Home | History | Annotate | Download | only in optimizing
      1 /*
      2  * Copyright (C) 2014 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #include "code_generator.h"
     18 
     19 #ifdef ART_ENABLE_CODEGEN_arm
     20 #include "code_generator_arm_vixl.h"
     21 #endif
     22 
     23 #ifdef ART_ENABLE_CODEGEN_arm64
     24 #include "code_generator_arm64.h"
     25 #endif
     26 
     27 #ifdef ART_ENABLE_CODEGEN_x86
     28 #include "code_generator_x86.h"
     29 #endif
     30 
     31 #ifdef ART_ENABLE_CODEGEN_x86_64
     32 #include "code_generator_x86_64.h"
     33 #endif
     34 
     35 #ifdef ART_ENABLE_CODEGEN_mips
     36 #include "code_generator_mips.h"
     37 #endif
     38 
     39 #ifdef ART_ENABLE_CODEGEN_mips64
     40 #include "code_generator_mips64.h"
     41 #endif
     42 
     43 #include "base/bit_utils.h"
     44 #include "base/bit_utils_iterator.h"
     45 #include "bytecode_utils.h"
     46 #include "class_linker.h"
     47 #include "compiled_method.h"
     48 #include "dex/verified_method.h"
     49 #include "driver/compiler_driver.h"
     50 #include "graph_visualizer.h"
     51 #include "intern_table.h"
     52 #include "intrinsics.h"
     53 #include "leb128.h"
     54 #include "mirror/array-inl.h"
     55 #include "mirror/object_array-inl.h"
     56 #include "mirror/object_reference.h"
     57 #include "mirror/reference.h"
     58 #include "mirror/string.h"
     59 #include "parallel_move_resolver.h"
     60 #include "ssa_liveness_analysis.h"
     61 #include "scoped_thread_state_change-inl.h"
     62 #include "thread-current-inl.h"
     63 #include "utils/assembler.h"
     64 
     65 namespace art {
     66 
     67 // If true, we record the static and direct invokes in the invoke infos.
     68 static constexpr bool kEnableDexLayoutOptimizations = false;
     69 
     70 // Return whether a location is consistent with a type.
     71 static bool CheckType(Primitive::Type type, Location location) {
     72   if (location.IsFpuRegister()
     73       || (location.IsUnallocated() && (location.GetPolicy() == Location::kRequiresFpuRegister))) {
     74     return (type == Primitive::kPrimFloat) || (type == Primitive::kPrimDouble);
     75   } else if (location.IsRegister() ||
     76              (location.IsUnallocated() && (location.GetPolicy() == Location::kRequiresRegister))) {
     77     return Primitive::IsIntegralType(type) || (type == Primitive::kPrimNot);
     78   } else if (location.IsRegisterPair()) {
     79     return type == Primitive::kPrimLong;
     80   } else if (location.IsFpuRegisterPair()) {
     81     return type == Primitive::kPrimDouble;
     82   } else if (location.IsStackSlot()) {
     83     return (Primitive::IsIntegralType(type) && type != Primitive::kPrimLong)
     84            || (type == Primitive::kPrimFloat)
     85            || (type == Primitive::kPrimNot);
     86   } else if (location.IsDoubleStackSlot()) {
     87     return (type == Primitive::kPrimLong) || (type == Primitive::kPrimDouble);
     88   } else if (location.IsConstant()) {
     89     if (location.GetConstant()->IsIntConstant()) {
     90       return Primitive::IsIntegralType(type) && (type != Primitive::kPrimLong);
     91     } else if (location.GetConstant()->IsNullConstant()) {
     92       return type == Primitive::kPrimNot;
     93     } else if (location.GetConstant()->IsLongConstant()) {
     94       return type == Primitive::kPrimLong;
     95     } else if (location.GetConstant()->IsFloatConstant()) {
     96       return type == Primitive::kPrimFloat;
     97     } else {
     98       return location.GetConstant()->IsDoubleConstant()
     99           && (type == Primitive::kPrimDouble);
    100     }
    101   } else {
    102     return location.IsInvalid() || (location.GetPolicy() == Location::kAny);
    103   }
    104 }
    105 
    106 // Check that a location summary is consistent with an instruction.
    107 static bool CheckTypeConsistency(HInstruction* instruction) {
    108   LocationSummary* locations = instruction->GetLocations();
    109   if (locations == nullptr) {
    110     return true;
    111   }
    112 
    113   if (locations->Out().IsUnallocated()
    114       && (locations->Out().GetPolicy() == Location::kSameAsFirstInput)) {
    115     DCHECK(CheckType(instruction->GetType(), locations->InAt(0)))
    116         << instruction->GetType()
    117         << " " << locations->InAt(0);
    118   } else {
    119     DCHECK(CheckType(instruction->GetType(), locations->Out()))
    120         << instruction->GetType()
    121         << " " << locations->Out();
    122   }
    123 
    124   HConstInputsRef inputs = instruction->GetInputs();
    125   for (size_t i = 0; i < inputs.size(); ++i) {
    126     DCHECK(CheckType(inputs[i]->GetType(), locations->InAt(i)))
    127       << inputs[i]->GetType() << " " << locations->InAt(i);
    128   }
    129 
    130   HEnvironment* environment = instruction->GetEnvironment();
    131   for (size_t i = 0; i < instruction->EnvironmentSize(); ++i) {
    132     if (environment->GetInstructionAt(i) != nullptr) {
    133       Primitive::Type type = environment->GetInstructionAt(i)->GetType();
    134       DCHECK(CheckType(type, environment->GetLocationAt(i)))
    135         << type << " " << environment->GetLocationAt(i);
    136     } else {
    137       DCHECK(environment->GetLocationAt(i).IsInvalid())
    138         << environment->GetLocationAt(i);
    139     }
    140   }
    141   return true;
    142 }
    143 
    144 size_t CodeGenerator::GetCacheOffset(uint32_t index) {
    145   return sizeof(GcRoot<mirror::Object>) * index;
    146 }
    147 
    148 size_t CodeGenerator::GetCachePointerOffset(uint32_t index) {
    149   PointerSize pointer_size = InstructionSetPointerSize(GetInstructionSet());
    150   return static_cast<size_t>(pointer_size) * index;
    151 }
    152 
    153 uint32_t CodeGenerator::GetArrayLengthOffset(HArrayLength* array_length) {
    154   return array_length->IsStringLength()
    155       ? mirror::String::CountOffset().Uint32Value()
    156       : mirror::Array::LengthOffset().Uint32Value();
    157 }
    158 
    159 uint32_t CodeGenerator::GetArrayDataOffset(HArrayGet* array_get) {
    160   DCHECK(array_get->GetType() == Primitive::kPrimChar || !array_get->IsStringCharAt());
    161   return array_get->IsStringCharAt()
    162       ? mirror::String::ValueOffset().Uint32Value()
    163       : mirror::Array::DataOffset(Primitive::ComponentSize(array_get->GetType())).Uint32Value();
    164 }
    165 
    166 bool CodeGenerator::GoesToNextBlock(HBasicBlock* current, HBasicBlock* next) const {
    167   DCHECK_EQ((*block_order_)[current_block_index_], current);
    168   return GetNextBlockToEmit() == FirstNonEmptyBlock(next);
    169 }
    170 
    171 HBasicBlock* CodeGenerator::GetNextBlockToEmit() const {
    172   for (size_t i = current_block_index_ + 1; i < block_order_->size(); ++i) {
    173     HBasicBlock* block = (*block_order_)[i];
    174     if (!block->IsSingleJump()) {
    175       return block;
    176     }
    177   }
    178   return nullptr;
    179 }
    180 
    181 HBasicBlock* CodeGenerator::FirstNonEmptyBlock(HBasicBlock* block) const {
    182   while (block->IsSingleJump()) {
    183     block = block->GetSuccessors()[0];
    184   }
    185   return block;
    186 }
    187 
    188 class DisassemblyScope {
    189  public:
    190   DisassemblyScope(HInstruction* instruction, const CodeGenerator& codegen)
    191       : codegen_(codegen), instruction_(instruction), start_offset_(static_cast<size_t>(-1)) {
    192     if (codegen_.GetDisassemblyInformation() != nullptr) {
    193       start_offset_ = codegen_.GetAssembler().CodeSize();
    194     }
    195   }
    196 
    197   ~DisassemblyScope() {
    198     // We avoid building this data when we know it will not be used.
    199     if (codegen_.GetDisassemblyInformation() != nullptr) {
    200       codegen_.GetDisassemblyInformation()->AddInstructionInterval(
    201           instruction_, start_offset_, codegen_.GetAssembler().CodeSize());
    202     }
    203   }
    204 
    205  private:
    206   const CodeGenerator& codegen_;
    207   HInstruction* instruction_;
    208   size_t start_offset_;
    209 };
    210 
    211 
    212 void CodeGenerator::GenerateSlowPaths() {
    213   size_t code_start = 0;
    214   for (const std::unique_ptr<SlowPathCode>& slow_path_unique_ptr : slow_paths_) {
    215     SlowPathCode* slow_path = slow_path_unique_ptr.get();
    216     current_slow_path_ = slow_path;
    217     if (disasm_info_ != nullptr) {
    218       code_start = GetAssembler()->CodeSize();
    219     }
    220     // Record the dex pc at start of slow path (required for java line number mapping).
