Home | History | Annotate | Download | only in swrast
      1 /*
      2  * Mesa 3-D graphics library
      3  * Version:  6.5.3
      4  *
      5  * Copyright (C) 1999-2007  Brian Paul   All Rights Reserved.
      6  *
      7  * Permission is hereby granted, free of charge, to any person obtaining a
      8  * copy of this software and associated documentation files (the "Software"),
      9  * to deal in the Software without restriction, including without limitation
     10  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
     11  * and/or sell copies of the Software, and to permit persons to whom the
     12  * Software is furnished to do so, subject to the following conditions:
     13  *
     14  * The above copyright notice and this permission notice shall be included
     15  * in all copies or substantial portions of the Software.
     16  *
     17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
     18  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     19  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
     20  * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
     21  * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
     22  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
     23  */
     24 
     25 
     26 #include "main/glheader.h"
     27 #include "main/imports.h"
     28 #include "main/macros.h"
     29 #include "main/mtypes.h"
     30 #include "swrast/s_aaline.h"
     31 #include "swrast/s_context.h"
     32 #include "swrast/s_span.h"
     33 #include "swrast/swrast.h"
     34 
     35 
     36 #define SUB_PIXEL 4
     37 
     38 
     39 /*
     40  * Info about the AA line we're rendering
     41  */
     42 struct LineInfo
     43 {
     44    GLfloat x0, y0;        /* start */
     45    GLfloat x1, y1;        /* end */
     46    GLfloat dx, dy;        /* direction vector */
     47    GLfloat len;           /* length */
     48    GLfloat halfWidth;     /* half of line width */
     49    GLfloat xAdj, yAdj;    /* X and Y adjustment for quad corners around line */
     50    /* for coverage computation */
     51    GLfloat qx0, qy0;      /* quad vertices */
     52    GLfloat qx1, qy1;
     53    GLfloat qx2, qy2;
     54    GLfloat qx3, qy3;
     55    GLfloat ex0, ey0;      /* quad edge vectors */
     56    GLfloat ex1, ey1;
     57    GLfloat ex2, ey2;
     58    GLfloat ex3, ey3;
     59 
     60    /* DO_Z */
     61    GLfloat zPlane[4];
     62    /* DO_RGBA - always enabled */
     63    GLfloat rPlane[4], gPlane[4], bPlane[4], aPlane[4];
     64    /* DO_ATTRIBS */
     65    GLfloat wPlane[4];
     66    GLfloat attrPlane[FRAG_ATTRIB_MAX][4][4];
     67    GLfloat lambda[FRAG_ATTRIB_MAX];
     68    GLfloat texWidth[FRAG_ATTRIB_MAX];
     69    GLfloat texHeight[FRAG_ATTRIB_MAX];
     70 
     71    SWspan span;
     72 };
     73 
     74 
     75 
     76 /*
     77  * Compute the equation of a plane used to interpolate line fragment data
     78  * such as color, Z, texture coords, etc.
     79  * Input: (x0, y0) and (x1,y1) are the endpoints of the line.
     80  *        z0, and z1 are the end point values to interpolate.
     81  * Output:  plane - the plane equation.
     82  *
     83  * Note: we don't really have enough parameters to specify a plane.
     84  * We take the endpoints of the line and compute a plane such that
     85  * the cross product of the line vector and the plane normal is
     86  * parallel to the projection plane.
