1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Peephole optimize the CFG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #define DEBUG_TYPE "simplifycfg" 15 #include "llvm/Transforms/Utils/Local.h" 16 #include "llvm/Constants.h" 17 #include "llvm/Instructions.h" 18 #include "llvm/IntrinsicInst.h" 19 #include "llvm/Type.h" 20 #include "llvm/DerivedTypes.h" 21 #include "llvm/GlobalVariable.h" 22 #include "llvm/Analysis/InstructionSimplify.h" 23 #include "llvm/Analysis/ValueTracking.h" 24 #include "llvm/Target/TargetData.h" 25 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 26 #include "llvm/ADT/DenseMap.h" 27 #include "llvm/ADT/SmallVector.h" 28 #include "llvm/ADT/SmallPtrSet.h" 29 #include "llvm/ADT/Statistic.h" 30 #include "llvm/ADT/STLExtras.h" 31 #include "llvm/Support/CFG.h" 32 #include "llvm/Support/CommandLine.h" 33 #include "llvm/Support/ConstantRange.h" 34 #include "llvm/Support/Debug.h" 35 #include "llvm/Support/IRBuilder.h" 36 #include "llvm/Support/NoFolder.h" 37 #include "llvm/Support/raw_ostream.h" 38 #include <algorithm> 39 #include <set> 40 #include <map> 41 using namespace llvm; 42 43 static cl::opt<unsigned> 44 PHINodeFoldingThreshold("phi-node-folding-threshold", cl::Hidden, cl::init(1), 45 cl::desc("Control the amount of phi node folding to perform (default = 1)")); 46 47 static cl::opt<bool> 48 DupRet("simplifycfg-dup-ret", cl::Hidden, cl::init(false), 49 cl::desc("Duplicate return instructions into unconditional branches")); 50 51 STATISTIC(NumSpeculations, "Number of speculative executed instructions"); 52 53 namespace { 54 class SimplifyCFGOpt { 55 const TargetData *const TD; 56 57 Value *isValueEqualityComparison(TerminatorInst *TI); 58 BasicBlock *GetValueEqualityComparisonCases(TerminatorInst *TI, 59 std::vector<std::pair<ConstantInt*, BasicBlock*> > &Cases); 60 bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI, 61 BasicBlock *Pred, 62 IRBuilder<> &Builder); 63 bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI, 64 IRBuilder<> &Builder); 65 66 bool SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder); 67 bool SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder); 68 bool SimplifyUnwind(UnwindInst *UI, IRBuilder<> &Builder); 69 bool SimplifyUnreachable(UnreachableInst *UI); 70 bool SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder); 71 bool SimplifyIndirectBr(IndirectBrInst *IBI); 72 bool SimplifyUncondBranch(BranchInst *BI, IRBuilder <> &Builder); 73 bool SimplifyCondBranch(BranchInst *BI, IRBuilder <>&Builder); 74 75 public: 76 explicit SimplifyCFGOpt(const TargetData *td) : TD(td) {} 77 bool run(BasicBlock *BB); 78 }; 79 } 80 81 /// SafeToMergeTerminators - Return true if it is safe to merge these two 82 /// terminator instructions together. 83 /// 84 static bool SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2) { 85 if (SI1 == SI2) return false; // Can't merge with self! 86 87 // It is not safe to merge these two switch instructions if they have a common 88 // successor, and if that successor has a PHI node, and if *that* PHI node has 89 // conflicting incoming values from the two switch blocks. 90 BasicBlock *SI1BB = SI1->getParent(); 91 BasicBlock *SI2BB = SI2->getParent(); 92 SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 93 94 for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I) 95 if (SI1Succs.count(*I)) 96 for (BasicBlock::iterator BBI = (*I)->begin(); 97 isa<PHINode>(BBI); ++BBI) { 98 PHINode *PN = cast<PHINode>(BBI); 99 if (PN->getIncomingValueForBlock(SI1BB) != 100 PN->getIncomingValueForBlock(SI2BB)) 101 return false; 102 } 103 104 return true; 105 } 106 107 /// AddPredecessorToBlock - Update PHI nodes in Succ to indicate that there will 108 /// now be entries in it from the 'NewPred' block. The values that will be 109 /// flowing into the PHI nodes will be the same as those coming in from 110 /// ExistPred, an existing predecessor of Succ. 111 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred, 112 BasicBlock *ExistPred) { 113 if (!isa<PHINode>(Succ->begin())) return; // Quick exit if nothing to do 114 115 PHINode *PN; 116 for (BasicBlock::iterator I = Succ->begin(); 117 (PN = dyn_cast<PHINode>(I)); ++I) 118 PN->addIncoming(PN->getIncomingValueForBlock(ExistPred), NewPred); 119 } 120 121 122 /// GetIfCondition - Given a basic block (BB) with two predecessors (and at 123 /// least one PHI node in it), check to see if the merge at this block is due 124 /// to an "if condition". If so, return the boolean condition that determines 125 /// which entry into BB will be taken. Also, return by references the block 126 /// that will be entered from if the condition is true, and the block that will 127 /// be entered if the condition is false. 128 /// 129 /// This does no checking to see if the true/false blocks have large or unsavory 130 /// instructions in them. 131 static Value *GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue, 132 BasicBlock *&IfFalse) { 133 PHINode *SomePHI = cast<PHINode>(BB->begin()); 134 assert(SomePHI->getNumIncomingValues() == 2 && 135 "Function can only handle blocks with 2 predecessors!"); 136 BasicBlock *Pred1 = SomePHI->getIncomingBlock(0); 137 BasicBlock *Pred2 = SomePHI->getIncomingBlock(1); 138 139 // We can only handle branches. Other control flow will be lowered to 140 // branches if possible anyway. 141 BranchInst *Pred1Br = dyn_cast<BranchInst>(Pred1->getTerminator()); 142 BranchInst *Pred2Br = dyn_cast<BranchInst>(Pred2->getTerminator()); 143 if (Pred1Br == 0 || Pred2Br == 0) 144 return 0; 145 146 // Eliminate code duplication by ensuring that Pred1Br is conditional if 147 // either are. 148 if (Pred2Br->isConditional()) { 149 // If both branches are conditional, we don't have an "if statement". In 150 // reality, we could transform this case, but since the condition will be 151 // required anyway, we stand no chance of eliminating it, so the xform is 152 // probably not profitable. 153 if (Pred1Br->isConditional()) 154 return 0; 155 156 std::swap(Pred1, Pred2); 157 std::swap(Pred1Br, Pred2Br); 158 } 159 160 if (Pred1Br->isConditional()) { 161 // The only thing we have to watch out for here is to make sure that Pred2 162 // doesn't have incoming edges from other blocks. If it does, the condition 163 // doesn't dominate BB. 164 if (Pred2->getSinglePredecessor() == 0) 165 return 0; 166 167 // If we found a conditional branch predecessor, make sure that it branches 168 // to BB and Pred2Br. If it doesn't, this isn't an "if statement". 169 if (Pred1Br->getSuccessor(0) == BB && 170 Pred1Br->getSuccessor(1) == Pred2) { 171 IfTrue = Pred1; 172 IfFalse = Pred2; 173 } else if (Pred1Br->getSuccessor(0) == Pred2 && 174 Pred1Br->getSuccessor(1) == BB) { 175 IfTrue = Pred2; 176 IfFalse = Pred1; 177 } else { 178 // We know that one arm of the conditional goes to BB, so the other must 179 // go somewhere unrelated, and this must not be an "if statement". 180 return 0; 181 } 182 183 return Pred1Br->getCondition(); 184 } 185 186 // Ok, if we got here, both predecessors end with an unconditional branch to 187 // BB. Don't panic! If both blocks only have a single (identical) 188 // predecessor, and THAT is a conditional branch, then we're all ok! 189 BasicBlock *CommonPred = Pred1->getSinglePredecessor(); 190 if (CommonPred == 0 || CommonPred != Pred2->getSinglePredecessor()) 191 return 0; 192 193 // Otherwise, if this is a conditional branch, then we can use it! 194 BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator()); 195 if (BI == 0) return 0; 196 197 assert(BI->isConditional() && "Two successors but not conditional?"); 198 if (BI->getSuccessor(0) == Pred1) { 199 IfTrue = Pred1; 200 IfFalse = Pred2; 201 } else { 202 IfTrue = Pred2; 203 IfFalse = Pred1; 204 } 205 return BI->getCondition(); 206 } 207 208 /// DominatesMergePoint - If we have a merge point of an "if condition" as 209 /// accepted above, return true if the specified value dominates the block. We 210 /// don't handle the true generality of domination here, just a special case 211 /// which works well enough for us. 212 /// 213 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to 214 /// see if V (which must be an instruction) and its recursive operands 215 /// that do not dominate BB have a combined cost lower than CostRemaining and 216 /// are non-trapping. If both are true, the instruction is inserted into the 217 /// set and true is returned. 218 /// 219 /// The cost for most non-trapping instructions is defined as 1 except for 220 /// Select whose cost is 2. 221 /// 222 /// After this function returns, CostRemaining is decreased by the cost of 223 /// V plus its non-dominating operands. If that cost is greater than 224 /// CostRemaining, false is returned and CostRemaining is undefined. 225 static bool DominatesMergePoint(Value *V, BasicBlock *BB, 226 SmallPtrSet<Instruction*, 4> *AggressiveInsts, 227 unsigned &CostRemaining) { 228 Instruction *I = dyn_cast<Instruction>(V); 229 if (!I) { 230 // Non-instructions all dominate instructions, but not all constantexprs 231 // can be executed unconditionally. 232 if (ConstantExpr *C = dyn_cast<ConstantExpr>(V)) 233 if (C->canTrap()) 234 return false; 235 return true; 236 } 237 BasicBlock *PBB = I->getParent(); 238 239 // We don't want to allow weird loops that might have the "if condition" in 240 // the bottom of this block. 241 if (PBB == BB) return false; 242 243 // If this instruction is defined in a block that contains an unconditional 244 // branch to BB, then it must be in the 'conditional' part of the "if 245 // statement". If not, it definitely dominates the region. 246 BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator()); 247 if (BI == 0 || BI->isConditional() || BI->getSuccessor(0) != BB) 248 return true; 249 250 // If we aren't allowing aggressive promotion anymore, then don't consider 251 // instructions in the 'if region'. 252 if (AggressiveInsts == 0) return false; 253 254 // If we have seen this instruction before, don't count it again. 255 if (AggressiveInsts->count(I)) return true; 256 257 // Okay, it looks like the instruction IS in the "condition". Check to 258 // see if it's a cheap instruction to unconditionally compute, and if it 259 // only uses stuff defined outside of the condition. If so, hoist it out. 260 if (!I->isSafeToSpeculativelyExecute()) 261 return false; 262 263 unsigned Cost = 0; 264 265 switch (I->getOpcode()) { 266 default: return false; // Cannot hoist this out safely. 267 case Instruction::Load: 268 // We have to check to make sure there are no instructions before the 269 // load in its basic block, as we are going to hoist the load out to its 270 // predecessor. 271 if (PBB->getFirstNonPHIOrDbg() != I) 272 return false; 273 Cost = 1; 274 break; 275 case Instruction::GetElementPtr: 276 // GEPs are cheap if all indices are constant. 277 if (!cast<GetElementPtrInst>(I)->hasAllConstantIndices()) 278 return false; 279 Cost = 1; 280 break; 281 case Instruction::Add: 282 case Instruction::Sub: 283 case Instruction::And: 284 case Instruction::Or: 285 case Instruction::Xor: 286 case Instruction::Shl: 287 case Instruction::LShr: 288 case Instruction::AShr: 289 case Instruction::ICmp: 290 case Instruction::Trunc: 291 case Instruction::ZExt: 292 case Instruction::SExt: 293 Cost = 1; 294 break; // These are all cheap and non-trapping instructions. 295 296 case Instruction::Select: 297 Cost = 2; 298 break; 299 } 300 301 if (Cost > CostRemaining) 302 return false; 303 304 CostRemaining -= Cost; 305 306 // Okay, we can only really hoist these out if their operands do 307 // not take us over the cost threshold. 308 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) 309 if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining)) 310 return false; 311 // Okay, it's safe to do this! Remember this instruction. 312 AggressiveInsts->insert(I); 313 return true; 314 } 315 316 /// GetConstantInt - Extract ConstantInt from value, looking through IntToPtr 317 /// and PointerNullValue. Return NULL if value is not a constant int. 318 static ConstantInt *GetConstantInt(Value *V, const TargetData *TD) { 319 // Normal constant int. 320 ConstantInt *CI = dyn_cast<ConstantInt>(V); 321 if (CI || !TD || !isa<Constant>(V) || !V->getType()->isPointerTy()) 322 return CI; 323 324 // This is some kind of pointer constant. Turn it into a pointer-sized 325 // ConstantInt if possible. 326 IntegerType *PtrTy = TD->getIntPtrType(V->getContext()); 327 328 // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*). 329 if (isa<ConstantPointerNull>(V)) 330 return ConstantInt::get(PtrTy, 0); 331 332 // IntToPtr const int. 333 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 334 if (CE->getOpcode() == Instruction::IntToPtr) 335 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) { 336 // The constant is very likely to have the right type already. 337 if (CI->getType() == PtrTy) 338 return CI; 339 else 340 return cast<ConstantInt> 341 (ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false)); 342 } 343 return 0; 344 } 345 346 /// GatherConstantCompares - Given a potentially 'or'd or 'and'd together 347 /// collection of icmp eq/ne instructions that compare a value against a 348 /// constant, return the value being compared, and stick the constant into the 349 /// Values vector. 350 static Value * 351 GatherConstantCompares(Value *V, std::vector<ConstantInt*> &Vals, Value *&Extra, 352 const TargetData *TD, bool isEQ, unsigned &UsedICmps) { 353 Instruction *I = dyn_cast<Instruction>(V); 354 if (I == 0) return 0; 355 356 // If this is an icmp against a constant, handle this as one of the cases. 357 if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) { 358 if (ConstantInt *C = GetConstantInt(I->getOperand(1), TD)) { 359 if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ:ICmpInst::ICMP_NE)) { 360 UsedICmps++; 361 Vals.push_back(C); 362 return I->getOperand(0); 363 } 364 365 // If we have "x ult 3" comparison, for example, then we can add 0,1,2 to 366 // the set. 367 ConstantRange Span = 368 ConstantRange::makeICmpRegion(ICI->getPredicate(), C->getValue()); 369 370 // If this is an and/!= check then we want to optimize "x ugt 2" into 371 // x != 0 && x != 1. 