1 //===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements the SelectionDAG class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/SelectionDAG.h" 15 #include "SDNodeDbgValue.h" 16 #include "llvm/ADT/APSInt.h" 17 #include "llvm/ADT/SetVector.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/StringExtras.h" 22 #include "llvm/Analysis/ValueTracking.h" 23 #include "llvm/CodeGen/MachineBasicBlock.h" 24 #include "llvm/CodeGen/MachineConstantPool.h" 25 #include "llvm/CodeGen/MachineFrameInfo.h" 26 #include "llvm/CodeGen/MachineModuleInfo.h" 27 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 28 #include "llvm/IR/CallingConv.h" 29 #include "llvm/IR/Constants.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/DebugInfo.h" 32 #include "llvm/IR/DerivedTypes.h" 33 #include "llvm/IR/Function.h" 34 #include "llvm/IR/GlobalAlias.h" 35 #include "llvm/IR/GlobalVariable.h" 36 #include "llvm/IR/Intrinsics.h" 37 #include "llvm/Support/Debug.h" 38 #include "llvm/Support/ErrorHandling.h" 39 #include "llvm/Support/ManagedStatic.h" 40 #include "llvm/Support/MathExtras.h" 41 #include "llvm/Support/Mutex.h" 42 #include "llvm/Support/raw_ostream.h" 43 #include "llvm/Target/TargetInstrInfo.h" 44 #include "llvm/Target/TargetIntrinsicInfo.h" 45 #include "llvm/Target/TargetLowering.h" 46 #include "llvm/Target/TargetMachine.h" 47 #include "llvm/Target/TargetOptions.h" 48 #include "llvm/Target/TargetRegisterInfo.h" 49 #include "llvm/Target/TargetSubtargetInfo.h" 50 #include <algorithm> 51 #include <cmath> 52 #include <utility> 53 54 using namespace llvm; 55 56 /// makeVTList - Return an instance of the SDVTList struct initialized with the 57 /// specified members. 58 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) { 59 SDVTList Res = {VTs, NumVTs}; 60 return Res; 61 } 62 63 // Default null implementations of the callbacks. 64 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {} 65 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {} 66 67 //===----------------------------------------------------------------------===// 68 // ConstantFPSDNode Class 69 //===----------------------------------------------------------------------===// 70 71 /// isExactlyValue - We don't rely on operator== working on double values, as 72 /// it returns true for things that are clearly not equal, like -0.0 and 0.0. 73 /// As such, this method can be used to do an exact bit-for-bit comparison of 74 /// two floating point values. 75 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const { 76 return getValueAPF().bitwiseIsEqual(V); 77 } 78 79 bool ConstantFPSDNode::isValueValidForType(EVT VT, 80 const APFloat& Val) { 81 assert(VT.isFloatingPoint() && "Can only convert between FP types"); 82 83 // convert modifies in place, so make a copy. 84 APFloat Val2 = APFloat(Val); 85 bool losesInfo; 86 (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT), 87 APFloat::rmNearestTiesToEven, 88 &losesInfo); 89 return !losesInfo; 90 } 91 92 //===----------------------------------------------------------------------===// 93 // ISD Namespace 94 //===----------------------------------------------------------------------===// 95 96 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) { 97 auto *BV = dyn_cast<BuildVectorSDNode>(N); 98 if (!BV) 99 return false; 100 101 APInt SplatUndef; 102 unsigned SplatBitSize; 103 bool HasUndefs; 104 EVT EltVT = N->getValueType(0).getVectorElementType(); 105 return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs) && 106 EltVT.getSizeInBits() >= SplatBitSize; 107 } 108 109 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be 110 // specializations of the more general isConstantSplatVector()? 111 112 bool ISD::isBuildVectorAllOnes(const SDNode *N) { 113 // Look through a bit convert. 114 while (N->getOpcode() == ISD::BITCAST) 115 N = N->getOperand(0).getNode(); 116 117 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 118 119 unsigned i = 0, e = N->getNumOperands(); 120 121 // Skip over all of the undef values. 122 while (i != e && N->getOperand(i).isUndef()) 123 ++i; 124 125 // Do not accept an all-undef vector. 126 if (i == e) return false; 127 128 // Do not accept build_vectors that aren't all constants or which have non-~0 129 // elements. We have to be a bit careful here, as the type of the constant 130 // may not be the same as the type of the vector elements due to type 131 // legalization (the elements are promoted to a legal type for the target and 132 // a vector of a type may be legal when the base element type is not). 133 // We only want to check enough bits to cover the vector elements, because 134 // we care if the resultant vector is all ones, not whether the individual 135 // constants are. 136 SDValue NotZero = N->getOperand(i); 137 unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits(); 138 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) { 139 if (CN->getAPIntValue().countTrailingOnes() < EltSize) 140 return false; 141 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) { 142 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize) 143 return false; 144 } else 145 return false; 146 147 // Okay, we have at least one ~0 value, check to see if the rest match or are 148 // undefs. Even with the above element type twiddling, this should be OK, as 149 // the same type legalization should have applied to all the elements. 150 for (++i; i != e; ++i) 151 if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef()) 152 return false; 153 return true; 154 } 155 156 bool ISD::isBuildVectorAllZeros(const SDNode *N) { 157 // Look through a bit convert. 158 while (N->getOpcode() == ISD::BITCAST) 159 N = N->getOperand(0).getNode(); 160 161 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 162 163 bool IsAllUndef = true; 164 for (const SDValue &Op : N->op_values()) { 165 if (Op.isUndef()) 166 continue; 167 IsAllUndef = false; 168 // Do not accept build_vectors that aren't all constants or which have non-0 169 // elements. We have to be a bit careful here, as the type of the constant 170 // may not be the same as the type of the vector elements due to type 171 // legalization (the elements are promoted to a legal type for the target 172 // and a vector of a type may be legal when the base element type is not). 173 // We only want to check enough bits to cover the vector elements, because 174 // we care if the resultant vector is all zeros, not whether the individual 175 // constants are. 176 unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits(); 177 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) { 178 if (CN->getAPIntValue().countTrailingZeros() < EltSize) 179 return false; 180 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) { 181 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize) 182 return false; 183 } else 184 return false; 185 } 186 187 // Do not accept an all-undef vector. 188 if (IsAllUndef) 189 return false; 190 return true; 191 } 192 193 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) { 194 if (N->getOpcode() != ISD::BUILD_VECTOR) 195 return false; 196 197 for (const SDValue &Op : N->op_values()) { 198 if (Op.isUndef()) 199 continue; 200 if (!isa<ConstantSDNode>(Op)) 201 return false; 202 } 203 return true; 204 } 205 206 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) { 207 if (N->getOpcode() != ISD::BUILD_VECTOR) 208 return false; 209 210 for (const SDValue &Op : N->op_values()) { 211 if (Op.isUndef()) 212 continue; 213 if (!isa<ConstantFPSDNode>(Op)) 214 return false; 215 } 216 return true; 217 } 218 219 bool ISD::allOperandsUndef(const SDNode *N) { 220 // Return false if the node has no operands. 221 // This is "logically inconsistent" with the definition of "all" but 222 // is probably the desired behavior. 223 if (N->getNumOperands() == 0) 224 return false; 225 226 for (const SDValue &Op : N->op_values()) 227 if (!Op.isUndef()) 228 return false; 229 230 return true; 231 } 232 233 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) { 234 switch (ExtType) { 235 case ISD::EXTLOAD: 236 return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND; 237 case ISD::SEXTLOAD: 238 return ISD::SIGN_EXTEND; 239 case ISD::ZEXTLOAD: 240 return ISD::ZERO_EXTEND; 241 default: 242 break; 243 } 244 245 llvm_unreachable("Invalid LoadExtType"); 246 } 247 248 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) { 249 // To perform this operation, we just need to swap the L and G bits of the 250 // operation. 251 unsigned OldL = (Operation >> 2) & 1; 252 unsigned OldG = (Operation >> 1) & 1; 253 return ISD::CondCode((Operation & ~6) | // Keep the N, U, E bits 254 (OldL << 1) | // New G bit 255 (OldG << 2)); // New L bit. 256 } 257 258 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) { 259 unsigned Operation = Op; 260 if (isInteger) 261 Operation ^= 7; // Flip L, G, E bits, but not U. 262 else 263 Operation ^= 15; // Flip all of the condition bits. 264 265 if (Operation > ISD::SETTRUE2) 266 Operation &= ~8; // Don't let N and U bits get set. 267 268 return ISD::CondCode(Operation); 269 } 270 271 272 /// For an integer comparison, return 1 if the comparison is a signed operation 273 /// and 2 if the result is an unsigned comparison. Return zero if the operation 274 /// does not depend on the sign of the input (setne and seteq). 275 static int isSignedOp(ISD::CondCode Opcode) { 276 switch (Opcode) { 277 default: llvm_unreachable("Illegal integer setcc operation!"); 278 case ISD::SETEQ: 279 case ISD::SETNE: return 0; 280 case ISD::SETLT: 281 case ISD::SETLE: 282 case ISD::SETGT: 283 case ISD::SETGE: return 1; 284 case ISD::SETULT: 285 case ISD::SETULE: 286 case ISD::SETUGT: 287 case ISD::SETUGE: return 2; 288 } 289 } 290 291 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2, 292 bool isInteger) { 293 if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 294 // Cannot fold a signed integer setcc with an unsigned integer setcc. 295 return ISD::SETCC_INVALID; 296 297 unsigned Op = Op1 | Op2; // Combine all of the condition bits. 298 299 // If the N and U bits get set then the resultant comparison DOES suddenly 300 // care about orderedness, and is true when ordered. 301 if (Op > ISD::SETTRUE2) 302 Op &= ~16; // Clear the U bit if the N bit is set. 303 304 // Canonicalize illegal integer setcc's. 305 if (isInteger && Op == ISD::SETUNE) // e.g. SETUGT | SETULT 306 Op = ISD::SETNE; 307 308 return ISD::CondCode(Op); 309 } 310 311 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2, 312 bool isInteger) { 313 if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 314 // Cannot fold a signed setcc with an unsigned setcc. 315 return ISD::SETCC_INVALID; 316 317 // Combine all of the condition bits. 318 ISD::CondCode Result = ISD::CondCode(Op1 & Op2); 319 320 // Canonicalize illegal integer setcc's. 321 if (isInteger) { 322 switch (Result) { 323 default: break; 324 case ISD::SETUO : Result = ISD::SETFALSE; break; // SETUGT & SETULT 325 case ISD::SETOEQ: // SETEQ & SETU[LG]E 326 case ISD::SETUEQ: Result = ISD::SETEQ ; break; // SETUGE & SETULE 327 case ISD::SETOLT: Result = ISD::SETULT ; break; // SETULT & SETNE 328 case ISD::SETOGT: Result = ISD::SETUGT ; break; // SETUGT & SETNE 329 } 330 } 331 332 return Result; 333 } 334 335 //===----------------------------------------------------------------------===// 336 // SDNode Profile Support 337 //===----------------------------------------------------------------------===// 338 339 /// AddNodeIDOpcode - Add the node opcode to the NodeID data. 340 /// 341 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC) { 342 ID.AddInteger(OpC); 343 } 344 345 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them 346 /// solely with their pointer. 347 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) { 348 ID.AddPointer(VTList.VTs); 349 } 350 351 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 352 /// 353 static void AddNodeIDOperands(FoldingSetNodeID &ID, 354 ArrayRef<SDValue> Ops) { 355 for (auto& Op : Ops) { 356 ID.AddPointer(Op.getNode()); 357 ID.AddInteger(Op.getResNo()); 358 } 359 } 360 361 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 362 /// 363 static void AddNodeIDOperands(FoldingSetNodeID &ID, 364 ArrayRef<SDUse> Ops) { 365 for (auto& Op : Ops) { 366 ID.AddPointer(Op.getNode()); 367 ID.AddInteger(Op.getResNo()); 368 } 369 } 370 371 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC, 372 SDVTList VTList, ArrayRef<SDValue> OpList) { 373 AddNodeIDOpcode(ID, OpC); 374 AddNodeIDValueTypes(ID, VTList); 375 AddNodeIDOperands(ID, OpList); 376 } 377 378 /// If this is an SDNode with special info, add this info to the NodeID data. 379 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) { 380 switch (N->getOpcode()) { 381 case ISD::TargetExternalSymbol: 382 case ISD::ExternalSymbol: 383 case ISD::MCSymbol: 384 llvm_unreachable("Should only be used on nodes with operands"); 385 default: break; // Normal nodes don't need extra info. 386 case ISD::TargetConstant: 387 case ISD::Constant: { 388 const ConstantSDNode *C = cast<ConstantSDNode>(N); 389 ID.AddPointer(C->getConstantIntValue()); 390 ID.AddBoolean(C->isOpaque()); 391 break; 392 } 393 case ISD::TargetConstantFP: 394 case ISD::ConstantFP: { 395 ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue()); 396 break; 397 } 398 case ISD::TargetGlobalAddress: 399 case ISD::GlobalAddress: 400 case ISD::TargetGlobalTLSAddress: 401 case ISD::GlobalTLSAddress: { 402 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N); 403 ID.AddPointer(GA->getGlobal()); 404 ID.AddInteger(GA->getOffset()); 405 ID.AddInteger(GA->getTargetFlags()); 406 ID.AddInteger(GA->getAddressSpace()); 407 break; 408 } 409 case ISD::BasicBlock: 410 ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock()); 411 break; 412 case ISD::Register: 413 ID.AddInteger(cast<RegisterSDNode>(N)->getReg()); 414 break; 415 case ISD::RegisterMask: 416 ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask()); 417 break; 418 case ISD::SRCVALUE: 419 ID.AddPointer(cast<SrcValueSDNode>(N)->getValue()); 420 break; 421 case ISD::FrameIndex: 422 case ISD::TargetFrameIndex: 423 ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex()); 424 break; 425 case ISD::JumpTable: 426 case ISD::TargetJumpTable: 427 ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex()); 428 ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags()); 429 break; 430 case ISD::ConstantPool: 431 case ISD::TargetConstantPool: { 432 const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N); 433 ID.AddInteger(CP->getAlignment()); 434 ID.AddInteger(CP->getOffset()); 435 if (CP->isMachineConstantPoolEntry()) 436 CP->getMachineCPVal()->addSelectionDAGCSEId(ID); 437 else 438 ID.AddPointer(CP->getConstVal()); 