1 //===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is a utility pass used for testing the InstructionSimplify analysis. 11 // The analysis is applied to every instruction, and if it simplifies then the 12 // instruction is replaced by the simplification. If you are looking for a pass 13 // that performs serious instruction folding, use the instcombine pass instead. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 18 #include "llvm/ADT/SmallString.h" 19 #include "llvm/ADT/StringMap.h" 20 #include "llvm/ADT/Triple.h" 21 #include "llvm/Analysis/TargetLibraryInfo.h" 22 #include "llvm/Analysis/ValueTracking.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/DiagnosticInfo.h" 25 #include "llvm/IR/Function.h" 26 #include "llvm/IR/IRBuilder.h" 27 #include "llvm/IR/IntrinsicInst.h" 28 #include "llvm/IR/Intrinsics.h" 29 #include "llvm/IR/LLVMContext.h" 30 #include "llvm/IR/Module.h" 31 #include "llvm/IR/PatternMatch.h" 32 #include "llvm/Support/CommandLine.h" 33 #include "llvm/Transforms/Utils/BuildLibCalls.h" 34 #include "llvm/Transforms/Utils/Local.h" 35 36 using namespace llvm; 37 using namespace PatternMatch; 38 39 static cl::opt<bool> 40 ColdErrorCalls("error-reporting-is-cold", cl::init(true), cl::Hidden, 41 cl::desc("Treat error-reporting calls as cold")); 42 43 static cl::opt<bool> 44 EnableUnsafeFPShrink("enable-double-float-shrink", cl::Hidden, 45 cl::init(false), 46 cl::desc("Enable unsafe double to float " 47 "shrinking for math lib calls")); 48 49 50 //===----------------------------------------------------------------------===// 51 // Helper Functions 52 //===----------------------------------------------------------------------===// 53 54 static bool ignoreCallingConv(LibFunc::Func Func) { 55 return Func == LibFunc::abs || Func == LibFunc::labs || 56 Func == LibFunc::llabs || Func == LibFunc::strlen; 57 } 58 59 /// Return true if it only matters that the value is equal or not-equal to zero. 60 static bool isOnlyUsedInZeroEqualityComparison(Value *V) { 61 for (User *U : V->users()) { 62 if (ICmpInst *IC = dyn_cast<ICmpInst>(U)) 63 if (IC->isEquality()) 64 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 65 if (C->isNullValue()) 66 continue; 67 // Unknown instruction. 68 return false; 69 } 70 return true; 71 } 72 73 /// Return true if it is only used in equality comparisons with With. 74 static bool isOnlyUsedInEqualityComparison(Value *V, Value *With) { 75 for (User *U : V->users()) { 76 if (ICmpInst *IC = dyn_cast<ICmpInst>(U)) 77 if (IC->isEquality() && IC->getOperand(1) == With) 78 continue; 79 // Unknown instruction. 80 return false; 81 } 82 return true; 83 } 84 85 static bool callHasFloatingPointArgument(const CallInst *CI) { 86 return std::any_of(CI->op_begin(), CI->op_end(), [](const Use &OI) { 87 return OI->getType()->isFloatingPointTy(); 88 }); 89 } 90 91 /// \brief Check whether the overloaded unary floating point function 92 /// corresponding to \a Ty is available. 93 static bool hasUnaryFloatFn(const TargetLibraryInfo *TLI, Type *Ty, 94 LibFunc::Func DoubleFn, LibFunc::Func FloatFn, 95 LibFunc::Func LongDoubleFn) { 96 switch (Ty->getTypeID()) { 97 case Type::FloatTyID: 98 return TLI->has(FloatFn); 99 case Type::DoubleTyID: 100 return TLI->has(DoubleFn); 101 default: 102 return TLI->has(LongDoubleFn); 103 } 104 } 105 106 //===----------------------------------------------------------------------===// 107 // String and Memory Library Call Optimizations 108 //===----------------------------------------------------------------------===// 109 110 Value *LibCallSimplifier::optimizeStrCat(CallInst *CI, IRBuilder<> &B) { 111 // Extract some information from the instruction 112 Value *Dst = CI->getArgOperand(0); 113 Value *Src = CI->getArgOperand(1); 114 115 // See if we can get the length of the input string. 116 uint64_t Len = GetStringLength(Src); 117 if (Len == 0) 118 return nullptr; 119 --Len; // Unbias length. 120 121 // Handle the simple, do-nothing case: strcat(x, "") -> x 122 if (Len == 0) 123 return Dst; 124 125 return emitStrLenMemCpy(Src, Dst, Len, B); 126 } 127 128 Value *LibCallSimplifier::emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len, 129 IRBuilder<> &B) { 130 // We need to find the end of the destination string. That's where the 131 // memory is to be moved to. We just generate a call to strlen. 132 Value *DstLen = emitStrLen(Dst, B, DL, TLI); 133 if (!DstLen) 134 return nullptr; 135 136 // Now that we have the destination's length, we must index into the 137 // destination's pointer to get the actual memcpy destination (end of 138 // the string .. we're concatenating). 139 Value *CpyDst = B.CreateGEP(B.getInt8Ty(), Dst, DstLen, "endptr"); 140 141 // We have enough information to now generate the memcpy call to do the 142 // concatenation for us. Make a memcpy to copy the nul byte with align = 1. 143 B.CreateMemCpy(CpyDst, Src, 144 ConstantInt::get(DL.getIntPtrType(Src->getContext()), Len + 1), 145 1); 146 return Dst; 147 } 148 149 Value *LibCallSimplifier::optimizeStrNCat(CallInst *CI, IRBuilder<> &B) { 150 // Extract some information from the instruction. 151 Value *Dst = CI->getArgOperand(0); 152 Value *Src = CI->getArgOperand(1); 153 uint64_t Len; 154 155 // We don't do anything if length is not constant. 156 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2))) 157 Len = LengthArg->getZExtValue(); 158 else 159 return nullptr; 160 161 // See if we can get the length of the input string. 162 uint64_t SrcLen = GetStringLength(Src); 163 if (SrcLen == 0) 164 return nullptr; 165 --SrcLen; // Unbias length. 166 167 // Handle the simple, do-nothing cases: 168 // strncat(x, "", c) -> x 169 // strncat(x, c, 0) -> x 170 if (SrcLen == 0 || Len == 0) 171 return Dst; 172 173 // We don't optimize this case. 174 if (Len < SrcLen) 175 return nullptr; 176 177 // strncat(x, s, c) -> strcat(x, s) 178 // s is constant so the strcat can be optimized further. 179 return emitStrLenMemCpy(Src, Dst, SrcLen, B); 180 } 181 182 Value *LibCallSimplifier::optimizeStrChr(CallInst *CI, IRBuilder<> &B) { 183 Function *Callee = CI->getCalledFunction(); 184 FunctionType *FT = Callee->getFunctionType(); 185 Value *SrcStr = CI->getArgOperand(0); 186 187 // If the second operand is non-constant, see if we can compute the length 188 // of the input string and turn this into memchr. 189 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 190 if (!CharC) { 191 uint64_t Len = GetStringLength(SrcStr); 192 if (Len == 0 || !FT->getParamType(1)->isIntegerTy(32)) // memchr needs i32. 193 return nullptr; 194 195 return emitMemChr(SrcStr, CI->getArgOperand(1), // include nul. 196 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len), 197 B, DL, TLI); 198 } 199 200 // Otherwise, the character is a constant, see if the first argument is 201 // a string literal. If so, we can constant fold. 202 StringRef Str; 203 if (!getConstantStringInfo(SrcStr, Str)) { 204 if (CharC->isZero()) // strchr(p, 0) -> p + strlen(p) 205 return B.CreateGEP(B.getInt8Ty(), SrcStr, emitStrLen(SrcStr, B, DL, TLI), 206 "strchr"); 207 return nullptr; 208 } 209 210 // Compute the offset, make sure to handle the case when we're searching for 211 // zero (a weird way to spell strlen). 212 size_t I = (0xFF & CharC->getSExtValue()) == 0 213 ? Str.size() 214 : Str.find(CharC->getSExtValue()); 215 if (I == StringRef::npos) // Didn't find the char. strchr returns null. 216 return Constant::getNullValue(CI->getType()); 217 218 // strchr(s+n,c) -> gep(s+n+i,c) 219 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strchr"); 220 } 221 222 Value *LibCallSimplifier::optimizeStrRChr(CallInst *CI, IRBuilder<> &B) { 223 Value *SrcStr = CI->getArgOperand(0); 224 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 225 226 // Cannot fold anything if we're not looking for a constant. 227 if (!CharC) 228 return nullptr; 229 230 StringRef Str; 231 if (!getConstantStringInfo(SrcStr, Str)) { 232 // strrchr(s, 0) -> strchr(s, 0) 233 if (CharC->isZero()) 234 return emitStrChr(SrcStr, '\0', B, TLI); 235 return nullptr; 236 } 237 238 // Compute the offset. 239 size_t I = (0xFF & CharC->getSExtValue()) == 0 240 ? Str.size() 241 : Str.rfind(CharC->getSExtValue()); 242 if (I == StringRef::npos) // Didn't find the char. Return null. 243 return Constant::getNullValue(CI->getType()); 244 245 // strrchr(s+n,c) -> gep(s+n+i,c) 246 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strrchr"); 247 } 248 249 Value *LibCallSimplifier::optimizeStrCmp(CallInst *CI, IRBuilder<> &B) { 250 Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1); 251 if (Str1P == Str2P) // strcmp(x,x) -> 0 252 return ConstantInt::get(CI->getType(), 0); 253 254 StringRef Str1, Str2; 255 bool HasStr1 = getConstantStringInfo(Str1P, Str1); 256 bool HasStr2 = getConstantStringInfo(Str2P, Str2); 257 258 // strcmp(x, y) -> cnst (if both x and y are constant strings) 259 if (HasStr1 && HasStr2) 260 return ConstantInt::get(CI->getType(), Str1.compare(Str2)); 261 262 if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x 263 return B.CreateNeg( 264 B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType())); 265 266 if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x 267 return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType()); 268 269 // strcmp(P, "x") -> memcmp(P, "x", 2) 270 uint64_t Len1 = GetStringLength(Str1P); 271 uint64_t Len2 = GetStringLength(Str2P); 272 if (Len1 && Len2) { 273 return emitMemCmp(Str1P, Str2P, 274 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 275 std::min(Len1, Len2)), 276 B, DL, TLI); 277 } 278 279 return nullptr; 280 } 281 282 Value *LibCallSimplifier::optimizeStrNCmp(CallInst *CI, IRBuilder<> &B) { 283 Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1); 284 if (Str1P == Str2P) // strncmp(x,x,n) -> 0 285 return ConstantInt::get(CI->getType(), 0); 286 287 // Get the length argument if it is constant. 288 uint64_t Length; 289 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2))) 290 Length = LengthArg->getZExtValue(); 291 else 292 return nullptr; 293 294 if (Length == 0) // strncmp(x,y,0) -> 0 295 return ConstantInt::get(CI->getType(), 0); 296 297 if (Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1) 298 return emitMemCmp(Str1P, Str2P, CI->getArgOperand(2), B, DL, TLI); 299 300 StringRef Str1, Str2; 301 bool HasStr1 = getConstantStringInfo(Str1P, Str1); 302 bool HasStr2 = getConstantStringInfo(Str2P, Str2); 303 304 // strncmp(x, y) -> cnst (if both x and y are constant strings) 305 if (HasStr1 && HasStr2) { 306 StringRef SubStr1 = Str1.substr(0, Length); 307 StringRef SubStr2 = Str2.substr(0, Length); 308 return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2)); 309 } 310 311 if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x 312 return B.CreateNeg( 313 B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType())); 314 315 if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x 316 return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType()); 317 318 return nullptr; 319 } 320 321 Value *LibCallSimplifier::optimizeStrCpy(CallInst *CI, IRBuilder<> &B) { 322 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); 323 if (Dst == Src) // strcpy(x,x) -> x 324 return Src; 325 326 // See if we can get the length of the input string. 