    221     MaybeRecordNativeDebugInfo(slow_path->GetInstruction(), slow_path->GetDexPc(), slow_path);
    222     slow_path->EmitNativeCode(this);
    223     if (disasm_info_ != nullptr) {
    224       disasm_info_->AddSlowPathInterval(slow_path, code_start, GetAssembler()->CodeSize());
    225     }
    226   }
    227   current_slow_path_ = nullptr;
    228 }
    229 
    230 void CodeGenerator::Compile(CodeAllocator* allocator) {
    231   // The register allocator already called `InitializeCodeGeneration`,
    232   // where the frame size has been computed.
    233   DCHECK(block_order_ != nullptr);
    234   Initialize();
    235 
    236   HGraphVisitor* instruction_visitor = GetInstructionVisitor();
    237   DCHECK_EQ(current_block_index_, 0u);
    238 
    239   size_t frame_start = GetAssembler()->CodeSize();
    240   GenerateFrameEntry();
    241   DCHECK_EQ(GetAssembler()->cfi().GetCurrentCFAOffset(), static_cast<int>(frame_size_));
    242   if (disasm_info_ != nullptr) {
    243     disasm_info_->SetFrameEntryInterval(frame_start, GetAssembler()->CodeSize());
    244   }
    245 
    246   for (size_t e = block_order_->size(); current_block_index_ < e; ++current_block_index_) {
    247     HBasicBlock* block = (*block_order_)[current_block_index_];
    248     // Don't generate code for an empty block. Its predecessors will branch to its successor
    249     // directly. Also, the label of that block will not be emitted, so this helps catch
    250     // errors where we reference that label.
    251     if (block->IsSingleJump()) continue;
    252     Bind(block);
    253     // This ensures that we have correct native line mapping for all native instructions.
    254     // It is necessary to make stepping over a statement work. Otherwise, any initial
    255     // instructions (e.g. moves) would be assumed to be the start of next statement.
    256     MaybeRecordNativeDebugInfo(nullptr /* instruction */, block->GetDexPc());
    257     for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) {
    258       HInstruction* current = it.Current();
    259       if (current->HasEnvironment()) {
    260         // Create stackmap for HNativeDebugInfo or any instruction which calls native code.
    261         // Note that we need correct mapping for the native PC of the call instruction,
    262         // so the runtime's stackmap is not sufficient since it is at PC after the call.
    263         MaybeRecordNativeDebugInfo(current, block->GetDexPc());
    264       }
    265       DisassemblyScope disassembly_scope(current, *this);
    266       DCHECK(CheckTypeConsistency(current));
    267       current->Accept(instruction_visitor);
    268     }
    269   }
    270 
    271   GenerateSlowPaths();
    272 
    273   // Emit catch stack maps at the end of the stack map stream as expected by the
    274   // runtime exception handler.
    275   if (graph_->HasTryCatch()) {
    276     RecordCatchBlockInfo();
    277   }
    278 
    279   // Finalize instructions in assember;
    280   Finalize(allocator);
    281 }
    282 
    283 void CodeGenerator::Finalize(CodeAllocator* allocator) {
    284   size_t code_size = GetAssembler()->CodeSize();
    285   uint8_t* buffer = allocator->Allocate(code_size);
    286 
    287   MemoryRegion code(buffer, code_size);
    288   GetAssembler()->FinalizeInstructions(code);
    289 }
    290 
    291 void CodeGenerator::EmitLinkerPatches(ArenaVector<LinkerPatch>* linker_patches ATTRIBUTE_UNUSED) {
    292   // No linker patches by default.
    293 }
    294 
    295 void CodeGenerator::InitializeCodeGeneration(size_t number_of_spill_slots,
    296                                              size_t maximum_safepoint_spill_size,
    297                                              size_t number_of_out_slots,
    298                                              const ArenaVector<HBasicBlock*>& block_order) {
    299   block_order_ = &block_order;
    300   DCHECK(!block_order.empty());
    301   DCHECK(block_order[0] == GetGraph()->GetEntryBlock());
    302   ComputeSpillMask();
    303   first_register_slot_in_slow_path_ = RoundUp(
    304       (number_of_out_slots + number_of_spill_slots) * kVRegSize, GetPreferredSlotsAlignment());
    305 
    306   if (number_of_spill_slots == 0
    307       && !HasAllocatedCalleeSaveRegisters()
    308       && IsLeafMethod()
    309       && !RequiresCurrentMethod()) {
    310     DCHECK_EQ(maximum_safepoint_spill_size, 0u);
    311     SetFrameSize(CallPushesPC() ? GetWordSize() : 0);
    312   } else {
    313     SetFrameSize(RoundUp(
    314         first_register_slot_in_slow_path_
    315         + maximum_safepoint_spill_size
    316         + (GetGraph()->HasShouldDeoptimizeFlag() ? kShouldDeoptimizeFlagSize : 0)
    317         + FrameEntrySpillSize(),
    318         kStackAlignment));
    319   }
    320 }
    321 
    322 void CodeGenerator::CreateCommonInvokeLocationSummary(
    323     HInvoke* invoke, InvokeDexCallingConventionVisitor* visitor) {
    324   ArenaAllocator* allocator = invoke->GetBlock()->GetGraph()->GetArena();
    325   LocationSummary* locations = new (allocator) LocationSummary(invoke,
    326                                                                LocationSummary::kCallOnMainOnly);
    327 
    328   for (size_t i = 0; i < invoke->GetNumberOfArguments(); i++) {
    329     HInstruction* input = invoke->InputAt(i);
    330     locations->SetInAt(i, visitor->GetNextLocation(input->GetType()));
    331   }
    332 
    333   locations->SetOut(visitor->GetReturnLocation(invoke->GetType()));
    334 
    335   if (invoke->IsInvokeStaticOrDirect()) {
    336     HInvokeStaticOrDirect* call = invoke->AsInvokeStaticOrDirect();
    337     switch (call->GetMethodLoadKind()) {
    338       case HInvokeStaticOrDirect::MethodLoadKind::kRecursive:
    339         locations->SetInAt(call->GetSpecialInputIndex(), visitor->GetMethodLocation());
    340         break;
    341       case HInvokeStaticOrDirect::MethodLoadKind::kRuntimeCall:
    342         locations->AddTemp(visitor->GetMethodLocation());
    343         locations->SetInAt(call->GetSpecialInputIndex(), Location::RequiresRegister());
    344         break;
    345       default:
    346         locations->AddTemp(visitor->GetMethodLocation());
    347         break;
    348     }
    349   } else {
    350     locations->AddTemp(visitor->GetMethodLocation());
    351   }
    352 }
    353 
    354 void CodeGenerator::GenerateInvokeStaticOrDirectRuntimeCall(
    355     HInvokeStaticOrDirect* invoke, Location temp, SlowPathCode* slow_path) {
    356   MoveConstant(temp, invoke->GetDexMethodIndex());
    357 
    358   // The access check is unnecessary but we do not want to introduce
    359   // extra entrypoints for the codegens that do not support some
    360   // invoke type and fall back to the runtime call.
    361 
    362   // Initialize to anything to silent compiler warnings.
    363   QuickEntrypointEnum entrypoint = kQuickInvokeStaticTrampolineWithAccessCheck;
    364   switch (invoke->GetInvokeType()) {
    365     case kStatic:
    366       entrypoint = kQuickInvokeStaticTrampolineWithAccessCheck;
    367       break;
    368     case kDirect:
    369       entrypoint = kQuickInvokeDirectTrampolineWithAccessCheck;
    370       break;
    371     case kSuper:
    372       entrypoint = kQuickInvokeSuperTrampolineWithAccessCheck;
    373       break;
    374     case kVirtual:
    375     case kInterface:
    376       LOG(FATAL) << "Unexpected invoke type: " << invoke->GetInvokeType();
    377       UNREACHABLE();
    378   }
    379 
    380   InvokeRuntime(entrypoint, invoke, invoke->GetDexPc(), slow_path);
    381 }
    382 void CodeGenerator::GenerateInvokeUnresolvedRuntimeCall(HInvokeUnresolved* invoke) {
    383   MoveConstant(invoke->GetLocations()->GetTemp(0), invoke->GetDexMethodIndex());
    384 
    385   // Initialize to anything to silent compiler warnings.
