Home | History | Annotate | Download | only in X86
      1 //===-- X86MCInstLower.cpp - Convert X86 MachineInstr to an MCInst --------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file contains code to lower X86 MachineInstrs to their corresponding
     11 // MCInst records.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "InstPrinter/X86ATTInstPrinter.h"
     16 #include "X86MCInstLower.h"
     17 #include "X86AsmPrinter.h"
     18 #include "X86COFFMachineModuleInfo.h"
     19 #include "llvm/CodeGen/MachineModuleInfoImpls.h"
     20 #include "llvm/MC/MCAsmInfo.h"
     21 #include "llvm/MC/MCContext.h"
     22 #include "llvm/MC/MCExpr.h"
     23 #include "llvm/MC/MCInst.h"
     24 #include "llvm/MC/MCStreamer.h"
     25 #include "llvm/MC/MCSymbol.h"
     26 #include "llvm/Target/Mangler.h"
     27 #include "llvm/Support/FormattedStream.h"
     28 #include "llvm/ADT/SmallString.h"
     29 #include "llvm/Type.h"
     30 using namespace llvm;
     31 
     32 X86MCInstLower::X86MCInstLower(Mangler *mang, const MachineFunction &mf,
     33                                X86AsmPrinter &asmprinter)
     34 : Ctx(mf.getContext()), Mang(mang), MF(mf), TM(mf.getTarget()),
     35   MAI(*TM.getMCAsmInfo()), AsmPrinter(asmprinter) {}
     36 
     37 MachineModuleInfoMachO &X86MCInstLower::getMachOMMI() const {
     38   return MF.getMMI().getObjFileInfo<MachineModuleInfoMachO>();
     39 }
     40 
     41 
     42 /// GetSymbolFromOperand - Lower an MO_GlobalAddress or MO_ExternalSymbol
     43 /// operand to an MCSymbol.
     44 MCSymbol *X86MCInstLower::
     45 GetSymbolFromOperand(const MachineOperand &MO) const {
     46   assert((MO.isGlobal() || MO.isSymbol()) && "Isn't a symbol reference");
     47 
     48   SmallString<128> Name;
     49 
     50   if (!MO.isGlobal()) {
     51     assert(MO.isSymbol());
     52     Name += MAI.getGlobalPrefix();
     53     Name += MO.getSymbolName();
     54   } else {
     55     const GlobalValue *GV = MO.getGlobal();
     56     bool isImplicitlyPrivate = false;
     57     if (MO.getTargetFlags() == X86II::MO_DARWIN_STUB ||
     58         MO.getTargetFlags() == X86II::MO_DARWIN_NONLAZY ||
     59         MO.getTargetFlags() == X86II::MO_DARWIN_NONLAZY_PIC_BASE ||
     60         MO.getTargetFlags() == X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE)
     61       isImplicitlyPrivate = true;
     62 
     63     Mang->getNameWithPrefix(Name, GV, isImplicitlyPrivate);
     64   }
     65 
     66   // If the target flags on the operand changes the name of the symbol, do that
     67   // before we return the symbol.
     68   switch (MO.getTargetFlags()) {
     69   default: break;
     70   case X86II::MO_DLLIMPORT: {
     71     // Handle dllimport linkage.
     72     const char *Prefix = "__imp_";
     73     Name.insert(Name.begin(), Prefix, Prefix+strlen(Prefix));
     74     break;
     75   }
     76   case X86II::MO_DARWIN_NONLAZY:
     77   case X86II::MO_DARWIN_NONLAZY_PIC_BASE: {
     78     Name += "$non_lazy_ptr";
     79     MCSymbol *Sym = Ctx.GetOrCreateSymbol(Name.str());
     80 
     81     MachineModuleInfoImpl::StubValueTy &StubSym =
     82       getMachOMMI().getGVStubEntry(Sym);
     83     if (StubSym.getPointer() == 0) {
     84       assert(MO.isGlobal() && "Extern symbol not handled yet");
     85       StubSym =
     86         MachineModuleInfoImpl::
     87         StubValueTy(Mang->getSymbol(MO.getGlobal()),
     88                     !MO.getGlobal()->hasInternalLinkage());
     89     }
     90     return Sym;
     91   }
     92   case X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE: {
     93     Name += "$non_lazy_ptr";
     94     MCSymbol *Sym = Ctx.GetOrCreateSymbol(Name.str());
     95     MachineModuleInfoImpl::StubValueTy &StubSym =
     96       getMachOMMI().getHiddenGVStubEntry(Sym);
     97     if (StubSym.getPointer() == 0) {
     98       assert(MO.isGlobal() && "Extern symbol not handled yet");
     99       StubSym =
    100         MachineModuleInfoImpl::
    101         StubValueTy(Mang->getSymbol(MO.getGlobal()),
    102                     !MO.getGlobal()->hasInternalLinkage());
    103     }
    104     return Sym;
    105   }
    106   case X86II::MO_DARWIN_STUB: {
    107     Name += "$stub";
    108     MCSymbol *Sym = Ctx.GetOrCreateSymbol(Name.str());
    109     MachineModuleInfoImpl::StubValueTy &StubSym =
    110       getMachOMMI().getFnStubEntry(Sym);
    111     if (StubSym.getPointer())
    112       return Sym;
    113 
    114     if (MO.isGlobal()) {
    115       StubSym =
    116         MachineModuleInfoImpl::
    117         StubValueTy(Mang->getSymbol(MO.getGlobal()),
    118                     !MO.getGlobal()->hasInternalLinkage());
    119     } else {
    120       Name.erase(Name.end()-5, Name.end());
    121       StubSym =
    122         MachineModuleInfoImpl::
    123         StubValueTy(Ctx.GetOrCreateSymbol(Name.str()), false);
    124     }
    125     return Sym;
    126   }
    127   }
    128 
    129   return Ctx.GetOrCreateSymbol(Name.str());
    130 }
    131 
    132 MCOperand X86MCInstLower::LowerSymbolOperand(const MachineOperand &MO,
    133                                              MCSymbol *Sym) const {
    134   // FIXME: We would like an efficient form for this, so we don't have to do a
    135   // lot of extra uniquing.