439 ID.AddInteger(CP->getTargetFlags()); 440 break; 441 } 442 case ISD::TargetIndex: { 443 const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N); 444 ID.AddInteger(TI->getIndex()); 445 ID.AddInteger(TI->getOffset()); 446 ID.AddInteger(TI->getTargetFlags()); 447 break; 448 } 449 case ISD::LOAD: { 450 const LoadSDNode *LD = cast<LoadSDNode>(N); 451 ID.AddInteger(LD->getMemoryVT().getRawBits()); 452 ID.AddInteger(LD->getRawSubclassData()); 453 ID.AddInteger(LD->getPointerInfo().getAddrSpace()); 454 break; 455 } 456 case ISD::STORE: { 457 const StoreSDNode *ST = cast<StoreSDNode>(N); 458 ID.AddInteger(ST->getMemoryVT().getRawBits()); 459 ID.AddInteger(ST->getRawSubclassData()); 460 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 461 break; 462 } 463 case ISD::ATOMIC_CMP_SWAP: 464 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 465 case ISD::ATOMIC_SWAP: 466 case ISD::ATOMIC_LOAD_ADD: 467 case ISD::ATOMIC_LOAD_SUB: 468 case ISD::ATOMIC_LOAD_AND: 469 case ISD::ATOMIC_LOAD_OR: 470 case ISD::ATOMIC_LOAD_XOR: 471 case ISD::ATOMIC_LOAD_NAND: 472 case ISD::ATOMIC_LOAD_MIN: 473 case ISD::ATOMIC_LOAD_MAX: 474 case ISD::ATOMIC_LOAD_UMIN: 475 case ISD::ATOMIC_LOAD_UMAX: 476 case ISD::ATOMIC_LOAD: 477 case ISD::ATOMIC_STORE: { 478 const AtomicSDNode *AT = cast<AtomicSDNode>(N); 479 ID.AddInteger(AT->getMemoryVT().getRawBits()); 480 ID.AddInteger(AT->getRawSubclassData()); 481 ID.AddInteger(AT->getPointerInfo().getAddrSpace()); 482 break; 483 } 484 case ISD::PREFETCH: { 485 const MemSDNode *PF = cast<MemSDNode>(N); 486 ID.AddInteger(PF->getPointerInfo().getAddrSpace()); 487 break; 488 } 489 case ISD::VECTOR_SHUFFLE: { 490 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 491 for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements(); 492 i != e; ++i) 493 ID.AddInteger(SVN->getMaskElt(i)); 494 break; 495 } 496 case ISD::TargetBlockAddress: 497 case ISD::BlockAddress: { 498 const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N); 499 ID.AddPointer(BA->getBlockAddress()); 500 ID.AddInteger(BA->getOffset()); 501 ID.AddInteger(BA->getTargetFlags()); 502 break; 503 } 504 } // end switch (N->getOpcode()) 505 506 // Target specific memory nodes could also have address spaces to check. 507 if (N->isTargetMemoryOpcode()) 508 ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace()); 509 } 510 511 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID 512 /// data. 513 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) { 514 AddNodeIDOpcode(ID, N->getOpcode()); 515 // Add the return value info. 516 AddNodeIDValueTypes(ID, N->getVTList()); 517 // Add the operand info. 518 AddNodeIDOperands(ID, N->ops()); 519 520 // Handle SDNode leafs with special info. 521 AddNodeIDCustom(ID, N); 522 } 523 524 /// encodeMemSDNodeFlags - Generic routine for computing a value for use in 525 /// the CSE map that carries volatility, temporalness, indexing mode, and 526 /// extension/truncation information. 527 /// 528 static inline unsigned 529 encodeMemSDNodeFlags(int ConvType, ISD::MemIndexedMode AM, bool isVolatile, 530 bool isNonTemporal, bool isInvariant) { 531 assert((ConvType & 3) == ConvType && 532 "ConvType may not require more than 2 bits!"); 533 assert((AM & 7) == AM && 534 "AM may not require more than 3 bits!"); 535 return ConvType | 536 (AM << 2) | 537 (isVolatile << 5) | 538 (isNonTemporal << 6) | 539 (isInvariant << 7); 540 } 541 542 //===----------------------------------------------------------------------===// 543 // SelectionDAG Class 544 //===----------------------------------------------------------------------===// 545 546 /// doNotCSE - Return true if CSE should not be performed for this node. 547 static bool doNotCSE(SDNode *N) { 548 if (N->getValueType(0) == MVT::Glue) 549 return true; // Never CSE anything that produces a flag. 550 551 switch (N->getOpcode()) { 552 default: break; 553 case ISD::HANDLENODE: 554 case ISD::EH_LABEL: 555 return true; // Never CSE these nodes. 556 } 557 558 // Check that remaining values produced are not flags. 559 for (unsigned i = 1, e = N->getNumValues(); i != e; ++i) 560 if (N->getValueType(i) == MVT::Glue) 561 return true; // Never CSE anything that produces a flag. 562 563 return false; 564 } 565 566 /// RemoveDeadNodes - This method deletes all unreachable nodes in the 567 /// SelectionDAG. 568 void SelectionDAG::RemoveDeadNodes() { 569 // Create a dummy node (which is not added to allnodes), that adds a reference 570 // to the root node, preventing it from being deleted. 571 HandleSDNode Dummy(getRoot()); 572 573 SmallVector<SDNode*, 128> DeadNodes; 574 575 // Add all obviously-dead nodes to the DeadNodes worklist. 576 for (SDNode &Node : allnodes()) 577 if (Node.use_empty()) 578 DeadNodes.push_back(&Node); 579 580 RemoveDeadNodes(DeadNodes); 581 582 // If the root changed (e.g. it was a dead load, update the root). 583 setRoot(Dummy.getValue()); 584 } 585 586 /// RemoveDeadNodes - This method deletes the unreachable nodes in the 587 /// given list, and any nodes that become unreachable as a result. 588 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) { 589 590 // Process the worklist, deleting the nodes and adding their uses to the 591 // worklist. 592 while (!DeadNodes.empty()) { 593 SDNode *N = DeadNodes.pop_back_val(); 594 595 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 596 DUL->NodeDeleted(N, nullptr); 597 598 // Take the node out of the appropriate CSE map. 599 RemoveNodeFromCSEMaps(N); 600 601 // Next, brutally remove the operand list. This is safe to do, as there are 602 // no cycles in the graph. 603 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 604 SDUse &Use = *I++; 605 SDNode *Operand = Use.getNode(); 606 Use.set(SDValue()); 607 608 // Now that we removed this operand, see if there are no uses of it left. 609 if (Operand->use_empty()) 610 DeadNodes.push_back(Operand); 611 } 612 613 DeallocateNode(N); 614 } 615 } 616 617 void SelectionDAG::RemoveDeadNode(SDNode *N){ 618 SmallVector<SDNode*, 16> DeadNodes(1, N); 619 620 // Create a dummy node that adds a reference to the root node, preventing 621 // it from being deleted. (This matters if the root is an operand of the 622 // dead node.) 623 HandleSDNode Dummy(getRoot()); 624 625 RemoveDeadNodes(DeadNodes); 626 } 627 628 void SelectionDAG::DeleteNode(SDNode *N) { 629 // First take this out of the appropriate CSE map. 630 RemoveNodeFromCSEMaps(N); 631 632 // Finally, remove uses due to operands of this node, remove from the 633 // AllNodes list, and delete the node. 634 DeleteNodeNotInCSEMaps(N); 635 } 636 637 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) { 638 assert(N->getIterator() != AllNodes.begin() && 639 "Cannot delete the entry node!"); 640 assert(N->use_empty() && "Cannot delete a node that is not dead!"); 641 642 // Drop all of the operands and decrement used node's use counts. 643 N->DropOperands(); 644 645 DeallocateNode(N); 646 } 647 648 void SDDbgInfo::erase(const SDNode *Node) { 649 DbgValMapType::iterator I = DbgValMap.find(Node); 650 if (I == DbgValMap.end()) 651 return; 652 for (auto &Val: I->second) 653 Val->setIsInvalidated(); 654 DbgValMap.erase(I); 655 } 656 657 void SelectionDAG::DeallocateNode(SDNode *N) { 658 // If we have operands, deallocate them. 659 removeOperands(N); 660 661 // Set the opcode to DELETED_NODE to help catch bugs when node 662 // memory is reallocated. 663 N->NodeType = ISD::DELETED_NODE; 664 665 NodeAllocator.Deallocate(AllNodes.remove(N)); 666 667 // If any of the SDDbgValue nodes refer to this SDNode, invalidate 668 // them and forget about that node. 669 DbgInfo->erase(N); 670 } 671 672 #ifndef NDEBUG 673 /// VerifySDNode - Sanity check the given SDNode. Aborts if it is invalid. 674 static void VerifySDNode(SDNode *N) { 675 switch (N->getOpcode()) { 676 default: 677 break; 678 case ISD::BUILD_PAIR: { 679 EVT VT = N->getValueType(0); 680 assert(N->getNumValues() == 1 && "Too many results!"); 681 assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) && 682 "Wrong return type!"); 683 assert(N->getNumOperands() == 2 && "Wrong number of operands!"); 684 assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() && 685 "Mismatched operand types!"); 686 assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() && 687 "Wrong operand type!"); 688 assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() && 689 "Wrong return type size"); 690 break; 691 } 692 case ISD::BUILD_VECTOR: { 693 assert(N->getNumValues() == 1 && "Too many results!"); 694 assert(N->getValueType(0).isVector() && "Wrong return type!"); 695 assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() && 696 "Wrong number of operands!"); 697 EVT EltVT = N->getValueType(0).getVectorElementType(); 698 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) { 699 assert((I->getValueType() == EltVT || 700 (EltVT.isInteger() && I->getValueType().isInteger() && 701 EltVT.bitsLE(I->getValueType()))) && 702 "Wrong operand type!"); 703 assert(I->getValueType() == N->getOperand(0).getValueType() && 704 "Operands must all have the same type"); 705 } 706 break; 707 } 708 } 709 } 710 #endif // NDEBUG 711 712 /// \brief Insert a newly allocated node into the DAG. 713 /// 714 /// Handles insertion into the all nodes list and CSE map, as well as 715 /// verification and other common operations when a new node is allocated. 716 void SelectionDAG::InsertNode(SDNode *N) { 717 AllNodes.push_back(N); 718 #ifndef NDEBUG 719 N->PersistentId = NextPersistentId++; 720 VerifySDNode(N); 721 #endif 722 } 723 724 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that 725 /// correspond to it. This is useful when we're about to delete or repurpose 726 /// the node. We don't want future request for structurally identical nodes 727 /// to return N anymore. 728 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) { 729 bool Erased = false; 730 switch (N->getOpcode()) { 731 case ISD::HANDLENODE: return false; // noop. 732 case ISD::CONDCODE: 733 assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] && 734 "Cond code doesn't exist!"); 735 Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr; 736 CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr; 737 break; 738 case ISD::ExternalSymbol: 739 Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol()); 740 break; 741 case ISD::TargetExternalSymbol: { 742 ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N); 743 Erased = TargetExternalSymbols.erase( 744 std::pair<std::string,unsigned char>(ESN->getSymbol(), 745 ESN->getTargetFlags())); 746 break; 747 } 748 case ISD::MCSymbol: { 749 auto *MCSN = cast<MCSymbolSDNode>(N); 750 Erased = MCSymbols.erase(MCSN->getMCSymbol()); 751 break; 752 } 753 case ISD::VALUETYPE: { 754 EVT VT = cast<VTSDNode>(N)->getVT(); 755 if (VT.isExtended()) { 756 Erased = ExtendedValueTypeNodes.erase(VT); 757 } else { 758 Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr; 759 ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr; 760 } 761 break; 762 } 763 default: 764 // Remove it from the CSE Map. 765 assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!"); 766 assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!"); 767 Erased = CSEMap.RemoveNode(N); 768 break; 769 } 770 #ifndef NDEBUG 771 // Verify that the node was actually in one of the CSE maps, unless it has a 772 // flag result (which cannot be CSE'd) or is one of the special cases that are 773 // not subject to CSE. 774 if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue && 775 !N->isMachineOpcode() && !doNotCSE(N)) { 776 N->dump(this); 777 dbgs() << "\n"; 778 llvm_unreachable("Node is not in map!"); 779 } 780 #endif 781 return Erased; 782 } 783 784 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE 785 /// maps and modified in place. Add it back to the CSE maps, unless an identical 786 /// node already exists, in which case transfer all its users to the existing 787 /// node. This transfer can potentially trigger recursive merging. 788 /// 789 void 790 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) { 791 // For node types that aren't CSE'd, just act as if no identical node 792 // already exists. 793 if (!doNotCSE(N)) { 794 SDNode *Existing = CSEMap.GetOrInsertNode(N); 795 if (Existing != N) { 796 // If there was already an existing matching node, use ReplaceAllUsesWith 797 // to replace the dead one with the existing one. This can cause 798 // recursive merging of other unrelated nodes down the line. 799 ReplaceAllUsesWith(N, Existing); 800 801 // N is now dead. Inform the listeners and delete it. 802 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 803 DUL->NodeDeleted(N, Existing); 804 DeleteNodeNotInCSEMaps(N); 805 return; 806 } 807 } 808 809 // If the node doesn't already exist, we updated it. Inform listeners. 810 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 811 DUL->NodeUpdated(N); 812 } 813 814 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 815 /// were replaced with those specified. If this node is never memoized, 816 /// return null, otherwise return a pointer to the slot it would take. If a 817 /// node already exists with these operands, the slot will be non-null. 818 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op, 819 void *&InsertPos) { 820 if (doNotCSE(N)) 821 return nullptr; 822 823 SDValue Ops[] = { Op }; 824 FoldingSetNodeID ID; 825 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 826 AddNodeIDCustom(ID, N); 827 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 828 if (Node) 829 if (const SDNodeFlags *Flags = N->getFlags()) 830 Node->intersectFlagsWith(Flags); 831 return Node; 832 } 833 834 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 835 /// were replaced with those specified. If this node is never memoized, 836 /// return null, otherwise return a pointer to the slot it would take. If a 837 /// node already exists with these operands, the slot will be non-null. 838 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, 839 SDValue Op1, SDValue Op2, 840 void *&InsertPos) { 841 if (doNotCSE(N)) 842 return nullptr; 843 844 SDValue Ops[] = { Op1, Op2 }; 845 FoldingSetNodeID ID; 846 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 847 AddNodeIDCustom(ID, N); 848 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 849 if (Node) 850 if (const SDNodeFlags *Flags = N->getFlags()) 851 Node->intersectFlagsWith(Flags); 852 return Node; 853 } 854 855 856 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 857 /// were replaced with those specified. If this node is never memoized, 858 /// return null, otherwise return a pointer to the slot it would take. If a 859 /// node already exists with these operands, the slot will be non-null. 860 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops, 861 void *&InsertPos) { 862 if (doNotCSE(N)) 863 return nullptr; 864 865 FoldingSetNodeID ID; 866 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 867 AddNodeIDCustom(ID, N); 868 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 869 if (Node) 870 if (const SDNodeFlags *Flags = N->getFlags()) 871 Node->intersectFlagsWith(Flags); 872 return Node; 873 } 874 875 unsigned SelectionDAG::getEVTAlignment(EVT VT) const { 876 Type *Ty = VT == MVT::iPTR ? 