    386   QuickEntrypointEnum entrypoint = kQuickInvokeStaticTrampolineWithAccessCheck;
    387   switch (invoke->GetInvokeType()) {
    388     case kStatic:
    389       entrypoint = kQuickInvokeStaticTrampolineWithAccessCheck;
    390       break;
    391     case kDirect:
    392       entrypoint = kQuickInvokeDirectTrampolineWithAccessCheck;
    393       break;
    394     case kVirtual:
    395       entrypoint = kQuickInvokeVirtualTrampolineWithAccessCheck;
    396       break;
    397     case kSuper:
    398       entrypoint = kQuickInvokeSuperTrampolineWithAccessCheck;
    399       break;
    400     case kInterface:
    401       entrypoint = kQuickInvokeInterfaceTrampolineWithAccessCheck;
    402       break;
    403   }
    404   InvokeRuntime(entrypoint, invoke, invoke->GetDexPc(), nullptr);
    405 }
    406 
    407 void CodeGenerator::GenerateInvokePolymorphicCall(HInvokePolymorphic* invoke) {
    408   MoveConstant(invoke->GetLocations()->GetTemp(0), static_cast<int32_t>(invoke->GetType()));
    409   QuickEntrypointEnum entrypoint = kQuickInvokePolymorphic;
    410   InvokeRuntime(entrypoint, invoke, invoke->GetDexPc(), nullptr);
    411 }
    412 
    413 void CodeGenerator::CreateUnresolvedFieldLocationSummary(
    414     HInstruction* field_access,
    415     Primitive::Type field_type,
    416     const FieldAccessCallingConvention& calling_convention) {
    417   bool is_instance = field_access->IsUnresolvedInstanceFieldGet()
    418       || field_access->IsUnresolvedInstanceFieldSet();
    419   bool is_get = field_access->IsUnresolvedInstanceFieldGet()
    420       || field_access->IsUnresolvedStaticFieldGet();
    421 
    422   ArenaAllocator* allocator = field_access->GetBlock()->GetGraph()->GetArena();
    423   LocationSummary* locations =
    424       new (allocator) LocationSummary(field_access, LocationSummary::kCallOnMainOnly);
    425 
    426   locations->AddTemp(calling_convention.GetFieldIndexLocation());
    427 
    428   if (is_instance) {
    429     // Add the `this` object for instance field accesses.
    430     locations->SetInAt(0, calling_convention.GetObjectLocation());
    431   }
    432 
    433   // Note that pSetXXStatic/pGetXXStatic always takes/returns an int or int64
    434   // regardless of the the type. Because of that we forced to special case
    435   // the access to floating point values.
    436   if (is_get) {
    437     if (Primitive::IsFloatingPointType(field_type)) {
    438       // The return value will be stored in regular registers while register
    439       // allocator expects it in a floating point register.
    440       // Note We don't need to request additional temps because the return
    441       // register(s) are already blocked due the call and they may overlap with
    442       // the input or field index.
    443       // The transfer between the two will be done at codegen level.
    444       locations->SetOut(calling_convention.GetFpuLocation(field_type));
    445     } else {
    446       locations->SetOut(calling_convention.GetReturnLocation(field_type));
    447     }
    448   } else {
    449      size_t set_index = is_instance ? 1 : 0;
    450      if (Primitive::IsFloatingPointType(field_type)) {
    451       // The set value comes from a float location while the calling convention
    452       // expects it in a regular register location. Allocate a temp for it and
    453       // make the transfer at codegen.
    454       AddLocationAsTemp(calling_convention.GetSetValueLocation(field_type, is_instance), locations);
    455       locations->SetInAt(set_index, calling_convention.GetFpuLocation(field_type));
    456     } else {
    457       locations->SetInAt(set_index,
    458           calling_convention.GetSetValueLocation(field_type, is_instance));
    459     }
    460   }
    461 }
    462 
    463 void CodeGenerator::GenerateUnresolvedFieldAccess(
    464     HInstruction* field_access,
    465     Primitive::Type field_type,
    466     uint32_t field_index,
    467     uint32_t dex_pc,
    468     const FieldAccessCallingConvention& calling_convention) {
    469   LocationSummary* locations = field_access->GetLocations();
    470 
    471   MoveConstant(locations->GetTemp(0), field_index);
    472 
    473   bool is_instance = field_access->IsUnresolvedInstanceFieldGet()
    474       || field_access->IsUnresolvedInstanceFieldSet();
    475   bool is_get = field_access->IsUnresolvedInstanceFieldGet()
    476       || field_access->IsUnresolvedStaticFieldGet();
    477 
    478   if (!is_get && Primitive::IsFloatingPointType(field_type)) {
    479     // Copy the float value to be set into the calling convention register.
    480     // Note that using directly the temp location is problematic as we don't
    481     // support temp register pairs. To avoid boilerplate conversion code, use
    482     // the location from the calling convention.
    483     MoveLocation(calling_convention.GetSetValueLocation(field_type, is_instance),
    484                  locations->InAt(is_instance ? 1 : 0),
    485                  (Primitive::Is64BitType(field_type) ? Primitive::kPrimLong : Primitive::kPrimInt));
    486   }
    487 
    488   QuickEntrypointEnum entrypoint = kQuickSet8Static;  // Initialize to anything to avoid warnings.
    489   switch (field_type) {
    490     case Primitive::kPrimBoolean:
    491       entrypoint = is_instance
    492           ? (is_get ? kQuickGetBooleanInstance : kQuickSet8Instance)
    493           : (is_get ? kQuickGetBooleanStatic : kQuickSet8Static);
    494       break;
    495     case Primitive::kPrimByte:
    496       entrypoint = is_instance
    497           ? (is_get ? kQuickGetByteInstance : kQuickSet8Instance)
    498           : (is_get ? kQuickGetByteStatic : kQuickSet8Static);
    499       break;
    500     case Primitive::kPrimShort:
    501       entrypoint = is_instance
    502           ? (is_get ? kQuickGetShortInstance : kQuickSet16Instance)
    503           : (is_get ? kQuickGetShortStatic : kQuickSet16Static);
    504       break;
    505     case Primitive::kPrimChar:
    506       entrypoint = is_instance
    507           ? (is_get ? kQuickGetCharInstance : kQuickSet16Instance)
    508           : (is_get ? kQuickGetCharStatic : kQuickSet16Static);
    509       break;
    510     case Primitive::kPrimInt:
    511     case Primitive::kPrimFloat:
    512       entrypoint = is_instance
    513           ? (is_get ? kQuickGet32Instance : kQuickSet32Instance)
    514           : (is_get ? kQuickGet32Static : kQuickSet32Static);
    515       break;
    516     case Primitive::kPrimNot:
    517       entrypoint = is_instance
    518           ? (is_get ? kQuickGetObjInstance : kQuickSetObjInstance)
    519           : (is_get ? kQuickGetObjStatic : kQuickSetObjStatic);
    520       break;
    521     case Primitive::kPrimLong:
    522     case Primitive::kPrimDouble:
    523       entrypoint = is_instance
    524           ? (is_get ? kQuickGet64Instance : kQuickSet64Instance)
    525           : (is_get ? kQuickGet64Static : kQuickSet64Static);
    526       break;
    527     default:
    528       LOG(FATAL) << "Invalid type " << field_type;
    529   }
    530   InvokeRuntime(entrypoint, field_access, dex_pc, nullptr);
    531 
    532   if (is_get && Primitive::IsFloatingPointType(field_type)) {
    533     MoveLocation(locations->Out(), calling_convention.GetReturnLocation(field_type), field_type);
    534   }
    535 }
    536 
    537 void CodeGenerator::CreateLoadClassRuntimeCallLocationSummary(HLoadClass* cls,
    538                                                               Location runtime_type_index_location,
    539                                                               Location runtime_return_location) {
    540   DCHECK_EQ(cls->GetLoadKind(), HLoadClass::LoadKind::kRuntimeCall);
    541   DCHECK_EQ(cls->InputCount(), 1u);
    542   LocationSummary* locations = new (cls->GetBlock()->GetGraph()->GetArena()) LocationSummary(
    543       cls, LocationSummary::kCallOnMainOnly);
    544   locations->SetInAt(0, Location::NoLocation());
    545   locations->AddTemp(runtime_type_index_location);
    546   locations->SetOut(runtime_return_location);
    547 }
    548 
    549 void CodeGenerator::GenerateLoadClassRuntimeCall(HLoadClass* cls) {
    550   DCHECK_EQ(cls->GetLoadKind(), HLoadClass::LoadKind::kRuntimeCall);
    551   LocationSummary* locations = cls->GetLocations();
    552   MoveConstant(locations->GetTemp(0), cls->GetTypeIndex().index_);
    553   if (cls->NeedsAccessCheck()) {
    554     CheckEntrypointTypes<kQuickInitializeTypeAndVerifyAccess, void*, uint32_t>();
    555     InvokeRuntime(kQuickInitializeTypeAndVerifyAccess, cls, cls->GetDexPc());
    556   } else if (cls->MustGenerateClinitCheck()) {
    557     CheckEntrypointTypes<kQuickInitializeStaticStorage, void*, uint32_t>();
    558     InvokeRuntime(kQuickInitializeStaticStorage, cls, cls->GetDexPc());
    559   } else {
    560     CheckEntrypointTypes<kQuickInitializeType, void*, uint32_t>();
    561     InvokeRuntime(kQuickInitializeType, cls, cls->GetDexPc());
    562   }
    563 }
    564 
    565 void CodeGenerator::BlockIfInRegister(Location location, bool is_out) const {
    566   // The DCHECKS below check that a register is not specified twice in
    567   // the summary. The out location can overlap with an input, so we need
    568   // to special case it.