    136   const MCExpr *Expr = 0;
    137   MCSymbolRefExpr::VariantKind RefKind = MCSymbolRefExpr::VK_None;
    138 
    139   switch (MO.getTargetFlags()) {
    140   default: llvm_unreachable("Unknown target flag on GV operand");
    141   case X86II::MO_NO_FLAG:    // No flag.
    142   // These affect the name of the symbol, not any suffix.
    143   case X86II::MO_DARWIN_NONLAZY:
    144   case X86II::MO_DLLIMPORT:
    145   case X86II::MO_DARWIN_STUB:
    146     break;
    147 
    148   case X86II::MO_TLVP:      RefKind = MCSymbolRefExpr::VK_TLVP; break;
    149   case X86II::MO_TLVP_PIC_BASE:
    150     Expr = MCSymbolRefExpr::Create(Sym, MCSymbolRefExpr::VK_TLVP, Ctx);
    151     // Subtract the pic base.
    152     Expr = MCBinaryExpr::CreateSub(Expr,
    153                                   MCSymbolRefExpr::Create(MF.getPICBaseSymbol(),
    154                                                            Ctx),
    155                                    Ctx);
    156     break;
    157   case X86II::MO_TLSGD:     RefKind = MCSymbolRefExpr::VK_TLSGD; break;
    158   case X86II::MO_GOTTPOFF:  RefKind = MCSymbolRefExpr::VK_GOTTPOFF; break;
    159   case X86II::MO_INDNTPOFF: RefKind = MCSymbolRefExpr::VK_INDNTPOFF; break;
    160   case X86II::MO_TPOFF:     RefKind = MCSymbolRefExpr::VK_TPOFF; break;
    161   case X86II::MO_NTPOFF:    RefKind = MCSymbolRefExpr::VK_NTPOFF; break;
    162   case X86II::MO_GOTPCREL:  RefKind = MCSymbolRefExpr::VK_GOTPCREL; break;
    163   case X86II::MO_GOT:       RefKind = MCSymbolRefExpr::VK_GOT; break;
    164   case X86II::MO_GOTOFF:    RefKind = MCSymbolRefExpr::VK_GOTOFF; break;
    165   case X86II::MO_PLT:       RefKind = MCSymbolRefExpr::VK_PLT; break;
    166   case X86II::MO_PIC_BASE_OFFSET:
    167   case X86II::MO_DARWIN_NONLAZY_PIC_BASE:
    168   case X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE:
    169     Expr = MCSymbolRefExpr::Create(Sym, Ctx);
    170     // Subtract the pic base.
    171     Expr = MCBinaryExpr::CreateSub(Expr,
    172                             MCSymbolRefExpr::Create(MF.getPICBaseSymbol(), Ctx),
    173                                    Ctx);
    174     if (MO.isJTI() && MAI.hasSetDirective()) {
    175       // If .set directive is supported, use it to reduce the number of
    176       // relocations the assembler will generate for differences between
    177       // local labels. This is only safe when the symbols are in the same
    178       // section so we are restricting it to jumptable references.
    179       MCSymbol *Label = Ctx.CreateTempSymbol();
    180       AsmPrinter.OutStreamer.EmitAssignment(Label, Expr);
    181       Expr = MCSymbolRefExpr::Create(Label, Ctx);
    182     }
    183     break;
    184   }
    185 
    186   if (Expr == 0)
    187     Expr = MCSymbolRefExpr::Create(Sym, RefKind, Ctx);
    188 
    189   if (!MO.isJTI() && MO.getOffset())
    190     Expr = MCBinaryExpr::CreateAdd(Expr,
    191                                    MCConstantExpr::Create(MO.getOffset(), Ctx),
    192                                    Ctx);
    193   return MCOperand::CreateExpr(Expr);
    194 }
    195 
    196 
    197 
    198 static void lower_subreg32(MCInst *MI, unsigned OpNo) {
    199   // Convert registers in the addr mode according to subreg32.
    200   unsigned Reg = MI->getOperand(OpNo).getReg();
    201   if (Reg != 0)
    202     MI->getOperand(OpNo).setReg(getX86SubSuperRegister(Reg, MVT::i32));
    203 }
    204 
    205 static void lower_lea64_32mem(MCInst *MI, unsigned OpNo) {
    206   // Convert registers in the addr mode according to subreg64.