877 PointerType::get(Type::getInt8Ty(*getContext()), 0) : 878 VT.getTypeForEVT(*getContext()); 879 880 return getDataLayout().getABITypeAlignment(Ty); 881 } 882 883 // EntryNode could meaningfully have debug info if we can find it... 884 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL) 885 : TM(tm), TSI(nullptr), TLI(nullptr), OptLevel(OL), 886 EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)), 887 Root(getEntryNode()), NewNodesMustHaveLegalTypes(false), 888 UpdateListeners(nullptr) { 889 InsertNode(&EntryNode); 890 DbgInfo = new SDDbgInfo(); 891 } 892 893 void SelectionDAG::init(MachineFunction &mf) { 894 MF = &mf; 895 TLI = getSubtarget().getTargetLowering(); 896 TSI = getSubtarget().getSelectionDAGInfo(); 897 Context = &mf.getFunction()->getContext(); 898 } 899 900 SelectionDAG::~SelectionDAG() { 901 assert(!UpdateListeners && "Dangling registered DAGUpdateListeners"); 902 allnodes_clear(); 903 OperandRecycler.clear(OperandAllocator); 904 delete DbgInfo; 905 } 906 907 void SelectionDAG::allnodes_clear() { 908 assert(&*AllNodes.begin() == &EntryNode); 909 AllNodes.remove(AllNodes.begin()); 910 while (!AllNodes.empty()) 911 DeallocateNode(&AllNodes.front()); 912 #ifndef NDEBUG 913 NextPersistentId = 0; 914 #endif 915 } 916 917 SDNode *SelectionDAG::GetBinarySDNode(unsigned Opcode, const SDLoc &DL, 918 SDVTList VTs, SDValue N1, SDValue N2, 919 const SDNodeFlags *Flags) { 920 SDValue Ops[] = {N1, N2}; 921 922 if (isBinOpWithFlags(Opcode)) { 923 // If no flags were passed in, use a default flags object. 924 SDNodeFlags F; 925 if (Flags == nullptr) 926 Flags = &F; 927 928 auto *FN = newSDNode<BinaryWithFlagsSDNode>(Opcode, DL.getIROrder(), 929 DL.getDebugLoc(), VTs, *Flags); 930 createOperands(FN, Ops); 931 932 return FN; 933 } 934 935 auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 936 createOperands(N, Ops); 937 return N; 938 } 939 940 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 941 void *&InsertPos) { 942 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 943 if (N) { 944 switch (N->getOpcode()) { 945 default: break; 946 case ISD::Constant: 947 case ISD::ConstantFP: 948 llvm_unreachable("Querying for Constant and ConstantFP nodes requires " 949 "debug location. Use another overload."); 950 } 951 } 952 return N; 953 } 954 955 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 956 const SDLoc &DL, void *&InsertPos) { 957 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 958 if (N) { 959 switch (N->getOpcode()) { 960 case ISD::Constant: 961 case ISD::ConstantFP: 962 // Erase debug location from the node if the node is used at several 963 // different places. Do not propagate one location to all uses as it 964 // will cause a worse single stepping debugging experience. 965 if (N->getDebugLoc() != DL.getDebugLoc()) 966 N->setDebugLoc(DebugLoc()); 967 break; 968 default: 969 // When the node's point of use is located earlier in the instruction 970 // sequence than its prior point of use, update its debug info to the 971 // earlier location. 972 if (DL.getIROrder() && DL.getIROrder() < N->getIROrder()) 973 N->setDebugLoc(DL.getDebugLoc()); 974 break; 975 } 976 } 977 return N; 978 } 979 980 void SelectionDAG::clear() { 981 allnodes_clear(); 982 OperandRecycler.clear(OperandAllocator); 983 OperandAllocator.Reset(); 984 CSEMap.clear(); 985 986 ExtendedValueTypeNodes.clear(); 987 ExternalSymbols.clear(); 988 TargetExternalSymbols.clear(); 989 MCSymbols.clear(); 990 std::fill(CondCodeNodes.begin(), CondCodeNodes.end(), 991 static_cast<CondCodeSDNode*>(nullptr)); 992 std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(), 993 static_cast<SDNode*>(nullptr)); 994 995 EntryNode.UseList = nullptr; 996 InsertNode(&EntryNode); 997 Root = getEntryNode(); 998 DbgInfo->clear(); 999 } 1000 1001 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1002 return VT.bitsGT(Op.getValueType()) ? 1003 getNode(ISD::ANY_EXTEND, DL, VT, Op) : 1004 getNode(ISD::TRUNCATE, DL, VT, Op); 1005 } 1006 1007 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1008 return VT.bitsGT(Op.getValueType()) ? 1009 getNode(ISD::SIGN_EXTEND, DL, VT, Op) : 1010 getNode(ISD::TRUNCATE, DL, VT, Op); 1011 } 1012 1013 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1014 return VT.bitsGT(Op.getValueType()) ? 1015 getNode(ISD::ZERO_EXTEND, DL, VT, Op) : 1016 getNode(ISD::TRUNCATE, DL, VT, Op); 1017 } 1018 1019 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, 1020 EVT OpVT) { 1021 if (VT.bitsLE(Op.getValueType())) 1022 return getNode(ISD::TRUNCATE, SL, VT, Op); 1023 1024 TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT); 1025 return getNode(TLI->getExtendForContent(BType), SL, VT, Op); 1026 } 1027 1028 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1029 assert(!VT.isVector() && 1030 "getZeroExtendInReg should use the vector element type instead of " 1031 "the vector type!"); 1032 if (Op.getValueType() == VT) return Op; 1033 unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits(); 1034 APInt Imm = APInt::getLowBitsSet(BitWidth, 1035 VT.getSizeInBits()); 1036 return getNode(ISD::AND, DL, Op.getValueType(), Op, 1037 getConstant(Imm, DL, Op.getValueType())); 1038 } 1039 1040 SDValue SelectionDAG::getAnyExtendVectorInReg(SDValue Op, const SDLoc &DL, 1041 EVT VT) { 1042 assert(VT.isVector() && "This DAG node is restricted to vector types."); 1043 assert(VT.getSizeInBits() == Op.getValueType().getSizeInBits() && 1044 "The sizes of the input and result must match in order to perform the " 1045 "extend in-register."); 1046 assert(VT.getVectorNumElements() < Op.getValueType().getVectorNumElements() && 1047 "The destination vector type must have fewer lanes than the input."); 1048 return getNode(ISD::ANY_EXTEND_VECTOR_INREG, DL, VT, Op); 1049 } 1050 1051 SDValue SelectionDAG::getSignExtendVectorInReg(SDValue Op, const SDLoc &DL, 1052 EVT VT) { 1053 assert(VT.isVector() && "This DAG node is restricted to vector types."); 1054 assert(VT.getSizeInBits() == Op.getValueType().getSizeInBits() && 1055 "The sizes of the input and result must match in order to perform the " 1056 "extend in-register."); 1057 assert(VT.getVectorNumElements() < Op.getValueType().getVectorNumElements() && 1058 "The destination vector type must have fewer lanes than the input."); 1059 return getNode(ISD::SIGN_EXTEND_VECTOR_INREG, DL, VT, Op); 1060 } 1061 1062 SDValue SelectionDAG::getZeroExtendVectorInReg(SDValue Op, const SDLoc &DL, 1063 EVT VT) { 1064 assert(VT.isVector() && "This DAG node is restricted to vector types."); 1065 assert(VT.getSizeInBits() == Op.getValueType().getSizeInBits() && 1066 "The sizes of the input and result must match in order to perform the " 1067 "extend in-register."); 1068 assert(VT.getVectorNumElements() < Op.getValueType().getVectorNumElements() && 1069 "The destination vector type must have fewer lanes than the input."); 1070 return getNode(ISD::ZERO_EXTEND_VECTOR_INREG, DL, VT, Op); 1071 } 1072 1073 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1). 1074 /// 1075 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1076 EVT EltVT = VT.getScalarType(); 1077 SDValue NegOne = 1078 getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL, VT); 1079 return getNode(ISD::XOR, DL, VT, Val, NegOne); 1080 } 1081 1082 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1083 EVT EltVT = VT.getScalarType(); 1084 SDValue TrueValue; 1085 switch (TLI->getBooleanContents(VT)) { 1086 case TargetLowering::ZeroOrOneBooleanContent: 1087 case TargetLowering::UndefinedBooleanContent: 1088 TrueValue = getConstant(1, DL, VT); 1089 break; 1090 case TargetLowering::ZeroOrNegativeOneBooleanContent: 1091 TrueValue = getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL, 1092 VT); 1093 break; 1094 } 1095 return getNode(ISD::XOR, DL, VT, Val, TrueValue); 1096 } 1097 1098 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT, 1099 bool isT, bool isO) { 1100 EVT EltVT = VT.getScalarType(); 1101 assert((EltVT.getSizeInBits() >= 64 || 1102 (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) && 1103 "getConstant with a uint64_t value that doesn't fit in the type!"); 1104 return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO); 1105 } 1106 1107 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT, 1108 bool isT, bool isO) { 1109 return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO); 1110 } 1111 1112 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL, 1113 EVT VT, bool isT, bool isO) { 1114 assert(VT.isInteger() && "Cannot create FP integer constant!"); 1115 1116 EVT EltVT = VT.getScalarType(); 1117 const ConstantInt *Elt = &Val; 1118 1119 // In some cases the vector type is legal but the element type is illegal and 1120 // needs to be promoted, for example v8i8 on ARM. In this case, promote the 1121 // inserted value (the type does not need to match the vector element type). 1122 // Any extra bits introduced will be truncated away. 1123 if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) == 1124 TargetLowering::TypePromoteInteger) { 1125 EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1126 APInt NewVal = Elt->getValue().zext(EltVT.getSizeInBits()); 1127 Elt = ConstantInt::get(*getContext(), NewVal); 1128 } 1129 // In other cases the element type is illegal and needs to be expanded, for 1130 // example v2i64 on MIPS32. In this case, find the nearest legal type, split 1131 // the value into n parts and use a vector type with n-times the elements. 1132 // Then bitcast to the type requested. 1133 // Legalizing constants too early makes the DAGCombiner's job harder so we 1134 // only legalize if the DAG tells us we must produce legal types. 1135 else if (NewNodesMustHaveLegalTypes && VT.isVector() && 1136 TLI->getTypeAction(*getContext(), EltVT) == 1137 TargetLowering::TypeExpandInteger) { 1138 const APInt &NewVal = Elt->getValue(); 1139 EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1140 unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits(); 1141 unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits; 1142 EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts); 1143 1144 // Check the temporary vector is the correct size. If this fails then 1145 // getTypeToTransformTo() probably returned a type whose size (in bits) 1146 // isn't a power-of-2 factor of the requested type size. 1147 assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits()); 1148 1149 SmallVector<SDValue, 2> EltParts; 1150 for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) { 1151 EltParts.push_back(getConstant(NewVal.lshr(i * ViaEltSizeInBits) 1152 .trunc(ViaEltSizeInBits), DL, 1153 ViaEltVT, isT, isO)); 1154 } 1155 1156 // EltParts is currently in little endian order. If we actually want 1157 // big-endian order then reverse it now. 1158 if (getDataLayout().isBigEndian()) 1159 std::reverse(EltParts.begin(), EltParts.end()); 1160 1161 // The elements must be reversed when the element order is different 1162 // to the endianness of the elements (because the BITCAST is itself a 1163 // vector shuffle in this situation). However, we do not need any code to 1164 // perform this reversal because getConstant() is producing a vector 1165 // splat. 1166 // This situation occurs in MIPS MSA. 1167 1168 SmallVector<SDValue, 8> Ops; 1169 for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) 1170 Ops.insert(Ops.end(), EltParts.begin(), EltParts.end()); 1171 1172 SDValue Result = getNode(ISD::BITCAST, DL, VT, 1173 getNode(ISD::BUILD_VECTOR, DL, ViaVecVT, Ops)); 1174 return Result; 1175 } 1176 1177 assert(Elt->getBitWidth() == EltVT.getSizeInBits() && 1178 "APInt size does not match type size!"); 1179 unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant; 1180 FoldingSetNodeID ID; 1181 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1182 ID.AddPointer(Elt); 1183 ID.AddBoolean(isO); 1184 void *IP = nullptr; 1185 SDNode *N = nullptr; 1186 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1187 if (!VT.isVector()) 1188 return SDValue(N, 0); 1189 1190 if (!N) { 1191 N = newSDNode<ConstantSDNode>(isT, isO, Elt, DL.getDebugLoc(), EltVT); 1192 CSEMap.InsertNode(N, IP); 1193 InsertNode(N); 1194 } 1195 1196 SDValue Result(N, 0); 1197 if (VT.isVector()) 1198 Result = getSplatBuildVector(VT, DL, Result); 1199 return Result; 1200 } 1201 1202 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL, 1203 bool isTarget) { 1204 return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget); 1205 } 1206 1207 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT, 1208 bool isTarget) { 1209 return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget); 1210 } 1211 1212 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL, 1213 EVT VT, bool isTarget) { 1214 assert(VT.isFloatingPoint() && "Cannot create integer FP constant!"); 1215 1216 EVT EltVT = VT.getScalarType(); 1217 1218 // Do the map lookup using the actual bit pattern for the floating point 1219 // value, so that we don't have problems with 0.0 comparing equal to -0.0, and 1220 // we don't have issues with SNANs. 