Home | History | Annotate | Download | only in ops
      1 /*
      2  * Copyright 2011 Google Inc.
      3  *
      4  * Use of this source code is governed by a BSD-style license that can be
      5  * found in the LICENSE file.
      6  */
      7 
      8 #include "GrAAHairLinePathRenderer.h"
      9 #include "GrBuffer.h"
     10 #include "GrCaps.h"
     11 #include "GrClip.h"
     12 #include "GrContext.h"
     13 #include "GrDefaultGeoProcFactory.h"
     14 #include "GrDrawOpTest.h"
     15 #include "GrOpFlushState.h"
     16 #include "GrPathUtils.h"
     17 #include "GrProcessor.h"
     18 #include "GrResourceProvider.h"
     19 #include "GrSimpleMeshDrawOpHelper.h"
     20 #include "SkGeometry.h"
     21 #include "SkStroke.h"
     22 #include "SkTemplates.h"
     23 #include "effects/GrBezierEffect.h"
     24 #include "ops/GrMeshDrawOp.h"
     25 
     26 #define PREALLOC_PTARRAY(N) SkSTArray<(N),SkPoint, true>
     27 
     28 // quadratics are rendered as 5-sided polys in order to bound the
     29 // AA stroke around the center-curve. See comments in push_quad_index_buffer and
     30 // bloat_quad. Quadratics and conics share an index buffer
     31 
     32 // lines are rendered as:
     33 //      *______________*
     34 //      |\ -_______   /|
     35 //      | \        \ / |
     36 //      |  *--------*  |
     37 //      | /  ______/ \ |
     38 //      */_-__________\*
     39 // For: 6 vertices and 18 indices (for 6 triangles)
     40 
     41 // Each quadratic is rendered as a five sided polygon. This poly bounds
     42 // the quadratic's bounding triangle but has been expanded so that the
     43 // 1-pixel wide area around the curve is inside the poly.
     44 // If a,b,c are the original control points then the poly a0,b0,c0,c1,a1
     45 // that is rendered would look like this:
     46 //              b0
     47 //              b
     48 //
     49 //     a0              c0
     50 //      a            c
     51 //       a1       c1
     52 // Each is drawn as three triangles ((a0,a1,b0), (b0,c1,c0), (a1,c1,b0))
     53 // specified by these 9 indices:
     54 static const uint16_t kQuadIdxBufPattern[] = {
     55     0, 1, 2,
     56     2, 4, 3,
     57     1, 4, 2
     58 };
     59 
     60 static const int kIdxsPerQuad = SK_ARRAY_COUNT(kQuadIdxBufPattern);
     61 static const int kQuadNumVertices = 5;
     62 static const int kQuadsNumInIdxBuffer = 256;
     63 GR_DECLARE_STATIC_UNIQUE_KEY(gQuadsIndexBufferKey);
     64 
     65 static const GrBuffer* ref_quads_index_buffer(GrResourceProvider* resourceProvider) {
     66     GR_DEFINE_STATIC_UNIQUE_KEY(gQuadsIndexBufferKey);
     67     return resourceProvider->findOrCreatePatternedIndexBuffer(
     68         kQuadIdxBufPattern, kIdxsPerQuad, kQuadsNumInIdxBuffer, kQuadNumVertices,
     69         gQuadsIndexBufferKey);
     70 }
     71 
     72 
     73 // Each line segment is rendered as two quads and two triangles.
     74 // p0 and p1 have alpha = 1 while all other points have alpha = 0.
     75 // The four external points are offset 1 pixel perpendicular to the
     76 // line and half a pixel parallel to the line.
     77 //
     78 // p4                  p5
     79 //      p0         p1
     80 // p2                  p3
     81 //
     82 // Each is drawn as six triangles specified by these 18 indices:
     83 
     84 static const uint16_t kLineSegIdxBufPattern[] = {
     85     0, 1, 3,
     86     0, 3, 2,
     87     0, 4, 5,
     88     0, 5, 1,
     89     0, 2, 4,
     90     1, 5, 3
     91 };
     92 
     93 static const int kIdxsPerLineSeg = SK_ARRAY_COUNT(kLineSegIdxBufPattern);
     94 static const int kLineSegNumVertices = 6;
     95 static const int kLineSegsNumInIdxBuffer = 256;
     96 
     97 GR_DECLARE_STATIC_UNIQUE_KEY(gLinesIndexBufferKey);
     98 
     99 static const GrBuffer* ref_lines_index_buffer(GrResourceProvider* resourceProvider) {
    100     GR_DEFINE_STATIC_UNIQUE_KEY(gLinesIndexBufferKey);
    101     return resourceProvider->findOrCreatePatternedIndexBuffer(
    102         kLineSegIdxBufPattern, kIdxsPerLineSeg,  kLineSegsNumInIdxBuffer, kLineSegNumVertices,
    103         gLinesIndexBufferKey);
    104 }
    105 
    106 // Takes 178th time of logf on Z600 / VC2010
    107 static int get_float_exp(float x) {
    108     GR_STATIC_ASSERT(sizeof(int) == sizeof(float));
    109 #ifdef SK_DEBUG
    110     static bool tested;
    111     if (!tested) {
    112         tested = true;
    113         SkASSERT(get_float_exp(0.25f) == -2);
    114         SkASSERT(get_float_exp(0.3f) == -2);
    115         SkASSERT(get_float_exp(0.5f) == -1);
    116         SkASSERT(get_float_exp(1.f) == 0);
    117         SkASSERT(get_float_exp(2.f) == 1);
    118         SkASSERT(get_float_exp(2.5f) == 1);
    119         SkASSERT(get_float_exp(8.f) == 3);
    120         SkASSERT(get_float_exp(100.f) == 6);
    121         SkASSERT(get_float_exp(1000.f) == 9);
    122         SkASSERT(get_float_exp(1024.f) == 10);
    123         SkASSERT(get_float_exp(3000000.f) == 21);
    124     }
    125 #endif
    126     const int* iptr = (const int*)&x;
    127     return (((*iptr) & 0x7f800000) >> 23) - 127;
    128 }
    129 
    130 // Uses the max curvature function for quads to estimate
    131 // where to chop the conic. If the max curvature is not
    132 // found along the curve segment it will return 1 and
    133 // dst[0] is the original conic. If it returns 2 the dst[0]
    134 // and dst[1] are the two new conics.