372 if (!isEQ) 373 Span = Span.inverse(); 374 375 // If there are a ton of values, we don't want to make a ginormous switch. 376 if (Span.getSetSize().ugt(8) || Span.isEmptySet() || 377 // We don't handle wrapped sets yet. 378 Span.isWrappedSet()) 379 return 0; 380 381 for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp) 382 Vals.push_back(ConstantInt::get(V->getContext(), Tmp)); 383 UsedICmps++; 384 return I->getOperand(0); 385 } 386 return 0; 387 } 388 389 // Otherwise, we can only handle an | or &, depending on isEQ. 390 if (I->getOpcode() != (isEQ ? Instruction::Or : Instruction::And)) 391 return 0; 392 393 unsigned NumValsBeforeLHS = Vals.size(); 394 unsigned UsedICmpsBeforeLHS = UsedICmps; 395 if (Value *LHS = GatherConstantCompares(I->getOperand(0), Vals, Extra, TD, 396 isEQ, UsedICmps)) { 397 unsigned NumVals = Vals.size(); 398 unsigned UsedICmpsBeforeRHS = UsedICmps; 399 if (Value *RHS = GatherConstantCompares(I->getOperand(1), Vals, Extra, TD, 400 isEQ, UsedICmps)) { 401 if (LHS == RHS) 402 return LHS; 403 Vals.resize(NumVals); 404 UsedICmps = UsedICmpsBeforeRHS; 405 } 406 407 // The RHS of the or/and can't be folded in and we haven't used "Extra" yet, 408 // set it and return success. 409 if (Extra == 0 || Extra == I->getOperand(1)) { 410 Extra = I->getOperand(1); 411 return LHS; 412 } 413 414 Vals.resize(NumValsBeforeLHS); 415 UsedICmps = UsedICmpsBeforeLHS; 416 return 0; 417 } 418 419 // If the LHS can't be folded in, but Extra is available and RHS can, try to 420 // use LHS as Extra. 421 if (Extra == 0 || Extra == I->getOperand(0)) { 422 Value *OldExtra = Extra; 423 Extra = I->getOperand(0); 424 if (Value *RHS = GatherConstantCompares(I->getOperand(1), Vals, Extra, TD, 425 isEQ, UsedICmps)) 426 return RHS; 427 assert(Vals.size() == NumValsBeforeLHS); 428 Extra = OldExtra; 429 } 430 431 return 0; 432 } 433 434 static void EraseTerminatorInstAndDCECond(TerminatorInst *TI) { 435 Instruction* Cond = 0; 436 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 437 Cond = dyn_cast<Instruction>(SI->getCondition()); 438 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 439 if (BI->isConditional()) 440 Cond = dyn_cast<Instruction>(BI->getCondition()); 441 } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) { 442 Cond = dyn_cast<Instruction>(IBI->getAddress()); 443 } 444 445 TI->eraseFromParent(); 446 if (Cond) RecursivelyDeleteTriviallyDeadInstructions(Cond); 447 } 448 449 /// isValueEqualityComparison - Return true if the specified terminator checks 450 /// to see if a value is equal to constant integer value. 451 Value *SimplifyCFGOpt::isValueEqualityComparison(TerminatorInst *TI) { 452 Value *CV = 0; 453 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 454 // Do not permit merging of large switch instructions into their 455 // predecessors unless there is only one predecessor. 456 if (SI->getNumSuccessors()*std::distance(pred_begin(SI->getParent()), 457 pred_end(SI->getParent())) <= 128) 458 CV = SI->getCondition(); 459 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) 460 if (BI->isConditional() && BI->getCondition()->hasOneUse()) 461 if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) 462 if ((ICI->getPredicate() == ICmpInst::ICMP_EQ || 463 ICI->getPredicate() == ICmpInst::ICMP_NE) && 464 GetConstantInt(ICI->getOperand(1), TD)) 465 CV = ICI->getOperand(0); 466 467 // Unwrap any lossless ptrtoint cast. 468 if (TD && CV && CV->getType() == TD->getIntPtrType(CV->getContext())) 469 if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) 470 CV = PTII->getOperand(0); 471 return CV; 472 } 473 474 /// GetValueEqualityComparisonCases - Given a value comparison instruction, 475 /// decode all of the 'cases' that it represents and return the 'default' block. 476 BasicBlock *SimplifyCFGOpt:: 477 GetValueEqualityComparisonCases(TerminatorInst *TI, 478 std::vector<std::pair<ConstantInt*, 479 BasicBlock*> > &Cases) { 480 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 481 Cases.reserve(SI->getNumCases()); 482 for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i) 483 Cases.push_back(std::make_pair(SI->getCaseValue(i), SI->getSuccessor(i))); 484 return SI->getDefaultDest(); 485 } 486 487 BranchInst *BI = cast<BranchInst>(TI); 488 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 489 Cases.push_back(std::make_pair(GetConstantInt(ICI->getOperand(1), TD), 490 BI->getSuccessor(ICI->getPredicate() == 491 ICmpInst::ICMP_NE))); 492 return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ); 493 } 494 495 496 /// EliminateBlockCases - Given a vector of bb/value pairs, remove any entries 497 /// in the list that match the specified block. 498 static void EliminateBlockCases(BasicBlock *BB, 499 std::vector<std::pair<ConstantInt*, BasicBlock*> > &Cases) { 500 for (unsigned i = 0, e = Cases.size(); i != e; ++i) 501 if (Cases[i].second == BB) { 502 Cases.erase(Cases.begin()+i); 503 --i; --e; 504 } 505 } 506 507 /// ValuesOverlap - Return true if there are any keys in C1 that exist in C2 as 508 /// well. 509 static bool 510 ValuesOverlap(std::vector<std::pair<ConstantInt*, BasicBlock*> > &C1, 511 std::vector<std::pair<ConstantInt*, BasicBlock*> > &C2) { 512 std::vector<std::pair<ConstantInt*, BasicBlock*> > *V1 = &C1, *V2 = &C2; 513 514 // Make V1 be smaller than V2. 515 if (V1->size() > V2->size()) 516 std::swap(V1, V2); 517 518 if (V1->size() == 0) return false; 519 if (V1->size() == 1) { 520 // Just scan V2. 521 ConstantInt *TheVal = (*V1)[0].first; 522 for (unsigned i = 0, e = V2->size(); i != e; ++i) 523 if (TheVal == (*V2)[i].first) 524 return true; 525 } 526 527 // Otherwise, just sort both lists and compare element by element. 528 array_pod_sort(V1->begin(), V1->end()); 529 array_pod_sort(V2->begin(), V2->end()); 530 unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size(); 531 while (i1 != e1 && i2 != e2) { 532 if ((*V1)[i1].first == (*V2)[i2].first) 533 return true; 534 if ((*V1)[i1].first < (*V2)[i2].first) 535 ++i1; 536 else 537 ++i2; 538 } 539 return false; 540 } 541 542 /// SimplifyEqualityComparisonWithOnlyPredecessor - If TI is known to be a 543 /// terminator instruction and its block is known to only have a single 544 /// predecessor block, check to see if that predecessor is also a value 545 /// comparison with the same value, and if that comparison determines the 546 /// outcome of this comparison. If so, simplify TI. This does a very limited 547 /// form of jump threading. 548 bool SimplifyCFGOpt:: 549 SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI, 550 BasicBlock *Pred, 551 IRBuilder<> &Builder) { 552 Value *PredVal = isValueEqualityComparison(Pred->getTerminator()); 553 if (!PredVal) return false; // Not a value comparison in predecessor. 554 555 Value *ThisVal = isValueEqualityComparison(TI); 556 assert(ThisVal && "This isn't a value comparison!!"); 557 if (ThisVal != PredVal) return false; // Different predicates. 558 559 // Find out information about when control will move from Pred to TI's block. 560 std::vector<std::pair<ConstantInt*, BasicBlock*> > PredCases; 561 BasicBlock *PredDef = GetValueEqualityComparisonCases(Pred->getTerminator(), 562 PredCases); 563 EliminateBlockCases(PredDef, PredCases); // Remove default from cases. 564 565 // Find information about how control leaves this block. 566 std::vector<std::pair<ConstantInt*, BasicBlock*> > ThisCases; 567 BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases); 568 EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases. 569 570 // If TI's block is the default block from Pred's comparison, potentially 571 // simplify TI based on this knowledge. 572 if (PredDef == TI->getParent()) { 573 // If we are here, we know that the value is none of those cases listed in 574 // PredCases. If there are any cases in ThisCases that are in PredCases, we 575 // can simplify TI. 576 if (!ValuesOverlap(PredCases, ThisCases)) 577 return false; 578 579 if (isa<BranchInst>(TI)) { 580 // Okay, one of the successors of this condbr is dead. Convert it to a 581 // uncond br. 582 assert(ThisCases.size() == 1 && "Branch can only have one case!"); 583 // Insert the new branch. 584 Instruction *NI = Builder.CreateBr(ThisDef); 585 (void) NI; 586 587 // Remove PHI node entries for the dead edge. 588 ThisCases[0].second->removePredecessor(TI->getParent()); 589 590 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 591 << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n"); 592 593 EraseTerminatorInstAndDCECond(TI); 594 return true; 595 } 596 597 SwitchInst *SI = cast<SwitchInst>(TI); 598 // Okay, TI has cases that are statically dead, prune them away. 599 SmallPtrSet<Constant*, 16> DeadCases; 600 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 601 DeadCases.insert(PredCases[i].first); 602 603 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 604 << "Through successor TI: " << *TI); 605 606 for (unsigned i = SI->getNumCases()-1; i != 0; --i) 607 if (DeadCases.count(SI->getCaseValue(i))) { 608 SI->getSuccessor(i)->removePredecessor(TI->getParent()); 609 SI->removeCase(i); 610 } 611 612 DEBUG(dbgs() << "Leaving: " << *TI << "\n"); 613 return true; 614 } 615 616 // Otherwise, TI's block must correspond to some matched value. Find out 617 // which value (or set of values) this is. 618 ConstantInt *TIV = 0; 619 BasicBlock *TIBB = TI->getParent(); 620 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 621 if (PredCases[i].second == TIBB) { 622 if (TIV != 0) 623 return false; // Cannot handle multiple values coming to this block. 624 TIV = PredCases[i].first; 625 } 626 assert(TIV && "No edge from pred to succ?"); 627 628 // Okay, we found the one constant that our value can be if we get into TI's 629 // BB. Find out which successor will unconditionally be branched to. 630 BasicBlock *TheRealDest = 0; 631 for (unsigned i = 0, e = ThisCases.size(); i != e; ++i) 632 if (ThisCases[i].first == TIV) { 633 TheRealDest = ThisCases[i].second; 634 break; 635 } 636 637 // If not handled by any explicit cases, it is handled by the default case. 638 if (TheRealDest == 0) TheRealDest = ThisDef; 639 640 // Remove PHI node entries for dead edges. 641 BasicBlock *CheckEdge = TheRealDest; 642 for (succ_iterator SI = succ_begin(TIBB), e = succ_end(TIBB); SI != e; ++SI) 643 if (*SI != CheckEdge) 644 (*SI)->removePredecessor(TIBB); 645 else 646 CheckEdge = 0; 647 648 // Insert the new branch. 649 Instruction *NI = Builder.CreateBr(TheRealDest); 650 (void) NI; 651 652 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 653 << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n"); 654 655 EraseTerminatorInstAndDCECond(TI); 656 return true; 657 } 658 659 namespace { 660 /// ConstantIntOrdering - This class implements a stable ordering of constant 661 /// integers that does not depend on their address. This is important for 662 /// applications that sort ConstantInt's to ensure uniqueness. 663 struct ConstantIntOrdering { 664 bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const { 665 return LHS->getValue().ult(RHS->getValue()); 666 } 667 }; 668 } 669 670 static int ConstantIntSortPredicate(const void *P1, const void *P2) { 671 const ConstantInt *LHS = *(const ConstantInt**)P1; 672 const ConstantInt *RHS = *(const ConstantInt**)P2; 673 if (LHS->getValue().ult(RHS->getValue())) 674 return 1; 675 if (LHS->getValue() == RHS->getValue()) 676 return 0; 677 return -1; 678 } 679 680 /// FoldValueComparisonIntoPredecessors - The specified terminator is a value 681 /// equality comparison instruction (either a switch or a branch on "X == c"). 682 /// See if any of the predecessors of the terminator block are value comparisons 683 /// on the same value. If so, and if safe to do so, fold them together. 684 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(TerminatorInst *TI, 685 IRBuilder<> &Builder) { 686 BasicBlock *BB = TI->getParent(); 687 Value *CV = isValueEqualityComparison(TI); // CondVal 688 assert(CV && "Not a comparison?"); 689 bool Changed = false; 690 691 SmallVector<BasicBlock*, 16> Preds(pred_begin(BB), pred_end(BB)); 692 while (!Preds.empty()) { 693 BasicBlock *Pred = Preds.pop_back_val(); 694 695 // See if the predecessor is a comparison with the same value. 696 TerminatorInst *PTI = Pred->getTerminator(); 697 Value *PCV = isValueEqualityComparison(PTI); // PredCondVal 698 699 if (PCV == CV && SafeToMergeTerminators(TI, PTI)) { 700 // Figure out which 'cases' to copy from SI to PSI. 701 std::vector<std::pair<ConstantInt*, BasicBlock*> > BBCases; 702 BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases); 703 704 std::vector<std::pair<ConstantInt*, BasicBlock*> > PredCases; 705 BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases); 706 707 // Based on whether the default edge from PTI goes to BB or not, fill in 708 // PredCases and PredDefault with the new switch cases we would like to 709 // build. 710 SmallVector<BasicBlock*, 8> NewSuccessors; 711 712 if (PredDefault == BB) { 713 // If this is the default destination from PTI, only the edges in TI 714 // that don't occur in PTI, or that branch to BB will be activated. 715 std::set<ConstantInt*, ConstantIntOrdering> PTIHandled; 716 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 717 if (PredCases[i].second != BB) 718 PTIHandled.insert(PredCases[i].first); 719 else { 720 // The default destination is BB, we don't need explicit targets. 721 std::swap(PredCases[i], PredCases.back()); 722 PredCases.pop_back(); 723 --i; --e; 724 } 725 726 // Reconstruct the new switch statement we will be building. 727 if (PredDefault != BBDefault) { 728 PredDefault->removePredecessor(Pred); 729 PredDefault = BBDefault; 730 NewSuccessors.push_back(BBDefault); 731 } 732 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 733 if (!PTIHandled.count(BBCases[i].first) && 734 BBCases[i].second != BBDefault) { 735 PredCases.push_back(BBCases[i]); 736 NewSuccessors.push_back(BBCases[i].second); 737 } 738 739 } else { 740 // If this is not the default destination from PSI, only the edges 741 // in SI that occur in PSI with a destination of BB will be 742 // activated. 