1221 unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP; 1222 FoldingSetNodeID ID; 1223 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1224 ID.AddPointer(&V); 1225 void *IP = nullptr; 1226 SDNode *N = nullptr; 1227 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1228 if (!VT.isVector()) 1229 return SDValue(N, 0); 1230 1231 if (!N) { 1232 N = newSDNode<ConstantFPSDNode>(isTarget, &V, DL.getDebugLoc(), EltVT); 1233 CSEMap.InsertNode(N, IP); 1234 InsertNode(N); 1235 } 1236 1237 SDValue Result(N, 0); 1238 if (VT.isVector()) 1239 Result = getSplatBuildVector(VT, DL, Result); 1240 return Result; 1241 } 1242 1243 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT, 1244 bool isTarget) { 1245 EVT EltVT = VT.getScalarType(); 1246 if (EltVT == MVT::f32) 1247 return getConstantFP(APFloat((float)Val), DL, VT, isTarget); 1248 else if (EltVT == MVT::f64) 1249 return getConstantFP(APFloat(Val), DL, VT, isTarget); 1250 else if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 || 1251 EltVT == MVT::f16) { 1252 bool Ignored; 1253 APFloat APF = APFloat(Val); 1254 APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven, 1255 &Ignored); 1256 return getConstantFP(APF, DL, VT, isTarget); 1257 } else 1258 llvm_unreachable("Unsupported type in getConstantFP"); 1259 } 1260 1261 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL, 1262 EVT VT, int64_t Offset, bool isTargetGA, 1263 unsigned char TargetFlags) { 1264 assert((TargetFlags == 0 || isTargetGA) && 1265 "Cannot set target flags on target-independent globals"); 1266 1267 // Truncate (with sign-extension) the offset value to the pointer size. 1268 unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 1269 if (BitWidth < 64) 1270 Offset = SignExtend64(Offset, BitWidth); 1271 1272 unsigned Opc; 1273 if (GV->isThreadLocal()) 1274 Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress; 1275 else 1276 Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress; 1277 1278 FoldingSetNodeID ID; 1279 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1280 ID.AddPointer(GV); 1281 ID.AddInteger(Offset); 1282 ID.AddInteger(TargetFlags); 1283 ID.AddInteger(GV->getType()->getAddressSpace()); 1284 void *IP = nullptr; 1285 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 1286 return SDValue(E, 0); 1287 1288 auto *N = newSDNode<GlobalAddressSDNode>( 1289 Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags); 1290 CSEMap.InsertNode(N, IP); 1291 InsertNode(N); 1292 return SDValue(N, 0); 1293 } 1294 1295 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) { 1296 unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex; 1297 FoldingSetNodeID ID; 1298 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1299 ID.AddInteger(FI); 1300 void *IP = nullptr; 1301 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1302 return SDValue(E, 0); 1303 1304 auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget); 1305 CSEMap.InsertNode(N, IP); 1306 InsertNode(N); 1307 return SDValue(N, 0); 1308 } 1309 1310 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget, 1311 unsigned char TargetFlags) { 1312 assert((TargetFlags == 0 || isTarget) && 1313 "Cannot set target flags on target-independent jump tables"); 1314 unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable; 1315 FoldingSetNodeID ID; 1316 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1317 ID.AddInteger(JTI); 1318 ID.AddInteger(TargetFlags); 1319 void *IP = nullptr; 1320 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1321 return SDValue(E, 0); 1322 1323 auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags); 1324 CSEMap.InsertNode(N, IP); 1325 InsertNode(N); 1326 return SDValue(N, 0); 1327 } 1328 1329 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT, 1330 unsigned Alignment, int Offset, 1331 bool isTarget, 1332 unsigned char TargetFlags) { 1333 assert((TargetFlags == 0 || isTarget) && 1334 "Cannot set target flags on target-independent globals"); 1335 if (Alignment == 0) 1336 Alignment = getDataLayout().getPrefTypeAlignment(C->getType()); 1337 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1338 FoldingSetNodeID ID; 1339 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1340 ID.AddInteger(Alignment); 1341 ID.AddInteger(Offset); 1342 ID.AddPointer(C); 1343 ID.AddInteger(TargetFlags); 1344 void *IP = nullptr; 1345 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1346 return SDValue(E, 0); 1347 1348 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, Alignment, 1349 TargetFlags); 1350 CSEMap.InsertNode(N, IP); 1351 InsertNode(N); 1352 return SDValue(N, 0); 1353 } 1354 1355 1356 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT, 1357 unsigned Alignment, int Offset, 1358 bool isTarget, 1359 unsigned char TargetFlags) { 1360 assert((TargetFlags == 0 || isTarget) && 1361 "Cannot set target flags on target-independent globals"); 1362 if (Alignment == 0) 1363 Alignment = getDataLayout().getPrefTypeAlignment(C->getType()); 1364 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1365 FoldingSetNodeID ID; 1366 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1367 ID.AddInteger(Alignment); 1368 ID.AddInteger(Offset); 1369 C->addSelectionDAGCSEId(ID); 1370 ID.AddInteger(TargetFlags); 1371 void *IP = nullptr; 1372 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1373 return SDValue(E, 0); 1374 1375 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, Alignment, 1376 TargetFlags); 1377 CSEMap.InsertNode(N, IP); 1378 InsertNode(N); 1379 return SDValue(N, 0); 1380 } 1381 1382 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset, 1383 unsigned char TargetFlags) { 1384 FoldingSetNodeID ID; 1385 AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None); 1386 ID.AddInteger(Index); 1387 ID.AddInteger(Offset); 1388 ID.AddInteger(TargetFlags); 1389 void *IP = nullptr; 1390 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1391 return SDValue(E, 0); 1392 1393 auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags); 1394 CSEMap.InsertNode(N, IP); 1395 InsertNode(N); 1396 return SDValue(N, 0); 1397 } 1398 1399 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) { 1400 FoldingSetNodeID ID; 1401 AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None); 1402 ID.AddPointer(MBB); 1403 void *IP = nullptr; 1404 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1405 return SDValue(E, 0); 1406 1407 auto *N = newSDNode<BasicBlockSDNode>(MBB); 1408 CSEMap.InsertNode(N, IP); 1409 InsertNode(N); 1410 return SDValue(N, 0); 1411 } 1412 1413 SDValue SelectionDAG::getValueType(EVT VT) { 1414 if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >= 1415 ValueTypeNodes.size()) 1416 ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1); 1417 1418 SDNode *&N = VT.isExtended() ? 1419 ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy]; 1420 1421 if (N) return SDValue(N, 0); 1422 N = newSDNode<VTSDNode>(VT); 1423 InsertNode(N); 1424 return SDValue(N, 0); 1425 } 1426 1427 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) { 1428 SDNode *&N = ExternalSymbols[Sym]; 1429 if (N) return SDValue(N, 0); 1430 N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT); 1431 InsertNode(N); 1432 return SDValue(N, 0); 1433 } 1434 1435 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) { 1436 SDNode *&N = MCSymbols[Sym]; 1437 if (N) 1438 return SDValue(N, 0); 1439 N = newSDNode<MCSymbolSDNode>(Sym, VT); 1440 InsertNode(N); 1441 return SDValue(N, 0); 1442 } 1443 1444 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT, 1445 unsigned char TargetFlags) { 1446 SDNode *&N = 1447 TargetExternalSymbols[std::pair<std::string,unsigned char>(Sym, 1448 TargetFlags)]; 1449 if (N) return SDValue(N, 0); 1450 N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT); 1451 InsertNode(N); 1452 return SDValue(N, 0); 1453 } 1454 1455 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) { 1456 if ((unsigned)Cond >= CondCodeNodes.size()) 1457 CondCodeNodes.resize(Cond+1); 1458 1459 if (!CondCodeNodes[Cond]) { 1460 auto *N = newSDNode<CondCodeSDNode>(Cond); 1461 CondCodeNodes[Cond] = N; 1462 InsertNode(N); 1463 } 1464 1465 return SDValue(CondCodeNodes[Cond], 0); 1466 } 1467 1468 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that 1469 /// point at N1 to point at N2 and indices that point at N2 to point at N1. 1470 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) { 1471 std::swap(N1, N2); 1472 ShuffleVectorSDNode::commuteMask(M); 1473 } 1474 1475 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, 1476 SDValue N2, ArrayRef<int> Mask) { 1477 assert(VT.getVectorNumElements() == Mask.size() && 1478 "Must have the same number of vector elements as mask elements!"); 1479 assert(VT == N1.getValueType() && VT == N2.getValueType() && 1480 "Invalid VECTOR_SHUFFLE"); 1481 1482 // Canonicalize shuffle undef, undef -> undef 1483 if (N1.isUndef() && N2.isUndef()) 1484 return getUNDEF(VT); 1485 1486 // Validate that all indices in Mask are within the range of the elements 1487 // input to the shuffle. 1488 int NElts = Mask.size(); 1489 assert(all_of(Mask, [&](int M) { return M < (NElts * 2); }) && 1490 "Index out of range"); 1491 1492 // Copy the mask so we can do any needed cleanup. 1493 SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end()); 1494 1495 // Canonicalize shuffle v, v -> v, undef 1496 if (N1 == N2) { 1497 N2 = getUNDEF(VT); 1498 for (int i = 0; i != NElts; ++i) 1499 if (MaskVec[i] >= NElts) MaskVec[i] -= NElts; 1500 } 1501 1502 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask. 1503 if (N1.isUndef()) 1504 commuteShuffle(N1, N2, MaskVec); 1505 1506 // If shuffling a splat, try to blend the splat instead. We do this here so 1507 // that even when this arises during lowering we don't have to re-handle it. 1508 auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) { 1509 BitVector UndefElements; 1510 SDValue Splat = BV->getSplatValue(&UndefElements); 1511 if (!Splat) 1512 return; 1513 1514 for (int i = 0; i < NElts; ++i) { 1515 if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts)) 1516 continue; 1517 1518 // If this input comes from undef, mark it as such. 1519 if (UndefElements[MaskVec[i] - Offset]) { 1520 MaskVec[i] = -1; 1521 continue; 1522 } 1523 1524 // If we can blend a non-undef lane, use that instead. 1525 if (!UndefElements[i]) 1526 MaskVec[i] = i + Offset; 1527 } 1528 }; 1529 if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1)) 1530 BlendSplat(N1BV, 0); 1531 if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2)) 1532 BlendSplat(N2BV, NElts); 1533 1534 // Canonicalize all index into lhs, -> shuffle lhs, undef 1535 // Canonicalize all index into rhs, -> shuffle rhs, undef 1536 bool AllLHS = true, AllRHS = true; 1537 bool N2Undef = N2.isUndef(); 1538 for (int i = 0; i != NElts; ++i) { 1539 if (MaskVec[i] >= NElts) { 1540 if (N2Undef) 1541 MaskVec[i] = -1; 1542 else 1543 AllLHS = false; 1544 } else if (MaskVec[i] >= 0) { 1545 AllRHS = false; 1546 } 1547 } 1548 if (AllLHS && AllRHS) 1549 return getUNDEF(VT); 1550 if (AllLHS && !N2Undef) 1551 N2 = getUNDEF(VT); 1552 if (AllRHS) { 1553 N1 = getUNDEF(VT); 1554 commuteShuffle(N1, N2, MaskVec); 1555 } 1556 // Reset our undef status after accounting for the mask. 1557 N2Undef = N2.isUndef(); 1558 // Re-check whether both sides ended up undef. 1559 if (N1.isUndef() && N2Undef) 1560 return getUNDEF(VT); 1561 1562 // If Identity shuffle return that node. 1563 bool Identity = true, AllSame = true; 1564 for (int i = 0; i != NElts; ++i) { 1565 if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false; 1566 if (MaskVec[i] != MaskVec[0]) AllSame = false; 1567 } 1568 if (Identity && NElts) 1569 return N1; 1570 1571 // Shuffling a constant splat doesn't change the result. 1572 if (N2Undef) { 1573 SDValue V = N1; 1574 1575 // Look through any bitcasts. We check that these don't change the number 1576 // (and size) of elements and just changes their types. 1577 while (V.getOpcode() == ISD::BITCAST) 1578 V = V->getOperand(0); 1579 1580 // A splat should always show up as a build vector node. 1581 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 1582 BitVector UndefElements; 1583 SDValue Splat = BV->getSplatValue(&UndefElements); 1584 // If this is a splat of an undef, shuffling it is also undef. 1585 if (Splat && Splat.isUndef()) 1586 return getUNDEF(VT); 1587 1588 bool SameNumElts = 1589 V.getValueType().getVectorNumElements() == VT.getVectorNumElements(); 1590 1591 // We only have a splat which can skip shuffles if there is a splatted 1592 // value and no undef lanes rearranged by the shuffle. 1593 if (Splat && UndefElements.none()) { 1594 // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the 1595 // number of elements match or the value splatted is a zero constant. 1596 if (SameNumElts) 1597 return N1; 1598 if (auto *C = dyn_cast<ConstantSDNode>(Splat)) 1599 if (C->isNullValue()) 1600 return N1; 1601 } 1602 1603 // If the shuffle itself creates a splat, build the vector directly. 1604 if (AllSame && SameNumElts) { 1605 EVT BuildVT = BV->getValueType(0); 1606 const SDValue &Splatted = BV->getOperand(MaskVec[0]); 1607 SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted); 1608 1609 // We may have jumped through bitcasts, so the type of the 1610 // BUILD_VECTOR may not match the type of the shuffle. 1611 if (BuildVT != VT) 1612 NewBV = getNode(ISD::BITCAST, dl, VT, NewBV); 1613 return NewBV; 1614 } 1615 } 1616 } 1617 1618 FoldingSetNodeID ID; 1619 SDValue Ops[2] = { N1, N2 }; 1620 AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops); 1621 for (int i = 0; i != NElts; ++i) 1622 ID.AddInteger(MaskVec[i]); 1623 1624 void* IP = nullptr; 1625 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 1626 return SDValue(E, 0); 1627 1628 // Allocate the mask array for the node out of the BumpPtrAllocator, since 1629 // SDNode doesn't have access to it. This memory will be "leaked" when 1630 // the node is deallocated, but recovered when the NodeAllocator is released. 1631 int *MaskAlloc = OperandAllocator.Allocate<int>(NElts); 1632 std::copy(MaskVec.begin(), MaskVec.end(), MaskAlloc); 1633 1634 auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(), 1635 dl.getDebugLoc(), MaskAlloc); 1636 createOperands(N, Ops); 1637 1638 CSEMap.InsertNode(N, IP); 1639 InsertNode(N); 1640 return SDValue(N, 0); 1641 } 1642 1643 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) { 1644 MVT VT = SV.getSimpleValueType(0); 1645 SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end()); 1646 ShuffleVectorSDNode::commuteMask(MaskVec); 1647 1648 SDValue Op0 = SV.getOperand(0); 1649 SDValue Op1 = SV.getOperand(1); 1650 return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec); 1651 } 1652 1653 SDValue SelectionDAG::getConvertRndSat(EVT VT, const SDLoc &dl, SDValue Val, 1654 SDValue DTy, SDValue STy, SDValue Rnd, 1655 SDValue Sat, ISD::CvtCode Code) { 1656 // If the src and dest types are the same and the conversion is between 1657 // integer types of the same sign or two floats, no conversion is necessary. 