    569   if (location.IsRegister()) {
    570     DCHECK(is_out || !blocked_core_registers_[location.reg()]);
    571     blocked_core_registers_[location.reg()] = true;
    572   } else if (location.IsFpuRegister()) {
    573     DCHECK(is_out || !blocked_fpu_registers_[location.reg()]);
    574     blocked_fpu_registers_[location.reg()] = true;
    575   } else if (location.IsFpuRegisterPair()) {
    576     DCHECK(is_out || !blocked_fpu_registers_[location.AsFpuRegisterPairLow<int>()]);
    577     blocked_fpu_registers_[location.AsFpuRegisterPairLow<int>()] = true;
    578     DCHECK(is_out || !blocked_fpu_registers_[location.AsFpuRegisterPairHigh<int>()]);
    579     blocked_fpu_registers_[location.AsFpuRegisterPairHigh<int>()] = true;
    580   } else if (location.IsRegisterPair()) {
    581     DCHECK(is_out || !blocked_core_registers_[location.AsRegisterPairLow<int>()]);
    582     blocked_core_registers_[location.AsRegisterPairLow<int>()] = true;
    583     DCHECK(is_out || !blocked_core_registers_[location.AsRegisterPairHigh<int>()]);
    584     blocked_core_registers_[location.AsRegisterPairHigh<int>()] = true;
    585   }
    586 }
    587 
    588 void CodeGenerator::AllocateLocations(HInstruction* instruction) {
    589   for (HEnvironment* env = instruction->GetEnvironment(); env != nullptr; env = env->GetParent()) {
    590     env->AllocateLocations();
    591   }
    592   instruction->Accept(GetLocationBuilder());
    593   DCHECK(CheckTypeConsistency(instruction));
    594   LocationSummary* locations = instruction->GetLocations();
    595   if (!instruction->IsSuspendCheckEntry()) {
    596     if (locations != nullptr) {
    597       if (locations->CanCall()) {
    598         MarkNotLeaf();
    599       } else if (locations->Intrinsified() &&
    600                  instruction->IsInvokeStaticOrDirect() &&
    601                  !instruction->AsInvokeStaticOrDirect()->HasCurrentMethodInput()) {
    602         // A static method call that has been fully intrinsified, and cannot call on the slow
    603         // path or refer to the current method directly, no longer needs current method.
    604         return;
    605       }
    606     }
    607     if (instruction->NeedsCurrentMethod()) {
    608       SetRequiresCurrentMethod();
    609     }
    610   }
    611 }
    612 
    613 void CodeGenerator::MaybeRecordStat(MethodCompilationStat compilation_stat, size_t count) const {
    614   if (stats_ != nullptr) {
    615     stats_->RecordStat(compilation_stat, count);
    616   }
    617 }
    618 
    619 std::unique_ptr<CodeGenerator> CodeGenerator::Create(HGraph* graph,
    620                                                      InstructionSet instruction_set,
    621                                                      const InstructionSetFeatures& isa_features,
    622                                                      const CompilerOptions& compiler_options,
    623                                                      OptimizingCompilerStats* stats) {
    624   ArenaAllocator* arena = graph->GetArena();
    625   switch (instruction_set) {
    626 #ifdef ART_ENABLE_CODEGEN_arm
    627     case kArm:
    628     case kThumb2: {
    629       return std::unique_ptr<CodeGenerator>(
    630           new (arena) arm::CodeGeneratorARMVIXL(graph,
    631                                                 *isa_features.AsArmInstructionSetFeatures(),
    632                                                 compiler_options,
    633                                                 stats));
    634     }
    635 #endif
    636 #ifdef ART_ENABLE_CODEGEN_arm64
    637     case kArm64: {
    638       return std::unique_ptr<CodeGenerator>(
    639           new (arena) arm64::CodeGeneratorARM64(graph,
    640                                                 *isa_features.AsArm64InstructionSetFeatures(),
    641                                                 compiler_options,
    642                                                 stats));
    643     }
    644 #endif
    645 #ifdef ART_ENABLE_CODEGEN_mips
    646     case kMips: {
    647       return std::unique_ptr<CodeGenerator>(
    648           new (arena) mips::CodeGeneratorMIPS(graph,
    649                                               *isa_features.AsMipsInstructionSetFeatures(),
    650                                               compiler_options,
    651                                               stats));
    652     }
    653 #endif
    654 #ifdef ART_ENABLE_CODEGEN_mips64
    655     case kMips64: {
    656       return std::unique_ptr<CodeGenerator>(
    657           new (arena) mips64::CodeGeneratorMIPS64(graph,
    658                                                   *isa_features.AsMips64InstructionSetFeatures(),
    659                                                   compiler_options,
    660                                                   stats));
    661     }
    662 #endif
    663 #ifdef ART_ENABLE_CODEGEN_x86
    664     case kX86: {
    665       return std::unique_ptr<CodeGenerator>(
    666           new (arena) x86::CodeGeneratorX86(graph,
    667                                             *isa_features.AsX86InstructionSetFeatures(),
    668                                             compiler_options,
    669                                             stats));
    670     }
    671 #endif
    672 #ifdef ART_ENABLE_CODEGEN_x86_64
    673     case kX86_64: {
    674       return std::unique_ptr<CodeGenerator>(
    675           new (arena) x86_64::CodeGeneratorX86_64(graph,
    676                                                   *isa_features.AsX86_64InstructionSetFeatures(),
    677                                                   compiler_options,
    678                                                   stats));
    679     }
    680 #endif
    681     default:
    682       return nullptr;
    683   }
    684 }
    685 
    686 void CodeGenerator::ComputeStackMapAndMethodInfoSize(size_t* stack_map_size,
    687                                                      size_t* method_info_size) {
    688   DCHECK(stack_map_size != nullptr);
    689   DCHECK(method_info_size != nullptr);
    690   *stack_map_size = stack_map_stream_.PrepareForFillIn();
    691   *method_info_size = stack_map_stream_.ComputeMethodInfoSize();
    692 }
    693 
    694 static void CheckCovers(uint32_t dex_pc,
    695                         const HGraph& graph,
    696                         const CodeInfo& code_info,
    697                         const ArenaVector<HSuspendCheck*>& loop_headers,
    698                         ArenaVector<size_t>* covered) {
    699   CodeInfoEncoding encoding = code_info.ExtractEncoding();
    700   for (size_t i = 0; i < loop_headers.size(); ++i) {
    701     if (loop_headers[i]->GetDexPc() == dex_pc) {
    702       if (graph.IsCompilingOsr()) {
    703         DCHECK(code_info.GetOsrStackMapForDexPc(dex_pc, encoding).IsValid());
    704       }
    705       ++(*covered)[i];
    706     }
    707   }
    708 }
    709 
    710 // Debug helper to ensure loop entries in compiled code are matched by
    711 // dex branch instructions.
    712 static void CheckLoopEntriesCanBeUsedForOsr(const HGraph& graph,
    713                                             const CodeInfo& code_info,
    714                                             const DexFile::CodeItem& code_item) {
    715   if (graph.HasTryCatch()) {
    716     // One can write loops through try/catch, which we do not support for OSR anyway.
    717     return;
    718   }
    719   ArenaVector<HSuspendCheck*> loop_headers(graph.GetArena()->Adapter(kArenaAllocMisc));
    720   for (HBasicBlock* block : graph.GetReversePostOrder()) {
    721     if (block->IsLoopHeader()) {
    722       HSuspendCheck* suspend_check = block->GetLoopInformation()->GetSuspendCheck();
    723       if (!suspend_check->GetEnvironment()->IsFromInlinedInvoke()) {
    724         loop_headers.push_back(suspend_check);
    725       }
    726     }
    727   }
    728   ArenaVector<size_t> covered(loop_headers.size(), 0, graph.GetArena()->Adapter(kArenaAllocMisc));
    729   const uint16_t* code_ptr = code_item.insns_;
    730   const uint16_t* code_end = code_item.insns_ + code_item.insns_size_in_code_units_;
    731 
    732   size_t dex_pc = 0;
    733   while (code_ptr < code_end) {
    734     const Instruction& instruction = *Instruction::At(code_ptr);
    735     if (instruction.IsBranch()) {
    736       uint32_t target = dex_pc + instruction.GetTargetOffset();
    737       CheckCovers(target, graph, code_info, loop_headers, &covered);
    738     } else if (instruction.IsSwitch()) {
    739       DexSwitchTable table(instruction, dex_pc);
    740       uint16_t num_entries = table.GetNumEntries();
    741       size_t offset = table.GetFirstValueIndex();
    742 
    743       // Use a larger loop counter type to avoid overflow issues.
    744       for (size_t i = 0; i < num_entries; ++i) {
    745         // The target of the case.