743 std::set<ConstantInt*, ConstantIntOrdering> PTIHandled; 744 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 745 if (PredCases[i].second == BB) { 746 PTIHandled.insert(PredCases[i].first); 747 std::swap(PredCases[i], PredCases.back()); 748 PredCases.pop_back(); 749 --i; --e; 750 } 751 752 // Okay, now we know which constants were sent to BB from the 753 // predecessor. Figure out where they will all go now. 754 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 755 if (PTIHandled.count(BBCases[i].first)) { 756 // If this is one we are capable of getting... 757 PredCases.push_back(BBCases[i]); 758 NewSuccessors.push_back(BBCases[i].second); 759 PTIHandled.erase(BBCases[i].first);// This constant is taken care of 760 } 761 762 // If there are any constants vectored to BB that TI doesn't handle, 763 // they must go to the default destination of TI. 764 for (std::set<ConstantInt*, ConstantIntOrdering>::iterator I = 765 PTIHandled.begin(), 766 E = PTIHandled.end(); I != E; ++I) { 767 PredCases.push_back(std::make_pair(*I, BBDefault)); 768 NewSuccessors.push_back(BBDefault); 769 } 770 } 771 772 // Okay, at this point, we know which new successor Pred will get. Make 773 // sure we update the number of entries in the PHI nodes for these 774 // successors. 775 for (unsigned i = 0, e = NewSuccessors.size(); i != e; ++i) 776 AddPredecessorToBlock(NewSuccessors[i], Pred, BB); 777 778 Builder.SetInsertPoint(PTI); 779 // Convert pointer to int before we switch. 780 if (CV->getType()->isPointerTy()) { 781 assert(TD && "Cannot switch on pointer without TargetData"); 782 CV = Builder.CreatePtrToInt(CV, TD->getIntPtrType(CV->getContext()), 783 "magicptr"); 784 } 785 786 // Now that the successors are updated, create the new Switch instruction. 787 SwitchInst *NewSI = Builder.CreateSwitch(CV, PredDefault, 788 PredCases.size()); 789 NewSI->setDebugLoc(PTI->getDebugLoc()); 790 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 791 NewSI->addCase(PredCases[i].first, PredCases[i].second); 792 793 EraseTerminatorInstAndDCECond(PTI); 794 795 // Okay, last check. If BB is still a successor of PSI, then we must 796 // have an infinite loop case. If so, add an infinitely looping block 797 // to handle the case to preserve the behavior of the code. 798 BasicBlock *InfLoopBlock = 0; 799 for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i) 800 if (NewSI->getSuccessor(i) == BB) { 801 if (InfLoopBlock == 0) { 802 // Insert it at the end of the function, because it's either code, 803 // or it won't matter if it's hot. :) 804 InfLoopBlock = BasicBlock::Create(BB->getContext(), 805 "infloop", BB->getParent()); 806 BranchInst::Create(InfLoopBlock, InfLoopBlock); 807 } 808 NewSI->setSuccessor(i, InfLoopBlock); 809 } 810 811 Changed = true; 812 } 813 } 814 return Changed; 815 } 816 817 // isSafeToHoistInvoke - If we would need to insert a select that uses the 818 // value of this invoke (comments in HoistThenElseCodeToIf explain why we 819 // would need to do this), we can't hoist the invoke, as there is nowhere 820 // to put the select in this case. 821 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2, 822 Instruction *I1, Instruction *I2) { 823 for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) { 824 PHINode *PN; 825 for (BasicBlock::iterator BBI = SI->begin(); 826 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 827 Value *BB1V = PN->getIncomingValueForBlock(BB1); 828 Value *BB2V = PN->getIncomingValueForBlock(BB2); 829 if (BB1V != BB2V && (BB1V==I1 || BB2V==I2)) { 830 return false; 831 } 832 } 833 } 834 return true; 835 } 836 837 /// HoistThenElseCodeToIf - Given a conditional branch that goes to BB1 and 838 /// BB2, hoist any common code in the two blocks up into the branch block. The 839 /// caller of this function guarantees that BI's block dominates BB1 and BB2. 840 static bool HoistThenElseCodeToIf(BranchInst *BI) { 841 // This does very trivial matching, with limited scanning, to find identical 842 // instructions in the two blocks. In particular, we don't want to get into 843 // O(M*N) situations here where M and N are the sizes of BB1 and BB2. As 844 // such, we currently just scan for obviously identical instructions in an 845 // identical order. 846 BasicBlock *BB1 = BI->getSuccessor(0); // The true destination. 847 BasicBlock *BB2 = BI->getSuccessor(1); // The false destination 848 849 BasicBlock::iterator BB1_Itr = BB1->begin(); 850 BasicBlock::iterator BB2_Itr = BB2->begin(); 851 852 Instruction *I1 = BB1_Itr++, *I2 = BB2_Itr++; 853 // Skip debug info if it is not identical. 854 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 855 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 856 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 857 while (isa<DbgInfoIntrinsic>(I1)) 858 I1 = BB1_Itr++; 859 while (isa<DbgInfoIntrinsic>(I2)) 860 I2 = BB2_Itr++; 861 } 862 if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) || 863 (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))) 864 return false; 865 866 // If we get here, we can hoist at least one instruction. 867 BasicBlock *BIParent = BI->getParent(); 868 869 do { 870 // If we are hoisting the terminator instruction, don't move one (making a 871 // broken BB), instead clone it, and remove BI. 872 if (isa<TerminatorInst>(I1)) 873 goto HoistTerminator; 874 875 // For a normal instruction, we just move one to right before the branch, 876 // then replace all uses of the other with the first. Finally, we remove 877 // the now redundant second instruction. 878 BIParent->getInstList().splice(BI, BB1->getInstList(), I1); 879 if (!I2->use_empty()) 880 I2->replaceAllUsesWith(I1); 881 I1->intersectOptionalDataWith(I2); 882 I2->eraseFromParent(); 883 884 I1 = BB1_Itr++; 885 I2 = BB2_Itr++; 886 // Skip debug info if it is not identical. 887 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 888 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 889 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 890 while (isa<DbgInfoIntrinsic>(I1)) 891 I1 = BB1_Itr++; 892 while (isa<DbgInfoIntrinsic>(I2)) 893 I2 = BB2_Itr++; 894 } 895 } while (I1->isIdenticalToWhenDefined(I2)); 896 897 return true; 898 899 HoistTerminator: 900 // It may not be possible to hoist an invoke. 901 if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) 902 return true; 903 904 // Okay, it is safe to hoist the terminator. 905 Instruction *NT = I1->clone(); 906 BIParent->getInstList().insert(BI, NT); 907 if (!NT->getType()->isVoidTy()) { 908 I1->replaceAllUsesWith(NT); 909 I2->replaceAllUsesWith(NT); 910 NT->takeName(I1); 911 } 912 913 IRBuilder<true, NoFolder> Builder(NT); 914 // Hoisting one of the terminators from our successor is a great thing. 915 // Unfortunately, the successors of the if/else blocks may have PHI nodes in 916 // them. If they do, all PHI entries for BB1/BB2 must agree for all PHI 917 // nodes, so we insert select instruction to compute the final result. 918 std::map<std::pair<Value*,Value*>, SelectInst*> InsertedSelects; 919 for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) { 920 PHINode *PN; 921 for (BasicBlock::iterator BBI = SI->begin(); 922 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 923 Value *BB1V = PN->getIncomingValueForBlock(BB1); 924 Value *BB2V = PN->getIncomingValueForBlock(BB2); 925 if (BB1V == BB2V) continue; 926 927 // These values do not agree. Insert a select instruction before NT 928 // that determines the right value. 929 SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)]; 930 if (SI == 0) 931 SI = cast<SelectInst> 932 (Builder.CreateSelect(BI->getCondition(), BB1V, BB2V, 933 BB1V->getName()+"."+BB2V->getName())); 934 935 // Make the PHI node use the select for all incoming values for BB1/BB2 936 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 937 if (PN->getIncomingBlock(i) == BB1 || PN->getIncomingBlock(i) == BB2) 938 PN->setIncomingValue(i, SI); 939 } 940 } 941 942 // Update any PHI nodes in our new successors. 943 for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) 944 AddPredecessorToBlock(*SI, BIParent, BB1); 945 946 EraseTerminatorInstAndDCECond(BI); 947 return true; 948 } 949 950 /// SpeculativelyExecuteBB - Given a conditional branch that goes to BB1 951 /// and an BB2 and the only successor of BB1 is BB2, hoist simple code 952 /// (for now, restricted to a single instruction that's side effect free) from 953 /// the BB1 into the branch block to speculatively execute it. 954 static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *BB1) { 955 // Only speculatively execution a single instruction (not counting the 956 // terminator) for now. 957 Instruction *HInst = NULL; 958 Instruction *Term = BB1->getTerminator(); 959 for (BasicBlock::iterator BBI = BB1->begin(), BBE = BB1->end(); 960 BBI != BBE; ++BBI) { 961 Instruction *I = BBI; 962 // Skip debug info. 963 if (isa<DbgInfoIntrinsic>(I)) continue; 964 if (I == Term) break; 965 966 if (HInst) 967 return false; 968 HInst = I; 969 } 970 if (!HInst) 971 return false; 972 973 // Be conservative for now. FP select instruction can often be expensive. 974 Value *BrCond = BI->getCondition(); 975 if (isa<FCmpInst>(BrCond)) 976 return false; 977 978 // If BB1 is actually on the false edge of the conditional branch, remember 979 // to swap the select operands later. 980 bool Invert = false; 981 if (BB1 != BI->getSuccessor(0)) { 982 assert(BB1 == BI->getSuccessor(1) && "No edge from 'if' block?"); 983 Invert = true; 984 } 985 986 // Turn 987 // BB: 988 // %t1 = icmp 989 // br i1 %t1, label %BB1, label %BB2 990 // BB1: 991 // %t3 = add %t2, c 992 // br label BB2 993 // BB2: 994 // => 995 // BB: 996 // %t1 = icmp 997 // %t4 = add %t2, c 998 // %t3 = select i1 %t1, %t2, %t3 999 switch (HInst->getOpcode()) { 1000 default: return false; // Not safe / profitable to hoist. 1001 case Instruction::Add: 1002 case Instruction::Sub: 1003 // Not worth doing for vector ops. 1004 if (HInst->getType()->isVectorTy()) 1005 return false; 1006 break; 1007 case Instruction::And: 1008 case Instruction::Or: 1009 case Instruction::Xor: 1010 case Instruction::Shl: 1011 case Instruction::LShr: 1012 case Instruction::AShr: 1013 // Don't mess with vector operations. 1014 if (HInst->getType()->isVectorTy()) 1015 return false; 1016 break; // These are all cheap and non-trapping instructions. 1017 } 1018 1019 // If the instruction is obviously dead, don't try to predicate it. 1020 if (HInst->use_empty()) { 1021 HInst->eraseFromParent(); 1022 return true; 1023 } 1024 1025 // Can we speculatively execute the instruction? And what is the value 1026 // if the condition is false? Consider the phi uses, if the incoming value 1027 // from the "if" block are all the same V, then V is the value of the 1028 // select if the condition is false. 1029 BasicBlock *BIParent = BI->getParent(); 1030 SmallVector<PHINode*, 4> PHIUses; 1031 Value *FalseV = NULL; 1032 1033 BasicBlock *BB2 = BB1->getTerminator()->getSuccessor(0); 1034 for (Value::use_iterator UI = HInst->use_begin(), E = HInst->use_end(); 1035 UI != E; ++UI) { 1036 // Ignore any user that is not a PHI node in BB2. These can only occur in 1037 // unreachable blocks, because they would not be dominated by the instr. 1038 PHINode *PN = dyn_cast<PHINode>(*UI); 1039 if (!PN || PN->getParent() != BB2) 1040 return false; 1041 PHIUses.push_back(PN); 1042 1043 Value *PHIV = PN->getIncomingValueForBlock(BIParent); 1044 if (!FalseV) 1045 FalseV = PHIV; 1046 else if (FalseV != PHIV) 1047 return false; // Inconsistent value when condition is false. 1048 } 1049 1050 assert(FalseV && "Must have at least one user, and it must be a PHI"); 1051 1052 // Do not hoist the instruction if any of its operands are defined but not 1053 // used in this BB. The transformation will prevent the operand from 1054 // being sunk into the use block. 1055 for (User::op_iterator i = HInst->op_begin(), e = HInst->op_end(); 1056 i != e; ++i) { 1057 Instruction *OpI = dyn_cast<Instruction>(*i); 1058 if (OpI && OpI->getParent() == BIParent && 1059 !OpI->isUsedInBasicBlock(BIParent)) 1060 return false; 1061 } 1062 1063 // If we get here, we can hoist the instruction. Try to place it 1064 // before the icmp instruction preceding the conditional branch. 1065 BasicBlock::iterator InsertPos = BI; 1066 if (InsertPos != BIParent->begin()) 1067 --InsertPos; 1068 // Skip debug info between condition and branch. 1069 while (InsertPos != BIParent->begin() && isa<DbgInfoIntrinsic>(InsertPos)) 1070 --InsertPos; 1071 if (InsertPos == BrCond && !isa<PHINode>(BrCond)) { 1072 SmallPtrSet<Instruction *, 4> BB1Insns; 1073 for(BasicBlock::iterator BB1I = BB1->begin(), BB1E = BB1->end(); 1074 BB1I != BB1E; ++BB1I) 1075 BB1Insns.insert(BB1I); 1076 for(Value::use_iterator UI = BrCond->use_begin(), UE = BrCond->use_end(); 1077 UI != UE; ++UI) { 1078 Instruction *Use = cast<Instruction>(*UI); 1079 if (!BB1Insns.count(Use)) continue; 1080 1081 // If BrCond uses the instruction that place it just before 1082 // branch instruction. 1083 InsertPos = BI; 1084 break; 1085 } 1086 } else 1087 InsertPos = BI; 1088 BIParent->getInstList().splice(InsertPos, BB1->getInstList(), HInst); 1089 1090 // Create a select whose true value is the speculatively executed value and 1091 // false value is the previously determined FalseV. 1092 IRBuilder<true, NoFolder> Builder(BI); 1093 SelectInst *SI; 1094 if (Invert) 1095 SI = cast<SelectInst> 1096 (Builder.CreateSelect(BrCond, FalseV, HInst, 1097 FalseV->getName() + "." + HInst->getName())); 1098 else 1099 SI = cast<SelectInst> 1100 (Builder.CreateSelect(BrCond, HInst, FalseV, 1101 HInst->getName() + "." + FalseV->getName())); 1102 1103 // Make the PHI node use the select for all incoming values for "then" and 1104 // "if" blocks. 1105 for (unsigned i = 0, e = PHIUses.size(); i != e; ++i) { 1106 PHINode *PN = PHIUses[i]; 1107 for (unsigned j = 0, ee = PN->getNumIncomingValues(); j != ee; ++j) 1108 if (PN->getIncomingBlock(j) == BB1 || PN->getIncomingBlock(j) == BIParent) 1109 PN->setIncomingValue(j, SI); 1110 } 1111 1112 ++NumSpeculations; 1113 return true; 1114 } 1115 1116 /// BlockIsSimpleEnoughToThreadThrough - Return true if we can thread a branch 1117 /// across this block. 