1658 if (DTy == STy && 1659 (Code == ISD::CVT_UU || Code == ISD::CVT_SS || Code == ISD::CVT_FF)) 1660 return Val; 1661 1662 FoldingSetNodeID ID; 1663 SDValue Ops[] = { Val, DTy, STy, Rnd, Sat }; 1664 AddNodeIDNode(ID, ISD::CONVERT_RNDSAT, getVTList(VT), Ops); 1665 void* IP = nullptr; 1666 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 1667 return SDValue(E, 0); 1668 1669 auto *N = 1670 newSDNode<CvtRndSatSDNode>(VT, dl.getIROrder(), dl.getDebugLoc(), Code); 1671 createOperands(N, Ops); 1672 1673 CSEMap.InsertNode(N, IP); 1674 InsertNode(N); 1675 return SDValue(N, 0); 1676 } 1677 1678 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) { 1679 FoldingSetNodeID ID; 1680 AddNodeIDNode(ID, ISD::Register, getVTList(VT), None); 1681 ID.AddInteger(RegNo); 1682 void *IP = nullptr; 1683 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1684 return SDValue(E, 0); 1685 1686 auto *N = newSDNode<RegisterSDNode>(RegNo, VT); 1687 CSEMap.InsertNode(N, IP); 1688 InsertNode(N); 1689 return SDValue(N, 0); 1690 } 1691 1692 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) { 1693 FoldingSetNodeID ID; 1694 AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None); 1695 ID.AddPointer(RegMask); 1696 void *IP = nullptr; 1697 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1698 return SDValue(E, 0); 1699 1700 auto *N = newSDNode<RegisterMaskSDNode>(RegMask); 1701 CSEMap.InsertNode(N, IP); 1702 InsertNode(N); 1703 return SDValue(N, 0); 1704 } 1705 1706 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root, 1707 MCSymbol *Label) { 1708 FoldingSetNodeID ID; 1709 SDValue Ops[] = { Root }; 1710 AddNodeIDNode(ID, ISD::EH_LABEL, getVTList(MVT::Other), Ops); 1711 ID.AddPointer(Label); 1712 void *IP = nullptr; 1713 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1714 return SDValue(E, 0); 1715 1716 auto *N = newSDNode<EHLabelSDNode>(dl.getIROrder(), dl.getDebugLoc(), Label); 1717 createOperands(N, Ops); 1718 1719 CSEMap.InsertNode(N, IP); 1720 InsertNode(N); 1721 return SDValue(N, 0); 1722 } 1723 1724 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT, 1725 int64_t Offset, 1726 bool isTarget, 1727 unsigned char TargetFlags) { 1728 unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress; 1729 1730 FoldingSetNodeID ID; 1731 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1732 ID.AddPointer(BA); 1733 ID.AddInteger(Offset); 1734 ID.AddInteger(TargetFlags); 1735 void *IP = nullptr; 1736 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1737 return SDValue(E, 0); 1738 1739 auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags); 1740 CSEMap.InsertNode(N, IP); 1741 InsertNode(N); 1742 return SDValue(N, 0); 1743 } 1744 1745 SDValue SelectionDAG::getSrcValue(const Value *V) { 1746 assert((!V || V->getType()->isPointerTy()) && 1747 "SrcValue is not a pointer?"); 1748 1749 FoldingSetNodeID ID; 1750 AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None); 1751 ID.AddPointer(V); 1752 1753 void *IP = nullptr; 1754 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1755 return SDValue(E, 0); 1756 1757 auto *N = newSDNode<SrcValueSDNode>(V); 1758 CSEMap.InsertNode(N, IP); 1759 InsertNode(N); 1760 return SDValue(N, 0); 1761 } 1762 1763 SDValue SelectionDAG::getMDNode(const MDNode *MD) { 1764 FoldingSetNodeID ID; 1765 AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None); 1766 ID.AddPointer(MD); 1767 1768 void *IP = nullptr; 1769 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1770 return SDValue(E, 0); 1771 1772 auto *N = newSDNode<MDNodeSDNode>(MD); 1773 CSEMap.InsertNode(N, IP); 1774 InsertNode(N); 1775 return SDValue(N, 0); 1776 } 1777 1778 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) { 1779 if (VT == V.getValueType()) 1780 return V; 1781 1782 return getNode(ISD::BITCAST, SDLoc(V), VT, V); 1783 } 1784 1785 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr, 1786 unsigned SrcAS, unsigned DestAS) { 1787 SDValue Ops[] = {Ptr}; 1788 FoldingSetNodeID ID; 1789 AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops); 1790 ID.AddInteger(SrcAS); 1791 ID.AddInteger(DestAS); 1792 1793 void *IP = nullptr; 1794 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 1795 return SDValue(E, 0); 1796 1797 auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(), 1798 VT, SrcAS, DestAS); 1799 createOperands(N, Ops); 1800 1801 CSEMap.InsertNode(N, IP); 1802 InsertNode(N); 1803 return SDValue(N, 0); 1804 } 1805 1806 /// getShiftAmountOperand - Return the specified value casted to 1807 /// the target's desired shift amount type. 1808 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) { 1809 EVT OpTy = Op.getValueType(); 1810 EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout()); 1811 if (OpTy == ShTy || OpTy.isVector()) return Op; 1812 1813 return getZExtOrTrunc(Op, SDLoc(Op), ShTy); 1814 } 1815 1816 SDValue SelectionDAG::expandVAArg(SDNode *Node) { 1817 SDLoc dl(Node); 1818 const TargetLowering &TLI = getTargetLoweringInfo(); 1819 const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 1820 EVT VT = Node->getValueType(0); 1821 SDValue Tmp1 = Node->getOperand(0); 1822 SDValue Tmp2 = Node->getOperand(1); 1823 unsigned Align = Node->getConstantOperandVal(3); 1824 1825 SDValue VAListLoad = 1826 getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1, Tmp2, 1827 MachinePointerInfo(V), false, false, false, 0); 1828 SDValue VAList = VAListLoad; 1829 1830 if (Align > TLI.getMinStackArgumentAlignment()) { 1831 assert(((Align & (Align-1)) == 0) && "Expected Align to be a power of 2"); 1832 1833 VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 1834 getConstant(Align - 1, dl, VAList.getValueType())); 1835 1836 VAList = getNode(ISD::AND, dl, VAList.getValueType(), VAList, 1837 getConstant(-(int64_t)Align, dl, VAList.getValueType())); 1838 } 1839 1840 // Increment the pointer, VAList, to the next vaarg 1841 Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 1842 getConstant(getDataLayout().getTypeAllocSize( 1843 VT.getTypeForEVT(*getContext())), 1844 dl, VAList.getValueType())); 1845 // Store the incremented VAList to the legalized pointer 1846 Tmp1 = getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, 1847 MachinePointerInfo(V), false, false, 0); 1848 // Load the actual argument out of the pointer VAList 1849 return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo(), 1850 false, false, false, 0); 1851 } 1852 1853 SDValue SelectionDAG::expandVACopy(SDNode *Node) { 1854 SDLoc dl(Node); 1855 const TargetLowering &TLI = getTargetLoweringInfo(); 1856 // This defaults to loading a pointer from the input and storing it to the 1857 // output, returning the chain. 1858 const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue(); 1859 const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue(); 1860 SDValue Tmp1 = getLoad(TLI.getPointerTy(getDataLayout()), dl, 1861 Node->getOperand(0), Node->getOperand(2), 1862 MachinePointerInfo(VS), false, false, false, 0); 1863 return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1), 1864 MachinePointerInfo(VD), false, false, 0); 1865 } 1866 1867 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) { 1868 MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo(); 1869 unsigned ByteSize = VT.getStoreSize(); 1870 Type *Ty = VT.getTypeForEVT(*getContext()); 1871 unsigned StackAlign = 1872 std::max((unsigned)getDataLayout().getPrefTypeAlignment(Ty), minAlign); 1873 1874 int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign, false); 1875 return getFrameIndex(FrameIdx, TLI->getPointerTy(getDataLayout())); 1876 } 1877 1878 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) { 1879 unsigned Bytes = std::max(VT1.getStoreSize(), VT2.getStoreSize()); 1880 Type *Ty1 = VT1.getTypeForEVT(*getContext()); 1881 Type *Ty2 = VT2.getTypeForEVT(*getContext()); 1882 const DataLayout &DL = getDataLayout(); 1883 unsigned Align = 1884 std::max(DL.getPrefTypeAlignment(Ty1), DL.getPrefTypeAlignment(Ty2)); 1885 1886 MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo(); 1887 int FrameIdx = FrameInfo->CreateStackObject(Bytes, Align, false); 1888 return getFrameIndex(FrameIdx, TLI->getPointerTy(getDataLayout())); 1889 } 1890 1891 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2, 1892 ISD::CondCode Cond, const SDLoc &dl) { 1893 // These setcc operations always fold. 1894 switch (Cond) { 1895 default: break; 1896 case ISD::SETFALSE: 1897 case ISD::SETFALSE2: return getConstant(0, dl, VT); 1898 case ISD::SETTRUE: 1899 case ISD::SETTRUE2: { 1900 TargetLowering::BooleanContent Cnt = 1901 TLI->getBooleanContents(N1->getValueType(0)); 1902 return getConstant( 1903 Cnt == TargetLowering::ZeroOrNegativeOneBooleanContent ? -1ULL : 1, dl, 1904 VT); 1905 } 1906 1907 case ISD::SETOEQ: 1908 case ISD::SETOGT: 1909 case ISD::SETOGE: 1910 case ISD::SETOLT: 1911 case ISD::SETOLE: 1912 case ISD::SETONE: 1913 case ISD::SETO: 1914 case ISD::SETUO: 1915 case ISD::SETUEQ: 1916 case ISD::SETUNE: 1917 assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!"); 1918 break; 1919 } 1920 1921 if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) { 1922 const APInt &C2 = N2C->getAPIntValue(); 1923 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) { 1924 const APInt &C1 = N1C->getAPIntValue(); 1925 1926 switch (Cond) { 1927 default: llvm_unreachable("Unknown integer setcc!"); 1928 case ISD::SETEQ: return getConstant(C1 == C2, dl, VT); 1929 case ISD::SETNE: return getConstant(C1 != C2, dl, VT); 1930 case ISD::SETULT: return getConstant(C1.ult(C2), dl, VT); 1931 case ISD::SETUGT: return getConstant(C1.ugt(C2), dl, VT); 1932 case ISD::SETULE: return getConstant(C1.ule(C2), dl, VT); 1933 case ISD::SETUGE: return getConstant(C1.uge(C2), dl, VT); 1934 case ISD::SETLT: return getConstant(C1.slt(C2), dl, VT); 1935 case ISD::SETGT: return getConstant(C1.sgt(C2), dl, VT); 1936 case ISD::SETLE: return getConstant(C1.sle(C2), dl, VT); 1937 case ISD::SETGE: return getConstant(C1.sge(C2), dl, VT); 1938 } 1939 } 1940 } 1941 if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1)) { 1942 if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2)) { 1943 APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF()); 1944 switch (Cond) { 1945 default: break; 1946 case ISD::SETEQ: if (R==APFloat::cmpUnordered) 1947 return getUNDEF(VT); 1948 // fall through 1949 case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, dl, VT); 1950 case ISD::SETNE: if (R==APFloat::cmpUnordered) 1951 return getUNDEF(VT); 1952 // fall through 1953 case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan || 1954 R==APFloat::cmpLessThan, dl, VT); 1955 case ISD::SETLT: if (R==APFloat::cmpUnordered) 1956 return getUNDEF(VT); 1957 // fall through 1958 case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, dl, VT); 1959 case ISD::SETGT: if (R==APFloat::cmpUnordered) 1960 return getUNDEF(VT); 1961 // fall through 1962 case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, dl, VT); 1963 case ISD::SETLE: if (R==APFloat::cmpUnordered) 1964 return getUNDEF(VT); 1965 // fall through 1966 case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan || 1967 R==APFloat::cmpEqual, dl, VT); 1968 case ISD::SETGE: if (R==APFloat::cmpUnordered) 1969 return getUNDEF(VT); 1970 // fall through 1971 case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan || 1972 R==APFloat::cmpEqual, dl, VT); 1973 case ISD::SETO: return getConstant(R!=APFloat::cmpUnordered, dl, VT); 1974 case ISD::SETUO: return getConstant(R==APFloat::cmpUnordered, dl, VT); 1975 case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered || 1976 R==APFloat::cmpEqual, dl, VT); 1977 case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, dl, VT); 1978 case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered || 1979 R==APFloat::cmpLessThan, dl, VT); 1980 case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan || 1981 R==APFloat::cmpUnordered, dl, VT); 1982 case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, dl, VT); 1983 case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, dl, VT); 1984 } 1985 } else { 1986 // Ensure that the constant occurs on the RHS. 1987 ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond); 1988 MVT CompVT = N1.getValueType().getSimpleVT(); 1989 if (!TLI->isCondCodeLegal(SwappedCond, CompVT)) 1990 return SDValue(); 1991 1992 return getSetCC(dl, VT, N2, N1, SwappedCond); 1993 } 1994 } 1995 1996 // Could not fold it. 1997 return SDValue(); 1998 } 1999 2000 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero. We 2001 /// use this predicate to simplify operations downstream. 2002 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const { 2003 // This predicate is not safe for vector operations. 2004 if (Op.getValueType().isVector()) 2005 return false; 2006 2007 unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits(); 2008 return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth); 2009 } 2010 2011 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use 2012 /// this predicate to simplify operations downstream. Mask is known to be zero 2013 /// for bits that V cannot have. 2014 bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask, 2015 unsigned Depth) const { 2016 APInt KnownZero, KnownOne; 2017 computeKnownBits(Op, KnownZero, KnownOne, Depth); 2018 return (KnownZero & Mask) == Mask; 2019 } 2020 2021 /// Determine which bits of Op are known to be either zero or one and return 2022 /// them in the KnownZero/KnownOne bitsets. 2023 void SelectionDAG::computeKnownBits(SDValue Op, APInt &KnownZero, 2024 APInt &KnownOne, unsigned Depth) const { 2025 unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits(); 2026 2027 KnownZero = KnownOne = APInt(BitWidth, 0); // Don't know anything. 2028 if (Depth == 6) 2029 return; // Limit search depth. 2030 2031 APInt KnownZero2, KnownOne2; 2032 2033 switch (Op.getOpcode()) { 2034 case ISD::Constant: 2035 // We know all of the bits for a constant! 2036 KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue(); 2037 KnownZero = ~KnownOne; 2038 break; 2039 case ISD::AND: 2040 // If either the LHS or the RHS are Zero, the result is zero. 2041 computeKnownBits(Op.getOperand(1), KnownZero, KnownOne, Depth+1); 2042 computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, Depth+1); 2043 2044 // Output known-1 bits are only known if set in both the LHS & RHS. 2045 KnownOne &= KnownOne2; 2046 // Output known-0 are known to be clear if zero in either the LHS | RHS. 2047 KnownZero |= KnownZero2; 2048 break; 2049 case ISD::OR: 2050 computeKnownBits(Op.getOperand(1), KnownZero, KnownOne, Depth+1); 2051 computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, Depth+1); 2052 2053 // Output known-0 bits are only known if clear in both the LHS & RHS. 2054 KnownZero &= KnownZero2; 2055 // Output known-1 are known to be set if set in either the LHS | RHS. 2056 KnownOne |= KnownOne2; 2057 break; 2058 case ISD::XOR: { 2059 computeKnownBits(Op.getOperand(1), KnownZero, KnownOne, Depth+1); 2060 computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, Depth+1); 2061 2062 // Output known-0 bits are known if clear or set in both the LHS & RHS. 2063 APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2); 2064 // Output known-1 are known to be set if set in only one of the LHS, RHS. 2065 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2); 2066 KnownZero = KnownZeroOut; 2067 break; 2068 } 2069 case ISD::MUL: { 2070 computeKnownBits(Op.getOperand(1), KnownZero, KnownOne, Depth+1); 2071 computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, Depth+1); 2072 2073 // If low bits are zero in either operand, output low known-0 bits. 2074 // Also compute a conserative estimate for high known-0 bits. 2075 // More trickiness is possible, but this is sufficient for the 2076 // interesting case of alignment computation. 