    746         uint32_t target = dex_pc + table.GetEntryAt(i + offset);
    747         CheckCovers(target, graph, code_info, loop_headers, &covered);
    748       }
    749     }
    750     dex_pc += instruction.SizeInCodeUnits();
    751     code_ptr += instruction.SizeInCodeUnits();
    752   }
    753 
    754   for (size_t i = 0; i < covered.size(); ++i) {
    755     DCHECK_NE(covered[i], 0u) << "Loop in compiled code has no dex branch equivalent";
    756   }
    757 }
    758 
    759 void CodeGenerator::BuildStackMaps(MemoryRegion stack_map_region,
    760                                    MemoryRegion method_info_region,
    761                                    const DexFile::CodeItem& code_item) {
    762   stack_map_stream_.FillInCodeInfo(stack_map_region);
    763   stack_map_stream_.FillInMethodInfo(method_info_region);
    764   if (kIsDebugBuild) {
    765     CheckLoopEntriesCanBeUsedForOsr(*graph_, CodeInfo(stack_map_region), code_item);
    766   }
    767 }
    768 
    769 void CodeGenerator::RecordPcInfo(HInstruction* instruction,
    770                                  uint32_t dex_pc,
    771                                  SlowPathCode* slow_path) {
    772   if (instruction != nullptr) {
    773     // The code generated for some type conversions
    774     // may call the runtime, thus normally requiring a subsequent
    775     // call to this method. However, the method verifier does not
    776     // produce PC information for certain instructions, which are
    777     // considered "atomic" (they cannot join a GC).
    778     // Therefore we do not currently record PC information for such
    779     // instructions.  As this may change later, we added this special
    780     // case so that code generators may nevertheless call
    781     // CodeGenerator::RecordPcInfo without triggering an error in
    782     // CodeGenerator::BuildNativeGCMap ("Missing ref for dex pc 0x")
    783     // thereafter.
    784     if (instruction->IsTypeConversion()) {
    785       return;
    786     }
    787     if (instruction->IsRem()) {
    788       Primitive::Type type = instruction->AsRem()->GetResultType();
    789       if ((type == Primitive::kPrimFloat) || (type == Primitive::kPrimDouble)) {
    790         return;
    791       }
    792     }
    793   }
    794 
    795   uint32_t outer_dex_pc = dex_pc;
    796   uint32_t outer_environment_size = 0;
    797   uint32_t inlining_depth = 0;
    798   if (instruction != nullptr) {
    799     for (HEnvironment* environment = instruction->GetEnvironment();
    800          environment != nullptr;
    801          environment = environment->GetParent()) {
    802       outer_dex_pc = environment->GetDexPc();
    803       outer_environment_size = environment->Size();
    804       if (environment != instruction->GetEnvironment()) {
    805         inlining_depth++;
    806       }
    807     }
    808   }
    809 
    810   // Collect PC infos for the mapping table.
    811   uint32_t native_pc = GetAssembler()->CodePosition();
    812 
    813   if (instruction == nullptr) {
    814     // For stack overflow checks and native-debug-info entries without dex register
    815     // mapping (i.e. start of basic block or start of slow path).
    816     stack_map_stream_.BeginStackMapEntry(outer_dex_pc, native_pc, 0, 0, 0, 0);
    817     stack_map_stream_.EndStackMapEntry();
    818     return;
    819   }
    820   LocationSummary* locations = instruction->GetLocations();
    821 
    822   uint32_t register_mask = locations->GetRegisterMask();
    823   DCHECK_EQ(register_mask & ~locations->GetLiveRegisters()->GetCoreRegisters(), 0u);
    824   if (locations->OnlyCallsOnSlowPath()) {
    825     // In case of slow path, we currently set the location of caller-save registers
    826     // to register (instead of their stack location when pushed before the slow-path
    827     // call). Therefore register_mask contains both callee-save and caller-save
    828     // registers that hold objects. We must remove the spilled caller-save from the
    829     // mask, since they will be overwritten by the callee.
    830     uint32_t spills = GetSlowPathSpills(locations, /* core_registers */ true);
    831     register_mask &= ~spills;
    832   } else {
    833     // The register mask must be a subset of callee-save registers.
    834     DCHECK_EQ(register_mask & core_callee_save_mask_, register_mask);
    835   }
    836   stack_map_stream_.BeginStackMapEntry(outer_dex_pc,
    837                                        native_pc,
    838                                        register_mask,
    839                                        locations->GetStackMask(),
    840                                        outer_environment_size,
    841                                        inlining_depth);
    842 
    843   HEnvironment* const environment = instruction->GetEnvironment();
    844   EmitEnvironment(environment, slow_path);
    845   // Record invoke info, the common case for the trampoline is super and static invokes. Only
    846   // record these to reduce oat file size.
    847   if (kEnableDexLayoutOptimizations) {
    848     if (environment != nullptr &&
    849         instruction->IsInvoke() &&
    850         instruction->IsInvokeStaticOrDirect()) {
    851       HInvoke* const invoke = instruction->AsInvoke();
    852       stack_map_stream_.AddInvoke(invoke->GetInvokeType(), invoke->GetDexMethodIndex());
    853     }
    854   }
    855   stack_map_stream_.EndStackMapEntry();
    856 
    857   HLoopInformation* info = instruction->GetBlock()->GetLoopInformation();
    858   if (instruction->IsSuspendCheck() &&
    859       (info != nullptr) &&
    860       graph_->IsCompilingOsr() &&
    861       (inlining_depth == 0)) {
    862     DCHECK_EQ(info->GetSuspendCheck(), instruction);
    863     // We duplicate the stack map as a marker that this stack map can be an OSR entry.
    864     // Duplicating it avoids having the runtime recognize and skip an OSR stack map.
    865     DCHECK(info->IsIrreducible());
    866     stack_map_stream_.BeginStackMapEntry(
    867         dex_pc, native_pc, register_mask, locations->GetStackMask(), outer_environment_size, 0);
    868     EmitEnvironment(instruction->GetEnvironment(), slow_path);
    869     stack_map_stream_.EndStackMapEntry();
    870     if (kIsDebugBuild) {
    871       for (size_t i = 0, environment_size = environment->Size(); i < environment_size; ++i) {
    872         HInstruction* in_environment = environment->GetInstructionAt(i);
    873         if (in_environment != nullptr) {
    874           DCHECK(in_environment->IsPhi() || in_environment->IsConstant());
    875           Location location = environment->GetLocationAt(i);
    876           DCHECK(location.IsStackSlot() ||
    877                  location.IsDoubleStackSlot() ||
    878                  location.IsConstant() ||
    879                  location.IsInvalid());
    880           if (location.IsStackSlot() || location.IsDoubleStackSlot()) {
    881             DCHECK_LT(location.GetStackIndex(), static_cast<int32_t>(GetFrameSize()));
    882           }
    883         }
    884       }
    885     }
    886   } else if (kIsDebugBuild) {
    887     // Ensure stack maps are unique, by checking that the native pc in the stack map
    888     // last emitted is different than the native pc of the stack map just emitted.
    889     size_t number_of_stack_maps = stack_map_stream_.GetNumberOfStackMaps();
    890     if (number_of_stack_maps > 1) {
    891       DCHECK_NE(stack_map_stream_.GetStackMap(number_of_stack_maps - 1).native_pc_code_offset,
    892                 stack_map_stream_.GetStackMap(number_of_stack_maps - 2).native_pc_code_offset);
    893     }
    894   }
    895 }
    896 
    897 bool CodeGenerator::HasStackMapAtCurrentPc() {
    898   uint32_t pc = GetAssembler()->CodeSize();
    899   size_t count = stack_map_stream_.GetNumberOfStackMaps();
    900   if (count == 0) {
    901     return false;
    902   }
    903   CodeOffset native_pc_offset = stack_map_stream_.GetStackMap(count - 1).native_pc_code_offset;
    904   return (native_pc_offset.Uint32Value(GetInstructionSet()) == pc);
    905 }
    906 
    907 void CodeGenerator::MaybeRecordNativeDebugInfo(HInstruction* instruction,
    908                                                uint32_t dex_pc,
    909                                                SlowPathCode* slow_path) {
    910   if (GetCompilerOptions().GetNativeDebuggable() && dex_pc != kNoDexPc) {
    911     if (HasStackMapAtCurrentPc()) {
    912       // Ensure that we do not collide with the stack map of the previous instruction.
    913       GenerateNop();
    914     }
    915     RecordPcInfo(instruction, dex_pc, slow_path);
    916   }
    917 }
    918 
    919 void CodeGenerator::RecordCatchBlockInfo() {
    920   ArenaAllocator* arena = graph_->GetArena();
    921 
    922   for (HBasicBlock* block : *block_order_) {
    923     if (!block->IsCatchBlock()) {
    924       continue;
    925     }
    926 
    927     uint32_t dex_pc = block->GetDexPc();
    928     uint32_t num_vregs = graph_->GetNumberOfVRegs();
    929     uint32_t inlining_depth = 0;  // Inlining of catch blocks is not supported at the moment.
    930     uint32_t native_pc = GetAddressOf(block);
    931     uint32_t register_mask = 0;   // Not used.
    932 
    933     // The stack mask is not used, so we leave it empty.