    135 static int split_conic(const SkPoint src[3], SkConic dst[2], const SkScalar weight) {
    136     SkScalar t = SkFindQuadMaxCurvature(src);
    137     if (t == 0) {
    138         if (dst) {
    139             dst[0].set(src, weight);
    140         }
    141         return 1;
    142     } else {
    143         if (dst) {
    144             SkConic conic;
    145             conic.set(src, weight);
    146             if (!conic.chopAt(t, dst)) {
    147                 dst[0].set(src, weight);
    148                 return 1;
    149             }
    150         }
    151         return 2;
    152     }
    153 }
    154 
    155 // Calls split_conic on the entire conic and then once more on each subsection.
    156 // Most cases will result in either 1 conic (chop point is not within t range)
    157 // or 3 points (split once and then one subsection is split again).
    158 static int chop_conic(const SkPoint src[3], SkConic dst[4], const SkScalar weight) {
    159     SkConic dstTemp[2];
    160     int conicCnt = split_conic(src, dstTemp, weight);
    161     if (2 == conicCnt) {
    162         int conicCnt2 = split_conic(dstTemp[0].fPts, dst, dstTemp[0].fW);
    163         conicCnt = conicCnt2 + split_conic(dstTemp[1].fPts, &dst[conicCnt2], dstTemp[1].fW);
    164     } else {
    165         dst[0] = dstTemp[0];
    166     }
    167     return conicCnt;
    168 }
    169 
    170 // returns 0 if quad/conic is degen or close to it
    171 // in this case approx the path with lines
    172 // otherwise returns 1
    173 static int is_degen_quad_or_conic(const SkPoint p[3], SkScalar* dsqd) {
    174     static const SkScalar gDegenerateToLineTol = GrPathUtils::kDefaultTolerance;
    175     static const SkScalar gDegenerateToLineTolSqd =
    176         gDegenerateToLineTol * gDegenerateToLineTol;
    177 
    178     if (p[0].distanceToSqd(p[1]) < gDegenerateToLineTolSqd ||
    179         p[1].distanceToSqd(p[2]) < gDegenerateToLineTolSqd) {
    180         return 1;
    181     }
    182 
    183     *dsqd = p[1].distanceToLineBetweenSqd(p[0], p[2]);
    184     if (*dsqd < gDegenerateToLineTolSqd) {
    185         return 1;
    186     }
    187 
    188     if (p[2].distanceToLineBetweenSqd(p[1], p[0]) < gDegenerateToLineTolSqd) {
    189         return 1;
    190     }
    191     return 0;
    192 }
    193 
    194 static int is_degen_quad_or_conic(const SkPoint p[3]) {
    195     SkScalar dsqd;
    196     return is_degen_quad_or_conic(p, &dsqd);
    197 }
    198 
    199 // we subdivide the quads to avoid huge overfill
    200 // if it returns -1 then should be drawn as lines
    201 static int num_quad_subdivs(const SkPoint p[3]) {
    202     SkScalar dsqd;
    203     if (is_degen_quad_or_conic(p, &dsqd)) {
    204         return -1;
    205     }
    206 
    207     // tolerance of triangle height in pixels
    208     // tuned on windows  Quadro FX 380 / Z600
    209     // trade off of fill vs cpu time on verts
    210     // maybe different when do this using gpu (geo or tess shaders)
    211     static const SkScalar gSubdivTol = 175 * SK_Scalar1;
    212 
    213     if (dsqd <= gSubdivTol * gSubdivTol) {
    214         return 0;
    215     } else {
    216         static const int kMaxSub = 4;
    217         // subdividing the quad reduces d by 4. so we want x = log4(d/tol)
    218         // = log4(d*d/tol*tol)/2
    219         // = log2(d*d/tol*tol)
    220 
    221         // +1 since we're ignoring the mantissa contribution.
    222         int log = get_float_exp(dsqd/(gSubdivTol*gSubdivTol)) + 1;
    223         log = SkTMin(SkTMax(0, log), kMaxSub);
    224         return log;
    225     }
    226 }
    227 
    228 /**
    229  * Generates the lines and quads to be rendered. Lines are always recorded in
    230  * device space. We will do a device space bloat to account for the 1pixel
    231  * thickness.
    232  * Quads are recorded in device space unless m contains
    233  * perspective, then in they are in src space. We do this because we will
    234  * subdivide large quads to reduce over-fill. This subdivision has to be
    235  * performed before applying the perspective matrix.
    236  */
    237 static int gather_lines_and_quads(const SkPath& path,
    238                                   const SkMatrix& m,
    239                                   const SkIRect& devClipBounds,
    240                                   SkScalar capLength,
    241                                   GrAAHairLinePathRenderer::PtArray* lines,
    242                                   GrAAHairLinePathRenderer::PtArray* quads,
    243                                   GrAAHairLinePathRenderer::PtArray* conics,
    244                                   GrAAHairLinePathRenderer::IntArray* quadSubdivCnts,
    245                                   GrAAHairLinePathRenderer::FloatArray* conicWeights) {
    246     SkPath::Iter iter(path, false);
    247 
    248     int totalQuadCount = 0;
    249     SkRect bounds;
    250     SkIRect ibounds;
    251 
    252     bool persp = m.hasPerspective();
    253 
    254     // Whenever a degenerate, zero-length contour is encountered, this code will insert a
    255     // 'capLength' x-aligned line segment. Since this is rendering hairlines it is hoped this will
    256     // suffice for AA square & circle capping.