     87  */
     88 static void
     89 compute_plane(GLfloat x0, GLfloat y0, GLfloat x1, GLfloat y1,
     90               GLfloat z0, GLfloat z1, GLfloat plane[4])
     91 {
     92 #if 0
     93    /* original */
     94    const GLfloat px = x1 - x0;
     95    const GLfloat py = y1 - y0;
     96    const GLfloat pz = z1 - z0;
     97    const GLfloat qx = -py;
     98    const GLfloat qy = px;
     99    const GLfloat qz = 0;
    100    const GLfloat a = py * qz - pz * qy;
    101    const GLfloat b = pz * qx - px * qz;
    102    const GLfloat c = px * qy - py * qx;
    103    const GLfloat d = -(a * x0 + b * y0 + c * z0);
    104    plane[0] = a;
    105    plane[1] = b;
    106    plane[2] = c;
    107    plane[3] = d;
    108 #else
    109    /* simplified */
    110    const GLfloat px = x1 - x0;
    111    const GLfloat py = y1 - y0;
    112    const GLfloat pz = z0 - z1;
    113    const GLfloat a = pz * px;
    114    const GLfloat b = pz * py;
    115    const GLfloat c = px * px + py * py;
    116    const GLfloat d = -(a * x0 + b * y0 + c * z0);
    117    if (a == 0.0 && b == 0.0 && c == 0.0 && d == 0.0) {
    118       plane[0] = 0.0;
    119       plane[1] = 0.0;
    120       plane[2] = 1.0;
    121       plane[3] = 0.0;
    122    }
    123    else {
    124       plane[0] = a;
    125       plane[1] = b;
    126       plane[2] = c;
    127       plane[3] = d;
    128    }
    129 #endif
    130 }
    131 
    132 
    133 static inline void
    134 constant_plane(GLfloat value, GLfloat plane[4])
    135 {
    136    plane[0] = 0.0;
    137    plane[1] = 0.0;
    138    plane[2] = -1.0;
    139    plane[3] = value;
    140 }
    141 
    142 
    143 static inline GLfloat
    144 solve_plane(GLfloat x, GLfloat y, const GLfloat plane[4])
    145 {
    146    const GLfloat z = (plane[3] + plane[0] * x + plane[1] * y) / -plane[2];
    147    return z;
    148 }
    149 
    150 #define SOLVE_PLANE(X, Y, PLANE) \
    151    ((PLANE[3] + PLANE[0] * (X) + PLANE[1] * (Y)) / -PLANE[2])
    152 
    153 
    154 /*
    155  * Return 1 / solve_plane().
    156  */
    157 static inline GLfloat
    158 solve_plane_recip(GLfloat x, GLfloat y, const GLfloat plane[4])
    159 {
    160    const GLfloat denom = plane[3] + plane[0] * x + plane[1] * y;
    161    if (denom == 0.0)
    162       return 0.0;
    163    else
    164       return -plane[2] / denom;
    165 }
    166 
    167 
    168 /*
    169  * Solve plane and return clamped GLchan value.
    170  */
    171 static inline GLchan
    172 solve_plane_chan(GLfloat x, GLfloat y, const GLfloat plane[4])
    173 {
    174    const GLfloat z = (plane[3] + plane[0] * x + plane[1] * y) / -plane[2];
    175 #if CHAN_TYPE == GL_FLOAT
    176    return CLAMP(z, 0.0F, CHAN_MAXF);
    177 #else
    178    if (z < 0)
    179       return 0;
    180    else if (z > CHAN_MAX)
    181       return CHAN_MAX;
    182    return (GLchan) IROUND_POS(z);
    183 #endif
    184 }
    185 
    186 
    187 /*
    188  * Compute mipmap level of detail.
    189  */
    190 static inline GLfloat
    191 compute_lambda(const GLfloat sPlane[4], const GLfloat tPlane[4],
    192                GLfloat invQ, GLfloat width, GLfloat height)
    193 {
    194    GLfloat dudx = sPlane[0] / sPlane[2] * invQ * width;
    195    GLfloat dudy = sPlane[1] / sPlane[2] * invQ * width;
    196    GLfloat dvdx = tPlane[0] / tPlane[2] * invQ * height;
    197    GLfloat dvdy = tPlane[1] / tPlane[2] * invQ * height;
    198    GLfloat r1 = dudx * dudx + dudy * dudy;
    199    GLfloat r2 = dvdx * dvdx + dvdy * dvdy;
    200    GLfloat rho2 = r1 + r2;
    201    /* return log base 2 of rho */
    202    if (rho2 == 0.0F)
    203       return 0.0;
    204    else
    205       return (GLfloat) (LOGF(rho2) * 1.442695 * 0.5);/* 1.442695 = 1/log(2) */
    206 }
    207 
    208 
    209 
    210 
    211 /*
    212  * Fill in the samples[] array with the (x,y) subpixel positions of
    213  * xSamples * ySamples sample positions.
