Home | History | Annotate | Download | only in Mips
      1 //===-- MipsSEISelLowering.cpp - MipsSE DAG Lowering Interface --*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // Subclass of MipsTargetLowering specialized for mips32/64.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 #include "MipsSEISelLowering.h"
     14 #include "MipsMachineFunction.h"
     15 #include "MipsRegisterInfo.h"
     16 #include "MipsTargetMachine.h"
     17 #include "llvm/CodeGen/MachineInstrBuilder.h"
     18 #include "llvm/CodeGen/MachineRegisterInfo.h"
     19 #include "llvm/IR/Intrinsics.h"
     20 #include "llvm/Support/CommandLine.h"
     21 #include "llvm/Support/Debug.h"
     22 #include "llvm/Support/raw_ostream.h"
     23 #include "llvm/Target/TargetInstrInfo.h"
     24 
     25 using namespace llvm;
     26 
     27 #define DEBUG_TYPE "mips-isel"
     28 
     29 static cl::opt<bool>
     30 EnableMipsTailCalls("enable-mips-tail-calls", cl::Hidden,
     31                     cl::desc("MIPS: Enable tail calls."), cl::init(false));
     32 
     33 static cl::opt<bool> NoDPLoadStore("mno-ldc1-sdc1", cl::init(false),
     34                                    cl::desc("Expand double precision loads and "
     35                                             "stores to their single precision "
     36                                             "counterparts"));
     37 
     38 MipsSETargetLowering::MipsSETargetLowering(const MipsTargetMachine &TM,
     39                                            const MipsSubtarget &STI)
     40     : MipsTargetLowering(TM, STI) {
     41   // Set up the register classes
     42   addRegisterClass(MVT::i32, &Mips::GPR32RegClass);
     43 
     44   if (Subtarget.isGP64bit())
     45     addRegisterClass(MVT::i64, &Mips::GPR64RegClass);
     46 
     47   if (Subtarget.hasDSP() || Subtarget.hasMSA()) {
     48     // Expand all truncating stores and extending loads.
     49     for (MVT VT0 : MVT::vector_valuetypes()) {
     50       for (MVT VT1 : MVT::vector_valuetypes()) {
     51         setTruncStoreAction(VT0, VT1, Expand);
     52         setLoadExtAction(ISD::SEXTLOAD, VT0, VT1, Expand);
     53         setLoadExtAction(ISD::ZEXTLOAD, VT0, VT1, Expand);
     54         setLoadExtAction(ISD::EXTLOAD, VT0, VT1, Expand);
     55       }
     56     }
     57   }
     58 
     59   if (Subtarget.hasDSP()) {
     60     MVT::SimpleValueType VecTys[2] = {MVT::v2i16, MVT::v4i8};
     61 
     62     for (unsigned i = 0; i < array_lengthof(VecTys); ++i) {
     63       addRegisterClass(VecTys[i], &Mips::DSPRRegClass);
     64 
     65       // Expand all builtin opcodes.
     66       for (unsigned Opc = 0; Opc < ISD::BUILTIN_OP_END; ++Opc)
     67         setOperationAction(Opc, VecTys[i], Expand);
     68 
     69       setOperationAction(ISD::ADD, VecTys[i], Legal);
     70       setOperationAction(ISD::SUB, VecTys[i], Legal);
     71       setOperationAction(ISD::LOAD, VecTys[i], Legal);
     72       setOperationAction(ISD::STORE, VecTys[i], Legal);
     73       setOperationAction(ISD::BITCAST, VecTys[i], Legal);
     74     }
     75 
     76     setTargetDAGCombine(ISD::SHL);
     77     setTargetDAGCombine(ISD::SRA);
     78     setTargetDAGCombine(ISD::SRL);
     79     setTargetDAGCombine(ISD::SETCC);
     80     setTargetDAGCombine(ISD::VSELECT);
     81   }
     82 
     83   if (Subtarget.hasDSPR2())
     84     setOperationAction(ISD::MUL, MVT::v2i16, Legal);
     85 
     86   if (Subtarget.hasMSA()) {
     87     addMSAIntType(MVT::v16i8, &Mips::MSA128BRegClass);
     88     addMSAIntType(MVT::v8i16, &Mips::MSA128HRegClass);
     89     addMSAIntType(MVT::v4i32, &Mips::MSA128WRegClass);
     90     addMSAIntType(MVT::v2i64, &Mips::MSA128DRegClass);
     91     addMSAFloatType(MVT::v8f16, &Mips::MSA128HRegClass);
     92     addMSAFloatType(MVT::v4f32, &Mips::MSA128WRegClass);
     93     addMSAFloatType(MVT::v2f64, &Mips::MSA128DRegClass);
     94 
     95     setTargetDAGCombine(ISD::AND);
     96     setTargetDAGCombine(ISD::OR);
     97     setTargetDAGCombine(ISD::SRA);
     98     setTargetDAGCombine(ISD::VSELECT);
     99     setTargetDAGCombine(ISD::XOR);
    100   }
    101 
    102   if (!Subtarget.useSoftFloat()) {
    103     addRegisterClass(MVT::f32, &Mips::FGR32RegClass);
    104 
    105     // When dealing with single precision only, use libcalls
    106     if (!Subtarget.isSingleFloat()) {
    107       if (Subtarget.isFP64bit())
    108         addRegisterClass(MVT::f64, &Mips::FGR64RegClass);
    109       else
    110         addRegisterClass(MVT::f64, &Mips::AFGR64RegClass);
    111     }
    112   }
    113 
    114   setOperationAction(ISD::SMUL_LOHI,          MVT::i32, Custom);
    115   setOperationAction(ISD::UMUL_LOHI,          MVT::i32, Custom);
    116   setOperationAction(ISD::MULHS,              MVT::i32, Custom);
    117   setOperationAction(ISD::MULHU,              MVT::i32, Custom);
    118 
    119   if (Subtarget.hasCnMips())
    120     setOperationAction(ISD::MUL,              MVT::i64, Legal);
    121   else if (Subtarget.isGP64bit())
    122     setOperationAction(ISD::MUL,              MVT::i64, Custom);
    123 
    124   if (Subtarget.isGP64bit()) {
    125     setOperationAction(ISD::SMUL_LOHI,        MVT::i64, Custom);
    126     setOperationAction(ISD::UMUL_LOHI,        MVT::i64, Custom);
    127     setOperationAction(ISD::MULHS,            MVT::i64, Custom);
    128     setOperationAction(ISD::MULHU,            MVT::i64, Custom);
    129     setOperationAction(ISD::SDIVREM,          MVT::i64, Custom);
    130     setOperationAction(ISD::UDIVREM,          MVT::i64, Custom);
    131   }
    132 
    133   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom);
    134   setOperationAction(ISD::INTRINSIC_W_CHAIN,  MVT::i64, Custom);
    135 
    136   setOperationAction(ISD::SDIVREM, MVT::i32, Custom);
    137   setOperationAction(ISD::UDIVREM, MVT::i32, Custom);
    138   setOperationAction(ISD::ATOMIC_FENCE,       MVT::Other, Custom);
    139   setOperationAction(ISD::LOAD,               MVT::i32, Custom);
    140   setOperationAction(ISD::STORE,              MVT::i32, Custom);
    141 
    142   setTargetDAGCombine(ISD::ADDE);
    143   setTargetDAGCombine(ISD::SUBE);
    144   setTargetDAGCombine(ISD::MUL);
    145 
    146   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
    147   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
    148   setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
    149 
    150   if (NoDPLoadStore) {
    151     setOperationAction(ISD::LOAD, MVT::f64, Custom);
    152     setOperationAction(ISD::STORE, MVT::f64, Custom);
    153   }
    154 
    155   if (Subtarget.hasMips32r6()) {
    156     // MIPS32r6 replaces the accumulator-based multiplies with a three register
    157     // instruction
    158     setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
    159     setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
    160     setOperationAction(ISD::MUL, MVT::i32, Legal);
    161     setOperationAction(ISD::MULHS, MVT::i32, Legal);
    162     setOperationAction(ISD::MULHU, MVT::i32, Legal);
    163 
    164     // MIPS32r6 replaces the accumulator-based division/remainder with separate
    165     // three register division and remainder instructions.
    166     setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
    167     setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
    168     setOperationAction(ISD::SDIV, MVT::i32, Legal);
    169     setOperationAction(ISD::UDIV, MVT::i32, Legal);
    170     setOperationAction(ISD::SREM, MVT::i32, Legal);
    171     setOperationAction(ISD::UREM, MVT::i32, Legal);
    172 
    173     // MIPS32r6 replaces conditional moves with an equivalent that removes the
    174     // need for three GPR read ports.
    175     setOperationAction(ISD::SETCC, MVT::i32, Legal);
    176     setOperationAction(ISD::SELECT, MVT::i32, Legal);
    177     setOperationAction(ISD::SELECT_CC, MVT::i32, Expand);
    178 
    179     setOperationAction(ISD::SETCC, MVT::f32, Legal);
    180     setOperationAction(ISD::SELECT, MVT::f32, Legal);
    181     setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
    182 
    183     assert(Subtarget.isFP64bit() && "FR=1 is required for MIPS32r6");
    184     setOperationAction(ISD::SETCC, MVT::f64, Legal);
    185     setOperationAction(ISD::SELECT, MVT::f64, Legal);
    186     setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
    187 
    188     setOperationAction(ISD::BRCOND, MVT::Other, Legal);
    189 
    190     // Floating point > and >= are supported via < and <=
    191     setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
    192     setCondCodeAction(ISD::SETOGT, MVT::f32, Expand);
    193     setCondCodeAction(ISD::SETUGE, MVT::f32, Expand);
    194     setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
    195 
    196     setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
    197     setCondCodeAction(ISD::SETOGT, MVT::f64, Expand);
    198     setCondCodeAction(ISD::SETUGE, MVT::f64, Expand);
    199     setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
    200   }
    201 
    202   if (Subtarget.hasMips64r6()) {
    203     // MIPS64r6 replaces the accumulator-based multiplies with a three register
    204     // instruction
    205     setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
    206     setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
    207     setOperationAction(ISD::MUL, MVT::i64, Legal);
    208     setOperationAction(ISD::MULHS, MVT::i64, Legal);
    209     setOperationAction(ISD::MULHU, MVT::i64, Legal);
    210 
    211     // MIPS32r6 replaces the accumulator-based division/remainder with separate
    212     // three register division and remainder instructions.
    213     setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
    214     setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
    215     setOperationAction(ISD::SDIV, MVT::i64, Legal);
    216     setOperationAction(ISD::UDIV, MVT::i64, Legal);
    217     setOperationAction(ISD::SREM, MVT::i64, Legal);
    218     setOperationAction(ISD::UREM, MVT::i64, Legal);
    219 
    220     // MIPS64r6 replaces conditional moves with an equivalent that removes the
    221     // need for three GPR read ports.
    222     setOperationAction(ISD::SETCC, MVT::i64, Legal);
    223     setOperationAction(ISD::SELECT, MVT::i64, Legal);
    224     setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
    225   }
    226 
    227   computeRegisterProperties(Subtarget.getRegisterInfo());
    228 }
    229 
    230 const MipsTargetLowering *
    231 llvm::createMipsSETargetLowering(const MipsTargetMachine &TM,
    232                                  const MipsSubtarget &STI) {
    233   return new MipsSETargetLowering(TM, STI);
    234 }
    235 
    236 const TargetRegisterClass *
    237 MipsSETargetLowering::getRepRegClassFor(MVT VT) const {
    238   if (VT == MVT::Untyped)
    239     return Subtarget.hasDSP() ? &Mips::ACC64DSPRegClass : &Mips::ACC64RegClass;
    240 
    241   return TargetLowering::getRepRegClassFor(VT);
    242 }
    243 
    244 // Enable MSA support for the given integer type and Register class.
    245 void MipsSETargetLowering::
    246 addMSAIntType(MVT::SimpleValueType Ty, const TargetRegisterClass *RC) {
    247   addRegisterClass(Ty, RC);
    248 
    249   // Expand all builtin opcodes.
    250   for (unsigned Opc = 0; Opc < ISD::BUILTIN_OP_END; ++Opc)
    251     setOperationAction(Opc, Ty, Expand);
    252 
    253   setOperationAction(ISD::BITCAST, Ty, Legal);
    254   setOperationAction(ISD::LOAD, Ty, Legal);
    255   setOperationAction(ISD::STORE, Ty, Legal);
    256   setOperationAction(ISD::EXTRACT_VECTOR_ELT, Ty, Custom);
    257   setOperationAction(ISD::INSERT_VECTOR_ELT, Ty, Legal);
    258   setOperationAction(ISD::BUILD_VECTOR, Ty, Custom);
    259 
    260   setOperationAction(ISD::ADD, Ty, Legal);
    261   setOperationAction(ISD::AND, Ty, Legal);
    262   setOperationAction(ISD::CTLZ, Ty, Legal);
    263   setOperationAction(ISD::CTPOP, Ty, Legal);
    264   setOperationAction(ISD::MUL, Ty, Legal);
    265   setOperationAction(ISD::OR, Ty, Legal);
    266   setOperationAction(ISD::SDIV, Ty, Legal);
    267   setOperationAction(ISD::SREM, Ty, Legal);
    268   setOperationAction(ISD::SHL, Ty, Legal);
    269   setOperationAction(ISD::SRA, Ty, Legal);
    270   setOperationAction(ISD::SRL, Ty, Legal);
    271   setOperationAction(ISD::SUB, Ty, Legal);
    272   setOperationAction(ISD::UDIV, Ty, Legal);
    273   setOperationAction(ISD::UREM, Ty, Legal);
    274   setOperationAction(ISD::VECTOR_SHUFFLE, Ty, Custom);
    275   setOperationAction(ISD::VSELECT, Ty, Legal);
    276   setOperationAction(ISD::XOR, Ty, Legal);
    277 
    278   if (Ty == MVT::v4i32 || Ty == MVT::v2i64) {
    279     setOperationAction(ISD::FP_TO_SINT, Ty, Legal);
    280     setOperationAction(ISD::FP_TO_UINT, Ty, Legal);
    281     setOperationAction(ISD::SINT_TO_FP, Ty, Legal);
    282     setOperationAction(ISD::UINT_TO_FP, Ty, Legal);
    283   }
    284 
    285   setOperationAction(ISD::SETCC, Ty, Legal);
    286   setCondCodeAction(ISD::SETNE, Ty, Expand);
    287   setCondCodeAction(ISD::SETGE, Ty, Expand);
    288   setCondCodeAction(ISD::SETGT, Ty, Expand);
    289   setCondCodeAction(ISD::SETUGE, Ty, Expand);
    290   setCondCodeAction(ISD::SETUGT, Ty, Expand);
    291 }
    292 
    293 // Enable MSA support for the given floating-point type and Register class.
    294 void MipsSETargetLowering::
    295 addMSAFloatType(MVT::SimpleValueType Ty, const TargetRegisterClass *RC) {
    296   addRegisterClass(Ty, RC);
    297 
    298   // Expand all builtin opcodes.
    299   for (unsigned Opc = 0; Opc < ISD::BUILTIN_OP_END; ++Opc)
    300     setOperationAction(Opc, Ty, Expand);
    301 
    302   setOperationAction(ISD::LOAD, Ty, Legal);
    303   setOperationAction(ISD::STORE, Ty, Legal);
    304   setOperationAction(ISD::BITCAST, Ty, Legal);
    305   setOperationAction(ISD::EXTRACT_VECTOR_ELT, Ty, Legal);
    306   setOperationAction(ISD::INSERT_VECTOR_ELT, Ty, Legal);
    307   setOperationAction(ISD::BUILD_VECTOR, Ty, Custom);
    308 
    309   if (Ty != MVT::v8f16) {
    310     setOperationAction(ISD::FABS,  Ty, Legal);
    311     setOperationAction(ISD::FADD,  Ty, Legal);
    312     setOperationAction(ISD::FDIV,  Ty, Legal);
    313     setOperationAction(ISD::FEXP2, Ty, Legal);
    314     setOperationAction(ISD::FLOG2, Ty, Legal);
    315     setOperationAction(ISD::FMA,   Ty, Legal);
    316     setOperationAction(ISD::FMUL,  Ty, Legal);
    317     setOperationAction(ISD::FRINT, Ty, Legal);
    318     setOperationAction(ISD::FSQRT, Ty, Legal);
    319     setOperationAction(ISD::FSUB,  Ty, Legal);
    320     setOperationAction(ISD::VSELECT, Ty, Legal);
    321 
    322     setOperationAction(ISD::SETCC, Ty, Legal);
    323     setCondCodeAction(ISD::SETOGE, Ty, Expand);
    324     setCondCodeAction(ISD::SETOGT, Ty, Expand);
    325     setCondCodeAction(ISD::SETUGE, Ty, Expand);
    326     setCondCodeAction(ISD::SETUGT, Ty, Expand);
    327     setCondCodeAction(ISD::SETGE,  Ty, Expand);
    328     setCondCodeAction(ISD::SETGT,  Ty, Expand);
    329   }
    330 }
    331 
    332 bool
    333 MipsSETargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
    334                                                      unsigned,
    335                                                      unsigned,
    336                                                      bool *Fast) const {
    337   MVT::SimpleValueType SVT = VT.getSimpleVT().SimpleTy;
    338 
    339   if (Subtarget.systemSupportsUnalignedAccess()) {
    340     // MIPS32r6/MIPS64r6 is required to support unaligned access. It's
    341     // implementation defined whether this is handled by hardware, software, or
    342     // a hybrid of the two but it's expected that most implementations will
    343     // handle the majority of cases in hardware.
    344     if (Fast)
    345       *Fast = true;
    346     return true;
    347   }
    348 
    349   switch (SVT) {
    350   case MVT::i64:
    351   case MVT::i32:
    352     if (Fast)
    353       *Fast = true;
    354     return true;
    355   default:
    356     return false;
    357   }
    358 }
    359 
    360 SDValue MipsSETargetLowering::LowerOperation(SDValue Op,
    361                                              SelectionDAG &DAG) const {
    362   switch(Op.getOpcode()) {
    363   case ISD::LOAD:  return lowerLOAD(Op, DAG);
    364   case ISD::STORE: return lowerSTORE(Op, DAG);
    365   case ISD::SMUL_LOHI: return lowerMulDiv(Op, MipsISD::Mult, true, true, DAG);
    366   case ISD::UMUL_LOHI: return lowerMulDiv(Op, MipsISD::Multu, true, true, DAG);
    367   case ISD::MULHS:     return lowerMulDiv(Op, MipsISD::Mult, false, true, DAG);
    368   case ISD::MULHU:     return lowerMulDiv(Op, MipsISD::Multu, false, true, DAG);
    369   case ISD::MUL:       return lowerMulDiv(Op, MipsISD::Mult, true, false, DAG);
    370   case ISD::SDIVREM:   return lowerMulDiv(Op, MipsISD::DivRem, true, true, DAG);
    371   case ISD::UDIVREM:   return lowerMulDiv(Op, MipsISD::DivRemU, true, true,
    372                                           DAG);
    373   case ISD::INTRINSIC_WO_CHAIN: return lowerINTRINSIC_WO_CHAIN(Op, DAG);
    374   case ISD::INTRINSIC_W_CHAIN:  return lowerINTRINSIC_W_CHAIN(Op, DAG);
    375   case ISD::INTRINSIC_VOID:     return lowerINTRINSIC_VOID(Op, DAG);
    376   case ISD::EXTRACT_VECTOR_ELT: return lowerEXTRACT_VECTOR_ELT(Op, DAG);
    377   case ISD::BUILD_VECTOR:       return lowerBUILD_VECTOR(Op, DAG);
    378   case ISD::VECTOR_SHUFFLE:     return lowerVECTOR_SHUFFLE(Op, DAG);
    379   }
    380 
    381   return MipsTargetLowering::LowerOperation(Op, DAG);
    382 }
    383 
    384 // selectMADD -
    385 // Transforms a subgraph in CurDAG if the following pattern is found:
    386 //  (addc multLo, Lo0), (adde multHi, Hi0),
    387 // where,
    388 //  multHi/Lo: product of multiplication
    389 //  Lo0: initial value of Lo register
    390 //  Hi0: initial value of Hi register
    391 // Return true if pattern matching was successful.
    392 static bool selectMADD(SDNode *ADDENode, SelectionDAG *CurDAG) {
    393   // ADDENode's second operand must be a flag output of an ADDC node in order
    394   // for the matching to be successful.
    395   SDNode *ADDCNode = ADDENode->getOperand(2).getNode();
    396 
    397   if (ADDCNode->getOpcode() != ISD::ADDC)
    398     return false;
    399 
    400   SDValue MultHi = ADDENode->getOperand(0);
    401   SDValue MultLo = ADDCNode->getOperand(0);
    402   SDNode *MultNode = MultHi.getNode();
    403   unsigned MultOpc = MultHi.getOpcode();
    404 
    405   // MultHi and MultLo must be generated by the same node,
    406   if (MultLo.getNode() != MultNode)
    407     return false;
    408 
    409   // and it must be a multiplication.
    410   if (MultOpc != ISD::SMUL_LOHI && MultOpc != ISD::UMUL_LOHI)
    411     return false;
    412 
    413   // MultLo amd MultHi must be the first and second output of MultNode
    414   // respectively.
    415   if (MultHi.getResNo() != 1 || MultLo.getResNo() != 0)
    416     return false;
    417 
    418   // Transform this to a MADD only if ADDENode and ADDCNode are the only users
    419   // of the values of MultNode, in which case MultNode will be removed in later
    420   // phases.
    421   // If there exist users other than ADDENode or ADDCNode, this function returns
    422   // here, which will result in MultNode being mapped to a single MULT
    423   // instruction node rather than a pair of MULT and MADD instructions being
    424   // produced.
    425   if (!MultHi.hasOneUse() || !MultLo.hasOneUse())
    426     return false;
    427 
    428   SDLoc DL(ADDENode);
    429 
    430   // Initialize accumulator.
