Home | History | Annotate | Download | only in sljit
      1 /*
      2  *    Stack-less Just-In-Time compiler
      3  *
      4  *    Copyright 2013-2013 Tilera Corporation(jiwang (at) tilera.com). All rights reserved.
      5  *    Copyright 2009-2012 Zoltan Herczeg (hzmester (at) freemail.hu). All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without modification, are
      8  * permitted provided that the following conditions are met:
      9  *
     10  *   1. Redistributions of source code must retain the above copyright notice, this list of
     11  *      conditions and the following disclaimer.
     12  *
     13  *   2. Redistributions in binary form must reproduce the above copyright notice, this list
     14  *      of conditions and the following disclaimer in the documentation and/or other materials
     15  *      provided with the distribution.
     16  *
     17  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) AND CONTRIBUTORS ``AS IS'' AND ANY
     18  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
     20  * SHALL THE COPYRIGHT HOLDER(S) OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
     21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
     22  * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
     23  * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     24  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
     25  * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     26  */
     27 
     28 /* TileGX architecture. */
     29 /* Contributed by Tilera Corporation. */
     30 #include "sljitNativeTILEGX-encoder.c"
     31 
     32 #define SIMM_8BIT_MAX (0x7f)
     33 #define SIMM_8BIT_MIN (-0x80)
     34 #define SIMM_16BIT_MAX (0x7fff)
     35 #define SIMM_16BIT_MIN (-0x8000)
     36 #define SIMM_17BIT_MAX (0xffff)
     37 #define SIMM_17BIT_MIN (-0x10000)
     38 #define SIMM_32BIT_MAX (0x7fffffff)
     39 #define SIMM_32BIT_MIN (-0x7fffffff - 1)
     40 #define SIMM_48BIT_MAX (0x7fffffff0000L)
     41 #define SIMM_48BIT_MIN (-0x800000000000L)
     42 #define IMM16(imm) ((imm) & 0xffff)
     43 
     44 #define UIMM_16BIT_MAX (0xffff)
     45 
     46 #define TMP_REG1 (SLJIT_NUMBER_OF_REGISTERS + 2)
     47 #define TMP_REG2 (SLJIT_NUMBER_OF_REGISTERS + 3)
     48 #define TMP_REG3 (SLJIT_NUMBER_OF_REGISTERS + 4)
     49 #define ADDR_TMP (SLJIT_NUMBER_OF_REGISTERS + 5)
     50 #define PIC_ADDR_REG TMP_REG2
     51 
     52 static const sljit_u8 reg_map[SLJIT_NUMBER_OF_REGISTERS + 6] = {
     53 	63, 0, 1, 2, 3, 4, 30, 31, 32, 33, 34, 54, 5, 16, 6, 7
     54 };
     55 
     56 #define SLJIT_LOCALS_REG_mapped 54
     57 #define TMP_REG1_mapped 5
     58 #define TMP_REG2_mapped 16
     59 #define TMP_REG3_mapped 6
     60 #define ADDR_TMP_mapped 7
     61 
     62 /* Flags are keept in volatile registers. */
     63 #define EQUAL_FLAG 8
     64 /* And carry flag as well. */
     65 #define ULESS_FLAG 9
     66 #define UGREATER_FLAG 10
     67 #define LESS_FLAG 11
     68 #define GREATER_FLAG 12
     69 #define OVERFLOW_FLAG 13
     70 
     71 #define ZERO 63
     72 #define RA 55
     73 #define TMP_EREG1 14
     74 #define TMP_EREG2 15
     75 
     76 #define LOAD_DATA 0x01
     77 #define WORD_DATA 0x00
     78 #define BYTE_DATA 0x02
     79 #define HALF_DATA 0x04
     80 #define INT_DATA 0x06
     81 #define SIGNED_DATA 0x08
     82 #define DOUBLE_DATA 0x10
     83 
     84 /* Separates integer and floating point registers */
     85 #define GPR_REG 0xf
     86 
     87 #define MEM_MASK 0x1f
     88 
     89 #define WRITE_BACK 0x00020
     90 #define ARG_TEST 0x00040
     91 #define ALT_KEEP_CACHE 0x00080
     92 #define CUMULATIVE_OP 0x00100
     93 #define LOGICAL_OP 0x00200
     94 #define IMM_OP 0x00400
     95 #define SRC2_IMM 0x00800
     96 
     97 #define UNUSED_DEST 0x01000
     98 #define REG_DEST 0x02000
     99 #define REG1_SOURCE 0x04000
    100 #define REG2_SOURCE 0x08000
    101 #define SLOW_SRC1 0x10000
    102 #define SLOW_SRC2 0x20000
    103 #define SLOW_DEST 0x40000
    104 
    105 /* Only these flags are set. UNUSED_DEST is not set when no flags should be set.
    106  */
    107 #define CHECK_FLAGS(list) (!(flags & UNUSED_DEST) || (op & GET_FLAGS(~(list))))
    108 
    109 SLJIT_API_FUNC_ATTRIBUTE const char *sljit_get_platform_name(void)
    110 {
    111 	return "TileGX" SLJIT_CPUINFO;
    112 }
    113 
    114 /* Length of an instruction word */
    115 typedef sljit_uw sljit_ins;
    116 
    117 struct jit_instr {
    118 	const struct tilegx_opcode* opcode;
    119 	tilegx_pipeline pipe;
    120 	unsigned long input_registers;
    121 	unsigned long output_registers;
    122 	int operand_value[4];
    123 	int line;
    124 };
    125 
    126 /* Opcode Helper Macros */
    127 #define TILEGX_X_MODE 0
    128 
    129 #define X_MODE create_Mode(TILEGX_X_MODE)
    130 
    131 #define FNOP_X0 \
    132 	create_Opcode_X0(RRR_0_OPCODE_X0) | \
    133 	create_RRROpcodeExtension_X0(UNARY_RRR_0_OPCODE_X0) | \
    134 	create_UnaryOpcodeExtension_X0(FNOP_UNARY_OPCODE_X0)
    135 
    136 #define FNOP_X1 \
    137 	create_Opcode_X1(RRR_0_OPCODE_X1) | \
    138 	create_RRROpcodeExtension_X1(UNARY_RRR_0_OPCODE_X1) | \
    139 	create_UnaryOpcodeExtension_X1(FNOP_UNARY_OPCODE_X1)
    140 
    141 #define NOP \
    142 	create_Mode(TILEGX_X_MODE) | FNOP_X0 | FNOP_X1
    143 
    144 #define ANOP_X0 \
    145 	create_Opcode_X0(RRR_0_OPCODE_X0) | \
    146 	create_RRROpcodeExtension_X0(UNARY_RRR_0_OPCODE_X0) | \
    147 	create_UnaryOpcodeExtension_X0(NOP_UNARY_OPCODE_X0)
    148 
    149 #define BPT create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
    150 	create_RRROpcodeExtension_X1(UNARY_RRR_0_OPCODE_X1) | \
    151 	create_UnaryOpcodeExtension_X1(ILL_UNARY_OPCODE_X1) | \
    152 	create_Dest_X1(0x1C) | create_SrcA_X1(0x25) | ANOP_X0
    153 
    154 #define ADD_X1 \
    155 	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
    156 	create_RRROpcodeExtension_X1(ADD_RRR_0_OPCODE_X1) | FNOP_X0
    157 
    158 #define ADDI_X1 \
    159 	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(IMM8_OPCODE_X1) | \
    160 	create_Imm8OpcodeExtension_X1(ADDI_IMM8_OPCODE_X1) | FNOP_X0
    161 
    162 #define SUB_X1 \
    163 	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
    164 	create_RRROpcodeExtension_X1(SUB_RRR_0_OPCODE_X1) | FNOP_X0
    165 
    166 #define NOR_X1 \
    167 	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
    168 	create_RRROpcodeExtension_X1(NOR_RRR_0_OPCODE_X1) | FNOP_X0
    169 
    170 #define OR_X1 \
    171 	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
    172 	create_RRROpcodeExtension_X1(OR_RRR_0_OPCODE_X1) | FNOP_X0
    173 
    174 #define AND_X1 \
    175 	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
    176 	create_RRROpcodeExtension_X1(AND_RRR_0_OPCODE_X1) | FNOP_X0
    177 
    178 #define XOR_X1 \
    179 	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
    180 	create_RRROpcodeExtension_X1(XOR_RRR_0_OPCODE_X1) | FNOP_X0
    181 
    182 #define CMOVNEZ_X0 \
    183 	create_Mode(TILEGX_X_MODE) | create_Opcode_X0(RRR_0_OPCODE_X0) | \
    184 	create_RRROpcodeExtension_X0(CMOVNEZ_RRR_0_OPCODE_X0) | FNOP_X1
    185 
    186 #define CMOVEQZ_X0 \
    187 	create_Mode(TILEGX_X_MODE) | create_Opcode_X0(RRR_0_OPCODE_X0) | \
    188 	create_RRROpcodeExtension_X0(CMOVEQZ_RRR_0_OPCODE_X0) | FNOP_X1
    189 
    190 #define ADDLI_X1 \
    191 	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(ADDLI_OPCODE_X1) | FNOP_X0
    192 
    193 #define V4INT_L_X1 \
    194 	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
    195 	create_RRROpcodeExtension_X1(V4INT_L_RRR_0_OPCODE_X1) | FNOP_X0
    196 
    197 #define BFEXTU_X0 \
    198 	create_Mode(TILEGX_X_MODE) | create_Opcode_X0(BF_OPCODE_X0) | \
    199 	create_BFOpcodeExtension_X0(BFEXTU_BF_OPCODE_X0) | FNOP_X1
    200 
    201 #define BFEXTS_X0 \
    202 	create_Mode(TILEGX_X_MODE) | create_Opcode_X0(BF_OPCODE_X0) | \
    203 	create_BFOpcodeExtension_X0(BFEXTS_BF_OPCODE_X0) | FNOP_X1
    204 
    205 #define SHL16INSLI_X1 \
    206 	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(SHL16INSLI_OPCODE_X1) | FNOP_X0
    207 
    208 #define ST_X1 \
    209 	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
    210 	create_RRROpcodeExtension_X1(ST_RRR_0_OPCODE_X1) | create_Dest_X1(0x0) | FNOP_X0
    211 
    212 #define LD_X1 \
    213 	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
    214 	create_RRROpcodeExtension_X1(UNARY_RRR_0_OPCODE_X1) | \
    215 	create_UnaryOpcodeExtension_X1(LD_UNARY_OPCODE_X1) | FNOP_X0
    216 
    217 #define JR_X1 \
    218 	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
    219 	create_RRROpcodeExtension_X1(UNARY_RRR_0_OPCODE_X1) | \
    220 	create_UnaryOpcodeExtension_X1(JR_UNARY_OPCODE_X1) | FNOP_X0
    221 
    222 #define JALR_X1 \
    223 	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
    224 	create_RRROpcodeExtension_X1(UNARY_RRR_0_OPCODE_X1) | \
    225 	create_UnaryOpcodeExtension_X1(JALR_UNARY_OPCODE_X1) | FNOP_X0
    226 
    227 #define CLZ_X0 \
    228 	create_Mode(TILEGX_X_MODE) | create_Opcode_X0(RRR_0_OPCODE_X0) | \
    229 	create_RRROpcodeExtension_X0(UNARY_RRR_0_OPCODE_X0) | \
    230 	create_UnaryOpcodeExtension_X0(CNTLZ_UNARY_OPCODE_X0) | FNOP_X1
    231 
    232 #define CMPLTUI_X1 \
    233 	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(IMM8_OPCODE_X1) | \
    234 	create_Imm8OpcodeExtension_X1(CMPLTUI_IMM8_OPCODE_X1) | FNOP_X0
    235 
    236 #define CMPLTU_X1 \
    237 	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
    238 	create_RRROpcodeExtension_X1(CMPLTU_RRR_0_OPCODE_X1) | FNOP_X0
    239 
    240 #define CMPLTS_X1 \
    241 	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
    242 	create_RRROpcodeExtension_X1(CMPLTS_RRR_0_OPCODE_X1) | FNOP_X0
    243 
    244 #define XORI_X1 \
    245 	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(IMM8_OPCODE_X1) | \
    246 	create_Imm8OpcodeExtension_X1(XORI_IMM8_OPCODE_X1) | FNOP_X0
    247 
    248 #define ORI_X1 \
    249 	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(IMM8_OPCODE_X1) | \
    250 	create_Imm8OpcodeExtension_X1(ORI_IMM8_OPCODE_X1) | FNOP_X0
    251 
    252 #define ANDI_X1 \
    253 	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(IMM8_OPCODE_X1) | \
    254 	create_Imm8OpcodeExtension_X1(ANDI_IMM8_OPCODE_X1) | FNOP_X0
    255 
    256 #define SHLI_X1 \
    257 	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(SHIFT_OPCODE_X1) | \
    258 	create_ShiftOpcodeExtension_X1(SHLI_SHIFT_OPCODE_X1) | FNOP_X0
    259 
    260 #define SHL_X1 \
    261 	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
    262 	create_RRROpcodeExtension_X1(SHL_RRR_0_OPCODE_X1) | FNOP_X0
    263 
    264 #define SHRSI_X1 \
    265 	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(SHIFT_OPCODE_X1) | \
    266 	create_ShiftOpcodeExtension_X1(SHRSI_SHIFT_OPCODE_X1) | FNOP_X0
    267 
    268 #define SHRS_X1 \
    269 	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
    270 	create_RRROpcodeExtension_X1(SHRS_RRR_0_OPCODE_X1) | FNOP_X0
    271 
    272 #define SHRUI_X1 \
    273 	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(SHIFT_OPCODE_X1) | \
    274 	create_ShiftOpcodeExtension_X1(SHRUI_SHIFT_OPCODE_X1) | FNOP_X0
    275 
    276 #define SHRU_X1 \
    277 	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
    278 	create_RRROpcodeExtension_X1(SHRU_RRR_0_OPCODE_X1) | FNOP_X0
    279 
    280 #define BEQZ_X1 \
    281 	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(BRANCH_OPCODE_X1) | \
    282 	create_BrType_X1(BEQZ_BRANCH_OPCODE_X1) | FNOP_X0
    283 
    284 #define BNEZ_X1 \
    285 	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(BRANCH_OPCODE_X1) | \
    286 	create_BrType_X1(BNEZ_BRANCH_OPCODE_X1) | FNOP_X0
    287 
    288 #define J_X1 \
    289 	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(JUMP_OPCODE_X1) | \
    290 	create_JumpOpcodeExtension_X1(J_JUMP_OPCODE_X1) | FNOP_X0
    291 
    292 #define JAL_X1 \
    293 	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(JUMP_OPCODE_X1) | \
    294 	create_JumpOpcodeExtension_X1(JAL_JUMP_OPCODE_X1) | FNOP_X0
    295 
    296 #define DEST_X0(x) create_Dest_X0(x)
    297 #define SRCA_X0(x) create_SrcA_X0(x)
    298 #define SRCB_X0(x) create_SrcB_X0(x)
    299 #define DEST_X1(x) create_Dest_X1(x)
    300 #define SRCA_X1(x) create_SrcA_X1(x)
    301 #define SRCB_X1(x) create_SrcB_X1(x)
    302 #define IMM16_X1(x) create_Imm16_X1(x)
    303 #define IMM8_X1(x) create_Imm8_X1(x)
    304 #define BFSTART_X0(x) create_BFStart_X0(x)
    305 #define BFEND_X0(x) create_BFEnd_X0(x)
    306 #define SHIFTIMM_X1(x) create_ShAmt_X1(x)
    307 #define JOFF_X1(x) create_JumpOff_X1(x)
    308 #define BOFF_X1(x) create_BrOff_X1(x)
    309 
    310 static const tilegx_mnemonic data_transfer_insts[16] = {
    311 	/* u w s */ TILEGX_OPC_ST   /* st */,
    312 	/* u w l */ TILEGX_OPC_LD   /* ld */,
    313 	/* u b s */ TILEGX_OPC_ST1  /* st1 */,
    314 	/* u b l */ TILEGX_OPC_LD1U /* ld1u */,
    315 	/* u h s */ TILEGX_OPC_ST2  /* st2 */,
    316 	/* u h l */ TILEGX_OPC_LD2U /* ld2u */,
    317 	/* u i s */ TILEGX_OPC_ST4  /* st4 */,
    318 	/* u i l */ TILEGX_OPC_LD4U /* ld4u */,
    319 	/* s w s */ TILEGX_OPC_ST   /* st */,
    320 	/* s w l */ TILEGX_OPC_LD   /* ld */,
    321 	/* s b s */ TILEGX_OPC_ST1  /* st1 */,
    322 	/* s b l */ TILEGX_OPC_LD1S /* ld1s */,
    323 	/* s h s */ TILEGX_OPC_ST2  /* st2 */,
    324 	/* s h l */ TILEGX_OPC_LD2S /* ld2s */,
    325 	/* s i s */ TILEGX_OPC_ST4  /* st4 */,
    326 	/* s i l */ TILEGX_OPC_LD4S /* ld4s */,
    327 };