    207   for (unsigned i = 0; i != 4; ++i) {
    208     if (!MI->getOperand(OpNo+i).isReg()) continue;
    209 
    210     unsigned Reg = MI->getOperand(OpNo+i).getReg();
    211     if (Reg == 0) continue;
    212 
    213     MI->getOperand(OpNo+i).setReg(getX86SubSuperRegister(Reg, MVT::i64));
    214   }
    215 }
    216 
    217 /// LowerSubReg32_Op0 - Things like MOVZX16rr8 -> MOVZX32rr8.
    218 static void LowerSubReg32_Op0(MCInst &OutMI, unsigned NewOpc) {
    219   OutMI.setOpcode(NewOpc);
    220   lower_subreg32(&OutMI, 0);
    221 }
    222 /// LowerUnaryToTwoAddr - R = setb   -> R = sbb R, R
    223 static void LowerUnaryToTwoAddr(MCInst &OutMI, unsigned NewOpc) {
    224   OutMI.setOpcode(NewOpc);
    225   OutMI.addOperand(OutMI.getOperand(0));
    226   OutMI.addOperand(OutMI.getOperand(0));
    227 }
    228 
    229 /// \brief Simplify FOO $imm, %{al,ax,eax,rax} to FOO $imm, for instruction with
    230 /// a short fixed-register form.
    231 static void SimplifyShortImmForm(MCInst &Inst, unsigned Opcode) {
    232   unsigned ImmOp = Inst.getNumOperands() - 1;
    233   assert(Inst.getOperand(0).isReg() && Inst.getOperand(ImmOp).isImm() &&
    234          ((Inst.getNumOperands() == 3 && Inst.getOperand(1).isReg() &&
    235            Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg()) ||
    236           Inst.getNumOperands() == 2) && "Unexpected instruction!");
    237 
    238   // Check whether the destination register can be fixed.
    239   unsigned Reg = Inst.getOperand(0).getReg();
    240   if (Reg != X86::AL && Reg != X86::AX && Reg != X86::EAX && Reg != X86::RAX)
    241     return;
    242 
    243   // If so, rewrite the instruction.
    244   MCOperand Saved = Inst.getOperand(ImmOp);
    245   Inst = MCInst();
    246   Inst.setOpcode(Opcode);
    247   Inst.addOperand(Saved);
    248 }
    249 
    250 /// \brief Simplify things like MOV32rm to MOV32o32a.
    251 static void SimplifyShortMoveForm(X86AsmPrinter &Printer, MCInst &Inst,
    252                                   unsigned Opcode) {
    253   // Don't make these simplifications in 64-bit mode; other assemblers don't
    254   // perform them because they make the code larger.
    255   if (Printer.getSubtarget().is64Bit())
    256     return;
    257 
    258   bool IsStore = Inst.getOperand(0).isReg() && Inst.getOperand(1).isReg();
    259   unsigned AddrBase = IsStore;
    260   unsigned RegOp = IsStore ? 0 : 5;
    261   unsigned AddrOp = AddrBase + 3;
    262   assert(Inst.getNumOperands() == 6 && Inst.getOperand(RegOp).isReg() &&
    263          Inst.getOperand(AddrBase + 0).isReg() && // base
    264          Inst.getOperand(AddrBase + 1).isImm() && // scale
    265          Inst.getOperand(AddrBase + 2).isReg() && // index register
    266          (Inst.getOperand(AddrOp).isExpr() ||     // address
    267           Inst.getOperand(AddrOp).isImm())&&
    268          Inst.getOperand(AddrBase + 4).isReg() && // segment
    269          "Unexpected instruction!");
    270 
    271   // Check whether the destination register can be fixed.
    272   unsigned Reg = Inst.getOperand(RegOp).getReg();
    273   if (Reg != X86::AL && Reg != X86::AX && Reg != X86::EAX && Reg != X86::RAX)
    274     return;
    275 
    276   // Check whether this is an absolute address.
    277   // FIXME: We know TLVP symbol refs aren't, but there should be a better way
    278   // to do this here.
    279   bool Absolute = true;
    280   if (Inst.getOperand(AddrOp).isExpr()) {
    281     const MCExpr *MCE = Inst.getOperand(AddrOp).getExpr();
    282     if (const MCSymbolRefExpr *SRE = dyn_cast<MCSymbolRefExpr>(MCE))
    283       if (SRE->getKind() == MCSymbolRefExpr::VK_TLVP)
    284         Absolute = false;
    285   }
    286 
    287   if (Absolute &&
    288       (Inst.getOperand(AddrBase + 0).getReg() != 0 ||
    289        Inst.getOperand(AddrBase + 2).getReg() != 0 ||
    290        Inst.getOperand(AddrBase + 4).getReg() != 0 ||
    291        Inst.getOperand(AddrBase + 1).getImm() != 1))
    292     return;
    293 
    294   // If so, rewrite the instruction.