    431   SDValue ACCIn = CurDAG->getNode(MipsISD::MTLOHI, DL, MVT::Untyped,
    432                                   ADDCNode->getOperand(1),
    433                                   ADDENode->getOperand(1));
    434 
    435   // create MipsMAdd(u) node
    436   MultOpc = MultOpc == ISD::UMUL_LOHI ? MipsISD::MAddu : MipsISD::MAdd;
    437 
    438   SDValue MAdd = CurDAG->getNode(MultOpc, DL, MVT::Untyped,
    439                                  MultNode->getOperand(0),// Factor 0
    440                                  MultNode->getOperand(1),// Factor 1
    441                                  ACCIn);
    442 
    443   // replace uses of adde and addc here
    444   if (!SDValue(ADDCNode, 0).use_empty()) {
    445     SDValue LoOut = CurDAG->getNode(MipsISD::MFLO, DL, MVT::i32, MAdd);
    446     CurDAG->ReplaceAllUsesOfValueWith(SDValue(ADDCNode, 0), LoOut);
    447   }
    448   if (!SDValue(ADDENode, 0).use_empty()) {
    449     SDValue HiOut = CurDAG->getNode(MipsISD::MFHI, DL, MVT::i32, MAdd);
    450     CurDAG->ReplaceAllUsesOfValueWith(SDValue(ADDENode, 0), HiOut);
    451   }
    452 
    453   return true;
    454 }
    455 
    456 // selectMSUB -
    457 // Transforms a subgraph in CurDAG if the following pattern is found:
    458 //  (addc Lo0, multLo), (sube Hi0, multHi),
    459 // where,
    460 //  multHi/Lo: product of multiplication
    461 //  Lo0: initial value of Lo register
    462 //  Hi0: initial value of Hi register
    463 // Return true if pattern matching was successful.
    464 static bool selectMSUB(SDNode *SUBENode, SelectionDAG *CurDAG) {
    465   // SUBENode's second operand must be a flag output of an SUBC node in order
    466   // for the matching to be successful.
    467   SDNode *SUBCNode = SUBENode->getOperand(2).getNode();
    468 
    469   if (SUBCNode->getOpcode() != ISD::SUBC)
    470     return false;
    471 
    472   SDValue MultHi = SUBENode->getOperand(1);
    473   SDValue MultLo = SUBCNode->getOperand(1);
    474   SDNode *MultNode = MultHi.getNode();
    475   unsigned MultOpc = MultHi.getOpcode();
    476 
    477   // MultHi and MultLo must be generated by the same node,
    478   if (MultLo.getNode() != MultNode)
    479     return false;
    480 
    481   // and it must be a multiplication.
    482   if (MultOpc != ISD::SMUL_LOHI && MultOpc != ISD::UMUL_LOHI)
    483     return false;
    484 
    485   // MultLo amd MultHi must be the first and second output of MultNode
    486   // respectively.
    487   if (MultHi.getResNo() != 1 || MultLo.getResNo() != 0)
    488     return false;
    489 
    490   // Transform this to a MSUB only if SUBENode and SUBCNode are the only users
    491   // of the values of MultNode, in which case MultNode will be removed in later
    492   // phases.
    493   // If there exist users other than SUBENode or SUBCNode, this function returns
    494   // here, which will result in MultNode being mapped to a single MULT
    495   // instruction node rather than a pair of MULT and MSUB instructions being
    496   // produced.
    497   if (!MultHi.hasOneUse() || !MultLo.hasOneUse())
    498     return false;
    499 
    500   SDLoc DL(SUBENode);
    501 
    502   // Initialize accumulator.
    503   SDValue ACCIn = CurDAG->getNode(MipsISD::MTLOHI, DL, MVT::Untyped,
    504                                   SUBCNode->getOperand(0),
    505                                   SUBENode->getOperand(0));
    506 
    507   // create MipsSub(u) node
    508   MultOpc = MultOpc == ISD::UMUL_LOHI ? MipsISD::MSubu : MipsISD::MSub;
    509 
    510   SDValue MSub = CurDAG->getNode(MultOpc, DL, MVT::Glue,
    511                                  MultNode->getOperand(0),// Factor 0
    512                                  MultNode->getOperand(1),// Factor 1
    513                                  ACCIn);
    514 
    515   // replace uses of sube and subc here
    516   if (!SDValue(SUBCNode, 0).use_empty()) {
    517     SDValue LoOut = CurDAG->getNode(MipsISD::MFLO, DL, MVT::i32, MSub);
    518     CurDAG->ReplaceAllUsesOfValueWith(SDValue(SUBCNode, 0), LoOut);
    519   }
    520   if (!SDValue(SUBENode, 0).use_empty()) {
    521     SDValue HiOut = CurDAG->getNode(MipsISD::MFHI, DL, MVT::i32, MSub);
    522     CurDAG->ReplaceAllUsesOfValueWith(SDValue(SUBENode, 0), HiOut);
    523   }
    524 
    525   return true;
    526 }
    527 
    528 static SDValue performADDECombine(SDNode *N, SelectionDAG &DAG,
    529                                   TargetLowering::DAGCombinerInfo &DCI,
    530                                   const MipsSubtarget &Subtarget) {
    531   if (DCI.isBeforeLegalize())
    532     return SDValue();
    533 
    534   if (Subtarget.hasMips32() && !Subtarget.hasMips32r6() &&
    535       N->getValueType(0) == MVT::i32 && selectMADD(N, &DAG))
    536     return SDValue(N, 0);
    537 
    538   return SDValue();
    539 }
    540 
    541 // Fold zero extensions into MipsISD::VEXTRACT_[SZ]EXT_ELT
    542 //
    543 // Performs the following transformations:
    544 // - Changes MipsISD::VEXTRACT_[SZ]EXT_ELT to zero extension if its
    545 //   sign/zero-extension is completely overwritten by the new one performed by
    546 //   the ISD::AND.
    547 // - Removes redundant zero extensions performed by an ISD::AND.
    548 static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG,
    549                                  TargetLowering::DAGCombinerInfo &DCI,
    550                                  const MipsSubtarget &Subtarget) {
    551   if (!Subtarget.hasMSA())
    552     return SDValue();
    553 
    554   SDValue Op0 = N->getOperand(0);
    555   SDValue Op1 = N->getOperand(1);
    556   unsigned Op0Opcode = Op0->getOpcode();
    557 
    558   // (and (MipsVExtract[SZ]Ext $a, $b, $c), imm:$d)
    559   // where $d + 1 == 2^n and n == 32
    560   // or    $d + 1 == 2^n and n <= 32 and ZExt
    561   // -> (MipsVExtractZExt $a, $b, $c)
    562   if (Op0Opcode == MipsISD::VEXTRACT_SEXT_ELT ||
    563       Op0Opcode == MipsISD::VEXTRACT_ZEXT_ELT) {
    564     ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(Op1);
    565 
    566     if (!Mask)
    567       return SDValue();
    568 
    569     int32_t Log2IfPositive = (Mask->getAPIntValue() + 1).exactLogBase2();
    570 
    571     if (Log2IfPositive <= 0)
    572       return SDValue(); // Mask+1 is not a power of 2
    573 
    574     SDValue Op0Op2 = Op0->getOperand(2);
    575     EVT ExtendTy = cast<VTSDNode>(Op0Op2)->getVT();
    576     unsigned ExtendTySize = ExtendTy.getSizeInBits();
    577     unsigned Log2 = Log2IfPositive;
    578 
    579     if ((Op0Opcode == MipsISD::VEXTRACT_ZEXT_ELT && Log2 >= ExtendTySize) ||
    580         Log2 == ExtendTySize) {
    581       SDValue Ops[] = { Op0->getOperand(0), Op0->getOperand(1), Op0Op2 };
    582       return DAG.getNode(MipsISD::VEXTRACT_ZEXT_ELT, SDLoc(Op0),
    583                          Op0->getVTList(),
    584                          makeArrayRef(Ops, Op0->getNumOperands()));
    585     }
    586   }
    587 
    588   return SDValue();
    589 }
    590 
    591 // Determine if the specified node is a constant vector splat.
    592 //
    593 // Returns true and sets Imm if:
    594 // * N is a ISD::BUILD_VECTOR representing a constant splat
    595 //
    596 // This function is quite similar to MipsSEDAGToDAGISel::selectVSplat. The
    597 // differences are that it assumes the MSA has already been checked and the
    598 // arbitrary requirement for a maximum of 32-bit integers isn't applied (and
    599 // must not be in order for binsri.d to be selectable).
    600 static bool isVSplat(SDValue N, APInt &Imm, bool IsLittleEndian) {
    601   BuildVectorSDNode *Node = dyn_cast<BuildVectorSDNode>(N.getNode());
    602 
    603   if (!Node)
    604     return false;
    605 
    606   APInt SplatValue, SplatUndef;
    607   unsigned SplatBitSize;
    608   bool HasAnyUndefs;
    609 
    610   if (!Node->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, HasAnyUndefs,
    611                              8, !IsLittleEndian))
    612     return false;
    613 
    614   Imm = SplatValue;
    615 
    616   return true;
    617 }
    618 
    619 // Test whether the given node is an all-ones build_vector.
    620 static bool isVectorAllOnes(SDValue N) {
    621   // Look through bitcasts. Endianness doesn't matter because we are looking
    622   // for an all-ones value.
    623   if (N->getOpcode() == ISD::BITCAST)
    624     N = N->getOperand(0);
    625 
    626   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N);
    627 
    628   if (!BVN)
    629     return false;
    630 
    631   APInt SplatValue, SplatUndef;
    632   unsigned SplatBitSize;
    633   bool HasAnyUndefs;
    634 
    635   // Endianness doesn't matter in this context because we are looking for
    636   // an all-ones value.
    637   if (BVN->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, HasAnyUndefs))
    638     return SplatValue.isAllOnesValue();
    639 
    640   return false;
    641 }
    642 
    643 // Test whether N is the bitwise inverse of OfNode.
    644 static bool isBitwiseInverse(SDValue N, SDValue OfNode) {
    645   if (N->getOpcode() != ISD::XOR)
    646     return false;
    647 
    648   if (isVectorAllOnes(N->getOperand(0)))
    649     return N->getOperand(1) == OfNode;
    650 
    651   if (isVectorAllOnes(N->getOperand(1)))
    652     return N->getOperand(0) == OfNode;
    653 
    654   return false;
    655 }
    656 
    657 // Perform combines where ISD::OR is the root node.
    658 //
    659 // Performs the following transformations:
    660 // - (or (and $a, $mask), (and $b, $inv_mask)) => (vselect $mask, $a, $b)
    661 //   where $inv_mask is the bitwise inverse of $mask and the 'or' has a 128-bit
    662 //   vector type.
    663 static SDValue performORCombine(SDNode *N, SelectionDAG &DAG,
    664                                 TargetLowering::DAGCombinerInfo &DCI,
    665                                 const MipsSubtarget &Subtarget) {
    666   if (!Subtarget.hasMSA())
    667     return SDValue();
    668 
    669   EVT Ty = N->getValueType(0);
    670 
    671   if (!Ty.is128BitVector())
    672     return SDValue();
    673 
    674   SDValue Op0 = N->getOperand(0);
    675   SDValue Op1 = N->getOperand(1);
    676 
    677   if (Op0->getOpcode() == ISD::AND && Op1->getOpcode() == ISD::AND) {
    678     SDValue Op0Op0 = Op0->getOperand(0);
    679     SDValue Op0Op1 = Op0->getOperand(1);
    680     SDValue Op1Op0 = Op1->getOperand(0);
    681     SDValue Op1Op1 = Op1->getOperand(1);
    682     bool IsLittleEndian = !Subtarget.isLittle();
    683 
    684     SDValue IfSet, IfClr, Cond;
    685     bool IsConstantMask = false;
    686     APInt Mask, InvMask;
    687 
    688     // If Op0Op0 is an appropriate mask, try to find it's inverse in either
    689     // Op1Op0, or Op1Op1. Keep track of the Cond, IfSet, and IfClr nodes, while
    690     // looking.
    691     // IfClr will be set if we find a valid match.
    692     if (isVSplat(Op0Op0, Mask, IsLittleEndian)) {
    693       Cond = Op0Op0;
    694       IfSet = Op0Op1;
    695 
    696       if (isVSplat(Op1Op0, InvMask, IsLittleEndian) &&
    697           Mask.getBitWidth() == InvMask.getBitWidth() && Mask == ~InvMask)
    698         IfClr = Op1Op1;
    699       else if (isVSplat(Op1Op1, InvMask, IsLittleEndian) &&
    700                Mask.getBitWidth() == InvMask.getBitWidth() && Mask == ~InvMask)
    701         IfClr = Op1Op0;
    702 
    703       IsConstantMask = true;
    704     }
    705 
    706     // If IfClr is not yet set, and Op0Op1 is an appropriate mask, try the same
    707     // thing again using this mask.
    708     // IfClr will be set if we find a valid match.
    709     if (!IfClr.getNode() && isVSplat(Op0Op1, Mask, IsLittleEndian)) {
    710       Cond = Op0Op1;
    711       IfSet = Op0Op0;
    712 
    713       if (isVSplat(Op1Op0, InvMask, IsLittleEndian) &&
    714           Mask.getBitWidth() == InvMask.getBitWidth() && Mask == ~InvMask)
    715         IfClr = Op1Op1;
    716       else if (isVSplat(Op1Op1, InvMask, IsLittleEndian) &&
    717                Mask.getBitWidth() == InvMask.getBitWidth() && Mask == ~InvMask)
    718         IfClr = Op1Op0;
    719 
    720       IsConstantMask = true;
    721     }
    722 
    723     // If IfClr is not yet set, try looking for a non-constant match.
    724     // IfClr will be set if we find a valid match amongst the eight
    725     // possibilities.
    726     if (!IfClr.getNode()) {
    727       if (isBitwiseInverse(Op0Op0, Op1Op0)) {
    728         Cond = Op1Op0;
    729         IfSet = Op1Op1;
    730         IfClr = Op0Op1;
    731       } else if (isBitwiseInverse(Op0Op1, Op1Op0)) {
    732         Cond = Op1Op0;
    733         IfSet = Op1Op1;
    734         IfClr = Op0Op0;
    735       } else if (isBitwiseInverse(Op0Op0, Op1Op1)) {
    736         Cond = Op1Op1;
    737         IfSet = Op1Op0;
    738         IfClr = Op0Op1;
    739       } else if (isBitwiseInverse(Op0Op1, Op1Op1)) {
    740         Cond = Op1Op1;
    741         IfSet = Op1Op0;
    742         IfClr = Op0Op0;
    743       } else if (isBitwiseInverse(Op1Op0, Op0Op0)) {
    744         Cond = Op0Op0;
    745         IfSet = Op0Op1;
    746         IfClr = Op1Op1;
    747       } else if (isBitwiseInverse(Op1Op1, Op0Op0)) {
    748         Cond = Op0Op0;
    749         IfSet = Op0Op1;
    750         IfClr = Op1Op0;
    751       } else if (isBitwiseInverse(Op1Op0, Op0Op1)) {
    752         Cond = Op0Op1;
    753         IfSet = Op0Op0;
    754         IfClr = Op1Op1;
    755       } else if (isBitwiseInverse(Op1Op1, Op0Op1)) {
    756         Cond = Op0Op1;
    757         IfSet = Op0Op0;
    758         IfClr = Op1Op0;
    759       }
    760     }
    761 
    762     // At this point, IfClr will be set if we have a valid match.
    763     if (!IfClr.getNode())
    764       return SDValue();
    765 
    766     assert(Cond.getNode() && IfSet.getNode());
    767 
    768     // Fold degenerate cases.
    769     if (IsConstantMask) {
    770       if (Mask.isAllOnesValue())
    771         return IfSet;
    772       else if (Mask == 0)
    773         return IfClr;
    774     }
    775 
    776     // Transform the DAG into an equivalent VSELECT.
    777     return DAG.getNode(ISD::VSELECT, SDLoc(N), Ty, Cond, IfSet, IfClr);
    778   }
    779 
    780   return SDValue();
    781 }
    782 
    783 static SDValue performSUBECombine(SDNode *N, SelectionDAG &DAG,
    784                                   TargetLowering::DAGCombinerInfo &DCI,
    785                                   const MipsSubtarget &Subtarget) {
    786   if (DCI.isBeforeLegalize())
    787     return SDValue();
    788 
    789   if (Subtarget.hasMips32() && N->getValueType(0) == MVT::i32 &&
    790       selectMSUB(N, &DAG))
    791     return SDValue(N, 0);
    792 
    793   return SDValue();
    794 }
    795 
    796 static SDValue genConstMult(SDValue X, uint64_t C, const SDLoc &DL, EVT VT,
    797                             EVT ShiftTy, SelectionDAG &DAG) {
    798   // Clear the upper (64 - VT.sizeInBits) bits.
    799   C &= ((uint64_t)-1) >> (64 - VT.getSizeInBits());
    800 
    801   // Return 0.
    802   if (C == 0)
    803     return DAG.getConstant(0, DL, VT);
    804 
    805   // Return x.
    806   if (C == 1)
    807     return X;
    808 
    809   // If c is power of 2, return (shl x, log2(c)).
    810   if (isPowerOf2_64(C))
    811     return DAG.getNode(ISD::SHL, DL, VT, X,
    812                        DAG.getConstant(Log2_64(C), DL, ShiftTy));
    813 
    814   unsigned Log2Ceil = Log2_64_Ceil(C);
    815   uint64_t Floor = 1LL << Log2_64(C);
    816   uint64_t Ceil = Log2Ceil == 64 ? 0LL : 1LL << Log2Ceil;
    817 
    818   // If |c - floor_c| <= |c - ceil_c|,
    819   // where floor_c = pow(2, floor(log2(c))) and ceil_c = pow(2, ceil(log2(c))),
    820   // return (add constMult(x, floor_c), constMult(x, c - floor_c)).
    821   if (C - Floor <= Ceil - C) {
    822     SDValue Op0 = genConstMult(X, Floor, DL, VT, ShiftTy, DAG);
    823     SDValue Op1 = genConstMult(X, C - Floor, DL, VT, ShiftTy, DAG);
    824     return DAG.getNode(ISD::ADD, DL, VT, Op0, Op1);
    825   }
    826 
    827   // If |c - floor_c| > |c - ceil_c|,
    828   // return (sub constMult(x, ceil_c), constMult(x, ceil_c - c)).
    829   SDValue Op0 = genConstMult(X, Ceil, DL, VT, ShiftTy, DAG);
    830   SDValue Op1 = genConstMult(X, Ceil - C, DL, VT, ShiftTy, DAG);
    831   return DAG.getNode(ISD::SUB, DL, VT, Op0, Op1);
    832 }
    833 
    834 static SDValue performMULCombine(SDNode *N, SelectionDAG &DAG,
    835                                  const TargetLowering::DAGCombinerInfo &DCI,
    836                                  const MipsSETargetLowering *TL) {
    837   EVT VT = N->getValueType(0);
    838 
    839   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1)))
    840     if (!VT.isVector())
    841       return genConstMult(N->getOperand(0), C->getZExtValue(), SDLoc(N), VT,
    842                           TL->getScalarShiftAmountTy(DAG.getDataLayout(), VT),
    843                           DAG);
    844 
    845   return SDValue(N, 0);
    846 }
    847 
    848 static SDValue performDSPShiftCombine(unsigned Opc, SDNode *N, EVT Ty,
    849                                       SelectionDAG &DAG,
    850                                       const MipsSubtarget &Subtarget) {
    851   // See if this is a vector splat immediate node.
    852   APInt SplatValue, SplatUndef;
    853   unsigned SplatBitSize;
    854   bool HasAnyUndefs;
    855   unsigned EltSize = Ty.getVectorElementType().getSizeInBits();
    856   BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
    857 
    858   if (!Subtarget.hasDSP())
    859     return SDValue();
    860 
    861   if (!BV ||
    862       !BV->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, HasAnyUndefs,
    863                            EltSize, !Subtarget.isLittle()) ||
    864       (SplatBitSize != EltSize) ||
    865       (SplatValue.getZExtValue() >= EltSize))
    866     return SDValue();
    867 
    868   SDLoc DL(N);
    869   return DAG.getNode(Opc, DL, Ty, N->getOperand(0),
    870                      DAG.getConstant(SplatValue.getZExtValue(), DL, MVT::i32));
    871 }
    872 
    873 static SDValue performSHLCombine(SDNode *N, SelectionDAG &DAG,
    874                                  TargetLowering::DAGCombinerInfo &DCI,
    875                                  const MipsSubtarget &Subtarget) {
    876   EVT Ty = N->getValueType(0);
    877 
    878   if ((Ty != MVT::v2i16) && (Ty != MVT::v4i8))
    879     return SDValue();
    880 
    881   return performDSPShiftCombine(MipsISD::SHLL_DSP, N, Ty, DAG, Subtarget);
    882 }
    883 
    884 // Fold sign-extensions into MipsISD::VEXTRACT_[SZ]EXT_ELT for MSA and fold
    885 // constant splats into MipsISD::SHRA_DSP for DSPr2.
    886 //
    887 // Performs the following transformations:
    888 // - Changes MipsISD::VEXTRACT_[SZ]EXT_ELT to sign extension if its
    889 //   sign/zero-extension is completely overwritten by the new one performed by
    890 //   the ISD::SRA and ISD::SHL nodes.
    891 // - Removes redundant sign extensions performed by an ISD::SRA and ISD::SHL
    892 //   sequence.
    893 //
    894 // See performDSPShiftCombine for more information about the transformation
    895 // used for DSPr2.