    328 
    329 #ifdef TILEGX_JIT_DEBUG
    330 static sljit_s32 push_inst_debug(struct sljit_compiler *compiler, sljit_ins ins, int line)
    331 {
    332 	sljit_ins *ptr = (sljit_ins *)ensure_buf(compiler, sizeof(sljit_ins));
    333 	FAIL_IF(!ptr);
    334 	*ptr = ins;
    335 	compiler->size++;
    336 	printf("|%04d|S0|:\t\t", line);
    337 	print_insn_tilegx(ptr);
    338 	return SLJIT_SUCCESS;
    339 }
    340 
    341 static sljit_s32 push_inst_nodebug(struct sljit_compiler *compiler, sljit_ins ins)
    342 {
    343 	sljit_ins *ptr = (sljit_ins *)ensure_buf(compiler, sizeof(sljit_ins));
    344 	FAIL_IF(!ptr);
    345 	*ptr = ins;
    346 	compiler->size++;
    347 	return SLJIT_SUCCESS;
    348 }
    349 
    350 #define push_inst(a, b) push_inst_debug(a, b, __LINE__)
    351 #else
    352 static sljit_s32 push_inst(struct sljit_compiler *compiler, sljit_ins ins)
    353 {
    354 	sljit_ins *ptr = (sljit_ins *)ensure_buf(compiler, sizeof(sljit_ins));
    355 	FAIL_IF(!ptr);
    356 	*ptr = ins;
    357 	compiler->size++;
    358 	return SLJIT_SUCCESS;
    359 }
    360 #endif
    361 
    362 #define BUNDLE_FORMAT_MASK(p0, p1, p2) \
    363 	((p0) | ((p1) << 8) | ((p2) << 16))
    364 
    365 #define BUNDLE_FORMAT(p0, p1, p2) \
    366 	{ \
    367 		{ \
    368 			(tilegx_pipeline)(p0), \
    369 			(tilegx_pipeline)(p1), \
    370 			(tilegx_pipeline)(p2) \
    371 		}, \
    372 		BUNDLE_FORMAT_MASK(1 << (p0), 1 << (p1), (1 << (p2))) \
    373 	}
    374 
    375 #define NO_PIPELINE TILEGX_NUM_PIPELINE_ENCODINGS
    376 
    377 #define tilegx_is_x_pipeline(p) ((int)(p) <= (int)TILEGX_PIPELINE_X1)
    378 
    379 #define PI(encoding) \
    380 	push_inst(compiler, encoding)
    381 
    382 #define PB3(opcode, dst, srca, srcb) \
    383 	push_3_buffer(compiler, opcode, dst, srca, srcb, __LINE__)
    384 
    385 #define PB2(opcode, dst, src) \
    386 	push_2_buffer(compiler, opcode, dst, src, __LINE__)
    387 
    388 #define JR(reg) \
    389 	push_jr_buffer(compiler, TILEGX_OPC_JR, reg, __LINE__)
    390 
    391 #define ADD(dst, srca, srcb) \
    392 	push_3_buffer(compiler, TILEGX_OPC_ADD, dst, srca, srcb, __LINE__)
    393 
    394 #define SUB(dst, srca, srcb) \
    395 	push_3_buffer(compiler, TILEGX_OPC_SUB, dst, srca, srcb, __LINE__)
    396 
    397 #define MUL(dst, srca, srcb) \
    398 	push_3_buffer(compiler, TILEGX_OPC_MULX, dst, srca, srcb, __LINE__)
    399 
    400 #define NOR(dst, srca, srcb) \
    401 	push_3_buffer(compiler, TILEGX_OPC_NOR, dst, srca, srcb, __LINE__)
    402 
    403 #define OR(dst, srca, srcb) \
    404 	push_3_buffer(compiler, TILEGX_OPC_OR, dst, srca, srcb, __LINE__)
    405 
    406 #define XOR(dst, srca, srcb) \
    407 	push_3_buffer(compiler, TILEGX_OPC_XOR, dst, srca, srcb, __LINE__)
    408 
    409 #define AND(dst, srca, srcb) \
    410 	push_3_buffer(compiler, TILEGX_OPC_AND, dst, srca, srcb, __LINE__)
    411 
    412 #define CLZ(dst, src) \
    413 	push_2_buffer(compiler, TILEGX_OPC_CLZ, dst, src, __LINE__)
    414 
    415 #define SHLI(dst, srca, srcb) \
    416 	push_3_buffer(compiler, TILEGX_OPC_SHLI, dst, srca, srcb, __LINE__)
    417 
    418 #define SHRUI(dst, srca, imm) \
    419 	push_3_buffer(compiler, TILEGX_OPC_SHRUI, dst, srca, imm, __LINE__)
    420 
    421 #define XORI(dst, srca, imm) \
    422 	push_3_buffer(compiler, TILEGX_OPC_XORI, dst, srca, imm, __LINE__)
    423 
    424 #define ORI(dst, srca, imm) \
    425 	push_3_buffer(compiler, TILEGX_OPC_ORI, dst, srca, imm, __LINE__)
    426 
    427 #define CMPLTU(dst, srca, srcb) \
    428 	push_3_buffer(compiler, TILEGX_OPC_CMPLTU, dst, srca, srcb, __LINE__)
    429 
    430 #define CMPLTS(dst, srca, srcb) \
    431 	push_3_buffer(compiler, TILEGX_OPC_CMPLTS, dst, srca, srcb, __LINE__)
    432 
    433 #define CMPLTUI(dst, srca, imm) \
    434 	push_3_buffer(compiler, TILEGX_OPC_CMPLTUI, dst, srca, imm, __LINE__)
    435 
    436 #define CMOVNEZ(dst, srca, srcb) \
    437 	push_3_buffer(compiler, TILEGX_OPC_CMOVNEZ, dst, srca, srcb, __LINE__)
    438 
    439 #define CMOVEQZ(dst, srca, srcb) \
    440 	push_3_buffer(compiler, TILEGX_OPC_CMOVEQZ, dst, srca, srcb, __LINE__)
    441 
    442 #define ADDLI(dst, srca, srcb) \
    443 	push_3_buffer(compiler, TILEGX_OPC_ADDLI, dst, srca, srcb, __LINE__)
    444 
    445 #define SHL16INSLI(dst, srca, srcb) \
    446 	push_3_buffer(compiler, TILEGX_OPC_SHL16INSLI, dst, srca, srcb, __LINE__)
    447 
    448 #define LD_ADD(dst, addr, adjust) \
    449 	push_3_buffer(compiler, TILEGX_OPC_LD_ADD, dst, addr, adjust, __LINE__)
    450 
    451 #define ST_ADD(src, addr, adjust) \
    452 	push_3_buffer(compiler, TILEGX_OPC_ST_ADD, src, addr, adjust, __LINE__)
    453 
    454 #define LD(dst, addr) \
    455 	push_2_buffer(compiler, TILEGX_OPC_LD, dst, addr, __LINE__)
    456 
    457 #define BFEXTU(dst, src, start, end) \
    458 	push_4_buffer(compiler, TILEGX_OPC_BFEXTU, dst, src, start, end, __LINE__)
    459 
    460 #define BFEXTS(dst, src, start, end) \
    461 	push_4_buffer(compiler, TILEGX_OPC_BFEXTS, dst, src, start, end, __LINE__)
    462 
    463 #define ADD_SOLO(dest, srca, srcb) \
    464 	push_inst(compiler, ADD_X1 | DEST_X1(dest) | SRCA_X1(srca) | SRCB_X1(srcb))
    465 
    466 #define ADDI_SOLO(dest, srca, imm) \
    467 	push_inst(compiler, ADDI_X1 | DEST_X1(dest) | SRCA_X1(srca) | IMM8_X1(imm))
    468 
    469 #define ADDLI_SOLO(dest, srca, imm) \
    470 	push_inst(compiler, ADDLI_X1 | DEST_X1(dest) | SRCA_X1(srca) | IMM16_X1(imm))
    471 
    472 #define SHL16INSLI_SOLO(dest, srca, imm) \
    473 	push_inst(compiler, SHL16INSLI_X1 | DEST_X1(dest) | SRCA_X1(srca) | IMM16_X1(imm))
    474 
    475 #define JALR_SOLO(reg) \
    476 	push_inst(compiler, JALR_X1 | SRCA_X1(reg))
    477 
    478 #define JR_SOLO(reg) \
    479 	push_inst(compiler, JR_X1 | SRCA_X1(reg))
    480 
    481 struct Format {
    482 	/* Mapping of bundle issue slot to assigned pipe. */
    483 	tilegx_pipeline pipe[TILEGX_MAX_INSTRUCTIONS_PER_BUNDLE];
    484 
    485 	/* Mask of pipes used by this bundle. */
    486 	unsigned int pipe_mask;
    487 };
    488 
    489 const struct Format formats[] =
    490 {
    491 	/* In Y format we must always have something in Y2, since it has
    492 	* no fnop, so this conveys that Y2 must always be used. */
    493 	BUNDLE_FORMAT(TILEGX_PIPELINE_Y0, TILEGX_PIPELINE_Y2, NO_PIPELINE),
    494 	BUNDLE_FORMAT(TILEGX_PIPELINE_Y1, TILEGX_PIPELINE_Y2, NO_PIPELINE),
    495 	BUNDLE_FORMAT(TILEGX_PIPELINE_Y2, TILEGX_PIPELINE_Y0, NO_PIPELINE),
    496 	BUNDLE_FORMAT(TILEGX_PIPELINE_Y2, TILEGX_PIPELINE_Y1, NO_PIPELINE),
    497 
    498 	/* Y format has three instructions. */
    499 	BUNDLE_FORMAT(TILEGX_PIPELINE_Y0, TILEGX_PIPELINE_Y1, TILEGX_PIPELINE_Y2),
    500 	BUNDLE_FORMAT(TILEGX_PIPELINE_Y0, TILEGX_PIPELINE_Y2, TILEGX_PIPELINE_Y1),
    501 	BUNDLE_FORMAT(TILEGX_PIPELINE_Y1, TILEGX_PIPELINE_Y0, TILEGX_PIPELINE_Y2),
    502 	BUNDLE_FORMAT(TILEGX_PIPELINE_Y1, TILEGX_PIPELINE_Y2, TILEGX_PIPELINE_Y0),
    503 	BUNDLE_FORMAT(TILEGX_PIPELINE_Y2, TILEGX_PIPELINE_Y0, TILEGX_PIPELINE_Y1),
    504 	BUNDLE_FORMAT(TILEGX_PIPELINE_Y2, TILEGX_PIPELINE_Y1, TILEGX_PIPELINE_Y0),
    505 
    506 	/* X format has only two instructions. */
    507 	BUNDLE_FORMAT(TILEGX_PIPELINE_X0, TILEGX_PIPELINE_X1, NO_PIPELINE),
    508 	BUNDLE_FORMAT(TILEGX_PIPELINE_X1, TILEGX_PIPELINE_X0, NO_PIPELINE)
    509 };
    510 
    511 
    512 struct jit_instr inst_buf[TILEGX_MAX_INSTRUCTIONS_PER_BUNDLE];
    513 unsigned long inst_buf_index;
    514 
    515 tilegx_pipeline get_any_valid_pipe(const struct tilegx_opcode* opcode)
    516 {
    517 	/* FIXME: tile: we could pregenerate this. */
    518 	int pipe;
    519 	for (pipe = 0; ((opcode->pipes & (1 << pipe)) == 0 && pipe < TILEGX_NUM_PIPELINE_ENCODINGS); pipe++)
    520 		;
    521 	return (tilegx_pipeline)(pipe);
    522 }
    523 
    524 void insert_nop(tilegx_mnemonic opc, int line)
    525 {
    526 	const struct tilegx_opcode* opcode = NULL;
    527 
    528 	memmove(&inst_buf[1], &inst_buf[0], inst_buf_index * sizeof inst_buf[0]);
    529 
    530 	opcode = &tilegx_opcodes[opc];
    531 	inst_buf[0].opcode = opcode;
    532 	inst_buf[0].pipe = get_any_valid_pipe(opcode);
    533 	inst_buf[0].input_registers = 0;
    534 	inst_buf[0].output_registers = 0;
    535 	inst_buf[0].line = line;
    536 	++inst_buf_index;
    537 }
    538 
    539 const struct Format* compute_format()
    540 {
    541 	unsigned int compatible_pipes = BUNDLE_FORMAT_MASK(
    542 		inst_buf[0].opcode->pipes,
    543 		inst_buf[1].opcode->pipes,
    544 		(inst_buf_index == 3 ? inst_buf[2].opcode->pipes : (1 << NO_PIPELINE)));
    545 
    546 	const struct Format* match = NULL;
    547 	const struct Format *b = NULL;
    548 	unsigned int i;
    549 	for (i = 0; i < sizeof formats / sizeof formats[0]; i++) {
    550 		b = &formats[i];
    551 		if ((b->pipe_mask & compatible_pipes) == b->pipe_mask) {
    552 			match = b;
    553 			break;
    554 		}
    555 	}
    556 
    557 	return match;
    558 }
    559 
    560 sljit_s32 assign_pipes()
    561 {
    562 	unsigned long output_registers = 0;
    563 	unsigned int i = 0;
    564 
    565 	if (inst_buf_index == 1) {
    566 		tilegx_mnemonic opc = inst_buf[0].opcode->can_bundle
    567 					? TILEGX_OPC_FNOP : TILEGX_OPC_NOP;
    568 		insert_nop(opc, __LINE__);
    569 	}
    570 
    571 	const struct Format* match = compute_format();
    572 
    573 	if (match == NULL)
    574 		return -1;
    575 
    576 	for (i = 0; i < inst_buf_index; i++) {
    577 
    578 		if ((i > 0) && ((inst_buf[i].input_registers & output_registers) != 0))
    579 			return -1;
    580 
    581 		if ((i > 0) && ((inst_buf[i].output_registers & output_registers) != 0))
    582 			return -1;
    583 
    584 		/* Don't include Rzero in the match set, to avoid triggering
    585 		   needlessly on 'prefetch' instrs. */
    586 
    587 		output_registers |= inst_buf[i].output_registers & 0xFFFFFFFFFFFFFFL;
    588 
    589 		inst_buf[i].pipe = match->pipe[i];
    590 	}
    591 
    592 	/* If only 2 instrs, and in Y-mode, insert a nop. */
    593 	if (inst_buf_index == 2 && !tilegx_is_x_pipeline(match->pipe[0])) {
    594 		insert_nop(TILEGX_OPC_FNOP, __LINE__);
    595 
    596 		/* Select the yet unassigned pipe. */
    597 		tilegx_pipeline pipe = (tilegx_pipeline)(((TILEGX_PIPELINE_Y0
    598 					+ TILEGX_PIPELINE_Y1 + TILEGX_PIPELINE_Y2)
    599 					- (inst_buf[1].pipe + inst_buf[2].pipe)));
    600 
    601 		inst_buf[0].pipe = pipe;
    602 	}
    603 
    604 	return 0;
    605 }
    606 
    607 tilegx_bundle_bits get_bundle_bit(struct jit_instr *inst)
    608 {
    609 	int i, val;
    610 	const struct tilegx_opcode* opcode = inst->opcode;
    611 	tilegx_bundle_bits bits = opcode->fixed_bit_values[inst->pipe];
    612 
    613 	const struct tilegx_operand* operand = NULL;
    614 	for (i = 0; i < opcode->num_operands; i++) {
    615 		operand = &tilegx_operands[opcode->operands[inst->pipe][i]];
    616 		val = inst->operand_value[i];
    617 
    618 		bits |= operand->insert(val);
    619 	}
    620 
    621 	return bits;
    622 }
    623 
    624 static sljit_s32 update_buffer(struct sljit_compiler *compiler)
    625 {
    626 	int i;
    627 	int orig_index = inst_buf_index;
    628 	struct jit_instr inst0 = inst_buf[0];
    629 	struct jit_instr inst1 = inst_buf[1];
    630 	struct jit_instr inst2 = inst_buf[2];
    631 	tilegx_bundle_bits bits = 0;
    632 
    633 	/* If the bundle is valid as is, perform the encoding and return 1. */
    634 	if (assign_pipes() == 0) {
    635 		for (i = 0; i < inst_buf_index; i++) {
    636 			bits |= get_bundle_bit(inst_buf + i);
    637 #ifdef TILEGX_JIT_DEBUG
    638 			printf("|%04d", inst_buf[i].line);
    639 #endif
    640 		}
    641 #ifdef TILEGX_JIT_DEBUG
    642 		if (inst_buf_index == 3)
    643 			printf("|M0|:\t");
    644 		else
    645 			printf("|M0|:\t\t");
    646 		print_insn_tilegx(&bits);
    647 #endif
    648 
    649 		inst_buf_index = 0;
    650 
    651 #ifdef TILEGX_JIT_DEBUG
    652 		return push_inst_nodebug(compiler, bits);
    653 #else
    654 		return push_inst(compiler, bits);
    655 #endif
    656 	}
    657 
    658 	/* If the bundle is invalid, split it in two. First encode the first two
    659 	   (or possibly 1) instructions, and then the last, separately. Note that
    660 	   assign_pipes may have re-ordered the instrs (by inserting no-ops in
    661 	   lower slots) so we need to reset them. */
    662 
    663 	inst_buf_index = orig_index - 1;
    664 	inst_buf[0] = inst0;
    665 	inst_buf[1] = inst1;
    666 	inst_buf[2] = inst2;
    667 	if (assign_pipes() == 0) {
    668 		for (i = 0; i < inst_buf_index; i++) {
    669 			bits |= get_bundle_bit(inst_buf + i);
    670 #ifdef TILEGX_JIT_DEBUG
    671 			printf("|%04d", inst_buf[i].line);
    672 #endif
    673 		}
    674 
    675 #ifdef TILEGX_JIT_DEBUG
    676 		if (inst_buf_index == 3)
    677 			printf("|M1|:\t");
    678 		else
    679 			printf("|M1|:\t\t");
    680 		print_insn_tilegx(&bits);
    681 #endif
    682 
    683 		if ((orig_index - 1) == 2) {
    684 			inst_buf[0] = inst2;
    685 			inst_buf_index = 1;
    686 		} else if ((orig_index - 1) == 1) {
    687 			inst_buf[0] = inst1;
    688 			inst_buf_index = 1;
    689 		} else
    690 			SLJIT_ASSERT_STOP();
    691 
    692 #ifdef TILEGX_JIT_DEBUG
    693 		return push_inst_nodebug(compiler, bits);
    694 #else
    695 		return push_inst(compiler, bits);
    696 #endif
    697 	} else {
    698 		/* We had 3 instrs of which the first 2 can't live in the same bundle.