2077 KnownOne.clearAllBits(); 2078 unsigned TrailZ = KnownZero.countTrailingOnes() + 2079 KnownZero2.countTrailingOnes(); 2080 unsigned LeadZ = std::max(KnownZero.countLeadingOnes() + 2081 KnownZero2.countLeadingOnes(), 2082 BitWidth) - BitWidth; 2083 2084 TrailZ = std::min(TrailZ, BitWidth); 2085 LeadZ = std::min(LeadZ, BitWidth); 2086 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) | 2087 APInt::getHighBitsSet(BitWidth, LeadZ); 2088 break; 2089 } 2090 case ISD::UDIV: { 2091 // For the purposes of computing leading zeros we can conservatively 2092 // treat a udiv as a logical right shift by the power of 2 known to 2093 // be less than the denominator. 2094 computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, Depth+1); 2095 unsigned LeadZ = KnownZero2.countLeadingOnes(); 2096 2097 KnownOne2.clearAllBits(); 2098 KnownZero2.clearAllBits(); 2099 computeKnownBits(Op.getOperand(1), KnownZero2, KnownOne2, Depth+1); 2100 unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros(); 2101 if (RHSUnknownLeadingOnes != BitWidth) 2102 LeadZ = std::min(BitWidth, 2103 LeadZ + BitWidth - RHSUnknownLeadingOnes - 1); 2104 2105 KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ); 2106 break; 2107 } 2108 case ISD::SELECT: 2109 computeKnownBits(Op.getOperand(2), KnownZero, KnownOne, Depth+1); 2110 computeKnownBits(Op.getOperand(1), KnownZero2, KnownOne2, Depth+1); 2111 2112 // Only known if known in both the LHS and RHS. 2113 KnownOne &= KnownOne2; 2114 KnownZero &= KnownZero2; 2115 break; 2116 case ISD::SELECT_CC: 2117 computeKnownBits(Op.getOperand(3), KnownZero, KnownOne, Depth+1); 2118 computeKnownBits(Op.getOperand(2), KnownZero2, KnownOne2, Depth+1); 2119 2120 // Only known if known in both the LHS and RHS. 2121 KnownOne &= KnownOne2; 2122 KnownZero &= KnownZero2; 2123 break; 2124 case ISD::SADDO: 2125 case ISD::UADDO: 2126 case ISD::SSUBO: 2127 case ISD::USUBO: 2128 case ISD::SMULO: 2129 case ISD::UMULO: 2130 if (Op.getResNo() != 1) 2131 break; 2132 // The boolean result conforms to getBooleanContents. 2133 // If we know the result of a setcc has the top bits zero, use this info. 2134 // We know that we have an integer-based boolean since these operations 2135 // are only available for integer. 2136 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) == 2137 TargetLowering::ZeroOrOneBooleanContent && 2138 BitWidth > 1) 2139 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1); 2140 break; 2141 case ISD::SETCC: 2142 // If we know the result of a setcc has the top bits zero, use this info. 2143 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 2144 TargetLowering::ZeroOrOneBooleanContent && 2145 BitWidth > 1) 2146 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1); 2147 break; 2148 case ISD::SHL: 2149 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0 2150 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 2151 unsigned ShAmt = SA->getZExtValue(); 2152 2153 // If the shift count is an invalid immediate, don't do anything. 2154 if (ShAmt >= BitWidth) 2155 break; 2156 2157 computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1); 2158 KnownZero <<= ShAmt; 2159 KnownOne <<= ShAmt; 2160 // low bits known zero. 2161 KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt); 2162 } 2163 break; 2164 case ISD::SRL: 2165 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 2166 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 2167 unsigned ShAmt = SA->getZExtValue(); 2168 2169 // If the shift count is an invalid immediate, don't do anything. 2170 if (ShAmt >= BitWidth) 2171 break; 2172 2173 computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1); 2174 KnownZero = KnownZero.lshr(ShAmt); 2175 KnownOne = KnownOne.lshr(ShAmt); 2176 2177 APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt); 2178 KnownZero |= HighBits; // High bits known zero. 2179 } 2180 break; 2181 case ISD::SRA: 2182 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 2183 unsigned ShAmt = SA->getZExtValue(); 2184 2185 // If the shift count is an invalid immediate, don't do anything. 2186 if (ShAmt >= BitWidth) 2187 break; 2188 2189 // If any of the demanded bits are produced by the sign extension, we also 2190 // demand the input sign bit. 2191 APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt); 2192 2193 computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1); 2194 KnownZero = KnownZero.lshr(ShAmt); 2195 KnownOne = KnownOne.lshr(ShAmt); 2196 2197 // Handle the sign bits. 2198 APInt SignBit = APInt::getSignBit(BitWidth); 2199 SignBit = SignBit.lshr(ShAmt); // Adjust to where it is now in the mask. 2200 2201 if (KnownZero.intersects(SignBit)) { 2202 KnownZero |= HighBits; // New bits are known zero. 2203 } else if (KnownOne.intersects(SignBit)) { 2204 KnownOne |= HighBits; // New bits are known one. 2205 } 2206 } 2207 break; 2208 case ISD::SIGN_EXTEND_INREG: { 2209 EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2210 unsigned EBits = EVT.getScalarType().getSizeInBits(); 2211 2212 // Sign extension. Compute the demanded bits in the result that are not 2213 // present in the input. 2214 APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits); 2215 2216 APInt InSignBit = APInt::getSignBit(EBits); 2217 APInt InputDemandedBits = APInt::getLowBitsSet(BitWidth, EBits); 2218 2219 // If the sign extended bits are demanded, we know that the sign 2220 // bit is demanded. 2221 InSignBit = InSignBit.zext(BitWidth); 2222 if (NewBits.getBoolValue()) 2223 InputDemandedBits |= InSignBit; 2224 2225 computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1); 2226 KnownOne &= InputDemandedBits; 2227 KnownZero &= InputDemandedBits; 2228 2229 // If the sign bit of the input is known set or clear, then we know the 2230 // top bits of the result. 2231 if (KnownZero.intersects(InSignBit)) { // Input sign bit known clear 2232 KnownZero |= NewBits; 2233 KnownOne &= ~NewBits; 2234 } else if (KnownOne.intersects(InSignBit)) { // Input sign bit known set 2235 KnownOne |= NewBits; 2236 KnownZero &= ~NewBits; 2237 } else { // Input sign bit unknown 2238 KnownZero &= ~NewBits; 2239 KnownOne &= ~NewBits; 2240 } 2241 break; 2242 } 2243 case ISD::CTTZ: 2244 case ISD::CTTZ_ZERO_UNDEF: 2245 case ISD::CTLZ: 2246 case ISD::CTLZ_ZERO_UNDEF: 2247 case ISD::CTPOP: { 2248 unsigned LowBits = Log2_32(BitWidth)+1; 2249 KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits); 2250 KnownOne.clearAllBits(); 2251 break; 2252 } 2253 case ISD::LOAD: { 2254 LoadSDNode *LD = cast<LoadSDNode>(Op); 2255 // If this is a ZEXTLoad and we are looking at the loaded value. 2256 if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 2257 EVT VT = LD->getMemoryVT(); 2258 unsigned MemBits = VT.getScalarType().getSizeInBits(); 2259 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits); 2260 } else if (const MDNode *Ranges = LD->getRanges()) { 2261 if (LD->getExtensionType() == ISD::NON_EXTLOAD) 2262 computeKnownBitsFromRangeMetadata(*Ranges, KnownZero, KnownOne); 2263 } 2264 break; 2265 } 2266 case ISD::ZERO_EXTEND: { 2267 EVT InVT = Op.getOperand(0).getValueType(); 2268 unsigned InBits = InVT.getScalarType().getSizeInBits(); 2269 APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - InBits); 2270 KnownZero = KnownZero.trunc(InBits); 2271 KnownOne = KnownOne.trunc(InBits); 2272 computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1); 2273 KnownZero = KnownZero.zext(BitWidth); 2274 KnownOne = KnownOne.zext(BitWidth); 2275 KnownZero |= NewBits; 2276 break; 2277 } 2278 case ISD::SIGN_EXTEND: { 2279 EVT InVT = Op.getOperand(0).getValueType(); 2280 unsigned InBits = InVT.getScalarType().getSizeInBits(); 2281 APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - InBits); 2282 2283 KnownZero = KnownZero.trunc(InBits); 2284 KnownOne = KnownOne.trunc(InBits); 2285 computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1); 2286 2287 // Note if the sign bit is known to be zero or one. 2288 bool SignBitKnownZero = KnownZero.isNegative(); 2289 bool SignBitKnownOne = KnownOne.isNegative(); 2290 2291 KnownZero = KnownZero.zext(BitWidth); 2292 KnownOne = KnownOne.zext(BitWidth); 2293 2294 // If the sign bit is known zero or one, the top bits match. 2295 if (SignBitKnownZero) 2296 KnownZero |= NewBits; 2297 else if (SignBitKnownOne) 2298 KnownOne |= NewBits; 2299 break; 2300 } 2301 case ISD::ANY_EXTEND: { 2302 EVT InVT = Op.getOperand(0).getValueType(); 2303 unsigned InBits = InVT.getScalarType().getSizeInBits(); 2304 KnownZero = KnownZero.trunc(InBits); 2305 KnownOne = KnownOne.trunc(InBits); 2306 computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1); 2307 KnownZero = KnownZero.zext(BitWidth); 2308 KnownOne = KnownOne.zext(BitWidth); 2309 break; 2310 } 2311 case ISD::TRUNCATE: { 2312 EVT InVT = Op.getOperand(0).getValueType(); 2313 unsigned InBits = InVT.getScalarType().getSizeInBits(); 2314 KnownZero = KnownZero.zext(InBits); 2315 KnownOne = KnownOne.zext(InBits); 2316 computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1); 2317 KnownZero = KnownZero.trunc(BitWidth); 2318 KnownOne = KnownOne.trunc(BitWidth); 2319 break; 2320 } 2321 case ISD::AssertZext: { 2322 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2323 APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits()); 2324 computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1); 2325 KnownZero |= (~InMask); 2326 KnownOne &= (~KnownZero); 2327 break; 2328 } 2329 case ISD::FGETSIGN: 2330 // All bits are zero except the low bit. 2331 KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1); 2332 break; 2333 2334 case ISD::SUB: { 2335 if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) { 2336 // We know that the top bits of C-X are clear if X contains less bits 2337 // than C (i.e. no wrap-around can happen). For example, 20-X is 2338 // positive if we can prove that X is >= 0 and < 16. 2339 if (CLHS->getAPIntValue().isNonNegative()) { 2340 unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros(); 2341 // NLZ can't be BitWidth with no sign bit 2342 APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1); 2343 computeKnownBits(Op.getOperand(1), KnownZero2, KnownOne2, Depth+1); 2344 2345 // If all of the MaskV bits are known to be zero, then we know the 2346 // output top bits are zero, because we now know that the output is 2347 // from [0-C]. 2348 if ((KnownZero2 & MaskV) == MaskV) { 2349 unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros(); 2350 // Top bits known zero. 2351 KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2); 2352 } 2353 } 2354 } 2355 } 2356 // fall through 2357 case ISD::ADD: 2358 case ISD::ADDE: { 2359 // Output known-0 bits are known if clear or set in both the low clear bits 2360 // common to both LHS & RHS. For example, 8+(X<<3) is known to have the 2361 // low 3 bits clear. 2362 // Output known-0 bits are also known if the top bits of each input are 2363 // known to be clear. For example, if one input has the top 10 bits clear 2364 // and the other has the top 8 bits clear, we know the top 7 bits of the 2365 // output must be clear. 2366 computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, Depth+1); 2367 unsigned KnownZeroHigh = KnownZero2.countLeadingOnes(); 2368 unsigned KnownZeroLow = KnownZero2.countTrailingOnes(); 2369 2370 computeKnownBits(Op.getOperand(1), KnownZero2, KnownOne2, Depth+1); 2371 KnownZeroHigh = std::min(KnownZeroHigh, 2372 KnownZero2.countLeadingOnes()); 2373 KnownZeroLow = std::min(KnownZeroLow, 2374 KnownZero2.countTrailingOnes()); 2375 2376 if (Op.getOpcode() == ISD::ADD) { 2377 KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroLow); 2378 if (KnownZeroHigh > 1) 2379 KnownZero |= APInt::getHighBitsSet(BitWidth, KnownZeroHigh - 1); 2380 break; 2381 } 2382 2383 // With ADDE, a carry bit may be added in, so we can only use this 2384 // information if we know (at least) that the low two bits are clear. We 2385 // then return to the caller that the low bit is unknown but that other bits 2386 // are known zero. 2387 if (KnownZeroLow >= 2) // ADDE 2388 KnownZero |= APInt::getBitsSet(BitWidth, 1, KnownZeroLow); 2389 break; 2390 } 2391 case ISD::SREM: 2392 if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 2393 const APInt &RA = Rem->getAPIntValue().abs(); 2394 if (RA.isPowerOf2()) { 2395 APInt LowBits = RA - 1; 2396 computeKnownBits(Op.getOperand(0), KnownZero2,KnownOne2,Depth+1); 2397 2398 // The low bits of the first operand are unchanged by the srem. 2399 KnownZero = KnownZero2 & LowBits; 2400 KnownOne = KnownOne2 & LowBits; 2401 2402 // If the first operand is non-negative or has all low bits zero, then 2403 // the upper bits are all zero. 2404 if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits)) 2405 KnownZero |= ~LowBits; 2406 2407 // If the first operand is negative and not all low bits are zero, then 2408 // the upper bits are all one. 2409 if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0)) 2410 KnownOne |= ~LowBits; 2411 assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?"); 2412 } 2413 } 2414 break; 2415 case ISD::UREM: { 2416 if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 2417 const APInt &RA = Rem->getAPIntValue(); 2418 if (RA.isPowerOf2()) { 2419 APInt LowBits = (RA - 1); 2420 computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, Depth + 1); 2421 2422 // The upper bits are all zero, the lower ones are unchanged. 2423 KnownZero = KnownZero2 | ~LowBits; 2424 KnownOne = KnownOne2 & LowBits; 2425 break; 2426 } 2427 } 2428 2429 // Since the result is less than or equal to either operand, any leading 2430 // zero bits in either operand must also exist in the result. 2431 computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1); 2432 computeKnownBits(Op.getOperand(1), KnownZero2, KnownOne2, Depth+1); 2433 2434 uint32_t Leaders = std::max(KnownZero.countLeadingOnes(), 2435 KnownZero2.countLeadingOnes()); 2436 KnownOne.clearAllBits(); 2437 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders); 2438 break; 2439 } 2440 case ISD::EXTRACT_ELEMENT: { 2441 computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1); 2442 const unsigned Index = 2443 cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 2444 const unsigned BitWidth = Op.getValueType().getSizeInBits(); 2445 2446 // Remove low part of known bits mask 2447 KnownZero = KnownZero.getHiBits(KnownZero.getBitWidth() - Index * BitWidth); 2448 KnownOne = KnownOne.getHiBits(KnownOne.getBitWidth() - Index * BitWidth); 2449 2450 // Remove high part of known bit mask 2451 KnownZero = KnownZero.trunc(BitWidth); 2452 KnownOne = KnownOne.trunc(BitWidth); 2453 break; 2454 } 2455 case ISD::BSWAP: { 2456 computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, Depth+1); 2457 KnownZero = KnownZero2.byteSwap(); 2458 KnownOne = KnownOne2.byteSwap(); 2459 break; 2460 } 2461 case ISD::SMIN: 2462 case ISD::SMAX: 2463 case ISD::UMIN: 2464 case ISD::UMAX: { 2465 APInt Op0Zero, Op0One; 2466 APInt Op1Zero, Op1One; 2467 computeKnownBits(Op.getOperand(0), Op0Zero, Op0One, Depth); 2468 computeKnownBits(Op.getOperand(1), Op1Zero, Op1One, Depth); 2469 2470 KnownZero = Op0Zero & Op1Zero; 2471 KnownOne = Op0One & Op1One; 2472 break; 2473 } 2474 case ISD::FrameIndex: 2475 case ISD::TargetFrameIndex: 2476 if (unsigned Align = InferPtrAlignment(Op)) { 2477 // The low bits are known zero if the pointer is aligned. 