNumArgOperands() == 2) {
   1668     // Make sure there's no % in the constant array.  We could try to handle
   1669     // %% -> % in the future if we cared.
   1670     for (unsigned i = 0, e = FormatStr.size(); i != e; ++i)
   1671       if (FormatStr[i] == '%')
   1672         return nullptr; // we found a format specifier, bail out.
   1673 
   1674     // sprintf(str, fmt) -> llvm.memcpy(str, fmt, strlen(fmt)+1, 1)
   1675     B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1),
   1676                    ConstantInt::get(DL.getIntPtrType(CI->getContext()),
   1677                                     FormatStr.size() + 1),
   1678                    1); // Copy the null byte.
   1679     return ConstantInt::get(CI->getType(), FormatStr.size());
   1680   }
   1681 
   1682   // The remaining optimizations require the format string to be "%s" or "%c"
   1683   // and have an extra operand.
   1684   if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
   1685       CI->getNumArgOperands() < 3)
   1686     return nullptr;
   1687 
   1688   // Decode the second character of the format string.
   1689   if (FormatStr[1] == 'c') {
   1690     // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
   1691     if (!CI->getArgOperand(2)->getType()->isIntegerTy())
   1692       return nullptr;
   1693     Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char");
   1694     Value *Ptr = castToCStr(CI->getArgOperand(0), B);
   1695     B.CreateStore(V, Ptr);
   1696     Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul");
   1697     B.CreateStore(B.getInt8(0), Ptr);
   1698 
   1699     return ConstantInt::get(CI->getType(), 1);
   1700   }
   1701 
   1702   if (FormatStr[1] == 's') {
   1703     // sprintf(dest, "%s", str) -> llvm.memcpy(dest, str, strlen(str)+1, 1)
   1704     if (!CI->getArgOperand(2)->getType()->isPointerTy())
   1705       return nullptr;
   1706 
   1707     Value *Len = emitStrLen(CI->getArgOperand(2), B, DL, TLI);
   1708     if (!Len)
   1709       return nullptr;
   1710     Value *IncLen =
   1711         B.CreateAdd(Len, ConstantInt::get(Len->getType(), 1), "leninc");
   1712     B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(2), IncLen, 1);
   1713 
   1714     // The sprintf result is the unincremented number of bytes in the string.
   1715     return B.CreateIntCast(Len, CI->getType(), false);
   1716   }
   1717   return nullptr;
   1718 }
   1719 
   1720 Value *LibCallSimplifier::optimizeSPrintF(CallInst *CI, IRBuilder<> &B) {
   1721   Function *Callee = CI->getCalledFunction();
   1722   FunctionType *FT = Callee->getFunctionType();
   1723   if (Value *V = optimizeSPrintFString(CI, B)) {
   1724     return V;
   1725   }
   1726 
   1727   // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating
   1728   // point arguments.
   1729   if (TLI->has(LibFunc::siprintf) && !callHasFloatingPointArgument(CI)) {
   1730     Module *M = B.GetInsertBlock()->getParent()->getParent();
   1731     Constant *SIPrintFFn =
   1732         M->getOrInsertFunction("siprintf", FT, Callee->getAttributes());
   1733     CallInst *New = cast<CallInst>(CI->clone());
   1734     New->setCalledFunction(SIPrintFFn);
   1735     B.Insert(New);
   1736     return New;
   1737   }
   1738   return nullptr;
   1739 }
   1740 
   1741 Value *LibCallSimplifier::optimizeFPrintFString(CallInst *CI, IRBuilder<> &B) {
   1742   optimizeErrorReporting(CI, B, 0);
   1743 
   1744   // All the optimizations depend on the format string.
   1745   StringRef FormatStr;
   1746   if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
   1747     return nullptr;
   1748 
   1749   // Do not do any of the following transformations if the fprintf return
   1750   // value is used, in general the fprintf return value is not compatible
   1751   // with fwrite(), fputc() or fputs().