    699 		   Split those two. Note that we don't try to then combine the second
    700 		   and third instr into a single bundle.  First instruction: */
    701 		inst_buf_index = 1;
    702 		inst_buf[0] = inst0;
    703 		inst_buf[1] = inst1;
    704 		inst_buf[2] = inst2;
    705 		if (assign_pipes() == 0) {
    706 			for (i = 0; i < inst_buf_index; i++) {
    707 				bits |= get_bundle_bit(inst_buf + i);
    708 #ifdef TILEGX_JIT_DEBUG
    709 				printf("|%04d", inst_buf[i].line);
    710 #endif
    711 			}
    712 
    713 #ifdef TILEGX_JIT_DEBUG
    714 			if (inst_buf_index == 3)
    715 				printf("|M2|:\t");
    716 			else
    717 				printf("|M2|:\t\t");
    718 			print_insn_tilegx(&bits);
    719 #endif
    720 
    721 			inst_buf[0] = inst1;
    722 			inst_buf[1] = inst2;
    723 			inst_buf_index = orig_index - 1;
    724 #ifdef TILEGX_JIT_DEBUG
    725 			return push_inst_nodebug(compiler, bits);
    726 #else
    727 			return push_inst(compiler, bits);
    728 #endif
    729 		} else
    730 			SLJIT_ASSERT_STOP();
    731 	}
    732 
    733 	SLJIT_ASSERT_STOP();
    734 }
    735 
    736 static sljit_s32 flush_buffer(struct sljit_compiler *compiler)
    737 {
    738 	while (inst_buf_index != 0) {
    739 		FAIL_IF(update_buffer(compiler));
    740 	}
    741 	return SLJIT_SUCCESS;
    742 }
    743 
    744 static sljit_s32 push_4_buffer(struct sljit_compiler *compiler, tilegx_mnemonic opc, int op0, int op1, int op2, int op3, int line)
    745 {
    746 	if (inst_buf_index == TILEGX_MAX_INSTRUCTIONS_PER_BUNDLE)
    747 		FAIL_IF(update_buffer(compiler));
    748 
    749 	const struct tilegx_opcode* opcode = &tilegx_opcodes[opc];
    750 	inst_buf[inst_buf_index].opcode = opcode;
    751 	inst_buf[inst_buf_index].pipe = get_any_valid_pipe(opcode);
    752 	inst_buf[inst_buf_index].operand_value[0] = op0;
    753 	inst_buf[inst_buf_index].operand_value[1] = op1;
    754 	inst_buf[inst_buf_index].operand_value[2] = op2;
    755 	inst_buf[inst_buf_index].operand_value[3] = op3;
    756 	inst_buf[inst_buf_index].input_registers = 1L << op1;
    757 	inst_buf[inst_buf_index].output_registers = 1L << op0;
    758 	inst_buf[inst_buf_index].line = line;
    759 	inst_buf_index++;
    760 
    761 	return SLJIT_SUCCESS;
    762 }
    763 
    764 static sljit_s32 push_3_buffer(struct sljit_compiler *compiler, tilegx_mnemonic opc, int op0, int op1, int op2, int line)
    765 {
    766 	if (inst_buf_index == TILEGX_MAX_INSTRUCTIONS_PER_BUNDLE)
    767 		FAIL_IF(update_buffer(compiler));
    768 
    769 	const struct tilegx_opcode* opcode = &tilegx_opcodes[opc];
    770 	inst_buf[inst_buf_index].opcode = opcode;
    771 	inst_buf[inst_buf_index].pipe = get_any_valid_pipe(opcode);
    772 	inst_buf[inst_buf_index].operand_value[0] = op0;
    773 	inst_buf[inst_buf_index].operand_value[1] = op1;
    774 	inst_buf[inst_buf_index].operand_value[2] = op2;
    775 	inst_buf[inst_buf_index].line = line;
    776 
    777 	switch (opc) {
    778 	case TILEGX_OPC_ST_ADD:
    779 		inst_buf[inst_buf_index].input_registers = (1L << op0) | (1L << op1);
    780 		inst_buf[inst_buf_index].output_registers = 1L << op0;
    781 		break;
    782 	case TILEGX_OPC_LD_ADD:
    783 		inst_buf[inst_buf_index].input_registers = 1L << op1;
    784 		inst_buf[inst_buf_index].output_registers = (1L << op0) | (1L << op1);
    785 		break;
    786 	case TILEGX_OPC_ADD:
    787 	case TILEGX_OPC_AND:
    788 	case TILEGX_OPC_SUB:
    789 	case TILEGX_OPC_MULX:
    790 	case TILEGX_OPC_OR:
    791 	case TILEGX_OPC_XOR:
    792 	case TILEGX_OPC_NOR:
    793 	case TILEGX_OPC_SHL:
    794 	case TILEGX_OPC_SHRU:
    795 	case TILEGX_OPC_SHRS:
    796 	case TILEGX_OPC_CMPLTU:
    797 	case TILEGX_OPC_CMPLTS:
    798 	case TILEGX_OPC_CMOVEQZ:
    799 	case TILEGX_OPC_CMOVNEZ:
    800 		inst_buf[inst_buf_index].input_registers = (1L << op1) | (1L << op2);
    801 		inst_buf[inst_buf_index].output_registers = 1L << op0;
    802 		break;
    803 	case TILEGX_OPC_ADDLI:
    804 	case TILEGX_OPC_XORI:
    805 	case TILEGX_OPC_ORI:
    806 	case TILEGX_OPC_SHLI:
    807 	case TILEGX_OPC_SHRUI:
    808 	case TILEGX_OPC_SHRSI:
    809 	case TILEGX_OPC_SHL16INSLI:
    810 	case TILEGX_OPC_CMPLTUI:
    811 	case TILEGX_OPC_CMPLTSI:
    812 		inst_buf[inst_buf_index].input_registers = 1L << op1;
    813 		inst_buf[inst_buf_index].output_registers = 1L << op0;
    814 		break;
    815 	default:
    816 		printf("unrecoginzed opc: %s\n", opcode->name);
    817 		SLJIT_ASSERT_STOP();
    818 	}
    819 
    820 	inst_buf_index++;
    821 
    822 	return SLJIT_SUCCESS;
    823 }
    824 
    825 static sljit_s32 push_2_buffer(struct sljit_compiler *compiler, tilegx_mnemonic opc, int op0, int op1, int line)
    826 {
    827 	if (inst_buf_index == TILEGX_MAX_INSTRUCTIONS_PER_BUNDLE)
    828 		FAIL_IF(update_buffer(compiler));
    829 
    830 	const struct tilegx_opcode* opcode = &tilegx_opcodes[opc];
    831 	inst_buf[inst_buf_index].opcode = opcode;
    832 	inst_buf[inst_buf_index].pipe = get_any_valid_pipe(opcode);
    833 	inst_buf[inst_buf_index].operand_value[0] = op0;
    834 	inst_buf[inst_buf_index].operand_value[1] = op1;
    835 	inst_buf[inst_buf_index].line = line;
    836 
    837 	switch (opc) {
    838 	case TILEGX_OPC_BEQZ:
    839 	case TILEGX_OPC_BNEZ:
    840 		inst_buf[inst_buf_index].input_registers = 1L << op0;
    841 		break;
    842 	case TILEGX_OPC_ST:
    843 	case TILEGX_OPC_ST1:
    844 	case TILEGX_OPC_ST2:
    845 	case TILEGX_OPC_ST4:
    846 		inst_buf[inst_buf_index].input_registers = (1L << op0) | (1L << op1);
    847 		inst_buf[inst_buf_index].output_registers = 0;
    848 		break;
    849 	case TILEGX_OPC_CLZ:
    850 	case TILEGX_OPC_LD:
    851 	case TILEGX_OPC_LD1U:
    852 	case TILEGX_OPC_LD1S:
    853 	case TILEGX_OPC_LD2U:
    854 	case TILEGX_OPC_LD2S:
    855 	case TILEGX_OPC_LD4U:
    856 	case TILEGX_OPC_LD4S:
    857 		inst_buf[inst_buf_index].input_registers = 1L << op1;
    858 		inst_buf[inst_buf_index].output_registers = 1L << op0;
    859 		break;
    860 	default:
    861 		printf("unrecoginzed opc: %s\n", opcode->name);
    862 		SLJIT_ASSERT_STOP();
    863 	}
    864 
    865 	inst_buf_index++;
    866 
    867 	return SLJIT_SUCCESS;
    868 }
    869 
    870 static sljit_s32 push_0_buffer(struct sljit_compiler *compiler, tilegx_mnemonic opc, int line)
    871 {
    872 	if (inst_buf_index == TILEGX_MAX_INSTRUCTIONS_PER_BUNDLE)
    873 		FAIL_IF(update_buffer(compiler));
    874 
    875 	const struct tilegx_opcode* opcode = &tilegx_opcodes[opc];
    876 	inst_buf[inst_buf_index].opcode = opcode;
    877 	inst_buf[inst_buf_index].pipe = get_any_valid_pipe(opcode);
    878 	inst_buf[inst_buf_index].input_registers = 0;
    879 	inst_buf[inst_buf_index].output_registers = 0;
    880 	inst_buf[inst_buf_index].line = line;
    881 	inst_buf_index++;
    882 
    883 	return SLJIT_SUCCESS;
    884 }
    885 
    886 static sljit_s32 push_jr_buffer(struct sljit_compiler *compiler, tilegx_mnemonic opc, int op0, int line)
    887 {
    888 	if (inst_buf_index == TILEGX_MAX_INSTRUCTIONS_PER_BUNDLE)
    889 		FAIL_IF(update_buffer(compiler));
    890 
    891 	const struct tilegx_opcode* opcode = &tilegx_opcodes[opc];
    892 	inst_buf[inst_buf_index].opcode = opcode;
    893 	inst_buf[inst_buf_index].pipe = get_any_valid_pipe(opcode);
    894 	inst_buf[inst_buf_index].operand_value[0] = op0;
    895 	inst_buf[inst_buf_index].input_registers = 1L << op0;
    896 	inst_buf[inst_buf_index].output_registers = 0;
    897 	inst_buf[inst_buf_index].line = line;
    898 	inst_buf_index++;
    899 
    900 	return flush_buffer(compiler);
    901 }
    902 
    903 static SLJIT_INLINE sljit_ins * detect_jump_type(struct sljit_jump *jump, sljit_ins *code_ptr, sljit_ins *code)
    904 {
    905 	sljit_sw diff;
    906 	sljit_uw target_addr;
    907 	sljit_ins *inst;
    908 
    909 	if (jump->flags & SLJIT_REWRITABLE_JUMP)
    910 		return code_ptr;
    911 
    912 	if (jump->flags & JUMP_ADDR)
    913 		target_addr = jump->u.target;
    914 	else {
    915 		SLJIT_ASSERT(jump->flags & JUMP_LABEL);
    916 		target_addr = (sljit_uw)(code + jump->u.label->size);
    917 	}
    918 
    919 	inst = (sljit_ins *)jump->addr;
    920 	if (jump->flags & IS_COND)
    921 		inst--;
    922 
    923 	diff = ((sljit_sw) target_addr - (sljit_sw) inst) >> 3;
    924 	if (diff <= SIMM_17BIT_MAX && diff >= SIMM_17BIT_MIN) {
    925 		jump->flags |= PATCH_B;
    926 
    927 		if (!(jump->flags & IS_COND)) {
    928 			if (jump->flags & IS_JAL) {
    929 				jump->flags &= ~(PATCH_B);
    930 				jump->flags |= PATCH_J;
    931 				inst[0] = JAL_X1;
    932 
    933 #ifdef TILEGX_JIT_DEBUG
    934 				printf("[runtime relocate]%04d:\t", __LINE__);
    935 				print_insn_tilegx(inst);
    936 #endif
    937 			} else {
    938 				inst[0] = BEQZ_X1 | SRCA_X1(ZERO);
    939 
    940 #ifdef TILEGX_JIT_DEBUG
    941 				printf("[runtime relocate]%04d:\t", __LINE__);
    942 				print_insn_tilegx(inst);
    943 #endif
    944 			}
    945 
    946 			return inst;
    947 		}
    948 
    949 		inst[0] = inst[0] ^ (0x7L << 55);
    950 
    951 #ifdef TILEGX_JIT_DEBUG
    952 		printf("[runtime relocate]%04d:\t", __LINE__);
    953 		print_insn_tilegx(inst);
    954 #endif
    955 		jump->addr -= sizeof(sljit_ins);
    956 		return inst;
    957 	}
    958 
    959 	if (jump->flags & IS_COND) {
    960 		if ((target_addr & ~0x3FFFFFFFL) == ((jump->addr + sizeof(sljit_ins)) & ~0x3FFFFFFFL)) {
    961 			jump->flags |= PATCH_J;
    962 			inst[0] = (inst[0] & ~(BOFF_X1(-1))) | BOFF_X1(2);
    963 			inst[1] = J_X1;
    964 			return inst + 1;
    965 		}
    966 
    967 		return code_ptr;
    968 	}
    969 
    970 	if ((target_addr & ~0x3FFFFFFFL) == ((jump->addr + sizeof(sljit_ins)) & ~0x3FFFFFFFL)) {
    971 		jump->flags |= PATCH_J;
    972 
    973 		if (jump->flags & IS_JAL) {
    974 			inst[0] = JAL_X1;
    975 
    976 #ifdef TILEGX_JIT_DEBUG
    977 			printf("[runtime relocate]%04d:\t", __LINE__);
    978 			print_insn_tilegx(inst);
    979 #endif
    980 
    981 		} else {
    982 			inst[0] = J_X1;
    983 
    984 #ifdef TILEGX_JIT_DEBUG
    985 			printf("[runtime relocate]%04d:\t", __LINE__);
    986 			print_insn_tilegx(inst);
    987 #endif
    988 		}
    989 
    990 		return inst;
    991 	}
    992 
    993 	return code_ptr;
    994 }
    995 
    996 SLJIT_API_FUNC_ATTRIBUTE void * sljit_generate_code(struct sljit_compiler *compiler)
    997 {
    998 	struct sljit_memory_fragment *buf;
    999 	sljit_ins *code;
   1000 	sljit_ins *code_ptr;
   1001 	sljit_ins *buf_ptr;
   1002 	sljit_ins *buf_end;
   1003 	sljit_uw word_count;
   1004 	sljit_uw addr;
   1005 
   1006 	struct sljit_label *label;
   1007 	struct sljit_jump *jump;
   1008 	struct sljit_const *const_;
   1009 
   1010 	CHECK_ERROR_PTR();
   1011 	CHECK_PTR(check_sljit_generate_code(compiler));
   1012 	reverse_buf(compiler);
   1013 
   1014 	code = (sljit_ins *)SLJIT_MALLOC_EXEC(compiler->size * sizeof(sljit_ins));
   1015 	PTR_FAIL_WITH_EXEC_IF(code);
   1016 	buf = compiler->buf;
   1017 
   1018 	code_ptr = code;
   1019 	word_count = 0;
   1020 	label = compiler->labels;
   1021 	jump = compiler->jumps;
   1022 	const_ = compiler->consts;
   1023 	do {
   1024 		buf_ptr = (sljit_ins *)buf->memory;
   1025 		buf_end = buf_ptr + (buf->used_size >> 3);
   1026 		do {
   1027 			*code_ptr = *buf_ptr++;