    257     int verbsInContour = 0; // Does not count moves
    258     bool seenZeroLengthVerb = false;
    259     SkPoint zeroVerbPt;
    260 
    261     for (;;) {
    262         SkPoint pathPts[4];
    263         SkPoint devPts[4];
    264         SkPath::Verb verb = iter.next(pathPts, false);
    265         switch (verb) {
    266             case SkPath::kConic_Verb: {
    267                 SkConic dst[4];
    268                 // We chop the conics to create tighter clipping to hide error
    269                 // that appears near max curvature of very thin conics. Thin
    270                 // hyperbolas with high weight still show error.
    271                 int conicCnt = chop_conic(pathPts, dst, iter.conicWeight());
    272                 for (int i = 0; i < conicCnt; ++i) {
    273                     SkPoint* chopPnts = dst[i].fPts;
    274                     m.mapPoints(devPts, chopPnts, 3);
    275                     bounds.setBounds(devPts, 3);
    276                     bounds.outset(SK_Scalar1, SK_Scalar1);
    277                     bounds.roundOut(&ibounds);
    278                     if (SkIRect::Intersects(devClipBounds, ibounds)) {
    279                         if (is_degen_quad_or_conic(devPts)) {
    280                             SkPoint* pts = lines->push_back_n(4);
    281                             pts[0] = devPts[0];
    282                             pts[1] = devPts[1];
    283                             pts[2] = devPts[1];
    284                             pts[3] = devPts[2];
    285                             if (verbsInContour == 0 && i == 0 &&
    286                                     pts[0] == pts[1] && pts[2] == pts[3]) {
    287                                 seenZeroLengthVerb = true;
    288                                 zeroVerbPt = pts[0];
    289                             }
    290                         } else {
    291                             // when in perspective keep conics in src space
    292                             SkPoint* cPts = persp ? chopPnts : devPts;
    293                             SkPoint* pts = conics->push_back_n(3);
    294                             pts[0] = cPts[0];
    295                             pts[1] = cPts[1];
    296                             pts[2] = cPts[2];
    297                             conicWeights->push_back() = dst[i].fW;
    298                         }
    299                     }
    300                 }
    301                 verbsInContour++;
    302                 break;
    303             }
    304             case SkPath::kMove_Verb:
    305                 // New contour (and last one was unclosed). If it was just a zero length drawing
    306                 // operation, and we're supposed to draw caps, then add a tiny line.
    307                 if (seenZeroLengthVerb && verbsInContour == 1 && capLength > 0) {
    308                     SkPoint* pts = lines->push_back_n(2);
    309                     pts[0] = SkPoint::Make(zeroVerbPt.fX - capLength, zeroVerbPt.fY);
    310                     pts[1] = SkPoint::Make(zeroVerbPt.fX + capLength, zeroVerbPt.fY);
    311                 }
    312                 verbsInContour = 0;
    313                 seenZeroLengthVerb = false;
    314                 break;
    315             case SkPath::kLine_Verb:
    316                 m.mapPoints(devPts, pathPts, 2);
    317                 bounds.setBounds(devPts, 2);
    318                 bounds.outset(SK_Scalar1, SK_Scalar1);
    319                 bounds.roundOut(&ibounds);
    320                 if (SkIRect::Intersects(devClipBounds, ibounds)) {
    321                     SkPoint* pts = lines->push_back_n(2);
    322                     pts[0] = devPts[0];
    323                     pts[1] = devPts[1];
    324                     if (verbsInContour == 0 && pts[0] == pts[1]) {
    325                         seenZeroLengthVerb = true;
    326                         zeroVerbPt = pts[0];
    327                     }
    328                 }
    329                 verbsInContour++;
    330                 break;
    331             case SkPath::kQuad_Verb: {
    332                 SkPoint choppedPts[5];
    333                 // Chopping the quad helps when the quad is either degenerate or nearly degenerate.
    334                 // When it is degenerate it allows the approximation with lines to work since the
    335                 // chop point (if there is one) will be at the parabola's vertex. In the nearly
    336                 // degenerate the QuadUVMatrix computed for the points is almost singular which
    337                 // can cause rendering artifacts.
    338                 int n = SkChopQuadAtMaxCurvature(pathPts, choppedPts);
    339                 for (int i = 0; i < n; ++i) {
    340                     SkPoint* quadPts = choppedPts + i * 2;
    341                     m.mapPoints(devPts, quadPts, 3);
    342                     bounds.setBounds(devPts, 3);
    343                     bounds.outset(SK_Scalar1, SK_Scalar1);
    344                     bounds.roundOut(&ibounds);
    345 
    346                     if (SkIRect::Intersects(devClipBounds, ibounds)) {
    347                         int subdiv = num_quad_subdivs(devPts);
    348                         SkASSERT(subdiv >= -1);
    349                         if (-1 == subdiv) {
    350                             SkPoint* pts = lines->push_back_n(4);
    351                             pts[0] = devPts[0];
    352                             pts[1] = devPts[1];
    353                             pts[2] = devPts[1];
    354                             pts[3] = devPts[2];
    355                             if (verbsInContour == 0 && i == 0 &&
    356                                     pts[0] == pts[1] && pts[2] == pts[3]) {
    357                                 seenZeroLengthVerb = true;
    358                                 zeroVerbPt = pts[0];
    359                             }
    360                         } else {
    361                             // when in perspective keep quads in src space
    362                             SkPoint* qPts = persp ? quadPts : devPts;
    363                             SkPoint* pts = quads->push_back_n(3);
    364                             pts[0] = qPts[0];
    365                             pts[1] = qPts[1];
    366                             pts[2] = qPts[2];
    367                             quadSubdivCnts->push_back() = subdiv;
    368                             totalQuadCount += 1 << subdiv;
    369                         }
    370                     }
    371                 }
    372                 verbsInContour++;
    373                 break;
    374             }
    375             case SkPath::kCubic_Verb:
    376                 m.mapPoints(devPts, pathPts, 4);
    377                 bounds.setBounds(devPts, 4);
    378                 bounds.outset(SK_Scalar1, SK_Scalar1);
    379                 bounds.roundOut(&ibounds);
    380                 if (SkIRect::Intersects(devClipBounds, ibounds)) {
    381                     PREALLOC_PTARRAY(32) q;
    382                     // We convert cubics to quadratics (for now).