    214  * Note that the four corner samples are put into the first four
    215  * positions of the array.  This allows us to optimize for the common
    216  * case of all samples being inside the polygon.
    217  */
    218 static void
    219 make_sample_table(GLint xSamples, GLint ySamples, GLfloat samples[][2])
    220 {
    221    const GLfloat dx = 1.0F / (GLfloat) xSamples;
    222    const GLfloat dy = 1.0F / (GLfloat) ySamples;
    223    GLint x, y;
    224    GLint i;
    225 
    226    i = 4;
    227    for (x = 0; x < xSamples; x++) {
    228       for (y = 0; y < ySamples; y++) {
    229          GLint j;
    230          if (x == 0 && y == 0) {
    231             /* lower left */
    232             j = 0;
    233          }
    234          else if (x == xSamples - 1 && y == 0) {
    235             /* lower right */
    236             j = 1;
    237          }
    238          else if (x == 0 && y == ySamples - 1) {
    239             /* upper left */
    240             j = 2;
    241          }
    242          else if (x == xSamples - 1 && y == ySamples - 1) {
    243             /* upper right */
    244             j = 3;
    245          }
    246          else {
    247             j = i++;
    248          }
    249          samples[j][0] = x * dx + 0.5F * dx;
    250          samples[j][1] = y * dy + 0.5F * dy;
    251       }
    252    }
    253 }
    254 
    255 
    256 
    257 /*
    258  * Compute how much of the given pixel's area is inside the rectangle
    259  * defined by vertices v0, v1, v2, v3.
    260  * Vertices MUST be specified in counter-clockwise order.
    261  * Return:  coverage in [0, 1].
    262  */
    263 static GLfloat
    264 compute_coveragef(const struct LineInfo *info,
    265                   GLint winx, GLint winy)
    266 {
    267    static GLfloat samples[SUB_PIXEL * SUB_PIXEL][2];
    268    static GLboolean haveSamples = GL_FALSE;
    269    const GLfloat x = (GLfloat) winx;
    270    const GLfloat y = (GLfloat) winy;
    271    GLint stop = 4, i;
    272    GLfloat insideCount = SUB_PIXEL * SUB_PIXEL;
    273 
    274    if (!haveSamples) {
    275       make_sample_table(SUB_PIXEL, SUB_PIXEL, samples);
    276       haveSamples = GL_TRUE;
    277    }
    278 
    279 #if 0 /*DEBUG*/
    280    {
    281       const GLfloat area = dx0 * dy1 - dx1 * dy0;
    282       assert(area >= 0.0);
    283    }
    284 #endif
    285 
    286    for (i = 0; i < stop; i++) {
    287       const GLfloat sx = x + samples[i][0];
    288       const GLfloat sy = y + samples[i][1];
    289       const GLfloat fx0 = sx - info->qx0;
    290       const GLfloat fy0 = sy - info->qy0;
    291       const GLfloat fx1 = sx - info->qx1;
    292       const GLfloat fy1 = sy - info->qy1;
    293       const GLfloat fx2 = sx - info->qx2;
    294       const GLfloat fy2 = sy - info->qy2;
    295       const GLfloat fx3 = sx - info->qx3;
    296       const GLfloat fy3 = sy - info->qy3;
    297       /* cross product determines if sample is inside or outside each edge */
    298       GLfloat cross0 = (info->ex0 * fy0 - info->ey0 * fx0);
    299       GLfloat cross1 = (info->ex1 * fy1 - info->ey1 * fx1);
    300       GLfloat cross2 = (info->ex2 * fy2 - info->ey2 * fx2);
    301       GLfloat cross3 = (info->ex3 * fy3 - info->ey3 * fx3);
    302       /* Check if the sample is exactly on an edge.  If so, let cross be a
    303        * positive or negative value depending on the direction of the edge.