    896 static SDValue performSRACombine(SDNode *N, SelectionDAG &DAG,
    897                                  TargetLowering::DAGCombinerInfo &DCI,
    898                                  const MipsSubtarget &Subtarget) {
    899   EVT Ty = N->getValueType(0);
    900 
    901   if (Subtarget.hasMSA()) {
    902     SDValue Op0 = N->getOperand(0);
    903     SDValue Op1 = N->getOperand(1);
    904 
    905     // (sra (shl (MipsVExtract[SZ]Ext $a, $b, $c), imm:$d), imm:$d)
    906     // where $d + sizeof($c) == 32
    907     // or    $d + sizeof($c) <= 32 and SExt
    908     // -> (MipsVExtractSExt $a, $b, $c)
    909     if (Op0->getOpcode() == ISD::SHL && Op1 == Op0->getOperand(1)) {
    910       SDValue Op0Op0 = Op0->getOperand(0);
    911       ConstantSDNode *ShAmount = dyn_cast<ConstantSDNode>(Op1);
    912 
    913       if (!ShAmount)
    914         return SDValue();
    915 
    916       if (Op0Op0->getOpcode() != MipsISD::VEXTRACT_SEXT_ELT &&
    917           Op0Op0->getOpcode() != MipsISD::VEXTRACT_ZEXT_ELT)
    918         return SDValue();
    919 
    920       EVT ExtendTy = cast<VTSDNode>(Op0Op0->getOperand(2))->getVT();
    921       unsigned TotalBits = ShAmount->getZExtValue() + ExtendTy.getSizeInBits();
    922 
    923       if (TotalBits == 32 ||
    924           (Op0Op0->getOpcode() == MipsISD::VEXTRACT_SEXT_ELT &&
    925            TotalBits <= 32)) {
    926         SDValue Ops[] = { Op0Op0->getOperand(0), Op0Op0->getOperand(1),
    927                           Op0Op0->getOperand(2) };
    928         return DAG.getNode(MipsISD::VEXTRACT_SEXT_ELT, SDLoc(Op0Op0),
    929                            Op0Op0->getVTList(),
    930                            makeArrayRef(Ops, Op0Op0->getNumOperands()));
    931       }
    932     }
    933   }
    934 
    935   if ((Ty != MVT::v2i16) && ((Ty != MVT::v4i8) || !Subtarget.hasDSPR2()))
    936     return SDValue();
    937 
    938   return performDSPShiftCombine(MipsISD::SHRA_DSP, N, Ty, DAG, Subtarget);
    939 }
    940 
    941 
    942 static SDValue performSRLCombine(SDNode *N, SelectionDAG &DAG,
    943                                  TargetLowering::DAGCombinerInfo &DCI,
    944                                  const MipsSubtarget &Subtarget) {
    945   EVT Ty = N->getValueType(0);
    946 
    947   if (((Ty != MVT::v2i16) || !Subtarget.hasDSPR2()) && (Ty != MVT::v4i8))
    948     return SDValue();
    949 
    950   return performDSPShiftCombine(MipsISD::SHRL_DSP, N, Ty, DAG, Subtarget);
    951 }
    952 
    953 static bool isLegalDSPCondCode(EVT Ty, ISD::CondCode CC) {
    954   bool IsV216 = (Ty == MVT::v2i16);
    955 
    956   switch (CC) {
    957   case ISD::SETEQ:
    958   case ISD::SETNE:  return true;
    959   case ISD::SETLT:
    960   case ISD::SETLE:
    961   case ISD::SETGT:
    962   case ISD::SETGE:  return IsV216;
    963   case ISD::SETULT:
    964   case ISD::SETULE:
    965   case ISD::SETUGT:
    966   case ISD::SETUGE: return !IsV216;
    967   default:          return false;
    968   }
    969 }
    970 
    971 static SDValue performSETCCCombine(SDNode *N, SelectionDAG &DAG) {
    972   EVT Ty = N->getValueType(0);
    973 
    974   if ((Ty != MVT::v2i16) && (Ty != MVT::v4i8))
    975     return SDValue();
    976 
    977   if (!isLegalDSPCondCode(Ty, cast<CondCodeSDNode>(N->getOperand(2))->get()))
    978     return SDValue();
    979 
    980   return DAG.getNode(MipsISD::SETCC_DSP, SDLoc(N), Ty, N->getOperand(0),
    981                      N->getOperand(1), N->getOperand(2));
    982 }
    983 
    984 static SDValue performVSELECTCombine(SDNode *N, SelectionDAG &DAG) {
    985   EVT Ty = N->getValueType(0);
    986 
    987   if (Ty.is128BitVector() && Ty.isInteger()) {
    988     // Try the following combines:
    989     //   (vselect (setcc $a, $b, SETLT), $b, $a)) -> (vsmax $a, $b)
    990     //   (vselect (setcc $a, $b, SETLE), $b, $a)) -> (vsmax $a, $b)
    991     //   (vselect (setcc $a, $b, SETLT), $a, $b)) -> (vsmin $a, $b)
    992     //   (vselect (setcc $a, $b, SETLE), $a, $b)) -> (vsmin $a, $b)
    993     //   (vselect (setcc $a, $b, SETULT), $b, $a)) -> (vumax $a, $b)
    994     //   (vselect (setcc $a, $b, SETULE), $b, $a)) -> (vumax $a, $b)
    995     //   (vselect (setcc $a, $b, SETULT), $a, $b)) -> (vumin $a, $b)
    996     //   (vselect (setcc $a, $b, SETULE), $a, $b)) -> (vumin $a, $b)
    997     // SETGT/SETGE/SETUGT/SETUGE variants of these will show up initially but
    998     // will be expanded to equivalent SETLT/SETLE/SETULT/SETULE versions by the
    999     // legalizer.
   1000     SDValue Op0 = N->getOperand(0);
   1001 
   1002     if (Op0->getOpcode() != ISD::SETCC)
   1003       return SDValue();
   1004 
   1005     ISD::CondCode CondCode = cast<CondCodeSDNode>(Op0->getOperand(2))->get();
   1006     bool Signed;
   1007 
   1008     if (CondCode == ISD::SETLT  || CondCode == ISD::SETLE)
   1009       Signed = true;
   1010     else if (CondCode == ISD::SETULT || CondCode == ISD::SETULE)
   1011       Signed = false;
   1012     else
   1013       return SDValue();
   1014 
   1015     SDValue Op1 = N->getOperand(1);
   1016     SDValue Op2 = N->getOperand(2);
   1017     SDValue Op0Op0 = Op0->getOperand(0);
   1018     SDValue Op0Op1 = Op0->getOperand(1);
   1019 
   1020     if (Op1 == Op0Op0 && Op2 == Op0Op1)
   1021       return DAG.getNode(Signed ? MipsISD::VSMIN : MipsISD::VUMIN, SDLoc(N),
   1022                          Ty, Op1, Op2);
   1023     else if (Op1 == Op0Op1 && Op2 == Op0Op0)
   1024       return DAG.getNode(Signed ? MipsISD::VSMAX : MipsISD::VUMAX, SDLoc(N),
   1025                          Ty, Op1, Op2);
   1026   } else if ((Ty == MVT::v2i16) || (Ty == MVT::v4i8)) {
   1027     SDValue SetCC = N->getOperand(0);
   1028 
   1029     if (SetCC.getOpcode() != MipsISD::SETCC_DSP)
   1030       return SDValue();
   1031 
   1032     return DAG.getNode(MipsISD::SELECT_CC_DSP, SDLoc(N), Ty,
   1033                        SetCC.getOperand(0), SetCC.getOperand(1),
   1034                        N->getOperand(1), N->getOperand(2), SetCC.getOperand(2));
   1035   }
   1036 
   1037   return SDValue();
   1038 }
   1039 
   1040 static SDValue performXORCombine(SDNode *N, SelectionDAG &DAG,
   1041                                  const MipsSubtarget &Subtarget) {
   1042   EVT Ty = N->getValueType(0);
   1043 
   1044   if (Subtarget.hasMSA() && Ty.is128BitVector() && Ty.isInteger()) {
   1045     // Try the following combines:
   1046     //   (xor (or $a, $b), (build_vector allones))
   1047     //   (xor (or $a, $b), (bitcast (build_vector allones)))
   1048     SDValue Op0 = N->getOperand(0);
   1049     SDValue Op1 = N->getOperand(1);
   1050     SDValue NotOp;
   1051 
   1052     if (ISD::isBuildVectorAllOnes(Op0.getNode()))
   1053       NotOp = Op1;
   1054     else if (ISD::isBuildVectorAllOnes(Op1.getNode()))
   1055       NotOp = Op0;
   1056     else
   1057       return SDValue();
   1058 
   1059     if (NotOp->getOpcode() == ISD::OR)
   1060       return DAG.getNode(MipsISD::VNOR, SDLoc(N), Ty, NotOp->getOperand(0),
   1061                          NotOp->getOperand(1));
   1062   }
   1063 
   1064   return SDValue();
   1065 }
   1066 
   1067 SDValue
   1068 MipsSETargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const {
   1069   SelectionDAG &DAG = DCI.DAG;
   1070   SDValue Val;
   1071 
   1072   switch (N->getOpcode()) {
   1073   case ISD::ADDE:
   1074     return performADDECombine(N, DAG, DCI, Subtarget);
   1075   case ISD::AND:
   1076     Val = performANDCombine(N, DAG, DCI, Subtarget);
   1077     break;
   1078   case ISD::OR:
   1079     Val = performORCombine(N, DAG, DCI, Subtarget);
   1080     break;
   1081   case ISD::SUBE:
   1082     return performSUBECombine(N, DAG, DCI, Subtarget);
   1083   case ISD::MUL:
   1084     return performMULCombine(N, DAG, DCI, this);
   1085   case ISD::SHL:
   1086     return performSHLCombine(N, DAG, DCI, Subtarget);
   1087   case ISD::SRA:
   1088     return performSRACombine(N, DAG, DCI, Subtarget);
   1089   case ISD::SRL:
   1090     return performSRLCombine(N, DAG, DCI, Subtarget);
   1091   case ISD::VSELECT:
   1092     return performVSELECTCombine(N, DAG);
   1093   case ISD::XOR:
   1094     Val = performXORCombine(N, DAG, Subtarget);
   1095     break;
   1096   case ISD::SETCC:
   1097     Val = performSETCCCombine(N, DAG);
   1098     break;
   1099   }
   1100 
   1101   if (Val.getNode()) {
   1102     DEBUG(dbgs() << "\nMipsSE DAG Combine:\n";
   1103           N->printrWithDepth(dbgs(), &DAG);
   1104           dbgs() << "\n=> \n";
   1105           Val.getNode()->printrWithDepth(dbgs(), &DAG);
   1106           dbgs() << "\n");
   1107     return Val;
   1108   }
   1109 
   1110   return MipsTargetLowering::PerformDAGCombine(N, DCI);
   1111 }
   1112 
   1113 MachineBasicBlock *
   1114 MipsSETargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
   1115                                                   MachineBasicBlock *BB) const {
   1116   switch (MI.getOpcode()) {
   1117   default:
   1118     return MipsTargetLowering::EmitInstrWithCustomInserter(MI, BB);
   1119   case Mips::BPOSGE32_PSEUDO:
   1120     return emitBPOSGE32(MI, BB);
   1121   case Mips::SNZ_B_PSEUDO:
   1122     return emitMSACBranchPseudo(MI, BB, Mips::BNZ_B);
   1123   case Mips::SNZ_H_PSEUDO:
   1124     return emitMSACBranchPseudo(MI, BB, Mips::BNZ_H);
   1125   case Mips::SNZ_W_PSEUDO:
   1126     return emitMSACBranchPseudo(MI, BB, Mips::BNZ_W);
   1127   case Mips::SNZ_D_PSEUDO:
   1128     return emitMSACBranchPseudo(MI, BB, Mips::BNZ_D);
   1129   case Mips::SNZ_V_PSEUDO:
   1130     return emitMSACBranchPseudo(MI, BB, Mips::BNZ_V);
   1131   case Mips::SZ_B_PSEUDO:
   1132     return emitMSACBranchPseudo(MI, BB, Mips::BZ_B);
   1133   case Mips::SZ_H_PSEUDO:
   1134     return emitMSACBranchPseudo(MI, BB, Mips::BZ_H);
   1135   case Mips::SZ_W_PSEUDO:
   1136     return emitMSACBranchPseudo(MI, BB, Mips::BZ_W);
   1137   case Mips::SZ_D_PSEUDO:
   1138     return emitMSACBranchPseudo(MI, BB, Mips::BZ_D);
   1139   case Mips::SZ_V_PSEUDO:
   1140     return emitMSACBranchPseudo(MI, BB, Mips::BZ_V);
   1141   case Mips::COPY_FW_PSEUDO:
   1142     return emitCOPY_FW(MI, BB);
   1143   case Mips::COPY_FD_PSEUDO:
   1144     return emitCOPY_FD(MI, BB);
   1145   case Mips::INSERT_FW_PSEUDO:
   1146     return emitINSERT_FW(MI, BB);
   1147   case Mips::INSERT_FD_PSEUDO:
   1148     return emitINSERT_FD(MI, BB);
   1149   case Mips::INSERT_B_VIDX_PSEUDO:
   1150   case Mips::INSERT_B_VIDX64_PSEUDO:
   1151     return emitINSERT_DF_VIDX(MI, BB, 1, false);
   1152   case Mips::INSERT_H_VIDX_PSEUDO:
   1153   case Mips::INSERT_H_VIDX64_PSEUDO:
   1154     return emitINSERT_DF_VIDX(MI, BB, 2, false);
   1155   case Mips::INSERT_W_VIDX_PSEUDO:
   1156   case Mips::INSERT_W_VIDX64_PSEUDO:
   1157     return emitINSERT_DF_VIDX(MI, BB, 4, false);
   1158   case Mips::INSERT_D_VIDX_PSEUDO:
   1159   case Mips::INSERT_D_VIDX64_PSEUDO:
   1160     return emitINSERT_DF_VIDX(MI, BB, 8, false);
   1161   case Mips::INSERT_FW_VIDX_PSEUDO:
   1162   case Mips::INSERT_FW_VIDX64_PSEUDO:
   1163     return emitINSERT_DF_VIDX(MI, BB, 4, true);
   1164   case Mips::INSERT_FD_VIDX_PSEUDO:
   1165   case Mips::INSERT_FD_VIDX64_PSEUDO:
   1166     return emitINSERT_DF_VIDX(MI, BB, 8, true);
   1167   case Mips::FILL_FW_PSEUDO:
   1168     return emitFILL_FW(MI, BB);
   1169   case Mips::FILL_FD_PSEUDO:
   1170     return emitFILL_FD(MI, BB);
   1171   case Mips::FEXP2_W_1_PSEUDO:
   1172     return emitFEXP2_W_1(MI, BB);
   1173   case Mips::FEXP2_D_1_PSEUDO:
   1174     return emitFEXP2_D_1(MI, BB);
   1175   }
   1176 }
   1177 
   1178 bool MipsSETargetLowering::isEligibleForTailCallOptimization(
   1179     const CCState &CCInfo, unsigned NextStackOffset,
   1180     const MipsFunctionInfo &FI) const {
   1181   if (!EnableMipsTailCalls)
   1182     return false;
   1183 
   1184   // Exception has to be cleared with eret.
   1185   if (FI.isISR())
   1186     return false;
   1187 
   1188   // Return false if either the callee or caller has a byval argument.
   1189   if (CCInfo.getInRegsParamsCount() > 0 || FI.hasByvalArg())
   1190     return false;
   1191 
   1192   // Return true if the callee's argument area is no larger than the
   1193   // caller's.
   1194   return NextStackOffset <= FI.getIncomingArgSize();
   1195 }
   1196 
   1197 void MipsSETargetLowering::
   1198 getOpndList(SmallVectorImpl<SDValue> &Ops,
   1199             std::deque< std::pair<unsigned, SDValue> > &RegsToPass,
   1200             bool IsPICCall, bool GlobalOrExternal, bool InternalLinkage,
   1201             bool IsCallReloc, CallLoweringInfo &CLI, SDValue Callee,
   1202             SDValue Chain) const {
   1203   Ops.push_back(Callee);
   1204   MipsTargetLowering::getOpndList(Ops, RegsToPass, IsPICCall, GlobalOrExternal,
   1205                                   InternalLinkage, IsCallReloc, CLI, Callee,
   1206                                   Chain);
   1207 }
   1208 
   1209 SDValue MipsSETargetLowering::lowerLOAD(SDValue Op, SelectionDAG &DAG) const {
   1210   LoadSDNode &Nd = *cast<LoadSDNode>(Op);
   1211 
   1212   if (Nd.getMemoryVT() != MVT::f64 || !NoDPLoadStore)
   1213     return MipsTargetLowering::lowerLOAD(Op, DAG);
   1214 
   1215   // Replace a double precision load with two i32 loads and a buildpair64.
   1216   SDLoc DL(Op);
   1217   SDValue Ptr = Nd.getBasePtr(), Chain = Nd.getChain();
   1218   EVT PtrVT = Ptr.getValueType();
   1219 
   1220   // i32 load from lower address.
   1221   SDValue Lo = DAG.getLoad(MVT::i32, DL, Chain, Ptr,
   1222                            MachinePointerInfo(), Nd.isVolatile(),
   1223                            Nd.isNonTemporal(), Nd.isInvariant(),
   1224                            Nd.getAlignment());
   1225 
   1226   // i32 load from higher address.
   1227   Ptr = DAG.getNode(ISD::ADD, DL, PtrVT, Ptr, DAG.getConstant(4, DL, PtrVT));
   1228   SDValue Hi = DAG.getLoad(MVT::i32, DL, Lo.getValue(1), Ptr,
   1229                            MachinePointerInfo(), Nd.isVolatile(),
   1230                            Nd.isNonTemporal(), Nd.isInvariant(),
   1231                            std::min(Nd.getAlignment(), 4U));
   1232 
   1233   if (!Subtarget.isLittle())
   1234     std::swap(Lo, Hi);
   1235 
   1236   SDValue BP = DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, Lo, Hi);
   1237   SDValue Ops[2] = {BP, Hi.getValue(1)};
   1238   return DAG.getMergeValues(Ops, DL);
   1239 }
   1240 
   1241 SDValue MipsSETargetLowering::lowerSTORE(SDValue Op, SelectionDAG &DAG) const {
   1242   StoreSDNode &Nd = *cast<StoreSDNode>(Op);
   1243 
   1244   if (Nd.getMemoryVT() != MVT::f64 || !NoDPLoadStore)
   1245     return MipsTargetLowering::lowerSTORE(Op, DAG);
   1246 
   1247   // Replace a double precision store with two extractelement64s and i32 stores.
   1248   SDLoc DL(Op);
   1249   SDValue Val = Nd.getValue(), Ptr = Nd.getBasePtr(), Chain = Nd.getChain();
   1250   EVT PtrVT = Ptr.getValueType();
   1251   SDValue Lo = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
   1252                            Val, DAG.getConstant(0, DL, MVT::i32));
   1253   SDValue Hi = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
   1254                            Val, DAG.getConstant(1, DL, MVT::i32));
   1255 
   1256   if (!Subtarget.isLittle())
   1257     std::swap(Lo, Hi);
   1258 
   1259   // i32 store to lower address.
   1260   Chain = DAG.getStore(Chain, DL, Lo, Ptr, MachinePointerInfo(),
   1261                        Nd.isVolatile(), Nd.isNonTemporal(), Nd.getAlignment(),
   1262                        Nd.getAAInfo());
   1263 
   1264   // i32 store to higher address.
   1265   Ptr = DAG.getNode(ISD::ADD, DL, PtrVT, Ptr, DAG.getConstant(4, DL, PtrVT));
   1266   return DAG.getStore(Chain, DL, Hi, Ptr, MachinePointerInfo(),
   1267                       Nd.isVolatile(), Nd.isNonTemporal(),
   1268                       std::min(Nd.getAlignment(), 4U), Nd.getAAInfo());
   1269 }
   1270 
   1271 SDValue MipsSETargetLowering::lowerMulDiv(SDValue Op, unsigned NewOpc,
   1272                                           bool HasLo, bool HasHi,
   1273                                           SelectionDAG &DAG) const {
   1274   // MIPS32r6/MIPS64r6 removed accumulator based multiplies.
   1275   assert(!Subtarget.hasMips32r6());
   1276 
   1277   EVT Ty = Op.getOperand(0).getValueType();
   1278   SDLoc DL(Op);
   1279   SDValue Mult = DAG.getNode(NewOpc, DL, MVT::Untyped,
   1280                              Op.getOperand(0), Op.getOperand(1));
   1281   SDValue Lo, Hi;
   1282 
   1283   if (HasLo)
   1284     Lo = DAG.getNode(MipsISD::MFLO, DL, Ty, Mult);
   1285   if (HasHi)
   1286     Hi = DAG.getNode(MipsISD::MFHI, DL, Ty, Mult);
   1287 
   1288   if (!HasLo || !HasHi)
   1289     return HasLo ? Lo : Hi;
   1290 
   1291   SDValue Vals[] = { Lo, Hi };
   1292   return DAG.getMergeValues(Vals, DL);
   1293 }
   1294 
   1295 static SDValue initAccumulator(SDValue In, const SDLoc &DL, SelectionDAG &DAG) {
   1296   SDValue InLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, In,
   1297                              DAG.getConstant(0, DL, MVT::i32));
   1298   SDValue InHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, In,
   1299                              DAG.getConstant(1, DL, MVT::i32));
   1300   return DAG.getNode(MipsISD::MTLOHI, DL, MVT::Untyped, InLo, InHi);
   1301 }
   1302 
   1303 static SDValue extractLOHI(SDValue Op, const SDLoc &DL, SelectionDAG &DAG) {
   1304   SDValue Lo = DAG.getNode(MipsISD::MFLO, DL, MVT::i32, Op);
   1305   SDValue Hi = DAG.getNode(MipsISD::MFHI, DL, MVT::i32, Op);
   1306   return DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Lo, Hi);
   1307 }
   1308 
   1309 // This function expands mips intrinsic nodes which have 64-bit input operands
   1310 // or output values.
   1311 //
   1312 // out64 = intrinsic-node in64
   1313 // =>
   1314 // lo = copy (extract-element (in64, 0))
   1315 // hi = copy (extract-element (in64, 1))
   1316 // mips-specific-node
   1317 // v0 = copy lo
   1318 // v1 = copy hi
   1319 // out64 = merge-values (v0, v1)
   1320 //
   1321 static SDValue lowerDSPIntr(SDValue Op, SelectionDAG &DAG, unsigned Opc) {
   1322   SDLoc DL(Op);
   1323   bool HasChainIn = Op->getOperand(0).getValueType() == MVT::Other;
   1324   SmallVector<SDValue, 3> Ops;
   1325   unsigned OpNo = 0;
   1326 
   1327   // See if Op has a chain input.
   1328   if (HasChainIn)
   1329     Ops.push_back(Op->getOperand(OpNo++));
   1330 
   1331   // The next operand is the intrinsic opcode.
   1332   assert(Op->getOperand(OpNo).getOpcode() == ISD::TargetConstant);
   1333 
   1334   // See if the next operand has type i64.
   1335   SDValue Opnd = Op->getOperand(++OpNo), In64;
   1336 
   1337   if (Opnd.getValueType() == MVT::i64)
   1338     In64 = initAccumulator(Opnd, DL, DAG);
   1339   else
   1340     Ops.push_back(Opnd);
   1341 
   1342   // Push the remaining operands.