    383                     // In perspective have to do conversion in src space.
    384                     if (persp) {
    385                         SkScalar tolScale =
    386                             GrPathUtils::scaleToleranceToSrc(SK_Scalar1, m, path.getBounds());
    387                         GrPathUtils::convertCubicToQuads(pathPts, tolScale, &q);
    388                     } else {
    389                         GrPathUtils::convertCubicToQuads(devPts, SK_Scalar1, &q);
    390                     }
    391                     for (int i = 0; i < q.count(); i += 3) {
    392                         SkPoint* qInDevSpace;
    393                         // bounds has to be calculated in device space, but q is
    394                         // in src space when there is perspective.
    395                         if (persp) {
    396                             m.mapPoints(devPts, &q[i], 3);
    397                             bounds.setBounds(devPts, 3);
    398                             qInDevSpace = devPts;
    399                         } else {
    400                             bounds.setBounds(&q[i], 3);
    401                             qInDevSpace = &q[i];
    402                         }
    403                         bounds.outset(SK_Scalar1, SK_Scalar1);
    404                         bounds.roundOut(&ibounds);
    405                         if (SkIRect::Intersects(devClipBounds, ibounds)) {
    406                             int subdiv = num_quad_subdivs(qInDevSpace);
    407                             SkASSERT(subdiv >= -1);
    408                             if (-1 == subdiv) {
    409                                 SkPoint* pts = lines->push_back_n(4);
    410                                 // lines should always be in device coords
    411                                 pts[0] = qInDevSpace[0];
    412                                 pts[1] = qInDevSpace[1];
    413                                 pts[2] = qInDevSpace[1];
    414                                 pts[3] = qInDevSpace[2];
    415                                 if (verbsInContour == 0 && i == 0 &&
    416                                         pts[0] == pts[1] && pts[2] == pts[3]) {
    417                                     seenZeroLengthVerb = true;
    418                                     zeroVerbPt = pts[0];
    419                                 }
    420                             } else {
    421                                 SkPoint* pts = quads->push_back_n(3);
    422                                 // q is already in src space when there is no
    423                                 // perspective and dev coords otherwise.
    424                                 pts[0] = q[0 + i];
    425                                 pts[1] = q[1 + i];
    426                                 pts[2] = q[2 + i];
    427                                 quadSubdivCnts->push_back() = subdiv;
    428                                 totalQuadCount += 1 << subdiv;
    429                             }
    430                         }
    431                     }
    432                 }
    433                 verbsInContour++;
    434                 break;
    435             case SkPath::kClose_Verb:
    436                 // Contour is closed, so we don't need to grow the starting line, unless it's
    437                 // *just* a zero length subpath. (SVG Spec 11.4, 'stroke').
    438                 if (capLength > 0) {
    439                     if (seenZeroLengthVerb && verbsInContour == 1) {
    440                         SkPoint* pts = lines->push_back_n(2);
    441                         pts[0] = SkPoint::Make(zeroVerbPt.fX - capLength, zeroVerbPt.fY);
    442                         pts[1] = SkPoint::Make(zeroVerbPt.fX + capLength, zeroVerbPt.fY);
    443                     } else if (verbsInContour == 0) {
    444                         // Contour was (moveTo, close). Add a line.
    445                         m.mapPoints(devPts, pathPts, 1);
    446                         devPts[1] = devPts[0];
    447                         bounds.setBounds(devPts, 2);
    448                         bounds.outset(SK_Scalar1, SK_Scalar1);
    449                         bounds.roundOut(&ibounds);
    450                         if (SkIRect::Intersects(devClipBounds, ibounds)) {
    451                             SkPoint* pts = lines->push_back_n(2);
    452                             pts[0] = SkPoint::Make(devPts[0].fX - capLength, devPts[0].fY);
    453                             pts[1] = SkPoint::Make(devPts[1].fX + capLength, devPts[1].fY);
    454                         }
    455                     }
    456                 }
    457                 break;
    458             case SkPath::kDone_Verb:
    459                 if (seenZeroLengthVerb && verbsInContour == 1 && capLength > 0) {
    460                     // Path ended with a dangling (moveTo, line|quad|etc). If the final verb is
    461                     // degenerate, we need to draw a line.
    462                     SkPoint* pts = lines->push_back_n(2);
    463                     pts[0] = SkPoint::Make(zeroVerbPt.fX - capLength, zeroVerbPt.fY);
    464                     pts[1] = SkPoint::Make(zeroVerbPt.fX + capLength, zeroVerbPt.fY);
    465                 }
    466                 return totalQuadCount;
    467         }
    468     }
    469 }
    470 
    471 struct LineVertex {
    472     SkPoint fPos;
    473     float fCoverage;
    474 };
    475 
    476 struct BezierVertex {
    477     SkPoint fPos;
    478     union {
    479         struct {
    480             SkScalar fKLM[3];
    481         } fConic;
    482         SkVector   fQuadCoord;
    483         struct {
    484             SkScalar fBogus[4];
    485         };
    486     };
    487 };
    488 
    489 GR_STATIC_ASSERT(sizeof(BezierVertex) == 3 * sizeof(SkPoint));
    490 
    491 static void intersect_lines(const SkPoint& ptA, const SkVector& normA,
    492                             const SkPoint& ptB, const SkVector& normB,
    493                             SkPoint* result) {
    494 
    495     SkScalar lineAW = -normA.dot(ptA);
    496     SkScalar lineBW = -normB.dot(ptB);
    497 
    498     SkScalar wInv = normA.fX * normB.fY - normA.fY * normB.fX;
    499     wInv = SkScalarInvert(wInv);
    500 
    501     result->fX = normA.fY * lineBW - lineAW * normB.fY;
    502     result->fX *= wInv;
    503 
    504     result->fY = lineAW * normB.fX - normA.fX * lineBW;
    505     result->fY *= wInv;
    506 }
    507 
    508 static void set_uv_quad(const SkPoint qpts[3], BezierVertex verts[kQuadNumVertices]) {
    509     // this should be in the src space, not dev coords, when we have perspective
    510     GrPathUtils::QuadUVMatrix DevToUV(qpts);
    511     DevToUV.apply<kQuadNumVertices, sizeof(BezierVertex), sizeof(SkPoint)>(verts);
    512 }
    513 
    514 static void bloat_quad(const SkPoint qpts[3], const SkMatrix* toDevice,
    515                        const SkMatrix* toSrc, BezierVertex verts[kQuadNumVertices]) {
    516     SkASSERT(!toDevice == !toSrc);
    517     // original quad is specified by tri a,b,c
    518     SkPoint a = qpts[0];
    519     SkPoint b = qpts[1];
    520     SkPoint c = qpts[2];
    521 
    522     if (toDevice) {
    523         toDevice->mapPoints(&a, 1);
    524         toDevice->mapPoints(&b, 1);
    525         toDevice->mapPoints(&c, 1);
    526     }
    527     // make a new poly where we replace a and c by a 1-pixel wide edges orthog
    528     // to edges ab and bc:
    529     //
    530     //   before       |        after
    531     //                |              b0
    532     //         b      |
    533     //                |
    534     //                |     a0            c0
    535     // a         c    |        a1       c1
    536     //
    537     // edges a0->b0 and b0->c0 are parallel to original edges a->b and b->c,
    538     // respectively.