   1028 			SLJIT_ASSERT(!label || label->size >= word_count);
   1029 			SLJIT_ASSERT(!jump || jump->addr >= word_count);
   1030 			SLJIT_ASSERT(!const_ || const_->addr >= word_count);
   1031 			/* These structures are ordered by their address. */
   1032 			if (label && label->size == word_count) {
   1033 				/* Just recording the address. */
   1034 				label->addr = (sljit_uw) code_ptr;
   1035 				label->size = code_ptr - code;
   1036 				label = label->next;
   1037 			}
   1038 
   1039 			if (jump && jump->addr == word_count) {
   1040 				if (jump->flags & IS_JAL)
   1041 					jump->addr = (sljit_uw)(code_ptr - 4);
   1042 				else
   1043 					jump->addr = (sljit_uw)(code_ptr - 3);
   1044 
   1045 				code_ptr = detect_jump_type(jump, code_ptr, code);
   1046 				jump = jump->next;
   1047 			}
   1048 
   1049 			if (const_ && const_->addr == word_count) {
   1050 				/* Just recording the address. */
   1051 				const_->addr = (sljit_uw) code_ptr;
   1052 				const_ = const_->next;
   1053 			}
   1054 
   1055 			code_ptr++;
   1056 			word_count++;
   1057 		} while (buf_ptr < buf_end);
   1058 
   1059 		buf = buf->next;
   1060 	} while (buf);
   1061 
   1062 	if (label && label->size == word_count) {
   1063 		label->addr = (sljit_uw) code_ptr;
   1064 		label->size = code_ptr - code;
   1065 		label = label->next;
   1066 	}
   1067 
   1068 	SLJIT_ASSERT(!label);
   1069 	SLJIT_ASSERT(!jump);
   1070 	SLJIT_ASSERT(!const_);
   1071 	SLJIT_ASSERT(code_ptr - code <= (sljit_sw)compiler->size);
   1072 
   1073 	jump = compiler->jumps;
   1074 	while (jump) {
   1075 		do {
   1076 			addr = (jump->flags & JUMP_LABEL) ? jump->u.label->addr : jump->u.target;
   1077 			buf_ptr = (sljit_ins *)jump->addr;
   1078 
   1079 			if (jump->flags & PATCH_B) {
   1080 				addr = (sljit_sw)(addr - (jump->addr)) >> 3;
   1081 				SLJIT_ASSERT((sljit_sw) addr <= SIMM_17BIT_MAX && (sljit_sw) addr >= SIMM_17BIT_MIN);
   1082 				buf_ptr[0] = (buf_ptr[0] & ~(BOFF_X1(-1))) | BOFF_X1(addr);
   1083 
   1084 #ifdef TILEGX_JIT_DEBUG
   1085 				printf("[runtime relocate]%04d:\t", __LINE__);
   1086 				print_insn_tilegx(buf_ptr);
   1087 #endif
   1088 				break;
   1089 			}
   1090 
   1091 			if (jump->flags & PATCH_J) {
   1092 				SLJIT_ASSERT((addr & ~0x3FFFFFFFL) == ((jump->addr + sizeof(sljit_ins)) & ~0x3FFFFFFFL));
   1093 				addr = (sljit_sw)(addr - (jump->addr)) >> 3;
   1094 				buf_ptr[0] = (buf_ptr[0] & ~(JOFF_X1(-1))) | JOFF_X1(addr);
   1095 
   1096 #ifdef TILEGX_JIT_DEBUG
   1097 				printf("[runtime relocate]%04d:\t", __LINE__);
   1098 				print_insn_tilegx(buf_ptr);
   1099 #endif
   1100 				break;
   1101 			}
   1102 
   1103 			SLJIT_ASSERT(!(jump->flags & IS_JAL));
   1104 
   1105 			/* Set the fields of immediate loads. */
   1106 			buf_ptr[0] = (buf_ptr[0] & ~(0xFFFFL << 43)) | (((addr >> 32) & 0xFFFFL) << 43);
   1107 			buf_ptr[1] = (buf_ptr[1] & ~(0xFFFFL << 43)) | (((addr >> 16) & 0xFFFFL) << 43);
   1108 			buf_ptr[2] = (buf_ptr[2] & ~(0xFFFFL << 43)) | ((addr & 0xFFFFL) << 43);
   1109 		} while (0);
   1110 
   1111 		jump = jump->next;
   1112 	}
   1113 
   1114 	compiler->error = SLJIT_ERR_COMPILED;
   1115 	compiler->executable_size = (code_ptr - code) * sizeof(sljit_ins);
   1116 	SLJIT_CACHE_FLUSH(code, code_ptr);
   1117 	return code;
   1118 }
   1119 
   1120 static sljit_s32 load_immediate(struct sljit_compiler *compiler, sljit_s32 dst_ar, sljit_sw imm)
   1121 {
   1122 
   1123 	if (imm <= SIMM_16BIT_MAX && imm >= SIMM_16BIT_MIN)
   1124 		return ADDLI(dst_ar, ZERO, imm);
   1125 
   1126 	if (imm <= SIMM_32BIT_MAX && imm >= SIMM_32BIT_MIN) {
   1127 		FAIL_IF(ADDLI(dst_ar, ZERO, imm >> 16));
   1128 		return SHL16INSLI(dst_ar, dst_ar, imm);
   1129 	}
   1130 
   1131 	if (imm <= SIMM_48BIT_MAX && imm >= SIMM_48BIT_MIN) {
   1132 		FAIL_IF(ADDLI(dst_ar, ZERO, imm >> 32));
   1133 		FAIL_IF(SHL16INSLI(dst_ar, dst_ar, imm >> 16));
   1134 		return SHL16INSLI(dst_ar, dst_ar, imm);
   1135 	}
   1136 
   1137 	FAIL_IF(ADDLI(dst_ar, ZERO, imm >> 48));
   1138 	FAIL_IF(SHL16INSLI(dst_ar, dst_ar, imm >> 32));
   1139 	FAIL_IF(SHL16INSLI(dst_ar, dst_ar, imm >> 16));
   1140 	return SHL16INSLI(dst_ar, dst_ar, imm);
   1141 }
   1142 
   1143 static sljit_s32 emit_const(struct sljit_compiler *compiler, sljit_s32 dst_ar, sljit_sw imm, int flush)
   1144 {
   1145 	/* Should *not* be optimized as load_immediate, as pcre relocation
   1146 	   mechanism will match this fixed 4-instruction pattern. */
   1147 	if (flush) {
   1148 		FAIL_IF(ADDLI_SOLO(dst_ar, ZERO, imm >> 32));
   1149 		FAIL_IF(SHL16INSLI_SOLO(dst_ar, dst_ar, imm >> 16));
   1150 		return SHL16INSLI_SOLO(dst_ar, dst_ar, imm);
   1151 	}
   1152 
   1153 	FAIL_IF(ADDLI(dst_ar, ZERO, imm >> 32));
   1154 	FAIL_IF(SHL16INSLI(dst_ar, dst_ar, imm >> 16));
   1155 	return SHL16INSLI(dst_ar, dst_ar, imm);
   1156 }
   1157 
   1158 static sljit_s32 emit_const_64(struct sljit_compiler *compiler, sljit_s32 dst_ar, sljit_sw imm, int flush)
   1159 {
   1160 	/* Should *not* be optimized as load_immediate, as pcre relocation
   1161 	   mechanism will match this fixed 4-instruction pattern. */
   1162 	if (flush) {
   1163 		FAIL_IF(ADDLI_SOLO(reg_map[dst_ar], ZERO, imm >> 48));
   1164 		FAIL_IF(SHL16INSLI_SOLO(reg_map[dst_ar], reg_map[dst_ar], imm >> 32));
   1165 		FAIL_IF(SHL16INSLI_SOLO(reg_map[dst_ar], reg_map[dst_ar], imm >> 16));
   1166 		return SHL16INSLI_SOLO(reg_map[dst_ar], reg_map[dst_ar], imm);
   1167 	}
   1168 
   1169 	FAIL_IF(ADDLI(reg_map[dst_ar], ZERO, imm >> 48));
   1170 	FAIL_IF(SHL16INSLI(reg_map[dst_ar], reg_map[dst_ar], imm >> 32));
   1171 	FAIL_IF(SHL16INSLI(reg_map[dst_ar], reg_map[dst_ar], imm >> 16));
   1172 	return SHL16INSLI(reg_map[dst_ar], reg_map[dst_ar], imm);
   1173 }
   1174 
   1175 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_enter(struct sljit_compiler *compiler,
   1176 	sljit_s32 options, sljit_s32 args, sljit_s32 scratches, sljit_s32 saveds,
   1177 	sljit_s32 fscratches, sljit_s32 fsaveds, sljit_s32 local_size)
   1178 {
   1179 	sljit_ins base;
   1180 	sljit_s32 i, tmp;
   1181 
   1182 	CHECK_ERROR();
   1183 	CHECK(check_sljit_emit_enter(compiler, options, args, scratches, saveds, fscratches, fsaveds, local_size));
   1184 	set_emit_enter(compiler, options, args, scratches, saveds, fscratches, fsaveds, local_size);
   1185 
   1186 	local_size += GET_SAVED_REGISTERS_SIZE(scratches, saveds, 1);
   1187 	local_size = (local_size + 7) & ~7;
   1188 	compiler->local_size = local_size;
   1189 
   1190 	if (local_size <= SIMM_16BIT_MAX) {
   1191 		/* Frequent case. */
   1192 		FAIL_IF(ADDLI(SLJIT_LOCALS_REG_mapped, SLJIT_LOCALS_REG_mapped, -local_size));
   1193 		base = SLJIT_LOCALS_REG_mapped;
   1194 	} else {
   1195 		FAIL_IF(load_immediate(compiler, TMP_REG1_mapped, local_size));
   1196 		FAIL_IF(ADD(TMP_REG2_mapped, SLJIT_LOCALS_REG_mapped, ZERO));
   1197 		FAIL_IF(SUB(SLJIT_LOCALS_REG_mapped, SLJIT_LOCALS_REG_mapped, TMP_REG1_mapped));
   1198 		base = TMP_REG2_mapped;
   1199 		local_size = 0;
   1200 	}
   1201 
   1202 	/* Save the return address. */
   1203 	FAIL_IF(ADDLI(ADDR_TMP_mapped, base, local_size - 8));
   1204 	FAIL_IF(ST_ADD(ADDR_TMP_mapped, RA, -8));
   1205 
   1206 	/* Save the S registers. */
   1207 	tmp = saveds < SLJIT_NUMBER_OF_SAVED_REGISTERS ? (SLJIT_S0 + 1 - saveds) : SLJIT_FIRST_SAVED_REG;
   1208 	for (i = SLJIT_S0; i >= tmp; i--) {
   1209 		FAIL_IF(ST_ADD(ADDR_TMP_mapped, reg_map[i], -8));
   1210 	}
   1211 
   1212 	/* Save the R registers that need to be reserved. */
   1213 	for (i = scratches; i >= SLJIT_FIRST_SAVED_REG; i--) {
   1214 		FAIL_IF(ST_ADD(ADDR_TMP_mapped, reg_map[i], -8));
   1215 	}
   1216 
   1217 	/* Move the arguments to S registers. */
   1218 	for (i = 0; i < args; i++) {
   1219 		FAIL_IF(ADD(reg_map[SLJIT_S0 - i], i, ZERO));
   1220 	}
   1221 
   1222 	return SLJIT_SUCCESS;
   1223 }
   1224 
   1225 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_set_context(struct sljit_compiler *compiler,
   1226 	sljit_s32 options, sljit_s32 args, sljit_s32 scratches, sljit_s32 saveds,
   1227 	sljit_s32 fscratches, sljit_s32 fsaveds, sljit_s32 local_size)
   1228 {
   1229 	CHECK_ERROR();
   1230 	CHECK(check_sljit_set_context(compiler, options, args, scratches, saveds, fscratches, fsaveds, local_size));
   1231 	set_set_context(compiler, options, args, scratches, saveds, fscratches, fsaveds, local_size);
   1232 
   1233 	local_size += GET_SAVED_REGISTERS_SIZE(scratches, saveds, 1);
   1234 	compiler->local_size = (local_size + 7) & ~7;
   1235 
   1236 	return SLJIT_SUCCESS;
   1237 }
   1238 
   1239 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_return(struct sljit_compiler *compiler, sljit_s32 op, sljit_s32 src, sljit_sw srcw)
   1240 {
   1241 	sljit_s32 local_size;
   1242 	sljit_ins base;
   1243 	sljit_s32 i, tmp;
   1244 	sljit_s32 saveds;
   1245 
   1246 	CHECK_ERROR();
   1247 	CHECK(check_sljit_emit_return(compiler, op, src, srcw));
   1248 
   1249 	FAIL_IF(emit_mov_before_return(compiler, op, src, srcw));
   1250 
   1251 	local_size = compiler->local_size;
   1252 	if (local_size <= SIMM_16BIT_MAX)
   1253 		base = SLJIT_LOCALS_REG_mapped;
   1254 	else {
   1255 		FAIL_IF(load_immediate(compiler, TMP_REG1_mapped, local_size));
   1256 		FAIL_IF(ADD(TMP_REG1_mapped, SLJIT_LOCALS_REG_mapped, TMP_REG1_mapped));
   1257 		base = TMP_REG1_mapped;
   1258 		local_size = 0;
   1259 	}
   1260 
   1261 	/* Restore the return address. */
   1262 	FAIL_IF(ADDLI(ADDR_TMP_mapped, base, local_size - 8));
   1263 	FAIL_IF(LD_ADD(RA, ADDR_TMP_mapped, -8));
   1264 
   1265 	/* Restore the S registers. */
   1266 	saveds = compiler->saveds;
   1267 	tmp = saveds < SLJIT_NUMBER_OF_SAVED_REGISTERS ? (SLJIT_S0 + 1 - saveds) : SLJIT_FIRST_SAVED_REG;
   1268 	for (i = SLJIT_S0; i >= tmp; i--) {
   1269 		FAIL_IF(LD_ADD(reg_map[i], ADDR_TMP_mapped, -8));
   1270 	}
   1271 
   1272 	/* Restore the R registers that need to be reserved. */
   1273 	for (i = compiler->scratches; i >= SLJIT_FIRST_SAVED_REG; i--) {
   1274 		FAIL_IF(LD_ADD(reg_map[i], ADDR_TMP_mapped, -8));
   1275 	}
   1276 
   1277 	if (compiler->local_size <= SIMM_16BIT_MAX)
   1278 		FAIL_IF(ADDLI(SLJIT_LOCALS_REG_mapped, SLJIT_LOCALS_REG_mapped, compiler->local_size));
   1279 	else
   1280 		FAIL_IF(ADD(SLJIT_LOCALS_REG_mapped, TMP_REG1_mapped, ZERO));
   1281 
   1282 	return JR(RA);
   1283 }
   1284 
   1285 /* reg_ar is an absoulute register! */
   1286 
   1287 /* Can perform an operation using at most 1 instruction. */
   1288 static sljit_s32 getput_arg_fast(struct sljit_compiler *compiler, sljit_s32 flags, sljit_s32 reg_ar, sljit_s32 arg, sljit_sw argw)
   1289 {
   1290 	SLJIT_ASSERT(arg & SLJIT_MEM);
   1291 
   1292 	if ((!(flags & WRITE_BACK) || !(arg & REG_MASK))
   1293 			&& !(arg & OFFS_REG_MASK) && argw <= SIMM_16BIT_MAX && argw >= SIMM_16BIT_MIN) {
   1294 		/* Works for both absoulte and relative addresses. */
   1295 		if (SLJIT_UNLIKELY(flags & ARG_TEST))
   1296 			return 1;
   1297 
   1298 		FAIL_IF(ADDLI(ADDR_TMP_mapped, reg_map[arg & REG_MASK], argw));
   1299 
   1300 		if (flags & LOAD_DATA)
   1301 			FAIL_IF(PB2(data_transfer_insts[flags & MEM_MASK], reg_ar, ADDR_TMP_mapped));
   1302 		else
   1303 			FAIL_IF(PB2(data_transfer_insts[flags & MEM_MASK], ADDR_TMP_mapped, reg_ar));
   1304 
   1305 		return -1;
   1306 	}
   1307 
   1308 	return 0;
   1309 }
   1310 
   1311 /* See getput_arg below.