   1752   if (!CI->use_empty())
   1753     return nullptr;
   1754 
   1755   // fprintf(F, "foo") --> fwrite("foo", 3, 1, F)
   1756   if (CI->getNumArgOperands() == 2) {
   1757     for (unsigned i = 0, e = FormatStr.size(); i != e; ++i)
   1758       if (FormatStr[i] == '%') // Could handle %% -> % if we cared.
   1759         return nullptr;        // We found a format specifier.
   1760 
   1761     return emitFWrite(
   1762         CI->getArgOperand(1),
   1763         ConstantInt::get(DL.getIntPtrType(CI->getContext()), FormatStr.size()),
   1764         CI->getArgOperand(0), B, DL, TLI);
   1765   }
   1766 
   1767   // The remaining optimizations require the format string to be "%s" or "%c"
   1768   // and have an extra operand.
   1769   if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
   1770       CI->getNumArgOperands() < 3)
   1771     return nullptr;
   1772 
   1773   // Decode the second character of the format string.
   1774   if (FormatStr[1] == 'c') {
   1775     // fprintf(F, "%c", chr) --> fputc(chr, F)
   1776     if (!CI->getArgOperand(2)->getType()->isIntegerTy())
   1777       return nullptr;
   1778     return emitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI);
   1779   }
   1780 
   1781   if (FormatStr[1] == 's') {
   1782     // fprintf(F, "%s", str) --> fputs(str, F)
   1783     if (!CI->getArgOperand(2)->getType()->isPointerTy())
   1784       return nullptr;
   1785     return emitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI);
   1786   }
   1787   return nullptr;
   1788 }
   1789 
   1790 Value *LibCallSimplifier::optimizeFPrintF(CallInst *CI, IRBuilder<> &B) {
   1791   Function *Callee = CI->getCalledFunction();
   1792   FunctionType *FT = Callee->getFunctionType();
   1793   if (Value *V = optimizeFPrintFString(CI, B)) {
   1794     return V;
   1795   }
   1796 
   1797   // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no
   1798   // floating point arguments.
   1799   if (TLI->has(LibFunc::fiprintf) && !callHasFloatingPointArgument(CI)) {
   1800     Module *M = B.GetInsertBlock()->getParent()->getParent();
   1801     Constant *FIPrintFFn =
   1802         M->getOrInsertFunction("fiprintf", FT, Callee->getAttributes());
   1803     CallInst *New = cast<CallInst>(CI->clone());
   1804     New->setCalledFunction(FIPrintFFn);
   1805     B.Insert(New);
   1806     return New;
   1807   }
   1808   return nullptr;
   1809 }
   1810 
   1811 Value *LibCallSimplifier::optimizeFWrite(CallInst *CI, IRBuilder<> &B) {
   1812   optimizeErrorReporting(CI, B, 3);
   1813 
   1814   // Get the element size and count.
   1815   ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
   1816   ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
   1817   if (!SizeC || !CountC)
   1818     return nullptr;
   1819   uint64_t Bytes = SizeC->getZExtValue() * CountC->getZExtValue();
   1820 
   1821   // If this is writing zero records, remove the call (it's a noop).
   1822   if (Bytes == 0)
   1823     return ConstantInt::get(CI->getType(), 0);
   1824 
   1825   // If this is writing one byte, turn it into fputc.
   1826   // This optimisation is only valid, if the return value is unused.
   1827   if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F)
   1828     Value *Char = B.CreateLoad(castToCStr(CI->getArgOperand(0), B), "char");
   1829     Value *NewCI = emitFPutC(Char, CI->getArgOperand(3), B, TLI);
   1830     return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr;
   1831   }
   1832 
   1833   return nullptr;
   1834 }
   1835 
   1836 Value *LibCallSimplifier::optimizeFPuts(CallInst *CI, IRBuilder<> &B) {
   1837   optimizeErrorReporting(CI, B, 1);
   1838 
   1839   // Don't rewrite fputs to fwrite when optimising for size because fwrite
   1840   // requires more arguments and thus extra MOVs are required.