    539     BezierVertex& a0 = verts[0];
    540     BezierVertex& a1 = verts[1];
    541     BezierVertex& b0 = verts[2];
    542     BezierVertex& c0 = verts[3];
    543     BezierVertex& c1 = verts[4];
    544 
    545     SkVector ab = b;
    546     ab -= a;
    547     SkVector ac = c;
    548     ac -= a;
    549     SkVector cb = b;
    550     cb -= c;
    551 
    552     // We should have already handled degenerates
    553     SkASSERT(ab.length() > 0 && cb.length() > 0);
    554 
    555     ab.normalize();
    556     SkVector abN;
    557     abN.setOrthog(ab, SkVector::kLeft_Side);
    558     if (abN.dot(ac) > 0) {
    559         abN.negate();
    560     }
    561 
    562     cb.normalize();
    563     SkVector cbN;
    564     cbN.setOrthog(cb, SkVector::kLeft_Side);
    565     if (cbN.dot(ac) < 0) {
    566         cbN.negate();
    567     }
    568 
    569     a0.fPos = a;
    570     a0.fPos += abN;
    571     a1.fPos = a;
    572     a1.fPos -= abN;
    573 
    574     c0.fPos = c;
    575     c0.fPos += cbN;
    576     c1.fPos = c;
    577     c1.fPos -= cbN;
    578 
    579     intersect_lines(a0.fPos, abN, c0.fPos, cbN, &b0.fPos);
    580 
    581     if (toSrc) {
    582         toSrc->mapPointsWithStride(&verts[0].fPos, sizeof(BezierVertex), kQuadNumVertices);
    583     }
    584 }
    585 
    586 // Equations based off of Loop-Blinn Quadratic GPU Rendering
    587 // Input Parametric:
    588 // P(t) = (P0*(1-t)^2 + 2*w*P1*t*(1-t) + P2*t^2) / (1-t)^2 + 2*w*t*(1-t) + t^2)
    589 // Output Implicit:
    590 // f(x, y, w) = f(P) = K^2 - LM
    591 // K = dot(k, P), L = dot(l, P), M = dot(m, P)
    592 // k, l, m are calculated in function GrPathUtils::getConicKLM
    593 static void set_conic_coeffs(const SkPoint p[3], BezierVertex verts[kQuadNumVertices],
    594                              const SkScalar weight) {
    595     SkMatrix klm;
    596 
    597     GrPathUtils::getConicKLM(p, weight, &klm);
    598 
    599     for (int i = 0; i < kQuadNumVertices; ++i) {
    600         const SkScalar pt3[3] = {verts[i].fPos.x(), verts[i].fPos.y(), 1.f};
    601         klm.mapHomogeneousPoints(verts[i].fConic.fKLM, pt3, 1);
    602     }
    603 }
    604 
    605 static void add_conics(const SkPoint p[3],
    606                        const SkScalar weight,
    607                        const SkMatrix* toDevice,
    608                        const SkMatrix* toSrc,
    609                        BezierVertex** vert) {
    610     bloat_quad(p, toDevice, toSrc, *vert);
    611     set_conic_coeffs(p, *vert, weight);
    612     *vert += kQuadNumVertices;
    613 }
    614 
    615 static void add_quads(const SkPoint p[3],
    616                       int subdiv,
    617                       const SkMatrix* toDevice,
    618                       const SkMatrix* toSrc,
    619                       BezierVertex** vert) {
    620     SkASSERT(subdiv >= 0);
    621     if (subdiv) {
    622         SkPoint newP[5];
    623         SkChopQuadAtHalf(p, newP);
    624         add_quads(newP + 0, subdiv-1, toDevice, toSrc, vert);
    625         add_quads(newP + 2, subdiv-1, toDevice, toSrc, vert);
    626     } else {
    627         bloat_quad(p, toDevice, toSrc, *vert);
    628         set_uv_quad(p, *vert);
    629         *vert += kQuadNumVertices;
    630     }
    631 }
    632 
    633 static void add_line(const SkPoint p[2],
    634                      const SkMatrix* toSrc,
    635                      uint8_t coverage,
    636                      LineVertex** vert) {
    637     const SkPoint& a = p[0];
    638     const SkPoint& b = p[1];
    639 
    640     SkVector ortho, vec = b;
    641     vec -= a;
    642 
    643     if (vec.setLength(SK_ScalarHalf)) {
    644         // Create a vector orthogonal to 'vec' and of unit length
    645         ortho.fX = 2.0f * vec.fY;
    646         ortho.fY = -2.0f * vec.fX;
    647 
    648         float floatCoverage = GrNormalizeByteToFloat(coverage);
    649 
    650         (*vert)[0].fPos = a;
    651         (*vert)[0].fCoverage = floatCoverage;
    652         (*vert)[1].fPos = b;
    653         (*vert)[1].fCoverage = floatCoverage;
    654         (*vert)[2].fPos = a - vec + ortho;
    655         (*vert)[2].fCoverage = 0;
    656         (*vert)[3].fPos = b + vec + ortho;
    657         (*vert)[3].fCoverage = 0;
    658         (*vert)[4].fPos = a - vec - ortho;
    659         (*vert)[4].fCoverage = 0;
    660         (*vert)[5].fPos = b + vec - ortho;
    661         (*vert)[5].fCoverage = 0;
    662 
    663         if (toSrc) {
    664             toSrc->mapPointsWithStride(&(*vert)->fPos,
    665                                        sizeof(LineVertex),
    666                                        kLineSegNumVertices);
    667         }
    668     } else {
    669         // just make it degenerate and likely offscreen
    670         for (int i = 0; i < kLineSegNumVertices; ++i) {
    671             (*vert)[i].fPos.set(SK_ScalarMax, SK_ScalarMax);
    672         }
    673     }
    674 
    675     *vert += kLineSegNumVertices;
    676 }
    677 
    678 ///////////////////////////////////////////////////////////////////////////////
    679 
    680 bool GrAAHairLinePathRenderer::onCanDrawPath(const CanDrawPathArgs& args) const {
    681     if (GrAAType::kCoverage != args.fAAType) {
    682         return false;
    683     }
    684 
    685     if (!IsStrokeHairlineOrEquivalent(args.fShape->style(), *args.fViewMatrix, nullptr)) {
    686         return false;
    687     }
    688 
    689     // We don't currently handle dashing in this class though perhaps we should.