   1312    Note: can_cache is called only for binary operators. Those
   1313    operators always uses word arguments without write back. */
   1314 static sljit_s32 can_cache(sljit_s32 arg, sljit_sw argw, sljit_s32 next_arg, sljit_sw next_argw)
   1315 {
   1316 	SLJIT_ASSERT((arg & SLJIT_MEM) && (next_arg & SLJIT_MEM));
   1317 
   1318 	/* Simple operation except for updates. */
   1319 	if (arg & OFFS_REG_MASK) {
   1320 		argw &= 0x3;
   1321 		next_argw &= 0x3;
   1322 		if (argw && argw == next_argw
   1323 				&& (arg == next_arg || (arg & OFFS_REG_MASK) == (next_arg & OFFS_REG_MASK)))
   1324 			return 1;
   1325 		return 0;
   1326 	}
   1327 
   1328 	if (arg == next_arg) {
   1329 		if (((next_argw - argw) <= SIMM_16BIT_MAX
   1330 				&& (next_argw - argw) >= SIMM_16BIT_MIN))
   1331 			return 1;
   1332 
   1333 		return 0;
   1334 	}
   1335 
   1336 	return 0;
   1337 }
   1338 
   1339 /* Emit the necessary instructions. See can_cache above. */
   1340 static sljit_s32 getput_arg(struct sljit_compiler *compiler, sljit_s32 flags, sljit_s32 reg_ar, sljit_s32 arg, sljit_sw argw, sljit_s32 next_arg, sljit_sw next_argw)
   1341 {
   1342 	sljit_s32 tmp_ar, base;
   1343 
   1344 	SLJIT_ASSERT(arg & SLJIT_MEM);
   1345 	if (!(next_arg & SLJIT_MEM)) {
   1346 		next_arg = 0;
   1347 		next_argw = 0;
   1348 	}
   1349 
   1350 	if ((flags & MEM_MASK) <= GPR_REG && (flags & LOAD_DATA))
   1351 		tmp_ar = reg_ar;
   1352 	else
   1353 		tmp_ar = TMP_REG1_mapped;
   1354 
   1355 	base = arg & REG_MASK;
   1356 
   1357 	if (SLJIT_UNLIKELY(arg & OFFS_REG_MASK)) {
   1358 		argw &= 0x3;
   1359 
   1360 		if ((flags & WRITE_BACK) && reg_ar == reg_map[base]) {
   1361 			SLJIT_ASSERT(!(flags & LOAD_DATA) && reg_map[TMP_REG1] != reg_ar);
   1362 			FAIL_IF(ADD(TMP_REG1_mapped, reg_ar, ZERO));
   1363 			reg_ar = TMP_REG1_mapped;
   1364 		}
   1365 
   1366 		/* Using the cache. */
   1367 		if (argw == compiler->cache_argw) {
   1368 			if (!(flags & WRITE_BACK)) {
   1369 				if (arg == compiler->cache_arg) {
   1370 					if (flags & LOAD_DATA)
   1371 						return PB2(data_transfer_insts[flags & MEM_MASK], reg_ar, TMP_REG3_mapped);
   1372 					else
   1373 						return PB2(data_transfer_insts[flags & MEM_MASK], TMP_REG3_mapped, reg_ar);
   1374 				}
   1375 
   1376 				if ((SLJIT_MEM | (arg & OFFS_REG_MASK)) == compiler->cache_arg) {
   1377 					if (arg == next_arg && argw == (next_argw & 0x3)) {
   1378 						compiler->cache_arg = arg;
   1379 						compiler->cache_argw = argw;
   1380 						FAIL_IF(ADD(TMP_REG3_mapped, reg_map[base], TMP_REG3_mapped));
   1381 						if (flags & LOAD_DATA)
   1382 							return PB2(data_transfer_insts[flags & MEM_MASK], reg_ar, TMP_REG3_mapped);
   1383 						else
   1384 							return PB2(data_transfer_insts[flags & MEM_MASK], TMP_REG3_mapped, reg_ar);
   1385 					}
   1386 
   1387 					FAIL_IF(ADD(tmp_ar, reg_map[base], TMP_REG3_mapped));
   1388 					if (flags & LOAD_DATA)
   1389 						return PB2(data_transfer_insts[flags & MEM_MASK], reg_ar, tmp_ar);
   1390 					else
   1391 						return PB2(data_transfer_insts[flags & MEM_MASK], tmp_ar, reg_ar);
   1392 				}
   1393 			} else {
   1394 				if ((SLJIT_MEM | (arg & OFFS_REG_MASK)) == compiler->cache_arg) {
   1395 					FAIL_IF(ADD(reg_map[base], reg_map[base], TMP_REG3_mapped));
   1396 					if (flags & LOAD_DATA)
   1397 						return PB2(data_transfer_insts[flags & MEM_MASK], reg_ar, reg_map[base]);
   1398 					else
   1399 						return PB2(data_transfer_insts[flags & MEM_MASK], reg_map[base], reg_ar);
   1400 				}
   1401 			}
   1402 		}
   1403 
   1404 		if (SLJIT_UNLIKELY(argw)) {
   1405 			compiler->cache_arg = SLJIT_MEM | (arg & OFFS_REG_MASK);
   1406 			compiler->cache_argw = argw;
   1407 			FAIL_IF(SHLI(TMP_REG3_mapped, reg_map[OFFS_REG(arg)], argw));
   1408 		}
   1409 
   1410 		if (!(flags & WRITE_BACK)) {
   1411 			if (arg == next_arg && argw == (next_argw & 0x3)) {
   1412 				compiler->cache_arg = arg;
   1413 				compiler->cache_argw = argw;
   1414 				FAIL_IF(ADD(TMP_REG3_mapped, reg_map[base], reg_map[!argw ? OFFS_REG(arg) : TMP_REG3]));
   1415 				tmp_ar = TMP_REG3_mapped;
   1416 			} else
   1417 				FAIL_IF(ADD(tmp_ar, reg_map[base], reg_map[!argw ? OFFS_REG(arg) : TMP_REG3]));
   1418 
   1419 			if (flags & LOAD_DATA)
   1420 				return PB2(data_transfer_insts[flags & MEM_MASK], reg_ar, tmp_ar);
   1421 			else
   1422 				return PB2(data_transfer_insts[flags & MEM_MASK], tmp_ar, reg_ar);
   1423 		}
   1424 
   1425 		FAIL_IF(ADD(reg_map[base], reg_map[base], reg_map[!argw ? OFFS_REG(arg) : TMP_REG3]));
   1426 
   1427 		if (flags & LOAD_DATA)
   1428 			return PB2(data_transfer_insts[flags & MEM_MASK], reg_ar, reg_map[base]);
   1429 		else
   1430 			return PB2(data_transfer_insts[flags & MEM_MASK], reg_map[base], reg_ar);
   1431 	}
   1432 
   1433 	if (SLJIT_UNLIKELY(flags & WRITE_BACK) && base) {
   1434 		/* Update only applies if a base register exists. */
   1435 		if (reg_ar == reg_map[base]) {
   1436 			SLJIT_ASSERT(!(flags & LOAD_DATA) && TMP_REG1_mapped != reg_ar);
   1437 			if (argw <= SIMM_16BIT_MAX && argw >= SIMM_16BIT_MIN) {
   1438 				FAIL_IF(ADDLI(ADDR_TMP_mapped, reg_map[base], argw));
   1439 				if (flags & LOAD_DATA)
   1440 					FAIL_IF(PB2(data_transfer_insts[flags & MEM_MASK], reg_ar, ADDR_TMP_mapped));
   1441 				else
   1442 					FAIL_IF(PB2(data_transfer_insts[flags & MEM_MASK], ADDR_TMP_mapped, reg_ar));
   1443 
   1444 				if (argw)
   1445 					return ADDLI(reg_map[base], reg_map[base], argw);
   1446 
   1447 				return SLJIT_SUCCESS;
   1448 			}
   1449 
   1450 			FAIL_IF(ADD(TMP_REG1_mapped, reg_ar, ZERO));
   1451 			reg_ar = TMP_REG1_mapped;
   1452 		}
   1453 
   1454 		if (argw <= SIMM_16BIT_MAX && argw >= SIMM_16BIT_MIN) {
   1455 			if (argw)
   1456 				FAIL_IF(ADDLI(reg_map[base], reg_map[base], argw));
   1457 		} else {
   1458 			if (compiler->cache_arg == SLJIT_MEM
   1459 					&& argw - compiler->cache_argw <= SIMM_16BIT_MAX
   1460 					&& argw - compiler->cache_argw >= SIMM_16BIT_MIN) {
   1461 				if (argw != compiler->cache_argw) {
   1462 					FAIL_IF(ADD(TMP_REG3_mapped, TMP_REG3_mapped, argw - compiler->cache_argw));
   1463 					compiler->cache_argw = argw;
   1464 				}
   1465 
   1466 				FAIL_IF(ADD(reg_map[base], reg_map[base], TMP_REG3_mapped));
   1467 			} else {
   1468 				compiler->cache_arg = SLJIT_MEM;
   1469 				compiler->cache_argw = argw;
   1470 				FAIL_IF(load_immediate(compiler, TMP_REG3_mapped, argw));
   1471 				FAIL_IF(ADD(reg_map[base], reg_map[base], TMP_REG3_mapped));
   1472 			}
   1473 		}
   1474 
   1475 		if (flags & LOAD_DATA)
   1476 			return PB2(data_transfer_insts[flags & MEM_MASK], reg_ar, reg_map[base]);
   1477 		else
   1478 			return PB2(data_transfer_insts[flags & MEM_MASK], reg_map[base], reg_ar);
   1479 	}
   1480 
   1481 	if (compiler->cache_arg == arg
   1482 			&& argw - compiler->cache_argw <= SIMM_16BIT_MAX
   1483 			&& argw - compiler->cache_argw >= SIMM_16BIT_MIN) {
   1484 		if (argw != compiler->cache_argw) {
   1485 			FAIL_IF(ADDLI(TMP_REG3_mapped, TMP_REG3_mapped, argw - compiler->cache_argw));
   1486 			compiler->cache_argw = argw;
   1487 		}
   1488 
   1489 		if (flags & LOAD_DATA)
   1490 			return PB2(data_transfer_insts[flags & MEM_MASK], reg_ar, TMP_REG3_mapped);
   1491 		else
   1492 			return PB2(data_transfer_insts[flags & MEM_MASK], TMP_REG3_mapped, reg_ar);
   1493 	}
   1494 
   1495 	if (compiler->cache_arg == SLJIT_MEM
   1496 			&& argw - compiler->cache_argw <= SIMM_16BIT_MAX
   1497 			&& argw - compiler->cache_argw >= SIMM_16BIT_MIN) {
   1498 		if (argw != compiler->cache_argw)
   1499 			FAIL_IF(ADDLI(TMP_REG3_mapped, TMP_REG3_mapped, argw - compiler->cache_argw));
   1500 	} else {
   1501 		compiler->cache_arg = SLJIT_MEM;
   1502 		FAIL_IF(load_immediate(compiler, TMP_REG3_mapped, argw));
   1503 	}
   1504 
   1505 	compiler->cache_argw = argw;
   1506 
   1507 	if (!base) {
   1508 		if (flags & LOAD_DATA)
   1509 			return PB2(data_transfer_insts[flags & MEM_MASK], reg_ar, TMP_REG3_mapped);
   1510 		else
   1511 			return PB2(data_transfer_insts[flags & MEM_MASK], TMP_REG3_mapped, reg_ar);
   1512 	}
   1513 
   1514 	if (arg == next_arg
   1515 			&& next_argw - argw <= SIMM_16BIT_MAX
   1516 			&& next_argw - argw >= SIMM_16BIT_MIN) {
   1517 		compiler->cache_arg = arg;
   1518 		FAIL_IF(ADD(TMP_REG3_mapped, TMP_REG3_mapped, reg_map[base]));
   1519 		if (flags & LOAD_DATA)
   1520 			return PB2(data_transfer_insts[flags & MEM_MASK], reg_ar, TMP_REG3_mapped);
   1521 		else
   1522 			return PB2(data_transfer_insts[flags & MEM_MASK], TMP_REG3_mapped, reg_ar);
   1523 	}
   1524 
   1525 	FAIL_IF(ADD(tmp_ar, TMP_REG3_mapped, reg_map[base]));
   1526 
   1527 	if (flags & LOAD_DATA)
   1528 		return PB2(data_transfer_insts[flags & MEM_MASK], reg_ar, tmp_ar);
   1529 	else
   1530 		return PB2(data_transfer_insts[flags & MEM_MASK], tmp_ar, reg_ar);
   1531 }
   1532 
   1533 static SLJIT_INLINE sljit_s32 emit_op_mem(struct sljit_compiler *compiler, sljit_s32 flags, sljit_s32 reg_ar, sljit_s32 arg, sljit_sw argw)
   1534 {
   1535 	if (getput_arg_fast(compiler, flags, reg_ar, arg, argw))
   1536 		return compiler->error;
   1537 
   1538 	compiler->cache_arg = 0;
   1539 	compiler->cache_argw = 0;
   1540 	return getput_arg(compiler, flags, reg_ar, arg, argw, 0, 0);
   1541 }
   1542 
   1543 static SLJIT_INLINE sljit_s32 emit_op_mem2(struct sljit_compiler *compiler, sljit_s32 flags, sljit_s32 reg, sljit_s32 arg1, sljit_sw arg1w, sljit_s32 arg2, sljit_sw arg2w)
   1544 {
   1545 	if (getput_arg_fast(compiler, flags, reg, arg1, arg1w))
   1546 		return compiler->error;
   1547 	return getput_arg(compiler, flags, reg, arg1, arg1w, arg2, arg2w);
   1548 }
   1549 
   1550 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fast_enter(struct sljit_compiler *compiler, sljit_s32 dst, sljit_sw dstw)
   1551 {
   1552 	CHECK_ERROR();
   1553 	CHECK(check_sljit_emit_fast_enter(compiler, dst, dstw));
   1554 	ADJUST_LOCAL_OFFSET(dst, dstw);
   1555 
   1556 	/* For UNUSED dst. Uncommon, but possible. */
   1557 	if (dst == SLJIT_UNUSED)
   1558 		return SLJIT_SUCCESS;
   1559 
   1560 	if (FAST_IS_REG(dst))
   1561 		return ADD(reg_map[dst], RA, ZERO);
   1562 
   1563 	/* Memory. */
   1564 	return emit_op_mem(compiler, WORD_DATA, RA, dst, dstw);
   1565 }
   1566 
   1567 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fast_return(struct sljit_compiler *compiler, sljit_s32 src, sljit_sw srcw)
   1568 {
   1569 	CHECK_ERROR();
   1570 	CHECK(check_sljit_emit_fast_return(compiler, src, srcw));
   1571 	ADJUST_LOCAL_OFFSET(src, srcw);
   1572 
   1573 	if (FAST_IS_REG(src))
   1574 		FAIL_IF(ADD(RA, reg_map[src], ZERO));
   1575 
   1576 	else if (src & SLJIT_MEM)
   1577 		FAIL_IF(emit_op_mem(compiler, WORD_DATA | LOAD_DATA, RA, src, srcw));
   1578 
   1579 	else if (src & SLJIT_IMM)
   1580 		FAIL_IF(load_immediate(compiler, RA, srcw));
   1581 
   1582 	return JR(RA);
   1583 }
   1584 
   1585 static SLJIT_INLINE sljit_s32 emit_single_op(struct sljit_compiler *compiler, sljit_s32 op, sljit_s32 flags, sljit_s32 dst, sljit_s32 src1, sljit_sw src2)
   1586 {
   1587 	sljit_s32 overflow_ra = 0;
   1588 
   1589 	switch (GET_OPCODE(op)) {
   1590 	case SLJIT_MOV:
   1591 	case SLJIT_MOV_P:
   1592 		SLJIT_ASSERT(src1 == TMP_REG1 && !(flags & SRC2_IMM));
   1593 		if (dst != src2)
   1594 			return ADD(reg_map[dst], reg_map[src2], ZERO);
   1595 		return SLJIT_SUCCESS;
   1596 
   1597 	case SLJIT_MOV_U32:
   1598 	case SLJIT_MOV_S32:
   1599 		SLJIT_ASSERT(src1 == TMP_REG1 && !(flags & SRC2_IMM));
   1600 		if ((flags & (REG_DEST | REG2_SOURCE)) == (REG_DEST | REG2_SOURCE)) {
   1601 			if (op == SLJIT_MOV_S32)
   1602 				return BFEXTS(reg_map[dst], reg_map[src2], 0, 31);
   1603 
   1604 			return BFEXTU(reg_map[dst], reg_map[src2], 0, 31);
   1605 		} else if (dst != src2) {
   1606 			SLJIT_ASSERT(src2 == 0);
   1607 			return ADD(reg_map[dst], reg_map[src2], ZERO);
   1608 		}
   1609 
   1610 		return SLJIT_SUCCESS;
   1611 
   1612 	case SLJIT_MOV_U8:
   1613 	case SLJIT_MOV_S8:
   1614 		SLJIT_ASSERT(src1 == TMP_REG1 && !(flags & SRC2_IMM));
   1615 		if ((flags & (REG_DEST | REG2_SOURCE)) == (REG_DEST | REG2_SOURCE)) {