327 uint64_t Len = GetStringLength(Src); 328 if (Len == 0) 329 return nullptr; 330 331 // We have enough information to now generate the memcpy call to do the 332 // copy for us. Make a memcpy to copy the nul byte with align = 1. 333 B.CreateMemCpy(Dst, Src, 334 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len), 1); 335 return Dst; 336 } 337 338 Value *LibCallSimplifier::optimizeStpCpy(CallInst *CI, IRBuilder<> &B) { 339 Function *Callee = CI->getCalledFunction(); 340 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); 341 if (Dst == Src) { // stpcpy(x,x) -> x+strlen(x) 342 Value *StrLen = emitStrLen(Src, B, DL, TLI); 343 return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr; 344 } 345 346 // See if we can get the length of the input string. 347 uint64_t Len = GetStringLength(Src); 348 if (Len == 0) 349 return nullptr; 350 351 Type *PT = Callee->getFunctionType()->getParamType(0); 352 Value *LenV = ConstantInt::get(DL.getIntPtrType(PT), Len); 353 Value *DstEnd = B.CreateGEP(B.getInt8Ty(), Dst, 354 ConstantInt::get(DL.getIntPtrType(PT), Len - 1)); 355 356 // We have enough information to now generate the memcpy call to do the 357 // copy for us. Make a memcpy to copy the nul byte with align = 1. 358 B.CreateMemCpy(Dst, Src, LenV, 1); 359 return DstEnd; 360 } 361 362 Value *LibCallSimplifier::optimizeStrNCpy(CallInst *CI, IRBuilder<> &B) { 363 Function *Callee = CI->getCalledFunction(); 364 Value *Dst = CI->getArgOperand(0); 365 Value *Src = CI->getArgOperand(1); 366 Value *LenOp = CI->getArgOperand(2); 367 368 // See if we can get the length of the input string. 369 uint64_t SrcLen = GetStringLength(Src); 370 if (SrcLen == 0) 371 return nullptr; 372 --SrcLen; 373 374 if (SrcLen == 0) { 375 // strncpy(x, "", y) -> memset(x, '\0', y, 1) 376 B.CreateMemSet(Dst, B.getInt8('\0'), LenOp, 1); 377 return Dst; 378 } 379 380 uint64_t Len; 381 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(LenOp)) 382 Len = LengthArg->getZExtValue(); 383 else 384 return nullptr; 385 386 if (Len == 0) 387 return Dst; // strncpy(x, y, 0) -> x 388 389 // Let strncpy handle the zero padding 390 if (Len > SrcLen + 1) 391 return nullptr; 392 393 Type *PT = Callee->getFunctionType()->getParamType(0); 394 // strncpy(x, s, c) -> memcpy(x, s, c, 1) [s and c are constant] 395 B.CreateMemCpy(Dst, Src, ConstantInt::get(DL.getIntPtrType(PT), Len), 1); 396 397 return Dst; 398 } 399 400 Value *LibCallSimplifier::optimizeStrLen(CallInst *CI, IRBuilder<> &B) { 401 Value *Src = CI->getArgOperand(0); 402 403 // Constant folding: strlen("xyz") -> 3 404 if (uint64_t Len = GetStringLength(Src)) 405 return ConstantInt::get(CI->getType(), Len - 1); 406 407 // If s is a constant pointer pointing to a string literal, we can fold 408 // strlen(s + x) to strlen(s) - x, when x is known to be in the range 409 // [0, strlen(s)] or the string has a single null terminator '\0' at the end. 410 // We only try to simplify strlen when the pointer s points to an array 411 // of i8. Otherwise, we would need to scale the offset x before doing the 412 // subtraction. This will make the optimization more complex, and it's not 413 // very useful because calling strlen for a pointer of other types is 414 // very uncommon. 415 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Src)) { 416 if (!isGEPBasedOnPointerToString(GEP)) 417 return nullptr; 418 419 StringRef Str; 420 if (getConstantStringInfo(GEP->getOperand(0), Str, 0, false)) { 421 size_t NullTermIdx = Str.find('\0'); 422 423 // If the string does not have '\0', leave it to strlen to compute 424 // its length. 425 if (NullTermIdx == StringRef::npos) 426 return nullptr; 427 428 Value *Offset = GEP->getOperand(2); 429 unsigned BitWidth = Offset->getType()->getIntegerBitWidth(); 430 APInt KnownZero(BitWidth, 0); 431 APInt KnownOne(BitWidth, 0); 432 computeKnownBits(Offset, KnownZero, KnownOne, DL, 0, nullptr, CI, 433 nullptr); 434 KnownZero.flipAllBits(); 435 size_t ArrSize = 436 cast<ArrayType>(GEP->getSourceElementType())->getNumElements(); 437 438 // KnownZero's bits are flipped, so zeros in KnownZero now represent 439 // bits known to be zeros in Offset, and ones in KnowZero represent 440 // bits unknown in Offset. Therefore, Offset is known to be in range 441 // [0, NullTermIdx] when the flipped KnownZero is non-negative and 442 // unsigned-less-than NullTermIdx. 443 // 444 // If Offset is not provably in the range [0, NullTermIdx], we can still 445 // optimize if we can prove that the program has undefined behavior when 446 // Offset is outside that range. That is the case when GEP->getOperand(0) 447 // is a pointer to an object whose memory extent is NullTermIdx+1. 448 if ((KnownZero.isNonNegative() && KnownZero.ule(NullTermIdx)) || 449 (GEP->isInBounds() && isa<GlobalVariable>(GEP->getOperand(0)) && 450 NullTermIdx == ArrSize - 1)) 451 return B.CreateSub(ConstantInt::get(CI->getType(), NullTermIdx), 452 Offset); 453 } 454 455 return nullptr; 456 } 457 458 // strlen(x?"foo":"bars") --> x ? 3 : 4 459 if (SelectInst *SI = dyn_cast<SelectInst>(Src)) { 460 uint64_t LenTrue = GetStringLength(SI->getTrueValue()); 461 uint64_t LenFalse = GetStringLength(SI->getFalseValue()); 462 if (LenTrue && LenFalse) { 463 Function *Caller = CI->getParent()->getParent(); 464 emitOptimizationRemark(CI->getContext(), "simplify-libcalls", *Caller, 465 SI->getDebugLoc(), 466 "folded strlen(select) to select of constants"); 467 return B.CreateSelect(SI->getCondition(), 468 ConstantInt::get(CI->getType(), LenTrue - 1), 469 ConstantInt::get(CI->getType(), LenFalse - 1)); 470 } 471 } 472 473 // strlen(x) != 0 --> *x != 0 474 // strlen(x) == 0 --> *x == 0 475 if (isOnlyUsedInZeroEqualityComparison(CI)) 476 return B.CreateZExt(B.CreateLoad(Src, "strlenfirst"), CI->getType()); 477 478 return nullptr; 479 } 480 481 Value *LibCallSimplifier::optimizeStrPBrk(CallInst *CI, IRBuilder<> &B) { 482 StringRef S1, S2; 483 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 484 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 485 486 // strpbrk(s, "") -> nullptr 487 // strpbrk("", s) -> nullptr 488 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) 489 return Constant::getNullValue(CI->getType()); 490 491 // Constant folding. 492 if (HasS1 && HasS2) { 493 size_t I = S1.find_first_of(S2); 494 if (I == StringRef::npos) // No match. 495 return Constant::getNullValue(CI->getType()); 496 497 return B.CreateGEP(B.getInt8Ty(), CI->getArgOperand(0), B.getInt64(I), 498 "strpbrk"); 499 } 500 501 // strpbrk(s, "a") -> strchr(s, 'a') 502 if (HasS2 && S2.size() == 1) 503 return emitStrChr(CI->getArgOperand(0), S2[0], B, TLI); 504 505 return nullptr; 506 } 507 508 Value *LibCallSimplifier::optimizeStrTo(CallInst *CI, IRBuilder<> &B) { 509 Value *EndPtr = CI->getArgOperand(1); 510 if (isa<ConstantPointerNull>(EndPtr)) { 511 // With a null EndPtr, this function won't capture the main argument. 512 // It would be readonly too, except that it still may write to errno. 513 CI->addAttribute(1, Attribute::NoCapture); 514 } 515 516 return nullptr; 517 } 518 519 Value *LibCallSimplifier::optimizeStrSpn(CallInst *CI, IRBuilder<> &B) { 520 StringRef S1, S2; 521 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 522 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 523 524 // strspn(s, "") -> 0 525 // strspn("", s) -> 0 526 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) 527 return Constant::getNullValue(CI->getType()); 528 529 // Constant folding. 530 if (HasS1 && HasS2) { 531 size_t Pos = S1.find_first_not_of(S2); 532 if (Pos == StringRef::npos) 533 Pos = S1.size(); 534 return ConstantInt::get(CI->getType(), Pos); 535 } 536 537 return nullptr; 538 } 539 540 Value *LibCallSimplifier::optimizeStrCSpn(CallInst *CI, IRBuilder<> &B) { 541 StringRef S1, S2; 542 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 543 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 544 545 // strcspn("", s) -> 0 546 if (HasS1 && S1.empty()) 547 return Constant::getNullValue(CI->getType()); 548 549 // Constant folding. 550 if (HasS1 && HasS2) { 551 size_t Pos = S1.find_first_of(S2); 552 if (Pos == StringRef::npos) 553 Pos = S1.size(); 554 return ConstantInt::get(CI->getType(), Pos); 555 } 556 557 // strcspn(s, "") -> strlen(s) 558 if (HasS2 && S2.empty()) 559 return emitStrLen(CI->getArgOperand(0), B, DL, TLI); 560 561 return nullptr; 562 } 563 564 Value *LibCallSimplifier::optimizeStrStr(CallInst *CI, IRBuilder<> &B) { 565 // fold strstr(x, x) -> x. 566 if (CI->getArgOperand(0) == CI->getArgOperand(1)) 567 return B.CreateBitCast(CI->getArgOperand(0), CI->getType()); 568 569 // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0 570 if (isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) { 571 Value *StrLen = emitStrLen(CI->getArgOperand(1), B, DL, TLI); 572 if (!StrLen) 573 return nullptr; 574 Value *StrNCmp = emitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1), 575 StrLen, B, DL, TLI); 576 if (!StrNCmp) 577 return nullptr; 578 for (auto UI = CI->user_begin(), UE = CI->user_end(); UI != UE;) { 579 ICmpInst *Old = cast<ICmpInst>(*UI++); 580 Value *Cmp = 581 B.CreateICmp(Old->getPredicate(), StrNCmp, 582 ConstantInt::getNullValue(StrNCmp->getType()), "cmp"); 583 replaceAllUsesWith(Old, Cmp); 584 } 585 return CI; 586 } 587 588 // See if either input string is a constant string. 589 StringRef SearchStr, ToFindStr; 590 bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr); 591 bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr); 592 593 // fold strstr(x, "") -> x. 594 if (HasStr2 && ToFindStr.empty()) 595 return B.CreateBitCast(CI->getArgOperand(0), CI->getType()); 596 597 // If both strings are known, constant fold it. 598 if (HasStr1 && HasStr2) { 599 size_t Offset = SearchStr.find(ToFindStr); 600 601 if (Offset == StringRef::npos) // strstr("foo", "bar") -> null 602 return Constant::getNullValue(CI->getType()); 603 604 // strstr("abcd", "bc") -> gep((char*)"abcd", 1) 605 Value *Result = castToCStr(CI->getArgOperand(0), B); 606 Result = B.CreateConstInBoundsGEP1_64(Result, Offset, "strstr"); 607 return B.CreateBitCast(Result, CI->getType()); 608 } 609 610 // fold strstr(x, "y") -> strchr(x, 'y'). 