    690     if (args.fShape->style().pathEffect()) {
    691         return false;
    692     }
    693 
    694     if (SkPath::kLine_SegmentMask == args.fShape->segmentMask() ||
    695         args.fCaps->shaderCaps()->shaderDerivativeSupport()) {
    696         return true;
    697     }
    698 
    699     return false;
    700 }
    701 
    702 template <class VertexType>
    703 bool check_bounds(const SkMatrix& viewMatrix, const SkRect& devBounds, void* vertices, int vCount)
    704 {
    705     SkRect tolDevBounds = devBounds;
    706     // The bounds ought to be tight, but in perspective the below code runs the verts
    707     // through the view matrix to get back to dev coords, which can introduce imprecision.
    708     if (viewMatrix.hasPerspective()) {
    709         tolDevBounds.outset(SK_Scalar1 / 1000, SK_Scalar1 / 1000);
    710     } else {
    711         // Non-persp matrices cause this path renderer to draw in device space.
    712         SkASSERT(viewMatrix.isIdentity());
    713     }
    714     SkRect actualBounds;
    715 
    716     VertexType* verts = reinterpret_cast<VertexType*>(vertices);
    717     bool first = true;
    718     for (int i = 0; i < vCount; ++i) {
    719         SkPoint pos = verts[i].fPos;
    720         // This is a hack to workaround the fact that we move some degenerate segments offscreen.
    721         if (SK_ScalarMax == pos.fX) {
    722             continue;
    723         }
    724         viewMatrix.mapPoints(&pos, 1);
    725         if (first) {
    726             actualBounds.set(pos.fX, pos.fY, pos.fX, pos.fY);
    727             first = false;
    728         } else {
    729             actualBounds.growToInclude(pos.fX, pos.fY);
    730         }
    731     }
    732     if (!first) {
    733         return tolDevBounds.contains(actualBounds);
    734     }
    735 
    736     return true;
    737 }
    738 
    739 namespace {
    740 
    741 class AAHairlineOp final : public GrMeshDrawOp {
    742 private:
    743     using Helper = GrSimpleMeshDrawOpHelperWithStencil;
    744 
    745 public:
    746     DEFINE_OP_CLASS_ID
    747 
    748     static std::unique_ptr<GrDrawOp> Make(GrPaint&& paint,
    749                                           const SkMatrix& viewMatrix,
    750                                           const SkPath& path,
    751                                           const GrStyle& style,
    752                                           const SkIRect& devClipBounds,
    753                                           const GrUserStencilSettings* stencilSettings) {
    754         SkScalar hairlineCoverage;
    755         uint8_t newCoverage = 0xff;
    756         if (GrPathRenderer::IsStrokeHairlineOrEquivalent(style, viewMatrix, &hairlineCoverage)) {
    757             newCoverage = SkScalarRoundToInt(hairlineCoverage * 0xff);
    758         }
    759 
    760         const SkStrokeRec& stroke = style.strokeRec();
    761         SkScalar capLength = SkPaint::kButt_Cap != stroke.getCap() ? hairlineCoverage * 0.5f : 0.0f;
    762 
    763         return Helper::FactoryHelper<AAHairlineOp>(std::move(paint), newCoverage, viewMatrix, path,
    764                                                    devClipBounds, capLength, stencilSettings);
    765     }
    766 
    767     AAHairlineOp(const Helper::MakeArgs& helperArgs,
    768                  GrColor color,
    769                  uint8_t coverage,
    770                  const SkMatrix& viewMatrix,
    771                  const SkPath& path,
    772                  SkIRect devClipBounds,
    773                  SkScalar capLength,
    774                  const GrUserStencilSettings* stencilSettings)
    775             : INHERITED(ClassID())
    776             , fHelper(helperArgs, GrAAType::kCoverage, stencilSettings)
    777             , fColor(color)
    778             , fCoverage(coverage) {
    779         fPaths.emplace_back(PathData{viewMatrix, path, devClipBounds, capLength});
    780 
    781         this->setTransformedBounds(path.getBounds(), viewMatrix, HasAABloat::kYes,
    782                                    IsZeroArea::kYes);
    783     }
    784 
    785     const char* name() const override { return "AAHairlineOp"; }
    786 
    787     SkString dumpInfo() const override {
    788         SkString string;
    789         string.appendf("Color: 0x%08x Coverage: 0x%02x, Count: %d\n", fColor, fCoverage,
    790                        fPaths.count());
    791         string += INHERITED::dumpInfo();
    792         string += fHelper.dumpInfo();
    793         return string;
    794     }
    795 
    796     FixedFunctionFlags fixedFunctionFlags() const override { return fHelper.fixedFunctionFlags(); }
    797 
    798     RequiresDstTexture finalize(const GrCaps& caps, const GrAppliedClip* clip) override {
    799         return fHelper.xpRequiresDstTexture(caps, clip, GrProcessorAnalysisCoverage::kSingleChannel,
    800                                             &fColor);
    801     }
    802 
    803 private:
    804     void onPrepareDraws(Target*) const override;
    805 
    806     typedef SkTArray<SkPoint, true> PtArray;
    807     typedef SkTArray<int, true> IntArray;
    808     typedef SkTArray<float, true> FloatArray;
    809 
    810     bool onCombineIfPossible(GrOp* t, const GrCaps& caps) override {
    811         AAHairlineOp* that = t->cast<AAHairlineOp>();
    812 
    813         if (!fHelper.isCompatible(that->fHelper, caps, this->bounds(), that->bounds())) {
    814             return false;
    815         }
    816 
    817         if (this->viewMatrix().hasPerspective() != that->viewMatrix().hasPerspective()) {
    818             return false;
    819         }
    820 
    821         // We go to identity if we don't have perspective
    822         if (this->viewMatrix().hasPerspective() &&
    823             !this->viewMatrix().cheapEqualTo(that->viewMatrix())) {
    824             return false;
    825         }
    826 
    827         // TODO we can actually combine hairlines if they are the same color in a kind of bulk
    828         // method but we haven't implemented this yet
    829         // TODO investigate going to vertex color and coverage?