   1616 			if (op == SLJIT_MOV_S8)
   1617 				return BFEXTS(reg_map[dst], reg_map[src2], 0, 7);
   1618 
   1619 			return BFEXTU(reg_map[dst], reg_map[src2], 0, 7);
   1620 		} else if (dst != src2) {
   1621 			SLJIT_ASSERT(src2 == 0);
   1622 			return ADD(reg_map[dst], reg_map[src2], ZERO);
   1623 		}
   1624 
   1625 		return SLJIT_SUCCESS;
   1626 
   1627 	case SLJIT_MOV_U16:
   1628 	case SLJIT_MOV_S16:
   1629 		SLJIT_ASSERT(src1 == TMP_REG1 && !(flags & SRC2_IMM));
   1630 		if ((flags & (REG_DEST | REG2_SOURCE)) == (REG_DEST | REG2_SOURCE)) {
   1631 			if (op == SLJIT_MOV_S16)
   1632 				return BFEXTS(reg_map[dst], reg_map[src2], 0, 15);
   1633 
   1634 			return BFEXTU(reg_map[dst], reg_map[src2], 0, 15);
   1635 		} else if (dst != src2) {
   1636 			SLJIT_ASSERT(src2 == 0);
   1637 			return ADD(reg_map[dst], reg_map[src2], ZERO);
   1638 		}
   1639 
   1640 		return SLJIT_SUCCESS;
   1641 
   1642 	case SLJIT_NOT:
   1643 		SLJIT_ASSERT(src1 == TMP_REG1 && !(flags & SRC2_IMM));
   1644 		if (op & SLJIT_SET_E)
   1645 			FAIL_IF(NOR(EQUAL_FLAG, reg_map[src2], reg_map[src2]));
   1646 		if (CHECK_FLAGS(SLJIT_SET_E))
   1647 			FAIL_IF(NOR(reg_map[dst], reg_map[src2], reg_map[src2]));
   1648 
   1649 		return SLJIT_SUCCESS;
   1650 
   1651 	case SLJIT_CLZ:
   1652 		SLJIT_ASSERT(src1 == TMP_REG1 && !(flags & SRC2_IMM));
   1653 		if (op & SLJIT_SET_E)
   1654 			FAIL_IF(CLZ(EQUAL_FLAG, reg_map[src2]));
   1655 		if (CHECK_FLAGS(SLJIT_SET_E))
   1656 			FAIL_IF(CLZ(reg_map[dst], reg_map[src2]));
   1657 
   1658 		return SLJIT_SUCCESS;
   1659 
   1660 	case SLJIT_ADD:
   1661 		if (flags & SRC2_IMM) {
   1662 			if (op & SLJIT_SET_O) {
   1663 				FAIL_IF(SHRUI(TMP_EREG1, reg_map[src1], 63));
   1664 				if (src2 < 0)
   1665 					FAIL_IF(XORI(TMP_EREG1, TMP_EREG1, 1));
   1666 			}
   1667 
   1668 			if (op & SLJIT_SET_E)
   1669 				FAIL_IF(ADDLI(EQUAL_FLAG, reg_map[src1], src2));
   1670 
   1671 			if (op & SLJIT_SET_C) {
   1672 				if (src2 >= 0)
   1673 					FAIL_IF(ORI(ULESS_FLAG ,reg_map[src1], src2));
   1674 				else {
   1675 					FAIL_IF(ADDLI(ULESS_FLAG ,ZERO, src2));
   1676 					FAIL_IF(OR(ULESS_FLAG,reg_map[src1],ULESS_FLAG));
   1677 				}
   1678 			}
   1679 
   1680 			/* dst may be the same as src1 or src2. */
   1681 			if (CHECK_FLAGS(SLJIT_SET_E))
   1682 				FAIL_IF(ADDLI(reg_map[dst], reg_map[src1], src2));
   1683 
   1684 			if (op & SLJIT_SET_O) {
   1685 				FAIL_IF(SHRUI(OVERFLOW_FLAG, reg_map[dst], 63));
   1686 
   1687 				if (src2 < 0)
   1688 					FAIL_IF(XORI(OVERFLOW_FLAG, OVERFLOW_FLAG, 1));
   1689 			}
   1690 		} else {
   1691 			if (op & SLJIT_SET_O) {
   1692 				FAIL_IF(XOR(TMP_EREG1, reg_map[src1], reg_map[src2]));
   1693 				FAIL_IF(SHRUI(TMP_EREG1, TMP_EREG1, 63));
   1694 
   1695 				if (src1 != dst)
   1696 					overflow_ra = reg_map[src1];
   1697 				else if (src2 != dst)
   1698 					overflow_ra = reg_map[src2];
   1699 				else {
   1700 					/* Rare ocasion. */
   1701 					FAIL_IF(ADD(TMP_EREG2, reg_map[src1], ZERO));
   1702 					overflow_ra = TMP_EREG2;
   1703 				}
   1704 			}
   1705 
   1706 			if (op & SLJIT_SET_E)
   1707 				FAIL_IF(ADD(EQUAL_FLAG ,reg_map[src1], reg_map[src2]));
   1708 
   1709 			if (op & SLJIT_SET_C)
   1710 				FAIL_IF(OR(ULESS_FLAG,reg_map[src1], reg_map[src2]));
   1711 
   1712 			/* dst may be the same as src1 or src2. */
   1713 			if (CHECK_FLAGS(SLJIT_SET_E))
   1714 				FAIL_IF(ADD(reg_map[dst],reg_map[src1], reg_map[src2]));
   1715 
   1716 			if (op & SLJIT_SET_O) {
   1717 				FAIL_IF(XOR(OVERFLOW_FLAG,reg_map[dst], overflow_ra));
   1718 				FAIL_IF(SHRUI(OVERFLOW_FLAG, OVERFLOW_FLAG, 63));
   1719 			}
   1720 		}
   1721 
   1722 		/* a + b >= a | b (otherwise, the carry should be set to 1). */
   1723 		if (op & SLJIT_SET_C)
   1724 			FAIL_IF(CMPLTU(ULESS_FLAG ,reg_map[dst] ,ULESS_FLAG));
   1725 
   1726 		if (op & SLJIT_SET_O)
   1727 			return CMOVNEZ(OVERFLOW_FLAG, TMP_EREG1, ZERO);
   1728 
   1729 		return SLJIT_SUCCESS;
   1730 
   1731 	case SLJIT_ADDC:
   1732 		if (flags & SRC2_IMM) {
   1733 			if (op & SLJIT_SET_C) {
   1734 				if (src2 >= 0)
   1735 					FAIL_IF(ORI(TMP_EREG1, reg_map[src1], src2));
   1736 				else {
   1737 					FAIL_IF(ADDLI(TMP_EREG1, ZERO, src2));
   1738 					FAIL_IF(OR(TMP_EREG1, reg_map[src1], TMP_EREG1));
   1739 				}
   1740 			}
   1741 
   1742 			FAIL_IF(ADDLI(reg_map[dst], reg_map[src1], src2));
   1743 
   1744 		} else {
   1745 			if (op & SLJIT_SET_C)
   1746 				FAIL_IF(OR(TMP_EREG1, reg_map[src1], reg_map[src2]));
   1747 
   1748 			/* dst may be the same as src1 or src2. */
   1749 			FAIL_IF(ADD(reg_map[dst], reg_map[src1], reg_map[src2]));
   1750 		}
   1751 
   1752 		if (op & SLJIT_SET_C)
   1753 			FAIL_IF(CMPLTU(TMP_EREG1, reg_map[dst], TMP_EREG1));
   1754 
   1755 		FAIL_IF(ADD(reg_map[dst], reg_map[dst], ULESS_FLAG));
   1756 
   1757 		if (!(op & SLJIT_SET_C))
   1758 			return SLJIT_SUCCESS;
   1759 
   1760 		/* Set TMP_EREG2 (dst == 0) && (ULESS_FLAG == 1). */
   1761 		FAIL_IF(CMPLTUI(TMP_EREG2, reg_map[dst], 1));
   1762 		FAIL_IF(AND(TMP_EREG2, TMP_EREG2, ULESS_FLAG));
   1763 		/* Set carry flag. */
   1764 		return OR(ULESS_FLAG, TMP_EREG2, TMP_EREG1);
   1765 
   1766 	case SLJIT_SUB:
   1767 		if ((flags & SRC2_IMM) && ((op & (SLJIT_SET_U | SLJIT_SET_S)) || src2 == SIMM_16BIT_MIN)) {
   1768 			FAIL_IF(ADDLI(TMP_REG2_mapped, ZERO, src2));
   1769 			src2 = TMP_REG2;
   1770 			flags &= ~SRC2_IMM;
   1771 		}
   1772 
   1773 		if (flags & SRC2_IMM) {
   1774 			if (op & SLJIT_SET_O) {
   1775 				FAIL_IF(SHRUI(TMP_EREG1,reg_map[src1], 63));
   1776 
   1777 				if (src2 < 0)
   1778 					FAIL_IF(XORI(TMP_EREG1, TMP_EREG1, 1));
   1779 
   1780 				if (src1 != dst)
   1781 					overflow_ra = reg_map[src1];
   1782 				else {
   1783 					/* Rare ocasion. */
   1784 					FAIL_IF(ADD(TMP_EREG2, reg_map[src1], ZERO));
   1785 					overflow_ra = TMP_EREG2;
   1786 				}
   1787 			}
   1788 
   1789 			if (op & SLJIT_SET_E)
   1790 				FAIL_IF(ADDLI(EQUAL_FLAG, reg_map[src1], -src2));
   1791 
   1792 			if (op & SLJIT_SET_C) {
   1793 				FAIL_IF(load_immediate(compiler, ADDR_TMP_mapped, src2));
   1794 				FAIL_IF(CMPLTU(ULESS_FLAG, reg_map[src1], ADDR_TMP_mapped));
   1795 			}
   1796 
   1797 			/* dst may be the same as src1 or src2. */
   1798 			if (CHECK_FLAGS(SLJIT_SET_E))
   1799 				FAIL_IF(ADDLI(reg_map[dst], reg_map[src1], -src2));
   1800 
   1801 		} else {
   1802 
   1803 			if (op & SLJIT_SET_O) {
   1804 				FAIL_IF(XOR(TMP_EREG1, reg_map[src1], reg_map[src2]));
   1805 				FAIL_IF(SHRUI(TMP_EREG1, TMP_EREG1, 63));
   1806 
   1807 				if (src1 != dst)
   1808 					overflow_ra = reg_map[src1];
   1809 				else {
   1810 					/* Rare ocasion. */
   1811 					FAIL_IF(ADD(TMP_EREG2, reg_map[src1], ZERO));
   1812 					overflow_ra = TMP_EREG2;
   1813 				}
   1814 			}
   1815 
   1816 			if (op & SLJIT_SET_E)
   1817 				FAIL_IF(SUB(EQUAL_FLAG, reg_map[src1], reg_map[src2]));
   1818 
   1819 			if (op & (SLJIT_SET_U | SLJIT_SET_C))
   1820 				FAIL_IF(CMPLTU(ULESS_FLAG, reg_map[src1], reg_map[src2]));
   1821 
   1822 			if (op & SLJIT_SET_U)
   1823 				FAIL_IF(CMPLTU(UGREATER_FLAG, reg_map[src2], reg_map[src1]));
   1824 
   1825 			if (op & SLJIT_SET_S) {
   1826 				FAIL_IF(CMPLTS(LESS_FLAG ,reg_map[src1] ,reg_map[src2]));
   1827 				FAIL_IF(CMPLTS(GREATER_FLAG ,reg_map[src2] ,reg_map[src1]));
   1828 			}
   1829 
   1830 			/* dst may be the same as src1 or src2. */
   1831 			if (CHECK_FLAGS(SLJIT_SET_E | SLJIT_SET_U | SLJIT_SET_S | SLJIT_SET_C))
   1832 				FAIL_IF(SUB(reg_map[dst], reg_map[src1], reg_map[src2]));
   1833 		}
   1834 
   1835 		if (op & SLJIT_SET_O) {
   1836 			FAIL_IF(XOR(OVERFLOW_FLAG, reg_map[dst], overflow_ra));
   1837 			FAIL_IF(SHRUI(OVERFLOW_FLAG, OVERFLOW_FLAG, 63));
   1838 			return CMOVEQZ(OVERFLOW_FLAG, TMP_EREG1, ZERO);
   1839 		}
   1840 
   1841 		return SLJIT_SUCCESS;
   1842 
   1843 	case SLJIT_SUBC:
   1844 		if ((flags & SRC2_IMM) && src2 == SIMM_16BIT_MIN) {
   1845 			FAIL_IF(ADDLI(TMP_REG2_mapped, ZERO, src2));
   1846 			src2 = TMP_REG2;
   1847 			flags &= ~SRC2_IMM;
   1848 		}
   1849 
   1850 		if (flags & SRC2_IMM) {
   1851 			if (op & SLJIT_SET_C) {
   1852 				FAIL_IF(load_immediate(compiler, ADDR_TMP_mapped, -src2));
   1853 				FAIL_IF(CMPLTU(TMP_EREG1, reg_map[src1], ADDR_TMP_mapped));
   1854 			}
   1855 
   1856 			/* dst may be the same as src1 or src2. */
   1857 			FAIL_IF(ADDLI(reg_map[dst], reg_map[src1], -src2));
   1858 
   1859 		} else {
   1860 			if (op & SLJIT_SET_C)
   1861 				FAIL_IF(CMPLTU(TMP_EREG1, reg_map[src1], reg_map[src2]));
   1862 				/* dst may be the same as src1 or src2. */
   1863 			FAIL_IF(SUB(reg_map[dst], reg_map[src1], reg_map[src2]));
   1864 		}
   1865 
   1866 		if (op & SLJIT_SET_C)
   1867 			FAIL_IF(CMOVEQZ(TMP_EREG1, reg_map[dst], ULESS_FLAG));
   1868 
   1869 		FAIL_IF(SUB(reg_map[dst], reg_map[dst], ULESS_FLAG));
   1870 
   1871 		if (op & SLJIT_SET_C)
   1872 			FAIL_IF(ADD(ULESS_FLAG, TMP_EREG1, ZERO));
   1873 
   1874 		return SLJIT_SUCCESS;
   1875 
   1876 	case SLJIT_MUL:
   1877 		if (flags & SRC2_IMM) {
   1878 			FAIL_IF(load_immediate(compiler, TMP_REG2_mapped, src2));
   1879 			src2 = TMP_REG2;
   1880 			flags &= ~SRC2_IMM;
   1881 		}
   1882 
   1883 		FAIL_IF(MUL(reg_map[dst], reg_map[src1], reg_map[src2]));
   1884 
   1885 		return SLJIT_SUCCESS;
   1886 
   1887 #define EMIT_LOGICAL(op_imm, op_norm) \
   1888 	if (flags & SRC2_IMM) { \
   1889 		FAIL_IF(load_immediate(compiler, ADDR_TMP_mapped, src2)); \
   1890 		if (op & SLJIT_SET_E) \
   1891 			FAIL_IF(push_3_buffer( \
   1892 				compiler, op_norm, EQUAL_FLAG, reg_map[src1], \
   1893 				ADDR_TMP_mapped, __LINE__)); \
   1894 		if (CHECK_FLAGS(SLJIT_SET_E)) \
   1895 			FAIL_IF(push_3_buffer( \
   1896 				compiler, op_norm, reg_map[dst], reg_map[src1], \
   1897 				ADDR_TMP_mapped, __LINE__)); \
   1898 	} else { \
   1899 		if (op & SLJIT_SET_E) \
   1900 			FAIL_IF(push_3_buffer( \
   1901 				compiler, op_norm, EQUAL_FLAG, reg_map[src1], \
   1902 				reg_map[src2], __LINE__)); \
   1903 		if (CHECK_FLAGS(SLJIT_SET_E)) \
   1904 			FAIL_IF(push_3_buffer( \
   1905 				compiler, op_norm, reg_map[dst], reg_map[src1], \
   1906 				reg_map[src2], __LINE__)); \
   1907 	}
   1908 
   1909 	case SLJIT_AND:
   1910 		EMIT_LOGICAL(TILEGX_OPC_ANDI, TILEGX_OPC_AND);
   1911 		return SLJIT_SUCCESS;
   1912 
   1913 	case SLJIT_OR:
   1914 		EMIT_LOGICAL(TILEGX_OPC_ORI, TILEGX_OPC_OR);
   1915 		return SLJIT_SUCCESS;
   1916 
   1917 	case SLJIT_XOR:
   1918 		EMIT_LOGICAL(TILEGX_OPC_XORI, TILEGX_OPC_XOR);
   1919 		return SLJIT_SUCCESS;
   1920 
   1921 #define EMIT_SHIFT(op_imm, op_norm) \
   1922 	if (flags & SRC2_IMM) { \
   1923 		if (op & SLJIT_SET_E) \
   1924 			FAIL_IF(push_3_buffer( \
   1925 				compiler, op_imm, EQUAL_FLAG, reg_map[src1], \
   1926 				src2 & 0x3F, __LINE__)); \
   1927 		if (CHECK_FLAGS(SLJIT_SET_E)) \
   1928 			FAIL_IF(push_3_buffer( \
   1929 				compiler, op_imm, reg_map[dst], reg_map[src1], \
   1930 				src2 & 0x3F, __LINE__)); \
   1931 	} else { \
   1932 		if (op & SLJIT_SET_E) \
   1933 			FAIL_IF(push_3_buffer( \
   1934 				compiler, op_norm, EQUAL_FLAG, reg_map[src1], \
   1935 				reg_map[src2], __LINE__)); \
   1936 		if (CHECK_FLAGS(SLJIT_SET_E)) \
   1937 			FAIL_IF(push_3_buffer( \
   1938 				compiler, op_norm, reg_map[dst], reg_map[src1], \
   1939 				reg_map[src2], __LINE__)); \
   1940 	}
   1941 
   1942 	case SLJIT_SHL:
   1943 		EMIT_SHIFT(TILEGX_OPC_SHLI, TILEGX_OPC_SHL);
   1944 		return SLJIT_SUCCESS;
   1945 
   1946 	case SLJIT_LSHR:
   1947 		EMIT_SHIFT(TILEGX_OPC_SHRUI, TILEGX_OPC_SHRU);
   1948 		return SLJIT_SUCCESS;
   1949 
   1950 	case SLJIT_ASHR:
   1951 		EMIT_SHIFT(TILEGX_OPC_SHRSI, TILEGX_OPC_SHRS);
   1952 		return SLJIT_SUCCESS;
   1953 	}
   1954 
   1955 	SLJIT_ASSERT_STOP();
   1956 	return SLJIT_SUCCESS;
   1957 }
   1958 
   1959 static sljit_s32 emit_op(struct sljit_compiler *compiler, sljit_s32 op, sljit_s32 flags, sljit_s32 dst, sljit_sw dstw, sljit_s32 src1, sljit_sw src1w, sljit_s32 src2, sljit_sw src2w)
   1960 {
   1961 	/* arg1 goes to TMP_REG1 or src reg.