611 if (HasStr2 && ToFindStr.size() == 1) { 612 Value *StrChr = emitStrChr(CI->getArgOperand(0), ToFindStr[0], B, TLI); 613 return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : nullptr; 614 } 615 return nullptr; 616 } 617 618 Value *LibCallSimplifier::optimizeMemChr(CallInst *CI, IRBuilder<> &B) { 619 Value *SrcStr = CI->getArgOperand(0); 620 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 621 ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 622 623 // memchr(x, y, 0) -> null 624 if (LenC && LenC->isNullValue()) 625 return Constant::getNullValue(CI->getType()); 626 627 // From now on we need at least constant length and string. 628 StringRef Str; 629 if (!LenC || !getConstantStringInfo(SrcStr, Str, 0, /*TrimAtNul=*/false)) 630 return nullptr; 631 632 // Truncate the string to LenC. If Str is smaller than LenC we will still only 633 // scan the string, as reading past the end of it is undefined and we can just 634 // return null if we don't find the char. 635 Str = Str.substr(0, LenC->getZExtValue()); 636 637 // If the char is variable but the input str and length are not we can turn 638 // this memchr call into a simple bit field test. Of course this only works 639 // when the return value is only checked against null. 640 // 641 // It would be really nice to reuse switch lowering here but we can't change 642 // the CFG at this point. 643 // 644 // memchr("\r\n", C, 2) != nullptr -> (C & ((1 << '\r') | (1 << '\n'))) != 0 645 // after bounds check. 646 if (!CharC && !Str.empty() && isOnlyUsedInZeroEqualityComparison(CI)) { 647 unsigned char Max = 648 *std::max_element(reinterpret_cast<const unsigned char *>(Str.begin()), 649 reinterpret_cast<const unsigned char *>(Str.end())); 650 651 // Make sure the bit field we're about to create fits in a register on the 652 // target. 653 // FIXME: On a 64 bit architecture this prevents us from using the 654 // interesting range of alpha ascii chars. We could do better by emitting 655 // two bitfields or shifting the range by 64 if no lower chars are used. 656 if (!DL.fitsInLegalInteger(Max + 1)) 657 return nullptr; 658 659 // For the bit field use a power-of-2 type with at least 8 bits to avoid 660 // creating unnecessary illegal types. 661 unsigned char Width = NextPowerOf2(std::max((unsigned char)7, Max)); 662 663 // Now build the bit field. 664 APInt Bitfield(Width, 0); 665 for (char C : Str) 666 Bitfield.setBit((unsigned char)C); 667 Value *BitfieldC = B.getInt(Bitfield); 668 669 // First check that the bit field access is within bounds. 670 Value *C = B.CreateZExtOrTrunc(CI->getArgOperand(1), BitfieldC->getType()); 671 Value *Bounds = B.CreateICmp(ICmpInst::ICMP_ULT, C, B.getIntN(Width, Width), 672 "memchr.bounds"); 673 674 // Create code that checks if the given bit is set in the field. 675 Value *Shl = B.CreateShl(B.getIntN(Width, 1ULL), C); 676 Value *Bits = B.CreateIsNotNull(B.CreateAnd(Shl, BitfieldC), "memchr.bits"); 677 678 // Finally merge both checks and cast to pointer type. The inttoptr 679 // implicitly zexts the i1 to intptr type. 680 return B.CreateIntToPtr(B.CreateAnd(Bounds, Bits, "memchr"), CI->getType()); 681 } 682 683 // Check if all arguments are constants. If so, we can constant fold. 684 if (!CharC) 685 return nullptr; 686 687 // Compute the offset. 688 size_t I = Str.find(CharC->getSExtValue() & 0xFF); 689 if (I == StringRef::npos) // Didn't find the char. memchr returns null. 690 return Constant::getNullValue(CI->getType()); 691 692 // memchr(s+n,c,l) -> gep(s+n+i,c) 693 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "memchr"); 694 } 695 696 Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilder<> &B) { 697 Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1); 698 699 if (LHS == RHS) // memcmp(s,s,x) -> 0 700 return Constant::getNullValue(CI->getType()); 701 702 // Make sure we have a constant length. 703 ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 704 if (!LenC) 705 return nullptr; 706 uint64_t Len = LenC->getZExtValue(); 707 708 if (Len == 0) // memcmp(s1,s2,0) -> 0 709 return Constant::getNullValue(CI->getType()); 710 711 // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS 712 if (Len == 1) { 713 Value *LHSV = B.CreateZExt(B.CreateLoad(castToCStr(LHS, B), "lhsc"), 714 CI->getType(), "lhsv"); 715 Value *RHSV = B.CreateZExt(B.CreateLoad(castToCStr(RHS, B), "rhsc"), 716 CI->getType(), "rhsv"); 717 return B.CreateSub(LHSV, RHSV, "chardiff"); 718 } 719 720 // memcmp(S1,S2,N/8)==0 -> (*(intN_t*)S1 != *(intN_t*)S2)==0 721 if (DL.isLegalInteger(Len * 8) && isOnlyUsedInZeroEqualityComparison(CI)) { 722 723 IntegerType *IntType = IntegerType::get(CI->getContext(), Len * 8); 724 unsigned PrefAlignment = DL.getPrefTypeAlignment(IntType); 725 726 if (getKnownAlignment(LHS, DL, CI) >= PrefAlignment && 727 getKnownAlignment(RHS, DL, CI) >= PrefAlignment) { 728 729 Type *LHSPtrTy = 730 IntType->getPointerTo(LHS->getType()->getPointerAddressSpace()); 731 Type *RHSPtrTy = 732 IntType->getPointerTo(RHS->getType()->getPointerAddressSpace()); 733 734 Value *LHSV = 735 B.CreateLoad(B.CreateBitCast(LHS, LHSPtrTy, "lhsc"), "lhsv"); 736 Value *RHSV = 737 B.CreateLoad(B.CreateBitCast(RHS, RHSPtrTy, "rhsc"), "rhsv"); 738 739 return B.CreateZExt(B.CreateICmpNE(LHSV, RHSV), CI->getType(), "memcmp"); 740 } 741 } 742 743 // Constant folding: memcmp(x, y, l) -> cnst (all arguments are constant) 744 StringRef LHSStr, RHSStr; 745 if (getConstantStringInfo(LHS, LHSStr) && 746 getConstantStringInfo(RHS, RHSStr)) { 747 // Make sure we're not reading out-of-bounds memory. 748 if (Len > LHSStr.size() || Len > RHSStr.size()) 749 return nullptr; 750 // Fold the memcmp and normalize the result. This way we get consistent 751 // results across multiple platforms. 752 uint64_t Ret = 0; 753 int Cmp = memcmp(LHSStr.data(), RHSStr.data(), Len); 754 if (Cmp < 0) 755 Ret = -1; 756 else if (Cmp > 0) 757 Ret = 1; 758 return ConstantInt::get(CI->getType(), Ret); 759 } 760 761 return nullptr; 762 } 763 764 Value *LibCallSimplifier::optimizeMemCpy(CallInst *CI, IRBuilder<> &B) { 765 // memcpy(x, y, n) -> llvm.memcpy(x, y, n, 1) 766 B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1), 767 CI->getArgOperand(2), 1); 768 return CI->getArgOperand(0); 769 } 770 771 Value *LibCallSimplifier::optimizeMemMove(CallInst *CI, IRBuilder<> &B) { 772 // memmove(x, y, n) -> llvm.memmove(x, y, n, 1) 773 B.CreateMemMove(CI->getArgOperand(0), CI->getArgOperand(1), 774 CI->getArgOperand(2), 1); 775 return CI->getArgOperand(0); 776 } 777 778 // TODO: Does this belong in BuildLibCalls or should all of those similar 779 // functions be moved here? 780 static Value *emitCalloc(Value *Num, Value *Size, const AttributeSet &Attrs, 781 IRBuilder<> &B, const TargetLibraryInfo &TLI) { 782 LibFunc::Func Func; 783 if (!TLI.getLibFunc("calloc", Func) || !TLI.has(Func)) 784 return nullptr; 785 786 Module *M = B.GetInsertBlock()->getModule(); 787 const DataLayout &DL = M->getDataLayout(); 788 IntegerType *PtrType = DL.getIntPtrType((B.GetInsertBlock()->getContext())); 789 Value *Calloc = M->getOrInsertFunction("calloc", Attrs, B.getInt8PtrTy(), 790 PtrType, PtrType, nullptr); 791 CallInst *CI = B.CreateCall(Calloc, { Num, Size }, "calloc"); 792 793 if (const auto *F = dyn_cast<Function>(Calloc->stripPointerCasts())) 794 CI->setCallingConv(F->getCallingConv()); 795 796 return CI; 797 } 798 799 /// Fold memset[_chk](malloc(n), 0, n) --> calloc(1, n). 800 static Value *foldMallocMemset(CallInst *Memset, IRBuilder<> &B, 801 const TargetLibraryInfo &TLI) { 802 // This has to be a memset of zeros (bzero). 803 auto *FillValue = dyn_cast<ConstantInt>(Memset->getArgOperand(1)); 804 if (!FillValue || FillValue->getZExtValue() != 0) 805 return nullptr; 806 807 // TODO: We should handle the case where the malloc has more than one use. 808 // This is necessary to optimize common patterns such as when the result of 809 // the malloc is checked against null or when a memset intrinsic is used in 810 // place of a memset library call. 811 auto *Malloc = dyn_cast<CallInst>(Memset->getArgOperand(0)); 812 if (!Malloc || !Malloc->hasOneUse()) 813 return nullptr; 814 815 // Is the inner call really malloc()? 816 Function *InnerCallee = Malloc->getCalledFunction(); 817 LibFunc::Func Func; 818 if (!TLI.getLibFunc(*InnerCallee, Func) || !TLI.has(Func) || 819 Func != LibFunc::malloc) 820 return nullptr; 821 822 // The memset must cover the same number of bytes that are malloc'd. 823 if (Memset->getArgOperand(2) != Malloc->getArgOperand(0)) 824 return nullptr; 825 826 // Replace the malloc with a calloc. We need the data layout to know what the 827 // actual size of a 'size_t' parameter is. 828 B.SetInsertPoint(Malloc->getParent(), ++Malloc->getIterator()); 829 const DataLayout &DL = Malloc->getModule()->getDataLayout(); 830 IntegerType *SizeType = DL.getIntPtrType(B.GetInsertBlock()->getContext()); 831 Value *Calloc = emitCalloc(ConstantInt::get(SizeType, 1), 832 Malloc->getArgOperand(0), Malloc->getAttributes(), 833 B, TLI); 834 if (!Calloc) 835 return nullptr; 836 837 Malloc->replaceAllUsesWith(Calloc); 838 Malloc->eraseFromParent(); 839 840 return Calloc; 841 } 842 843 Value *LibCallSimplifier::optimizeMemSet(CallInst *CI, IRBuilder<> &B) { 844 if (auto *Calloc = foldMallocMemset(CI, B, *TLI)) 845 return Calloc; 846 847 // memset(p, v, n) -> llvm.memset(p, v, n, 1) 848 Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false); 849 B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1); 850 return CI->getArgOperand(0); 851 } 852 853 //===----------------------------------------------------------------------===// 854 // Math Library Optimizations 855 //===----------------------------------------------------------------------===// 856 857 /// Return a variant of Val with float type. 858 /// Currently this works in two cases: If Val is an FPExtension of a float 859 /// value to something bigger, simply return the operand. 860 /// If Val is a ConstantFP but can be converted to a float ConstantFP without 861 /// loss of precision do so. 862 static Value *valueHasFloatPrecision(Value *Val) { 863 if (FPExtInst *Cast = dyn_cast<FPExtInst>(Val)) { 864 Value *Op = Cast->getOperand(0); 865 if (Op->getType()->isFloatTy()) 866 return Op; 867 } 868 if (ConstantFP *Const = dyn_cast<ConstantFP>(Val)) { 869 APFloat F = Const->getValueAPF(); 870 bool losesInfo; 871 (void)F.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, 872 &losesInfo); 873 if (!losesInfo) 874 return ConstantFP::get(Const->getContext(), F); 875 } 876 return nullptr; 877 } 878 879 /// Shrink double -> float for unary functions like 'floor'. 880 static Value *optimizeUnaryDoubleFP(CallInst *CI, IRBuilder<> &B, 881 bool CheckRetType) { 882 Function *Callee = CI->getCalledFunction(); 883 // We know this libcall has a valid prototype, but we don't know which. 884 if (!CI->getType()->isDoubleTy()) 885 return nullptr; 886 887 if (CheckRetType) { 888 // Check if all the uses for function like 'sin' are converted to float. 