    304        */
    305       if (cross0 == 0.0F)
    306          cross0 = info->ex0 + info->ey0;
    307       if (cross1 == 0.0F)
    308          cross1 = info->ex1 + info->ey1;
    309       if (cross2 == 0.0F)
    310          cross2 = info->ex2 + info->ey2;
    311       if (cross3 == 0.0F)
    312          cross3 = info->ex3 + info->ey3;
    313       if (cross0 < 0.0F || cross1 < 0.0F || cross2 < 0.0F || cross3 < 0.0F) {
    314          /* point is outside quadrilateral */
    315          insideCount -= 1.0F;
    316          stop = SUB_PIXEL * SUB_PIXEL;
    317       }
    318    }
    319    if (stop == 4)
    320       return 1.0F;
    321    else
    322       return insideCount * (1.0F / (SUB_PIXEL * SUB_PIXEL));
    323 }
    324 
    325 
    326 typedef void (*plot_func)(struct gl_context *ctx, struct LineInfo *line,
    327                           int ix, int iy);
    328 
    329 
    330 
    331 /*
    332  * Draw an AA line segment (called many times per line when stippling)
    333  */
    334 static void
    335 segment(struct gl_context *ctx,
    336         struct LineInfo *line,
    337         plot_func plot,
    338         GLfloat t0, GLfloat t1)
    339 {
    340    const GLfloat absDx = (line->dx < 0.0F) ? -line->dx : line->dx;
    341    const GLfloat absDy = (line->dy < 0.0F) ? -line->dy : line->dy;
    342    /* compute the actual segment's endpoints */
    343    const GLfloat x0 = line->x0 + t0 * line->dx;
    344    const GLfloat y0 = line->y0 + t0 * line->dy;
    345    const GLfloat x1 = line->x0 + t1 * line->dx;
    346    const GLfloat y1 = line->y0 + t1 * line->dy;
    347 
    348    /* compute vertices of the line-aligned quadrilateral */
    349    line->qx0 = x0 - line->yAdj;
    350    line->qy0 = y0 + line->xAdj;
    351    line->qx1 = x0 + line->yAdj;
    352    line->qy1 = y0 - line->xAdj;
    353    line->qx2 = x1 + line->yAdj;
    354    line->qy2 = y1 - line->xAdj;
    355    line->qx3 = x1 - line->yAdj;
    356    line->qy3 = y1 + line->xAdj;
    357    /* compute the quad's edge vectors (for coverage calc) */
    358    line->ex0 = line->qx1 - line->qx0;
    359    line->ey0 = line->qy1 - line->qy0;
    360    line->ex1 = line->qx2 - line->qx1;
    361    line->ey1 = line->qy2 - line->qy1;
    362    line->ex2 = line->qx3 - line->qx2;
    363    line->ey2 = line->qy3 - line->qy2;
    364    line->ex3 = line->qx0 - line->qx3;
    365    line->ey3 = line->qy0 - line->qy3;
    366 
    367    if (absDx > absDy) {
    368       /* X-major line */
    369       GLfloat dydx = line->dy / line->dx;
    370       GLfloat xLeft, xRight, yBot, yTop;
    371       GLint ix, ixRight;
    372       if (x0 < x1) {
    373          xLeft = x0 - line->halfWidth;
    374          xRight = x1 + line->halfWidth;
    375          if (line->dy >= 0.0) {
    376             yBot = y0 - 3.0F * line->halfWidth;
    377             yTop = y0 + line->halfWidth;
    378          }
    379          else {
    380             yBot = y0 - line->halfWidth;
    381             yTop = y0 + 3.0F * line->halfWidth;
    382          }
    383       }
    384       else {
    385          xLeft = x1 - line->halfWidth;
    386          xRight = x0 + line->halfWidth;
    387          if (line->dy <= 0.0) {
    388             yBot = y1 - 3.0F * line->halfWidth;
    389             yTop = y1 + line->halfWidth;
    390          }
    391          else {
    392             yBot = y1 - line->halfWidth;