    830         if (this->coverage() != that->coverage()) {
    831             return false;
    832         }
    833 
    834         if (this->color() != that->color()) {
    835             return false;
    836         }
    837 
    838         if (fHelper.usesLocalCoords() && !this->viewMatrix().cheapEqualTo(that->viewMatrix())) {
    839             return false;
    840         }
    841 
    842         fPaths.push_back_n(that->fPaths.count(), that->fPaths.begin());
    843         this->joinBounds(*that);
    844         return true;
    845     }
    846 
    847     GrColor color() const { return fColor; }
    848     uint8_t coverage() const { return fCoverage; }
    849     const SkMatrix& viewMatrix() const { return fPaths[0].fViewMatrix; }
    850 
    851     struct PathData {
    852         SkMatrix fViewMatrix;
    853         SkPath fPath;
    854         SkIRect fDevClipBounds;
    855         SkScalar fCapLength;
    856     };
    857 
    858     SkSTArray<1, PathData, true> fPaths;
    859     Helper fHelper;
    860     GrColor fColor;
    861     uint8_t fCoverage;
    862 
    863     typedef GrMeshDrawOp INHERITED;
    864 };
    865 
    866 }  // anonymous namespace
    867 
    868 void AAHairlineOp::onPrepareDraws(Target* target) const {
    869     // Setup the viewmatrix and localmatrix for the GrGeometryProcessor.
    870     SkMatrix invert;
    871     if (!this->viewMatrix().invert(&invert)) {
    872         return;
    873     }
    874 
    875     // we will transform to identity space if the viewmatrix does not have perspective
    876     bool hasPerspective = this->viewMatrix().hasPerspective();
    877     const SkMatrix* geometryProcessorViewM = &SkMatrix::I();
    878     const SkMatrix* geometryProcessorLocalM = &invert;
    879     const SkMatrix* toDevice = nullptr;
    880     const SkMatrix* toSrc = nullptr;
    881     if (hasPerspective) {
    882         geometryProcessorViewM = &this->viewMatrix();
    883         geometryProcessorLocalM = &SkMatrix::I();
    884         toDevice = &this->viewMatrix();
    885         toSrc = &invert;
    886     }
    887 
    888     // This is hand inlined for maximum performance.
    889     PREALLOC_PTARRAY(128) lines;
    890     PREALLOC_PTARRAY(128) quads;
    891     PREALLOC_PTARRAY(128) conics;
    892     IntArray qSubdivs;
    893     FloatArray cWeights;
    894     int quadCount = 0;
    895 
    896     int instanceCount = fPaths.count();
    897     for (int i = 0; i < instanceCount; i++) {
    898         const PathData& args = fPaths[i];
    899         quadCount += gather_lines_and_quads(args.fPath, args.fViewMatrix, args.fDevClipBounds,
    900                                             args.fCapLength, &lines, &quads, &conics, &qSubdivs,
    901                                             &cWeights);
    902     }
    903 
    904     int lineCount = lines.count() / 2;
    905     int conicCount = conics.count() / 3;
    906 
    907     const GrPipeline* pipeline = fHelper.makePipeline(target);
    908     // do lines first
    909     if (lineCount) {
    910         sk_sp<GrGeometryProcessor> lineGP;
    911         {
    912             using namespace GrDefaultGeoProcFactory;
    913 
    914             Color color(this->color());
    915             LocalCoords localCoords(fHelper.usesLocalCoords() ? LocalCoords::kUsePosition_Type
    916                                                               : LocalCoords::kUnused_Type);
    917             localCoords.fMatrix = geometryProcessorLocalM;
    918             lineGP = GrDefaultGeoProcFactory::Make(color, Coverage::kAttribute_Type, localCoords,
    919                                                    *geometryProcessorViewM);
    920         }
    921 
    922         sk_sp<const GrBuffer> linesIndexBuffer(
    923             ref_lines_index_buffer(target->resourceProvider()));
    924 
    925         const GrBuffer* vertexBuffer;
    926         int firstVertex;
    927 
    928         size_t vertexStride = lineGP->getVertexStride();
    929         int vertexCount = kLineSegNumVertices * lineCount;
    930         LineVertex* verts = reinterpret_cast<LineVertex*>(
    931             target->makeVertexSpace(vertexStride, vertexCount, &vertexBuffer, &firstVertex));
    932 
    933         if (!verts|| !linesIndexBuffer) {
    934             SkDebugf("Could not allocate vertices\n");
    935             return;
    936         }
    937 
    938         SkASSERT(lineGP->getVertexStride() == sizeof(LineVertex));
    939 
    940         for (int i = 0; i < lineCount; ++i) {
    941             add_line(&lines[2*i], toSrc, this->coverage(), &verts);
    942         }
    943 
    944         GrMesh mesh(GrPrimitiveType::kTriangles);
    945         mesh.setIndexedPatterned(linesIndexBuffer.get(), kIdxsPerLineSeg, kLineSegNumVertices,
    946                                  lineCount, kLineSegsNumInIdxBuffer);
    947         mesh.setVertexData(vertexBuffer, firstVertex);
    948         target->draw(lineGP.get(), pipeline, mesh);
    949     }
    950 
    951     if (quadCount || conicCount) {
    952         sk_sp<GrGeometryProcessor> quadGP(GrQuadEffect::Make(this->color(),