   1841   if (CI->getParent()->getParent()->optForSize())
   1842     return nullptr;
   1843 
   1844   // We can't optimize if return value is used.
   1845   if (!CI->use_empty())
   1846     return nullptr;
   1847 
   1848   // fputs(s,F) --> fwrite(s,1,strlen(s),F)
   1849   uint64_t Len = GetStringLength(CI->getArgOperand(0));
   1850   if (!Len)
   1851     return nullptr;
   1852 
   1853   // Known to have no uses (see above).
   1854   return emitFWrite(
   1855       CI->getArgOperand(0),
   1856       ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len - 1),
   1857       CI->getArgOperand(1), B, DL, TLI);
   1858 }
   1859 
   1860 Value *LibCallSimplifier::optimizePuts(CallInst *CI, IRBuilder<> &B) {
   1861   // Check for a constant string.
   1862   StringRef Str;
   1863   if (!getConstantStringInfo(CI->getArgOperand(0), Str))
   1864     return nullptr;
   1865 
   1866   if (Str.empty() && CI->use_empty()) {
   1867     // puts("") -> putchar('\n')
   1868     Value *Res = emitPutChar(B.getInt32('\n'), B, TLI);
   1869     if (CI->use_empty() || !Res)
   1870       return Res;
   1871     return B.CreateIntCast(Res, CI->getType(), true);
   1872   }
   1873 
   1874   return nullptr;
   1875 }
   1876 
   1877 bool LibCallSimplifier::hasFloatVersion(StringRef FuncName) {
   1878   LibFunc::Func Func;
   1879   SmallString<20> FloatFuncName = FuncName;
   1880   FloatFuncName += 'f';
   1881   if (TLI->getLibFunc(FloatFuncName, Func))
   1882     return TLI->has(Func);
   1883   return false;
   1884 }
   1885 
   1886 Value *LibCallSimplifier::optimizeStringMemoryLibCall(CallInst *CI,
   1887                                                       IRBuilder<> &Builder) {
   1888   LibFunc::Func Func;
   1889   Function *Callee = CI->getCalledFunction();
   1890   // Check for string/memory library functions.
   1891   if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) {
   1892     // Make sure we never change the calling convention.
   1893     assert((ignoreCallingConv(Func) ||
   1894             CI->getCallingConv() == llvm::CallingConv::C) &&
   1895       "Optimizing string/memory libcall would change the calling convention");
   1896     switch (Func) {
   1897     case LibFunc::strcat:
   1898       return optimizeStrCat(CI, Builder);
   1899     case LibFunc::strncat:
   1900       return optimizeStrNCat(CI, Builder);
   1901     case LibFunc::strchr:
   1902       return optimizeStrChr(CI, Builder);
   1903     case LibFunc::strrchr:
   1904       return optimizeStrRChr(CI, Builder);
   1905     case LibFunc::strcmp:
   1906       return optimizeStrCmp(CI, Builder);
   1907     case LibFunc::strncmp:
   1908       return optimizeStrNCmp(CI, Builder);
   1909     case LibFunc::strcpy:
   1910       return optimizeStrCpy(CI, Builder);
   1911     case LibFunc::stpcpy:
   1912       return optimizeStpCpy(CI, Builder);
   1913     case LibFunc::strncpy:
   1914       return optimizeStrNCpy(CI, Builder);
   1915     case LibFunc::strlen:
   1916       return optimizeStrLen(CI, Builder);
   1917     case LibFunc::strpbrk:
   1918       return optimizeStrPBrk(CI, Builder);
   1919     case LibFunc::strtol:
   1920     case LibFunc::strtod:
   1921     case LibFunc::strtof:
   1922     case LibFunc::strtoul:
   1923     case LibFunc::strtoll:
   1924     case LibFunc::strtold:
   1925     case LibFunc::strtoull:
   1926       return optimizeStrTo(CI, Builder);
   1927     case LibFunc::strspn:
   1928       return optimizeStrSpn(CI, Builder);
   1929     case LibFunc::strcspn:
   1930       return optimizeStrCSpn(CI, Builder);
   1931     case LibFunc::strstr:
   1932       return optimizeStrStr(CI, Builder);
   1933     case LibFunc::memchr:
   1934       return optimizeMemChr(CI, Builder);
   1935     case LibFunc::memcmp:
   1936       return optimizeMemCmp(CI, Builder);
   1937     case LibFunc::memcpy:
   1938       return optimizeMemCpy(CI, Builder);
   1939     case LibFunc::memmove:
   1940       return optimizeMemMove(CI, Builder);
   1941     case LibFunc::memset:
   1942       return optimizeMemSet(CI, Builder);
   1943     default:
   1944       break;
   1945     }
   1946   }
   1947   return nullptr;
   1948 }
   1949 
   1950 Value *LibCallSimplifier::optimizeCall(CallInst *CI) {
   1951   if (CI->isNoBuiltin())
   1952     return nullptr;
   1953 
   1954   LibFunc::Func Func;
   1955   Function *Callee = CI->getCalledFunction();
   1956   StringRef FuncName = Callee->getName();
   1957 
   1958   SmallVector<OperandBundleDef, 2> OpBundles;
   1959   CI->getOperandBundlesAsDefs(OpBundles);
   1960   IRBuilder<> Builder(CI, /*FPMathTag=*/nullptr, OpBundles);
   1961   bool isCallingConvC = CI->getCallingConv() == llvm::CallingConv::C;
   1962 
   1963   // Command-line parameter overrides instruction attribute.
   1964   if (EnableUnsafeFPShrink.getNumOccurrences() > 0)
   1965     UnsafeFPShrink = EnableUnsafeFPShrink;
   1966   else if (isa<FPMathOperator>(CI) && CI->hasUnsafeAlgebra())
   1967     UnsafeFPShrink = true;
   1968 
   1969   // First, check for intrinsics.
   1970   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) {
   1971     if (!isCallingConvC)
   1972       return nullptr;
   1973     switch (II->getIntrinsicID()) {
   1974     case Intrinsic::pow:
   1975       return optimizePow(CI, Builder);
   1976     case Intrinsic::exp2:
   1977       return optimizeExp2(CI, Builder);
   1978     case Intrinsic::fabs:
   1979       return optimizeFabs(CI, Builder);
   1980     case Intrinsic::log:
   1981       return optimizeLog(CI, Builder);
   1982     case Intrinsic::sqrt:
   1983       return optimizeSqrt(CI, Builder);
   1984     // TODO: Use foldMallocMemset() with memset intrinsic.
   1985     default:
   1986       return nullptr;
   1987     }
   1988   }
   1989 
   1990   // Also try to simplify calls to fortified library functions.
   1991   if (Value *SimplifiedFortifiedCI = FortifiedSimplifier.optimizeCall(CI)) {
   1992     // Try to further simplify the result.
   1993     CallInst *SimplifiedCI = dyn_cast<CallInst>(SimplifiedFortifiedCI);
   1994     if (SimplifiedCI && SimplifiedCI->getCalledFunction()) {
   1995       // Use an IR Builder from SimplifiedCI if available instead of CI
   1996       // to guarantee we reach all uses we might replace later on.
   1997       IRBuilder<> TmpBuilder(SimplifiedCI);
   1998       if (Value *V = optimizeStringMemoryLibCall(SimplifiedCI, TmpBuilder)) {
   1999         // If we were able to further simplify, remove the now redundant call.
   2000         SimplifiedCI->replaceAllUsesWith(V);
   2001         SimplifiedCI->eraseFromParent();
   2002         return V;
   2003       }
   2004     }
   2005     return SimplifiedFortifiedCI;
   2006   }
   2007 
   2008   // Then check for known library functions.
   2009   if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) {
   2010     // We never change the calling convention.