   1962 	   arg2 goes to TMP_REG2, imm or src reg.
   1963 	   TMP_REG3 can be used for caching.
   1964 	   result goes to TMP_REG2, so put result can use TMP_REG1 and TMP_REG3. */
   1965 	sljit_s32 dst_r = TMP_REG2;
   1966 	sljit_s32 src1_r;
   1967 	sljit_sw src2_r = 0;
   1968 	sljit_s32 sugg_src2_r = TMP_REG2;
   1969 
   1970 	if (!(flags & ALT_KEEP_CACHE)) {
   1971 		compiler->cache_arg = 0;
   1972 		compiler->cache_argw = 0;
   1973 	}
   1974 
   1975 	if (SLJIT_UNLIKELY(dst == SLJIT_UNUSED)) {
   1976 		if (op >= SLJIT_MOV && op <= SLJIT_MOVU_S32 && !(src2 & SLJIT_MEM))
   1977 			return SLJIT_SUCCESS;
   1978 		if (GET_FLAGS(op))
   1979 			flags |= UNUSED_DEST;
   1980 	} else if (FAST_IS_REG(dst)) {
   1981 		dst_r = dst;
   1982 		flags |= REG_DEST;
   1983 		if (op >= SLJIT_MOV && op <= SLJIT_MOVU_S32)
   1984 			sugg_src2_r = dst_r;
   1985 	} else if ((dst & SLJIT_MEM) && !getput_arg_fast(compiler, flags | ARG_TEST, TMP_REG1_mapped, dst, dstw))
   1986 		flags |= SLOW_DEST;
   1987 
   1988 	if (flags & IMM_OP) {
   1989 		if ((src2 & SLJIT_IMM) && src2w) {
   1990 			if ((!(flags & LOGICAL_OP)
   1991 					&& (src2w <= SIMM_16BIT_MAX && src2w >= SIMM_16BIT_MIN))
   1992 					|| ((flags & LOGICAL_OP) && !(src2w & ~UIMM_16BIT_MAX))) {
   1993 				flags |= SRC2_IMM;
   1994 				src2_r = src2w;
   1995 			}
   1996 		}
   1997 
   1998 		if (!(flags & SRC2_IMM) && (flags & CUMULATIVE_OP) && (src1 & SLJIT_IMM) && src1w) {
   1999 			if ((!(flags & LOGICAL_OP)
   2000 					&& (src1w <= SIMM_16BIT_MAX && src1w >= SIMM_16BIT_MIN))
   2001 					|| ((flags & LOGICAL_OP) && !(src1w & ~UIMM_16BIT_MAX))) {
   2002 				flags |= SRC2_IMM;
   2003 				src2_r = src1w;
   2004 
   2005 				/* And swap arguments. */
   2006 				src1 = src2;
   2007 				src1w = src2w;
   2008 				src2 = SLJIT_IMM;
   2009 				/* src2w = src2_r unneeded. */
   2010 			}
   2011 		}
   2012 	}
   2013 
   2014 	/* Source 1. */
   2015 	if (FAST_IS_REG(src1)) {
   2016 		src1_r = src1;
   2017 		flags |= REG1_SOURCE;
   2018 	} else if (src1 & SLJIT_IMM) {
   2019 		if (src1w) {
   2020 			FAIL_IF(load_immediate(compiler, TMP_REG1_mapped, src1w));
   2021 			src1_r = TMP_REG1;
   2022 		} else
   2023 			src1_r = 0;
   2024 	} else {
   2025 		if (getput_arg_fast(compiler, flags | LOAD_DATA, TMP_REG1_mapped, src1, src1w))
   2026 			FAIL_IF(compiler->error);
   2027 		else
   2028 			flags |= SLOW_SRC1;
   2029 		src1_r = TMP_REG1;
   2030 	}
   2031 
   2032 	/* Source 2. */
   2033 	if (FAST_IS_REG(src2)) {
   2034 		src2_r = src2;
   2035 		flags |= REG2_SOURCE;
   2036 		if (!(flags & REG_DEST) && op >= SLJIT_MOV && op <= SLJIT_MOVU_S32)
   2037 			dst_r = src2_r;
   2038 	} else if (src2 & SLJIT_IMM) {
   2039 		if (!(flags & SRC2_IMM)) {
   2040 			if (src2w) {
   2041 				FAIL_IF(load_immediate(compiler, reg_map[sugg_src2_r], src2w));
   2042 				src2_r = sugg_src2_r;
   2043 			} else {
   2044 				src2_r = 0;
   2045 				if ((op >= SLJIT_MOV && op <= SLJIT_MOVU_S32) && (dst & SLJIT_MEM))
   2046 					dst_r = 0;
   2047 			}
   2048 		}
   2049 	} else {
   2050 		if (getput_arg_fast(compiler, flags | LOAD_DATA, reg_map[sugg_src2_r], src2, src2w))
   2051 			FAIL_IF(compiler->error);
   2052 		else
   2053 			flags |= SLOW_SRC2;
   2054 		src2_r = sugg_src2_r;
   2055 	}
   2056 
   2057 	if ((flags & (SLOW_SRC1 | SLOW_SRC2)) == (SLOW_SRC1 | SLOW_SRC2)) {
   2058 		SLJIT_ASSERT(src2_r == TMP_REG2);
   2059 		if (!can_cache(src1, src1w, src2, src2w) && can_cache(src1, src1w, dst, dstw)) {
   2060 			FAIL_IF(getput_arg(compiler, flags | LOAD_DATA, TMP_REG2_mapped, src2, src2w, src1, src1w));
   2061 			FAIL_IF(getput_arg(compiler, flags | LOAD_DATA, TMP_REG1_mapped, src1, src1w, dst, dstw));
   2062 		} else {
   2063 			FAIL_IF(getput_arg(compiler, flags | LOAD_DATA, TMP_REG1_mapped, src1, src1w, src2, src2w));
   2064 			FAIL_IF(getput_arg(compiler, flags | LOAD_DATA, TMP_REG2_mapped, src2, src2w, dst, dstw));
   2065 		}
   2066 	} else if (flags & SLOW_SRC1)
   2067 		FAIL_IF(getput_arg(compiler, flags | LOAD_DATA, TMP_REG1_mapped, src1, src1w, dst, dstw));
   2068 	else if (flags & SLOW_SRC2)
   2069 		FAIL_IF(getput_arg(compiler, flags | LOAD_DATA, reg_map[sugg_src2_r], src2, src2w, dst, dstw));
   2070 
   2071 	FAIL_IF(emit_single_op(compiler, op, flags, dst_r, src1_r, src2_r));
   2072 
   2073 	if (dst & SLJIT_MEM) {
   2074 		if (!(flags & SLOW_DEST)) {
   2075 			getput_arg_fast(compiler, flags, reg_map[dst_r], dst, dstw);
   2076 			return compiler->error;
   2077 		}
   2078 
   2079 		return getput_arg(compiler, flags, reg_map[dst_r], dst, dstw, 0, 0);
   2080 	}
   2081 
   2082 	return SLJIT_SUCCESS;
   2083 }
   2084 
   2085 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op_flags(struct sljit_compiler *compiler, sljit_s32 op, sljit_s32 dst, sljit_sw dstw, sljit_s32 src, sljit_sw srcw, sljit_s32 type)
   2086 {
   2087 	sljit_s32 sugg_dst_ar, dst_ar;
   2088 	sljit_s32 flags = GET_ALL_FLAGS(op);
   2089 	sljit_s32 mem_type = (op & SLJIT_I32_OP) ? (INT_DATA | SIGNED_DATA) : WORD_DATA;
   2090 
   2091 	CHECK_ERROR();
   2092 	CHECK(check_sljit_emit_op_flags(compiler, op, dst, dstw, src, srcw, type));
   2093 	ADJUST_LOCAL_OFFSET(dst, dstw);
   2094 
   2095 	if (dst == SLJIT_UNUSED)
   2096 		return SLJIT_SUCCESS;
   2097 
   2098 	op = GET_OPCODE(op);
   2099 	if (op == SLJIT_MOV_S32 || op == SLJIT_MOV_U32)
   2100 		mem_type = INT_DATA | SIGNED_DATA;
   2101 	sugg_dst_ar = reg_map[(op < SLJIT_ADD && FAST_IS_REG(dst)) ? dst : TMP_REG2];
   2102 
   2103 	compiler->cache_arg = 0;
   2104 	compiler->cache_argw = 0;
   2105 	if (op >= SLJIT_ADD && (src & SLJIT_MEM)) {
   2106 		ADJUST_LOCAL_OFFSET(src, srcw);
   2107 		FAIL_IF(emit_op_mem2(compiler, mem_type | LOAD_DATA, TMP_REG1_mapped, src, srcw, dst, dstw));
   2108 		src = TMP_REG1;
   2109 		srcw = 0;
   2110 	}
   2111 
   2112 	switch (type & 0xff) {
   2113 	case SLJIT_EQUAL:
   2114 	case SLJIT_NOT_EQUAL:
   2115 		FAIL_IF(CMPLTUI(sugg_dst_ar, EQUAL_FLAG, 1));
   2116 		dst_ar = sugg_dst_ar;
   2117 		break;
   2118 	case SLJIT_LESS:
   2119 	case SLJIT_GREATER_EQUAL:
   2120 		dst_ar = ULESS_FLAG;
   2121 		break;
   2122 	case SLJIT_GREATER:
   2123 	case SLJIT_LESS_EQUAL:
   2124 		dst_ar = UGREATER_FLAG;
   2125 		break;
   2126 	case SLJIT_SIG_LESS:
   2127 	case SLJIT_SIG_GREATER_EQUAL:
   2128 		dst_ar = LESS_FLAG;
   2129 		break;
   2130 	case SLJIT_SIG_GREATER:
   2131 	case SLJIT_SIG_LESS_EQUAL:
   2132 		dst_ar = GREATER_FLAG;
   2133 		break;
   2134 	case SLJIT_OVERFLOW:
   2135 	case SLJIT_NOT_OVERFLOW:
   2136 		dst_ar = OVERFLOW_FLAG;
   2137 		break;
   2138 	case SLJIT_MUL_OVERFLOW:
   2139 	case SLJIT_MUL_NOT_OVERFLOW:
   2140 		FAIL_IF(CMPLTUI(sugg_dst_ar, OVERFLOW_FLAG, 1));
   2141 		dst_ar = sugg_dst_ar;
   2142 		type ^= 0x1; /* Flip type bit for the XORI below. */
   2143 		break;
   2144 
   2145 	default:
   2146 		SLJIT_ASSERT_STOP();
   2147 		dst_ar = sugg_dst_ar;
   2148 		break;
   2149 	}
   2150 
   2151 	if (type & 0x1) {
   2152 		FAIL_IF(XORI(sugg_dst_ar, dst_ar, 1));
   2153 		dst_ar = sugg_dst_ar;
   2154 	}
   2155 
   2156 	if (op >= SLJIT_ADD) {
   2157 		if (TMP_REG2_mapped != dst_ar)
   2158 			FAIL_IF(ADD(TMP_REG2_mapped, dst_ar, ZERO));
   2159 		return emit_op(compiler, op | flags, mem_type | CUMULATIVE_OP | LOGICAL_OP | IMM_OP | ALT_KEEP_CACHE, dst, dstw, src, srcw, TMP_REG2, 0);
   2160 	}
   2161 
   2162 	if (dst & SLJIT_MEM)
   2163 		return emit_op_mem(compiler, mem_type, dst_ar, dst, dstw);
   2164 
   2165 	if (sugg_dst_ar != dst_ar)
   2166 		return ADD(sugg_dst_ar, dst_ar, ZERO);
   2167 
   2168 	return SLJIT_SUCCESS;
   2169 }
   2170 
   2171 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op0(struct sljit_compiler *compiler, sljit_s32 op) {
   2172 	CHECK_ERROR();
   2173 	CHECK(check_sljit_emit_op0(compiler, op));
   2174 
   2175 	op = GET_OPCODE(op);
   2176 	switch (op) {
   2177 	case SLJIT_NOP:
   2178 		return push_0_buffer(compiler, TILEGX_OPC_FNOP, __LINE__);
   2179 
   2180 	case SLJIT_BREAKPOINT:
   2181 		return PI(BPT);
   2182 
   2183 	case SLJIT_LMUL_UW:
   2184 	case SLJIT_LMUL_SW:
   2185 	case SLJIT_DIVMOD_UW:
   2186 	case SLJIT_DIVMOD_SW:
   2187 	case SLJIT_DIV_UW:
   2188 	case SLJIT_DIV_SW:
   2189 		SLJIT_ASSERT_STOP();
   2190 	}
   2191 
   2192 	return SLJIT_SUCCESS;
   2193 }
   2194 
   2195 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op1(struct sljit_compiler *compiler, sljit_s32 op, sljit_s32 dst, sljit_sw dstw, sljit_s32 src, sljit_sw srcw)
   2196 {
   2197 	CHECK_ERROR();
   2198 	CHECK(check_sljit_emit_op1(compiler, op, dst, dstw, src, srcw));
   2199 	ADJUST_LOCAL_OFFSET(dst, dstw);
   2200 	ADJUST_LOCAL_OFFSET(src, srcw);
   2201 
   2202 	switch (GET_OPCODE(op)) {
   2203 	case SLJIT_MOV:
   2204 	case SLJIT_MOV_P:
   2205 		return emit_op(compiler, SLJIT_MOV, WORD_DATA, dst, dstw, TMP_REG1, 0, src, srcw);
   2206 
   2207 	case SLJIT_MOV_U32:
   2208 		return emit_op(compiler, SLJIT_MOV_U32, INT_DATA, dst, dstw, TMP_REG1, 0, src, srcw);
   2209 
   2210 	case SLJIT_MOV_S32:
   2211 		return emit_op(compiler, SLJIT_MOV_S32, INT_DATA | SIGNED_DATA, dst, dstw, TMP_REG1, 0, src, srcw);
   2212 
   2213 	case SLJIT_MOV_U8:
   2214 		return emit_op(compiler, SLJIT_MOV_U8, BYTE_DATA, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_u8) srcw : srcw);
   2215 
   2216 	case SLJIT_MOV_S8:
   2217 		return emit_op(compiler, SLJIT_MOV_S8, BYTE_DATA | SIGNED_DATA, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_s8) srcw : srcw);
   2218 
   2219 	case SLJIT_MOV_U16:
   2220 		return emit_op(compiler, SLJIT_MOV_U16, HALF_DATA, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_u16) srcw : srcw);
   2221 
   2222 	case SLJIT_MOV_S16:
   2223 		return emit_op(compiler, SLJIT_MOV_S16, HALF_DATA | SIGNED_DATA, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_s16) srcw : srcw);
   2224 
   2225 	case SLJIT_MOVU:
   2226 	case SLJIT_MOVU_P:
   2227 		return emit_op(compiler, SLJIT_MOV, WORD_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, srcw);
   2228 
   2229 	case SLJIT_MOVU_U32:
   2230 		return emit_op(compiler, SLJIT_MOV_U32, INT_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, srcw);
   2231 
   2232 	case SLJIT_MOVU_S32:
   2233 		return emit_op(compiler, SLJIT_MOV_S32, INT_DATA | SIGNED_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, srcw);
   2234 
   2235 	case SLJIT_MOVU_U8:
   2236 		return emit_op(compiler, SLJIT_MOV_U8, BYTE_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_u8) srcw : srcw);
   2237 
   2238 	case SLJIT_MOVU_S8:
   2239 		return emit_op(compiler, SLJIT_MOV_S8, BYTE_DATA | SIGNED_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_s8) srcw : srcw);
   2240 
   2241 	case SLJIT_MOVU_U16:
   2242 		return emit_op(compiler, SLJIT_MOV_U16, HALF_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_u16) srcw : srcw);
   2243 
   2244 	case SLJIT_MOVU_S16:
   2245 		return emit_op(compiler, SLJIT_MOV_S16, HALF_DATA | SIGNED_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_s16) srcw : srcw);
   2246 
   2247 	case SLJIT_NOT:
   2248 		return emit_op(compiler, op, 0, dst, dstw, TMP_REG1, 0, src, srcw);