    934     ArenaBitVector* stack_mask =
    935         ArenaBitVector::Create(arena, 0, /* expandable */ true, kArenaAllocCodeGenerator);
    936 
    937     stack_map_stream_.BeginStackMapEntry(dex_pc,
    938                                          native_pc,
    939                                          register_mask,
    940                                          stack_mask,
    941                                          num_vregs,
    942                                          inlining_depth);
    943 
    944     HInstruction* current_phi = block->GetFirstPhi();
    945     for (size_t vreg = 0; vreg < num_vregs; ++vreg) {
    946     while (current_phi != nullptr && current_phi->AsPhi()->GetRegNumber() < vreg) {
    947       HInstruction* next_phi = current_phi->GetNext();
    948       DCHECK(next_phi == nullptr ||
    949              current_phi->AsPhi()->GetRegNumber() <= next_phi->AsPhi()->GetRegNumber())
    950           << "Phis need to be sorted by vreg number to keep this a linear-time loop.";
    951       current_phi = next_phi;
    952     }
    953 
    954       if (current_phi == nullptr || current_phi->AsPhi()->GetRegNumber() != vreg) {
    955         stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kNone, 0);
    956       } else {
    957         Location location = current_phi->GetLiveInterval()->ToLocation();
    958         switch (location.GetKind()) {
    959           case Location::kStackSlot: {
    960             stack_map_stream_.AddDexRegisterEntry(
    961                 DexRegisterLocation::Kind::kInStack, location.GetStackIndex());
    962             break;
    963           }
    964           case Location::kDoubleStackSlot: {
    965             stack_map_stream_.AddDexRegisterEntry(
    966                 DexRegisterLocation::Kind::kInStack, location.GetStackIndex());
    967             stack_map_stream_.AddDexRegisterEntry(
    968                 DexRegisterLocation::Kind::kInStack, location.GetHighStackIndex(kVRegSize));
    969             ++vreg;
    970             DCHECK_LT(vreg, num_vregs);
    971             break;
    972           }
    973           default: {
    974             // All catch phis must be allocated to a stack slot.
    975             LOG(FATAL) << "Unexpected kind " << location.GetKind();
    976             UNREACHABLE();
    977           }
    978         }
    979       }
    980     }
    981 
    982     stack_map_stream_.EndStackMapEntry();
    983   }
    984 }
    985 
    986 void CodeGenerator::EmitEnvironment(HEnvironment* environment, SlowPathCode* slow_path) {
    987   if (environment == nullptr) return;
    988 
    989   if (environment->GetParent() != nullptr) {
    990     // We emit the parent environment first.
    991     EmitEnvironment(environment->GetParent(), slow_path);
    992     stack_map_stream_.BeginInlineInfoEntry(environment->GetMethod(),
    993                                            environment->GetDexPc(),
    994                                            environment->Size(),
    995                                            &graph_->GetDexFile());
    996   }
    997 
    998   // Walk over the environment, and record the location of dex registers.
    999   for (size_t i = 0, environment_size = environment->Size(); i < environment_size; ++i) {
   1000     HInstruction* current = environment->GetInstructionAt(i);
   1001     if (current == nullptr) {
   1002       stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kNone, 0);
   1003       continue;
   1004     }
   1005 
   1006     Location location = environment->GetLocationAt(i);
   1007     switch (location.GetKind()) {
   1008       case Location::kConstant: {
   1009         DCHECK_EQ(current, location.GetConstant());
   1010         if (current->IsLongConstant()) {
   1011           int64_t value = current->AsLongConstant()->GetValue();
   1012           stack_map_stream_.AddDexRegisterEntry(
   1013               DexRegisterLocation::Kind::kConstant, Low32Bits(value));
   1014           stack_map_stream_.AddDexRegisterEntry(
   1015               DexRegisterLocation::Kind::kConstant, High32Bits(value));
   1016           ++i;
   1017           DCHECK_LT(i, environment_size);
   1018         } else if (current->IsDoubleConstant()) {
   1019           int64_t value = bit_cast<int64_t, double>(current->AsDoubleConstant()->GetValue());
   1020           stack_map_stream_.AddDexRegisterEntry(
   1021               DexRegisterLocation::Kind::kConstant, Low32Bits(value));
   1022           stack_map_stream_.AddDexRegisterEntry(
   1023               DexRegisterLocation::Kind::kConstant, High32Bits(value));
   1024           ++i;
   1025           DCHECK_LT(i, environment_size);
   1026         } else if (current->IsIntConstant()) {
   1027           int32_t value = current->AsIntConstant()->GetValue();
   1028           stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kConstant, value);
   1029         } else if (current->IsNullConstant()) {
   1030           stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kConstant, 0);
   1031         } else {
   1032           DCHECK(current->IsFloatConstant()) << current->DebugName();
   1033           int32_t value = bit_cast<int32_t, float>(current->AsFloatConstant()->GetValue());
   1034           stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kConstant, value);
   1035         }
   1036         break;
   1037       }
   1038 
   1039       case Location::kStackSlot: {
   1040         stack_map_stream_.AddDexRegisterEntry(
   1041             DexRegisterLocation::Kind::kInStack, location.GetStackIndex());
   1042         break;
   1043       }
   1044 
   1045       case Location::kDoubleStackSlot: {
   1046         stack_map_stream_.AddDexRegisterEntry(
   1047             DexRegisterLocation::Kind::kInStack, location.GetStackIndex());
   1048         stack_map_stream_.AddDexRegisterEntry(
   1049             DexRegisterLocation::Kind::kInStack, location.GetHighStackIndex(kVRegSize));
   1050         ++i;
   1051         DCHECK_LT(i, environment_size);
   1052         break;
   1053       }
   1054 
   1055       case Location::kRegister : {
   1056         int id = location.reg();
   1057         if (slow_path != nullptr && slow_path->IsCoreRegisterSaved(id)) {
   1058           uint32_t offset = slow_path->GetStackOffsetOfCoreRegister(id);
   1059           stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kInStack, offset);
   1060           if (current->GetType() == Primitive::kPrimLong) {
   1061             stack_map_stream_.AddDexRegisterEntry(
   1062                 DexRegisterLocation::Kind::kInStack, offset + kVRegSize);
   1063             ++i;
   1064             DCHECK_LT(i, environment_size);
   1065           }
   1066         } else {
   1067           stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kInRegister, id);
   1068           if (current->GetType() == Primitive::kPrimLong) {
   1069             stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kInRegisterHigh, id);
   1070             ++i;
   1071             DCHECK_LT(i, environment_size);
   1072           }
   1073         }
   1074         break;
   1075       }
   1076 
   1077       case Location::kFpuRegister : {
   1078         int id = location.reg();
   1079         if (slow_path != nullptr && slow_path->IsFpuRegisterSaved(id)) {
   1080           uint32_t offset = slow_path->GetStackOffsetOfFpuRegister(id);
   1081           stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kInStack, offset);
   1082           if (current->GetType() == Primitive::kPrimDouble) {
   1083             stack_map_stream_.AddDexRegisterEntry(
   1084                 DexRegisterLocation::Kind::kInStack, offset + kVRegSize);
   1085             ++i;
   1086             DCHECK_LT(i, environment_size);
   1087           }
   1088         } else {
   1089           stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kInFpuRegister, id);
   1090           if (current->GetType() == Primitive::kPrimDouble) {
   1091             stack_map_stream_.AddDexRegisterEntry(
   1092                 DexRegisterLocation::Kind::kInFpuRegisterHigh, id);
   1093             ++i;
   1094             DCHECK_LT(i, environment_size);
   1095           }
   1096         }
   1097         break;
   1098       }
   1099 
   1100       case Location::kFpuRegisterPair : {
   1101         int low = location.low();
   1102         int high = location.high();
   1103         if (slow_path != nullptr && slow_path->IsFpuRegisterSaved(low)) {
   1104           uint32_t offset = slow_path->GetStackOffsetOfFpuRegister(low);
   1105           stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kInStack, offset);
   1106         } else {
   1107           stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kInFpuRegister, low);
   1108         }
   1109         if (slow_path != nullptr && slow_path->IsFpuRegisterSaved(high)) {
   1110           uint32_t offset = slow_path->GetStackOffsetOfFpuRegister(high);
   1111           stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kInStack, offset);
   1112           ++i;
   1113         } else {
   1114           stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kInFpuRegister, high);
   1115           ++i;
   1116         }
   1117         DCHECK_LT(i, environment_size);
   1118         break;
   1119       }
   1120 
   1121       case Location::kRegisterPair : {
   1122         int low = location.low();
   1123         int high = location.high();
   1124         if (slow_path != nullptr && slow_path->IsCoreRegisterSaved(low)) {
   1125           uint32_t offset = slow_path->GetStackOffsetOfCoreRegister(low);
   1126           stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kInStack, offset);
   1127         } else {
   1128           stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kInRegister, low);
   1129         }
   1130         if (slow_path != nullptr && slow_path->IsCoreRegisterSaved(high)) {
   1131           uint32_t offset = slow_path->GetStackOffsetOfCoreRegister(high);
   1132           stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kInStack, offset);
   1133         } else {
   1134           stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kInRegister, high);
   1135         }
   1136         ++i;
   1137         DCHECK_LT(i, environment_size);
   1138         break;
   1139       }
   1140 
   1141       case Location::kInvalid: {
   1142         stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kNone, 0);
   1143         break;
   1144       }
   1145 
   1146       default:
   1147         LOG(FATAL) << "Unexpected kind " << location.GetKind();
   1148     }
   1149   }
   1150 
   1151   if (environment->GetParent() != nullptr) {
   1152     stack_map_stream_.EndInlineInfoEntry();
   1153   }
   1154 }
   1155 
   1156 bool CodeGenerator::CanMoveNullCheckToUser(HNullCheck* null_check) {
   1157   HInstruction* first_next_not_move = null_check->GetNextDisregardingMoves();
   1158 
   1159   return (first_next_not_move != nullptr)
   1160       && first_next_not_move->CanDoImplicitNullCheckOn(null_check->InputAt(0));
   1161 }
   1162 
   1163 void CodeGenerator::MaybeRecordImplicitNullCheck(HInstruction* instr) {
   1164   if (!compiler_options_.GetImplicitNullChecks()) {
   1165     return;
   1166   }
   1167 
   1168   // If we are from a static path don't record the pc as we can't throw NPE.