    295   MCOperand Saved = Inst.getOperand(AddrOp);
    296   Inst = MCInst();
    297   Inst.setOpcode(Opcode);
    298   Inst.addOperand(Saved);
    299 }
    300 
    301 void X86MCInstLower::Lower(const MachineInstr *MI, MCInst &OutMI) const {
    302   OutMI.setOpcode(MI->getOpcode());
    303 
    304   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    305     const MachineOperand &MO = MI->getOperand(i);
    306 
    307     MCOperand MCOp;
    308     switch (MO.getType()) {
    309     default:
    310       MI->dump();
    311       llvm_unreachable("unknown operand type");
    312     case MachineOperand::MO_Register:
    313       // Ignore all implicit register operands.
    314       if (MO.isImplicit()) continue;
    315       MCOp = MCOperand::CreateReg(MO.getReg());
    316       break;
    317     case MachineOperand::MO_Immediate:
    318       MCOp = MCOperand::CreateImm(MO.getImm());
    319       break;
    320     case MachineOperand::MO_MachineBasicBlock:
    321       MCOp = MCOperand::CreateExpr(MCSymbolRefExpr::Create(
    322                        MO.getMBB()->getSymbol(), Ctx));
    323       break;
    324     case MachineOperand::MO_GlobalAddress:
    325     case MachineOperand::MO_ExternalSymbol:
    326       MCOp = LowerSymbolOperand(MO, GetSymbolFromOperand(MO));
    327       break;
    328     case MachineOperand::MO_JumpTableIndex:
    329       MCOp = LowerSymbolOperand(MO, AsmPrinter.GetJTISymbol(MO.getIndex()));
    330       break;
    331     case MachineOperand::MO_ConstantPoolIndex:
    332       MCOp = LowerSymbolOperand(MO, AsmPrinter.GetCPISymbol(MO.getIndex()));
    333       break;
    334     case MachineOperand::MO_BlockAddress:
    335       MCOp = LowerSymbolOperand(MO,
    336                      AsmPrinter.GetBlockAddressSymbol(MO.getBlockAddress()));
    337       break;
    338     }
    339 
    340     OutMI.addOperand(MCOp);
    341   }
    342 
    343   // Handle a few special cases to eliminate operand modifiers.
    344 ReSimplify:
    345   switch (OutMI.getOpcode()) {
    346   case X86::LEA64_32r: // Handle 'subreg rewriting' for the lea64_32mem operand.
    347     lower_lea64_32mem(&OutMI, 1);
    348     // FALL THROUGH.
    349   case X86::LEA64r:
    350   case X86::LEA16r:
    351   case X86::LEA32r:
    352     // LEA should have a segment register, but it must be empty.
    353     assert(OutMI.getNumOperands() == 1+X86::AddrNumOperands &&
    354            "Unexpected # of LEA operands");
    355     assert(OutMI.getOperand(1+X86::AddrSegmentReg).getReg() == 0 &&
    356            "LEA has segment specified!");
    357     break;
    358   case X86::MOVZX64rr32:  LowerSubReg32_Op0(OutMI, X86::MOV32rr); break;
    359   case X86::MOVZX64rm32:  LowerSubReg32_Op0(OutMI, X86::MOV32rm); break;
    360   case X86::MOV64ri64i32: LowerSubReg32_Op0(OutMI, X86::MOV32ri); break;
    361   case X86::MOVZX64rr8:   LowerSubReg32_Op0(OutMI, X86::MOVZX32rr8); break;
    362   case X86::MOVZX64rm8:   LowerSubReg32_Op0(OutMI, X86::MOVZX32rm8); break;
    363   case X86::MOVZX64rr16:  LowerSubReg32_Op0(OutMI, X86::MOVZX32rr16); break;
    364   case X86::MOVZX64rm16:  LowerSubReg32_Op0(OutMI, X86::MOVZX32rm16); break;
    365   case X86::SETB_C8r:     LowerUnaryToTwoAddr(OutMI, X86::SBB8rr); break;
    366   case X86::SETB_C16r:    LowerUnaryToTwoAddr(OutMI, X86::SBB16rr); break;
    367   case X86::SETB_C32r:    LowerUnaryToTwoAddr(OutMI, X86::SBB32rr); break;
    368   case X86::SETB_C64r:    LowerUnaryToTwoAddr(OutMI, X86::SBB64rr); break;
    369   case X86::MOV8r0:       LowerUnaryToTwoAddr(OutMI, X86::XOR8rr); break;
    370   case X86::MOV32r0:      LowerUnaryToTwoAddr(OutMI, X86::XOR32rr); break;
    371   case X86::FsFLD0SS:      LowerUnaryToTwoAddr(OutMI, X86::PXORrr); break;
    372   case X86::FsFLD0SD:      LowerUnaryToTwoAddr(OutMI, X86::PXORrr); break;
    373   case X86::VFsFLD0SS:     LowerUnaryToTwoAddr(OutMI, X86::VPXORrr); break;
    374   case X86::VFsFLD0SD:     LowerUnaryToTwoAddr(OutMI, X86::VPXORrr); break;
    375   case X86::V_SETALLONES:  LowerUnaryToTwoAddr(OutMI, X86::PCMPEQDrr); break;
    376   case X86::AVX_SET0PSY:   LowerUnaryToTwoAddr(OutMI, X86::VXORPSYrr); break;
    377   case X86::AVX_SET0PDY:   LowerUnaryToTwoAddr(OutMI, X86::VXORPDYrr); break;
    378   case X86::AVX_SETALLONES:  LowerUnaryToTwoAddr(OutMI, X86::VPCMPEQDrr); break;
    379 
    380   case X86::MOV16r0:
    381     LowerSubReg32_Op0(OutMI, X86::MOV32r0);   // MOV16r0 -> MOV32r0
    382     LowerUnaryToTwoAddr(OutMI, X86::XOR32rr); // MOV32r0 -> XOR32rr
    383     break;
    384   case X86::MOV64r0:
    385     LowerSubReg32_Op0(OutMI, X86::MOV32r0);   // MOV64r0 -> MOV32r0
    386     LowerUnaryToTwoAddr(OutMI, X86::XOR32rr); // MOV32r0 -> XOR32rr
    387     break;
    388 
    389   // TAILJMPr64, [WIN]CALL64r, [WIN]CALL64pcrel32 - These instructions have
    390   // register inputs modeled as normal uses instead of implicit uses.  As such,
    391   // truncate off all but the first operand (the callee).  FIXME: Change isel.