   2249 
   2250 	case SLJIT_NEG:
   2251 		return emit_op(compiler, SLJIT_SUB | GET_ALL_FLAGS(op), IMM_OP, dst, dstw, SLJIT_IMM, 0, src, srcw);
   2252 
   2253 	case SLJIT_CLZ:
   2254 		return emit_op(compiler, op, (op & SLJIT_I32_OP) ? INT_DATA : WORD_DATA, dst, dstw, TMP_REG1, 0, src, srcw);
   2255 	}
   2256 
   2257 	return SLJIT_SUCCESS;
   2258 }
   2259 
   2260 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op2(struct sljit_compiler *compiler, sljit_s32 op, sljit_s32 dst, sljit_sw dstw, sljit_s32 src1, sljit_sw src1w, sljit_s32 src2, sljit_sw src2w)
   2261 {
   2262 	CHECK_ERROR();
   2263 	CHECK(check_sljit_emit_op2(compiler, op, dst, dstw, src1, src1w, src2, src2w));
   2264 	ADJUST_LOCAL_OFFSET(dst, dstw);
   2265 	ADJUST_LOCAL_OFFSET(src1, src1w);
   2266 	ADJUST_LOCAL_OFFSET(src2, src2w);
   2267 
   2268 	switch (GET_OPCODE(op)) {
   2269 	case SLJIT_ADD:
   2270 	case SLJIT_ADDC:
   2271 		return emit_op(compiler, op, CUMULATIVE_OP | IMM_OP, dst, dstw, src1, src1w, src2, src2w);
   2272 
   2273 	case SLJIT_SUB:
   2274 	case SLJIT_SUBC:
   2275 		return emit_op(compiler, op, IMM_OP, dst, dstw, src1, src1w, src2, src2w);
   2276 
   2277 	case SLJIT_MUL:
   2278 		return emit_op(compiler, op, CUMULATIVE_OP, dst, dstw, src1, src1w, src2, src2w);
   2279 
   2280 	case SLJIT_AND:
   2281 	case SLJIT_OR:
   2282 	case SLJIT_XOR:
   2283 		return emit_op(compiler, op, CUMULATIVE_OP | LOGICAL_OP | IMM_OP, dst, dstw, src1, src1w, src2, src2w);
   2284 
   2285 	case SLJIT_SHL:
   2286 	case SLJIT_LSHR:
   2287 	case SLJIT_ASHR:
   2288 		if (src2 & SLJIT_IMM)
   2289 			src2w &= 0x3f;
   2290 		if (op & SLJIT_I32_OP)
   2291 			src2w &= 0x1f;
   2292 
   2293 		return emit_op(compiler, op, IMM_OP, dst, dstw, src1, src1w, src2, src2w);
   2294 	}
   2295 
   2296 	return SLJIT_SUCCESS;
   2297 }
   2298 
   2299 SLJIT_API_FUNC_ATTRIBUTE struct sljit_label * sljit_emit_label(struct sljit_compiler *compiler)
   2300 {
   2301 	struct sljit_label *label;
   2302 
   2303 	flush_buffer(compiler);
   2304 
   2305 	CHECK_ERROR_PTR();
   2306 	CHECK_PTR(check_sljit_emit_label(compiler));
   2307 
   2308 	if (compiler->last_label && compiler->last_label->size == compiler->size)
   2309 		return compiler->last_label;
   2310 
   2311 	label = (struct sljit_label *)ensure_abuf(compiler, sizeof(struct sljit_label));
   2312 	PTR_FAIL_IF(!label);
   2313 	set_label(label, compiler);
   2314 	return label;
   2315 }
   2316 
   2317 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_ijump(struct sljit_compiler *compiler, sljit_s32 type, sljit_s32 src, sljit_sw srcw)
   2318 {
   2319 	sljit_s32 src_r = TMP_REG2;
   2320 	struct sljit_jump *jump = NULL;
   2321 
   2322 	flush_buffer(compiler);
   2323 
   2324 	CHECK_ERROR();
   2325 	CHECK(check_sljit_emit_ijump(compiler, type, src, srcw));
   2326 	ADJUST_LOCAL_OFFSET(src, srcw);
   2327 
   2328 	if (FAST_IS_REG(src)) {
   2329 		if (reg_map[src] != 0)
   2330 			src_r = src;
   2331 		else
   2332 			FAIL_IF(ADD_SOLO(TMP_REG2_mapped, reg_map[src], ZERO));
   2333 	}
   2334 
   2335 	if (type >= SLJIT_CALL0) {
   2336 		SLJIT_ASSERT(reg_map[PIC_ADDR_REG] == 16 && PIC_ADDR_REG == TMP_REG2);
   2337 		if (src & (SLJIT_IMM | SLJIT_MEM)) {
   2338 			if (src & SLJIT_IMM)
   2339 				FAIL_IF(emit_const(compiler, reg_map[PIC_ADDR_REG], srcw, 1));
   2340 			else {
   2341 				SLJIT_ASSERT(src_r == TMP_REG2 && (src & SLJIT_MEM));
   2342 				FAIL_IF(emit_op(compiler, SLJIT_MOV, WORD_DATA, TMP_REG2, 0, TMP_REG1, 0, src, srcw));
   2343 			}
   2344 
   2345 			FAIL_IF(ADD_SOLO(0, reg_map[SLJIT_R0], ZERO));
   2346 
   2347 			FAIL_IF(ADDI_SOLO(54, 54, -16));
   2348 
   2349 			FAIL_IF(JALR_SOLO(reg_map[PIC_ADDR_REG]));
   2350 
   2351 			return ADDI_SOLO(54, 54, 16);
   2352 		}
   2353 
   2354 		/* Register input. */
   2355 		if (type >= SLJIT_CALL1)
   2356 			FAIL_IF(ADD_SOLO(0, reg_map[SLJIT_R0], ZERO));
   2357 
   2358 		FAIL_IF(ADD_SOLO(reg_map[PIC_ADDR_REG], reg_map[src_r], ZERO));
   2359 
   2360 		FAIL_IF(ADDI_SOLO(54, 54, -16));
   2361 
   2362 		FAIL_IF(JALR_SOLO(reg_map[src_r]));
   2363 
   2364 		return ADDI_SOLO(54, 54, 16);
   2365 	}
   2366 
   2367 	if (src & SLJIT_IMM) {
   2368 		jump = (struct sljit_jump *)ensure_abuf(compiler, sizeof(struct sljit_jump));
   2369 		FAIL_IF(!jump);
   2370 		set_jump(jump, compiler, JUMP_ADDR | ((type >= SLJIT_FAST_CALL) ? IS_JAL : 0));
   2371 		jump->u.target = srcw;
   2372 		FAIL_IF(emit_const(compiler, TMP_REG2_mapped, 0, 1));
   2373 
   2374 		if (type >= SLJIT_FAST_CALL) {
   2375 			FAIL_IF(ADD_SOLO(ZERO, ZERO, ZERO));
   2376 			jump->addr = compiler->size;
   2377 			FAIL_IF(JR_SOLO(reg_map[src_r]));
   2378 		} else {
   2379 			jump->addr = compiler->size;
   2380 			FAIL_IF(JR_SOLO(reg_map[src_r]));
   2381 		}
   2382 
   2383 		return SLJIT_SUCCESS;
   2384 
   2385 	} else if (src & SLJIT_MEM) {
   2386 		FAIL_IF(emit_op(compiler, SLJIT_MOV, WORD_DATA, TMP_REG2, 0, TMP_REG1, 0, src, srcw));
   2387 		flush_buffer(compiler);
   2388 	}
   2389 
   2390 	FAIL_IF(JR_SOLO(reg_map[src_r]));
   2391 
   2392 	if (jump)
   2393 		jump->addr = compiler->size;
   2394 
   2395 	return SLJIT_SUCCESS;
   2396 }
   2397 
   2398 #define BR_Z(src) \
   2399 	inst = BEQZ_X1 | SRCA_X1(src); \
   2400 	flags = IS_COND;
   2401 
   2402 #define BR_NZ(src) \
   2403 	inst = BNEZ_X1 | SRCA_X1(src); \
   2404 	flags = IS_COND;
   2405 
   2406 SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump * sljit_emit_jump(struct sljit_compiler *compiler, sljit_s32 type)
   2407 {
   2408 	struct sljit_jump *jump;
   2409 	sljit_ins inst;
   2410 	sljit_s32 flags = 0;
   2411 
   2412 	flush_buffer(compiler);
   2413 
   2414 	CHECK_ERROR_PTR();
   2415 	CHECK_PTR(check_sljit_emit_jump(compiler, type));
   2416 
   2417 	jump = (struct sljit_jump *)ensure_abuf(compiler, sizeof(struct sljit_jump));
   2418 	PTR_FAIL_IF(!jump);
   2419 	set_jump(jump, compiler, type & SLJIT_REWRITABLE_JUMP);
   2420 	type &= 0xff;
   2421 
   2422 	switch (type) {
   2423 	case SLJIT_EQUAL:
   2424 		BR_NZ(EQUAL_FLAG);
   2425 		break;
   2426 	case SLJIT_NOT_EQUAL:
   2427 		BR_Z(EQUAL_FLAG);
   2428 		break;
   2429 	case SLJIT_LESS:
   2430 		BR_Z(ULESS_FLAG);
   2431 		break;
   2432 	case SLJIT_GREATER_EQUAL:
   2433 		BR_NZ(ULESS_FLAG);
   2434 		break;
   2435 	case SLJIT_GREATER:
   2436 		BR_Z(UGREATER_FLAG);
   2437 		break;
   2438 	case SLJIT_LESS_EQUAL:
   2439 		BR_NZ(UGREATER_FLAG);
   2440 		break;
   2441 	case SLJIT_SIG_LESS:
   2442 		BR_Z(LESS_FLAG);
   2443 		break;
   2444 	case SLJIT_SIG_GREATER_EQUAL:
   2445 		BR_NZ(LESS_FLAG);
   2446 		break;
   2447 	case SLJIT_SIG_GREATER:
   2448 		BR_Z(GREATER_FLAG);
   2449 		break;
   2450 	case SLJIT_SIG_LESS_EQUAL:
   2451 		BR_NZ(GREATER_FLAG);
   2452 		break;
   2453 	case SLJIT_OVERFLOW:
   2454 	case SLJIT_MUL_OVERFLOW:
   2455 		BR_Z(OVERFLOW_FLAG);
   2456 		break;
   2457 	case SLJIT_NOT_OVERFLOW:
   2458 	case SLJIT_MUL_NOT_OVERFLOW:
   2459 		BR_NZ(OVERFLOW_FLAG);
   2460 		break;
   2461 	default:
   2462 		/* Not conditional branch. */
   2463 		inst = 0;
   2464 		break;
   2465 	}
   2466 
   2467 	jump->flags |= flags;
   2468 
   2469 	if (inst) {
   2470 		inst = inst | ((type <= SLJIT_JUMP) ? BOFF_X1(5) : BOFF_X1(6));
   2471 		PTR_FAIL_IF(PI(inst));
   2472 	}
   2473 
   2474 	PTR_FAIL_IF(emit_const(compiler, TMP_REG2_mapped, 0, 1));
   2475 	if (type <= SLJIT_JUMP) {
   2476 		jump->addr = compiler->size;
   2477 		PTR_FAIL_IF(JR_SOLO(TMP_REG2_mapped));
   2478 	} else {
   2479 		SLJIT_ASSERT(reg_map[PIC_ADDR_REG] == 16 && PIC_ADDR_REG == TMP_REG2);
   2480 		/* Cannot be optimized out if type is >= CALL0. */
   2481 		jump->flags |= IS_JAL | (type >= SLJIT_CALL0 ? SLJIT_REWRITABLE_JUMP : 0);
   2482 		PTR_FAIL_IF(ADD_SOLO(0, reg_map[SLJIT_R0], ZERO));
   2483 		jump->addr = compiler->size;
   2484 		PTR_FAIL_IF(JALR_SOLO(TMP_REG2_mapped));
   2485 	}
   2486 
   2487 	return jump;
   2488 }
   2489 
   2490 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_is_fpu_available(void)
   2491 {
   2492 	return 0;
   2493 }
   2494 
   2495 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fop1(struct sljit_compiler *compiler, sljit_s32 op, sljit_s32 dst, sljit_sw dstw, sljit_s32 src, sljit_sw srcw)
   2496 {
   2497 	SLJIT_ASSERT_STOP();
   2498 }
   2499 
   2500 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fop2(struct sljit_compiler *compiler, sljit_s32 op, sljit_s32 dst, sljit_sw dstw, sljit_s32 src1, sljit_sw src1w, sljit_s32 src2, sljit_sw src2w)
   2501 {
   2502 	SLJIT_ASSERT_STOP();
   2503 }
   2504 
   2505 SLJIT_API_FUNC_ATTRIBUTE struct sljit_const * sljit_emit_const(struct sljit_compiler *compiler, sljit_s32 dst, sljit_sw dstw, sljit_sw init_value)
   2506 {
   2507 	struct sljit_const *const_;
   2508 	sljit_s32 reg;
   2509 
   2510 	flush_buffer(compiler);
   2511 
   2512 	CHECK_ERROR_PTR();
   2513 	CHECK_PTR(check_sljit_emit_const(compiler, dst, dstw, init_value));
   2514 	ADJUST_LOCAL_OFFSET(dst, dstw);
   2515 
   2516 	const_ = (struct sljit_const *)ensure_abuf(compiler, sizeof(struct sljit_const));
   2517 	PTR_FAIL_IF(!const_);
   2518 	set_const(const_, compiler);
   2519 
   2520 	reg = FAST_IS_REG(dst) ? dst : TMP_REG2;
   2521 
   2522 	PTR_FAIL_IF(emit_const_64(compiler, reg, init_value, 1));
   2523 
   2524 	if (dst & SLJIT_MEM)
   2525 		PTR_FAIL_IF(emit_op(compiler, SLJIT_MOV, WORD_DATA, dst, dstw, TMP_REG1, 0, TMP_REG2, 0));
   2526 	return const_;
   2527 }
   2528 
   2529 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_jump_addr(sljit_uw addr, sljit_uw new_addr)
   2530 {
   2531 	sljit_ins *inst = (sljit_ins *)addr;
   2532 
   2533 	inst[0] = (inst[0] & ~(0xFFFFL << 43)) | (((new_addr >> 32) & 0xffff) << 43);
   2534 	inst[1] = (inst[1] & ~(0xFFFFL << 43)) | (((new_addr >> 16) & 0xffff) << 43);
   2535 	inst[2] = (inst[2] & ~(0xFFFFL << 43)) | ((new_addr & 0xffff) << 43);
   2536 	SLJIT_CACHE_FLUSH(inst, inst + 3);
   2537 }
   2538 
   2539 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_const(sljit_uw addr, sljit_sw new_constant)
   2540 {
   2541 	sljit_ins *inst = (sljit_ins *)addr;
   2542 
   2543 	inst[0] = (inst[0] & ~(0xFFFFL << 43)) | (((new_constant >> 48) & 0xFFFFL) << 43);
   2544 	inst[1] = (inst[1] & ~(0xFFFFL << 43)) | (((new_constant >> 32) & 0xFFFFL) << 43);
   2545 	inst[2] = (inst[2] & ~(0xFFFFL << 43)) | (((new_constant >> 16) & 0xFFFFL) << 43);
   2546 	inst[3] = (inst[3] & ~(0xFFFFL << 43)) | ((new_constant & 0xFFFFL) << 43);
   2547 	SLJIT_CACHE_FLUSH(inst, inst + 4);
   2548 }
   2549 
   2550 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_get_register_index(sljit_s32 reg)
   2551 {
   2552 	CHECK_REG_INDEX(check_sljit_get_register_index(reg));
   2553 	return reg_map[reg];
   2554 }
   2555 
   2556 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op_custom(struct sljit_compiler *compiler,
   2557 	void *instruction, sljit_s32 size)
   2558 {
   2559 	CHECK_ERROR();
   2560 	CHECK(check_sljit_emit_op_custom(compiler, instruction, size));
   2561 	return SLJIT_ERR_UNSUPPORTED;
   2562 }
   2563 
   2564