2478 KnownZero = APInt::getLowBitsSet(BitWidth, Log2_32(Align)); 2479 break; 2480 } 2481 break; 2482 2483 default: 2484 if (Op.getOpcode() < ISD::BUILTIN_OP_END) 2485 break; 2486 // Fallthrough 2487 case ISD::INTRINSIC_WO_CHAIN: 2488 case ISD::INTRINSIC_W_CHAIN: 2489 case ISD::INTRINSIC_VOID: 2490 // Allow the target to implement this method for its nodes. 2491 TLI->computeKnownBitsForTargetNode(Op, KnownZero, KnownOne, *this, Depth); 2492 break; 2493 } 2494 2495 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 2496 } 2497 2498 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const { 2499 // A left-shift of a constant one will have exactly one bit set because 2500 // shifting the bit off the end is undefined. 2501 if (Val.getOpcode() == ISD::SHL) { 2502 auto *C = dyn_cast<ConstantSDNode>(Val.getOperand(0)); 2503 if (C && C->getAPIntValue() == 1) 2504 return true; 2505 } 2506 2507 // Similarly, a logical right-shift of a constant sign-bit will have exactly 2508 // one bit set. 2509 if (Val.getOpcode() == ISD::SRL) { 2510 auto *C = dyn_cast<ConstantSDNode>(Val.getOperand(0)); 2511 if (C && C->getAPIntValue().isSignBit()) 2512 return true; 2513 } 2514 2515 // More could be done here, though the above checks are enough 2516 // to handle some common cases. 2517 2518 // Fall back to computeKnownBits to catch other known cases. 2519 EVT OpVT = Val.getValueType(); 2520 unsigned BitWidth = OpVT.getScalarType().getSizeInBits(); 2521 APInt KnownZero, KnownOne; 2522 computeKnownBits(Val, KnownZero, KnownOne); 2523 return (KnownZero.countPopulation() == BitWidth - 1) && 2524 (KnownOne.countPopulation() == 1); 2525 } 2526 2527 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const { 2528 EVT VT = Op.getValueType(); 2529 assert(VT.isInteger() && "Invalid VT!"); 2530 unsigned VTBits = VT.getScalarType().getSizeInBits(); 2531 unsigned Tmp, Tmp2; 2532 unsigned FirstAnswer = 1; 2533 2534 if (Depth == 6) 2535 return 1; // Limit search depth. 2536 2537 switch (Op.getOpcode()) { 2538 default: break; 2539 case ISD::AssertSext: 2540 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 2541 return VTBits-Tmp+1; 2542 case ISD::AssertZext: 2543 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 2544 return VTBits-Tmp; 2545 2546 case ISD::Constant: { 2547 const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue(); 2548 return Val.getNumSignBits(); 2549 } 2550 2551 case ISD::SIGN_EXTEND: 2552 Tmp = 2553 VTBits-Op.getOperand(0).getValueType().getScalarType().getSizeInBits(); 2554 return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp; 2555 2556 case ISD::SIGN_EXTEND_INREG: 2557 // Max of the input and what this extends. 2558 Tmp = 2559 cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarType().getSizeInBits(); 2560 Tmp = VTBits-Tmp+1; 2561 2562 Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1); 2563 return std::max(Tmp, Tmp2); 2564 2565 case ISD::SRA: 2566 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); 2567 // SRA X, C -> adds C sign bits. 2568 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 2569 Tmp += C->getZExtValue(); 2570 if (Tmp > VTBits) Tmp = VTBits; 2571 } 2572 return Tmp; 2573 case ISD::SHL: 2574 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 2575 // shl destroys sign bits. 2576 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); 2577 if (C->getZExtValue() >= VTBits || // Bad shift. 2578 C->getZExtValue() >= Tmp) break; // Shifted all sign bits out. 2579 return Tmp - C->getZExtValue(); 2580 } 2581 break; 2582 case ISD::AND: 2583 case ISD::OR: 2584 case ISD::XOR: // NOT is handled here. 2585 // Logical binary ops preserve the number of sign bits at the worst. 2586 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); 2587 if (Tmp != 1) { 2588 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1); 2589 FirstAnswer = std::min(Tmp, Tmp2); 2590 // We computed what we know about the sign bits as our first 2591 // answer. Now proceed to the generic code that uses 2592 // computeKnownBits, and pick whichever answer is better. 2593 } 2594 break; 2595 2596 case ISD::SELECT: 2597 Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1); 2598 if (Tmp == 1) return 1; // Early out. 2599 Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1); 2600 return std::min(Tmp, Tmp2); 2601 case ISD::SELECT_CC: 2602 Tmp = ComputeNumSignBits(Op.getOperand(2), Depth+1); 2603 if (Tmp == 1) return 1; // Early out. 2604 Tmp2 = ComputeNumSignBits(Op.getOperand(3), Depth+1); 2605 return std::min(Tmp, Tmp2); 2606 case ISD::SMIN: 2607 case ISD::SMAX: 2608 case ISD::UMIN: 2609 case ISD::UMAX: 2610 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 2611 if (Tmp == 1) 2612 return 1; // Early out. 2613 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth + 1); 2614 return std::min(Tmp, Tmp2); 2615 case ISD::SADDO: 2616 case ISD::UADDO: 2617 case ISD::SSUBO: 2618 case ISD::USUBO: 2619 case ISD::SMULO: 2620 case ISD::UMULO: 2621 if (Op.getResNo() != 1) 2622 break; 2623 // The boolean result conforms to getBooleanContents. Fall through. 2624 // If setcc returns 0/-1, all bits are sign bits. 2625 // We know that we have an integer-based boolean since these operations 2626 // are only available for integer. 2627 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) == 2628 TargetLowering::ZeroOrNegativeOneBooleanContent) 2629 return VTBits; 2630 break; 2631 case ISD::SETCC: 2632 // If setcc returns 0/-1, all bits are sign bits. 2633 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 2634 TargetLowering::ZeroOrNegativeOneBooleanContent) 2635 return VTBits; 2636 break; 2637 case ISD::ROTL: 2638 case ISD::ROTR: 2639 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 2640 unsigned RotAmt = C->getZExtValue() & (VTBits-1); 2641 2642 // Handle rotate right by N like a rotate left by 32-N. 2643 if (Op.getOpcode() == ISD::ROTR) 2644 RotAmt = (VTBits-RotAmt) & (VTBits-1); 2645 2646 // If we aren't rotating out all of the known-in sign bits, return the 2647 // number that are left. This handles rotl(sext(x), 1) for example. 2648 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); 2649 if (Tmp > RotAmt+1) return Tmp-RotAmt; 2650 } 2651 break; 2652 case ISD::ADD: 2653 // Add can have at most one carry bit. Thus we know that the output 2654 // is, at worst, one more bit than the inputs. 2655 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); 2656 if (Tmp == 1) return 1; // Early out. 2657 2658 // Special case decrementing a value (ADD X, -1): 2659 if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1))) 2660 if (CRHS->isAllOnesValue()) { 2661 APInt KnownZero, KnownOne; 2662 computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1); 2663 2664 // If the input is known to be 0 or 1, the output is 0/-1, which is all 2665 // sign bits set. 2666 if ((KnownZero | APInt(VTBits, 1)).isAllOnesValue()) 2667 return VTBits; 2668 2669 // If we are subtracting one from a positive number, there is no carry 2670 // out of the result. 2671 if (KnownZero.isNegative()) 2672 return Tmp; 2673 } 2674 2675 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1); 2676 if (Tmp2 == 1) return 1; 2677 return std::min(Tmp, Tmp2)-1; 2678 2679 case ISD::SUB: 2680 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1); 2681 if (Tmp2 == 1) return 1; 2682 2683 // Handle NEG. 2684 if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) 2685 if (CLHS->isNullValue()) { 2686 APInt KnownZero, KnownOne; 2687 computeKnownBits(Op.getOperand(1), KnownZero, KnownOne, Depth+1); 2688 // If the input is known to be 0 or 1, the output is 0/-1, which is all 2689 // sign bits set. 2690 if ((KnownZero | APInt(VTBits, 1)).isAllOnesValue()) 2691 return VTBits; 2692 2693 // If the input is known to be positive (the sign bit is known clear), 2694 // the output of the NEG has the same number of sign bits as the input. 2695 if (KnownZero.isNegative()) 2696 return Tmp2; 2697 2698 // Otherwise, we treat this like a SUB. 2699 } 2700 2701 // Sub can have at most one carry bit. Thus we know that the output 2702 // is, at worst, one more bit than the inputs. 2703 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); 2704 if (Tmp == 1) return 1; // Early out. 2705 return std::min(Tmp, Tmp2)-1; 2706 case ISD::TRUNCATE: 2707 // FIXME: it's tricky to do anything useful for this, but it is an important 2708 // case for targets like X86. 2709 break; 2710 case ISD::EXTRACT_ELEMENT: { 2711 const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1); 2712 const int BitWidth = Op.getValueType().getSizeInBits(); 2713 const int Items = 2714 Op.getOperand(0).getValueType().getSizeInBits() / BitWidth; 2715 2716 // Get reverse index (starting from 1), Op1 value indexes elements from 2717 // little end. Sign starts at big end. 2718 const int rIndex = Items - 1 - 2719 cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 2720 2721 // If the sign portion ends in our element the subtraction gives correct 2722 // result. Otherwise it gives either negative or > bitwidth result 2723 return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0); 2724 } 2725 } 2726 2727 // If we are looking at the loaded value of the SDNode. 2728 if (Op.getResNo() == 0) { 2729 // Handle LOADX separately here. EXTLOAD case will fallthrough. 2730 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) { 2731 unsigned ExtType = LD->getExtensionType(); 2732 switch (ExtType) { 2733 default: break; 2734 case ISD::SEXTLOAD: // '17' bits known 2735 Tmp = LD->getMemoryVT().getScalarType().getSizeInBits(); 2736 return VTBits-Tmp+1; 2737 case ISD::ZEXTLOAD: // '16' bits known 2738 Tmp = LD->getMemoryVT().getScalarType().getSizeInBits(); 2739 return VTBits-Tmp; 2740 } 2741 } 2742 } 2743 2744 // Allow the target to implement this method for its nodes. 2745 if (Op.getOpcode() >= ISD::BUILTIN_OP_END || 2746 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2747 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2748 Op.getOpcode() == ISD::INTRINSIC_VOID) { 2749 unsigned NumBits = TLI->ComputeNumSignBitsForTargetNode(Op, *this, Depth); 2750 if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits); 2751 } 2752 2753 // Finally, if we can prove that the top bits of the result are 0's or 1's, 2754 // use this information. 2755 APInt KnownZero, KnownOne; 2756 computeKnownBits(Op, KnownZero, KnownOne, Depth); 2757 2758 APInt Mask; 2759 if (KnownZero.isNegative()) { // sign bit is 0 2760 Mask = KnownZero; 2761 } else if (KnownOne.isNegative()) { // sign bit is 1; 2762 Mask = KnownOne; 2763 } else { 2764 // Nothing known. 2765 return FirstAnswer; 2766 } 2767 2768 // Okay, we know that the sign bit in Mask is set. Use CLZ to determine 2769 // the number of identical bits in the top of the input value. 2770 Mask = ~Mask; 2771 Mask <<= Mask.getBitWidth()-VTBits; 2772 // Return # leading zeros. We use 'min' here in case Val was zero before 2773 // shifting. We don't want to return '64' as for an i32 "0". 2774 return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros())); 2775 } 2776 2777 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const { 2778 if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) || 2779 !isa<ConstantSDNode>(Op.getOperand(1))) 2780 return false; 2781 2782 if (Op.getOpcode() == ISD::OR && 2783 !MaskedValueIsZero(Op.getOperand(0), 2784 cast<ConstantSDNode>(Op.getOperand(1))->getAPIntValue())) 2785 return false; 2786 2787 return true; 2788 } 2789 2790 bool SelectionDAG::isKnownNeverNaN(SDValue Op) const { 2791 // If we're told that NaNs won't happen, assume they won't. 2792 if (getTarget().Options.NoNaNsFPMath) 2793 return true; 2794 2795 // If the value is a constant, we can obviously see if it is a NaN or not. 2796 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) 2797 return !C->getValueAPF().isNaN(); 2798 2799 // TODO: Recognize more cases here. 2800 2801 return false; 2802 } 2803 2804 bool SelectionDAG::isKnownNeverZero(SDValue Op) const { 2805 // If the value is a constant, we can obviously see if it is a zero or not. 2806 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) 2807 return !C->isZero(); 2808 2809 // TODO: Recognize more cases here. 2810 switch (Op.getOpcode()) { 2811 default: break; 2812 case ISD::OR: 2813 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) 2814 return !C->isNullValue(); 2815 break; 2816 } 2817 2818 return false; 2819 } 2820 2821 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const { 2822 // Check the obvious case. 2823 if (A == B) return true; 2824 2825 // For for negative and positive zero. 2826 if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A)) 2827 if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B)) 2828 if (CA->isZero() && CB->isZero()) return true; 2829 2830 // Otherwise they may not be equal. 2831 return false; 2832 } 2833 2834 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const { 2835 assert(A.getValueType() == B.getValueType() && 2836 "Values must have the same type"); 2837 APInt AZero, AOne; 2838 APInt BZero, BOne; 2839 computeKnownBits(A, AZero, AOne); 2840 computeKnownBits(B, BZero, BOne); 2841 return (AZero | BZero).isAllOnesValue(); 2842 } 2843 2844 static SDValue FoldCONCAT_VECTORS(const SDLoc &DL, EVT VT, 2845 ArrayRef<SDValue> Ops, 2846 llvm::SelectionDAG &DAG) { 2847 if (Ops.size() == 1) 2848 return Ops[0]; 2849 2850 // Concat of UNDEFs is UNDEF. 2851 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 2852 return DAG.getUNDEF(VT); 2853 2854 // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be 2855 // simplified to one big BUILD_VECTOR. 