1118 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) { 1119 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 1120 unsigned Size = 0; 1121 1122 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { 1123 if (isa<DbgInfoIntrinsic>(BBI)) 1124 continue; 1125 if (Size > 10) return false; // Don't clone large BB's. 1126 ++Size; 1127 1128 // We can only support instructions that do not define values that are 1129 // live outside of the current basic block. 1130 for (Value::use_iterator UI = BBI->use_begin(), E = BBI->use_end(); 1131 UI != E; ++UI) { 1132 Instruction *U = cast<Instruction>(*UI); 1133 if (U->getParent() != BB || isa<PHINode>(U)) return false; 1134 } 1135 1136 // Looks ok, continue checking. 1137 } 1138 1139 return true; 1140 } 1141 1142 /// FoldCondBranchOnPHI - If we have a conditional branch on a PHI node value 1143 /// that is defined in the same block as the branch and if any PHI entries are 1144 /// constants, thread edges corresponding to that entry to be branches to their 1145 /// ultimate destination. 1146 static bool FoldCondBranchOnPHI(BranchInst *BI, const TargetData *TD) { 1147 BasicBlock *BB = BI->getParent(); 1148 PHINode *PN = dyn_cast<PHINode>(BI->getCondition()); 1149 // NOTE: we currently cannot transform this case if the PHI node is used 1150 // outside of the block. 1151 if (!PN || PN->getParent() != BB || !PN->hasOneUse()) 1152 return false; 1153 1154 // Degenerate case of a single entry PHI. 1155 if (PN->getNumIncomingValues() == 1) { 1156 FoldSingleEntryPHINodes(PN->getParent()); 1157 return true; 1158 } 1159 1160 // Now we know that this block has multiple preds and two succs. 1161 if (!BlockIsSimpleEnoughToThreadThrough(BB)) return false; 1162 1163 // Okay, this is a simple enough basic block. See if any phi values are 1164 // constants. 1165 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1166 ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i)); 1167 if (CB == 0 || !CB->getType()->isIntegerTy(1)) continue; 1168 1169 // Okay, we now know that all edges from PredBB should be revectored to 1170 // branch to RealDest. 1171 BasicBlock *PredBB = PN->getIncomingBlock(i); 1172 BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue()); 1173 1174 if (RealDest == BB) continue; // Skip self loops. 1175 // Skip if the predecessor's terminator is an indirect branch. 1176 if (isa<IndirectBrInst>(PredBB->getTerminator())) continue; 1177 1178 // The dest block might have PHI nodes, other predecessors and other 1179 // difficult cases. Instead of being smart about this, just insert a new 1180 // block that jumps to the destination block, effectively splitting 1181 // the edge we are about to create. 1182 BasicBlock *EdgeBB = BasicBlock::Create(BB->getContext(), 1183 RealDest->getName()+".critedge", 1184 RealDest->getParent(), RealDest); 1185 BranchInst::Create(RealDest, EdgeBB); 1186 1187 // Update PHI nodes. 1188 AddPredecessorToBlock(RealDest, EdgeBB, BB); 1189 1190 // BB may have instructions that are being threaded over. Clone these 1191 // instructions into EdgeBB. We know that there will be no uses of the 1192 // cloned instructions outside of EdgeBB. 1193 BasicBlock::iterator InsertPt = EdgeBB->begin(); 1194 DenseMap<Value*, Value*> TranslateMap; // Track translated values. 1195 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { 1196 if (PHINode *PN = dyn_cast<PHINode>(BBI)) { 1197 TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB); 1198 continue; 1199 } 1200 // Clone the instruction. 1201 Instruction *N = BBI->clone(); 1202 if (BBI->hasName()) N->setName(BBI->getName()+".c"); 1203 1204 // Update operands due to translation. 1205 for (User::op_iterator i = N->op_begin(), e = N->op_end(); 1206 i != e; ++i) { 1207 DenseMap<Value*, Value*>::iterator PI = TranslateMap.find(*i); 1208 if (PI != TranslateMap.end()) 1209 *i = PI->second; 1210 } 1211 1212 // Check for trivial simplification. 1213 if (Value *V = SimplifyInstruction(N, TD)) { 1214 TranslateMap[BBI] = V; 1215 delete N; // Instruction folded away, don't need actual inst 1216 } else { 1217 // Insert the new instruction into its new home. 1218 EdgeBB->getInstList().insert(InsertPt, N); 1219 if (!BBI->use_empty()) 1220 TranslateMap[BBI] = N; 1221 } 1222 } 1223 1224 // Loop over all of the edges from PredBB to BB, changing them to branch 1225 // to EdgeBB instead. 1226 TerminatorInst *PredBBTI = PredBB->getTerminator(); 1227 for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i) 1228 if (PredBBTI->getSuccessor(i) == BB) { 1229 BB->removePredecessor(PredBB); 1230 PredBBTI->setSuccessor(i, EdgeBB); 1231 } 1232 1233 // Recurse, simplifying any other constants. 1234 return FoldCondBranchOnPHI(BI, TD) | true; 1235 } 1236 1237 return false; 1238 } 1239 1240 /// FoldTwoEntryPHINode - Given a BB that starts with the specified two-entry 1241 /// PHI node, see if we can eliminate it. 1242 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetData *TD) { 1243 // Ok, this is a two entry PHI node. Check to see if this is a simple "if 1244 // statement", which has a very simple dominance structure. Basically, we 1245 // are trying to find the condition that is being branched on, which 1246 // subsequently causes this merge to happen. We really want control 1247 // dependence information for this check, but simplifycfg can't keep it up 1248 // to date, and this catches most of the cases we care about anyway. 1249 BasicBlock *BB = PN->getParent(); 1250 BasicBlock *IfTrue, *IfFalse; 1251 Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse); 1252 if (!IfCond || 1253 // Don't bother if the branch will be constant folded trivially. 1254 isa<ConstantInt>(IfCond)) 1255 return false; 1256 1257 // Okay, we found that we can merge this two-entry phi node into a select. 1258 // Doing so would require us to fold *all* two entry phi nodes in this block. 1259 // At some point this becomes non-profitable (particularly if the target 1260 // doesn't support cmov's). Only do this transformation if there are two or 1261 // fewer PHI nodes in this block. 1262 unsigned NumPhis = 0; 1263 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I) 1264 if (NumPhis > 2) 1265 return false; 1266 1267 // Loop over the PHI's seeing if we can promote them all to select 1268 // instructions. While we are at it, keep track of the instructions 1269 // that need to be moved to the dominating block. 1270 SmallPtrSet<Instruction*, 4> AggressiveInsts; 1271 unsigned MaxCostVal0 = PHINodeFoldingThreshold, 1272 MaxCostVal1 = PHINodeFoldingThreshold; 1273 1274 for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) { 1275 PHINode *PN = cast<PHINode>(II++); 1276 if (Value *V = SimplifyInstruction(PN, TD)) { 1277 PN->replaceAllUsesWith(V); 1278 PN->eraseFromParent(); 1279 continue; 1280 } 1281 1282 if (!DominatesMergePoint(PN->getIncomingValue(0), BB, &AggressiveInsts, 1283 MaxCostVal0) || 1284 !DominatesMergePoint(PN->getIncomingValue(1), BB, &AggressiveInsts, 1285 MaxCostVal1)) 1286 return false; 1287 } 1288 1289 // If we folded the the first phi, PN dangles at this point. Refresh it. If 1290 // we ran out of PHIs then we simplified them all. 1291 PN = dyn_cast<PHINode>(BB->begin()); 1292 if (PN == 0) return true; 1293 1294 // Don't fold i1 branches on PHIs which contain binary operators. These can 1295 // often be turned into switches and other things. 1296 if (PN->getType()->isIntegerTy(1) && 1297 (isa<BinaryOperator>(PN->getIncomingValue(0)) || 1298 isa<BinaryOperator>(PN->getIncomingValue(1)) || 1299 isa<BinaryOperator>(IfCond))) 1300 return false; 1301 1302 // If we all PHI nodes are promotable, check to make sure that all 1303 // instructions in the predecessor blocks can be promoted as well. If 1304 // not, we won't be able to get rid of the control flow, so it's not 1305 // worth promoting to select instructions. 1306 BasicBlock *DomBlock = 0; 1307 BasicBlock *IfBlock1 = PN->getIncomingBlock(0); 1308 BasicBlock *IfBlock2 = PN->getIncomingBlock(1); 1309 if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) { 1310 IfBlock1 = 0; 1311 } else { 1312 DomBlock = *pred_begin(IfBlock1); 1313 for (BasicBlock::iterator I = IfBlock1->begin();!isa<TerminatorInst>(I);++I) 1314 if (!AggressiveInsts.count(I) && !isa<DbgInfoIntrinsic>(I)) { 1315 // This is not an aggressive instruction that we can promote. 1316 // Because of this, we won't be able to get rid of the control 1317 // flow, so the xform is not worth it. 1318 return false; 1319 } 1320 } 1321 1322 if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) { 1323 IfBlock2 = 0; 1324 } else { 1325 DomBlock = *pred_begin(IfBlock2); 1326 for (BasicBlock::iterator I = IfBlock2->begin();!isa<TerminatorInst>(I);++I) 1327 if (!AggressiveInsts.count(I) && !isa<DbgInfoIntrinsic>(I)) { 1328 // This is not an aggressive instruction that we can promote. 1329 // Because of this, we won't be able to get rid of the control 1330 // flow, so the xform is not worth it. 1331 return false; 1332 } 1333 } 1334 1335 DEBUG(dbgs() << "FOUND IF CONDITION! " << *IfCond << " T: " 1336 << IfTrue->getName() << " F: " << IfFalse->getName() << "\n"); 1337 1338 // If we can still promote the PHI nodes after this gauntlet of tests, 1339 // do all of the PHI's now. 1340 Instruction *InsertPt = DomBlock->getTerminator(); 1341 IRBuilder<true, NoFolder> Builder(InsertPt); 1342 1343 // Move all 'aggressive' instructions, which are defined in the 1344 // conditional parts of the if's up to the dominating block. 1345 if (IfBlock1) 1346 DomBlock->getInstList().splice(InsertPt, 1347 IfBlock1->getInstList(), IfBlock1->begin(), 1348 IfBlock1->getTerminator()); 1349 if (IfBlock2) 1350 DomBlock->getInstList().splice(InsertPt, 1351 IfBlock2->getInstList(), IfBlock2->begin(), 1352 IfBlock2->getTerminator()); 1353 1354 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) { 1355 // Change the PHI node into a select instruction. 1356 Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse); 1357 Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue); 1358 1359 SelectInst *NV = 1360 cast<SelectInst>(Builder.CreateSelect(IfCond, TrueVal, FalseVal, "")); 1361 PN->replaceAllUsesWith(NV); 1362 NV->takeName(PN); 1363 PN->eraseFromParent(); 1364 } 1365 1366 // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement 1367 // has been flattened. Change DomBlock to jump directly to our new block to 1368 // avoid other simplifycfg's kicking in on the diamond. 1369 TerminatorInst *OldTI = DomBlock->getTerminator(); 1370 Builder.SetInsertPoint(OldTI); 1371 Builder.CreateBr(BB); 1372 OldTI->eraseFromParent(); 1373 return true; 1374 } 1375 1376 /// SimplifyCondBranchToTwoReturns - If we found a conditional branch that goes 1377 /// to two returning blocks, try to merge them together into one return, 1378 /// introducing a select if the return values disagree. 1379 static bool SimplifyCondBranchToTwoReturns(BranchInst *BI, 1380 IRBuilder<> &Builder) { 1381 assert(BI->isConditional() && "Must be a conditional branch"); 1382 BasicBlock *TrueSucc = BI->getSuccessor(0); 1383 BasicBlock *FalseSucc = BI->getSuccessor(1); 1384 ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator()); 1385 ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator()); 1386 1387 // Check to ensure both blocks are empty (just a return) or optionally empty 1388 // with PHI nodes. If there are other instructions, merging would cause extra 1389 // computation on one path or the other. 1390 if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator()) 1391 return false; 1392 if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator()) 1393 return false; 1394 1395 Builder.SetInsertPoint(BI); 1396 // Okay, we found a branch that is going to two return nodes. If 1397 // there is no return value for this function, just change the 1398 // branch into a return. 1399 if (FalseRet->getNumOperands() == 0) { 1400 TrueSucc->removePredecessor(BI->getParent()); 1401 FalseSucc->removePredecessor(BI->getParent()); 1402 Builder.CreateRetVoid(); 1403 EraseTerminatorInstAndDCECond(BI); 1404 return true; 1405 } 1406 1407 // Otherwise, figure out what the true and false return values are 1408 // so we can insert a new select instruction. 1409 Value *TrueValue = TrueRet->getReturnValue(); 1410 Value *FalseValue = FalseRet->getReturnValue(); 1411 1412 // Unwrap any PHI nodes in the return blocks. 1413 if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue)) 1414 if (TVPN->getParent() == TrueSucc) 1415 TrueValue = TVPN->getIncomingValueForBlock(BI->getParent()); 1416 if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue)) 1417 if (FVPN->getParent() == FalseSucc) 1418 FalseValue = FVPN->getIncomingValueForBlock(BI->getParent()); 1419 1420 // In order for this transformation to be safe, we must be able to 1421 // unconditionally execute both operands to the return. This is 1422 // normally the case, but we could have a potentially-trapping 1423 // constant expression that prevents this transformation from being 1424 // safe. 1425 if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue)) 1426 if (TCV->canTrap()) 1427 return false; 1428 if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue)) 1429 if (FCV->canTrap()) 1430 return false; 1431 1432 // Okay, we collected all the mapped values and checked them for sanity, and 1433 // defined to really do this transformation. First, update the CFG. 1434 TrueSucc->removePredecessor(BI->getParent()); 1435 FalseSucc->removePredecessor(BI->getParent()); 1436 1437 // Insert select instructions where needed. 1438 Value *BrCond = BI->getCondition(); 1439 if (TrueValue) { 1440 // Insert a select if the results differ. 1441 if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) { 1442 } else if (isa<UndefValue>(TrueValue)) { 1443 TrueValue = FalseValue; 1444 } else { 1445 TrueValue = Builder.CreateSelect(BrCond, TrueValue, 1446 FalseValue, "retval"); 1447 } 1448 } 1449 1450 Value *RI = !TrueValue ? 1451 Builder.CreateRetVoid() : Builder.CreateRet(TrueValue); 1452 1453 (void) RI; 1454 1455 DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:" 1456 << "\n " << *BI << "NewRet = " << *RI 1457 << "TRUEBLOCK: " << *TrueSucc << "FALSEBLOCK: "<< *FalseSucc); 1458 1459 EraseTerminatorInstAndDCECond(BI); 1460 1461 return true; 1462 } 1463 1464 /// FoldBranchToCommonDest - If this basic block is simple enough, and if a 1465 /// predecessor branches to us and one of our successors, fold the block into 1466 /// the predecessor and use logical operations to pick the right destination. 