    953                                                              *geometryProcessorViewM,
    954                                                              kHairlineAA_GrProcessorEdgeType,
    955                                                              target->caps(),
    956                                                              *geometryProcessorLocalM,
    957                                                              fHelper.usesLocalCoords(),
    958                                                              this->coverage()));
    959 
    960         sk_sp<GrGeometryProcessor> conicGP(GrConicEffect::Make(this->color(),
    961                                                                *geometryProcessorViewM,
    962                                                                kHairlineAA_GrProcessorEdgeType,
    963                                                                target->caps(),
    964                                                                *geometryProcessorLocalM,
    965                                                                fHelper.usesLocalCoords(),
    966                                                                this->coverage()));
    967 
    968         const GrBuffer* vertexBuffer;
    969         int firstVertex;
    970 
    971         sk_sp<const GrBuffer> quadsIndexBuffer(
    972             ref_quads_index_buffer(target->resourceProvider()));
    973 
    974         size_t vertexStride = sizeof(BezierVertex);
    975         int vertexCount = kQuadNumVertices * quadCount + kQuadNumVertices * conicCount;
    976         void *vertices = target->makeVertexSpace(vertexStride, vertexCount,
    977                                                  &vertexBuffer, &firstVertex);
    978 
    979         if (!vertices || !quadsIndexBuffer) {
    980             SkDebugf("Could not allocate vertices\n");
    981             return;
    982         }
    983 
    984         // Setup vertices
    985         BezierVertex* bezVerts = reinterpret_cast<BezierVertex*>(vertices);
    986 
    987         int unsubdivQuadCnt = quads.count() / 3;
    988         for (int i = 0; i < unsubdivQuadCnt; ++i) {
    989             SkASSERT(qSubdivs[i] >= 0);
    990             add_quads(&quads[3*i], qSubdivs[i], toDevice, toSrc, &bezVerts);
    991         }
    992 
    993         // Start Conics
    994         for (int i = 0; i < conicCount; ++i) {
    995             add_conics(&conics[3*i], cWeights[i], toDevice, toSrc, &bezVerts);
    996         }
    997 
    998         if (quadCount > 0) {
    999             GrMesh mesh(GrPrimitiveType::kTriangles);
   1000             mesh.setIndexedPatterned(quadsIndexBuffer.get(), kIdxsPerQuad, kQuadNumVertices,
   1001                                      quadCount, kQuadsNumInIdxBuffer);
   1002             mesh.setVertexData(vertexBuffer, firstVertex);
   1003             target->draw(quadGP.get(), pipeline, mesh);
   1004             firstVertex += quadCount * kQuadNumVertices;
   1005         }
   1006 
   1007         if (conicCount > 0) {
   1008             GrMesh mesh(GrPrimitiveType::kTriangles);
   1009             mesh.setIndexedPatterned(quadsIndexBuffer.get(), kIdxsPerQuad, kQuadNumVertices,
   1010                                      conicCount, kQuadsNumInIdxBuffer);
   1011             mesh.setVertexData(vertexBuffer, firstVertex);
   1012             target->draw(conicGP.get(), pipeline, mesh);
   1013         }
   1014     }
   1015 }
   1016 
   1017 bool GrAAHairLinePathRenderer::onDrawPath(const DrawPathArgs& args) {
   1018     GR_AUDIT_TRAIL_AUTO_FRAME(args.fRenderTargetContext->auditTrail(),
   1019                               "GrAAHairlinePathRenderer::onDrawPath");
   1020     SkASSERT(GrFSAAType::kUnifiedMSAA != args.fRenderTargetContext->fsaaType());
   1021 
   1022     SkIRect devClipBounds;
   1023     args.fClip->getConservativeBounds(args.fRenderTargetContext->width(),
   1024                                       args.fRenderTargetContext->height(),
   1025                                       &devClipBounds);
   1026     SkPath path;
   1027     args.fShape->asPath(&path);
   1028     std::unique_ptr<GrDrawOp> op =
   1029             AAHairlineOp::Make(std::move(args.fPaint), *args.fViewMatrix, path,
   1030                                args.fShape->style(), devClipBounds, args.fUserStencilSettings);
   1031     args.fRenderTargetContext->addDrawOp(*args.fClip, std::move(op));
   1032     return true;
   1033 }
   1034 
   1035 ///////////////////////////////////////////////////////////////////////////////////////////////////
   1036 
   1037 #if GR_TEST_UTILS
   1038 
   1039 GR_DRAW_OP_TEST_DEFINE(AAHairlineOp) {
   1040     SkMatrix viewMatrix = GrTest::TestMatrix(random);
   1041     SkPath path = GrTest::TestPath(random);
   1042     SkIRect devClipBounds;
   1043     devClipBounds.setEmpty();
   1044     return AAHairlineOp::Make(std::move(paint), viewMatrix, path, GrStyle::SimpleHairline(),
   1045                               devClipBounds, GrGetRandomStencil(random, context));
   1046 }
   1047 
   1048 #endif
   1049