   1169   // NB: having the checks here makes the code much less verbose in the arch
   1170   // specific code generators.
   1171   if (instr->IsStaticFieldSet() || instr->IsStaticFieldGet()) {
   1172     return;
   1173   }
   1174 
   1175   if (!instr->CanDoImplicitNullCheckOn(instr->InputAt(0))) {
   1176     return;
   1177   }
   1178 
   1179   // Find the first previous instruction which is not a move.
   1180   HInstruction* first_prev_not_move = instr->GetPreviousDisregardingMoves();
   1181 
   1182   // If the instruction is a null check it means that `instr` is the first user
   1183   // and needs to record the pc.
   1184   if (first_prev_not_move != nullptr && first_prev_not_move->IsNullCheck()) {
   1185     HNullCheck* null_check = first_prev_not_move->AsNullCheck();
   1186     // TODO: The parallel moves modify the environment. Their changes need to be
   1187     // reverted otherwise the stack maps at the throw point will not be correct.
   1188     RecordPcInfo(null_check, null_check->GetDexPc());
   1189   }
   1190 }
   1191 
   1192 LocationSummary* CodeGenerator::CreateThrowingSlowPathLocations(HInstruction* instruction,
   1193                                                                 RegisterSet caller_saves) {
   1194   // Note: Using kNoCall allows the method to be treated as leaf (and eliminate the
   1195   // HSuspendCheck from entry block). However, it will still get a valid stack frame
   1196   // because the HNullCheck needs an environment.
   1197   LocationSummary::CallKind call_kind = LocationSummary::kNoCall;
   1198   // When throwing from a try block, we may need to retrieve dalvik registers from
   1199   // physical registers and we also need to set up stack mask for GC. This is
   1200   // implicitly achieved by passing kCallOnSlowPath to the LocationSummary.
   1201   bool can_throw_into_catch_block = instruction->CanThrowIntoCatchBlock();
   1202   if (can_throw_into_catch_block) {
   1203     call_kind = LocationSummary::kCallOnSlowPath;
   1204   }
   1205   LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, call_kind);
   1206   if (can_throw_into_catch_block && compiler_options_.GetImplicitNullChecks()) {
   1207     locations->SetCustomSlowPathCallerSaves(caller_saves);  // Default: no caller-save registers.
   1208   }
   1209   DCHECK(!instruction->HasUses());
   1210   return locations;
   1211 }
   1212 
   1213 void CodeGenerator::GenerateNullCheck(HNullCheck* instruction) {
   1214   if (compiler_options_.GetImplicitNullChecks()) {
   1215     MaybeRecordStat(kImplicitNullCheckGenerated);
   1216     GenerateImplicitNullCheck(instruction);
   1217   } else {
   1218     MaybeRecordStat(kExplicitNullCheckGenerated);
   1219     GenerateExplicitNullCheck(instruction);
   1220   }
   1221 }
   1222 
   1223 void CodeGenerator::ClearSpillSlotsFromLoopPhisInStackMap(HSuspendCheck* suspend_check) const {
   1224   LocationSummary* locations = suspend_check->GetLocations();
   1225   HBasicBlock* block = suspend_check->GetBlock();
   1226   DCHECK(block->GetLoopInformation()->GetSuspendCheck() == suspend_check);
   1227   DCHECK(block->IsLoopHeader());
   1228 
   1229   for (HInstructionIterator it(block->GetPhis()); !it.Done(); it.Advance()) {
   1230     HInstruction* current = it.Current();
   1231     LiveInterval* interval = current->GetLiveInterval();
   1232     // We only need to clear bits of loop phis containing objects and allocated in register.
   1233     // Loop phis allocated on stack already have the object in the stack.
   1234     if (current->GetType() == Primitive::kPrimNot
   1235         && interval->HasRegister()
   1236         && interval->HasSpillSlot()) {
   1237       locations->ClearStackBit(interval->GetSpillSlot() / kVRegSize);
   1238     }
   1239   }
   1240 }
   1241 
   1242 void CodeGenerator::EmitParallelMoves(Location from1,
   1243                                       Location to1,
   1244                                       Primitive::Type type1,
   1245                                       Location from2,
   1246                                       Location to2,
   1247                                       Primitive::Type type2) {
   1248   HParallelMove parallel_move(GetGraph()->GetArena());
   1249   parallel_move.AddMove(from1, to1, type1, nullptr);
   1250   parallel_move.AddMove(from2, to2, type2, nullptr);
   1251   GetMoveResolver()->EmitNativeCode(&parallel_move);
   1252 }
   1253 
   1254 void CodeGenerator::ValidateInvokeRuntime(QuickEntrypointEnum entrypoint,
   1255                                           HInstruction* instruction,
   1256                                           SlowPathCode* slow_path) {
   1257   // Ensure that the call kind indication given to the register allocator is
   1258   // coherent with the runtime call generated.
   1259   if (slow_path == nullptr) {
   1260     DCHECK(instruction->GetLocations()->WillCall())
   1261         << "instruction->DebugName()=" << instruction->DebugName();
   1262   } else {
   1263     DCHECK(instruction->GetLocations()->CallsOnSlowPath() || slow_path->IsFatal())
   1264         << "instruction->DebugName()=" << instruction->DebugName()
   1265         << " slow_path->GetDescription()=" << slow_path->GetDescription();
   1266   }
   1267 
   1268   // Check that the GC side effect is set when required.
   1269   // TODO: Reverse EntrypointCanTriggerGC
   1270   if (EntrypointCanTriggerGC(entrypoint)) {
   1271     if (slow_path == nullptr) {
   1272       DCHECK(instruction->GetSideEffects().Includes(SideEffects::CanTriggerGC()))
   1273           << "instruction->DebugName()=" << instruction->DebugName()
   1274           << " instruction->GetSideEffects().ToString()="
   1275           << instruction->GetSideEffects().ToString();
   1276     } else {
   1277       DCHECK(instruction->GetSideEffects().Includes(SideEffects::CanTriggerGC()) ||
   1278              // When (non-Baker) read barriers are enabled, some instructions
   1279              // use a slow path to emit a read barrier, which does not trigger
   1280              // GC.
   1281              (kEmitCompilerReadBarrier &&
   1282               !kUseBakerReadBarrier &&
   1283               (instruction->IsInstanceFieldGet() ||
   1284                instruction->IsStaticFieldGet() ||
   1285                instruction->IsArrayGet() ||
   1286                instruction->IsLoadClass() ||
   1287                instruction->IsLoadString() ||
   1288                instruction->IsInstanceOf() ||
   1289                instruction->IsCheckCast() ||
   1290                (instruction->IsInvokeVirtual() && instruction->GetLocations()->Intrinsified()))))
   1291           << "instruction->DebugName()=" << instruction->DebugName()
   1292           << " instruction->GetSideEffects().ToString()="
   1293           << instruction->GetSideEffects().ToString()
   1294           << " slow_path->GetDescription()=" << slow_path->GetDescription();
   1295     }
   1296   } else {
   1297     // The GC side effect is not required for the instruction. But the instruction might still have
   1298     // it, for example if it calls other entrypoints requiring it.
   1299   }
   1300 
   1301   // Check the coherency of leaf information.
   1302   DCHECK(instruction->IsSuspendCheck()
   1303          || ((slow_path != nullptr) && slow_path->IsFatal())
   1304          || instruction->GetLocations()->CanCall()
   1305          || !IsLeafMethod())
   1306       << instruction->DebugName() << ((slow_path != nullptr) ? slow_path->GetDescription() : "");
   1307 }
   1308 
   1309 void CodeGenerator::ValidateInvokeRuntimeWithoutRecordingPcInfo(HInstruction* instruction,
   1310                                                                 SlowPathCode* slow_path) {
   1311   DCHECK(instruction->GetLocations()->OnlyCallsOnSlowPath())
   1312       << "instruction->DebugName()=" << instruction->DebugName()
   1313       << " slow_path->GetDescription()=" << slow_path->GetDescription();
   1314   // Only the Baker read barrier marking slow path used by certains
   1315   // instructions is expected to invoke the runtime without recording
   1316   // PC-related information.