1467 bool llvm::FoldBranchToCommonDest(BranchInst *BI) { 1468 BasicBlock *BB = BI->getParent(); 1469 1470 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()); 1471 if (Cond == 0 || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) || 1472 Cond->getParent() != BB || !Cond->hasOneUse()) 1473 return false; 1474 1475 // Only allow this if the condition is a simple instruction that can be 1476 // executed unconditionally. It must be in the same block as the branch, and 1477 // must be at the front of the block. 1478 BasicBlock::iterator FrontIt = BB->front(); 1479 1480 // Ignore dbg intrinsics. 1481 while (isa<DbgInfoIntrinsic>(FrontIt)) ++FrontIt; 1482 1483 // Allow a single instruction to be hoisted in addition to the compare 1484 // that feeds the branch. We later ensure that any values that _it_ uses 1485 // were also live in the predecessor, so that we don't unnecessarily create 1486 // register pressure or inhibit out-of-order execution. 1487 Instruction *BonusInst = 0; 1488 if (&*FrontIt != Cond && 1489 FrontIt->hasOneUse() && *FrontIt->use_begin() == Cond && 1490 FrontIt->isSafeToSpeculativelyExecute()) { 1491 BonusInst = &*FrontIt; 1492 ++FrontIt; 1493 1494 // Ignore dbg intrinsics. 1495 while (isa<DbgInfoIntrinsic>(FrontIt)) ++FrontIt; 1496 } 1497 1498 // Only a single bonus inst is allowed. 1499 if (&*FrontIt != Cond) 1500 return false; 1501 1502 // Make sure the instruction after the condition is the cond branch. 1503 BasicBlock::iterator CondIt = Cond; ++CondIt; 1504 1505 // Ingore dbg intrinsics. 1506 while (isa<DbgInfoIntrinsic>(CondIt)) ++CondIt; 1507 1508 if (&*CondIt != BI) 1509 return false; 1510 1511 // Cond is known to be a compare or binary operator. Check to make sure that 1512 // neither operand is a potentially-trapping constant expression. 1513 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0))) 1514 if (CE->canTrap()) 1515 return false; 1516 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1))) 1517 if (CE->canTrap()) 1518 return false; 1519 1520 // Finally, don't infinitely unroll conditional loops. 1521 BasicBlock *TrueDest = BI->getSuccessor(0); 1522 BasicBlock *FalseDest = BI->getSuccessor(1); 1523 if (TrueDest == BB || FalseDest == BB) 1524 return false; 1525 1526 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 1527 BasicBlock *PredBlock = *PI; 1528 BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator()); 1529 1530 // Check that we have two conditional branches. If there is a PHI node in 1531 // the common successor, verify that the same value flows in from both 1532 // blocks. 1533 if (PBI == 0 || PBI->isUnconditional() || !SafeToMergeTerminators(BI, PBI)) 1534 continue; 1535 1536 // Determine if the two branches share a common destination. 1537 Instruction::BinaryOps Opc; 1538 bool InvertPredCond = false; 1539 1540 if (PBI->getSuccessor(0) == TrueDest) 1541 Opc = Instruction::Or; 1542 else if (PBI->getSuccessor(1) == FalseDest) 1543 Opc = Instruction::And; 1544 else if (PBI->getSuccessor(0) == FalseDest) 1545 Opc = Instruction::And, InvertPredCond = true; 1546 else if (PBI->getSuccessor(1) == TrueDest) 1547 Opc = Instruction::Or, InvertPredCond = true; 1548 else 1549 continue; 1550 1551 // Ensure that any values used in the bonus instruction are also used 1552 // by the terminator of the predecessor. This means that those values 1553 // must already have been resolved, so we won't be inhibiting the 1554 // out-of-order core by speculating them earlier. 1555 if (BonusInst) { 1556 // Collect the values used by the bonus inst 1557 SmallPtrSet<Value*, 4> UsedValues; 1558 for (Instruction::op_iterator OI = BonusInst->op_begin(), 1559 OE = BonusInst->op_end(); OI != OE; ++OI) { 1560 Value* V = *OI; 1561 if (!isa<Constant>(V)) 1562 UsedValues.insert(V); 1563 } 1564 1565 SmallVector<std::pair<Value*, unsigned>, 4> Worklist; 1566 Worklist.push_back(std::make_pair(PBI->getOperand(0), 0)); 1567 1568 // Walk up to four levels back up the use-def chain of the predecessor's 1569 // terminator to see if all those values were used. The choice of four 1570 // levels is arbitrary, to provide a compile-time-cost bound. 1571 while (!Worklist.empty()) { 1572 std::pair<Value*, unsigned> Pair = Worklist.back(); 1573 Worklist.pop_back(); 1574 1575 if (Pair.second >= 4) continue; 1576 UsedValues.erase(Pair.first); 1577 if (UsedValues.empty()) break; 1578 1579 if (Instruction *I = dyn_cast<Instruction>(Pair.first)) { 1580 for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end(); 1581 OI != OE; ++OI) 1582 Worklist.push_back(std::make_pair(OI->get(), Pair.second+1)); 1583 } 1584 } 1585 1586 if (!UsedValues.empty()) return false; 1587 } 1588 1589 DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB); 1590 IRBuilder<> Builder(PBI); 1591 1592 // If we need to invert the condition in the pred block to match, do so now. 1593 if (InvertPredCond) { 1594 Value *NewCond = PBI->getCondition(); 1595 1596 if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) { 1597 CmpInst *CI = cast<CmpInst>(NewCond); 1598 CI->setPredicate(CI->getInversePredicate()); 1599 } else { 1600 NewCond = Builder.CreateNot(NewCond, 1601 PBI->getCondition()->getName()+".not"); 1602 } 1603 1604 PBI->setCondition(NewCond); 1605 BasicBlock *OldTrue = PBI->getSuccessor(0); 1606 BasicBlock *OldFalse = PBI->getSuccessor(1); 1607 PBI->setSuccessor(0, OldFalse); 1608 PBI->setSuccessor(1, OldTrue); 1609 } 1610 1611 // If we have a bonus inst, clone it into the predecessor block. 1612 Instruction *NewBonus = 0; 1613 if (BonusInst) { 1614 NewBonus = BonusInst->clone(); 1615 PredBlock->getInstList().insert(PBI, NewBonus); 1616 NewBonus->takeName(BonusInst); 1617 BonusInst->setName(BonusInst->getName()+".old"); 1618 } 1619 1620 // Clone Cond into the predecessor basic block, and or/and the 1621 // two conditions together. 1622 Instruction *New = Cond->clone(); 1623 if (BonusInst) New->replaceUsesOfWith(BonusInst, NewBonus); 1624 PredBlock->getInstList().insert(PBI, New); 1625 New->takeName(Cond); 1626 Cond->setName(New->getName()+".old"); 1627 1628 Instruction *NewCond = 1629 cast<Instruction>(Builder.CreateBinOp(Opc, PBI->getCondition(), 1630 New, "or.cond")); 1631 PBI->setCondition(NewCond); 1632 if (PBI->getSuccessor(0) == BB) { 1633 AddPredecessorToBlock(TrueDest, PredBlock, BB); 1634 PBI->setSuccessor(0, TrueDest); 1635 } 1636 if (PBI->getSuccessor(1) == BB) { 1637 AddPredecessorToBlock(FalseDest, PredBlock, BB); 1638 PBI->setSuccessor(1, FalseDest); 1639 } 1640 1641 // Copy any debug value intrinsics into the end of PredBlock. 1642 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) 1643 if (isa<DbgInfoIntrinsic>(*I)) 1644 I->clone()->insertBefore(PBI); 1645 1646 return true; 1647 } 1648 return false; 1649 } 1650 1651 /// SimplifyCondBranchToCondBranch - If we have a conditional branch as a 1652 /// predecessor of another block, this function tries to simplify it. We know 1653 /// that PBI and BI are both conditional branches, and BI is in one of the 1654 /// successor blocks of PBI - PBI branches to BI. 1655 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI) { 1656 assert(PBI->isConditional() && BI->isConditional()); 1657 BasicBlock *BB = BI->getParent(); 1658 1659 // If this block ends with a branch instruction, and if there is a 1660 // predecessor that ends on a branch of the same condition, make 1661 // this conditional branch redundant. 1662 if (PBI->getCondition() == BI->getCondition() && 1663 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 1664 // Okay, the outcome of this conditional branch is statically 1665 // knowable. If this block had a single pred, handle specially. 1666 if (BB->getSinglePredecessor()) { 1667 // Turn this into a branch on constant. 1668 bool CondIsTrue = PBI->getSuccessor(0) == BB; 1669 BI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()), 1670 CondIsTrue)); 1671 return true; // Nuke the branch on constant. 1672 } 1673 1674 // Otherwise, if there are multiple predecessors, insert a PHI that merges 1675 // in the constant and simplify the block result. Subsequent passes of 1676 // simplifycfg will thread the block. 1677 if (BlockIsSimpleEnoughToThreadThrough(BB)) { 1678 pred_iterator PB = pred_begin(BB), PE = pred_end(BB); 1679 PHINode *NewPN = PHINode::Create(Type::getInt1Ty(BB->getContext()), 1680 std::distance(PB, PE), 1681 BI->getCondition()->getName() + ".pr", 1682 BB->begin()); 1683 // Okay, we're going to insert the PHI node. Since PBI is not the only 1684 // predecessor, compute the PHI'd conditional value for all of the preds. 1685 // Any predecessor where the condition is not computable we keep symbolic. 1686 for (pred_iterator PI = PB; PI != PE; ++PI) { 1687 BasicBlock *P = *PI; 1688 if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && 1689 PBI != BI && PBI->isConditional() && 1690 PBI->getCondition() == BI->getCondition() && 1691 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 1692 bool CondIsTrue = PBI->getSuccessor(0) == BB; 1693 NewPN->addIncoming(ConstantInt::get(Type::getInt1Ty(BB->getContext()), 1694 CondIsTrue), P); 1695 } else { 1696 NewPN->addIncoming(BI->getCondition(), P); 1697 } 1698 } 1699 1700 BI->setCondition(NewPN); 1701 return true; 1702 } 1703 } 1704 1705 // If this is a conditional branch in an empty block, and if any 1706 // predecessors is a conditional branch to one of our destinations, 1707 // fold the conditions into logical ops and one cond br. 1708 BasicBlock::iterator BBI = BB->begin(); 1709 // Ignore dbg intrinsics. 1710 while (isa<DbgInfoIntrinsic>(BBI)) 1711 ++BBI; 1712 if (&*BBI != BI) 1713 return false; 1714 1715 1716 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BI->getCondition())) 1717 if (CE->canTrap()) 1718 return false; 1719 1720 int PBIOp, BIOp; 1721 if (PBI->getSuccessor(0) == BI->getSuccessor(0)) 1722 PBIOp = BIOp = 0; 1723 else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) 1724 PBIOp = 0, BIOp = 1; 1725 else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) 1726 PBIOp = 1, BIOp = 0; 1727 else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) 1728 PBIOp = BIOp = 1; 1729 else 1730 return false; 1731 1732 // Check to make sure that the other destination of this branch 1733 // isn't BB itself. If so, this is an infinite loop that will 1734 // keep getting unwound. 1735 if (PBI->getSuccessor(PBIOp) == BB) 1736 return false; 1737 1738 // Do not perform this transformation if it would require 1739 // insertion of a large number of select instructions. For targets 1740 // without predication/cmovs, this is a big pessimization. 1741 BasicBlock *CommonDest = PBI->getSuccessor(PBIOp); 1742 1743 unsigned NumPhis = 0; 1744 for (BasicBlock::iterator II = CommonDest->begin(); 1745 isa<PHINode>(II); ++II, ++NumPhis) 1746 if (NumPhis > 2) // Disable this xform. 1747 return false; 1748 1749 // Finally, if everything is ok, fold the branches to logical ops. 1750 BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1); 1751 1752 DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent() 1753 << "AND: " << *BI->getParent()); 1754 1755 1756 // If OtherDest *is* BB, then BB is a basic block with a single conditional 1757 // branch in it, where one edge (OtherDest) goes back to itself but the other 1758 // exits. We don't *know* that the program avoids the infinite loop 1759 // (even though that seems likely). If we do this xform naively, we'll end up 1760 // recursively unpeeling the loop. Since we know that (after the xform is 1761 // done) that the block *is* infinite if reached, we just make it an obviously 1762 // infinite loop with no cond branch. 1763 if (OtherDest == BB) { 1764 // Insert it at the end of the function, because it's either code, 1765 // or it won't matter if it's hot. :) 1766 BasicBlock *InfLoopBlock = BasicBlock::Create(BB->getContext(), 1767 "infloop", BB->getParent()); 1768 BranchInst::Create(InfLoopBlock, InfLoopBlock); 1769 OtherDest = InfLoopBlock; 1770 } 1771 1772 DEBUG(dbgs() << *PBI->getParent()->getParent()); 1773 1774 // BI may have other predecessors. Because of this, we leave 1775 // it alone, but modify PBI. 1776 1777 // Make sure we get to CommonDest on True&True directions. 1778 Value *PBICond = PBI->getCondition(); 1779 IRBuilder<true, NoFolder> Builder(PBI); 1780 if (PBIOp) 1781 PBICond = Builder.CreateNot(PBICond, PBICond->getName()+".not"); 1782 1783 Value *BICond = BI->getCondition(); 1784 if (BIOp) 1785 BICond = Builder.CreateNot(BICond, BICond->getName()+".not"); 1786 1787 // Merge the conditions. 1788 Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge"); 1789 1790 // Modify PBI to branch on the new condition to the new dests. 1791 PBI->setCondition(Cond); 1792 PBI->setSuccessor(0, CommonDest); 1793 PBI->setSuccessor(1, OtherDest); 1794 1795 // OtherDest may have phi nodes. If so, add an entry from PBI's 1796 // block that are identical to the entries for BI's block. 1797 AddPredecessorToBlock(OtherDest, PBI->getParent(), BB); 1798 1799 // We know that the CommonDest already had an edge from PBI to 1800 // it. If it has PHIs though, the PHIs may have different 1801 // entries for BB and PBI's BB. If so, insert a select to make 1802 // them agree. 1803 PHINode *PN; 1804 for (BasicBlock::iterator II = CommonDest->begin(); 1805 (PN = dyn_cast<PHINode>(II)); ++II) { 1806 Value *BIV = PN->getIncomingValueForBlock(BB); 1807 unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent()); 1808 Value *PBIV = PN->getIncomingValue(PBBIdx); 1809 if (BIV != PBIV) { 1810 // Insert a select in PBI to pick the right value. 1811 Value *NV = cast<SelectInst> 1812 (Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName()+".mux")); 1813 PN->setIncomingValue(PBBIdx, NV); 1814 } 1815 } 1816 1817 DEBUG(dbgs() << "INTO: " << *PBI->getParent()); 1818 DEBUG(dbgs() << *PBI->getParent()->getParent()); 1819 1820 // This basic block is probably dead. We know it has at least 1821 // one fewer predecessor. 