889 for (User *U : CI->users()) { 890 FPTruncInst *Cast = dyn_cast<FPTruncInst>(U); 891 if (!Cast || !Cast->getType()->isFloatTy()) 892 return nullptr; 893 } 894 } 895 896 // If this is something like 'floor((double)floatval)', convert to floorf. 897 Value *V = valueHasFloatPrecision(CI->getArgOperand(0)); 898 if (V == nullptr) 899 return nullptr; 900 901 // Propagate fast-math flags from the existing call to the new call. 902 IRBuilder<>::FastMathFlagGuard Guard(B); 903 B.setFastMathFlags(CI->getFastMathFlags()); 904 905 // floor((double)floatval) -> (double)floorf(floatval) 906 if (Callee->isIntrinsic()) { 907 Module *M = CI->getModule(); 908 Intrinsic::ID IID = Callee->getIntrinsicID(); 909 Function *F = Intrinsic::getDeclaration(M, IID, B.getFloatTy()); 910 V = B.CreateCall(F, V); 911 } else { 912 // The call is a library call rather than an intrinsic. 913 V = emitUnaryFloatFnCall(V, Callee->getName(), B, Callee->getAttributes()); 914 } 915 916 return B.CreateFPExt(V, B.getDoubleTy()); 917 } 918 919 /// Shrink double -> float for binary functions like 'fmin/fmax'. 920 static Value *optimizeBinaryDoubleFP(CallInst *CI, IRBuilder<> &B) { 921 Function *Callee = CI->getCalledFunction(); 922 // We know this libcall has a valid prototype, but we don't know which. 923 if (!CI->getType()->isDoubleTy()) 924 return nullptr; 925 926 // If this is something like 'fmin((double)floatval1, (double)floatval2)', 927 // or fmin(1.0, (double)floatval), then we convert it to fminf. 928 Value *V1 = valueHasFloatPrecision(CI->getArgOperand(0)); 929 if (V1 == nullptr) 930 return nullptr; 931 Value *V2 = valueHasFloatPrecision(CI->getArgOperand(1)); 932 if (V2 == nullptr) 933 return nullptr; 934 935 // Propagate fast-math flags from the existing call to the new call. 936 IRBuilder<>::FastMathFlagGuard Guard(B); 937 B.setFastMathFlags(CI->getFastMathFlags()); 938 939 // fmin((double)floatval1, (double)floatval2) 940 // -> (double)fminf(floatval1, floatval2) 941 // TODO: Handle intrinsics in the same way as in optimizeUnaryDoubleFP(). 942 Value *V = emitBinaryFloatFnCall(V1, V2, Callee->getName(), B, 943 Callee->getAttributes()); 944 return B.CreateFPExt(V, B.getDoubleTy()); 945 } 946 947 Value *LibCallSimplifier::optimizeCos(CallInst *CI, IRBuilder<> &B) { 948 Function *Callee = CI->getCalledFunction(); 949 Value *Ret = nullptr; 950 StringRef Name = Callee->getName(); 951 if (UnsafeFPShrink && Name == "cos" && hasFloatVersion(Name)) 952 Ret = optimizeUnaryDoubleFP(CI, B, true); 953 954 // cos(-x) -> cos(x) 955 Value *Op1 = CI->getArgOperand(0); 956 if (BinaryOperator::isFNeg(Op1)) { 957 BinaryOperator *BinExpr = cast<BinaryOperator>(Op1); 958 return B.CreateCall(Callee, BinExpr->getOperand(1), "cos"); 959 } 960 return Ret; 961 } 962 963 static Value *getPow(Value *InnerChain[33], unsigned Exp, IRBuilder<> &B) { 964 // Multiplications calculated using Addition Chains. 965 // Refer: http://wwwhomes.uni-bielefeld.de/achim/addition_chain.html 966 967 assert(Exp != 0 && "Incorrect exponent 0 not handled"); 968 969 if (InnerChain[Exp]) 970 return InnerChain[Exp]; 971 972 static const unsigned AddChain[33][2] = { 973 {0, 0}, // Unused. 974 {0, 0}, // Unused (base case = pow1). 975 {1, 1}, // Unused (pre-computed). 976 {1, 2}, {2, 2}, {2, 3}, {3, 3}, {2, 5}, {4, 4}, 977 {1, 8}, {5, 5}, {1, 10}, {6, 6}, {4, 9}, {7, 7}, 978 {3, 12}, {8, 8}, {8, 9}, {2, 16}, {1, 18}, {10, 10}, 979 {6, 15}, {11, 11}, {3, 20}, {12, 12}, {8, 17}, {13, 13}, 980 {3, 24}, {14, 14}, {4, 25}, {15, 15}, {3, 28}, {16, 16}, 981 }; 982 983 InnerChain[Exp] = B.CreateFMul(getPow(InnerChain, AddChain[Exp][0], B), 984 getPow(InnerChain, AddChain[Exp][1], B)); 985 return InnerChain[Exp]; 986 } 987 988 Value *LibCallSimplifier::optimizePow(CallInst *CI, IRBuilder<> &B) { 989 Function *Callee = CI->getCalledFunction(); 990 Value *Ret = nullptr; 991 StringRef Name = Callee->getName(); 992 if (UnsafeFPShrink && Name == "pow" && hasFloatVersion(Name)) 993 Ret = optimizeUnaryDoubleFP(CI, B, true); 994 995 Value *Op1 = CI->getArgOperand(0), *Op2 = CI->getArgOperand(1); 996 if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) { 997 // pow(1.0, x) -> 1.0 998 if (Op1C->isExactlyValue(1.0)) 999 return Op1C; 1000 // pow(2.0, x) -> exp2(x) 1001 if (Op1C->isExactlyValue(2.0) && 1002 hasUnaryFloatFn(TLI, Op1->getType(), LibFunc::exp2, LibFunc::exp2f, 1003 LibFunc::exp2l)) 1004 return emitUnaryFloatFnCall(Op2, TLI->getName(LibFunc::exp2), B, 1005 Callee->getAttributes()); 1006 // pow(10.0, x) -> exp10(x) 1007 if (Op1C->isExactlyValue(10.0) && 1008 hasUnaryFloatFn(TLI, Op1->getType(), LibFunc::exp10, LibFunc::exp10f, 1009 LibFunc::exp10l)) 1010 return emitUnaryFloatFnCall(Op2, TLI->getName(LibFunc::exp10), B, 1011 Callee->getAttributes()); 1012 } 1013 1014 // pow(exp(x), y) -> exp(x * y) 1015 // pow(exp2(x), y) -> exp2(x * y) 1016 // We enable these only with fast-math. Besides rounding differences, the 1017 // transformation changes overflow and underflow behavior quite dramatically. 1018 // Example: x = 1000, y = 0.001. 1019 // pow(exp(x), y) = pow(inf, 0.001) = inf, whereas exp(x*y) = exp(1). 1020 auto *OpC = dyn_cast<CallInst>(Op1); 1021 if (OpC && OpC->hasUnsafeAlgebra() && CI->hasUnsafeAlgebra()) { 1022 LibFunc::Func Func; 1023 Function *OpCCallee = OpC->getCalledFunction(); 1024 if (OpCCallee && TLI->getLibFunc(OpCCallee->getName(), Func) && 1025 TLI->has(Func) && (Func == LibFunc::exp || Func == LibFunc::exp2)) { 1026 IRBuilder<>::FastMathFlagGuard Guard(B); 1027 B.setFastMathFlags(CI->getFastMathFlags()); 1028 Value *FMul = B.CreateFMul(OpC->getArgOperand(0), Op2, "mul"); 1029 return emitUnaryFloatFnCall(FMul, OpCCallee->getName(), B, 1030 OpCCallee->getAttributes()); 1031 } 1032 } 1033 1034 ConstantFP *Op2C = dyn_cast<ConstantFP>(Op2); 1035 if (!Op2C) 1036 return Ret; 1037 1038 if (Op2C->getValueAPF().isZero()) // pow(x, 0.0) -> 1.0 1039 return ConstantFP::get(CI->getType(), 1.0); 1040 1041 if (Op2C->isExactlyValue(0.5) && 1042 hasUnaryFloatFn(TLI, Op2->getType(), LibFunc::sqrt, LibFunc::sqrtf, 1043 LibFunc::sqrtl) && 1044 hasUnaryFloatFn(TLI, Op2->getType(), LibFunc::fabs, LibFunc::fabsf, 1045 LibFunc::fabsl)) { 1046 1047 // In -ffast-math, pow(x, 0.5) -> sqrt(x). 1048 if (CI->hasUnsafeAlgebra()) { 1049 IRBuilder<>::FastMathFlagGuard Guard(B); 1050 B.setFastMathFlags(CI->getFastMathFlags()); 1051 return emitUnaryFloatFnCall(Op1, TLI->getName(LibFunc::sqrt), B, 1052 Callee->getAttributes()); 1053 } 1054 1055 // Expand pow(x, 0.5) to (x == -infinity ? +infinity : fabs(sqrt(x))). 1056 // This is faster than calling pow, and still handles negative zero 1057 // and negative infinity correctly. 1058 // TODO: In finite-only mode, this could be just fabs(sqrt(x)). 1059 Value *Inf = ConstantFP::getInfinity(CI->getType()); 1060 Value *NegInf = ConstantFP::getInfinity(CI->getType(), true); 1061 Value *Sqrt = emitUnaryFloatFnCall(Op1, "sqrt", B, Callee->getAttributes()); 1062 Value *FAbs = 1063 emitUnaryFloatFnCall(Sqrt, "fabs", B, Callee->getAttributes()); 1064 Value *FCmp = B.CreateFCmpOEQ(Op1, NegInf); 1065 Value *Sel = B.CreateSelect(FCmp, Inf, FAbs); 1066 return Sel; 1067 } 1068 1069 if (Op2C->isExactlyValue(1.0)) // pow(x, 1.0) -> x 1070 return Op1; 1071 if (Op2C->isExactlyValue(2.0)) // pow(x, 2.0) -> x*x 1072 return B.CreateFMul(Op1, Op1, "pow2"); 1073 if (Op2C->isExactlyValue(-1.0)) // pow(x, -1.0) -> 1.0/x 1074 return B.CreateFDiv(ConstantFP::get(CI->getType(), 1.0), Op1, "powrecip"); 1075 1076 // In -ffast-math, generate repeated fmul instead of generating pow(x, n). 1077 if (CI->hasUnsafeAlgebra()) { 1078 APFloat V = abs(Op2C->getValueAPF()); 1079 // We limit to a max of 7 fmul(s). Thus max exponent is 32. 1080 // This transformation applies to integer exponents only. 1081 if (V.compare(APFloat(V.getSemantics(), 32.0)) == APFloat::cmpGreaterThan || 1082 !V.isInteger()) 1083 return nullptr; 1084 1085 // We will memoize intermediate products of the Addition Chain. 1086 Value *InnerChain[33] = {nullptr}; 1087 InnerChain[1] = Op1; 1088 InnerChain[2] = B.CreateFMul(Op1, Op1); 1089 1090 // We cannot readily convert a non-double type (like float) to a double. 1091 // So we first convert V to something which could be converted to double. 1092 bool ignored; 1093 V.convert(APFloat::IEEEdouble, APFloat::rmTowardZero, &ignored); 1094 1095 // TODO: Should the new instructions propagate the 'fast' flag of the pow()? 1096 Value *FMul = getPow(InnerChain, V.convertToDouble(), B); 1097 // For negative exponents simply compute the reciprocal. 1098 if (Op2C->isNegative()) 1099 FMul = B.CreateFDiv(ConstantFP::get(CI->getType(), 1.0), FMul); 1100 return FMul; 1101 } 1102 1103 return nullptr; 1104 } 1105 1106 Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilder<> &B) { 1107 Function *Callee = CI->getCalledFunction(); 1108 Value *Ret = nullptr; 1109 StringRef Name = Callee->getName(); 1110 if (UnsafeFPShrink && Name == "exp2" && hasFloatVersion(Name)) 1111 Ret = optimizeUnaryDoubleFP(CI, B, true); 1112 1113 Value *Op = CI->getArgOperand(0); 1114 // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x)) if sizeof(x) <= 32 1115 // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x)) if sizeof(x) < 32 1116 LibFunc::Func LdExp = LibFunc::ldexpl; 1117 if (Op->getType()->isFloatTy()) 1118 LdExp = LibFunc::ldexpf; 1119 else if (Op->getType()->isDoubleTy()) 1120 LdExp = LibFunc::ldexp; 1121 1122 if (TLI->has(LdExp)) { 1123 Value *LdExpArg = nullptr; 1124 if (SIToFPInst *OpC = dyn_cast<SIToFPInst>(Op)) { 1125 if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() <= 32) 1126 LdExpArg = B.CreateSExt(OpC->getOperand(0), B.getInt32Ty()); 1127 } else if (UIToFPInst *OpC = dyn_cast<UIToFPInst>(Op)) { 1128 if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() < 32) 1129 LdExpArg = B.CreateZExt(OpC->getOperand(0), B.getInt32Ty()); 1130 } 1131 1132 if (LdExpArg) { 1133 Constant *One = ConstantFP::get(CI->getContext(), APFloat(1.0f)); 1134 if (!Op->getType()->isFloatTy()) 1135 One = ConstantExpr::getFPExtend(One, Op->getType()); 1136 1137 Module *M = CI->getModule(); 1138 Value *NewCallee = 1139 M->getOrInsertFunction(TLI->getName(LdExp), Op->getType(), 1140 Op->getType(), B.getInt32Ty(), nullptr); 1141 CallInst *CI = B.CreateCall(NewCallee, {One, LdExpArg}); 1142 if (const Function *F = dyn_cast<Function>(Callee->stripPointerCasts())) 1143 CI->setCallingConv(F->getCallingConv()); 1144 1145 return CI; 1146 } 1147 } 1148 return Ret; 1149 } 1150 1151 Value *LibCallSimplifier::optimizeFabs(CallInst *CI, IRBuilder<> &B) { 1152 Function *Callee = CI->getCalledFunction(); 1153 Value *Ret = nullptr; 1154 StringRef Name = Callee->getName(); 1155 if (Name == "fabs" && hasFloatVersion(Name)) 1156 Ret = optimizeUnaryDoubleFP(CI, B, false); 1157 1158 Value *Op = CI->getArgOperand(0); 1159 if (Instruction *I = dyn_cast<Instruction>(Op)) { 1160 // Fold fabs(x * x) -> x * x; any squared FP value must already be positive. 