   1343   for (++OpNo ; OpNo < Op->getNumOperands(); ++OpNo)
   1344     Ops.push_back(Op->getOperand(OpNo));
   1345 
   1346   // Add In64 to the end of the list.
   1347   if (In64.getNode())
   1348     Ops.push_back(In64);
   1349 
   1350   // Scan output.
   1351   SmallVector<EVT, 2> ResTys;
   1352 
   1353   for (SDNode::value_iterator I = Op->value_begin(), E = Op->value_end();
   1354        I != E; ++I)
   1355     ResTys.push_back((*I == MVT::i64) ? MVT::Untyped : *I);
   1356 
   1357   // Create node.
   1358   SDValue Val = DAG.getNode(Opc, DL, ResTys, Ops);
   1359   SDValue Out = (ResTys[0] == MVT::Untyped) ? extractLOHI(Val, DL, DAG) : Val;
   1360 
   1361   if (!HasChainIn)
   1362     return Out;
   1363 
   1364   assert(Val->getValueType(1) == MVT::Other);
   1365   SDValue Vals[] = { Out, SDValue(Val.getNode(), 1) };
   1366   return DAG.getMergeValues(Vals, DL);
   1367 }
   1368 
   1369 // Lower an MSA copy intrinsic into the specified SelectionDAG node
   1370 static SDValue lowerMSACopyIntr(SDValue Op, SelectionDAG &DAG, unsigned Opc) {
   1371   SDLoc DL(Op);
   1372   SDValue Vec = Op->getOperand(1);
   1373   SDValue Idx = Op->getOperand(2);
   1374   EVT ResTy = Op->getValueType(0);
   1375   EVT EltTy = Vec->getValueType(0).getVectorElementType();
   1376 
   1377   SDValue Result = DAG.getNode(Opc, DL, ResTy, Vec, Idx,
   1378                                DAG.getValueType(EltTy));
   1379 
   1380   return Result;
   1381 }
   1382 
   1383 static SDValue lowerMSASplatZExt(SDValue Op, unsigned OpNr, SelectionDAG &DAG) {
   1384   EVT ResVecTy = Op->getValueType(0);
   1385   EVT ViaVecTy = ResVecTy;
   1386   SDLoc DL(Op);
   1387 
   1388   // When ResVecTy == MVT::v2i64, LaneA is the upper 32 bits of the lane and
   1389   // LaneB is the lower 32-bits. Otherwise LaneA and LaneB are alternating
   1390   // lanes.
   1391   SDValue LaneA;
   1392   SDValue LaneB = Op->getOperand(2);
   1393 
   1394   if (ResVecTy == MVT::v2i64) {
   1395     LaneA = DAG.getConstant(0, DL, MVT::i32);
   1396     ViaVecTy = MVT::v4i32;
   1397   } else
   1398     LaneA = LaneB;
   1399 
   1400   SDValue Ops[16] = { LaneA, LaneB, LaneA, LaneB, LaneA, LaneB, LaneA, LaneB,
   1401                       LaneA, LaneB, LaneA, LaneB, LaneA, LaneB, LaneA, LaneB };
   1402 
   1403   SDValue Result = DAG.getBuildVector(
   1404       ViaVecTy, DL, makeArrayRef(Ops, ViaVecTy.getVectorNumElements()));
   1405 
   1406   if (ViaVecTy != ResVecTy)
   1407     Result = DAG.getNode(ISD::BITCAST, DL, ResVecTy, Result);
   1408 
   1409   return Result;
   1410 }
   1411 
   1412 static SDValue lowerMSASplatImm(SDValue Op, unsigned ImmOp, SelectionDAG &DAG) {
   1413   return DAG.getConstant(Op->getConstantOperandVal(ImmOp), SDLoc(Op),
   1414                          Op->getValueType(0));
   1415 }
   1416 
   1417 static SDValue getBuildVectorSplat(EVT VecTy, SDValue SplatValue,
   1418                                    bool BigEndian, SelectionDAG &DAG) {
   1419   EVT ViaVecTy = VecTy;
   1420   SDValue SplatValueA = SplatValue;
   1421   SDValue SplatValueB = SplatValue;
   1422   SDLoc DL(SplatValue);
   1423 
   1424   if (VecTy == MVT::v2i64) {
   1425     // v2i64 BUILD_VECTOR must be performed via v4i32 so split into i32's.
   1426     ViaVecTy = MVT::v4i32;
   1427 
   1428     SplatValueA = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, SplatValue);
   1429     SplatValueB = DAG.getNode(ISD::SRL, DL, MVT::i64, SplatValue,
   1430                               DAG.getConstant(32, DL, MVT::i32));
   1431     SplatValueB = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, SplatValueB);
   1432   }
   1433 
   1434   // We currently hold the parts in little endian order. Swap them if
   1435   // necessary.
   1436   if (BigEndian)
   1437     std::swap(SplatValueA, SplatValueB);
   1438 
   1439   SDValue Ops[16] = { SplatValueA, SplatValueB, SplatValueA, SplatValueB,
   1440                       SplatValueA, SplatValueB, SplatValueA, SplatValueB,
   1441                       SplatValueA, SplatValueB, SplatValueA, SplatValueB,
   1442                       SplatValueA, SplatValueB, SplatValueA, SplatValueB };
   1443 
   1444   SDValue Result = DAG.getBuildVector(
   1445       ViaVecTy, DL, makeArrayRef(Ops, ViaVecTy.getVectorNumElements()));
   1446 
   1447   if (VecTy != ViaVecTy)
   1448     Result = DAG.getNode(ISD::BITCAST, DL, VecTy, Result);
   1449 
   1450   return Result;
   1451 }
   1452 
   1453 static SDValue lowerMSABinaryBitImmIntr(SDValue Op, SelectionDAG &DAG,
   1454                                         unsigned Opc, SDValue Imm,
   1455                                         bool BigEndian) {
   1456   EVT VecTy = Op->getValueType(0);
   1457   SDValue Exp2Imm;
   1458   SDLoc DL(Op);
   1459 
   1460   // The DAG Combiner can't constant fold bitcasted vectors yet so we must do it
   1461   // here for now.
   1462   if (VecTy == MVT::v2i64) {
   1463     if (ConstantSDNode *CImm = dyn_cast<ConstantSDNode>(Imm)) {
   1464       APInt BitImm = APInt(64, 1) << CImm->getAPIntValue();
   1465 
   1466       SDValue BitImmHiOp = DAG.getConstant(BitImm.lshr(32).trunc(32), DL,
   1467                                            MVT::i32);
   1468       SDValue BitImmLoOp = DAG.getConstant(BitImm.trunc(32), DL, MVT::i32);
   1469 
   1470       if (BigEndian)
   1471         std::swap(BitImmLoOp, BitImmHiOp);
   1472 
   1473       Exp2Imm = DAG.getNode(
   1474           ISD::BITCAST, DL, MVT::v2i64,
   1475           DAG.getBuildVector(MVT::v4i32, DL,
   1476                              {BitImmLoOp, BitImmHiOp, BitImmLoOp, BitImmHiOp}));
   1477     }
   1478   }
   1479 
   1480   if (!Exp2Imm.getNode()) {
   1481     // We couldnt constant fold, do a vector shift instead
   1482 
   1483     // Extend i32 to i64 if necessary. Sign or zero extend doesn't matter since
   1484     // only values 0-63 are valid.
   1485     if (VecTy == MVT::v2i64)
   1486       Imm = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, Imm);
   1487 
   1488     Exp2Imm = getBuildVectorSplat(VecTy, Imm, BigEndian, DAG);
   1489 
   1490     Exp2Imm = DAG.getNode(ISD::SHL, DL, VecTy, DAG.getConstant(1, DL, VecTy),
   1491                           Exp2Imm);
   1492   }
   1493 
   1494   return DAG.getNode(Opc, DL, VecTy, Op->getOperand(1), Exp2Imm);
   1495 }
   1496 
   1497 static SDValue lowerMSABitClear(SDValue Op, SelectionDAG &DAG) {
   1498   EVT ResTy = Op->getValueType(0);
   1499   SDLoc DL(Op);
   1500   SDValue One = DAG.getConstant(1, DL, ResTy);
   1501   SDValue Bit = DAG.getNode(ISD::SHL, DL, ResTy, One, Op->getOperand(2));
   1502 
   1503   return DAG.getNode(ISD::AND, DL, ResTy, Op->getOperand(1),
   1504                      DAG.getNOT(DL, Bit, ResTy));
   1505 }
   1506 
   1507 static SDValue lowerMSABitClearImm(SDValue Op, SelectionDAG &DAG) {
   1508   SDLoc DL(Op);
   1509   EVT ResTy = Op->getValueType(0);
   1510   APInt BitImm = APInt(ResTy.getVectorElementType().getSizeInBits(), 1)
   1511                  << cast<ConstantSDNode>(Op->getOperand(2))->getAPIntValue();
   1512   SDValue BitMask = DAG.getConstant(~BitImm, DL, ResTy);
   1513 
   1514   return DAG.getNode(ISD::AND, DL, ResTy, Op->getOperand(1), BitMask);
   1515 }
   1516 
   1517 SDValue MipsSETargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op,
   1518                                                       SelectionDAG &DAG) const {
   1519   SDLoc DL(Op);
   1520 
   1521   switch (cast<ConstantSDNode>(Op->getOperand(0))->getZExtValue()) {
   1522   default:
   1523     return SDValue();
   1524   case Intrinsic::mips_shilo:
   1525     return lowerDSPIntr(Op, DAG, MipsISD::SHILO);
   1526   case Intrinsic::mips_dpau_h_qbl:
   1527     return lowerDSPIntr(Op, DAG, MipsISD::DPAU_H_QBL);
   1528   case Intrinsic::mips_dpau_h_qbr:
   1529     return lowerDSPIntr(Op, DAG, MipsISD::DPAU_H_QBR);
   1530   case Intrinsic::mips_dpsu_h_qbl:
   1531     return lowerDSPIntr(Op, DAG, MipsISD::DPSU_H_QBL);
   1532   case Intrinsic::mips_dpsu_h_qbr:
   1533     return lowerDSPIntr(Op, DAG, MipsISD::DPSU_H_QBR);
   1534   case Intrinsic::mips_dpa_w_ph:
   1535     return lowerDSPIntr(Op, DAG, MipsISD::DPA_W_PH);
   1536   case Intrinsic::mips_dps_w_ph:
   1537     return lowerDSPIntr(Op, DAG, MipsISD::DPS_W_PH);
   1538   case Intrinsic::mips_dpax_w_ph:
   1539     return lowerDSPIntr(Op, DAG, MipsISD::DPAX_W_PH);
   1540   case Intrinsic::mips_dpsx_w_ph:
   1541     return lowerDSPIntr(Op, DAG, MipsISD::DPSX_W_PH);
   1542   case Intrinsic::mips_mulsa_w_ph:
   1543     return lowerDSPIntr(Op, DAG, MipsISD::MULSA_W_PH);
   1544   case Intrinsic::mips_mult:
   1545     return lowerDSPIntr(Op, DAG, MipsISD::Mult);
   1546   case Intrinsic::mips_multu:
   1547     return lowerDSPIntr(Op, DAG, MipsISD::Multu);
   1548   case Intrinsic::mips_madd:
   1549     return lowerDSPIntr(Op, DAG, MipsISD::MAdd);
   1550   case Intrinsic::mips_maddu:
   1551     return lowerDSPIntr(Op, DAG, MipsISD::MAddu);
   1552   case Intrinsic::mips_msub:
   1553     return lowerDSPIntr(Op, DAG, MipsISD::MSub);
   1554   case Intrinsic::mips_msubu:
   1555     return lowerDSPIntr(Op, DAG, MipsISD::MSubu);
   1556   case Intrinsic::mips_addv_b:
   1557   case Intrinsic::mips_addv_h:
   1558   case Intrinsic::mips_addv_w:
   1559   case Intrinsic::mips_addv_d:
   1560     return DAG.getNode(ISD::ADD, DL, Op->getValueType(0), Op->getOperand(1),
   1561                        Op->getOperand(2));
   1562   case Intrinsic::mips_addvi_b:
   1563   case Intrinsic::mips_addvi_h:
   1564   case Intrinsic::mips_addvi_w:
   1565   case Intrinsic::mips_addvi_d:
   1566     return DAG.getNode(ISD::ADD, DL, Op->getValueType(0), Op->getOperand(1),
   1567                        lowerMSASplatImm(Op, 2, DAG));
   1568   case Intrinsic::mips_and_v:
   1569     return DAG.getNode(ISD::AND, DL, Op->getValueType(0), Op->getOperand(1),
   1570                        Op->getOperand(2));
   1571   case Intrinsic::mips_andi_b:
   1572     return DAG.getNode(ISD::AND, DL, Op->getValueType(0), Op->getOperand(1),
   1573                        lowerMSASplatImm(Op, 2, DAG));
   1574   case Intrinsic::mips_bclr_b:
   1575   case Intrinsic::mips_bclr_h:
   1576   case Intrinsic::mips_bclr_w:
   1577   case Intrinsic::mips_bclr_d:
   1578     return lowerMSABitClear(Op, DAG);
   1579   case Intrinsic::mips_bclri_b:
   1580   case Intrinsic::mips_bclri_h:
   1581   case Intrinsic::mips_bclri_w:
   1582   case Intrinsic::mips_bclri_d:
   1583     return lowerMSABitClearImm(Op, DAG);
   1584   case Intrinsic::mips_binsli_b:
   1585   case Intrinsic::mips_binsli_h:
   1586   case Intrinsic::mips_binsli_w:
   1587   case Intrinsic::mips_binsli_d: {
   1588     // binsli_x(IfClear, IfSet, nbits) -> (vselect LBitsMask, IfSet, IfClear)
   1589     EVT VecTy = Op->getValueType(0);
   1590     EVT EltTy = VecTy.getVectorElementType();
   1591     APInt Mask = APInt::getHighBitsSet(EltTy.getSizeInBits(),
   1592                                        Op->getConstantOperandVal(3));
   1593     return DAG.getNode(ISD::VSELECT, DL, VecTy,
   1594                        DAG.getConstant(Mask, DL, VecTy, true),
   1595                        Op->getOperand(2), Op->getOperand(1));
   1596   }
   1597   case Intrinsic::mips_binsri_b:
   1598   case Intrinsic::mips_binsri_h:
   1599   case Intrinsic::mips_binsri_w:
   1600   case Intrinsic::mips_binsri_d: {
   1601     // binsri_x(IfClear, IfSet, nbits) -> (vselect RBitsMask, IfSet, IfClear)
   1602     EVT VecTy = Op->getValueType(0);
   1603     EVT EltTy = VecTy.getVectorElementType();
   1604     APInt Mask = APInt::getLowBitsSet(EltTy.getSizeInBits(),
   1605                                       Op->getConstantOperandVal(3));
   1606     return DAG.getNode(ISD::VSELECT, DL, VecTy,
   1607                        DAG.getConstant(Mask, DL, VecTy, true),
   1608                        Op->getOperand(2), Op->getOperand(1));
   1609   }
   1610   case Intrinsic::mips_bmnz_v:
   1611     return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0), Op->getOperand(3),
   1612                        Op->getOperand(2), Op->getOperand(1));
   1613   case Intrinsic::mips_bmnzi_b:
   1614     return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0),
   1615                        lowerMSASplatImm(Op, 3, DAG), Op->getOperand(2),
   1616                        Op->getOperand(1));
   1617   case Intrinsic::mips_bmz_v:
   1618     return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0), Op->getOperand(3),
   1619                        Op->getOperand(1), Op->getOperand(2));
   1620   case Intrinsic::mips_bmzi_b:
   1621     return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0),
   1622                        lowerMSASplatImm(Op, 3, DAG), Op->getOperand(1),
   1623                        Op->getOperand(2));
   1624   case Intrinsic::mips_bneg_b:
   1625   case Intrinsic::mips_bneg_h:
   1626   case Intrinsic::mips_bneg_w:
   1627   case Intrinsic::mips_bneg_d: {
   1628     EVT VecTy = Op->getValueType(0);
   1629     SDValue One = DAG.getConstant(1, DL, VecTy);
   1630 
   1631     return DAG.getNode(ISD::XOR, DL, VecTy, Op->getOperand(1),
   1632                        DAG.getNode(ISD::SHL, DL, VecTy, One,
   1633                                    Op->getOperand(2)));
   1634   }
   1635   case Intrinsic::mips_bnegi_b:
   1636   case Intrinsic::mips_bnegi_h:
   1637   case Intrinsic::mips_bnegi_w:
   1638   case Intrinsic::mips_bnegi_d:
   1639     return lowerMSABinaryBitImmIntr(Op, DAG, ISD::XOR, Op->getOperand(2),
   1640                                     !Subtarget.isLittle());
   1641   case Intrinsic::mips_bnz_b:
   1642   case Intrinsic::mips_bnz_h:
   1643   case Intrinsic::mips_bnz_w:
   1644   case Intrinsic::mips_bnz_d:
   1645     return DAG.getNode(MipsISD::VALL_NONZERO, DL, Op->getValueType(0),
   1646                        Op->getOperand(1));
   1647   case Intrinsic::mips_bnz_v:
   1648     return DAG.getNode(MipsISD::VANY_NONZERO, DL, Op->getValueType(0),
   1649                        Op->getOperand(1));
   1650   case Intrinsic::mips_bsel_v:
   1651     // bsel_v(Mask, IfClear, IfSet) -> (vselect Mask, IfSet, IfClear)
   1652     return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0),
   1653                        Op->getOperand(1), Op->getOperand(3),
   1654                        Op->getOperand(2));
   1655   case Intrinsic::mips_bseli_b:
   1656     // bseli_v(Mask, IfClear, IfSet) -> (vselect Mask, IfSet, IfClear)
   1657     return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0),
   1658                        Op->getOperand(1), lowerMSASplatImm(Op, 3, DAG),
   1659                        Op->getOperand(2));
   1660   case Intrinsic::mips_bset_b:
   1661   case Intrinsic::mips_bset_h:
   1662   case Intrinsic::mips_bset_w:
   1663   case Intrinsic::mips_bset_d: {
   1664     EVT VecTy = Op->getValueType(0);
   1665     SDValue One = DAG.getConstant(1, DL, VecTy);
   1666 
   1667     return DAG.getNode(ISD::OR, DL, VecTy, Op->getOperand(1),
   1668                        DAG.getNode(ISD::SHL, DL, VecTy, One,
   1669                                    Op->getOperand(2)));
   1670   }
   1671   case Intrinsic::mips_bseti_b:
   1672   case Intrinsic::mips_bseti_h:
   1673   case Intrinsic::mips_bseti_w:
   1674   case Intrinsic::mips_bseti_d:
   1675     return lowerMSABinaryBitImmIntr(Op, DAG, ISD::OR, Op->getOperand(2),
   1676                                     !Subtarget.isLittle());
   1677   case Intrinsic::mips_bz_b:
   1678   case Intrinsic::mips_bz_h:
   1679   case Intrinsic::mips_bz_w:
   1680   case Intrinsic::mips_bz_d:
   1681     return DAG.getNode(MipsISD::VALL_ZERO, DL, Op->getValueType(0),
   1682                        Op->getOperand(1));
   1683   case Intrinsic::mips_bz_v:
   1684     return DAG.getNode(MipsISD::VANY_ZERO, DL, Op->getValueType(0),
   1685                        Op->getOperand(1));
   1686   case Intrinsic::mips_ceq_b:
   1687   case Intrinsic::mips_ceq_h:
   1688   case Intrinsic::mips_ceq_w:
   1689   case Intrinsic::mips_ceq_d:
   1690     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
   1691                         Op->getOperand(2), ISD::SETEQ);
   1692   case Intrinsic::mips_ceqi_b:
   1693   case Intrinsic::mips_ceqi_h:
   1694   case Intrinsic::mips_ceqi_w:
   1695   case Intrinsic::mips_ceqi_d:
   1696     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
   1697                         lowerMSASplatImm(Op, 2, DAG), ISD::SETEQ);
   1698   case Intrinsic::mips_cle_s_b:
   1699   case Intrinsic::mips_cle_s_h:
   1700   case Intrinsic::mips_cle_s_w:
   1701   case Intrinsic::mips_cle_s_d:
   1702     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
   1703                         Op->getOperand(2), ISD::SETLE);
   1704   case Intrinsic::mips_clei_s_b:
   1705   case Intrinsic::mips_clei_s_h:
   1706   case Intrinsic::mips_clei_s_w:
   1707   case Intrinsic::mips_clei_s_d:
   1708     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
   1709                         lowerMSASplatImm(Op, 2, DAG), ISD::SETLE);
   1710   case Intrinsic::mips_cle_u_b:
   1711   case Intrinsic::mips_cle_u_h:
   1712   case Intrinsic::mips_cle_u_w:
   1713   case Intrinsic::mips_cle_u_d:
   1714     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
   1715                         Op->getOperand(2), ISD::SETULE);
   1716   case Intrinsic::mips_clei_u_b:
   1717   case Intrinsic::mips_clei_u_h:
   1718   case Intrinsic::mips_clei_u_w:
   1719   case Intrinsic::mips_clei_u_d:
   1720     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
   1721                         lowerMSASplatImm(Op, 2, DAG), ISD::SETULE);
   1722   case Intrinsic::mips_clt_s_b:
   1723   case Intrinsic::mips_clt_s_h:
   1724   case Intrinsic::mips_clt_s_w:
   1725   case Intrinsic::mips_clt_s_d:
   1726     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
   1727                         Op->getOperand(2), ISD::SETLT);
   1728   case Intrinsic::mips_clti_s_b:
   1729   case Intrinsic::mips_clti_s_h:
   1730   case Intrinsic::mips_clti_s_w:
   1731   case Intrinsic::mips_clti_s_d:
   1732     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
   1733                         lowerMSASplatImm(Op, 2, DAG), ISD::SETLT);
   1734   case Intrinsic::mips_clt_u_b:
   1735   case Intrinsic::mips_clt_u_h:
   1736   case Intrinsic::mips_clt_u_w:
   1737   case Intrinsic::mips_clt_u_d:
   1738     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
   1739                         Op->getOperand(2), ISD::SETULT);
   1740   case Intrinsic::mips_clti_u_b:
   1741   case Intrinsic::mips_clti_u_h:
   1742   case Intrinsic::mips_clti_u_w:
   1743   case Intrinsic::mips_clti_u_d:
   1744     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
   1745                         lowerMSASplatImm(Op, 2, DAG), ISD::SETULT);
   1746   case Intrinsic::mips_copy_s_b:
   1747   case Intrinsic::mips_copy_s_h:
   1748   case Intrinsic::mips_copy_s_w:
   1749     return lowerMSACopyIntr(Op, DAG, MipsISD::VEXTRACT_SEXT_ELT);
   1750   case Intrinsic::mips_copy_s_d:
   1751     if (Subtarget.hasMips64())
   1752       // Lower directly into VEXTRACT_SEXT_ELT since i64 is legal on Mips64.