1822 return true; 1823 } 1824 1825 // SimplifyTerminatorOnSelect - Simplifies a terminator by replacing it with a 1826 // branch to TrueBB if Cond is true or to FalseBB if Cond is false. 1827 // Takes care of updating the successors and removing the old terminator. 1828 // Also makes sure not to introduce new successors by assuming that edges to 1829 // non-successor TrueBBs and FalseBBs aren't reachable. 1830 static bool SimplifyTerminatorOnSelect(TerminatorInst *OldTerm, Value *Cond, 1831 BasicBlock *TrueBB, BasicBlock *FalseBB){ 1832 // Remove any superfluous successor edges from the CFG. 1833 // First, figure out which successors to preserve. 1834 // If TrueBB and FalseBB are equal, only try to preserve one copy of that 1835 // successor. 1836 BasicBlock *KeepEdge1 = TrueBB; 1837 BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : 0; 1838 1839 // Then remove the rest. 1840 for (unsigned I = 0, E = OldTerm->getNumSuccessors(); I != E; ++I) { 1841 BasicBlock *Succ = OldTerm->getSuccessor(I); 1842 // Make sure only to keep exactly one copy of each edge. 1843 if (Succ == KeepEdge1) 1844 KeepEdge1 = 0; 1845 else if (Succ == KeepEdge2) 1846 KeepEdge2 = 0; 1847 else 1848 Succ->removePredecessor(OldTerm->getParent()); 1849 } 1850 1851 IRBuilder<> Builder(OldTerm); 1852 Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc()); 1853 1854 // Insert an appropriate new terminator. 1855 if ((KeepEdge1 == 0) && (KeepEdge2 == 0)) { 1856 if (TrueBB == FalseBB) 1857 // We were only looking for one successor, and it was present. 1858 // Create an unconditional branch to it. 1859 Builder.CreateBr(TrueBB); 1860 else 1861 // We found both of the successors we were looking for. 1862 // Create a conditional branch sharing the condition of the select. 1863 Builder.CreateCondBr(Cond, TrueBB, FalseBB); 1864 } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) { 1865 // Neither of the selected blocks were successors, so this 1866 // terminator must be unreachable. 1867 new UnreachableInst(OldTerm->getContext(), OldTerm); 1868 } else { 1869 // One of the selected values was a successor, but the other wasn't. 1870 // Insert an unconditional branch to the one that was found; 1871 // the edge to the one that wasn't must be unreachable. 1872 if (KeepEdge1 == 0) 1873 // Only TrueBB was found. 1874 Builder.CreateBr(TrueBB); 1875 else 1876 // Only FalseBB was found. 1877 Builder.CreateBr(FalseBB); 1878 } 1879 1880 EraseTerminatorInstAndDCECond(OldTerm); 1881 return true; 1882 } 1883 1884 // SimplifySwitchOnSelect - Replaces 1885 // (switch (select cond, X, Y)) on constant X, Y 1886 // with a branch - conditional if X and Y lead to distinct BBs, 1887 // unconditional otherwise. 1888 static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) { 1889 // Check for constant integer values in the select. 1890 ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue()); 1891 ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue()); 1892 if (!TrueVal || !FalseVal) 1893 return false; 1894 1895 // Find the relevant condition and destinations. 1896 Value *Condition = Select->getCondition(); 1897 BasicBlock *TrueBB = SI->getSuccessor(SI->findCaseValue(TrueVal)); 1898 BasicBlock *FalseBB = SI->getSuccessor(SI->findCaseValue(FalseVal)); 1899 1900 // Perform the actual simplification. 1901 return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB); 1902 } 1903 1904 // SimplifyIndirectBrOnSelect - Replaces 1905 // (indirectbr (select cond, blockaddress(@fn, BlockA), 1906 // blockaddress(@fn, BlockB))) 1907 // with 1908 // (br cond, BlockA, BlockB). 1909 static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) { 1910 // Check that both operands of the select are block addresses. 1911 BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue()); 1912 BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue()); 1913 if (!TBA || !FBA) 1914 return false; 1915 1916 // Extract the actual blocks. 1917 BasicBlock *TrueBB = TBA->getBasicBlock(); 1918 BasicBlock *FalseBB = FBA->getBasicBlock(); 1919 1920 // Perform the actual simplification. 1921 return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB); 1922 } 1923 1924 /// TryToSimplifyUncondBranchWithICmpInIt - This is called when we find an icmp 1925 /// instruction (a seteq/setne with a constant) as the only instruction in a 1926 /// block that ends with an uncond branch. We are looking for a very specific 1927 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified. In 1928 /// this case, we merge the first two "or's of icmp" into a switch, but then the 1929 /// default value goes to an uncond block with a seteq in it, we get something 1930 /// like: 1931 /// 1932 /// switch i8 %A, label %DEFAULT [ i8 1, label %end i8 2, label %end ] 1933 /// DEFAULT: 1934 /// %tmp = icmp eq i8 %A, 92 1935 /// br label %end 1936 /// end: 1937 /// ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ] 1938 /// 1939 /// We prefer to split the edge to 'end' so that there is a true/false entry to 1940 /// the PHI, merging the third icmp into the switch. 1941 static bool TryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI, 1942 const TargetData *TD, 1943 IRBuilder<> &Builder) { 1944 BasicBlock *BB = ICI->getParent(); 1945 1946 // If the block has any PHIs in it or the icmp has multiple uses, it is too 1947 // complex. 1948 if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) return false; 1949 1950 Value *V = ICI->getOperand(0); 1951 ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1)); 1952 1953 // The pattern we're looking for is where our only predecessor is a switch on 1954 // 'V' and this block is the default case for the switch. In this case we can 1955 // fold the compared value into the switch to simplify things. 1956 BasicBlock *Pred = BB->getSinglePredecessor(); 1957 if (Pred == 0 || !isa<SwitchInst>(Pred->getTerminator())) return false; 1958 1959 SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator()); 1960 if (SI->getCondition() != V) 1961 return false; 1962 1963 // If BB is reachable on a non-default case, then we simply know the value of 1964 // V in this block. Substitute it and constant fold the icmp instruction 1965 // away. 1966 if (SI->getDefaultDest() != BB) { 1967 ConstantInt *VVal = SI->findCaseDest(BB); 1968 assert(VVal && "Should have a unique destination value"); 1969 ICI->setOperand(0, VVal); 1970 1971 if (Value *V = SimplifyInstruction(ICI, TD)) { 1972 ICI->replaceAllUsesWith(V); 1973 ICI->eraseFromParent(); 1974 } 1975 // BB is now empty, so it is likely to simplify away. 1976 return SimplifyCFG(BB) | true; 1977 } 1978 1979 // Ok, the block is reachable from the default dest. If the constant we're 1980 // comparing exists in one of the other edges, then we can constant fold ICI 1981 // and zap it. 1982 if (SI->findCaseValue(Cst) != 0) { 1983 Value *V; 1984 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 1985 V = ConstantInt::getFalse(BB->getContext()); 1986 else 1987 V = ConstantInt::getTrue(BB->getContext()); 1988 1989 ICI->replaceAllUsesWith(V); 1990 ICI->eraseFromParent(); 1991 // BB is now empty, so it is likely to simplify away. 1992 return SimplifyCFG(BB) | true; 1993 } 1994 1995 // The use of the icmp has to be in the 'end' block, by the only PHI node in 1996 // the block. 1997 BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0); 1998 PHINode *PHIUse = dyn_cast<PHINode>(ICI->use_back()); 1999 if (PHIUse == 0 || PHIUse != &SuccBlock->front() || 2000 isa<PHINode>(++BasicBlock::iterator(PHIUse))) 2001 return false; 2002 2003 // If the icmp is a SETEQ, then the default dest gets false, the new edge gets 2004 // true in the PHI. 2005 Constant *DefaultCst = ConstantInt::getTrue(BB->getContext()); 2006 Constant *NewCst = ConstantInt::getFalse(BB->getContext()); 2007 2008 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 2009 std::swap(DefaultCst, NewCst); 2010 2011 // Replace ICI (which is used by the PHI for the default value) with true or 2012 // false depending on if it is EQ or NE. 2013 ICI->replaceAllUsesWith(DefaultCst); 2014 ICI->eraseFromParent(); 2015 2016 // Okay, the switch goes to this block on a default value. Add an edge from 2017 // the switch to the merge point on the compared value. 2018 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "switch.edge", 2019 BB->getParent(), BB); 2020 SI->addCase(Cst, NewBB); 2021 2022 // NewBB branches to the phi block, add the uncond branch and the phi entry. 2023 Builder.SetInsertPoint(NewBB); 2024 Builder.SetCurrentDebugLocation(SI->getDebugLoc()); 2025 Builder.CreateBr(SuccBlock); 2026 PHIUse->addIncoming(NewCst, NewBB); 2027 return true; 2028 } 2029 2030 /// SimplifyBranchOnICmpChain - The specified branch is a conditional branch. 2031 /// Check to see if it is branching on an or/and chain of icmp instructions, and 2032 /// fold it into a switch instruction if so. 2033 static bool SimplifyBranchOnICmpChain(BranchInst *BI, const TargetData *TD, 2034 IRBuilder<> &Builder) { 2035 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()); 2036 if (Cond == 0) return false; 2037 2038 2039 // Change br (X == 0 | X == 1), T, F into a switch instruction. 2040 // If this is a bunch of seteq's or'd together, or if it's a bunch of 2041 // 'setne's and'ed together, collect them. 2042 Value *CompVal = 0; 2043 std::vector<ConstantInt*> Values; 2044 bool TrueWhenEqual = true; 2045 Value *ExtraCase = 0; 2046 unsigned UsedICmps = 0; 2047 2048 if (Cond->getOpcode() == Instruction::Or) { 2049 CompVal = GatherConstantCompares(Cond, Values, ExtraCase, TD, true, 2050 UsedICmps); 2051 } else if (Cond->getOpcode() == Instruction::And) { 2052 CompVal = GatherConstantCompares(Cond, Values, ExtraCase, TD, false, 2053 UsedICmps); 2054 TrueWhenEqual = false; 2055 } 2056 2057 // If we didn't have a multiply compared value, fail. 2058 if (CompVal == 0) return false; 2059 2060 // Avoid turning single icmps into a switch. 2061 if (UsedICmps <= 1) 2062 return false; 2063 2064 // There might be duplicate constants in the list, which the switch 2065 // instruction can't handle, remove them now. 2066 array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate); 2067 Values.erase(std::unique(Values.begin(), Values.end()), Values.end()); 2068 2069 // If Extra was used, we require at least two switch values to do the 2070 // transformation. A switch with one value is just an cond branch. 2071 if (ExtraCase && Values.size() < 2) return false; 2072 2073 // Figure out which block is which destination. 2074 BasicBlock *DefaultBB = BI->getSuccessor(1); 2075 BasicBlock *EdgeBB = BI->getSuccessor(0); 2076 if (!TrueWhenEqual) std::swap(DefaultBB, EdgeBB); 2077 2078 BasicBlock *BB = BI->getParent(); 2079 2080 DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size() 2081 << " cases into SWITCH. BB is:\n" << *BB); 2082 2083 // If there are any extra values that couldn't be folded into the switch 2084 // then we evaluate them with an explicit branch first. Split the block 2085 // right before the condbr to handle it. 2086 if (ExtraCase) { 2087 BasicBlock *NewBB = BB->splitBasicBlock(BI, "switch.early.test"); 2088 // Remove the uncond branch added to the old block. 2089 TerminatorInst *OldTI = BB->getTerminator(); 2090 Builder.SetInsertPoint(OldTI); 2091 2092 if (TrueWhenEqual) 2093 Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB); 2094 else 2095 Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB); 2096 2097 OldTI->eraseFromParent(); 2098 2099 // If there are PHI nodes in EdgeBB, then we need to add a new entry to them 2100 // for the edge we just added. 2101 AddPredecessorToBlock(EdgeBB, BB, NewBB); 2102 2103 DEBUG(dbgs() << " ** 'icmp' chain unhandled condition: " << *ExtraCase 2104 << "\nEXTRABB = " << *BB); 2105 BB = NewBB; 2106 } 2107 2108 Builder.SetInsertPoint(BI); 2109 // Convert pointer to int before we switch. 2110 if (CompVal->getType()->isPointerTy()) { 2111 assert(TD && "Cannot switch on pointer without TargetData"); 2112 CompVal = Builder.CreatePtrToInt(CompVal, 2113 TD->getIntPtrType(CompVal->getContext()), 2114 "magicptr"); 2115 } 2116 2117 // Create the new switch instruction now. 2118 SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size()); 2119 2120 // Add all of the 'cases' to the switch instruction. 2121 for (unsigned i = 0, e = Values.size(); i != e; ++i) 2122 New->addCase(Values[i], EdgeBB); 2123 2124 // We added edges from PI to the EdgeBB. As such, if there were any 2125 // PHI nodes in EdgeBB, they need entries to be added corresponding to 2126 // the number of edges added. 2127 for (BasicBlock::iterator BBI = EdgeBB->begin(); 2128 isa<PHINode>(BBI); ++BBI) { 2129 PHINode *PN = cast<PHINode>(BBI); 2130 Value *InVal = PN->getIncomingValueForBlock(BB); 2131 for (unsigned i = 0, e = Values.size()-1; i != e; ++i) 2132 PN->addIncoming(InVal, BB); 2133 } 2134 2135 // Erase the old branch instruction. 2136 EraseTerminatorInstAndDCECond(BI); 2137 2138 DEBUG(dbgs() << " ** 'icmp' chain result is:\n" << *BB << '\n'); 2139 return true; 2140 } 2141 2142 bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) { 2143 // If this is a trivial landing pad that just continues unwinding the caught 2144 // exception then zap the landing pad, turning its invokes into calls. 2145 BasicBlock *BB = RI->getParent(); 2146 LandingPadInst *LPInst = dyn_cast<LandingPadInst>(BB->getFirstNonPHI()); 2147 if (RI->getValue() != LPInst) 2148 // Not a landing pad, or the resume is not unwinding the exception that 2149 // caused control to branch here. 2150 return false; 2151 2152 // Check that there are no other instructions except for debug intrinsics. 2153 BasicBlock::iterator I = LPInst, E = RI; 2154 while (++I != E) 2155 if (!isa<DbgInfoIntrinsic>(I)) 2156 return false; 2157 2158 // Turn all invokes that unwind here into calls and delete the basic block. 2159 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) { 2160 InvokeInst *II = cast<InvokeInst>((*PI++)->getTerminator()); 2161 SmallVector<Value*, 8> Args(II->op_begin(), II->op_end() - 3); 2162 // Insert a call instruction before the invoke. 