1161 if (I->getOpcode() == Instruction::FMul) 1162 if (I->getOperand(0) == I->getOperand(1)) 1163 return Op; 1164 } 1165 return Ret; 1166 } 1167 1168 Value *LibCallSimplifier::optimizeFMinFMax(CallInst *CI, IRBuilder<> &B) { 1169 Function *Callee = CI->getCalledFunction(); 1170 // If we can shrink the call to a float function rather than a double 1171 // function, do that first. 1172 StringRef Name = Callee->getName(); 1173 if ((Name == "fmin" || Name == "fmax") && hasFloatVersion(Name)) 1174 if (Value *Ret = optimizeBinaryDoubleFP(CI, B)) 1175 return Ret; 1176 1177 IRBuilder<>::FastMathFlagGuard Guard(B); 1178 FastMathFlags FMF; 1179 if (CI->hasUnsafeAlgebra()) { 1180 // Unsafe algebra sets all fast-math-flags to true. 1181 FMF.setUnsafeAlgebra(); 1182 } else { 1183 // At a minimum, no-nans-fp-math must be true. 1184 if (!CI->hasNoNaNs()) 1185 return nullptr; 1186 // No-signed-zeros is implied by the definitions of fmax/fmin themselves: 1187 // "Ideally, fmax would be sensitive to the sign of zero, for example 1188 // fmax(-0. 0, +0. 0) would return +0; however, implementation in software 1189 // might be impractical." 1190 FMF.setNoSignedZeros(); 1191 FMF.setNoNaNs(); 1192 } 1193 B.setFastMathFlags(FMF); 1194 1195 // We have a relaxed floating-point environment. We can ignore NaN-handling 1196 // and transform to a compare and select. We do not have to consider errno or 1197 // exceptions, because fmin/fmax do not have those. 1198 Value *Op0 = CI->getArgOperand(0); 1199 Value *Op1 = CI->getArgOperand(1); 1200 Value *Cmp = Callee->getName().startswith("fmin") ? 1201 B.CreateFCmpOLT(Op0, Op1) : B.CreateFCmpOGT(Op0, Op1); 1202 return B.CreateSelect(Cmp, Op0, Op1); 1203 } 1204 1205 Value *LibCallSimplifier::optimizeLog(CallInst *CI, IRBuilder<> &B) { 1206 Function *Callee = CI->getCalledFunction(); 1207 Value *Ret = nullptr; 1208 StringRef Name = Callee->getName(); 1209 if (UnsafeFPShrink && hasFloatVersion(Name)) 1210 Ret = optimizeUnaryDoubleFP(CI, B, true); 1211 1212 if (!CI->hasUnsafeAlgebra()) 1213 return Ret; 1214 Value *Op1 = CI->getArgOperand(0); 1215 auto *OpC = dyn_cast<CallInst>(Op1); 1216 1217 // The earlier call must also be unsafe in order to do these transforms. 1218 if (!OpC || !OpC->hasUnsafeAlgebra()) 1219 return Ret; 1220 1221 // log(pow(x,y)) -> y*log(x) 1222 // This is only applicable to log, log2, log10. 1223 if (Name != "log" && Name != "log2" && Name != "log10") 1224 return Ret; 1225 1226 IRBuilder<>::FastMathFlagGuard Guard(B); 1227 FastMathFlags FMF; 1228 FMF.setUnsafeAlgebra(); 1229 B.setFastMathFlags(FMF); 1230 1231 LibFunc::Func Func; 1232 Function *F = OpC->getCalledFunction(); 1233 if (F && ((TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) && 1234 Func == LibFunc::pow) || F->getIntrinsicID() == Intrinsic::pow)) 1235 return B.CreateFMul(OpC->getArgOperand(1), 1236 emitUnaryFloatFnCall(OpC->getOperand(0), Callee->getName(), B, 1237 Callee->getAttributes()), "mul"); 1238 1239 // log(exp2(y)) -> y*log(2) 1240 if (F && Name == "log" && TLI->getLibFunc(F->getName(), Func) && 1241 TLI->has(Func) && Func == LibFunc::exp2) 1242 return B.CreateFMul( 1243 OpC->getArgOperand(0), 1244 emitUnaryFloatFnCall(ConstantFP::get(CI->getType(), 2.0), 1245 Callee->getName(), B, Callee->getAttributes()), 1246 "logmul"); 1247 return Ret; 1248 } 1249 1250 Value *LibCallSimplifier::optimizeSqrt(CallInst *CI, IRBuilder<> &B) { 1251 Function *Callee = CI->getCalledFunction(); 1252 Value *Ret = nullptr; 1253 if (TLI->has(LibFunc::sqrtf) && (Callee->getName() == "sqrt" || 1254 Callee->getIntrinsicID() == Intrinsic::sqrt)) 1255 Ret = optimizeUnaryDoubleFP(CI, B, true); 1256 1257 if (!CI->hasUnsafeAlgebra()) 1258 return Ret; 1259 1260 Instruction *I = dyn_cast<Instruction>(CI->getArgOperand(0)); 1261 if (!I || I->getOpcode() != Instruction::FMul || !I->hasUnsafeAlgebra()) 1262 return Ret; 1263 1264 // We're looking for a repeated factor in a multiplication tree, 1265 // so we can do this fold: sqrt(x * x) -> fabs(x); 1266 // or this fold: sqrt((x * x) * y) -> fabs(x) * sqrt(y). 1267 Value *Op0 = I->getOperand(0); 1268 Value *Op1 = I->getOperand(1); 1269 Value *RepeatOp = nullptr; 1270 Value *OtherOp = nullptr; 1271 if (Op0 == Op1) { 1272 // Simple match: the operands of the multiply are identical. 1273 RepeatOp = Op0; 1274 } else { 1275 // Look for a more complicated pattern: one of the operands is itself 1276 // a multiply, so search for a common factor in that multiply. 1277 // Note: We don't bother looking any deeper than this first level or for 1278 // variations of this pattern because instcombine's visitFMUL and/or the 1279 // reassociation pass should give us this form. 1280 Value *OtherMul0, *OtherMul1; 1281 if (match(Op0, m_FMul(m_Value(OtherMul0), m_Value(OtherMul1)))) { 1282 // Pattern: sqrt((x * y) * z) 1283 if (OtherMul0 == OtherMul1 && 1284 cast<Instruction>(Op0)->hasUnsafeAlgebra()) { 1285 // Matched: sqrt((x * x) * z) 1286 RepeatOp = OtherMul0; 1287 OtherOp = Op1; 1288 } 1289 } 1290 } 1291 if (!RepeatOp) 1292 return Ret; 1293 1294 // Fast math flags for any created instructions should match the sqrt 1295 // and multiply. 1296 IRBuilder<>::FastMathFlagGuard Guard(B); 1297 B.setFastMathFlags(I->getFastMathFlags()); 1298 1299 // If we found a repeated factor, hoist it out of the square root and 1300 // replace it with the fabs of that factor. 1301 Module *M = Callee->getParent(); 1302 Type *ArgType = I->getType(); 1303 Value *Fabs = Intrinsic::getDeclaration(M, Intrinsic::fabs, ArgType); 1304 Value *FabsCall = B.CreateCall(Fabs, RepeatOp, "fabs"); 1305 if (OtherOp) { 1306 // If we found a non-repeated factor, we still need to get its square 1307 // root. We then multiply that by the value that was simplified out 1308 // of the square root calculation. 1309 Value *Sqrt = Intrinsic::getDeclaration(M, Intrinsic::sqrt, ArgType); 1310 Value *SqrtCall = B.CreateCall(Sqrt, OtherOp, "sqrt"); 1311 return B.CreateFMul(FabsCall, SqrtCall); 1312 } 1313 return FabsCall; 1314 } 1315 1316 // TODO: Generalize to handle any trig function and its inverse. 1317 Value *LibCallSimplifier::optimizeTan(CallInst *CI, IRBuilder<> &B) { 1318 Function *Callee = CI->getCalledFunction(); 1319 Value *Ret = nullptr; 1320 StringRef Name = Callee->getName(); 1321 if (UnsafeFPShrink && Name == "tan" && hasFloatVersion(Name)) 1322 Ret = optimizeUnaryDoubleFP(CI, B, true); 1323 1324 Value *Op1 = CI->getArgOperand(0); 1325 auto *OpC = dyn_cast<CallInst>(Op1); 1326 if (!OpC) 1327 return Ret; 1328 1329 // Both calls must allow unsafe optimizations in order to remove them. 1330 if (!CI->hasUnsafeAlgebra() || !OpC->hasUnsafeAlgebra()) 1331 return Ret; 1332 1333 // tan(atan(x)) -> x 1334 // tanf(atanf(x)) -> x 1335 // tanl(atanl(x)) -> x 1336 LibFunc::Func Func; 1337 Function *F = OpC->getCalledFunction(); 1338 if (F && TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) && 1339 ((Func == LibFunc::atan && Callee->getName() == "tan") || 1340 (Func == LibFunc::atanf && Callee->getName() == "tanf") || 1341 (Func == LibFunc::atanl && Callee->getName() == "tanl"))) 1342 Ret = OpC->getArgOperand(0); 1343 return Ret; 1344 } 1345 1346 static bool isTrigLibCall(CallInst *CI) { 1347 // We can only hope to do anything useful if we can ignore things like errno 1348 // and floating-point exceptions. 1349 // We already checked the prototype. 1350 return CI->hasFnAttr(Attribute::NoUnwind) && 1351 CI->hasFnAttr(Attribute::ReadNone); 1352 } 1353 1354 static void insertSinCosCall(IRBuilder<> &B, Function *OrigCallee, Value *Arg, 1355 bool UseFloat, Value *&Sin, Value *&Cos, 1356 Value *&SinCos) { 1357 Type *ArgTy = Arg->getType(); 1358 Type *ResTy; 1359 StringRef Name; 1360 1361 Triple T(OrigCallee->getParent()->getTargetTriple()); 1362 if (UseFloat) { 1363 Name = "__sincospif_stret"; 1364 1365 assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for now"); 1366 // x86_64 can't use {float, float} since that would be returned in both 1367 // xmm0 and xmm1, which isn't what a real struct would do. 1368 ResTy = T.getArch() == Triple::x86_64 1369 ? static_cast<Type *>(VectorType::get(ArgTy, 2)) 1370 : static_cast<Type *>(StructType::get(ArgTy, ArgTy, nullptr)); 1371 } else { 1372 Name = "__sincospi_stret"; 1373 ResTy = StructType::get(ArgTy, ArgTy, nullptr); 1374 } 1375 1376 Module *M = OrigCallee->getParent(); 1377 Value *Callee = M->getOrInsertFunction(Name, OrigCallee->getAttributes(), 1378 ResTy, ArgTy, nullptr); 1379 1380 if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) { 1381 // If the argument is an instruction, it must dominate all uses so put our 1382 // sincos call there. 1383 B.SetInsertPoint(ArgInst->getParent(), ++ArgInst->getIterator()); 1384 } else { 1385 // Otherwise (e.g. for a constant) the beginning of the function is as 1386 // good a place as any. 1387 BasicBlock &EntryBB = B.GetInsertBlock()->getParent()->getEntryBlock(); 1388 B.SetInsertPoint(&EntryBB, EntryBB.begin()); 1389 } 1390 1391 SinCos = B.CreateCall(Callee, Arg, "sincospi"); 1392 1393 if (SinCos->getType()->isStructTy()) { 1394 Sin = B.CreateExtractValue(SinCos, 0, "sinpi"); 1395 Cos = B.CreateExtractValue(SinCos, 1, "cospi"); 1396 } else { 1397 Sin = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 0), 1398 "sinpi"); 1399 Cos = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 1), 1400 "cospi"); 1401 } 1402 } 1403 1404 Value *LibCallSimplifier::optimizeSinCosPi(CallInst *CI, IRBuilder<> &B) { 1405 // Make sure the prototype is as expected, otherwise the rest of the 1406 // function is probably invalid and likely to abort. 1407 if (!isTrigLibCall(CI)) 1408 return nullptr; 1409 1410 Value *Arg = CI->getArgOperand(0); 1411 SmallVector<CallInst *, 1> SinCalls; 1412 SmallVector<CallInst *, 1> CosCalls; 1413 SmallVector<CallInst *, 1> SinCosCalls; 1414 1415 bool IsFloat = Arg->getType()->isFloatTy(); 1416 1417 // Look for all compatible sinpi, cospi and sincospi calls with the same 1418 // argument. If there are enough (in some sense) we can make the 1419 // substitution. 1420 Function *F = CI->getFunction(); 1421 for (User *U : Arg->users()) 1422 classifyArgUse(U, F, IsFloat, SinCalls, CosCalls, SinCosCalls); 1423 1424 // It's only worthwhile if both sinpi and cospi are actually used. 1425 if (SinCosCalls.empty() && (SinCalls.empty() || CosCalls.empty())) 1426 return nullptr; 1427 1428 Value *Sin, *Cos, *SinCos; 1429 insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos, SinCos); 1430 1431 replaceTrigInsts(SinCalls, Sin); 1432 replaceTrigInsts(CosCalls, Cos); 1433 replaceTrigInsts(SinCosCalls, SinCos); 1434 1435 return nullptr; 1436 } 1437 1438 void LibCallSimplifier::classifyArgUse( 1439 Value *Val, Function *F, bool IsFloat, 1440 SmallVectorImpl<CallInst *> &SinCalls, 1441 SmallVectorImpl<CallInst *> &CosCalls, 1442 SmallVectorImpl<CallInst *> &SinCosCalls) { 1443 CallInst *CI = dyn_cast<CallInst>(Val); 1444 1445 if (!CI) 1446 return; 1447 1448 // Don't consider calls in other functions. 