    393             yTop = y1 + 3.0F * line->halfWidth;
    394          }
    395       }
    396 
    397       /* scan along the line, left-to-right */
    398       ixRight = (GLint) (xRight + 1.0F);
    399 
    400       /*printf("avg span height: %g\n", yTop - yBot);*/
    401       for (ix = (GLint) xLeft; ix < ixRight; ix++) {
    402          const GLint iyBot = (GLint) yBot;
    403          const GLint iyTop = (GLint) (yTop + 1.0F);
    404          GLint iy;
    405          /* scan across the line, bottom-to-top */
    406          for (iy = iyBot; iy < iyTop; iy++) {
    407             (*plot)(ctx, line, ix, iy);
    408          }
    409          yBot += dydx;
    410          yTop += dydx;
    411       }
    412    }
    413    else {
    414       /* Y-major line */
    415       GLfloat dxdy = line->dx / line->dy;
    416       GLfloat yBot, yTop, xLeft, xRight;
    417       GLint iy, iyTop;
    418       if (y0 < y1) {
    419          yBot = y0 - line->halfWidth;
    420          yTop = y1 + line->halfWidth;
    421          if (line->dx >= 0.0) {
    422             xLeft = x0 - 3.0F * line->halfWidth;
    423             xRight = x0 + line->halfWidth;
    424          }
    425          else {
    426             xLeft = x0 - line->halfWidth;
    427             xRight = x0 + 3.0F * line->halfWidth;
    428          }
    429       }
    430       else {
    431          yBot = y1 - line->halfWidth;
    432          yTop = y0 + line->halfWidth;
    433          if (line->dx <= 0.0) {
    434             xLeft = x1 - 3.0F * line->halfWidth;
    435             xRight = x1 + line->halfWidth;
    436          }
    437          else {
    438             xLeft = x1 - line->halfWidth;
    439             xRight = x1 + 3.0F * line->halfWidth;
    440          }
    441       }
    442 
    443       /* scan along the line, bottom-to-top */
    444       iyTop = (GLint) (yTop + 1.0F);
    445 
    446       /*printf("avg span width: %g\n", xRight - xLeft);*/
    447       for (iy = (GLint) yBot; iy < iyTop; iy++) {
    448          const GLint ixLeft = (GLint) xLeft;
    449          const GLint ixRight = (GLint) (xRight + 1.0F);
    450          GLint ix;
    451          /* scan across the line, left-to-right */
    452          for (ix = ixLeft; ix < ixRight; ix++) {
    453             (*plot)(ctx, line, ix, iy);
    454          }
    455          xLeft += dxdy;
    456          xRight += dxdy;
    457       }
    458    }
    459 }
    460 
    461 
    462 #define NAME(x) aa_rgba_##x
    463 #define DO_Z
    464 #include "s_aalinetemp.h"
    465 
    466 
    467 #define NAME(x)  aa_general_rgba_##x
    468 #define DO_Z
    469 #define DO_ATTRIBS
    470 #include "s_aalinetemp.h"
    471 
    472 
    473 
    474 void
    475 _swrast_choose_aa_line_function(struct gl_context *ctx)
    476 {
    477    SWcontext *swrast = SWRAST_CONTEXT(ctx);
    478 
    479    ASSERT(ctx->Line.SmoothFlag);
    480 
    481    if (ctx->Texture._EnabledCoordUnits != 0
    482        || _swrast_use_fragment_program(ctx)
    483        || (ctx->Light.Enabled &&
    484            ctx->Light.Model.ColorControl == GL_SEPARATE_SPECULAR_COLOR)
    485        || ctx->Fog.ColorSumEnabled
    486        || swrast->_FogEnabled) {
    487       swrast->Line = aa_general_rgba_line;
    488    }
    489    else {
    490       swrast->Line = aa_rgba_line;
    491    }
    492 }
    493