   1317   DCHECK(kUseBakerReadBarrier);
   1318   DCHECK(instruction->IsInstanceFieldGet() ||
   1319          instruction->IsStaticFieldGet() ||
   1320          instruction->IsArrayGet() ||
   1321          instruction->IsArraySet() ||
   1322          instruction->IsLoadClass() ||
   1323          instruction->IsLoadString() ||
   1324          instruction->IsInstanceOf() ||
   1325          instruction->IsCheckCast() ||
   1326          (instruction->IsInvokeVirtual() && instruction->GetLocations()->Intrinsified()) ||
   1327          (instruction->IsInvokeStaticOrDirect() && instruction->GetLocations()->Intrinsified()))
   1328       << "instruction->DebugName()=" << instruction->DebugName()
   1329       << " slow_path->GetDescription()=" << slow_path->GetDescription();
   1330 }
   1331 
   1332 void SlowPathCode::SaveLiveRegisters(CodeGenerator* codegen, LocationSummary* locations) {
   1333   size_t stack_offset = codegen->GetFirstRegisterSlotInSlowPath();
   1334 
   1335   const uint32_t core_spills = codegen->GetSlowPathSpills(locations, /* core_registers */ true);
   1336   for (uint32_t i : LowToHighBits(core_spills)) {
   1337     // If the register holds an object, update the stack mask.
   1338     if (locations->RegisterContainsObject(i)) {
   1339       locations->SetStackBit(stack_offset / kVRegSize);
   1340     }
   1341     DCHECK_LT(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize());
   1342     DCHECK_LT(i, kMaximumNumberOfExpectedRegisters);
   1343     saved_core_stack_offsets_[i] = stack_offset;
   1344     stack_offset += codegen->SaveCoreRegister(stack_offset, i);
   1345   }
   1346 
   1347   const uint32_t fp_spills = codegen->GetSlowPathSpills(locations, /* core_registers */ false);
   1348   for (uint32_t i : LowToHighBits(fp_spills)) {
   1349     DCHECK_LT(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize());
   1350     DCHECK_LT(i, kMaximumNumberOfExpectedRegisters);
   1351     saved_fpu_stack_offsets_[i] = stack_offset;
   1352     stack_offset += codegen->SaveFloatingPointRegister(stack_offset, i);
   1353   }
   1354 }
   1355 
   1356 void SlowPathCode::RestoreLiveRegisters(CodeGenerator* codegen, LocationSummary* locations) {
   1357   size_t stack_offset = codegen->GetFirstRegisterSlotInSlowPath();
   1358 
   1359   const uint32_t core_spills = codegen->GetSlowPathSpills(locations, /* core_registers */ true);
   1360   for (uint32_t i : LowToHighBits(core_spills)) {
   1361     DCHECK_LT(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize());
   1362     DCHECK_LT(i, kMaximumNumberOfExpectedRegisters);
   1363     stack_offset += codegen->RestoreCoreRegister(stack_offset, i);
   1364   }
   1365 
   1366   const uint32_t fp_spills = codegen->GetSlowPathSpills(locations, /* core_registers */ false);
   1367   for (uint32_t i : LowToHighBits(fp_spills)) {
   1368     DCHECK_LT(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize());
   1369     DCHECK_LT(i, kMaximumNumberOfExpectedRegisters);
   1370     stack_offset += codegen->RestoreFloatingPointRegister(stack_offset, i);
   1371   }
   1372 }
   1373 
   1374 void CodeGenerator::CreateSystemArrayCopyLocationSummary(HInvoke* invoke) {
   1375   // Check to see if we have known failures that will cause us to have to bail out
   1376   // to the runtime, and just generate the runtime call directly.
   1377   HIntConstant* src_pos = invoke->InputAt(1)->AsIntConstant();
   1378   HIntConstant* dest_pos = invoke->InputAt(3)->AsIntConstant();
   1379 
   1380   // The positions must be non-negative.
   1381   if ((src_pos != nullptr && src_pos->GetValue() < 0) ||
   1382       (dest_pos != nullptr && dest_pos->GetValue() < 0)) {
   1383     // We will have to fail anyways.
   1384     return;
   1385   }
   1386 
   1387   // The length must be >= 0.
   1388   HIntConstant* length = invoke->InputAt(4)->AsIntConstant();
   1389   if (length != nullptr) {
   1390     int32_t len = length->GetValue();
   1391     if (len < 0) {
   1392       // Just call as normal.
   1393       return;
   1394     }
   1395   }
   1396 
   1397   SystemArrayCopyOptimizations optimizations(invoke);
   1398 
   1399   if (optimizations.GetDestinationIsSource()) {
   1400     if (src_pos != nullptr && dest_pos != nullptr && src_pos->GetValue() < dest_pos->GetValue()) {
   1401       // We only support backward copying if source and destination are the same.
   1402       return;
   1403     }
   1404   }
   1405 
   1406   if (optimizations.GetDestinationIsPrimitiveArray() || optimizations.GetSourceIsPrimitiveArray()) {
   1407     // We currently don't intrinsify primitive copying.
   1408     return;
   1409   }
   1410 
   1411   ArenaAllocator* allocator = invoke->GetBlock()->GetGraph()->GetArena();
   1412   LocationSummary* locations = new (allocator) LocationSummary(invoke,
   1413                                                                LocationSummary::kCallOnSlowPath,
   1414                                                                kIntrinsified);
   1415   // arraycopy(Object src, int src_pos, Object dest, int dest_pos, int length).
   1416   locations->SetInAt(0, Location::RequiresRegister());
   1417   locations->SetInAt(1, Location::RegisterOrConstant(invoke->InputAt(1)));
   1418   locations->SetInAt(2, Location::RequiresRegister());
   1419   locations->SetInAt(3, Location::RegisterOrConstant(invoke->InputAt(3)));
   1420   locations->SetInAt(4, Location::RegisterOrConstant(invoke->InputAt(4)));
   1421 
   1422   locations->AddTemp(Location::RequiresRegister());
   1423   locations->AddTemp(Location::RequiresRegister());
   1424   locations->AddTemp(Location::RequiresRegister());
   1425 }
   1426 
   1427 void CodeGenerator::EmitJitRoots(uint8_t* code,
   1428                                  Handle<mirror::ObjectArray<mirror::Object>> roots,
   1429                                  const uint8_t* roots_data) {
   1430   DCHECK_EQ(static_cast<size_t>(roots->GetLength()), GetNumberOfJitRoots());
   1431   ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
   1432   size_t index = 0;
   1433   for (auto& entry : jit_string_roots_) {
   1434     // Update the `roots` with the string, and replace the address temporarily
   1435     // stored to the index in the table.
   1436     uint64_t address = entry.second;
   1437     roots->Set(index, reinterpret_cast<StackReference<mirror::String>*>(address)->AsMirrorPtr());
   1438     DCHECK(roots->Get(index) != nullptr);
   1439     entry.second = index;
   1440     // Ensure the string is strongly interned. This is a requirement on how the JIT
   1441     // handles strings. b/32995596
   1442     class_linker->GetInternTable()->InternStrong(
   1443         reinterpret_cast<mirror::String*>(roots->Get(index)));
   1444     ++index;
   1445   }
   1446   for (auto& entry : jit_class_roots_) {
   1447     // Update the `roots` with the class, and replace the address temporarily
   1448     // stored to the index in the table.
   1449     uint64_t address = entry.second;
   1450     roots->Set(index, reinterpret_cast<StackReference<mirror::Class>*>(address)->AsMirrorPtr());
   1451     DCHECK(roots->Get(index) != nullptr);
   1452     entry.second = index;
   1453     ++index;
   1454   }
   1455   EmitJitRootPatches(code, roots_data);
   1456 }
   1457 
   1458 QuickEntrypointEnum CodeGenerator::GetArrayAllocationEntrypoint(Handle<mirror::Class> array_klass) {
   1459   ScopedObjectAccess soa(Thread::Current());
   1460   if (array_klass == nullptr) {
   1461     // This can only happen for non-primitive arrays, as primitive arrays can always
   1462     // be resolved.
   1463     return kQuickAllocArrayResolved32;
   1464   }
   1465 
   1466   switch (array_klass->GetComponentSize()) {
   1467     case 1: return kQuickAllocArrayResolved8;
   1468     case 2: return kQuickAllocArrayResolved16;
   1469     case 4: return kQuickAllocArrayResolved32;
   1470     case 8: return kQuickAllocArrayResolved64;
   1471   }
   1472   LOG(FATAL) << "Unreachable";
   1473   return kQuickAllocArrayResolved;
   1474 }
   1475 
   1476 }  // namespace art
   1477