   1753       return lowerMSACopyIntr(Op, DAG, MipsISD::VEXTRACT_SEXT_ELT);
   1754     else {
   1755       // Lower into the generic EXTRACT_VECTOR_ELT node and let the type
   1756       // legalizer and EXTRACT_VECTOR_ELT lowering sort it out.
   1757       return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op),
   1758                          Op->getValueType(0), Op->getOperand(1),
   1759                          Op->getOperand(2));
   1760     }
   1761   case Intrinsic::mips_copy_u_b:
   1762   case Intrinsic::mips_copy_u_h:
   1763   case Intrinsic::mips_copy_u_w:
   1764     return lowerMSACopyIntr(Op, DAG, MipsISD::VEXTRACT_ZEXT_ELT);
   1765   case Intrinsic::mips_copy_u_d:
   1766     if (Subtarget.hasMips64())
   1767       // Lower directly into VEXTRACT_ZEXT_ELT since i64 is legal on Mips64.
   1768       return lowerMSACopyIntr(Op, DAG, MipsISD::VEXTRACT_ZEXT_ELT);
   1769     else {
   1770       // Lower into the generic EXTRACT_VECTOR_ELT node and let the type
   1771       // legalizer and EXTRACT_VECTOR_ELT lowering sort it out.
   1772       // Note: When i64 is illegal, this results in copy_s.w instructions
   1773       // instead of copy_u.w instructions. This makes no difference to the
   1774       // behaviour since i64 is only illegal when the register file is 32-bit.
   1775       return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op),
   1776                          Op->getValueType(0), Op->getOperand(1),
   1777                          Op->getOperand(2));
   1778     }
   1779   case Intrinsic::mips_div_s_b:
   1780   case Intrinsic::mips_div_s_h:
   1781   case Intrinsic::mips_div_s_w:
   1782   case Intrinsic::mips_div_s_d:
   1783     return DAG.getNode(ISD::SDIV, DL, Op->getValueType(0), Op->getOperand(1),
   1784                        Op->getOperand(2));
   1785   case Intrinsic::mips_div_u_b:
   1786   case Intrinsic::mips_div_u_h:
   1787   case Intrinsic::mips_div_u_w:
   1788   case Intrinsic::mips_div_u_d:
   1789     return DAG.getNode(ISD::UDIV, DL, Op->getValueType(0), Op->getOperand(1),
   1790                        Op->getOperand(2));
   1791   case Intrinsic::mips_fadd_w:
   1792   case Intrinsic::mips_fadd_d: {
   1793     // TODO: If intrinsics have fast-math-flags, propagate them.
   1794     return DAG.getNode(ISD::FADD, DL, Op->getValueType(0), Op->getOperand(1),
   1795                        Op->getOperand(2));
   1796   }
   1797   // Don't lower mips_fcaf_[wd] since LLVM folds SETFALSE condcodes away
   1798   case Intrinsic::mips_fceq_w:
   1799   case Intrinsic::mips_fceq_d:
   1800     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
   1801                         Op->getOperand(2), ISD::SETOEQ);
   1802   case Intrinsic::mips_fcle_w:
   1803   case Intrinsic::mips_fcle_d:
   1804     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
   1805                         Op->getOperand(2), ISD::SETOLE);
   1806   case Intrinsic::mips_fclt_w:
   1807   case Intrinsic::mips_fclt_d:
   1808     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
   1809                         Op->getOperand(2), ISD::SETOLT);
   1810   case Intrinsic::mips_fcne_w:
   1811   case Intrinsic::mips_fcne_d:
   1812     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
   1813                         Op->getOperand(2), ISD::SETONE);
   1814   case Intrinsic::mips_fcor_w:
   1815   case Intrinsic::mips_fcor_d:
   1816     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
   1817                         Op->getOperand(2), ISD::SETO);
   1818   case Intrinsic::mips_fcueq_w:
   1819   case Intrinsic::mips_fcueq_d:
   1820     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
   1821                         Op->getOperand(2), ISD::SETUEQ);
   1822   case Intrinsic::mips_fcule_w:
   1823   case Intrinsic::mips_fcule_d:
   1824     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
   1825                         Op->getOperand(2), ISD::SETULE);
   1826   case Intrinsic::mips_fcult_w:
   1827   case Intrinsic::mips_fcult_d:
   1828     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
   1829                         Op->getOperand(2), ISD::SETULT);
   1830   case Intrinsic::mips_fcun_w:
   1831   case Intrinsic::mips_fcun_d:
   1832     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
   1833                         Op->getOperand(2), ISD::SETUO);
   1834   case Intrinsic::mips_fcune_w:
   1835   case Intrinsic::mips_fcune_d:
   1836     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
   1837                         Op->getOperand(2), ISD::SETUNE);
   1838   case Intrinsic::mips_fdiv_w:
   1839   case Intrinsic::mips_fdiv_d: {
   1840     // TODO: If intrinsics have fast-math-flags, propagate them.
   1841     return DAG.getNode(ISD::FDIV, DL, Op->getValueType(0), Op->getOperand(1),
   1842                        Op->getOperand(2));
   1843   }
   1844   case Intrinsic::mips_ffint_u_w:
   1845   case Intrinsic::mips_ffint_u_d:
   1846     return DAG.getNode(ISD::UINT_TO_FP, DL, Op->getValueType(0),
   1847                        Op->getOperand(1));
   1848   case Intrinsic::mips_ffint_s_w:
   1849   case Intrinsic::mips_ffint_s_d:
   1850     return DAG.getNode(ISD::SINT_TO_FP, DL, Op->getValueType(0),
   1851                        Op->getOperand(1));
   1852   case Intrinsic::mips_fill_b:
   1853   case Intrinsic::mips_fill_h:
   1854   case Intrinsic::mips_fill_w:
   1855   case Intrinsic::mips_fill_d: {
   1856     EVT ResTy = Op->getValueType(0);
   1857     SmallVector<SDValue, 16> Ops(ResTy.getVectorNumElements(),
   1858                                  Op->getOperand(1));
   1859 
   1860     // If ResTy is v2i64 then the type legalizer will break this node down into
   1861     // an equivalent v4i32.
   1862     return DAG.getBuildVector(ResTy, DL, Ops);
   1863   }
   1864   case Intrinsic::mips_fexp2_w:
   1865   case Intrinsic::mips_fexp2_d: {
   1866     // TODO: If intrinsics have fast-math-flags, propagate them.
   1867     EVT ResTy = Op->getValueType(0);
   1868     return DAG.getNode(
   1869         ISD::FMUL, SDLoc(Op), ResTy, Op->getOperand(1),
   1870         DAG.getNode(ISD::FEXP2, SDLoc(Op), ResTy, Op->getOperand(2)));
   1871   }
   1872   case Intrinsic::mips_flog2_w:
   1873   case Intrinsic::mips_flog2_d:
   1874     return DAG.getNode(ISD::FLOG2, DL, Op->getValueType(0), Op->getOperand(1));
   1875   case Intrinsic::mips_fmadd_w:
   1876   case Intrinsic::mips_fmadd_d:
   1877     return DAG.getNode(ISD::FMA, SDLoc(Op), Op->getValueType(0),
   1878                        Op->getOperand(1), Op->getOperand(2), Op->getOperand(3));
   1879   case Intrinsic::mips_fmul_w:
   1880   case Intrinsic::mips_fmul_d: {
   1881     // TODO: If intrinsics have fast-math-flags, propagate them.
   1882     return DAG.getNode(ISD::FMUL, DL, Op->getValueType(0), Op->getOperand(1),
   1883                        Op->getOperand(2));
   1884   }
   1885   case Intrinsic::mips_fmsub_w:
   1886   case Intrinsic::mips_fmsub_d: {
   1887     // TODO: If intrinsics have fast-math-flags, propagate them.
   1888     EVT ResTy = Op->getValueType(0);
   1889     return DAG.getNode(ISD::FSUB, SDLoc(Op), ResTy, Op->getOperand(1),
   1890                        DAG.getNode(ISD::FMUL, SDLoc(Op), ResTy,
   1891                                    Op->getOperand(2), Op->getOperand(3)));
   1892   }
   1893   case Intrinsic::mips_frint_w:
   1894   case Intrinsic::mips_frint_d:
   1895     return DAG.getNode(ISD::FRINT, DL, Op->getValueType(0), Op->getOperand(1));
   1896   case Intrinsic::mips_fsqrt_w:
   1897   case Intrinsic::mips_fsqrt_d:
   1898     return DAG.getNode(ISD::FSQRT, DL, Op->getValueType(0), Op->getOperand(1));
   1899   case Intrinsic::mips_fsub_w:
   1900   case Intrinsic::mips_fsub_d: {
   1901     // TODO: If intrinsics have fast-math-flags, propagate them.
   1902     return DAG.getNode(ISD::FSUB, DL, Op->getValueType(0), Op->getOperand(1),
   1903                        Op->getOperand(2));
   1904   }
   1905   case Intrinsic::mips_ftrunc_u_w:
   1906   case Intrinsic::mips_ftrunc_u_d:
   1907     return DAG.getNode(ISD::FP_TO_UINT, DL, Op->getValueType(0),
   1908                        Op->getOperand(1));
   1909   case Intrinsic::mips_ftrunc_s_w:
   1910   case Intrinsic::mips_ftrunc_s_d:
   1911     return DAG.getNode(ISD::FP_TO_SINT, DL, Op->getValueType(0),
   1912                        Op->getOperand(1));
   1913   case Intrinsic::mips_ilvev_b:
   1914   case Intrinsic::mips_ilvev_h:
   1915   case Intrinsic::mips_ilvev_w:
   1916   case Intrinsic::mips_ilvev_d:
   1917     return DAG.getNode(MipsISD::ILVEV, DL, Op->getValueType(0),
   1918                        Op->getOperand(1), Op->getOperand(2));
   1919   case Intrinsic::mips_ilvl_b:
   1920   case Intrinsic::mips_ilvl_h:
   1921   case Intrinsic::mips_ilvl_w:
   1922   case Intrinsic::mips_ilvl_d:
   1923     return DAG.getNode(MipsISD::ILVL, DL, Op->getValueType(0),
   1924                        Op->getOperand(1), Op->getOperand(2));
   1925   case Intrinsic::mips_ilvod_b:
   1926   case Intrinsic::mips_ilvod_h:
   1927   case Intrinsic::mips_ilvod_w:
   1928   case Intrinsic::mips_ilvod_d:
   1929     return DAG.getNode(MipsISD::ILVOD, DL, Op->getValueType(0),
   1930                        Op->getOperand(1), Op->getOperand(2));
   1931   case Intrinsic::mips_ilvr_b:
   1932   case Intrinsic::mips_ilvr_h:
   1933   case Intrinsic::mips_ilvr_w:
   1934   case Intrinsic::mips_ilvr_d:
   1935     return DAG.getNode(MipsISD::ILVR, DL, Op->getValueType(0),
   1936                        Op->getOperand(1), Op->getOperand(2));
   1937   case Intrinsic::mips_insert_b:
   1938   case Intrinsic::mips_insert_h:
   1939   case Intrinsic::mips_insert_w:
   1940   case Intrinsic::mips_insert_d:
   1941     return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(Op), Op->getValueType(0),
   1942                        Op->getOperand(1), Op->getOperand(3), Op->getOperand(2));
   1943   case Intrinsic::mips_insve_b:
   1944   case Intrinsic::mips_insve_h:
   1945   case Intrinsic::mips_insve_w:
   1946   case Intrinsic::mips_insve_d:
   1947     return DAG.getNode(MipsISD::INSVE, DL, Op->getValueType(0),
   1948                        Op->getOperand(1), Op->getOperand(2), Op->getOperand(3),
   1949                        DAG.getConstant(0, DL, MVT::i32));
   1950   case Intrinsic::mips_ldi_b:
   1951   case Intrinsic::mips_ldi_h:
   1952   case Intrinsic::mips_ldi_w:
   1953   case Intrinsic::mips_ldi_d:
   1954     return lowerMSASplatImm(Op, 1, DAG);
   1955   case Intrinsic::mips_lsa:
   1956   case Intrinsic::mips_dlsa: {
   1957     EVT ResTy = Op->getValueType(0);
   1958     return DAG.getNode(ISD::ADD, SDLoc(Op), ResTy, Op->getOperand(1),
   1959                        DAG.getNode(ISD::SHL, SDLoc(Op), ResTy,
   1960                                    Op->getOperand(2), Op->getOperand(3)));
   1961   }
   1962   case Intrinsic::mips_maddv_b:
   1963   case Intrinsic::mips_maddv_h:
   1964   case Intrinsic::mips_maddv_w:
   1965   case Intrinsic::mips_maddv_d: {
   1966     EVT ResTy = Op->getValueType(0);
   1967     return DAG.getNode(ISD::ADD, SDLoc(Op), ResTy, Op->getOperand(1),
   1968                        DAG.getNode(ISD::MUL, SDLoc(Op), ResTy,
   1969                                    Op->getOperand(2), Op->getOperand(3)));
   1970   }
   1971   case Intrinsic::mips_max_s_b:
   1972   case Intrinsic::mips_max_s_h:
   1973   case Intrinsic::mips_max_s_w:
   1974   case Intrinsic::mips_max_s_d:
   1975     return DAG.getNode(MipsISD::VSMAX, DL, Op->getValueType(0),
   1976                        Op->getOperand(1), Op->getOperand(2));
   1977   case Intrinsic::mips_max_u_b:
   1978   case Intrinsic::mips_max_u_h:
   1979   case Intrinsic::mips_max_u_w:
   1980   case Intrinsic::mips_max_u_d:
   1981     return DAG.getNode(MipsISD::VUMAX, DL, Op->getValueType(0),
   1982                        Op->getOperand(1), Op->getOperand(2));
   1983   case Intrinsic::mips_maxi_s_b:
   1984   case Intrinsic::mips_maxi_s_h:
   1985   case Intrinsic::mips_maxi_s_w:
   1986   case Intrinsic::mips_maxi_s_d:
   1987     return DAG.getNode(MipsISD::VSMAX, DL, Op->getValueType(0),
   1988                        Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
   1989   case Intrinsic::mips_maxi_u_b:
   1990   case Intrinsic::mips_maxi_u_h:
   1991   case Intrinsic::mips_maxi_u_w:
   1992   case Intrinsic::mips_maxi_u_d:
   1993     return DAG.getNode(MipsISD::VUMAX, DL, Op->getValueType(0),
   1994                        Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
   1995   case Intrinsic::mips_min_s_b:
   1996   case Intrinsic::mips_min_s_h:
   1997   case Intrinsic::mips_min_s_w:
   1998   case Intrinsic::mips_min_s_d:
   1999     return DAG.getNode(MipsISD::VSMIN, DL, Op->getValueType(0),
   2000                        Op->getOperand(1), Op->getOperand(2));
   2001   case Intrinsic::mips_min_u_b:
   2002   case Intrinsic::mips_min_u_h:
   2003   case Intrinsic::mips_min_u_w:
   2004   case Intrinsic::mips_min_u_d:
   2005     return DAG.getNode(MipsISD::VUMIN, DL, Op->getValueType(0),
   2006                        Op->getOperand(1), Op->getOperand(2));
   2007   case Intrinsic::mips_mini_s_b:
   2008   case Intrinsic::mips_mini_s_h:
   2009   case Intrinsic::mips_mini_s_w:
   2010   case Intrinsic::mips_mini_s_d:
   2011     return DAG.getNode(MipsISD::VSMIN, DL, Op->getValueType(0),
   2012                        Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
   2013   case Intrinsic::mips_mini_u_b:
   2014   case Intrinsic::mips_mini_u_h:
   2015   case Intrinsic::mips_mini_u_w:
   2016   case Intrinsic::mips_mini_u_d:
   2017     return DAG.getNode(MipsISD::VUMIN, DL, Op->getValueType(0),
   2018                        Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
   2019   case Intrinsic::mips_mod_s_b:
   2020   case Intrinsic::mips_mod_s_h:
   2021   case Intrinsic::mips_mod_s_w:
   2022   case Intrinsic::mips_mod_s_d:
   2023     return DAG.getNode(ISD::SREM, DL, Op->getValueType(0), Op->getOperand(1),
   2024                        Op->getOperand(2));
   2025   case Intrinsic::mips_mod_u_b:
   2026   case Intrinsic::mips_mod_u_h:
   2027   case Intrinsic::mips_mod_u_w:
   2028   case Intrinsic::mips_mod_u_d:
   2029     return DAG.getNode(ISD::UREM, DL, Op->getValueType(0), Op->getOperand(1),
   2030                        Op->getOperand(2));
   2031   case Intrinsic::mips_mulv_b:
   2032   case Intrinsic::mips_mulv_h:
   2033   case Intrinsic::mips_mulv_w:
   2034   case Intrinsic::mips_mulv_d:
   2035     return DAG.getNode(ISD::MUL, DL, Op->getValueType(0), Op->getOperand(1),
   2036                        Op->getOperand(2));
   2037   case Intrinsic::mips_msubv_b:
   2038   case Intrinsic::mips_msubv_h:
   2039   case Intrinsic::mips_msubv_w:
   2040   case Intrinsic::mips_msubv_d: {
   2041     EVT ResTy = Op->getValueType(0);
   2042     return DAG.getNode(ISD::SUB, SDLoc(Op), ResTy, Op->getOperand(1),
   2043                        DAG.getNode(ISD::MUL, SDLoc(Op), ResTy,
   2044                                    Op->getOperand(2), Op->getOperand(3)));
   2045   }
   2046   case Intrinsic::mips_nlzc_b:
   2047   case Intrinsic::mips_nlzc_h:
   2048   case Intrinsic::mips_nlzc_w:
   2049   case Intrinsic::mips_nlzc_d:
   2050     return DAG.getNode(ISD::CTLZ, DL, Op->getValueType(0), Op->getOperand(1));
   2051   case Intrinsic::mips_nor_v: {
   2052     SDValue Res = DAG.getNode(ISD::OR, DL, Op->getValueType(0),
   2053                               Op->getOperand(1), Op->getOperand(2));
   2054     return DAG.getNOT(DL, Res, Res->getValueType(0));
   2055   }
   2056   case Intrinsic::mips_nori_b: {
   2057     SDValue Res =  DAG.getNode(ISD::OR, DL, Op->getValueType(0),
   2058                                Op->getOperand(1),
   2059                                lowerMSASplatImm(Op, 2, DAG));
   2060     return DAG.getNOT(DL, Res, Res->getValueType(0));
   2061   }
   2062   case Intrinsic::mips_or_v:
   2063     return DAG.getNode(ISD::OR, DL, Op->getValueType(0), Op->getOperand(1),
   2064                        Op->getOperand(2));
   2065   case Intrinsic::mips_ori_b:
   2066     return DAG.getNode(ISD::OR, DL, Op->getValueType(0),
   2067                        Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
   2068   case Intrinsic::mips_pckev_b:
   2069   case Intrinsic::mips_pckev_h:
   2070   case Intrinsic::mips_pckev_w:
   2071   case Intrinsic::mips_pckev_d:
   2072     return DAG.getNode(MipsISD::PCKEV, DL, Op->getValueType(0),
   2073                        Op->getOperand(1), Op->getOperand(2));
   2074   case Intrinsic::mips_pckod_b:
   2075   case Intrinsic::mips_pckod_h:
   2076   case Intrinsic::mips_pckod_w:
   2077   case Intrinsic::mips_pckod_d:
   2078     return DAG.getNode(MipsISD::PCKOD, DL, Op->getValueType(0),
   2079                        Op->getOperand(1), Op->getOperand(2));
   2080   case Intrinsic::mips_pcnt_b:
   2081   case Intrinsic::mips_pcnt_h:
   2082   case Intrinsic::mips_pcnt_w:
   2083   case Intrinsic::mips_pcnt_d:
   2084     return DAG.getNode(ISD::CTPOP, DL, Op->getValueType(0), Op->getOperand(1));
   2085   case Intrinsic::mips_shf_b:
   2086   case Intrinsic::mips_shf_h:
   2087   case Intrinsic::mips_shf_w:
   2088     return DAG.getNode(MipsISD::SHF, DL, Op->getValueType(0),
   2089                        Op->getOperand(2), Op->getOperand(1));
   2090   case Intrinsic::mips_sll_b:
   2091   case Intrinsic::mips_sll_h:
   2092   case Intrinsic::mips_sll_w:
   2093   case Intrinsic::mips_sll_d:
   2094     return DAG.getNode(ISD::SHL, DL, Op->getValueType(0), Op->getOperand(1),
   2095                        Op->getOperand(2));
   2096   case Intrinsic::mips_slli_b:
   2097   case Intrinsic::mips_slli_h:
   2098   case Intrinsic::mips_slli_w:
   2099   case Intrinsic::mips_slli_d:
   2100     return DAG.getNode(ISD::SHL, DL, Op->getValueType(0),
   2101                        Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
   2102   case Intrinsic::mips_splat_b:
   2103   case Intrinsic::mips_splat_h:
   2104   case Intrinsic::mips_splat_w:
   2105   case Intrinsic::mips_splat_d:
   2106     // We can't lower via VECTOR_SHUFFLE because it requires constant shuffle
   2107     // masks, nor can we lower via BUILD_VECTOR & EXTRACT_VECTOR_ELT because
   2108     // EXTRACT_VECTOR_ELT can't extract i64's on MIPS32.
   2109     // Instead we lower to MipsISD::VSHF and match from there.