2163 CallInst *Call = CallInst::Create(II->getCalledValue(), Args, "", II); 2164 Call->takeName(II); 2165 Call->setCallingConv(II->getCallingConv()); 2166 Call->setAttributes(II->getAttributes()); 2167 Call->setDebugLoc(II->getDebugLoc()); 2168 2169 // Anything that used the value produced by the invoke instruction now uses 2170 // the value produced by the call instruction. Note that we do this even 2171 // for void functions and calls with no uses so that the callgraph edge is 2172 // updated. 2173 II->replaceAllUsesWith(Call); 2174 BB->removePredecessor(II->getParent()); 2175 2176 // Insert a branch to the normal destination right before the invoke. 2177 BranchInst::Create(II->getNormalDest(), II); 2178 2179 // Finally, delete the invoke instruction! 2180 II->eraseFromParent(); 2181 } 2182 2183 // The landingpad is now unreachable. Zap it. 2184 BB->eraseFromParent(); 2185 return true; 2186 } 2187 2188 bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) { 2189 BasicBlock *BB = RI->getParent(); 2190 if (!BB->getFirstNonPHIOrDbg()->isTerminator()) return false; 2191 2192 // Find predecessors that end with branches. 2193 SmallVector<BasicBlock*, 8> UncondBranchPreds; 2194 SmallVector<BranchInst*, 8> CondBranchPreds; 2195 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 2196 BasicBlock *P = *PI; 2197 TerminatorInst *PTI = P->getTerminator(); 2198 if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) { 2199 if (BI->isUnconditional()) 2200 UncondBranchPreds.push_back(P); 2201 else 2202 CondBranchPreds.push_back(BI); 2203 } 2204 } 2205 2206 // If we found some, do the transformation! 2207 if (!UncondBranchPreds.empty() && DupRet) { 2208 while (!UncondBranchPreds.empty()) { 2209 BasicBlock *Pred = UncondBranchPreds.pop_back_val(); 2210 DEBUG(dbgs() << "FOLDING: " << *BB 2211 << "INTO UNCOND BRANCH PRED: " << *Pred); 2212 (void)FoldReturnIntoUncondBranch(RI, BB, Pred); 2213 } 2214 2215 // If we eliminated all predecessors of the block, delete the block now. 2216 if (pred_begin(BB) == pred_end(BB)) 2217 // We know there are no successors, so just nuke the block. 2218 BB->eraseFromParent(); 2219 2220 return true; 2221 } 2222 2223 // Check out all of the conditional branches going to this return 2224 // instruction. If any of them just select between returns, change the 2225 // branch itself into a select/return pair. 2226 while (!CondBranchPreds.empty()) { 2227 BranchInst *BI = CondBranchPreds.pop_back_val(); 2228 2229 // Check to see if the non-BB successor is also a return block. 2230 if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) && 2231 isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) && 2232 SimplifyCondBranchToTwoReturns(BI, Builder)) 2233 return true; 2234 } 2235 return false; 2236 } 2237 2238 bool SimplifyCFGOpt::SimplifyUnwind(UnwindInst *UI, IRBuilder<> &Builder) { 2239 // Check to see if the first instruction in this block is just an unwind. 2240 // If so, replace any invoke instructions which use this as an exception 2241 // destination with call instructions. 2242 BasicBlock *BB = UI->getParent(); 2243 if (!BB->getFirstNonPHIOrDbg()->isTerminator()) return false; 2244 2245 bool Changed = false; 2246 SmallVector<BasicBlock*, 8> Preds(pred_begin(BB), pred_end(BB)); 2247 while (!Preds.empty()) { 2248 BasicBlock *Pred = Preds.back(); 2249 InvokeInst *II = dyn_cast<InvokeInst>(Pred->getTerminator()); 2250 if (II && II->getUnwindDest() == BB) { 2251 // Insert a new branch instruction before the invoke, because this 2252 // is now a fall through. 2253 Builder.SetInsertPoint(II); 2254 BranchInst *BI = Builder.CreateBr(II->getNormalDest()); 2255 Pred->getInstList().remove(II); // Take out of symbol table 2256 2257 // Insert the call now. 2258 SmallVector<Value*,8> Args(II->op_begin(), II->op_end()-3); 2259 Builder.SetInsertPoint(BI); 2260 CallInst *CI = Builder.CreateCall(II->getCalledValue(), 2261 Args, II->getName()); 2262 CI->setCallingConv(II->getCallingConv()); 2263 CI->setAttributes(II->getAttributes()); 2264 // If the invoke produced a value, the Call now does instead. 2265 II->replaceAllUsesWith(CI); 2266 delete II; 2267 Changed = true; 2268 } 2269 2270 Preds.pop_back(); 2271 } 2272 2273 // If this block is now dead (and isn't the entry block), remove it. 2274 if (pred_begin(BB) == pred_end(BB) && 2275 BB != &BB->getParent()->getEntryBlock()) { 2276 // We know there are no successors, so just nuke the block. 2277 BB->eraseFromParent(); 2278 return true; 2279 } 2280 2281 return Changed; 2282 } 2283 2284 bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) { 2285 BasicBlock *BB = UI->getParent(); 2286 2287 bool Changed = false; 2288 2289 // If there are any instructions immediately before the unreachable that can 2290 // be removed, do so. 2291 while (UI != BB->begin()) { 2292 BasicBlock::iterator BBI = UI; 2293 --BBI; 2294 // Do not delete instructions that can have side effects which might cause 2295 // the unreachable to not be reachable; specifically, calls and volatile 2296 // operations may have this effect. 2297 if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) break; 2298 2299 if (BBI->mayHaveSideEffects()) { 2300 if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) { 2301 if (SI->isVolatile()) 2302 break; 2303 } else if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) { 2304 if (LI->isVolatile()) 2305 break; 2306 } else if (AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(BBI)) { 2307 if (RMWI->isVolatile()) 2308 break; 2309 } else if (AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) { 2310 if (CXI->isVolatile()) 2311 break; 2312 } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) && 2313 !isa<LandingPadInst>(BBI)) { 2314 break; 2315 } 2316 // Note that deleting LandingPad's here is in fact okay, although it 2317 // involves a bit of subtle reasoning. If this inst is a LandingPad, 2318 // all the predecessors of this block will be the unwind edges of Invokes, 2319 // and we can therefore guarantee this block will be erased. 2320 } 2321 2322 // Delete this instruction (any uses are guaranteed to be dead) 2323 if (!BBI->use_empty()) 2324 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 2325 BBI->eraseFromParent(); 2326 Changed = true; 2327 } 2328 2329 // If the unreachable instruction is the first in the block, take a gander 2330 // at all of the predecessors of this instruction, and simplify them. 2331 if (&BB->front() != UI) return Changed; 2332 2333 SmallVector<BasicBlock*, 8> Preds(pred_begin(BB), pred_end(BB)); 2334 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 2335 TerminatorInst *TI = Preds[i]->getTerminator(); 2336 IRBuilder<> Builder(TI); 2337 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 2338 if (BI->isUnconditional()) { 2339 if (BI->getSuccessor(0) == BB) { 2340 new UnreachableInst(TI->getContext(), TI); 2341 TI->eraseFromParent(); 2342 Changed = true; 2343 } 2344 } else { 2345 if (BI->getSuccessor(0) == BB) { 2346 Builder.CreateBr(BI->getSuccessor(1)); 2347 EraseTerminatorInstAndDCECond(BI); 2348 } else if (BI->getSuccessor(1) == BB) { 2349 Builder.CreateBr(BI->getSuccessor(0)); 2350 EraseTerminatorInstAndDCECond(BI); 2351 Changed = true; 2352 } 2353 } 2354 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 2355 for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i) 2356 if (SI->getSuccessor(i) == BB) { 2357 BB->removePredecessor(SI->getParent()); 2358 SI->removeCase(i); 2359 --i; --e; 2360 Changed = true; 2361 } 2362 // If the default value is unreachable, figure out the most popular 2363 // destination and make it the default. 2364 if (SI->getSuccessor(0) == BB) { 2365 std::map<BasicBlock*, std::pair<unsigned, unsigned> > Popularity; 2366 for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i) { 2367 std::pair<unsigned, unsigned>& entry = 2368 Popularity[SI->getSuccessor(i)]; 2369 if (entry.first == 0) { 2370 entry.first = 1; 2371 entry.second = i; 2372 } else { 2373 entry.first++; 2374 } 2375 } 2376 2377 // Find the most popular block. 2378 unsigned MaxPop = 0; 2379 unsigned MaxIndex = 0; 2380 BasicBlock *MaxBlock = 0; 2381 for (std::map<BasicBlock*, std::pair<unsigned, unsigned> >::iterator 2382 I = Popularity.begin(), E = Popularity.end(); I != E; ++I) { 2383 if (I->second.first > MaxPop || 2384 (I->second.first == MaxPop && MaxIndex > I->second.second)) { 2385 MaxPop = I->second.first; 2386 MaxIndex = I->second.second; 2387 MaxBlock = I->first; 2388 } 2389 } 2390 if (MaxBlock) { 2391 // Make this the new default, allowing us to delete any explicit 2392 // edges to it. 2393 SI->setSuccessor(0, MaxBlock); 2394 Changed = true; 2395 2396 // If MaxBlock has phinodes in it, remove MaxPop-1 entries from 2397 // it. 2398 if (isa<PHINode>(MaxBlock->begin())) 2399 for (unsigned i = 0; i != MaxPop-1; ++i) 2400 MaxBlock->removePredecessor(SI->getParent()); 2401 2402 for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i) 2403 if (SI->getSuccessor(i) == MaxBlock) { 2404 SI->removeCase(i); 2405 --i; --e; 2406 } 2407 } 2408 } 2409 } else if (InvokeInst *II = dyn_cast<InvokeInst>(TI)) { 2410 if (II->getUnwindDest() == BB) { 2411 // Convert the invoke to a call instruction. This would be a good 2412 // place to note that the call does not throw though. 2413 BranchInst *BI = Builder.CreateBr(II->getNormalDest()); 2414 II->removeFromParent(); // Take out of symbol table 2415 2416 // Insert the call now... 2417 SmallVector<Value*, 8> Args(II->op_begin(), II->op_end()-3); 2418 Builder.SetInsertPoint(BI); 2419 CallInst *CI = Builder.CreateCall(II->getCalledValue(), 2420 Args, II->getName()); 2421 CI->setCallingConv(II->getCallingConv()); 2422 CI->setAttributes(II->getAttributes()); 2423 // If the invoke produced a value, the call does now instead. 2424 II->replaceAllUsesWith(CI); 2425 delete II; 2426 Changed = true; 2427 } 2428 } 2429 } 2430 2431 // If this block is now dead, remove it. 2432 if (pred_begin(BB) == pred_end(BB) && 2433 BB != &BB->getParent()->getEntryBlock()) { 2434 // We know there are no successors, so just nuke the block. 2435 BB->eraseFromParent(); 2436 return true; 2437 } 2438 2439 return Changed; 2440 } 2441 2442 /// TurnSwitchRangeIntoICmp - Turns a switch with that contains only a 2443 /// integer range comparison into a sub, an icmp and a branch. 2444 static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) { 2445 assert(SI->getNumCases() > 2 && "Degenerate switch?"); 2446 2447 // Make sure all cases point to the same destination and gather the values. 2448 SmallVector<ConstantInt *, 16> Cases; 2449 Cases.push_back(SI->getCaseValue(1)); 2450 for (unsigned I = 2, E = SI->getNumCases(); I != E; ++I) { 2451 if (SI->getSuccessor(I-1) != SI->getSuccessor(I)) 2452 return false; 2453 Cases.push_back(SI->getCaseValue(I)); 2454 } 2455 assert(Cases.size() == SI->getNumCases()-1 && "Not all cases gathered"); 2456 2457 // Sort the case values, then check if they form a range we can transform. 2458 array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate); 2459 for (unsigned I = 1, E = Cases.size(); I != E; ++I) { 2460 if (Cases[I-1]->getValue() != Cases[I]->getValue()+1) 2461 return false; 2462 } 2463 2464 Constant *Offset = ConstantExpr::getNeg(Cases.back()); 2465 Constant *NumCases = ConstantInt::get(Offset->getType(), SI->getNumCases()-1); 2466 2467 Value *Sub = SI->getCondition(); 2468 if (!Offset->isNullValue()) 2469 Sub = Builder.CreateAdd(Sub, Offset, Sub->getName()+".off"); 2470 Value *Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch"); 2471 Builder.CreateCondBr(Cmp, SI->getSuccessor(1), SI->getDefaultDest()); 2472 2473 // Prune obsolete incoming values off the successor's PHI nodes. 2474 for (BasicBlock::iterator BBI = SI->getSuccessor(1)->begin(); 2475 isa<PHINode>(BBI); ++BBI) { 2476 for (unsigned I = 0, E = SI->getNumCases()-2; I != E; ++I) 2477 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 2478 } 2479 SI->eraseFromParent(); 2480 2481 return true; 2482 } 2483 2484 /// EliminateDeadSwitchCases - Compute masked bits for the condition of a switch 2485 /// and use it to remove dead cases. 2486 static bool EliminateDeadSwitchCases(SwitchInst *SI) { 2487 Value *Cond = SI->getCondition(); 2488 unsigned Bits = cast<IntegerType>(Cond->getType())->getBitWidth(); 2489 APInt KnownZero(Bits, 0), KnownOne(Bits, 0); 2490 ComputeMaskedBits(Cond, APInt::getAllOnesValue(Bits), KnownZero, KnownOne); 2491 2492 // Gather dead cases. 2493 SmallVector<ConstantInt*, 8> DeadCases; 2494 for (unsigned I = 1, E = SI->getNumCases(); I != E; ++I) { 2495 if ((SI->getCaseValue(I)->getValue() & KnownZero) != 0 || 2496 (SI->getCaseValue(I)->getValue() & KnownOne) != KnownOne) { 2497 DeadCases.push_back(SI->getCaseValue(I)); 2498 DEBUG(dbgs() << "SimplifyCFG: switch case '" 2499 << SI->getCaseValue(I)->getValue() << "' is dead.\n"); 2500 } 2501 } 2502 2503 // Remove dead cases from the switch. 2504 for (unsigned I = 0, E = DeadCases.size(); I != E; ++I) { 2505 unsigned Case = SI->findCaseValue(DeadCases[I]); 2506 // Prune unused values from PHI nodes. 2507 SI->getSuccessor(Case)->removePredecessor(SI->getParent()); 2508 SI->removeCase(Case); 2509 } 2510 2511 return !DeadCases.empty(); 2512 } 2513 2514 /// FindPHIForConditionForwarding - If BB would be eligible for simplification 2515 /// by TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated 2516 /// by an unconditional branch), look at the phi node for BB in the successor 2517 /// block and see if the incoming value is equal to CaseValue. If so, return 2518 /// the phi node, and set PhiIndex to BB's index in the phi node. 2519 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue, 2520 BasicBlock *BB, 2521 int *PhiIndex) { 2522 if (BB->getFirstNonPHIOrDbg() != BB->getTerminator()) 2523 return NULL; // BB must be empty to be a candidate for simplification. 2524 if (!BB->getSinglePredecessor()) 2525 return NULL; // BB must be dominated by the switch. 2526 2527 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 2528 if (!Branch || !Branch->isUnconditional()) 2529 return NULL; // Terminator must be unconditional branch. 