   2011     if (!ignoreCallingConv(Func) && !isCallingConvC)
   2012       return nullptr;
   2013     if (Value *V = optimizeStringMemoryLibCall(CI, Builder))
   2014       return V;
   2015     switch (Func) {
   2016     case LibFunc::cosf:
   2017     case LibFunc::cos:
   2018     case LibFunc::cosl:
   2019       return optimizeCos(CI, Builder);
   2020     case LibFunc::sinpif:
   2021     case LibFunc::sinpi:
   2022     case LibFunc::cospif:
   2023     case LibFunc::cospi:
   2024       return optimizeSinCosPi(CI, Builder);
   2025     case LibFunc::powf:
   2026     case LibFunc::pow:
   2027     case LibFunc::powl:
   2028       return optimizePow(CI, Builder);
   2029     case LibFunc::exp2l:
   2030     case LibFunc::exp2:
   2031     case LibFunc::exp2f:
   2032       return optimizeExp2(CI, Builder);
   2033     case LibFunc::fabsf:
   2034     case LibFunc::fabs:
   2035     case LibFunc::fabsl:
   2036       return optimizeFabs(CI, Builder);
   2037     case LibFunc::sqrtf:
   2038     case LibFunc::sqrt:
   2039     case LibFunc::sqrtl:
   2040       return optimizeSqrt(CI, Builder);
   2041     case LibFunc::ffs:
   2042     case LibFunc::ffsl:
   2043     case LibFunc::ffsll:
   2044       return optimizeFFS(CI, Builder);
   2045     case LibFunc::abs:
   2046     case LibFunc::labs:
   2047     case LibFunc::llabs:
   2048       return optimizeAbs(CI, Builder);
   2049     case LibFunc::isdigit:
   2050       return optimizeIsDigit(CI, Builder);
   2051     case LibFunc::isascii:
   2052       return optimizeIsAscii(CI, Builder);
   2053     case LibFunc::toascii:
   2054       return optimizeToAscii(CI, Builder);
   2055     case LibFunc::printf:
   2056       return optimizePrintF(CI, Builder);
   2057     case LibFunc::sprintf:
   2058       return optimizeSPrintF(CI, Builder);
   2059     case LibFunc::fprintf:
   2060       return optimizeFPrintF(CI, Builder);
   2061     case LibFunc::fwrite:
   2062       return optimizeFWrite(CI, Builder);
   2063     case LibFunc::fputs:
   2064       return optimizeFPuts(CI, Builder);
   2065     case LibFunc::log:
   2066     case LibFunc::log10:
   2067     case LibFunc::log1p:
   2068     case LibFunc::log2:
   2069     case LibFunc::logb:
   2070       return optimizeLog(CI, Builder);
   2071     case LibFunc::puts:
   2072       return optimizePuts(CI, Builder);
   2073     case LibFunc::tan:
   2074     case LibFunc::tanf:
   2075     case LibFunc::tanl:
   2076       return optimizeTan(CI, Builder);
   2077     case LibFunc::perror:
   2078       return optimizeErrorReporting(CI, Builder);
   2079     case LibFunc::vfprintf:
   2080     case LibFunc::fiprintf:
   2081       return optimizeErrorReporting(CI, Builder, 0);
   2082     case LibFunc::fputc:
   2083       return optimizeErrorReporting(CI, Builder, 1);
   2084     case LibFunc::ceil:
   2085     case LibFunc::floor:
   2086     case LibFunc::rint:
   2087     case LibFunc::round:
   2088     case LibFunc::nearbyint:
   2089     case LibFunc::trunc:
   2090       if (hasFloatVersion(FuncName))
   2091         return optimizeUnaryDoubleFP(CI, Builder, false);
   2092       return nullptr;
   2093     case LibFunc::acos:
   2094     case LibFunc::acosh:
   2095     case LibFunc::asin:
   2096     case LibFunc::asinh:
   2097     case LibFunc::atan:
   2098     case LibFunc::atanh:
   2099     case LibFunc::cbrt:
   2100     case LibFunc::cosh:
   2101     case LibFunc::exp:
   2102     case LibFunc::exp10:
   2103     case LibFunc::expm1:
   2104     case LibFunc::sin:
   2105     case LibFunc::sinh:
   2106     case LibFunc::tanh:
   2107       if (UnsafeFPShrink && hasFloatVersion(FuncName))
   2108         return optimizeUnaryDoubleFP(CI, Builder, true);
   2109       return nullptr;
   2110     case LibFunc::copysign:
   2111       if (hasFloatVersion(FuncName))
   2112         return optimizeBinaryDoubleFP(CI, Builder);
   2113       return nullptr;
   2114     case LibFunc::fminf:
   2115     case LibFunc::fmin:
   2116     case LibFunc::fminl:
   2117     case LibFunc::fmaxf:
   2118     case LibFunc::fmax:
   2119     case LibFunc::fmaxl:
   2120       return optimizeFMinFMax(CI, Builder);
   2121     default:
   2122       return nullptr;
   2123     }
   2124   }
   2125   return nullptr;
   2126 }
   2127 
   2128 LibCallSimplifier::LibCallSimplifier(
   2129     const DataLayout &DL, const TargetLibraryInfo *TLI,
   2130     function_ref<void(Instruction *, Value *)> Replacer)
   2131     : FortifiedSimplifier(TLI), DL(DL), TLI(TLI), UnsafeFPShrink(false),
   2132       Replacer(Replacer) {}
   2133 
   2134 void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) {
   2135   // Indirect through the replacer used in this instance.
   2136   Replacer(I, With);
   2137 }
   2138 
   2139 // TODO:
   2140 //   Additional cases that we need to add to this file:
   2141 //
   2142 // cbrt:
   2143 //   * cbrt(expN(X))  -> expN(x/3)
   2144 //   * cbrt(sqrt(x))  -> pow(x,1/6)
   2145 //   * cbrt(cbrt(x))  -> pow(x,1/9)
   2146 //
   2147 // exp, expf, expl:
   2148 //   * exp(log(x))  -> x
   2149 //
   2150 // log, logf, logl:
   2151 //   * log(exp(x))   -> x
   2152 //   * log(exp(y))   -> y*log(e)
   2153 //   * log(exp10(y)) -> y*log(10)
   2154 //   * log(sqrt(x))  -> 0.5*log(x)
   2155 //
   2156 // lround, lroundf, lroundl:
   2157 //   * lround(cnst) -> cnst'
   2158 //
   2159 // pow, powf, powl:
   2160 //   * pow(sqrt(x),y) -> pow(x,y*0.5)
   2161 //   * pow(pow(x,y),z)-> pow(x,y*z)
   2162 //
   2163 // round, roundf, roundl:
   2164 //   * round(cnst) -> cnst'
   2165 //
   2166 // signbit:
   2167 //   * signbit(cnst) -> cnst'
   2168 //   * signbit(nncst) -> 0 (if pstv is a non-negative constant)
   2169 //
   2170 // sqrt, sqrtf, sqrtl:
   2171 //   * sqrt(expN(x))  -> expN(x*0.5)
   2172 //   * sqrt(Nroot(x)) -> pow(x,1/(2*N))
   2173 //   * sqrt(pow(x,y)) -> pow(|x|,y*0.5)
   2174 //
   2175 // trunc, truncf, truncl:
   2176 //   * trunc(cnst) -> cnst'
   2177 //
   2178 //
   2179 
   2180 //===----------------------------------------------------------------------===//
   2181 // Fortified Library Call Optimizations
   2182 //===----------------------------------------------------------------------===//
   2183 
   2184 bool FortifiedLibCallSimplifier::isFortifiedCallFoldable(CallInst *CI,
   2185                                                          unsigned ObjSizeOp,
   2186                                                          unsigned SizeOp,
   2187                                                          bool isString) {
   2188   if (CI->getArgOperand(ObjSizeOp) == CI->getArgOperand(SizeOp))
   2189     return true;
   2190   if (ConstantInt *ObjSizeCI =
   2191           dyn_cast<ConstantInt>(CI->getArgOperand(ObjSizeOp))) {
   2192     if (ObjSizeCI->isAllOnesValue())
   2193       return true;
   2194     // If the object size wasn't -1 (unknown), bail out if we were asked to.