    392   case X86::TAILJMPr64:
    393   case X86::CALL64r:
    394   case X86::CALL64pcrel32:
    395   case X86::WINCALL64r:
    396   case X86::WINCALL64pcrel32: {
    397     unsigned Opcode = OutMI.getOpcode();
    398     MCOperand Saved = OutMI.getOperand(0);
    399     OutMI = MCInst();
    400     OutMI.setOpcode(Opcode);
    401     OutMI.addOperand(Saved);
    402     break;
    403   }
    404 
    405   case X86::EH_RETURN:
    406   case X86::EH_RETURN64: {
    407     OutMI = MCInst();
    408     OutMI.setOpcode(X86::RET);
    409     break;
    410   }
    411 
    412   // TAILJMPd, TAILJMPd64 - Lower to the correct jump instructions.
    413   case X86::TAILJMPr:
    414   case X86::TAILJMPd:
    415   case X86::TAILJMPd64: {
    416     unsigned Opcode;
    417     switch (OutMI.getOpcode()) {
    418     default: assert(0 && "Invalid opcode");
    419     case X86::TAILJMPr: Opcode = X86::JMP32r; break;
    420     case X86::TAILJMPd:
    421     case X86::TAILJMPd64: Opcode = X86::JMP_1; break;
    422     }
    423 
    424     MCOperand Saved = OutMI.getOperand(0);
    425     OutMI = MCInst();
    426     OutMI.setOpcode(Opcode);
    427     OutMI.addOperand(Saved);
    428     break;
    429   }
    430 
    431   // These are pseudo-ops for OR to help with the OR->ADD transformation.  We do
    432   // this with an ugly goto in case the resultant OR uses EAX and needs the
    433   // short form.
    434   case X86::ADD16rr_DB:   OutMI.setOpcode(X86::OR16rr); goto ReSimplify;
    435   case X86::ADD32rr_DB:   OutMI.setOpcode(X86::OR32rr); goto ReSimplify;
    436   case X86::ADD64rr_DB:   OutMI.setOpcode(X86::OR64rr); goto ReSimplify;
    437   case X86::ADD16ri_DB:   OutMI.setOpcode(X86::OR16ri); goto ReSimplify;
    438   case X86::ADD32ri_DB:   OutMI.setOpcode(X86::OR32ri); goto ReSimplify;
    439   case X86::ADD64ri32_DB: OutMI.setOpcode(X86::OR64ri32); goto ReSimplify;
    440   case X86::ADD16ri8_DB:  OutMI.setOpcode(X86::OR16ri8); goto ReSimplify;
    441   case X86::ADD32ri8_DB:  OutMI.setOpcode(X86::OR32ri8); goto ReSimplify;
    442   case X86::ADD64ri8_DB:  OutMI.setOpcode(X86::OR64ri8); goto ReSimplify;
    443 
    444   // The assembler backend wants to see branches in their small form and relax
    445   // them to their large form.  The JIT can only handle the large form because
    446   // it does not do relaxation.  For now, translate the large form to the
    447   // small one here.