1449 if (CI->getFunction() != F) 1450 return; 1451 1452 Function *Callee = CI->getCalledFunction(); 1453 LibFunc::Func Func; 1454 if (!Callee || !TLI->getLibFunc(*Callee, Func) || !TLI->has(Func) || 1455 !isTrigLibCall(CI)) 1456 return; 1457 1458 if (IsFloat) { 1459 if (Func == LibFunc::sinpif) 1460 SinCalls.push_back(CI); 1461 else if (Func == LibFunc::cospif) 1462 CosCalls.push_back(CI); 1463 else if (Func == LibFunc::sincospif_stret) 1464 SinCosCalls.push_back(CI); 1465 } else { 1466 if (Func == LibFunc::sinpi) 1467 SinCalls.push_back(CI); 1468 else if (Func == LibFunc::cospi) 1469 CosCalls.push_back(CI); 1470 else if (Func == LibFunc::sincospi_stret) 1471 SinCosCalls.push_back(CI); 1472 } 1473 } 1474 1475 void LibCallSimplifier::replaceTrigInsts(SmallVectorImpl<CallInst *> &Calls, 1476 Value *Res) { 1477 for (CallInst *C : Calls) 1478 replaceAllUsesWith(C, Res); 1479 } 1480 1481 //===----------------------------------------------------------------------===// 1482 // Integer Library Call Optimizations 1483 //===----------------------------------------------------------------------===// 1484 1485 Value *LibCallSimplifier::optimizeFFS(CallInst *CI, IRBuilder<> &B) { 1486 Function *Callee = CI->getCalledFunction(); 1487 Value *Op = CI->getArgOperand(0); 1488 1489 // Constant fold. 1490 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) { 1491 if (CI->isZero()) // ffs(0) -> 0. 1492 return B.getInt32(0); 1493 // ffs(c) -> cttz(c)+1 1494 return B.getInt32(CI->getValue().countTrailingZeros() + 1); 1495 } 1496 1497 // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0 1498 Type *ArgType = Op->getType(); 1499 Value *F = 1500 Intrinsic::getDeclaration(Callee->getParent(), Intrinsic::cttz, ArgType); 1501 Value *V = B.CreateCall(F, {Op, B.getTrue()}, "cttz"); 1502 V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1)); 1503 V = B.CreateIntCast(V, B.getInt32Ty(), false); 1504 1505 Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType)); 1506 return B.CreateSelect(Cond, V, B.getInt32(0)); 1507 } 1508 1509 Value *LibCallSimplifier::optimizeAbs(CallInst *CI, IRBuilder<> &B) { 1510 // abs(x) -> x >s -1 ? x : -x 1511 Value *Op = CI->getArgOperand(0); 1512 Value *Pos = 1513 B.CreateICmpSGT(Op, Constant::getAllOnesValue(Op->getType()), "ispos"); 1514 Value *Neg = B.CreateNeg(Op, "neg"); 1515 return B.CreateSelect(Pos, Op, Neg); 1516 } 1517 1518 Value *LibCallSimplifier::optimizeIsDigit(CallInst *CI, IRBuilder<> &B) { 1519 // isdigit(c) -> (c-'0') <u 10 1520 Value *Op = CI->getArgOperand(0); 1521 Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp"); 1522 Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit"); 1523 return B.CreateZExt(Op, CI->getType()); 1524 } 1525 1526 Value *LibCallSimplifier::optimizeIsAscii(CallInst *CI, IRBuilder<> &B) { 1527 // isascii(c) -> c <u 128 1528 Value *Op = CI->getArgOperand(0); 1529 Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii"); 1530 return B.CreateZExt(Op, CI->getType()); 1531 } 1532 1533 Value *LibCallSimplifier::optimizeToAscii(CallInst *CI, IRBuilder<> &B) { 1534 // toascii(c) -> c & 0x7f 1535 return B.CreateAnd(CI->getArgOperand(0), 1536 ConstantInt::get(CI->getType(), 0x7F)); 1537 } 1538 1539 //===----------------------------------------------------------------------===// 1540 // Formatting and IO Library Call Optimizations 1541 //===----------------------------------------------------------------------===// 1542 1543 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg); 1544 1545 Value *LibCallSimplifier::optimizeErrorReporting(CallInst *CI, IRBuilder<> &B, 1546 int StreamArg) { 1547 Function *Callee = CI->getCalledFunction(); 1548 // Error reporting calls should be cold, mark them as such. 1549 // This applies even to non-builtin calls: it is only a hint and applies to 1550 // functions that the frontend might not understand as builtins. 1551 1552 // This heuristic was suggested in: 1553 // Improving Static Branch Prediction in a Compiler 1554 // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu 1555 // Proceedings of PACT'98, Oct. 1998, IEEE 1556 if (!CI->hasFnAttr(Attribute::Cold) && 1557 isReportingError(Callee, CI, StreamArg)) { 1558 CI->addAttribute(AttributeSet::FunctionIndex, Attribute::Cold); 1559 } 1560 1561 return nullptr; 1562 } 1563 1564 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg) { 1565 if (!ColdErrorCalls || !Callee || !Callee->isDeclaration()) 1566 return false; 1567 1568 if (StreamArg < 0) 1569 return true; 1570 1571 // These functions might be considered cold, but only if their stream 1572 // argument is stderr. 1573 1574 if (StreamArg >= (int)CI->getNumArgOperands()) 1575 return false; 1576 LoadInst *LI = dyn_cast<LoadInst>(CI->getArgOperand(StreamArg)); 1577 if (!LI) 1578 return false; 1579 GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand()); 1580 if (!GV || !GV->isDeclaration()) 1581 return false; 1582 return GV->getName() == "stderr"; 1583 } 1584 1585 Value *LibCallSimplifier::optimizePrintFString(CallInst *CI, IRBuilder<> &B) { 1586 // Check for a fixed format string. 1587 StringRef FormatStr; 1588 if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr)) 1589 return nullptr; 1590 1591 // Empty format string -> noop. 1592 if (FormatStr.empty()) // Tolerate printf's declared void. 1593 return CI->use_empty() ? (Value *)CI : ConstantInt::get(CI->getType(), 0); 1594 1595 // Do not do any of the following transformations if the printf return value 1596 // is used, in general the printf return value is not compatible with either 1597 // putchar() or puts(). 1598 if (!CI->use_empty()) 1599 return nullptr; 1600 1601 // printf("x") -> putchar('x'), even for "%" and "%%". 1602 if (FormatStr.size() == 1 || FormatStr == "%%") 1603 return emitPutChar(B.getInt32(FormatStr[0]), B, TLI); 1604 1605 // printf("%s", "a") --> putchar('a') 1606 if (FormatStr == "%s" && CI->getNumArgOperands() > 1) { 1607 StringRef ChrStr; 1608 if (!getConstantStringInfo(CI->getOperand(1), ChrStr)) 1609 return nullptr; 1610 if (ChrStr.size() != 1) 1611 return nullptr; 1612 return emitPutChar(B.getInt32(ChrStr[0]), B, TLI); 1613 } 1614 1615 // printf("foo\n") --> puts("foo") 1616 if (FormatStr[FormatStr.size() - 1] == '\n' && 1617 FormatStr.find('%') == StringRef::npos) { // No format characters. 1618 // Create a string literal with no \n on it. We expect the constant merge 1619 // pass to be run after this pass, to merge duplicate strings. 1620 FormatStr = FormatStr.drop_back(); 1621 Value *GV = B.CreateGlobalString(FormatStr, "str"); 1622 return emitPutS(GV, B, TLI); 1623 } 1624 1625 // Optimize specific format strings. 1626 // printf("%c", chr) --> putchar(chr) 1627 if (FormatStr == "%c" && CI->getNumArgOperands() > 1 && 1628 CI->getArgOperand(1)->getType()->isIntegerTy()) 1629 return emitPutChar(CI->getArgOperand(1), B, TLI); 1630 1631 // printf("%s\n", str) --> puts(str) 1632 if (FormatStr == "%s\n" && CI->getNumArgOperands() > 1 && 1633 CI->getArgOperand(1)->getType()->isPointerTy()) 1634 return emitPutS(CI->getArgOperand(1), B, TLI); 1635 return nullptr; 1636 } 1637 1638 Value *LibCallSimplifier::optimizePrintF(CallInst *CI, IRBuilder<> &B) { 1639 1640 Function *Callee = CI->getCalledFunction(); 1641 FunctionType *FT = Callee->getFunctionType(); 1642 if (Value *V = optimizePrintFString(CI, B)) { 1643 return V; 1644 } 1645 1646 // printf(format, ...) -> iprintf(format, ...) if no floating point 1647 // arguments. 1648 if (TLI->has(LibFunc::iprintf) && !callHasFloatingPointArgument(CI)) { 1649 Module *M = B.GetInsertBlock()->getParent()->getParent(); 1650 Constant *IPrintFFn = 1651 M->getOrInsertFunction("iprintf", FT, Callee->getAttributes()); 1652 CallInst *New = cast<CallInst>(CI->clone()); 1653 New->setCalledFunction(IPrintFFn); 1654 B.Insert(New); 1655 return New; 1656 } 1657 return nullptr; 1658 } 1659 1660 Value *LibCallSimplifier::optimizeSPrintFString(CallInst *CI, IRBuilder<> &B) { 1661 // Check for a fixed format string. 1662 StringRef FormatStr; 1663 if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr)) 1664 return nullptr; 1665 1666 // If we just have a format string (nothing else crazy) transform it. 1667 if (CI->getNumArgOperands() == 2) { 1668 // Make sure there's no % in the constant array. We could try to handle 1669 // %% -> % in the future if we cared. 1670 for (unsigned i = 0, e = FormatStr.size(); i != e; ++i) 1671 if (FormatStr[i] == '%') 1672 return nullptr; // we found a format specifier, bail out. 1673 1674 // sprintf(str, fmt) -> llvm.memcpy(str, fmt, strlen(fmt)+1, 1) 1675 B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1), 1676 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 1677 FormatStr.size() + 1), 1678 1); // Copy the null byte. 1679 return ConstantInt::get(CI->getType(), FormatStr.size()); 1680 } 1681 1682 // The remaining optimizations require the format string to be "%s" or "%c" 1683 // and have an extra operand. 1684 if (FormatStr.size() != 2 || FormatStr[0] != '%' || 1685 CI->getNumArgOperands() < 3) 1686 return nullptr; 1687 1688 // Decode the second character of the format string. 1689 if (FormatStr[1] == 'c') { 1690 // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0 1691 if (!CI->getArgOperand(2)->getType()->isIntegerTy()) 1692 return nullptr; 1693 Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char"); 1694 Value *Ptr = castToCStr(CI->getArgOperand(0), B); 1695 B.CreateStore(V, Ptr); 1696 Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul"); 1697 B.CreateStore(B.getInt8(0), Ptr); 1698 1699 return ConstantInt::get(CI->getType(), 1); 1700 } 1701 1702 if (FormatStr[1] == 's') { 1703 // sprintf(dest, "%s", str) -> llvm.memcpy(dest, str, strlen(str)+1, 1) 1704 if (!CI->getArgOperand(2)->getType()->isPointerTy()) 1705 return nullptr; 1706 1707 Value *Len = emitStrLen(CI->getArgOperand(2), B, DL, TLI); 1708 if (!Len) 1709 return nullptr; 1710 Value *IncLen = 1711 B.CreateAdd(Len, ConstantInt::get(Len->getType(), 1), "leninc"); 1712 B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(2), IncLen, 1); 1713 1714 // The sprintf result is the unincremented number of bytes in the string. 1715 return B.CreateIntCast(Len, CI->getType(), false); 1716 } 1717 return nullptr; 1718 } 1719 1720 Value *LibCallSimplifier::optimizeSPrintF(CallInst *CI, IRBuilder<> &B) { 1721 Function *Callee = CI->getCalledFunction(); 1722 FunctionType *FT = Callee->getFunctionType(); 1723 if (Value *V = optimizeSPrintFString(CI, B)) { 1724 return V; 1725 } 1726 1727 // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating 1728 // point arguments. 