   2110     return DAG.getNode(MipsISD::VSHF, DL, Op->getValueType(0),
   2111                        lowerMSASplatZExt(Op, 2, DAG), Op->getOperand(1),
   2112                        Op->getOperand(1));
   2113   case Intrinsic::mips_splati_b:
   2114   case Intrinsic::mips_splati_h:
   2115   case Intrinsic::mips_splati_w:
   2116   case Intrinsic::mips_splati_d:
   2117     return DAG.getNode(MipsISD::VSHF, DL, Op->getValueType(0),
   2118                        lowerMSASplatImm(Op, 2, DAG), Op->getOperand(1),
   2119                        Op->getOperand(1));
   2120   case Intrinsic::mips_sra_b:
   2121   case Intrinsic::mips_sra_h:
   2122   case Intrinsic::mips_sra_w:
   2123   case Intrinsic::mips_sra_d:
   2124     return DAG.getNode(ISD::SRA, DL, Op->getValueType(0), Op->getOperand(1),
   2125                        Op->getOperand(2));
   2126   case Intrinsic::mips_srai_b:
   2127   case Intrinsic::mips_srai_h:
   2128   case Intrinsic::mips_srai_w:
   2129   case Intrinsic::mips_srai_d:
   2130     return DAG.getNode(ISD::SRA, DL, Op->getValueType(0),
   2131                        Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
   2132   case Intrinsic::mips_srl_b:
   2133   case Intrinsic::mips_srl_h:
   2134   case Intrinsic::mips_srl_w:
   2135   case Intrinsic::mips_srl_d:
   2136     return DAG.getNode(ISD::SRL, DL, Op->getValueType(0), Op->getOperand(1),
   2137                        Op->getOperand(2));
   2138   case Intrinsic::mips_srli_b:
   2139   case Intrinsic::mips_srli_h:
   2140   case Intrinsic::mips_srli_w:
   2141   case Intrinsic::mips_srli_d:
   2142     return DAG.getNode(ISD::SRL, DL, Op->getValueType(0),
   2143                        Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
   2144   case Intrinsic::mips_subv_b:
   2145   case Intrinsic::mips_subv_h:
   2146   case Intrinsic::mips_subv_w:
   2147   case Intrinsic::mips_subv_d:
   2148     return DAG.getNode(ISD::SUB, DL, Op->getValueType(0), Op->getOperand(1),
   2149                        Op->getOperand(2));
   2150   case Intrinsic::mips_subvi_b:
   2151   case Intrinsic::mips_subvi_h:
   2152   case Intrinsic::mips_subvi_w:
   2153   case Intrinsic::mips_subvi_d:
   2154     return DAG.getNode(ISD::SUB, DL, Op->getValueType(0),
   2155                        Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
   2156   case Intrinsic::mips_vshf_b:
   2157   case Intrinsic::mips_vshf_h:
   2158   case Intrinsic::mips_vshf_w:
   2159   case Intrinsic::mips_vshf_d:
   2160     return DAG.getNode(MipsISD::VSHF, DL, Op->getValueType(0),
   2161                        Op->getOperand(1), Op->getOperand(2), Op->getOperand(3));
   2162   case Intrinsic::mips_xor_v:
   2163     return DAG.getNode(ISD::XOR, DL, Op->getValueType(0), Op->getOperand(1),
   2164                        Op->getOperand(2));
   2165   case Intrinsic::mips_xori_b:
   2166     return DAG.getNode(ISD::XOR, DL, Op->getValueType(0),
   2167                        Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
   2168   case Intrinsic::thread_pointer: {
   2169     EVT PtrVT = getPointerTy(DAG.getDataLayout());
   2170     return DAG.getNode(MipsISD::ThreadPointer, DL, PtrVT);
   2171   }
   2172   }
   2173 }
   2174 
   2175 static SDValue lowerMSALoadIntr(SDValue Op, SelectionDAG &DAG, unsigned Intr) {
   2176   SDLoc DL(Op);
   2177   SDValue ChainIn = Op->getOperand(0);
   2178   SDValue Address = Op->getOperand(2);
   2179   SDValue Offset  = Op->getOperand(3);
   2180   EVT ResTy = Op->getValueType(0);
   2181   EVT PtrTy = Address->getValueType(0);
   2182 
   2183   Address = DAG.getNode(ISD::ADD, DL, PtrTy, Address, Offset);
   2184 
   2185   return DAG.getLoad(ResTy, DL, ChainIn, Address, MachinePointerInfo(), false,
   2186                      false, false, 16);
   2187 }
   2188 
   2189 SDValue MipsSETargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op,
   2190                                                      SelectionDAG &DAG) const {
   2191   unsigned Intr = cast<ConstantSDNode>(Op->getOperand(1))->getZExtValue();
   2192   switch (Intr) {
   2193   default:
   2194     return SDValue();
   2195   case Intrinsic::mips_extp:
   2196     return lowerDSPIntr(Op, DAG, MipsISD::EXTP);
   2197   case Intrinsic::mips_extpdp:
   2198     return lowerDSPIntr(Op, DAG, MipsISD::EXTPDP);
   2199   case Intrinsic::mips_extr_w:
   2200     return lowerDSPIntr(Op, DAG, MipsISD::EXTR_W);
   2201   case Intrinsic::mips_extr_r_w:
   2202     return lowerDSPIntr(Op, DAG, MipsISD::EXTR_R_W);
   2203   case Intrinsic::mips_extr_rs_w:
   2204     return lowerDSPIntr(Op, DAG, MipsISD::EXTR_RS_W);
   2205   case Intrinsic::mips_extr_s_h:
   2206     return lowerDSPIntr(Op, DAG, MipsISD::EXTR_S_H);
   2207   case Intrinsic::mips_mthlip:
   2208     return lowerDSPIntr(Op, DAG, MipsISD::MTHLIP);
   2209   case Intrinsic::mips_mulsaq_s_w_ph:
   2210     return lowerDSPIntr(Op, DAG, MipsISD::MULSAQ_S_W_PH);
   2211   case Intrinsic::mips_maq_s_w_phl:
   2212     return lowerDSPIntr(Op, DAG, MipsISD::MAQ_S_W_PHL);
   2213   case Intrinsic::mips_maq_s_w_phr:
   2214     return lowerDSPIntr(Op, DAG, MipsISD::MAQ_S_W_PHR);
   2215   case Intrinsic::mips_maq_sa_w_phl:
   2216     return lowerDSPIntr(Op, DAG, MipsISD::MAQ_SA_W_PHL);
   2217   case Intrinsic::mips_maq_sa_w_phr:
   2218     return lowerDSPIntr(Op, DAG, MipsISD::MAQ_SA_W_PHR);
   2219   case Intrinsic::mips_dpaq_s_w_ph:
   2220     return lowerDSPIntr(Op, DAG, MipsISD::DPAQ_S_W_PH);
   2221   case Intrinsic::mips_dpsq_s_w_ph:
   2222     return lowerDSPIntr(Op, DAG, MipsISD::DPSQ_S_W_PH);
   2223   case Intrinsic::mips_dpaq_sa_l_w:
   2224     return lowerDSPIntr(Op, DAG, MipsISD::DPAQ_SA_L_W);
   2225   case Intrinsic::mips_dpsq_sa_l_w:
   2226     return lowerDSPIntr(Op, DAG, MipsISD::DPSQ_SA_L_W);
   2227   case Intrinsic::mips_dpaqx_s_w_ph:
   2228     return lowerDSPIntr(Op, DAG, MipsISD::DPAQX_S_W_PH);
   2229   case Intrinsic::mips_dpaqx_sa_w_ph:
   2230     return lowerDSPIntr(Op, DAG, MipsISD::DPAQX_SA_W_PH);
   2231   case Intrinsic::mips_dpsqx_s_w_ph:
   2232     return lowerDSPIntr(Op, DAG, MipsISD::DPSQX_S_W_PH);
   2233   case Intrinsic::mips_dpsqx_sa_w_ph:
   2234     return lowerDSPIntr(Op, DAG, MipsISD::DPSQX_SA_W_PH);
   2235   case Intrinsic::mips_ld_b:
   2236   case Intrinsic::mips_ld_h:
   2237   case Intrinsic::mips_ld_w:
   2238   case Intrinsic::mips_ld_d:
   2239    return lowerMSALoadIntr(Op, DAG, Intr);
   2240   }
   2241 }
   2242 
   2243 static SDValue lowerMSAStoreIntr(SDValue Op, SelectionDAG &DAG, unsigned Intr) {
   2244   SDLoc DL(Op);
   2245   SDValue ChainIn = Op->getOperand(0);
   2246   SDValue Value   = Op->getOperand(2);
   2247   SDValue Address = Op->getOperand(3);
   2248   SDValue Offset  = Op->getOperand(4);
   2249   EVT PtrTy = Address->getValueType(0);
   2250 
   2251   Address = DAG.getNode(ISD::ADD, DL, PtrTy, Address, Offset);
   2252 
   2253   return DAG.getStore(ChainIn, DL, Value, Address, MachinePointerInfo(), false,
   2254                       false, 16);
   2255 }
   2256 
   2257 SDValue MipsSETargetLowering::lowerINTRINSIC_VOID(SDValue Op,
   2258                                                   SelectionDAG &DAG) const {
   2259   unsigned Intr = cast<ConstantSDNode>(Op->getOperand(1))->getZExtValue();
   2260   switch (Intr) {
   2261   default:
   2262     return SDValue();
   2263   case Intrinsic::mips_st_b:
   2264   case Intrinsic::mips_st_h:
   2265   case Intrinsic::mips_st_w:
   2266   case Intrinsic::mips_st_d:
   2267     return lowerMSAStoreIntr(Op, DAG, Intr);
   2268   }
   2269 }
   2270 
   2271 /// \brief Check if the given BuildVectorSDNode is a splat.
   2272 /// This method currently relies on DAG nodes being reused when equivalent,
   2273 /// so it's possible for this to return false even when isConstantSplat returns
   2274 /// true.
   2275 static bool isSplatVector(const BuildVectorSDNode *N) {
   2276   unsigned int nOps = N->getNumOperands();
   2277   assert(nOps > 1 && "isSplatVector has 0 or 1 sized build vector");
   2278 
   2279   SDValue Operand0 = N->getOperand(0);
   2280 
   2281   for (unsigned int i = 1; i < nOps; ++i) {
   2282     if (N->getOperand(i) != Operand0)
   2283       return false;
   2284   }
   2285 
   2286   return true;
   2287 }
   2288 
   2289 // Lower ISD::EXTRACT_VECTOR_ELT into MipsISD::VEXTRACT_SEXT_ELT.
   2290 //
   2291 // The non-value bits resulting from ISD::EXTRACT_VECTOR_ELT are undefined. We
   2292 // choose to sign-extend but we could have equally chosen zero-extend. The
   2293 // DAGCombiner will fold any sign/zero extension of the ISD::EXTRACT_VECTOR_ELT
   2294 // result into this node later (possibly changing it to a zero-extend in the
   2295 // process).
   2296 SDValue MipsSETargetLowering::
   2297 lowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const {
   2298   SDLoc DL(Op);
   2299   EVT ResTy = Op->getValueType(0);
   2300   SDValue Op0 = Op->getOperand(0);
   2301   EVT VecTy = Op0->getValueType(0);
   2302 
   2303   if (!VecTy.is128BitVector())
   2304     return SDValue();
   2305 
   2306   if (ResTy.isInteger()) {
   2307     SDValue Op1 = Op->getOperand(1);
   2308     EVT EltTy = VecTy.getVectorElementType();
   2309     return DAG.getNode(MipsISD::VEXTRACT_SEXT_ELT, DL, ResTy, Op0, Op1,
   2310                        DAG.getValueType(EltTy));
   2311   }
   2312 
   2313   return Op;
   2314 }
   2315 
   2316 static bool isConstantOrUndef(const SDValue Op) {
   2317   if (Op->isUndef())
   2318     return true;
   2319   if (isa<ConstantSDNode>(Op))
   2320     return true;
   2321   if (isa<ConstantFPSDNode>(Op))
   2322     return true;
   2323   return false;
   2324 }
   2325 
   2326 static bool isConstantOrUndefBUILD_VECTOR(const BuildVectorSDNode *Op) {
   2327   for (unsigned i = 0; i < Op->getNumOperands(); ++i)
   2328     if (isConstantOrUndef(Op->getOperand(i)))
   2329       return true;
   2330   return false;
   2331 }
   2332 
   2333 // Lowers ISD::BUILD_VECTOR into appropriate SelectionDAG nodes for the
   2334 // backend.
   2335 //
   2336 // Lowers according to the following rules:
   2337 // - Constant splats are legal as-is as long as the SplatBitSize is a power of
   2338 //   2 less than or equal to 64 and the value fits into a signed 10-bit
   2339 //   immediate
   2340 // - Constant splats are lowered to bitconverted BUILD_VECTORs if SplatBitSize
   2341 //   is a power of 2 less than or equal to 64 and the value does not fit into a
   2342 //   signed 10-bit immediate
   2343 // - Non-constant splats are legal as-is.
   2344 // - Non-constant non-splats are lowered to sequences of INSERT_VECTOR_ELT.
   2345 // - All others are illegal and must be expanded.
   2346 SDValue MipsSETargetLowering::lowerBUILD_VECTOR(SDValue Op,
   2347                                                 SelectionDAG &DAG) const {
   2348   BuildVectorSDNode *Node = cast<BuildVectorSDNode>(Op);
   2349   EVT ResTy = Op->getValueType(0);
   2350   SDLoc DL(Op);
   2351   APInt SplatValue, SplatUndef;
   2352   unsigned SplatBitSize;
   2353   bool HasAnyUndefs;
   2354 
   2355   if (!Subtarget.hasMSA() || !ResTy.is128BitVector())
   2356     return SDValue();
   2357 
   2358   if (Node->isConstantSplat(SplatValue, SplatUndef, SplatBitSize,
   2359                             HasAnyUndefs, 8,
   2360                             !Subtarget.isLittle()) && SplatBitSize <= 64) {
   2361     // We can only cope with 8, 16, 32, or 64-bit elements
   2362     if (SplatBitSize != 8 && SplatBitSize != 16 && SplatBitSize != 32 &&
   2363         SplatBitSize != 64)
   2364       return SDValue();
   2365 
   2366     // If the value fits into a simm10 then we can use ldi.[bhwd]
   2367     // However, if it isn't an integer type we will have to bitcast from an
   2368     // integer type first. Also, if there are any undefs, we must lower them
   2369     // to defined values first.
   2370     if (ResTy.isInteger() && !HasAnyUndefs && SplatValue.isSignedIntN(10))
   2371       return Op;
   2372 
   2373     EVT ViaVecTy;
   2374 
   2375     switch (SplatBitSize) {
   2376     default:
   2377       return SDValue();
   2378     case 8:
   2379       ViaVecTy = MVT::v16i8;
   2380       break;
   2381     case 16:
   2382       ViaVecTy = MVT::v8i16;
   2383       break;
   2384     case 32:
   2385       ViaVecTy = MVT::v4i32;
   2386       break;
   2387     case 64:
   2388       // There's no fill.d to fall back on for 64-bit values
   2389       return SDValue();
   2390     }
   2391 
   2392     // SelectionDAG::getConstant will promote SplatValue appropriately.
   2393     SDValue Result = DAG.getConstant(SplatValue, DL, ViaVecTy);
   2394 
   2395     // Bitcast to the type we originally wanted
   2396     if (ViaVecTy != ResTy)
   2397       Result = DAG.getNode(ISD::BITCAST, SDLoc(Node), ResTy, Result);
   2398 
   2399     return Result;
   2400   } else if (isSplatVector(Node))
   2401     return Op;
   2402   else if (!isConstantOrUndefBUILD_VECTOR(Node)) {
   2403     // Use INSERT_VECTOR_ELT operations rather than expand to stores.
   2404     // The resulting code is the same length as the expansion, but it doesn't
   2405     // use memory operations
   2406     EVT ResTy = Node->getValueType(0);
   2407 
   2408     assert(ResTy.isVector());
   2409 
   2410     unsigned NumElts = ResTy.getVectorNumElements();
   2411     SDValue Vector = DAG.getUNDEF(ResTy);
   2412     for (unsigned i = 0; i < NumElts; ++i) {
   2413       Vector = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, ResTy, Vector,
   2414                            Node->getOperand(i),
   2415                            DAG.getConstant(i, DL, MVT::i32));
   2416     }
   2417     return Vector;
   2418   }
   2419 
   2420   return SDValue();
   2421 }
   2422 
   2423 // Lower VECTOR_SHUFFLE into SHF (if possible).
   2424 //
   2425 // SHF splits the vector into blocks of four elements, then shuffles these
   2426 // elements according to a <4 x i2> constant (encoded as an integer immediate).
   2427 //
   2428 // It is therefore possible to lower into SHF when the mask takes the form:
   2429 //   <a, b, c, d, a+4, b+4, c+4, d+4, a+8, b+8, c+8, d+8, ...>
   2430 // When undef's appear they are treated as if they were whatever value is
   2431 // necessary in order to fit the above forms.
   2432 //
   2433 // For example:
   2434 //   %2 = shufflevector <8 x i16> %0, <8 x i16> undef,
   2435 //                      <8 x i32> <i32 3, i32 2, i32 1, i32 0,
   2436 //                                 i32 7, i32 6, i32 5, i32 4>
   2437 // is lowered to:
   2438 //   (SHF_H $w0, $w1, 27)
   2439 // where the 27 comes from:
   2440 //   3 + (2 << 2) + (1 << 4) + (0 << 6)
   2441 static SDValue lowerVECTOR_SHUFFLE_SHF(SDValue Op, EVT ResTy,
   2442                                        SmallVector<int, 16> Indices,
   2443                                        SelectionDAG &DAG) {
   2444   int SHFIndices[4] = { -1, -1, -1, -1 };
   2445 
   2446   if (Indices.size() < 4)
   2447     return SDValue();
   2448 
   2449   for (unsigned i = 0; i < 4; ++i) {
   2450     for (unsigned j = i; j < Indices.size(); j += 4) {
   2451       int Idx = Indices[j];
   2452 
   2453       // Convert from vector index to 4-element subvector index
   2454       // If an index refers to an element outside of the subvector then give up
   2455       if (Idx != -1) {
   2456         Idx -= 4 * (j / 4);
   2457         if (Idx < 0 || Idx >= 4)
   2458           return SDValue();
   2459       }
   2460 
   2461       // If the mask has an undef, replace it with the current index.
   2462       // Note that it might still be undef if the current index is also undef
   2463       if (SHFIndices[i] == -1)
   2464         SHFIndices[i] = Idx;
   2465 
   2466       // Check that non-undef values are the same as in the mask. If they
   2467       // aren't then give up
   2468       if (!(Idx == -1 || Idx == SHFIndices[i]))
   2469         return SDValue();
   2470     }
   2471   }
   2472 
   2473   // Calculate the immediate. Replace any remaining undefs with zero
   2474   APInt Imm(32, 0);
   2475   for (int i = 3; i >= 0; --i) {
   2476     int Idx = SHFIndices[i];
   2477 
   2478     if (Idx == -1)
   2479       Idx = 0;
   2480 
   2481     Imm <<= 2;
   2482     Imm |= Idx & 0x3;
   2483   }
   2484 
   2485   SDLoc DL(Op);
   2486   return DAG.getNode(MipsISD::SHF, DL, ResTy,
   2487                      DAG.getConstant(Imm, DL, MVT::i32), Op->getOperand(0));
   2488 }
   2489 
   2490 /// Determine whether a range fits a regular pattern of values.
   2491 /// This function accounts for the possibility of jumping over the End iterator.
   2492 template <typename ValType>
   2493 static bool
   2494 fitsRegularPattern(typename SmallVectorImpl<ValType>::const_iterator Begin,
   2495                    unsigned CheckStride,
   2496                    typename SmallVectorImpl<ValType>::const_iterator End,
   2497                    ValType ExpectedIndex, unsigned ExpectedIndexStride) {
   2498   auto &I = Begin;
   2499 
   2500   while (I != End) {
   2501     if (*I != -1 && *I != ExpectedIndex)
   2502       return false;
   2503     ExpectedIndex += ExpectedIndexStride;
   2504 
   2505     // Incrementing past End is undefined behaviour so we must increment one
   2506     // step at a time and check for End at each step.
   2507     for (unsigned n = 0; n < CheckStride && I != End; ++n, ++I)
   2508       ; // Empty loop body.
   2509   }
   2510   return true;
   2511 }
   2512 
   2513 // Determine whether VECTOR_SHUFFLE is a SPLATI.
   2514 //
   2515 // It is a SPLATI when the mask is:
   2516 //   <x, x, x, ...>
   2517 // where x is any valid index.
   2518 //
   2519 // When undef's appear in the mask they are treated as if they were whatever
   2520 // value is necessary in order to fit the above form.
   2521 static bool isVECTOR_SHUFFLE_SPLATI(SDValue Op, EVT ResTy,
   2522                                     SmallVector<int, 16> Indices,
   2523                                     SelectionDAG &DAG) {
   2524   assert((Indices.size() % 2) == 0);
   2525 
   2526   int SplatIndex = -1;
   2527   for (const auto &V : Indices) {
   2528     if (V != -1) {
   2529       SplatIndex = V;
   2530       break;
   2531     }
   2532   }
   2533 
   2534   return fitsRegularPattern<int>(Indices.begin(), 1, Indices.end(), SplatIndex,
   2535                                  0);
   2536 }
   2537 
   2538 // Lower VECTOR_SHUFFLE into ILVEV (if possible).
   2539 //
   2540 // ILVEV interleaves the even elements from each vector.
   2541 //
   2542 // It is possible to lower into ILVEV when the mask consists of two of the
   2543 // following forms interleaved:
   2544 //   <0, 2, 4, ...>
   2545 //   <n, n+2, n+4, ...>
   2546 // where n is the number of elements in the vector.
   2547 // For example:
   2548 //   <0, 0, 2, 2, 4, 4, ...>
   2549 //   <0, n, 2, n+2, 4, n+4, ...>
   2550 //
   2551 // When undef's appear in the mask they are treated as if they were whatever
   2552 // value is necessary in order to fit the above forms.
   2553 static SDValue lowerVECTOR_SHUFFLE_ILVEV(SDValue Op, EVT ResTy,
   2554                                          SmallVector<int, 16> Indices,
   2555                                          SelectionDAG &DAG) {
   2556   assert((Indices.size() % 2) == 0);
   2557 
   2558   SDValue Wt;
   2559   SDValue Ws;
   2560   const auto &Begin = Indices.begin();
   2561   const auto &End = Indices.end();
   2562 
   2563   // Check even elements are taken from the even elements of one half or the
   2564   // other and pick an operand accordingly.