   2195     if (OnlyLowerUnknownSize)
   2196       return false;
   2197     if (isString) {
   2198       uint64_t Len = GetStringLength(CI->getArgOperand(SizeOp));
   2199       // If the length is 0 we don't know how long it is and so we can't
   2200       // remove the check.
   2201       if (Len == 0)
   2202         return false;
   2203       return ObjSizeCI->getZExtValue() >= Len;
   2204     }
   2205     if (ConstantInt *SizeCI = dyn_cast<ConstantInt>(CI->getArgOperand(SizeOp)))
   2206       return ObjSizeCI->getZExtValue() >= SizeCI->getZExtValue();
   2207   }
   2208   return false;
   2209 }
   2210 
   2211 Value *FortifiedLibCallSimplifier::optimizeMemCpyChk(CallInst *CI,
   2212                                                      IRBuilder<> &B) {
   2213   if (isFortifiedCallFoldable(CI, 3, 2, false)) {
   2214     B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1),
   2215                    CI->getArgOperand(2), 1);
   2216     return CI->getArgOperand(0);
   2217   }
   2218   return nullptr;
   2219 }
   2220 
   2221 Value *FortifiedLibCallSimplifier::optimizeMemMoveChk(CallInst *CI,
   2222                                                       IRBuilder<> &B) {
   2223   if (isFortifiedCallFoldable(CI, 3, 2, false)) {
   2224     B.CreateMemMove(CI->getArgOperand(0), CI->getArgOperand(1),
   2225                     CI->getArgOperand(2), 1);
   2226     return CI->getArgOperand(0);
   2227   }
   2228   return nullptr;
   2229 }
   2230 
   2231 Value *FortifiedLibCallSimplifier::optimizeMemSetChk(CallInst *CI,
   2232                                                      IRBuilder<> &B) {
   2233   // TODO: Try foldMallocMemset() here.
   2234 
   2235   if (isFortifiedCallFoldable(CI, 3, 2, false)) {
   2236     Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
   2237     B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1);
   2238     return CI->getArgOperand(0);
   2239   }
   2240   return nullptr;
   2241 }
   2242 
   2243 Value *FortifiedLibCallSimplifier::optimizeStrpCpyChk(CallInst *CI,
   2244                                                       IRBuilder<> &B,
   2245                                                       LibFunc::Func Func) {
   2246   Function *Callee = CI->getCalledFunction();
   2247   StringRef Name = Callee->getName();
   2248   const DataLayout &DL = CI->getModule()->getDataLayout();
   2249   Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1),
   2250         *ObjSize = CI->getArgOperand(2);
   2251 
   2252   // __stpcpy_chk(x,x,...)  -> x+strlen(x)
   2253   if (Func == LibFunc::stpcpy_chk && !OnlyLowerUnknownSize && Dst == Src) {
   2254     Value *StrLen = emitStrLen(Src, B, DL, TLI);
   2255     return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr;
   2256   }
   2257 
   2258   // If a) we don't have any length information, or b) we know this will
   2259   // fit then just lower to a plain st[rp]cpy. Otherwise we'll keep our
   2260   // st[rp]cpy_chk call which may fail at runtime if the size is too long.
   2261   // TODO: It might be nice to get a maximum length out of the possible
   2262   // string lengths for varying.
   2263   if (isFortifiedCallFoldable(CI, 2, 1, true))
   2264     return emitStrCpy(Dst, Src, B, TLI, Name.substr(2, 6));
   2265 
   2266   if (OnlyLowerUnknownSize)
   2267     return nullptr;
   2268 
   2269   // Maybe we can stil fold __st[rp]cpy_chk to __memcpy_chk.