1729 if (TLI->has(LibFunc::siprintf) && !callHasFloatingPointArgument(CI)) { 1730 Module *M = B.GetInsertBlock()->getParent()->getParent(); 1731 Constant *SIPrintFFn = 1732 M->getOrInsertFunction("siprintf", FT, Callee->getAttributes()); 1733 CallInst *New = cast<CallInst>(CI->clone()); 1734 New->setCalledFunction(SIPrintFFn); 1735 B.Insert(New); 1736 return New; 1737 } 1738 return nullptr; 1739 } 1740 1741 Value *LibCallSimplifier::optimizeFPrintFString(CallInst *CI, IRBuilder<> &B) { 1742 optimizeErrorReporting(CI, B, 0); 1743 1744 // All the optimizations depend on the format string. 1745 StringRef FormatStr; 1746 if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr)) 1747 return nullptr; 1748 1749 // Do not do any of the following transformations if the fprintf return 1750 // value is used, in general the fprintf return value is not compatible 1751 // with fwrite(), fputc() or fputs(). 1752 if (!CI->use_empty()) 1753 return nullptr; 1754 1755 // fprintf(F, "foo") --> fwrite("foo", 3, 1, F) 1756 if (CI->getNumArgOperands() == 2) { 1757 for (unsigned i = 0, e = FormatStr.size(); i != e; ++i) 1758 if (FormatStr[i] == '%') // Could handle %% -> % if we cared. 1759 return nullptr; // We found a format specifier. 1760 1761 return emitFWrite( 1762 CI->getArgOperand(1), 1763 ConstantInt::get(DL.getIntPtrType(CI->getContext()), FormatStr.size()), 1764 CI->getArgOperand(0), B, DL, TLI); 1765 } 1766 1767 // The remaining optimizations require the format string to be "%s" or "%c" 1768 // and have an extra operand. 1769 if (FormatStr.size() != 2 || FormatStr[0] != '%' || 1770 CI->getNumArgOperands() < 3) 1771 return nullptr; 1772 1773 // Decode the second character of the format string. 1774 if (FormatStr[1] == 'c') { 1775 // fprintf(F, "%c", chr) --> fputc(chr, F) 1776 if (!CI->getArgOperand(2)->getType()->isIntegerTy()) 1777 return nullptr; 1778 return emitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI); 1779 } 1780 1781 if (FormatStr[1] == 's') { 1782 // fprintf(F, "%s", str) --> fputs(str, F) 1783 if (!CI->getArgOperand(2)->getType()->isPointerTy()) 1784 return nullptr; 1785 return emitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI); 1786 } 1787 return nullptr; 1788 } 1789 1790 Value *LibCallSimplifier::optimizeFPrintF(CallInst *CI, IRBuilder<> &B) { 1791 Function *Callee = CI->getCalledFunction(); 1792 FunctionType *FT = Callee->getFunctionType(); 1793 if (Value *V = optimizeFPrintFString(CI, B)) { 1794 return V; 1795 } 1796 1797 // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no 1798 // floating point arguments. 1799 if (TLI->has(LibFunc::fiprintf) && !callHasFloatingPointArgument(CI)) { 1800 Module *M = B.GetInsertBlock()->getParent()->getParent(); 1801 Constant *FIPrintFFn = 1802 M->getOrInsertFunction("fiprintf", FT, Callee->getAttributes()); 1803 CallInst *New = cast<CallInst>(CI->clone()); 1804 New->setCalledFunction(FIPrintFFn); 1805 B.Insert(New); 1806 return New; 1807 } 1808 return nullptr; 1809 } 1810 1811 Value *LibCallSimplifier::optimizeFWrite(CallInst *CI, IRBuilder<> &B) { 1812 optimizeErrorReporting(CI, B, 3); 1813 1814 // Get the element size and count. 1815 ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 1816 ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 1817 if (!SizeC || !CountC) 1818 return nullptr; 1819 uint64_t Bytes = SizeC->getZExtValue() * CountC->getZExtValue(); 1820 1821 // If this is writing zero records, remove the call (it's a noop). 1822 if (Bytes == 0) 1823 return ConstantInt::get(CI->getType(), 0); 1824 1825 // If this is writing one byte, turn it into fputc. 1826 // This optimisation is only valid, if the return value is unused. 1827 if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F) 1828 Value *Char = B.CreateLoad(castToCStr(CI->getArgOperand(0), B), "char"); 1829 Value *NewCI = emitFPutC(Char, CI->getArgOperand(3), B, TLI); 1830 return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr; 1831 } 1832 1833 return nullptr; 1834 } 1835 1836 Value *LibCallSimplifier::optimizeFPuts(CallInst *CI, IRBuilder<> &B) { 1837 optimizeErrorReporting(CI, B, 1); 1838 1839 // Don't rewrite fputs to fwrite when optimising for size because fwrite 1840 // requires more arguments and thus extra MOVs are required. 1841 if (CI->getParent()->getParent()->optForSize()) 1842 return nullptr; 1843 1844 // We can't optimize if return value is used. 1845 if (!CI->use_empty()) 1846 return nullptr; 1847 1848 // fputs(s,F) --> fwrite(s,1,strlen(s),F) 1849 uint64_t Len = GetStringLength(CI->getArgOperand(0)); 1850 if (!Len) 1851 return nullptr; 1852 1853 // Known to have no uses (see above). 1854 return emitFWrite( 1855 CI->getArgOperand(0), 1856 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len - 1), 1857 CI->getArgOperand(1), B, DL, TLI); 1858 } 1859 1860 Value *LibCallSimplifier::optimizePuts(CallInst *CI, IRBuilder<> &B) { 1861 // Check for a constant string. 1862 StringRef Str; 1863 if (!getConstantStringInfo(CI->getArgOperand(0), Str)) 1864 return nullptr; 1865 1866 if (Str.empty() && CI->use_empty()) { 1867 // puts("") -> putchar('\n') 1868 Value *Res = emitPutChar(B.getInt32('\n'), B, TLI); 1869 if (CI->use_empty() || !Res) 1870 return Res; 1871 return B.CreateIntCast(Res, CI->getType(), true); 1872 } 1873 1874 return nullptr; 1875 } 1876 1877 bool LibCallSimplifier::hasFloatVersion(StringRef FuncName) { 1878 LibFunc::Func Func; 1879 SmallString<20> FloatFuncName = FuncName; 1880 FloatFuncName += 'f'; 1881 if (TLI->getLibFunc(FloatFuncName, Func)) 1882 return TLI->has(Func); 1883 return false; 1884 } 1885 1886 Value *LibCallSimplifier::optimizeStringMemoryLibCall(CallInst *CI, 1887 IRBuilder<> &Builder) { 1888 LibFunc::Func Func; 1889 Function *Callee = CI->getCalledFunction(); 1890 // Check for string/memory library functions. 1891 if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) { 1892 // Make sure we never change the calling convention. 1893 assert((ignoreCallingConv(Func) || 1894 CI->getCallingConv() == llvm::CallingConv::C) && 1895 "Optimizing string/memory libcall would change the calling convention"); 1896 switch (Func) { 1897 case LibFunc::strcat: 1898 return optimizeStrCat(CI, Builder); 1899 case LibFunc::strncat: 1900 return optimizeStrNCat(CI, Builder); 1901 case LibFunc::strchr: 1902 return optimizeStrChr(CI, Builder); 1903 case LibFunc::strrchr: 1904 return optimizeStrRChr(CI, Builder); 1905 case LibFunc::strcmp: 1906 return optimizeStrCmp(CI, Builder); 1907 case LibFunc::strncmp: 1908 return optimizeStrNCmp(CI, Builder); 1909 case LibFunc::strcpy: 1910 return optimizeStrCpy(CI, Builder); 1911 case LibFunc::stpcpy: 1912 return optimizeStpCpy(CI, Builder); 1913 case LibFunc::strncpy: 1914 return optimizeStrNCpy(CI, Builder); 1915 case LibFunc::strlen: 1916 return optimizeStrLen(CI, Builder); 1917 case LibFunc::strpbrk: 1918 return optimizeStrPBrk(CI, Builder); 1919 case LibFunc::strtol: 1920 case LibFunc::strtod: 1921 case LibFunc::strtof: 1922 case LibFunc::strtoul: 1923 case LibFunc::strtoll: 1924 case LibFunc::strtold: 1925 case LibFunc::strtoull: 1926 return optimizeStrTo(CI, Builder); 1927 case LibFunc::strspn: 1928 return optimizeStrSpn(CI, Builder); 1929 case LibFunc::strcspn: 1930 return optimizeStrCSpn(CI, Builder); 1931 case LibFunc::strstr: 1932 return optimizeStrStr(CI, Builder); 1933 case LibFunc::memchr: 1934 return optimizeMemChr(CI, Builder); 1935 case LibFunc::memcmp: 1936 return optimizeMemCmp(CI, Builder); 1937 case LibFunc::memcpy: 1938 return optimizeMemCpy(CI, Builder); 1939 case LibFunc::memmove: 1940 return optimizeMemMove(CI, Builder); 1941 case LibFunc::memset: 1942 return optimizeMemSet(CI, Builder); 1943 default: 1944 break; 1945 } 1946 } 1947 return nullptr; 1948 } 1949 1950 Value *LibCallSimplifier::optimizeCall(CallInst *CI) { 1951 if (CI->isNoBuiltin()) 1952 return nullptr; 1953 1954 LibFunc::Func Func; 1955 Function *Callee = CI->getCalledFunction(); 1956 StringRef FuncName = Callee->getName(); 1957 1958 SmallVector<OperandBundleDef, 2> OpBundles; 1959 CI->getOperandBundlesAsDefs(OpBundles); 1960 IRBuilder<> Builder(CI, /*FPMathTag=*/nullptr, OpBundles); 1961 bool isCallingConvC = CI->getCallingConv() == llvm::CallingConv::C; 1962 1963 // Command-line parameter overrides instruction attribute. 1964 if (EnableUnsafeFPShrink.getNumOccurrences() > 0) 1965 UnsafeFPShrink = EnableUnsafeFPShrink; 1966 else if (isa<FPMathOperator>(CI) && CI->hasUnsafeAlgebra()) 1967 UnsafeFPShrink = true; 1968 1969 // First, check for intrinsics. 1970 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) { 1971 if (!isCallingConvC) 1972 return nullptr; 1973 switch (II->getIntrinsicID()) { 1974 case Intrinsic::pow: 1975 return optimizePow(CI, Builder); 1976 case Intrinsic::exp2: 1977 return optimizeExp2(CI, Builder); 1978 case Intrinsic::fabs: 1979 return optimizeFabs(CI, Builder); 1980 case Intrinsic::log: 1981 return optimizeLog(CI, Builder); 1982 case Intrinsic::sqrt: 1983 return optimizeSqrt(CI, Builder); 1984 // TODO: Use foldMallocMemset() with memset intrinsic. 1985 default: 1986 return nullptr; 1987 } 1988 } 1989 1990 // Also try to simplify calls to fortified library functions. 1991 if (Value *SimplifiedFortifiedCI = FortifiedSimplifier.optimizeCall(CI)) { 1992 // Try to further simplify the result. 1993 CallInst *SimplifiedCI = dyn_cast<CallInst>(SimplifiedFortifiedCI); 1994 if (SimplifiedCI && SimplifiedCI->getCalledFunction()) { 1995 // Use an IR Builder from SimplifiedCI if available instead of CI 1996 // to guarantee we reach all uses we might replace later on. 1997 IRBuilder<> TmpBuilder(SimplifiedCI); 1998 if (Value *V = optimizeStringMemoryLibCall(SimplifiedCI, TmpBuilder)) { 1999 // If we were able to further simplify, remove the now redundant call. 2000 SimplifiedCI->replaceAllUsesWith(V); 2001 SimplifiedCI->eraseFromParent(); 2002 return V; 2003 } 2004 } 2005 return SimplifiedFortifiedCI; 2006 } 2007 2008 // Then check for known library functions. 2009 if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) { 2010 // We never change the calling convention. 