   2565   if (fitsRegularPattern<int>(Begin, 2, End, 0, 2))
   2566     Wt = Op->getOperand(0);
   2567   else if (fitsRegularPattern<int>(Begin, 2, End, Indices.size(), 2))
   2568     Wt = Op->getOperand(1);
   2569   else
   2570     return SDValue();
   2571 
   2572   // Check odd elements are taken from the even elements of one half or the
   2573   // other and pick an operand accordingly.
   2574   if (fitsRegularPattern<int>(Begin + 1, 2, End, 0, 2))
   2575     Ws = Op->getOperand(0);
   2576   else if (fitsRegularPattern<int>(Begin + 1, 2, End, Indices.size(), 2))
   2577     Ws = Op->getOperand(1);
   2578   else
   2579     return SDValue();
   2580 
   2581   return DAG.getNode(MipsISD::ILVEV, SDLoc(Op), ResTy, Ws, Wt);
   2582 }
   2583 
   2584 // Lower VECTOR_SHUFFLE into ILVOD (if possible).
   2585 //
   2586 // ILVOD interleaves the odd elements from each vector.
   2587 //
   2588 // It is possible to lower into ILVOD when the mask consists of two of the
   2589 // following forms interleaved:
   2590 //   <1, 3, 5, ...>
   2591 //   <n+1, n+3, n+5, ...>
   2592 // where n is the number of elements in the vector.
   2593 // For example:
   2594 //   <1, 1, 3, 3, 5, 5, ...>
   2595 //   <1, n+1, 3, n+3, 5, n+5, ...>
   2596 //
   2597 // When undef's appear in the mask they are treated as if they were whatever
   2598 // value is necessary in order to fit the above forms.
   2599 static SDValue lowerVECTOR_SHUFFLE_ILVOD(SDValue Op, EVT ResTy,
   2600                                          SmallVector<int, 16> Indices,
   2601                                          SelectionDAG &DAG) {
   2602   assert((Indices.size() % 2) == 0);
   2603 
   2604   SDValue Wt;
   2605   SDValue Ws;
   2606   const auto &Begin = Indices.begin();
   2607   const auto &End = Indices.end();
   2608 
   2609   // Check even elements are taken from the odd elements of one half or the
   2610   // other and pick an operand accordingly.
   2611   if (fitsRegularPattern<int>(Begin, 2, End, 1, 2))
   2612     Wt = Op->getOperand(0);
   2613   else if (fitsRegularPattern<int>(Begin, 2, End, Indices.size() + 1, 2))
   2614     Wt = Op->getOperand(1);
   2615   else
   2616     return SDValue();
   2617 
   2618   // Check odd elements are taken from the odd elements of one half or the
   2619   // other and pick an operand accordingly.
   2620   if (fitsRegularPattern<int>(Begin + 1, 2, End, 1, 2))
   2621     Ws = Op->getOperand(0);
   2622   else if (fitsRegularPattern<int>(Begin + 1, 2, End, Indices.size() + 1, 2))
   2623     Ws = Op->getOperand(1);
   2624   else
   2625     return SDValue();
   2626 
   2627   return DAG.getNode(MipsISD::ILVOD, SDLoc(Op), ResTy, Wt, Ws);
   2628 }
   2629 
   2630 // Lower VECTOR_SHUFFLE into ILVR (if possible).
   2631 //
   2632 // ILVR interleaves consecutive elements from the right (lowest-indexed) half of
   2633 // each vector.
   2634 //
   2635 // It is possible to lower into ILVR when the mask consists of two of the
   2636 // following forms interleaved:
   2637 //   <0, 1, 2, ...>
   2638 //   <n, n+1, n+2, ...>
   2639 // where n is the number of elements in the vector.
   2640 // For example:
   2641 //   <0, 0, 1, 1, 2, 2, ...>
   2642 //   <0, n, 1, n+1, 2, n+2, ...>
   2643 //
   2644 // When undef's appear in the mask they are treated as if they were whatever
   2645 // value is necessary in order to fit the above forms.
   2646 static SDValue lowerVECTOR_SHUFFLE_ILVR(SDValue Op, EVT ResTy,
   2647                                         SmallVector<int, 16> Indices,
   2648                                         SelectionDAG &DAG) {
   2649   assert((Indices.size() % 2) == 0);
   2650 
   2651   SDValue Wt;
   2652   SDValue Ws;
   2653   const auto &Begin = Indices.begin();
   2654   const auto &End = Indices.end();
   2655 
   2656   // Check even elements are taken from the right (lowest-indexed) elements of
   2657   // one half or the other and pick an operand accordingly.
   2658   if (fitsRegularPattern<int>(Begin, 2, End, 0, 1))
   2659     Wt = Op->getOperand(0);
   2660   else if (fitsRegularPattern<int>(Begin, 2, End, Indices.size(), 1))
   2661     Wt = Op->getOperand(1);
   2662   else
   2663     return SDValue();
   2664 
   2665   // Check odd elements are taken from the right (lowest-indexed) elements of
   2666   // one half or the other and pick an operand accordingly.
   2667   if (fitsRegularPattern<int>(Begin + 1, 2, End, 0, 1))
   2668     Ws = Op->getOperand(0);
   2669   else if (fitsRegularPattern<int>(Begin + 1, 2, End, Indices.size(), 1))
   2670     Ws = Op->getOperand(1);
   2671   else
   2672     return SDValue();
   2673 
   2674   return DAG.getNode(MipsISD::ILVR, SDLoc(Op), ResTy, Ws, Wt);
   2675 }
   2676 
   2677 // Lower VECTOR_SHUFFLE into ILVL (if possible).
   2678 //
   2679 // ILVL interleaves consecutive elements from the left (highest-indexed) half
   2680 // of each vector.
   2681 //
   2682 // It is possible to lower into ILVL when the mask consists of two of the
   2683 // following forms interleaved:
   2684 //   <x, x+1, x+2, ...>
   2685 //   <n+x, n+x+1, n+x+2, ...>
   2686 // where n is the number of elements in the vector and x is half n.
   2687 // For example:
   2688 //   <x, x, x+1, x+1, x+2, x+2, ...>
   2689 //   <x, n+x, x+1, n+x+1, x+2, n+x+2, ...>
   2690 //
   2691 // When undef's appear in the mask they are treated as if they were whatever
   2692 // value is necessary in order to fit the above forms.
   2693 static SDValue lowerVECTOR_SHUFFLE_ILVL(SDValue Op, EVT ResTy,
   2694                                         SmallVector<int, 16> Indices,
   2695                                         SelectionDAG &DAG) {
   2696   assert((Indices.size() % 2) == 0);
   2697 
   2698   unsigned HalfSize = Indices.size() / 2;
   2699   SDValue Wt;
   2700   SDValue Ws;
   2701   const auto &Begin = Indices.begin();
   2702   const auto &End = Indices.end();
   2703 
   2704   // Check even elements are taken from the left (highest-indexed) elements of
   2705   // one half or the other and pick an operand accordingly.
   2706   if (fitsRegularPattern<int>(Begin, 2, End, HalfSize, 1))
   2707     Wt = Op->getOperand(0);
   2708   else if (fitsRegularPattern<int>(Begin, 2, End, Indices.size() + HalfSize, 1))
   2709     Wt = Op->getOperand(1);
   2710   else
   2711     return SDValue();
   2712 
   2713   // Check odd elements are taken from the left (highest-indexed) elements of
   2714   // one half or the other and pick an operand accordingly.
   2715   if (fitsRegularPattern<int>(Begin + 1, 2, End, HalfSize, 1))
   2716     Ws = Op->getOperand(0);
   2717   else if (fitsRegularPattern<int>(Begin + 1, 2, End, Indices.size() + HalfSize,
   2718                                    1))
   2719     Ws = Op->getOperand(1);
   2720   else
   2721     return SDValue();
   2722 
   2723   return DAG.getNode(MipsISD::ILVL, SDLoc(Op), ResTy, Ws, Wt);
   2724 }
   2725 
   2726 // Lower VECTOR_SHUFFLE into PCKEV (if possible).
   2727 //
   2728 // PCKEV copies the even elements of each vector into the result vector.
   2729 //
   2730 // It is possible to lower into PCKEV when the mask consists of two of the
   2731 // following forms concatenated:
   2732 //   <0, 2, 4, ...>
   2733 //   <n, n+2, n+4, ...>
   2734 // where n is the number of elements in the vector.
   2735 // For example:
   2736 //   <0, 2, 4, ..., 0, 2, 4, ...>
   2737 //   <0, 2, 4, ..., n, n+2, n+4, ...>
   2738 //
   2739 // When undef's appear in the mask they are treated as if they were whatever
   2740 // value is necessary in order to fit the above forms.
   2741 static SDValue lowerVECTOR_SHUFFLE_PCKEV(SDValue Op, EVT ResTy,
   2742                                          SmallVector<int, 16> Indices,
   2743                                          SelectionDAG &DAG) {
   2744   assert((Indices.size() % 2) == 0);
   2745 
   2746   SDValue Wt;
   2747   SDValue Ws;
   2748   const auto &Begin = Indices.begin();
   2749   const auto &Mid = Indices.begin() + Indices.size() / 2;
   2750   const auto &End = Indices.end();
   2751 
   2752   if (fitsRegularPattern<int>(Begin, 1, Mid, 0, 2))
   2753     Wt = Op->getOperand(0);
   2754   else if (fitsRegularPattern<int>(Begin, 1, Mid, Indices.size(), 2))
   2755     Wt = Op->getOperand(1);
   2756   else
   2757     return SDValue();
   2758 
   2759   if (fitsRegularPattern<int>(Mid, 1, End, 0, 2))
   2760     Ws = Op->getOperand(0);
   2761   else if (fitsRegularPattern<int>(Mid, 1, End, Indices.size(), 2))
   2762     Ws = Op->getOperand(1);
   2763   else
   2764     return SDValue();
   2765 
   2766   return DAG.getNode(MipsISD::PCKEV, SDLoc(Op), ResTy, Ws, Wt);
   2767 }
   2768 
   2769 // Lower VECTOR_SHUFFLE into PCKOD (if possible).
   2770 //
   2771 // PCKOD copies the odd elements of each vector into the result vector.
   2772 //
   2773 // It is possible to lower into PCKOD when the mask consists of two of the
   2774 // following forms concatenated:
   2775 //   <1, 3, 5, ...>
   2776 //   <n+1, n+3, n+5, ...>
   2777 // where n is the number of elements in the vector.
   2778 // For example:
   2779 //   <1, 3, 5, ..., 1, 3, 5, ...>
   2780 //   <1, 3, 5, ..., n+1, n+3, n+5, ...>
   2781 //
   2782 // When undef's appear in the mask they are treated as if they were whatever
   2783 // value is necessary in order to fit the above forms.
   2784 static SDValue lowerVECTOR_SHUFFLE_PCKOD(SDValue Op, EVT ResTy,
   2785                                          SmallVector<int, 16> Indices,
   2786                                          SelectionDAG &DAG) {
   2787   assert((Indices.size() % 2) == 0);
   2788 
   2789   SDValue Wt;
   2790   SDValue Ws;
   2791   const auto &Begin = Indices.begin();
   2792   const auto &Mid = Indices.begin() + Indices.size() / 2;
   2793   const auto &End = Indices.end();
   2794 
   2795   if (fitsRegularPattern<int>(Begin, 1, Mid, 1, 2))
   2796     Wt = Op->getOperand(0);
   2797   else if (fitsRegularPattern<int>(Begin, 1, Mid, Indices.size() + 1, 2))
   2798     Wt = Op->getOperand(1);
   2799   else
   2800     return SDValue();
   2801 
   2802   if (fitsRegularPattern<int>(Mid, 1, End, 1, 2))
   2803     Ws = Op->getOperand(0);
   2804   else if (fitsRegularPattern<int>(Mid, 1, End, Indices.size() + 1, 2))
   2805     Ws = Op->getOperand(1);
   2806   else
   2807     return SDValue();
   2808 
   2809   return DAG.getNode(MipsISD::PCKOD, SDLoc(Op), ResTy, Ws, Wt);
   2810 }
   2811 
   2812 // Lower VECTOR_SHUFFLE into VSHF.
   2813 //
   2814 // This mostly consists of converting the shuffle indices in Indices into a
   2815 // BUILD_VECTOR and adding it as an operand to the resulting VSHF. There is
   2816 // also code to eliminate unused operands of the VECTOR_SHUFFLE. For example,
   2817 // if the type is v8i16 and all the indices are less than 8 then the second
   2818 // operand is unused and can be replaced with anything. We choose to replace it
   2819 // with the used operand since this reduces the number of instructions overall.
   2820 static SDValue lowerVECTOR_SHUFFLE_VSHF(SDValue Op, EVT ResTy,
   2821                                         SmallVector<int, 16> Indices,
   2822                                         SelectionDAG &DAG) {
   2823   SmallVector<SDValue, 16> Ops;
   2824   SDValue Op0;
   2825   SDValue Op1;
   2826   EVT MaskVecTy = ResTy.changeVectorElementTypeToInteger();
   2827   EVT MaskEltTy = MaskVecTy.getVectorElementType();
   2828   bool Using1stVec = false;
   2829   bool Using2ndVec = false;
   2830   SDLoc DL(Op);
   2831   int ResTyNumElts = ResTy.getVectorNumElements();
   2832 
   2833   for (int i = 0; i < ResTyNumElts; ++i) {
   2834     // Idx == -1 means UNDEF
   2835     int Idx = Indices[i];
   2836 
   2837     if (0 <= Idx && Idx < ResTyNumElts)
   2838       Using1stVec = true;
   2839     if (ResTyNumElts <= Idx && Idx < ResTyNumElts * 2)
   2840       Using2ndVec = true;
   2841   }
   2842 
   2843   for (SmallVector<int, 16>::iterator I = Indices.begin(); I != Indices.end();
   2844        ++I)
   2845     Ops.push_back(DAG.getTargetConstant(*I, DL, MaskEltTy));
   2846 
   2847   SDValue MaskVec = DAG.getBuildVector(MaskVecTy, DL, Ops);
   2848 
   2849   if (Using1stVec && Using2ndVec) {
   2850     Op0 = Op->getOperand(0);
   2851     Op1 = Op->getOperand(1);
   2852   } else if (Using1stVec)
   2853     Op0 = Op1 = Op->getOperand(0);
   2854   else if (Using2ndVec)
   2855     Op0 = Op1 = Op->getOperand(1);
   2856   else
   2857     llvm_unreachable("shuffle vector mask references neither vector operand?");
   2858 
   2859   // VECTOR_SHUFFLE concatenates the vectors in an vectorwise fashion.
   2860   // <0b00, 0b01> + <0b10, 0b11> -> <0b00, 0b01, 0b10, 0b11>
   2861   // VSHF concatenates the vectors in a bitwise fashion:
   2862   // <0b00, 0b01> + <0b10, 0b11> ->
   2863   // 0b0100       + 0b1110       -> 0b01001110
   2864   //                                <0b10, 0b11, 0b00, 0b01>
   2865   // We must therefore swap the operands to get the correct result.
   2866   return DAG.getNode(MipsISD::VSHF, DL, ResTy, MaskVec, Op1, Op0);
   2867 }
   2868 
   2869 // Lower VECTOR_SHUFFLE into one of a number of instructions depending on the
   2870 // indices in the shuffle.
   2871 SDValue MipsSETargetLowering::lowerVECTOR_SHUFFLE(SDValue Op,
   2872                                                   SelectionDAG &DAG) const {
   2873   ShuffleVectorSDNode *Node = cast<ShuffleVectorSDNode>(Op);
   2874   EVT ResTy = Op->getValueType(0);
   2875 
   2876   if (!ResTy.is128BitVector())
   2877     return SDValue();
   2878 
   2879   int ResTyNumElts = ResTy.getVectorNumElements();
   2880   SmallVector<int, 16> Indices;
   2881 
   2882   for (int i = 0; i < ResTyNumElts; ++i)
   2883     Indices.push_back(Node->getMaskElt(i));
   2884 
   2885   // splati.[bhwd] is preferable to the others but is matched from
   2886   // MipsISD::VSHF.
   2887   if (isVECTOR_SHUFFLE_SPLATI(Op, ResTy, Indices, DAG))
   2888     return lowerVECTOR_SHUFFLE_VSHF(Op, ResTy, Indices, DAG);
   2889   SDValue Result;
   2890   if ((Result = lowerVECTOR_SHUFFLE_ILVEV(Op, ResTy, Indices, DAG)))
   2891     return Result;
   2892   if ((Result = lowerVECTOR_SHUFFLE_ILVOD(Op, ResTy, Indices, DAG)))
   2893     return Result;
   2894   if ((Result = lowerVECTOR_SHUFFLE_ILVL(Op, ResTy, Indices, DAG)))
   2895     return Result;
   2896   if ((Result = lowerVECTOR_SHUFFLE_ILVR(Op, ResTy, Indices, DAG)))
   2897     return Result;
   2898   if ((Result = lowerVECTOR_SHUFFLE_PCKEV(Op, ResTy, Indices, DAG)))
   2899     return Result;
   2900   if ((Result = lowerVECTOR_SHUFFLE_PCKOD(Op, ResTy, Indices, DAG)))
   2901     return Result;
   2902   if ((Result = lowerVECTOR_SHUFFLE_SHF(Op, ResTy, Indices, DAG)))
   2903     return Result;
   2904   return lowerVECTOR_SHUFFLE_VSHF(Op, ResTy, Indices, DAG);
   2905 }
   2906 
   2907 MachineBasicBlock *
   2908 MipsSETargetLowering::emitBPOSGE32(MachineInstr &MI,
   2909                                    MachineBasicBlock *BB) const {
   2910   // $bb:
   2911   //  bposge32_pseudo $vr0
   2912   //  =>
   2913   // $bb:
   2914   //  bposge32 $tbb
   2915   // $fbb:
   2916   //  li $vr2, 0
   2917   //  b $sink
   2918   // $tbb:
   2919   //  li $vr1, 1
   2920   // $sink:
   2921   //  $vr0 = phi($vr2, $fbb, $vr1, $tbb)
   2922 
   2923   MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
   2924   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
   2925   const TargetRegisterClass *RC = &Mips::GPR32RegClass;
   2926   DebugLoc DL = MI.getDebugLoc();
   2927   const BasicBlock *LLVM_BB = BB->getBasicBlock();
   2928   MachineFunction::iterator It = std::next(MachineFunction::iterator(BB));
   2929   MachineFunction *F = BB->getParent();
   2930   MachineBasicBlock *FBB = F->CreateMachineBasicBlock(LLVM_BB);
   2931   MachineBasicBlock *TBB = F->CreateMachineBasicBlock(LLVM_BB);
   2932   MachineBasicBlock *Sink  = F->CreateMachineBasicBlock(LLVM_BB);
   2933   F->insert(It, FBB);
   2934   F->insert(It, TBB);
   2935   F->insert(It, Sink);
   2936 
   2937   // Transfer the remainder of BB and its successor edges to Sink.
   2938   Sink->splice(Sink->begin(), BB, std::next(MachineBasicBlock::iterator(MI)),
   2939                BB->end());
   2940   Sink->transferSuccessorsAndUpdatePHIs(BB);
   2941 
   2942   // Add successors.
   2943   BB->addSuccessor(FBB);
   2944   BB->addSuccessor(TBB);
   2945   FBB->addSuccessor(Sink);
   2946   TBB->addSuccessor(Sink);
   2947 
   2948   // Insert the real bposge32 instruction to $BB.
   2949   BuildMI(BB, DL, TII->get(Mips::BPOSGE32)).addMBB(TBB);
   2950   // Insert the real bposge32c instruction to $BB.
   2951   BuildMI(BB, DL, TII->get(Mips::BPOSGE32C_MMR3)).addMBB(TBB);
   2952 
   2953   // Fill $FBB.
   2954   unsigned VR2 = RegInfo.createVirtualRegister(RC);
   2955   BuildMI(*FBB, FBB->end(), DL, TII->get(Mips::ADDiu), VR2)
   2956     .addReg(Mips::ZERO).addImm(0);
   2957   BuildMI(*FBB, FBB->end(), DL, TII->get(Mips::B)).addMBB(Sink);
   2958 
   2959   // Fill $TBB.
   2960   unsigned VR1 = RegInfo.createVirtualRegister(RC);
   2961   BuildMI(*TBB, TBB->end(), DL, TII->get(Mips::ADDiu), VR1)
   2962     .addReg(Mips::ZERO).addImm(1);
   2963 
   2964   // Insert phi function to $Sink.
   2965   BuildMI(*Sink, Sink->begin(), DL, TII->get(Mips::PHI),
   2966           MI.getOperand(0).getReg())
   2967       .addReg(VR2)
   2968       .addMBB(FBB)
   2969       .addReg(VR1)
   2970       .addMBB(TBB);
   2971 
   2972   MI.eraseFromParent(); // The pseudo instruction is gone now.
   2973   return Sink;
   2974 }
   2975 
   2976 MachineBasicBlock *MipsSETargetLowering::emitMSACBranchPseudo(
   2977     MachineInstr &MI, MachineBasicBlock *BB, unsigned BranchOp) const {
   2978   // $bb:
   2979   //  vany_nonzero $rd, $ws
   2980   //  =>
   2981   // $bb:
   2982   //  bnz.b $ws, $tbb
   2983   //  b $fbb
   2984   // $fbb:
   2985   //  li $rd1, 0
   2986   //  b $sink
   2987   // $tbb:
   2988   //  li $rd2, 1
   2989   // $sink:
   2990   //  $rd = phi($rd1, $fbb, $rd2, $tbb)
   2991 
   2992   MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
   2993   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
   2994   const TargetRegisterClass *RC = &Mips::GPR32RegClass;
   2995   DebugLoc DL = MI.getDebugLoc();
   2996   const BasicBlock *LLVM_BB = BB->getBasicBlock();
   2997   MachineFunction::iterator It = std::next(MachineFunction::iterator(BB));
   2998   MachineFunction *F = BB->getParent();
   2999   MachineBasicBlock *FBB = F->CreateMachineBasicBlock(LLVM_BB);
   3000   MachineBasicBlock *TBB = F->CreateMachineBasicBlock(LLVM_BB);
   3001   MachineBasicBlock *Sink  = F->CreateMachineBasicBlock(LLVM_BB);
   3002   F->insert(It, FBB);
   3003   F->insert(It, TBB);
   3004   F->insert(It, Sink);
   3005 
   3006   // Transfer the remainder of BB and its successor edges to Sink.