2530 2531 BasicBlock *Succ = Branch->getSuccessor(0); 2532 2533 BasicBlock::iterator I = Succ->begin(); 2534 while (PHINode *PHI = dyn_cast<PHINode>(I++)) { 2535 int Idx = PHI->getBasicBlockIndex(BB); 2536 assert(Idx >= 0 && "PHI has no entry for predecessor?"); 2537 2538 Value *InValue = PHI->getIncomingValue(Idx); 2539 if (InValue != CaseValue) continue; 2540 2541 *PhiIndex = Idx; 2542 return PHI; 2543 } 2544 2545 return NULL; 2546 } 2547 2548 /// ForwardSwitchConditionToPHI - Try to forward the condition of a switch 2549 /// instruction to a phi node dominated by the switch, if that would mean that 2550 /// some of the destination blocks of the switch can be folded away. 2551 /// Returns true if a change is made. 2552 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) { 2553 typedef DenseMap<PHINode*, SmallVector<int,4> > ForwardingNodesMap; 2554 ForwardingNodesMap ForwardingNodes; 2555 2556 for (unsigned I = 1; I < SI->getNumCases(); ++I) { // 0 is the default case. 2557 ConstantInt *CaseValue = SI->getCaseValue(I); 2558 BasicBlock *CaseDest = SI->getSuccessor(I); 2559 2560 int PhiIndex; 2561 PHINode *PHI = FindPHIForConditionForwarding(CaseValue, CaseDest, 2562 &PhiIndex); 2563 if (!PHI) continue; 2564 2565 ForwardingNodes[PHI].push_back(PhiIndex); 2566 } 2567 2568 bool Changed = false; 2569 2570 for (ForwardingNodesMap::iterator I = ForwardingNodes.begin(), 2571 E = ForwardingNodes.end(); I != E; ++I) { 2572 PHINode *Phi = I->first; 2573 SmallVector<int,4> &Indexes = I->second; 2574 2575 if (Indexes.size() < 2) continue; 2576 2577 for (size_t I = 0, E = Indexes.size(); I != E; ++I) 2578 Phi->setIncomingValue(Indexes[I], SI->getCondition()); 2579 Changed = true; 2580 } 2581 2582 return Changed; 2583 } 2584 2585 bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) { 2586 // If this switch is too complex to want to look at, ignore it. 2587 if (!isValueEqualityComparison(SI)) 2588 return false; 2589 2590 BasicBlock *BB = SI->getParent(); 2591 2592 // If we only have one predecessor, and if it is a branch on this value, 2593 // see if that predecessor totally determines the outcome of this switch. 2594 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 2595 if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder)) 2596 return SimplifyCFG(BB) | true; 2597 2598 Value *Cond = SI->getCondition(); 2599 if (SelectInst *Select = dyn_cast<SelectInst>(Cond)) 2600 if (SimplifySwitchOnSelect(SI, Select)) 2601 return SimplifyCFG(BB) | true; 2602 2603 // If the block only contains the switch, see if we can fold the block 2604 // away into any preds. 2605 BasicBlock::iterator BBI = BB->begin(); 2606 // Ignore dbg intrinsics. 2607 while (isa<DbgInfoIntrinsic>(BBI)) 2608 ++BBI; 2609 if (SI == &*BBI) 2610 if (FoldValueComparisonIntoPredecessors(SI, Builder)) 2611 return SimplifyCFG(BB) | true; 2612 2613 // Try to transform the switch into an icmp and a branch. 2614 if (TurnSwitchRangeIntoICmp(SI, Builder)) 2615 return SimplifyCFG(BB) | true; 2616 2617 // Remove unreachable cases. 2618 if (EliminateDeadSwitchCases(SI)) 2619 return SimplifyCFG(BB) | true; 2620 2621 if (ForwardSwitchConditionToPHI(SI)) 2622 return SimplifyCFG(BB) | true; 2623 2624 return false; 2625 } 2626 2627 bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) { 2628 BasicBlock *BB = IBI->getParent(); 2629 bool Changed = false; 2630 2631 // Eliminate redundant destinations. 2632 SmallPtrSet<Value *, 8> Succs; 2633 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 2634 BasicBlock *Dest = IBI->getDestination(i); 2635 if (!Dest->hasAddressTaken() || !Succs.insert(Dest)) { 2636 Dest->removePredecessor(BB); 2637 IBI->removeDestination(i); 2638 --i; --e; 2639 Changed = true; 2640 } 2641 } 2642 2643 if (IBI->getNumDestinations() == 0) { 2644 // If the indirectbr has no successors, change it to unreachable. 2645 new UnreachableInst(IBI->getContext(), IBI); 2646 EraseTerminatorInstAndDCECond(IBI); 2647 return true; 2648 } 2649 2650 if (IBI->getNumDestinations() == 1) { 2651 // If the indirectbr has one successor, change it to a direct branch. 2652 BranchInst::Create(IBI->getDestination(0), IBI); 2653 EraseTerminatorInstAndDCECond(IBI); 2654 return true; 2655 } 2656 2657 if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) { 2658 if (SimplifyIndirectBrOnSelect(IBI, SI)) 2659 return SimplifyCFG(BB) | true; 2660 } 2661 return Changed; 2662 } 2663 2664 bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder){ 2665 BasicBlock *BB = BI->getParent(); 2666 2667 // If the Terminator is the only non-phi instruction, simplify the block. 2668 BasicBlock::iterator I = BB->getFirstNonPHIOrDbgOrLifetime(); 2669 if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() && 2670 TryToSimplifyUncondBranchFromEmptyBlock(BB)) 2671 return true; 2672 2673 // If the only instruction in the block is a seteq/setne comparison 2674 // against a constant, try to simplify the block. 2675 if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) 2676 if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) { 2677 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 2678 ; 2679 if (I->isTerminator() 2680 && TryToSimplifyUncondBranchWithICmpInIt(ICI, TD, Builder)) 2681 return true; 2682 } 2683 2684 return false; 2685 } 2686 2687 2688 bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) { 2689 BasicBlock *BB = BI->getParent(); 2690 2691 // Conditional branch 2692 if (isValueEqualityComparison(BI)) { 2693 // If we only have one predecessor, and if it is a branch on this value, 2694 // see if that predecessor totally determines the outcome of this 2695 // switch. 2696 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 2697 if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder)) 2698 return SimplifyCFG(BB) | true; 2699 2700 // This block must be empty, except for the setcond inst, if it exists. 2701 // Ignore dbg intrinsics. 2702 BasicBlock::iterator I = BB->begin(); 2703 // Ignore dbg intrinsics. 2704 while (isa<DbgInfoIntrinsic>(I)) 2705 ++I; 2706 if (&*I == BI) { 2707 if (FoldValueComparisonIntoPredecessors(BI, Builder)) 2708 return SimplifyCFG(BB) | true; 2709 } else if (&*I == cast<Instruction>(BI->getCondition())){ 2710 ++I; 2711 // Ignore dbg intrinsics. 2712 while (isa<DbgInfoIntrinsic>(I)) 2713 ++I; 2714 if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder)) 2715 return SimplifyCFG(BB) | true; 2716 } 2717 } 2718 2719 // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction. 2720 if (SimplifyBranchOnICmpChain(BI, TD, Builder)) 2721 return true; 2722 2723 // We have a conditional branch to two blocks that are only reachable 2724 // from BI. We know that the condbr dominates the two blocks, so see if 2725 // there is any identical code in the "then" and "else" blocks. If so, we 2726 // can hoist it up to the branching block. 2727 if (BI->getSuccessor(0)->getSinglePredecessor() != 0) { 2728 if (BI->getSuccessor(1)->getSinglePredecessor() != 0) { 2729 if (HoistThenElseCodeToIf(BI)) 2730 return SimplifyCFG(BB) | true; 2731 } else { 2732 // If Successor #1 has multiple preds, we may be able to conditionally 2733 // execute Successor #0 if it branches to successor #1. 2734 TerminatorInst *Succ0TI = BI->getSuccessor(0)->getTerminator(); 2735 if (Succ0TI->getNumSuccessors() == 1 && 2736 Succ0TI->getSuccessor(0) == BI->getSuccessor(1)) 2737 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0))) 2738 return SimplifyCFG(BB) | true; 2739 } 2740 } else if (BI->getSuccessor(1)->getSinglePredecessor() != 0) { 2741 // If Successor #0 has multiple preds, we may be able to conditionally 2742 // execute Successor #1 if it branches to successor #0. 2743 TerminatorInst *Succ1TI = BI->getSuccessor(1)->getTerminator(); 2744 if (Succ1TI->getNumSuccessors() == 1 && 2745 Succ1TI->getSuccessor(0) == BI->getSuccessor(0)) 2746 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1))) 2747 return SimplifyCFG(BB) | true; 2748 } 2749 2750 // If this is a branch on a phi node in the current block, thread control 2751 // through this block if any PHI node entries are constants. 2752 if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition())) 2753 if (PN->getParent() == BI->getParent()) 2754 if (FoldCondBranchOnPHI(BI, TD)) 2755 return SimplifyCFG(BB) | true; 2756 2757 // If this basic block is ONLY a setcc and a branch, and if a predecessor 2758 // branches to us and one of our successors, fold the setcc into the 2759 // predecessor and use logical operations to pick the right destination. 2760 if (FoldBranchToCommonDest(BI)) 2761 return SimplifyCFG(BB) | true; 2762 2763 // Scan predecessor blocks for conditional branches. 2764 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 2765 if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator())) 2766 if (PBI != BI && PBI->isConditional()) 2767 if (SimplifyCondBranchToCondBranch(PBI, BI)) 2768 return SimplifyCFG(BB) | true; 2769 2770 return false; 2771 } 2772 2773 /// Check if passing a value to an instruction will cause undefined behavior. 2774 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) { 2775 Constant *C = dyn_cast<Constant>(V); 2776 if (!C) 2777 return false; 2778 2779 if (!I->hasOneUse()) // Only look at single-use instructions, for compile time 2780 return false; 2781 2782 if (C->isNullValue()) { 2783 Instruction *Use = I->use_back(); 2784 2785 // Now make sure that there are no instructions in between that can alter 2786 // control flow (eg. calls) 2787 for (BasicBlock::iterator i = ++BasicBlock::iterator(I); &*i != Use; ++i) 2788 if (i == I->getParent()->end() || i->mayHaveSideEffects()) 2789 return false; 2790 2791 // Look through GEPs. A load from a GEP derived from NULL is still undefined 2792 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use)) 2793 if (GEP->getPointerOperand() == I) 2794 return passingValueIsAlwaysUndefined(V, GEP); 2795 2796 // Look through bitcasts. 2797 if (BitCastInst *BC = dyn_cast<BitCastInst>(Use)) 2798 return passingValueIsAlwaysUndefined(V, BC); 2799 2800 // Load from null is undefined. 2801 if (LoadInst *LI = dyn_cast<LoadInst>(Use)) 2802 return LI->getPointerAddressSpace() == 0; 2803 2804 // Store to null is undefined. 2805 if (StoreInst *SI = dyn_cast<StoreInst>(Use)) 2806 return SI->getPointerAddressSpace() == 0 && SI->getPointerOperand() == I; 2807 } 2808 return false; 2809 } 2810 2811 /// If BB has an incoming value that will always trigger undefined behavior 2812 /// (eg. null pointer derefence), remove the branch leading here. 2813 static bool removeUndefIntroducingPredecessor(BasicBlock *BB) { 2814 for (BasicBlock::iterator i = BB->begin(); 2815 PHINode *PHI = dyn_cast<PHINode>(i); ++i) 2816 for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) 2817 if (passingValueIsAlwaysUndefined(PHI->getIncomingValue(i), PHI)) { 2818 TerminatorInst *T = PHI->getIncomingBlock(i)->getTerminator(); 2819 IRBuilder<> Builder(T); 2820 if (BranchInst *BI = dyn_cast<BranchInst>(T)) { 2821 BB->removePredecessor(PHI->getIncomingBlock(i)); 2822 // Turn uncoditional branches into unreachables and remove the dead 2823 // destination from conditional branches. 2824 if (BI->isUnconditional()) 2825 Builder.CreateUnreachable(); 2826 else 2827 Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1) : 2828 BI->getSuccessor(0)); 2829 BI->eraseFromParent(); 2830 return true; 2831 } 2832 // TODO: SwitchInst. 2833 } 2834 2835 return false; 2836 } 2837 2838 bool SimplifyCFGOpt::run(BasicBlock *BB) { 2839 bool Changed = false; 2840 2841 assert(BB && BB->getParent() && "Block not embedded in function!"); 2842 assert(BB->getTerminator() && "Degenerate basic block encountered!"); 2843 2844 // Remove basic blocks that have no predecessors (except the entry block)... 2845 // or that just have themself as a predecessor. These are unreachable. 2846 if ((pred_begin(BB) == pred_end(BB) && 2847 BB != &BB->getParent()->getEntryBlock()) || 2848 BB->getSinglePredecessor() == BB) { 2849 DEBUG(dbgs() << "Removing BB: \n" << *BB); 2850 DeleteDeadBlock(BB); 2851 return true; 2852 } 2853 2854 // Check to see if we can constant propagate this terminator instruction 2855 // away... 2856 Changed |= ConstantFoldTerminator(BB, true); 2857 2858 // Check for and eliminate duplicate PHI nodes in this block. 2859 Changed |= EliminateDuplicatePHINodes(BB); 2860 2861 // Check for and remove branches that will always cause undefined behavior. 2862 Changed |= removeUndefIntroducingPredecessor(BB); 2863 2864 // Merge basic blocks into their predecessor if there is only one distinct 2865 // pred, and if there is only one distinct successor of the predecessor, and 2866 // if there are no PHI nodes. 2867 // 2868 if (MergeBlockIntoPredecessor(BB)) 2869 return true; 2870 2871 IRBuilder<> Builder(BB); 2872 2873 // If there is a trivial two-entry PHI node in this basic block, and we can 2874 // eliminate it, do so now. 2875 if (PHINode *PN = dyn_cast<PHINode>(BB->begin())) 2876 if (PN->getNumIncomingValues() == 2) 2877 Changed |= FoldTwoEntryPHINode(PN, TD); 2878 2879 Builder.SetInsertPoint(BB->getTerminator()); 2880 if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) { 2881 if (BI->isUnconditional()) { 2882 if (SimplifyUncondBranch(BI, Builder)) return true; 2883 } else { 2884 if (SimplifyCondBranch(BI, Builder)) return true; 2885 } 2886 } else if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) { 2887 if (SimplifyResume(RI, Builder)) return true; 2888 } else if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) { 2889 if (SimplifyReturn(RI, Builder)) return true; 2890 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 2891 if (SimplifySwitch(SI, Builder)) return true; 2892 } else if (UnreachableInst *UI = 2893 dyn_cast<UnreachableInst>(BB->getTerminator())) { 2894 if (SimplifyUnreachable(UI)) return true; 2895 } else if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) { 2896 if (SimplifyUnwind(UI, Builder)) return true; 2897 } else if (IndirectBrInst *IBI = 2898 dyn_cast<IndirectBrInst>(BB->getTerminator())) { 2899 if (SimplifyIndirectBr(IBI)) return true; 2900 } 2901 2902 return Changed; 2903 } 2904 2905 /// SimplifyCFG - This function is used to do simplification of a CFG. For 2906 /// example, it adjusts branches to branches to eliminate the extra hop, it 2907 /// eliminates unreachable basic blocks, and does other "peephole" optimization 2908 /// of the CFG. It returns true if a modification was made. 2909 /// 2910 bool llvm::SimplifyCFG(BasicBlock *BB, const TargetData *TD) { 2911 return SimplifyCFGOpt(TD).run(BB); 2912 } 2913