    448   case X86::JMP_4: OutMI.setOpcode(X86::JMP_1); break;
    449   case X86::JO_4:  OutMI.setOpcode(X86::JO_1); break;
    450   case X86::JNO_4: OutMI.setOpcode(X86::JNO_1); break;
    451   case X86::JB_4:  OutMI.setOpcode(X86::JB_1); break;
    452   case X86::JAE_4: OutMI.setOpcode(X86::JAE_1); break;
    453   case X86::JE_4:  OutMI.setOpcode(X86::JE_1); break;
    454   case X86::JNE_4: OutMI.setOpcode(X86::JNE_1); break;
    455   case X86::JBE_4: OutMI.setOpcode(X86::JBE_1); break;
    456   case X86::JA_4:  OutMI.setOpcode(X86::JA_1); break;
    457   case X86::JS_4:  OutMI.setOpcode(X86::JS_1); break;
    458   case X86::JNS_4: OutMI.setOpcode(X86::JNS_1); break;
    459   case X86::JP_4:  OutMI.setOpcode(X86::JP_1); break;
    460   case X86::JNP_4: OutMI.setOpcode(X86::JNP_1); break;
    461   case X86::JL_4:  OutMI.setOpcode(X86::JL_1); break;
    462   case X86::JGE_4: OutMI.setOpcode(X86::JGE_1); break;
    463   case X86::JLE_4: OutMI.setOpcode(X86::JLE_1); break;
    464   case X86::JG_4:  OutMI.setOpcode(X86::JG_1); break;
    465 
    466   // Atomic load and store require a separate pseudo-inst because Acquire
    467   // implies mayStore and Release implies mayLoad; fix these to regular MOV
    468   // instructions here
    469   case X86::ACQUIRE_MOV8rm:  OutMI.setOpcode(X86::MOV8rm); goto ReSimplify;
    470   case X86::ACQUIRE_MOV16rm: OutMI.setOpcode(X86::MOV16rm); goto ReSimplify;
    471   case X86::ACQUIRE_MOV32rm: OutMI.setOpcode(X86::MOV32rm); goto ReSimplify;
    472   case X86::ACQUIRE_MOV64rm: OutMI.setOpcode(X86::MOV64rm); goto ReSimplify;
    473   case X86::RELEASE_MOV8mr:  OutMI.setOpcode(X86::MOV8mr); goto ReSimplify;
    474   case X86::RELEASE_MOV16mr: OutMI.setOpcode(X86::MOV16mr); goto ReSimplify;
    475   case X86::RELEASE_MOV32mr: OutMI.setOpcode(X86::MOV32mr); goto ReSimplify;
    476   case X86::RELEASE_MOV64mr: OutMI.setOpcode(X86::MOV64mr); goto ReSimplify;
    477 
    478   // We don't currently select the correct instruction form for instructions
    479   // which have a short %eax, etc. form. Handle this by custom lowering, for
    480   // now.
    481   //
    482   // Note, we are currently not handling the following instructions:
    483   // MOV64ao8, MOV64o8a
    484   // XCHG16ar, XCHG32ar, XCHG64ar
    485   case X86::MOV8mr_NOREX:
    486   case X86::MOV8mr:     SimplifyShortMoveForm(AsmPrinter, OutMI, X86::MOV8ao8); break;
    487   case X86::MOV8rm_NOREX:
    488   case X86::MOV8rm:     SimplifyShortMoveForm(AsmPrinter, OutMI, X86::MOV8o8a); break;
    489   case X86::MOV16mr:    SimplifyShortMoveForm(AsmPrinter, OutMI, X86::MOV16ao16); break;
    490   case X86::MOV16rm:    SimplifyShortMoveForm(AsmPrinter, OutMI, X86::MOV16o16a); break;
    491   case X86::MOV32mr:    SimplifyShortMoveForm(AsmPrinter, OutMI, X86::MOV32ao32); break;
    492   case X86::MOV32rm:    SimplifyShortMoveForm(AsmPrinter, OutMI, X86::MOV32o32a); break;
    493 
    494   case X86::ADC8ri:     SimplifyShortImmForm(OutMI, X86::ADC8i8);    break;
    495   case X86::ADC16ri:    SimplifyShortImmForm(OutMI, X86::ADC16i16);  break;
    496   case X86::ADC32ri:    SimplifyShortImmForm(OutMI, X86::ADC32i32);  break;
    497   case X86::ADC64ri32:  SimplifyShortImmForm(OutMI, X86::ADC64i32);  break;
    498   case X86::ADD8ri:     SimplifyShortImmForm(OutMI, X86::ADD8i8);    break;
    499   case X86::ADD16ri:    SimplifyShortImmForm(OutMI, X86::ADD16i16);  break;
    500   case X86::ADD32ri:    SimplifyShortImmForm(OutMI, X86::ADD32i32);  break;
    501   case X86::ADD64ri32:  SimplifyShortImmForm(OutMI, X86::ADD64i32);  break;
    502   case X86::AND8ri:     SimplifyShortImmForm(OutMI, X86::AND8i8);    break;
    503   case X86::AND16ri:    SimplifyShortImmForm(OutMI, X86::AND16i16);  break;
    504   case X86::AND32ri:    SimplifyShortImmForm(OutMI, X86::AND32i32);  break;
    505   case X86::AND64ri32:  SimplifyShortImmForm(OutMI, X86::AND64i32);  break;
    506   case X86::CMP8ri:     SimplifyShortImmForm(OutMI, X86::CMP8i8);    break;
    507   case X86::CMP16ri:    SimplifyShortImmForm(OutMI, X86::CMP16i16);  break;
    508   case X86::CMP32ri:    SimplifyShortImmForm(OutMI, X86::CMP32i32);  break;
    509   case X86::CMP64ri32:  SimplifyShortImmForm(OutMI, X86::CMP64i32);  break;
    510   case X86::OR8ri:      SimplifyShortImmForm(OutMI, X86::OR8i8);     break;
    511   case X86::OR16ri:     SimplifyShortImmForm(OutMI, X86::OR16i16);   break;
    512   case X86::OR32ri:     SimplifyShortImmForm(OutMI, X86::OR32i32);   break;
    513   case X86::OR64ri32:   SimplifyShortImmForm(OutMI, X86::OR64i32);   break;