   2270   uint64_t Len = GetStringLength(Src);
   2271   if (Len == 0)
   2272     return nullptr;
   2273 
   2274   Type *SizeTTy = DL.getIntPtrType(CI->getContext());
   2275   Value *LenV = ConstantInt::get(SizeTTy, Len);
   2276   Value *Ret = emitMemCpyChk(Dst, Src, LenV, ObjSize, B, DL, TLI);
   2277   // If the function was an __stpcpy_chk, and we were able to fold it into
   2278   // a __memcpy_chk, we still need to return the correct end pointer.
   2279   if (Ret && Func == LibFunc::stpcpy_chk)
   2280     return B.CreateGEP(B.getInt8Ty(), Dst, ConstantInt::get(SizeTTy, Len - 1));
   2281   return Ret;
   2282 }
   2283 
   2284 Value *FortifiedLibCallSimplifier::optimizeStrpNCpyChk(CallInst *CI,
   2285                                                        IRBuilder<> &B,
   2286                                                        LibFunc::Func Func) {
   2287   Function *Callee = CI->getCalledFunction();
   2288   StringRef Name = Callee->getName();
   2289   if (isFortifiedCallFoldable(CI, 3, 2, false)) {
   2290     Value *Ret = emitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1),
   2291                              CI->getArgOperand(2), B, TLI, Name.substr(2, 7));
   2292     return Ret;
   2293   }
   2294   return nullptr;
   2295 }
   2296 
   2297 Value *FortifiedLibCallSimplifier::optimizeCall(CallInst *CI) {
   2298   // FIXME: We shouldn't be changing "nobuiltin" or TLI unavailable calls here.
   2299   // Some clang users checked for _chk libcall availability using:
   2300   //   __has_builtin(__builtin___memcpy_chk)
   2301   // When compiling with -fno-builtin, this is always true.
   2302   // When passing -ffreestanding/-mkernel, which both imply -fno-builtin, we
   2303   // end up with fortified libcalls, which isn't acceptable in a freestanding
   2304   // environment which only provides their non-fortified counterparts.
   2305   //
   2306   // Until we change clang and/or teach external users to check for availability
   2307   // differently, disregard the "nobuiltin" attribute and TLI::has.
   2308   //
   2309   // PR23093.
   2310 
   2311   LibFunc::Func Func;
   2312   Function *Callee = CI->getCalledFunction();
   2313 
   2314   SmallVector<OperandBundleDef, 2> OpBundles;
   2315   CI->getOperandBundlesAsDefs(OpBundles);
   2316   IRBuilder<> Builder(CI, /*FPMathTag=*/nullptr, OpBundles);
   2317   bool isCallingConvC = CI->getCallingConv() == llvm::CallingConv::C;
   2318 
   2319   // First, check that this is a known library functions and that the prototype
   2320   // is correct.
   2321   if (!TLI->getLibFunc(*Callee, Func))
   2322     return nullptr;
   2323 
   2324   // We never change the calling convention.
   2325   if (!ignoreCallingConv(Func) && !isCallingConvC)
   2326     return nullptr;
   2327 
   2328   switch (Func) {
   2329   case LibFunc::memcpy_chk:
   2330     return optimizeMemCpyChk(CI, Builder);
   2331   case LibFunc::memmove_chk:
   2332     return optimizeMemMoveChk(CI, Builder);
   2333   case LibFunc::memset_chk:
   2334     return optimizeMemSetChk(CI, Builder);
   2335   case LibFunc::stpcpy_chk:
   2336   case LibFunc::strcpy_chk:
   2337     return optimizeStrpCpyChk(CI, Builder, Func);
   2338   case LibFunc::stpncpy_chk:
   2339   case LibFunc::strncpy_chk:
   2340     return optimizeStrpNCpyChk(CI, Builder, Func);
   2341   default:
   2342     break;
   2343   }
   2344   return nullptr;
   2345 }
   2346 
   2347 FortifiedLibCallSimplifier::FortifiedLibCallSimplifier(
   2348     const TargetLibraryInfo *TLI, bool OnlyLowerUnknownSize)
   2349     : TLI(TLI), OnlyLowerUnknownSize(OnlyLowerUnknownSize) {}
   2350