   3007   Sink->splice(Sink->begin(), BB, std::next(MachineBasicBlock::iterator(MI)),
   3008                BB->end());
   3009   Sink->transferSuccessorsAndUpdatePHIs(BB);
   3010 
   3011   // Add successors.
   3012   BB->addSuccessor(FBB);
   3013   BB->addSuccessor(TBB);
   3014   FBB->addSuccessor(Sink);
   3015   TBB->addSuccessor(Sink);
   3016 
   3017   // Insert the real bnz.b instruction to $BB.
   3018   BuildMI(BB, DL, TII->get(BranchOp))
   3019       .addReg(MI.getOperand(1).getReg())
   3020       .addMBB(TBB);
   3021 
   3022   // Fill $FBB.
   3023   unsigned RD1 = RegInfo.createVirtualRegister(RC);
   3024   BuildMI(*FBB, FBB->end(), DL, TII->get(Mips::ADDiu), RD1)
   3025     .addReg(Mips::ZERO).addImm(0);
   3026   BuildMI(*FBB, FBB->end(), DL, TII->get(Mips::B)).addMBB(Sink);
   3027 
   3028   // Fill $TBB.
   3029   unsigned RD2 = RegInfo.createVirtualRegister(RC);
   3030   BuildMI(*TBB, TBB->end(), DL, TII->get(Mips::ADDiu), RD2)
   3031     .addReg(Mips::ZERO).addImm(1);
   3032 
   3033   // Insert phi function to $Sink.
   3034   BuildMI(*Sink, Sink->begin(), DL, TII->get(Mips::PHI),
   3035           MI.getOperand(0).getReg())
   3036       .addReg(RD1)
   3037       .addMBB(FBB)
   3038       .addReg(RD2)
   3039       .addMBB(TBB);
   3040 
   3041   MI.eraseFromParent(); // The pseudo instruction is gone now.
   3042   return Sink;
   3043 }
   3044 
   3045 // Emit the COPY_FW pseudo instruction.
   3046 //
   3047 // copy_fw_pseudo $fd, $ws, n
   3048 // =>
   3049 // copy_u_w $rt, $ws, $n
   3050 // mtc1     $rt, $fd
   3051 //
   3052 // When n is zero, the equivalent operation can be performed with (potentially)
   3053 // zero instructions due to register overlaps. This optimization is never valid
   3054 // for lane 1 because it would require FR=0 mode which isn't supported by MSA.
   3055 MachineBasicBlock *
   3056 MipsSETargetLowering::emitCOPY_FW(MachineInstr &MI,
   3057                                   MachineBasicBlock *BB) const {
   3058   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
   3059   MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
   3060   DebugLoc DL = MI.getDebugLoc();
   3061   unsigned Fd = MI.getOperand(0).getReg();
   3062   unsigned Ws = MI.getOperand(1).getReg();
   3063   unsigned Lane = MI.getOperand(2).getImm();
   3064 
   3065   if (Lane == 0) {
   3066     unsigned Wt = Ws;
   3067     if (!Subtarget.useOddSPReg()) {
   3068       // We must copy to an even-numbered MSA register so that the
   3069       // single-precision sub-register is also guaranteed to be even-numbered.
   3070       Wt = RegInfo.createVirtualRegister(&Mips::MSA128WEvensRegClass);
   3071 
   3072       BuildMI(*BB, MI, DL, TII->get(Mips::COPY), Wt).addReg(Ws);
   3073     }
   3074 
   3075     BuildMI(*BB, MI, DL, TII->get(Mips::COPY), Fd).addReg(Wt, 0, Mips::sub_lo);
   3076   } else {
   3077     unsigned Wt = RegInfo.createVirtualRegister(
   3078         Subtarget.useOddSPReg() ? &Mips::MSA128WRegClass :
   3079                                   &Mips::MSA128WEvensRegClass);
   3080 
   3081     BuildMI(*BB, MI, DL, TII->get(Mips::SPLATI_W), Wt).addReg(Ws).addImm(Lane);
   3082     BuildMI(*BB, MI, DL, TII->get(Mips::COPY), Fd).addReg(Wt, 0, Mips::sub_lo);
   3083   }
   3084 
   3085   MI.eraseFromParent(); // The pseudo instruction is gone now.
   3086   return BB;
   3087 }
   3088 
   3089 // Emit the COPY_FD pseudo instruction.
   3090 //
   3091 // copy_fd_pseudo $fd, $ws, n
   3092 // =>
   3093 // splati.d $wt, $ws, $n
   3094 // copy $fd, $wt:sub_64
   3095 //
   3096 // When n is zero, the equivalent operation can be performed with (potentially)
   3097 // zero instructions due to register overlaps. This optimization is always
   3098 // valid because FR=1 mode which is the only supported mode in MSA.
   3099 MachineBasicBlock *
   3100 MipsSETargetLowering::emitCOPY_FD(MachineInstr &MI,
   3101                                   MachineBasicBlock *BB) const {
   3102   assert(Subtarget.isFP64bit());
   3103 
   3104   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
   3105   MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
   3106   unsigned Fd = MI.getOperand(0).getReg();
   3107   unsigned Ws = MI.getOperand(1).getReg();
   3108   unsigned Lane = MI.getOperand(2).getImm() * 2;
   3109   DebugLoc DL = MI.getDebugLoc();
   3110 
   3111   if (Lane == 0)
   3112     BuildMI(*BB, MI, DL, TII->get(Mips::COPY), Fd).addReg(Ws, 0, Mips::sub_64);
   3113   else {
   3114     unsigned Wt = RegInfo.createVirtualRegister(&Mips::MSA128DRegClass);
   3115 
   3116     BuildMI(*BB, MI, DL, TII->get(Mips::SPLATI_D), Wt).addReg(Ws).addImm(1);
   3117     BuildMI(*BB, MI, DL, TII->get(Mips::COPY), Fd).addReg(Wt, 0, Mips::sub_64);
   3118   }
   3119 
   3120   MI.eraseFromParent(); // The pseudo instruction is gone now.
   3121   return BB;
   3122 }
   3123 
   3124 // Emit the INSERT_FW pseudo instruction.
   3125 //
   3126 // insert_fw_pseudo $wd, $wd_in, $n, $fs
   3127 // =>
   3128 // subreg_to_reg $wt:sub_lo, $fs
   3129 // insve_w $wd[$n], $wd_in, $wt[0]
   3130 MachineBasicBlock *
   3131 MipsSETargetLowering::emitINSERT_FW(MachineInstr &MI,
   3132                                     MachineBasicBlock *BB) const {
   3133   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
   3134   MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
   3135   DebugLoc DL = MI.getDebugLoc();
   3136   unsigned Wd = MI.getOperand(0).getReg();
   3137   unsigned Wd_in = MI.getOperand(1).getReg();
   3138   unsigned Lane = MI.getOperand(2).getImm();
   3139   unsigned Fs = MI.getOperand(3).getReg();
   3140   unsigned Wt = RegInfo.createVirtualRegister(
   3141       Subtarget.useOddSPReg() ? &Mips::MSA128WRegClass :
   3142                                 &Mips::MSA128WEvensRegClass);
   3143 
   3144   BuildMI(*BB, MI, DL, TII->get(Mips::SUBREG_TO_REG), Wt)
   3145       .addImm(0)
   3146       .addReg(Fs)
   3147       .addImm(Mips::sub_lo);
   3148   BuildMI(*BB, MI, DL, TII->get(Mips::INSVE_W), Wd)
   3149       .addReg(Wd_in)
   3150       .addImm(Lane)
   3151       .addReg(Wt)
   3152       .addImm(0);
   3153 
   3154   MI.eraseFromParent(); // The pseudo instruction is gone now.
   3155   return BB;
   3156 }
   3157 
   3158 // Emit the INSERT_FD pseudo instruction.
   3159 //
   3160 // insert_fd_pseudo $wd, $fs, n
   3161 // =>
   3162 // subreg_to_reg $wt:sub_64, $fs
   3163 // insve_d $wd[$n], $wd_in, $wt[0]
   3164 MachineBasicBlock *
   3165 MipsSETargetLowering::emitINSERT_FD(MachineInstr &MI,
   3166                                     MachineBasicBlock *BB) const {
   3167   assert(Subtarget.isFP64bit());
   3168 
   3169   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
   3170   MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
   3171   DebugLoc DL = MI.getDebugLoc();
   3172   unsigned Wd = MI.getOperand(0).getReg();
   3173   unsigned Wd_in = MI.getOperand(1).getReg();
   3174   unsigned Lane = MI.getOperand(2).getImm();
   3175   unsigned Fs = MI.getOperand(3).getReg();
   3176   unsigned Wt = RegInfo.createVirtualRegister(&Mips::MSA128DRegClass);
   3177 
   3178   BuildMI(*BB, MI, DL, TII->get(Mips::SUBREG_TO_REG), Wt)
   3179       .addImm(0)
   3180       .addReg(Fs)
   3181       .addImm(Mips::sub_64);
   3182   BuildMI(*BB, MI, DL, TII->get(Mips::INSVE_D), Wd)
   3183       .addReg(Wd_in)
   3184       .addImm(Lane)
   3185       .addReg(Wt)
   3186       .addImm(0);
   3187 
   3188   MI.eraseFromParent(); // The pseudo instruction is gone now.
   3189   return BB;
   3190 }
   3191 
   3192 // Emit the INSERT_([BHWD]|F[WD])_VIDX pseudo instruction.
   3193 //
   3194 // For integer:
   3195 // (INSERT_([BHWD]|F[WD])_PSEUDO $wd, $wd_in, $n, $rs)
   3196 // =>
   3197 // (SLL $lanetmp1, $lane, <log2size)
   3198 // (SLD_B $wdtmp1, $wd_in, $wd_in, $lanetmp1)
   3199 // (INSERT_[BHWD], $wdtmp2, $wdtmp1, 0, $rs)
   3200 // (NEG $lanetmp2, $lanetmp1)
   3201 // (SLD_B $wd, $wdtmp2, $wdtmp2,  $lanetmp2)
   3202 //
   3203 // For floating point:
   3204 // (INSERT_([BHWD]|F[WD])_PSEUDO $wd, $wd_in, $n, $fs)
   3205 // =>
   3206 // (SUBREG_TO_REG $wt, $fs, <subreg>)
   3207 // (SLL $lanetmp1, $lane, <log2size)
   3208 // (SLD_B $wdtmp1, $wd_in, $wd_in, $lanetmp1)
   3209 // (INSVE_[WD], $wdtmp2, 0, $wdtmp1, 0)
   3210 // (NEG $lanetmp2, $lanetmp1)
   3211 // (SLD_B $wd, $wdtmp2, $wdtmp2,  $lanetmp2)
   3212 MachineBasicBlock *MipsSETargetLowering::emitINSERT_DF_VIDX(
   3213     MachineInstr &MI, MachineBasicBlock *BB, unsigned EltSizeInBytes,
   3214     bool IsFP) const {
   3215   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
   3216   MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
   3217   DebugLoc DL = MI.getDebugLoc();
   3218   unsigned Wd = MI.getOperand(0).getReg();
   3219   unsigned SrcVecReg = MI.getOperand(1).getReg();
   3220   unsigned LaneReg = MI.getOperand(2).getReg();
   3221   unsigned SrcValReg = MI.getOperand(3).getReg();
   3222 
   3223   const TargetRegisterClass *VecRC = nullptr;
   3224   // FIXME: This should be true for N32 too.
   3225   const TargetRegisterClass *GPRRC =
   3226       Subtarget.isABI_N64() ? &Mips::GPR64RegClass : &Mips::GPR32RegClass;
   3227   unsigned SubRegIdx = Subtarget.isABI_N64() ? Mips::sub_32 : 0;
   3228   unsigned ShiftOp = Subtarget.isABI_N64() ? Mips::DSLL : Mips::SLL;
   3229   unsigned EltLog2Size;
   3230   unsigned InsertOp = 0;
   3231   unsigned InsveOp = 0;
   3232   switch (EltSizeInBytes) {
   3233   default:
   3234     llvm_unreachable("Unexpected size");
   3235   case 1:
   3236     EltLog2Size = 0;
   3237     InsertOp = Mips::INSERT_B;
   3238     InsveOp = Mips::INSVE_B;
   3239     VecRC = &Mips::MSA128BRegClass;
   3240     break;
   3241   case 2:
   3242     EltLog2Size = 1;
   3243     InsertOp = Mips::INSERT_H;
   3244     InsveOp = Mips::INSVE_H;
   3245     VecRC = &Mips::MSA128HRegClass;
   3246     break;
   3247   case 4:
   3248     EltLog2Size = 2;
   3249     InsertOp = Mips::INSERT_W;
   3250     InsveOp = Mips::INSVE_W;
   3251     VecRC = &Mips::MSA128WRegClass;
   3252     break;
   3253   case 8:
   3254     EltLog2Size = 3;
   3255     InsertOp = Mips::INSERT_D;
   3256     InsveOp = Mips::INSVE_D;
   3257     VecRC = &Mips::MSA128DRegClass;
   3258     break;
   3259   }
   3260 
   3261   if (IsFP) {
   3262     unsigned Wt = RegInfo.createVirtualRegister(VecRC);
   3263     BuildMI(*BB, MI, DL, TII->get(Mips::SUBREG_TO_REG), Wt)
   3264         .addImm(0)
   3265         .addReg(SrcValReg)
   3266         .addImm(EltSizeInBytes == 8 ? Mips::sub_64 : Mips::sub_lo);
   3267     SrcValReg = Wt;
   3268   }
   3269 
   3270   // Convert the lane index into a byte index
   3271   if (EltSizeInBytes != 1) {
   3272     unsigned LaneTmp1 = RegInfo.createVirtualRegister(GPRRC);
   3273     BuildMI(*BB, MI, DL, TII->get(ShiftOp), LaneTmp1)
   3274         .addReg(LaneReg)
   3275         .addImm(EltLog2Size);
   3276     LaneReg = LaneTmp1;
   3277   }
   3278 
   3279   // Rotate bytes around so that the desired lane is element zero
   3280   unsigned WdTmp1 = RegInfo.createVirtualRegister(VecRC);
   3281   BuildMI(*BB, MI, DL, TII->get(Mips::SLD_B), WdTmp1)
   3282       .addReg(SrcVecReg)
   3283       .addReg(SrcVecReg)
   3284       .addReg(LaneReg, 0, SubRegIdx);
   3285 
   3286   unsigned WdTmp2 = RegInfo.createVirtualRegister(VecRC);
   3287   if (IsFP) {
   3288     // Use insve.df to insert to element zero
   3289     BuildMI(*BB, MI, DL, TII->get(InsveOp), WdTmp2)
   3290         .addReg(WdTmp1)
   3291         .addImm(0)
   3292         .addReg(SrcValReg)
   3293         .addImm(0);
   3294   } else {
   3295     // Use insert.df to insert to element zero
   3296     BuildMI(*BB, MI, DL, TII->get(InsertOp), WdTmp2)
   3297         .addReg(WdTmp1)
   3298         .addReg(SrcValReg)
   3299         .addImm(0);
   3300   }
   3301 
   3302   // Rotate elements the rest of the way for a full rotation.
   3303   // sld.df inteprets $rt modulo the number of columns so we only need to negate
   3304   // the lane index to do this.
   3305   unsigned LaneTmp2 = RegInfo.createVirtualRegister(GPRRC);
   3306   BuildMI(*BB, MI, DL, TII->get(Subtarget.isABI_N64() ? Mips::DSUB : Mips::SUB),
   3307           LaneTmp2)
   3308       .addReg(Subtarget.isABI_N64() ? Mips::ZERO_64 : Mips::ZERO)
   3309       .addReg(LaneReg);
   3310   BuildMI(*BB, MI, DL, TII->get(Mips::SLD_B), Wd)
   3311       .addReg(WdTmp2)
   3312       .addReg(WdTmp2)
   3313       .addReg(LaneTmp2, 0, SubRegIdx);
   3314 
   3315   MI.eraseFromParent(); // The pseudo instruction is gone now.
   3316   return BB;
   3317 }
   3318 
   3319 // Emit the FILL_FW pseudo instruction.
   3320 //
   3321 // fill_fw_pseudo $wd, $fs
   3322 // =>
   3323 // implicit_def $wt1
   3324 // insert_subreg $wt2:subreg_lo, $wt1, $fs
   3325 // splati.w $wd, $wt2[0]
   3326 MachineBasicBlock *
   3327 MipsSETargetLowering::emitFILL_FW(MachineInstr &MI,
   3328                                   MachineBasicBlock *BB) const {
   3329   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
   3330   MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
   3331   DebugLoc DL = MI.getDebugLoc();
   3332   unsigned Wd = MI.getOperand(0).getReg();
   3333   unsigned Fs = MI.getOperand(1).getReg();
   3334   unsigned Wt1 = RegInfo.createVirtualRegister(&Mips::MSA128WRegClass);
   3335   unsigned Wt2 = RegInfo.createVirtualRegister(&Mips::MSA128WRegClass);
   3336 
   3337   BuildMI(*BB, MI, DL, TII->get(Mips::IMPLICIT_DEF), Wt1);
   3338   BuildMI(*BB, MI, DL, TII->get(Mips::INSERT_SUBREG), Wt2)
   3339       .addReg(Wt1)
   3340       .addReg(Fs)
   3341       .addImm(Mips::sub_lo);
   3342   BuildMI(*BB, MI, DL, TII->get(Mips::SPLATI_W), Wd).addReg(Wt2).addImm(0);
   3343 
   3344   MI.eraseFromParent(); // The pseudo instruction is gone now.
   3345   return BB;
   3346 }
   3347 
   3348 // Emit the FILL_FD pseudo instruction.
   3349 //
   3350 // fill_fd_pseudo $wd, $fs
   3351 // =>
   3352 // implicit_def $wt1
   3353 // insert_subreg $wt2:subreg_64, $wt1, $fs
   3354 // splati.d $wd, $wt2[0]
   3355 MachineBasicBlock *
   3356 MipsSETargetLowering::emitFILL_FD(MachineInstr &MI,
   3357                                   MachineBasicBlock *BB) const {
   3358   assert(Subtarget.isFP64bit());
   3359 
   3360   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
   3361   MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
   3362   DebugLoc DL = MI.getDebugLoc();
   3363   unsigned Wd = MI.getOperand(0).getReg();
   3364   unsigned Fs = MI.getOperand(1).getReg();
   3365   unsigned Wt1 = RegInfo.createVirtualRegister(&Mips::MSA128DRegClass);
   3366   unsigned Wt2 = RegInfo.createVirtualRegister(&Mips::MSA128DRegClass);
   3367 
   3368   BuildMI(*BB, MI, DL, TII->get(Mips::IMPLICIT_DEF), Wt1);
   3369   BuildMI(*BB, MI, DL, TII->get(Mips::INSERT_SUBREG), Wt2)
   3370       .addReg(Wt1)
   3371       .addReg(Fs)
   3372       .addImm(Mips::sub_64);
   3373   BuildMI(*BB, MI, DL, TII->get(Mips::SPLATI_D), Wd).addReg(Wt2).addImm(0);
   3374 
   3375   MI.eraseFromParent(); // The pseudo instruction is gone now.
   3376   return BB;
   3377 }
   3378 
   3379 // Emit the FEXP2_W_1 pseudo instructions.
   3380 //
   3381 // fexp2_w_1_pseudo $wd, $wt
   3382 // =>
   3383 // ldi.w $ws, 1
   3384 // fexp2.w $wd, $ws, $wt
   3385 MachineBasicBlock *
   3386 MipsSETargetLowering::emitFEXP2_W_1(MachineInstr &MI,
   3387                                     MachineBasicBlock *BB) const {
   3388   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
   3389   MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
   3390   const TargetRegisterClass *RC = &Mips::MSA128WRegClass;
   3391   unsigned Ws1 = RegInfo.createVirtualRegister(RC);
   3392   unsigned Ws2 = RegInfo.createVirtualRegister(RC);
   3393   DebugLoc DL = MI.getDebugLoc();
   3394 
   3395   // Splat 1.0 into a vector
   3396   BuildMI(*BB, MI, DL, TII->get(Mips::LDI_W), Ws1).addImm(1);
   3397   BuildMI(*BB, MI, DL, TII->get(Mips::FFINT_U_W), Ws2).addReg(Ws1);
   3398 
   3399   // Emit 1.0 * fexp2(Wt)
   3400   BuildMI(*BB, MI, DL, TII->get(Mips::FEXP2_W), MI.getOperand(0).getReg())
   3401       .addReg(Ws2)
   3402       .addReg(MI.getOperand(1).getReg());
   3403 
   3404   MI.eraseFromParent(); // The pseudo instruction is gone now.
   3405   return BB;
   3406 }
   3407 
   3408 // Emit the FEXP2_D_1 pseudo instructions.
   3409 //
   3410 // fexp2_d_1_pseudo $wd, $wt
   3411 // =>
   3412 // ldi.d $ws, 1
   3413 // fexp2.d $wd, $ws, $wt
   3414 MachineBasicBlock *
   3415 MipsSETargetLowering::emitFEXP2_D_1(MachineInstr &MI,
   3416                                     MachineBasicBlock *BB) const {
   3417   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
   3418   MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
   3419   const TargetRegisterClass *RC = &Mips::MSA128DRegClass;
   3420   unsigned Ws1 = RegInfo.createVirtualRegister(RC);
   3421   unsigned Ws2 = RegInfo.createVirtualRegister(RC);
   3422   DebugLoc DL = MI.getDebugLoc();
   3423 
   3424   // Splat 1.0 into a vector
   3425   BuildMI(*BB, MI, DL, TII->get(Mips::LDI_D), Ws1).addImm(1);
   3426   BuildMI(*BB, MI, DL, TII->get(Mips::FFINT_U_D), Ws2).addReg(Ws1);
   3427 
   3428   // Emit 1.0 * fexp2(Wt)
   3429   BuildMI(*BB, MI, DL, TII->get(Mips::FEXP2_D), MI.getOperand(0).getReg())
   3430       .addReg(Ws2)
   3431       .addReg(MI.getOperand(1).getReg());
   3432 
   3433   MI.eraseFromParent(); // The pseudo instruction is gone now.
   3434   return BB;
   3435 }
   3436