2011 if (!ignoreCallingConv(Func) && !isCallingConvC) 2012 return nullptr; 2013 if (Value *V = optimizeStringMemoryLibCall(CI, Builder)) 2014 return V; 2015 switch (Func) { 2016 case LibFunc::cosf: 2017 case LibFunc::cos: 2018 case LibFunc::cosl: 2019 return optimizeCos(CI, Builder); 2020 case LibFunc::sinpif: 2021 case LibFunc::sinpi: 2022 case LibFunc::cospif: 2023 case LibFunc::cospi: 2024 return optimizeSinCosPi(CI, Builder); 2025 case LibFunc::powf: 2026 case LibFunc::pow: 2027 case LibFunc::powl: 2028 return optimizePow(CI, Builder); 2029 case LibFunc::exp2l: 2030 case LibFunc::exp2: 2031 case LibFunc::exp2f: 2032 return optimizeExp2(CI, Builder); 2033 case LibFunc::fabsf: 2034 case LibFunc::fabs: 2035 case LibFunc::fabsl: 2036 return optimizeFabs(CI, Builder); 2037 case LibFunc::sqrtf: 2038 case LibFunc::sqrt: 2039 case LibFunc::sqrtl: 2040 return optimizeSqrt(CI, Builder); 2041 case LibFunc::ffs: 2042 case LibFunc::ffsl: 2043 case LibFunc::ffsll: 2044 return optimizeFFS(CI, Builder); 2045 case LibFunc::abs: 2046 case LibFunc::labs: 2047 case LibFunc::llabs: 2048 return optimizeAbs(CI, Builder); 2049 case LibFunc::isdigit: 2050 return optimizeIsDigit(CI, Builder); 2051 case LibFunc::isascii: 2052 return optimizeIsAscii(CI, Builder); 2053 case LibFunc::toascii: 2054 return optimizeToAscii(CI, Builder); 2055 case LibFunc::printf: 2056 return optimizePrintF(CI, Builder); 2057 case LibFunc::sprintf: 2058 return optimizeSPrintF(CI, Builder); 2059 case LibFunc::fprintf: 2060 return optimizeFPrintF(CI, Builder); 2061 case LibFunc::fwrite: 2062 return optimizeFWrite(CI, Builder); 2063 case LibFunc::fputs: 2064 return optimizeFPuts(CI, Builder); 2065 case LibFunc::log: 2066 case LibFunc::log10: 2067 case LibFunc::log1p: 2068 case LibFunc::log2: 2069 case LibFunc::logb: 2070 return optimizeLog(CI, Builder); 2071 case LibFunc::puts: 2072 return optimizePuts(CI, Builder); 2073 case LibFunc::tan: 2074 case LibFunc::tanf: 2075 case LibFunc::tanl: 2076 return optimizeTan(CI, Builder); 2077 case LibFunc::perror: 2078 return optimizeErrorReporting(CI, Builder); 2079 case LibFunc::vfprintf: 2080 case LibFunc::fiprintf: 2081 return optimizeErrorReporting(CI, Builder, 0); 2082 case LibFunc::fputc: 2083 return optimizeErrorReporting(CI, Builder, 1); 2084 case LibFunc::ceil: 2085 case LibFunc::floor: 2086 case LibFunc::rint: 2087 case LibFunc::round: 2088 case LibFunc::nearbyint: 2089 case LibFunc::trunc: 2090 if (hasFloatVersion(FuncName)) 2091 return optimizeUnaryDoubleFP(CI, Builder, false); 2092 return nullptr; 2093 case LibFunc::acos: 2094 case LibFunc::acosh: 2095 case LibFunc::asin: 2096 case LibFunc::asinh: 2097 case LibFunc::atan: 2098 case LibFunc::atanh: 2099 case LibFunc::cbrt: 2100 case LibFunc::cosh: 2101 case LibFunc::exp: 2102 case LibFunc::exp10: 2103 case LibFunc::expm1: 2104 case LibFunc::sin: 2105 case LibFunc::sinh: 2106 case LibFunc::tanh: 2107 if (UnsafeFPShrink && hasFloatVersion(FuncName)) 2108 return optimizeUnaryDoubleFP(CI, Builder, true); 2109 return nullptr; 2110 case LibFunc::copysign: 2111 if (hasFloatVersion(FuncName)) 2112 return optimizeBinaryDoubleFP(CI, Builder); 2113 return nullptr; 2114 case LibFunc::fminf: 2115 case LibFunc::fmin: 2116 case LibFunc::fminl: 2117 case LibFunc::fmaxf: 2118 case LibFunc::fmax: 2119 case LibFunc::fmaxl: 2120 return optimizeFMinFMax(CI, Builder); 2121 default: 2122 return nullptr; 2123 } 2124 } 2125 return nullptr; 2126 } 2127 2128 LibCallSimplifier::LibCallSimplifier( 2129 const DataLayout &DL, const TargetLibraryInfo *TLI, 2130 function_ref<void(Instruction *, Value *)> Replacer) 2131 : FortifiedSimplifier(TLI), DL(DL), TLI(TLI), UnsafeFPShrink(false), 2132 Replacer(Replacer) {} 2133 2134 void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) { 2135 // Indirect through the replacer used in this instance. 2136 Replacer(I, With); 2137 } 2138 2139 // TODO: 2140 // Additional cases that we need to add to this file: 2141 // 2142 // cbrt: 2143 // * cbrt(expN(X)) -> expN(x/3) 2144 // * cbrt(sqrt(x)) -> pow(x,1/6) 2145 // * cbrt(cbrt(x)) -> pow(x,1/9) 2146 // 2147 // exp, expf, expl: 2148 // * exp(log(x)) -> x 2149 // 2150 // log, logf, logl: 2151 // * log(exp(x)) -> x 2152 // * log(exp(y)) -> y*log(e) 2153 // * log(exp10(y)) -> y*log(10) 2154 // * log(sqrt(x)) -> 0.5*log(x) 2155 // 2156 // lround, lroundf, lroundl: 2157 // * lround(cnst) -> cnst' 2158 // 2159 // pow, powf, powl: 2160 // * pow(sqrt(x),y) -> pow(x,y*0.5) 2161 // * pow(pow(x,y),z)-> pow(x,y*z) 2162 // 2163 // round, roundf, roundl: 2164 // * round(cnst) -> cnst' 2165 // 2166 // signbit: 2167 // * signbit(cnst) -> cnst' 2168 // * signbit(nncst) -> 0 (if pstv is a non-negative constant) 2169 // 2170 // sqrt, sqrtf, sqrtl: 2171 // * sqrt(expN(x)) -> expN(x*0.5) 2172 // * sqrt(Nroot(x)) -> pow(x,1/(2*N)) 2173 // * sqrt(pow(x,y)) -> pow(|x|,y*0.5) 2174 // 2175 // trunc, truncf, truncl: 2176 // * trunc(cnst) -> cnst' 2177 // 2178 // 2179 2180 //===----------------------------------------------------------------------===// 2181 // Fortified Library Call Optimizations 2182 //===----------------------------------------------------------------------===// 2183 2184 bool FortifiedLibCallSimplifier::isFortifiedCallFoldable(CallInst *CI, 2185 unsigned ObjSizeOp, 2186 unsigned SizeOp, 2187 bool isString) { 2188 if (CI->getArgOperand(ObjSizeOp) == CI->getArgOperand(SizeOp)) 2189 return true; 2190 if (ConstantInt *ObjSizeCI = 2191 dyn_cast<ConstantInt>(CI->getArgOperand(ObjSizeOp))) { 2192 if (ObjSizeCI->isAllOnesValue()) 2193 return true; 2194 // If the object size wasn't -1 (unknown), bail out if we were asked to. 2195 if (OnlyLowerUnknownSize) 2196 return false; 2197 if (isString) { 2198 uint64_t Len = GetStringLength(CI->getArgOperand(SizeOp)); 2199 // If the length is 0 we don't know how long it is and so we can't 2200 // remove the check. 2201 if (Len == 0) 2202 return false; 2203 return ObjSizeCI->getZExtValue() >= Len; 2204 } 2205 if (ConstantInt *SizeCI = dyn_cast<ConstantInt>(CI->getArgOperand(SizeOp))) 2206 return ObjSizeCI->getZExtValue() >= SizeCI->getZExtValue(); 2207 } 2208 return false; 2209 } 2210 2211 Value *FortifiedLibCallSimplifier::optimizeMemCpyChk(CallInst *CI, 2212 IRBuilder<> &B) { 2213 if (isFortifiedCallFoldable(CI, 3, 2, false)) { 2214 B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1), 2215 CI->getArgOperand(2), 1); 2216 return CI->getArgOperand(0); 2217 } 2218 return nullptr; 2219 } 2220 2221 Value *FortifiedLibCallSimplifier::optimizeMemMoveChk(CallInst *CI, 2222 IRBuilder<> &B) { 2223 if (isFortifiedCallFoldable(CI, 3, 2, false)) { 2224 B.CreateMemMove(CI->getArgOperand(0), CI->getArgOperand(1), 2225 CI->getArgOperand(2), 1); 2226 return CI->getArgOperand(0); 2227 } 2228 return nullptr; 2229 } 2230 2231 Value *FortifiedLibCallSimplifier::optimizeMemSetChk(CallInst *CI, 2232 IRBuilder<> &B) { 2233 // TODO: Try foldMallocMemset() here. 2234 2235 if (isFortifiedCallFoldable(CI, 3, 2, false)) { 2236 Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false); 2237 B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1); 2238 return CI->getArgOperand(0); 2239 } 2240 return nullptr; 2241 } 2242 2243 Value *FortifiedLibCallSimplifier::optimizeStrpCpyChk(CallInst *CI, 2244 IRBuilder<> &B, 2245 LibFunc::Func Func) { 2246 Function *Callee = CI->getCalledFunction(); 2247 StringRef Name = Callee->getName(); 2248 const DataLayout &DL = CI->getModule()->getDataLayout(); 2249 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1), 2250 *ObjSize = CI->getArgOperand(2); 2251 2252 // __stpcpy_chk(x,x,...) -> x+strlen(x) 2253 if (Func == LibFunc::stpcpy_chk && !OnlyLowerUnknownSize && Dst == Src) { 2254 Value *StrLen = emitStrLen(Src, B, DL, TLI); 2255 return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr; 2256 } 2257 2258 // If a) we don't have any length information, or b) we know this will 2259 // fit then just lower to a plain st[rp]cpy. Otherwise we'll keep our 2260 // st[rp]cpy_chk call which may fail at runtime if the size is too long. 2261 // TODO: It might be nice to get a maximum length out of the possible 2262 // string lengths for varying. 2263 if (isFortifiedCallFoldable(CI, 2, 1, true)) 2264 return emitStrCpy(Dst, Src, B, TLI, Name.substr(2, 6)); 2265 2266 if (OnlyLowerUnknownSize) 2267 return nullptr; 2268 2269 // Maybe we can stil fold __st[rp]cpy_chk to __memcpy_chk. 2270 uint64_t Len = GetStringLength(Src); 2271 if (Len == 0) 2272 return nullptr; 2273 2274 Type *SizeTTy = DL.getIntPtrType(CI->getContext()); 2275 Value *LenV = ConstantInt::get(SizeTTy, Len); 2276 Value *Ret = emitMemCpyChk(Dst, Src, LenV, ObjSize, B, DL, TLI); 2277 // If the function was an __stpcpy_chk, and we were able to fold it into 2278 // a __memcpy_chk, we still need to return the correct end pointer. 2279 if (Ret && Func == LibFunc::stpcpy_chk) 2280 return B.CreateGEP(B.getInt8Ty(), Dst, ConstantInt::get(SizeTTy, Len - 1)); 2281 return Ret; 2282 } 2283 2284 Value *FortifiedLibCallSimplifier::optimizeStrpNCpyChk(CallInst *CI, 2285 IRBuilder<> &B, 2286 LibFunc::Func Func) { 2287 Function *Callee = CI->getCalledFunction(); 2288 StringRef Name = Callee->getName(); 2289 if (isFortifiedCallFoldable(CI, 3, 2, false)) { 2290 Value *Ret = emitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1), 2291 CI->getArgOperand(2), B, TLI, Name.substr(2, 7)); 2292 return Ret; 2293 } 2294 return nullptr; 2295 } 2296 2297 Value *FortifiedLibCallSimplifier::optimizeCall(CallInst *CI) { 2298 // FIXME: We shouldn't be changing "nobuiltin" or TLI unavailable calls here. 2299 // Some clang users checked for _chk libcall availability using: 2300 // __has_builtin(__builtin___memcpy_chk) 2301 // When compiling with -fno-builtin, this is always true. 2302 // When passing -ffreestanding/-mkernel, which both imply -fno-builtin, we 2303 // end up with fortified libcalls, which isn't acceptable in a freestanding 2304 // environment which only provides their non-fortified counterparts. 2305 // 2306 // Until we change clang and/or teach external users to check for availability 2307 // differently, disregard the "nobuiltin" attribute and TLI::has. 2308 // 2309 // PR23093. 2310 2311 LibFunc::Func Func; 2312 Function *Callee = CI->getCalledFunction(); 2313 2314 SmallVector<OperandBundleDef, 2> OpBundles; 2315 CI->getOperandBundlesAsDefs(OpBundles); 2316 IRBuilder<> Builder(CI, /*FPMathTag=*/nullptr, OpBundles); 2317 bool isCallingConvC = CI->getCallingConv() == llvm::CallingConv::C; 2318 2319 // First, check that this is a known library functions and that the prototype 2320 // is correct. 2321 if (!TLI->getLibFunc(*Callee, Func)) 2322 return nullptr; 2323 2324 // We never change the calling convention. 2325 if (!ignoreCallingConv(Func) && !isCallingConvC) 2326 return nullptr; 2327 2328 switch (Func) { 2329 case LibFunc::memcpy_chk: 2330 return optimizeMemCpyChk(CI, Builder); 2331 case LibFunc::memmove_chk: 2332 return optimizeMemMoveChk(CI, Builder); 2333 case LibFunc::memset_chk: 2334 return optimizeMemSetChk(CI, Builder); 2335 case LibFunc::stpcpy_chk: 2336 case LibFunc::strcpy_chk: 2337 return optimizeStrpCpyChk(CI, Builder, Func); 2338 case LibFunc::stpncpy_chk: 2339 case LibFunc::strncpy_chk: 2340 return optimizeStrpNCpyChk(CI, Builder, Func); 2341 default: 2342 break; 2343 } 2344 return nullptr; 2345 } 2346 2347 FortifiedLibCallSimplifier::FortifiedLibCallSimplifier( 2348 const TargetLibraryInfo *TLI, bool OnlyLowerUnknownSize) 2349 : TLI(TLI), OnlyLowerUnknownSize(OnlyLowerUnknownSize) {} 2350