    514   case X86::SBB8ri:     SimplifyShortImmForm(OutMI, X86::SBB8i8);    break;
    515   case X86::SBB16ri:    SimplifyShortImmForm(OutMI, X86::SBB16i16);  break;
    516   case X86::SBB32ri:    SimplifyShortImmForm(OutMI, X86::SBB32i32);  break;
    517   case X86::SBB64ri32:  SimplifyShortImmForm(OutMI, X86::SBB64i32);  break;
    518   case X86::SUB8ri:     SimplifyShortImmForm(OutMI, X86::SUB8i8);    break;
    519   case X86::SUB16ri:    SimplifyShortImmForm(OutMI, X86::SUB16i16);  break;
    520   case X86::SUB32ri:    SimplifyShortImmForm(OutMI, X86::SUB32i32);  break;
    521   case X86::SUB64ri32:  SimplifyShortImmForm(OutMI, X86::SUB64i32);  break;
    522   case X86::TEST8ri:    SimplifyShortImmForm(OutMI, X86::TEST8i8);   break;
    523   case X86::TEST16ri:   SimplifyShortImmForm(OutMI, X86::TEST16i16); break;
    524   case X86::TEST32ri:   SimplifyShortImmForm(OutMI, X86::TEST32i32); break;
    525   case X86::TEST64ri32: SimplifyShortImmForm(OutMI, X86::TEST64i32); break;
    526   case X86::XOR8ri:     SimplifyShortImmForm(OutMI, X86::XOR8i8);    break;
    527   case X86::XOR16ri:    SimplifyShortImmForm(OutMI, X86::XOR16i16);  break;
    528   case X86::XOR32ri:    SimplifyShortImmForm(OutMI, X86::XOR32i32);  break;
    529   case X86::XOR64ri32:  SimplifyShortImmForm(OutMI, X86::XOR64i32);  break;
    530   }
    531 }
    532 
    533 static void LowerTlsAddr(MCStreamer &OutStreamer,
    534                          X86MCInstLower &MCInstLowering,
    535                          const MachineInstr &MI) {
    536   bool is64Bits = MI.getOpcode() == X86::TLS_addr64;
    537   MCContext &context = OutStreamer.getContext();
    538 
    539   if (is64Bits) {
    540     MCInst prefix;
    541     prefix.setOpcode(X86::DATA16_PREFIX);
    542     OutStreamer.EmitInstruction(prefix);
    543   }
    544   MCSymbol *sym = MCInstLowering.GetSymbolFromOperand(MI.getOperand(3));
    545   const MCSymbolRefExpr *symRef =
    546     MCSymbolRefExpr::Create(sym, MCSymbolRefExpr::VK_TLSGD, context);
    547 
    548   MCInst LEA;
    549   if (is64Bits) {
    550     LEA.setOpcode(X86::LEA64r);
    551     LEA.addOperand(MCOperand::CreateReg(X86::RDI)); // dest
    552     LEA.addOperand(MCOperand::CreateReg(X86::RIP)); // base
    553     LEA.addOperand(MCOperand::CreateImm(1));        // scale
    554     LEA.addOperand(MCOperand::CreateReg(0));        // index
    555     LEA.addOperand(MCOperand::CreateExpr(symRef));  // disp
    556     LEA.addOperand(MCOperand::CreateReg(0));        // seg
    557   } else {
    558     LEA.setOpcode(X86::LEA32r);
    559     LEA.addOperand(MCOperand::CreateReg(X86::EAX)); // dest
    560     LEA.addOperand(MCOperand::CreateReg(0));        // base
    561     LEA.addOperand(MCOperand::CreateImm(1));        // scale
    562     LEA.addOperand(MCOperand::CreateReg(X86::EBX)); // index
    563     LEA.addOperand(MCOperand::CreateExpr(symRef));  // disp
    564     LEA.addOperand(MCOperand::CreateReg(0));        // seg
    565   }
    566   OutStreamer.EmitInstruction(LEA);
    567 
    568   if (is64Bits) {
    569     MCInst prefix;
    570     prefix.setOpcode(X86::DATA16_PREFIX);
    571     OutStreamer.EmitInstruction(prefix);
    572     prefix.setOpcode(X86::DATA16_PREFIX);
    573     OutStreamer.EmitInstruction(prefix);
    574     prefix.setOpcode(X86::REX64_PREFIX);
    575     OutStreamer.EmitInstruction(prefix);
    576   }
    577 
    578   MCInst call;
    579   if (is64Bits)
    580     call.setOpcode(X86::CALL64pcrel32);
    581   else
    582     call.setOpcode(X86::CALLpcrel32);
    583   StringRef name = is64Bits ? "__tls_get_addr" : "___tls_get_addr";
    584   MCSymbol *tlsGetAddr = context.GetOrCreateSymbol(name);
    585   const MCSymbolRefExpr *tlsRef =
    586     MCSymbolRefExpr::Create(tlsGetAddr,
    587                             MCSymbolRefExpr::VK_PLT,
    588                             context);
    589 
    590   call.addOperand(MCOperand::CreateExpr(tlsRef));
    591   OutStreamer.EmitInstruction(call);
    592 }
    593 
    594 void X86AsmPrinter::EmitInstruction(const MachineInstr *MI) {
    595   OutStreamer.EmitCodeRegion();
    596 
    597   X86MCInstLower MCInstLowering(Mang, *MF, *this);
    598   switch (MI->getOpcode()) {
    599   case TargetOpcode::DBG_VALUE:
    600     if (isVerbose() && OutStreamer.hasRawTextSupport()) {
    601       std::string TmpStr;
    602       raw_string_ostream OS(TmpStr);
    603       PrintDebugValueComment(MI, OS);
    604       OutStreamer.EmitRawText(StringRef(OS.str()));
    605     }
    606     return;
    607 
    608   // Emit nothing here but a comment if we can.
    609   case X86::Int_MemBarrier:
    610     if (OutStreamer.hasRawTextSupport())
    611       OutStreamer.EmitRawText(StringRef("\t#MEMBARRIER"));
    612     return;
    613 
    614 
    615   case X86::EH_RETURN:
    616   case X86::EH_RETURN64: {
    617     // Lower these as normal, but add some comments.
    618     unsigned Reg = MI->getOperand(0).getReg();
    619     OutStreamer.AddComment(StringRef("eh_return, addr: %") +
    620                            X86ATTInstPrinter::getRegisterName(Reg));
    621     break;
    622   }
    623   case X86::TAILJMPr:
    624   case X86::TAILJMPd:
    625   case X86::TAILJMPd64:
    626     // Lower these as normal, but add some comments.
    627     OutStreamer.AddComment("TAILCALL");
    628     break;
    629 
    630   case X86::TLS_addr32:
    631   case X86::TLS_addr64:
    632     return LowerTlsAddr(OutStreamer, MCInstLowering, *MI);
    633 
    634   case X86::MOVPC32r: {
    635     MCInst TmpInst;
    636     // This is a pseudo op for a two instruction sequence with a label, which
    637     // looks like:
    638     //     call "L1$pb"
    639     // "L1$pb":
    640     //     popl %esi
    641 
    642     // Emit the call.
    643     MCSymbol *PICBase = MF->getPICBaseSymbol();
    644     TmpInst.setOpcode(X86::CALLpcrel32);
    645     // FIXME: We would like an efficient form for this, so we don't have to do a
    646     // lot of extra uniquing.
    647     TmpInst.addOperand(MCOperand::CreateExpr(MCSymbolRefExpr::Create(PICBase,
    648                                                                  OutContext)));
    649     OutStreamer.EmitInstruction(TmpInst);
    650 
    651     // Emit the label.
    652     OutStreamer.EmitLabel(PICBase);
    653 
    654     // popl $reg
    655     TmpInst.setOpcode(X86::POP32r);
    656     TmpInst.getOperand(0) = MCOperand::CreateReg(MI->getOperand(0).getReg());
    657     OutStreamer.EmitInstruction(TmpInst);
    658     return;
    659   }
    660 
    661   case X86::ADD32ri: {
    662     // Lower the MO_GOT_ABSOLUTE_ADDRESS form of ADD32ri.
    663     if (MI->getOperand(2).getTargetFlags() != X86II::MO_GOT_ABSOLUTE_ADDRESS)
    664       break;
    665 
    666     // Okay, we have something like:
    667     //  EAX = ADD32ri EAX, MO_GOT_ABSOLUTE_ADDRESS(@MYGLOBAL)
    668 
    669     // For this, we want to print something like:
    670     //   MYGLOBAL + (. - PICBASE)
    671     // However, we can't generate a ".", so just emit a new label here and refer
    672     // to it.
    673     MCSymbol *DotSym = OutContext.CreateTempSymbol();
    674     OutStreamer.EmitLabel(DotSym);
    675 
    676     // Now that we have emitted the label, lower the complex operand expression.
    677     MCSymbol *OpSym = MCInstLowering.GetSymbolFromOperand(MI->getOperand(2));
    678 
    679     const MCExpr *DotExpr = MCSymbolRefExpr::Create(DotSym, OutContext);
    680     const MCExpr *PICBase =
    681       MCSymbolRefExpr::Create(MF->getPICBaseSymbol(), OutContext);
    682     DotExpr = MCBinaryExpr::CreateSub(DotExpr, PICBase, OutContext);
    683 
    684     DotExpr = MCBinaryExpr::CreateAdd(MCSymbolRefExpr::Create(OpSym,OutContext),
    685                                       DotExpr, OutContext);
    686 
    687     MCInst TmpInst;
    688     TmpInst.setOpcode(X86::ADD32ri);
    689     TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(0).getReg()));
    690     TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(1).getReg()));
    691     TmpInst.addOperand(MCOperand::CreateExpr(DotExpr));
    692     OutStreamer.EmitInstruction(TmpInst);
    693     return;
    694   }
    695   }
    696 
    697   MCInst TmpInst;
    698   MCInstLowering.Lower(MI, TmpInst);
    699   OutStreamer.EmitInstruction(TmpInst);
    700 }
    701 
    702