2856 // FIXME: Add support for SCALAR_TO_VECTOR as well. 2857 EVT SVT = VT.getScalarType(); 2858 SmallVector<SDValue, 16> Elts; 2859 for (SDValue Op : Ops) { 2860 EVT OpVT = Op.getValueType(); 2861 if (Op.isUndef()) 2862 Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT)); 2863 else if (Op.getOpcode() == ISD::BUILD_VECTOR) 2864 Elts.append(Op->op_begin(), Op->op_end()); 2865 else 2866 return SDValue(); 2867 } 2868 2869 // BUILD_VECTOR requires all inputs to be of the same type, find the 2870 // maximum type and extend them all. 2871 for (SDValue Op : Elts) 2872 SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT); 2873 2874 if (SVT.bitsGT(VT.getScalarType())) 2875 for (SDValue &Op : Elts) 2876 Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT) 2877 ? DAG.getZExtOrTrunc(Op, DL, SVT) 2878 : DAG.getSExtOrTrunc(Op, DL, SVT); 2879 2880 return DAG.getNode(ISD::BUILD_VECTOR, DL, VT, Elts); 2881 } 2882 2883 /// Gets or creates the specified node. 2884 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) { 2885 FoldingSetNodeID ID; 2886 AddNodeIDNode(ID, Opcode, getVTList(VT), None); 2887 void *IP = nullptr; 2888 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 2889 return SDValue(E, 0); 2890 2891 auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), 2892 getVTList(VT)); 2893 CSEMap.InsertNode(N, IP); 2894 2895 InsertNode(N); 2896 return SDValue(N, 0); 2897 } 2898 2899 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 2900 SDValue Operand) { 2901 // Constant fold unary operations with an integer constant operand. Even 2902 // opaque constant will be folded, because the folding of unary operations 2903 // doesn't create new constants with different values. Nevertheless, the 2904 // opaque flag is preserved during folding to prevent future folding with 2905 // other constants. 2906 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) { 2907 const APInt &Val = C->getAPIntValue(); 2908 switch (Opcode) { 2909 default: break; 2910 case ISD::SIGN_EXTEND: 2911 return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT, 2912 C->isTargetOpcode(), C->isOpaque()); 2913 case ISD::ANY_EXTEND: 2914 case ISD::ZERO_EXTEND: 2915 case ISD::TRUNCATE: 2916 return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT, 2917 C->isTargetOpcode(), C->isOpaque()); 2918 case ISD::UINT_TO_FP: 2919 case ISD::SINT_TO_FP: { 2920 APFloat apf(EVTToAPFloatSemantics(VT), 2921 APInt::getNullValue(VT.getSizeInBits())); 2922 (void)apf.convertFromAPInt(Val, 2923 Opcode==ISD::SINT_TO_FP, 2924 APFloat::rmNearestTiesToEven); 2925 return getConstantFP(apf, DL, VT); 2926 } 2927 case ISD::BITCAST: 2928 if (VT == MVT::f16 && C->getValueType(0) == MVT::i16) 2929 return getConstantFP(APFloat(APFloat::IEEEhalf, Val), DL, VT); 2930 if (VT == MVT::f32 && C->getValueType(0) == MVT::i32) 2931 return getConstantFP(APFloat(APFloat::IEEEsingle, Val), DL, VT); 2932 if (VT == MVT::f64 && C->getValueType(0) == MVT::i64) 2933 return getConstantFP(APFloat(APFloat::IEEEdouble, Val), DL, VT); 2934 if (VT == MVT::f128 && C->getValueType(0) == MVT::i128) 2935 return getConstantFP(APFloat(APFloat::IEEEquad, Val), DL, VT); 2936 break; 2937 case ISD::BSWAP: 2938 return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(), 2939 C->isOpaque()); 2940 case ISD::CTPOP: 2941 return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(), 2942 C->isOpaque()); 2943 case ISD::CTLZ: 2944 case ISD::CTLZ_ZERO_UNDEF: 2945 return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(), 2946 C->isOpaque()); 2947 case ISD::CTTZ: 2948 case ISD::CTTZ_ZERO_UNDEF: 2949 return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(), 2950 C->isOpaque()); 2951 } 2952 } 2953 2954 // Constant fold unary operations with a floating point constant operand. 2955 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) { 2956 APFloat V = C->getValueAPF(); // make copy 2957 switch (Opcode) { 2958 case ISD::FNEG: 2959 V.changeSign(); 2960 return getConstantFP(V, DL, VT); 2961 case ISD::FABS: 2962 V.clearSign(); 2963 return getConstantFP(V, DL, VT); 2964 case ISD::FCEIL: { 2965 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive); 2966 if (fs == APFloat::opOK || fs == APFloat::opInexact) 2967 return getConstantFP(V, DL, VT); 2968 break; 2969 } 2970 case ISD::FTRUNC: { 2971 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero); 2972 if (fs == APFloat::opOK || fs == APFloat::opInexact) 2973 return getConstantFP(V, DL, VT); 2974 break; 2975 } 2976 case ISD::FFLOOR: { 2977 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative); 2978 if (fs == APFloat::opOK || fs == APFloat::opInexact) 2979 return getConstantFP(V, DL, VT); 2980 break; 2981 } 2982 case ISD::FP_EXTEND: { 2983 bool ignored; 2984 // This can return overflow, underflow, or inexact; we don't care. 2985 // FIXME need to be more flexible about rounding mode. 2986 (void)V.convert(EVTToAPFloatSemantics(VT), 2987 APFloat::rmNearestTiesToEven, &ignored); 2988 return getConstantFP(V, DL, VT); 2989 } 2990 case ISD::FP_TO_SINT: 2991 case ISD::FP_TO_UINT: { 2992 integerPart x[2]; 2993 bool ignored; 2994 static_assert(integerPartWidth >= 64, "APFloat parts too small!"); 2995 // FIXME need to be more flexible about rounding mode. 2996 APFloat::opStatus s = V.convertToInteger(x, VT.getSizeInBits(), 2997 Opcode==ISD::FP_TO_SINT, 2998 APFloat::rmTowardZero, &ignored); 2999 if (s==APFloat::opInvalidOp) // inexact is OK, in fact usual 3000 break; 3001 APInt api(VT.getSizeInBits(), x); 3002 return getConstant(api, DL, VT); 3003 } 3004 case ISD::BITCAST: 3005 if (VT == MVT::i16 && C->getValueType(0) == MVT::f16) 3006 return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 3007 else if (VT == MVT::i32 && C->getValueType(0) == MVT::f32) 3008 return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 3009 else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64) 3010 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT); 3011 break; 3012 } 3013 } 3014 3015 // Constant fold unary operations with a vector integer or float operand. 3016 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Operand)) { 3017 if (BV->isConstant()) { 3018 switch (Opcode) { 3019 default: 3020 // FIXME: Entirely reasonable to perform folding of other unary 3021 // operations here as the need arises. 3022 break; 3023 case ISD::FNEG: 3024 case ISD::FABS: 3025 case ISD::FCEIL: 3026 case ISD::FTRUNC: 3027 case ISD::FFLOOR: 3028 case ISD::FP_EXTEND: 3029 case ISD::FP_TO_SINT: 3030 case ISD::FP_TO_UINT: 3031 case ISD::TRUNCATE: 3032 case ISD::UINT_TO_FP: 3033 case ISD::SINT_TO_FP: 3034 case ISD::BSWAP: 3035 case ISD::CTLZ: 3036 case ISD::CTLZ_ZERO_UNDEF: 3037 case ISD::CTTZ: 3038 case ISD::CTTZ_ZERO_UNDEF: 3039 case ISD::CTPOP: { 3040 SDValue Ops = { Operand }; 3041 if (SDValue Fold = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) 3042 return Fold; 3043 } 3044 } 3045 } 3046 } 3047 3048 unsigned OpOpcode = Operand.getNode()->getOpcode(); 3049 switch (Opcode) { 3050 case ISD::TokenFactor: 3051 case ISD::MERGE_VALUES: 3052 case ISD::CONCAT_VECTORS: 3053 return Operand; // Factor, merge or concat of one node? No need. 3054 case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node"); 3055 case ISD::FP_EXTEND: 3056 assert(VT.isFloatingPoint() && 3057 Operand.getValueType().isFloatingPoint() && "Invalid FP cast!"); 3058 if (Operand.getValueType() == VT) return Operand; // noop conversion. 3059 assert((!VT.isVector() || 3060 VT.getVectorNumElements() == 3061 Operand.getValueType().getVectorNumElements()) && 3062 "Vector element count mismatch!"); 3063 assert(Operand.getValueType().bitsLT(VT) && 3064 "Invalid fpext node, dst < src!"); 3065 if (Operand.isUndef()) 3066 return getUNDEF(VT); 3067 break; 3068 case ISD::SIGN_EXTEND: 3069 assert(VT.isInteger() && Operand.getValueType().isInteger() && 3070 "Invalid SIGN_EXTEND!"); 3071 if (Operand.getValueType() == VT) return Operand; // noop extension 3072 assert((!VT.isVector() || 3073 VT.getVectorNumElements() == 3074 Operand.getValueType().getVectorNumElements()) && 3075 "Vector element count mismatch!"); 3076 assert(Operand.getValueType().bitsLT(VT) && 3077 "Invalid sext node, dst < src!"); 3078 if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND) 3079 return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0)); 3080 else if (OpOpcode == ISD::UNDEF) 3081 // sext(undef) = 0, because the top bits will all be the same. 3082 return getConstant(0, DL, VT); 3083 break; 3084 case ISD::ZERO_EXTEND: 3085 assert(VT.isInteger() && Operand.getValueType().isInteger() && 3086 "Invalid ZERO_EXTEND!"); 3087 if (Operand.getValueType() == VT) return Operand; // noop extension 3088 assert((!VT.isVector() || 3089 VT.getVectorNumElements() == 3090 Operand.getValueType().getVectorNumElements()) && 3091 "Vector element count mismatch!"); 3092 assert(Operand.getValueType().bitsLT(VT) && 3093 "Invalid zext node, dst < src!"); 3094 if (OpOpcode == ISD::ZERO_EXTEND) // (zext (zext x)) -> (zext x) 3095 return getNode(ISD::ZERO_EXTEND, DL, VT, 3096 Operand.getNode()->getOperand(0)); 3097 else if (OpOpcode == ISD::UNDEF) 3098 // zext(undef) = 0, because the top bits will be zero. 3099 return getConstant(0, DL, VT); 3100 break; 3101 case ISD::ANY_EXTEND: 3102 assert(VT.isInteger() && Operand.getValueType().isInteger() && 3103 "Invalid ANY_EXTEND!"); 3104 if (Operand.getValueType() == VT) return Operand; // noop extension 3105 assert((!VT.isVector() || 3106 VT.getVectorNumElements() == 3107 Operand.getValueType().getVectorNumElements()) && 3108 "Vector element count mismatch!"); 3109 assert(Operand.getValueType().bitsLT(VT) && 3110 "Invalid anyext node, dst < src!"); 3111 3112 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 3113 OpOpcode == ISD::ANY_EXTEND) 3114 // (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x) 3115 return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0)); 3116 else if (OpOpcode == ISD::UNDEF) 3117 return getUNDEF(VT); 3118 3119 // (ext (trunx x)) -> x 3120 if (OpOpcode == ISD::TRUNCATE) { 3121 SDValue OpOp = Operand.getNode()->getOperand(0); 3122 if (OpOp.getValueType() == VT) 3123 return OpOp; 3124 } 3125 break; 3126 case ISD::TRUNCATE: 3127 assert(VT.isInteger() && Operand.getValueType().isInteger() && 3128 "Invalid TRUNCATE!"); 3129 if (Operand.getValueType() == VT) return Operand; // noop truncate 3130 assert((!VT.isVector() || 3131 VT.getVectorNumElements() == 3132 Operand.getValueType().getVectorNumElements()) && 3133 "Vector element count mismatch!"); 3134 assert(Operand.getValueType().bitsGT(VT) && 3135 "Invalid truncate node, src < dst!"); 3136 if (OpOpcode == ISD::TRUNCATE) 3137 return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0)); 3138 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 3139 OpOpcode == ISD::ANY_EXTEND) { 3140 // If the source is smaller than the dest, we still need an extend. 3141 if (Operand.getNode()->getOperand(0).getValueType().getScalarType() 3142 .bitsLT(VT.getScalarType())) 3143 return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0)); 3144 if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT)) 3145 return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0)); 3146 return Operand.getNode()->getOperand(0); 3147 } 3148 if (OpOpcode == ISD::UNDEF) 3149 return getUNDEF(VT); 3150 break; 3151 case ISD::BSWAP: 3152 assert(VT.isInteger() && VT == Operand.getValueType() && 3153 "Invalid BSWAP!"); 3154 assert((VT.getScalarSizeInBits() % 16 == 0) && 3155 "BSWAP types must be a multiple of 16 bits!"); 3156 if (OpOpcode == ISD::UNDEF) 3157 return getUNDEF(VT); 3158 break; 3159 case ISD::BITREVERSE: 3160 assert(VT.isInteger() && VT == Operand.getValueType() && 3161 "Invalid BITREVERSE!"); 3162 if (OpOpcode == ISD::UNDEF) 3163 return getUNDEF(VT); 3164 break; 3165 case ISD::BITCAST: 3166 // Basic sanity checking. 3167 assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits() 3168 && "Cannot BITCAST between types of different sizes!"); 3169 if (VT == Operand.getValueType()) return Operand; // noop conversion. 3170 if (OpOpcode == ISD::BITCAST) // bitconv(bitconv(x)) -> bitconv(x) 3171 return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0)); 3172 if (OpOpcode == ISD::UNDEF) 3173 return getUNDEF(VT); 3174 break; 3175 case ISD::SCALAR_TO_VECTOR: 3176 assert(VT.isVector() && !Operand.getValueType().isVector() && 3177 (VT.getVectorElementType() == Operand.getValueType() || 3178 (VT.getVectorElementType().isInteger() && 3179 Operand.getValueType().isInteger() && 3180 VT.getVectorElementType().bitsLE(Operand.getValueType()))) && 3181 "Illegal SCALAR_TO_VECTOR node!"); 3182 if (OpOpcode == ISD::UNDEF) 3183 return getUNDEF(VT); 3184 // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined. 3185 if (OpOpcode == ISD::EXTRACT_VECTOR_ELT && 3186 isa<ConstantSDNode>(Operand.getOperand(1)) && 3187 Operand.getConstantOperandVal(1) == 0 && 3188 Operand.getOperand(0).getValueType() == VT) 3189 return Operand.getOperand(0); 3190 break; 3191 case ISD::FNEG: 3192 // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0 3193 if (getTarget().Options.UnsafeFPMath && OpOpcode == ISD::FSUB) 3194 // FIXME: FNEG has no fast-math-flags to propagate; use the FSUB's flags? 3195 return getNode(ISD::FSUB, DL, VT, Operand.getNode()->getOperand(1), 3196 Operand.getNode()->getOperand(0), 3197 &cast<BinaryWithFlagsSDNode>(Operand.getNode())->Flags); 3198 if (OpOpcode == ISD::FNEG) // --X -> X 3199 return Operand.getNode()->getOperand(0); 3200 break; 3201 case ISD::FABS: 3202 if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X) 3203 return getNode(ISD::FABS, DL, VT, Operand.getNode()->getOperand(0)); 3204 break; 3205 } 3206 3207 SDNode *N; 3208 SDVTList VTs = getVTList(VT); 3209 SDValue Ops[] = {Operand}; 3210 if (VT != MVT::Glue) { // Don't CSE flag producing nodes 3211 FoldingSetNodeID ID; 3212 AddNodeIDNode(ID, Opcode, VTs, Ops); 3213 void *IP = nullptr; 3214 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 3215 return SDValue(E, 0); 3216 3217 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 3218 createOperands(N, Ops); 3219 CSEMap.InsertNode(N, IP); 3220 } else { 3221 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 3222 createOperands(N, Ops); 3223 } 3224 3225 InsertNode(N); 3226 return SDValue(N, 0); 3227 } 3228 3229 static std::pair<APInt, bool> FoldValue(unsigned Opcode, const APInt &C1, 3230 const APInt &C2) { 3231 switch (Opcode) { 3232 case ISD::ADD: return std::make_pair(C1 + C2, true); 3233 case ISD::SUB: return std::make_pair(C1 - C2, true); 3234 case ISD::MUL: return std::make_pair(C1 * C2, true); 3235 case ISD::AND: return std::make_pair(C1 & C2, true); 3236 case ISD::OR: return std::make_pair(C1 | C2, true); 3237 case ISD::XOR: return std::make_pair(C1 ^ C2, true); 3238 case ISD::SHL: return std::make_pair(C1 << C2, true); 3239 case ISD::SRL: return std::make_pair(C1.lshr(C2), true); 3240 case ISD::SRA: return std::make_pair(C1.ashr(C2), true); 3241 case ISD::ROTL: return std::make_pair(C1.rotl(C2), true); 3242 case ISD::ROTR: return std::make_pair(C1.rotr(C2), true); 3243 case ISD::SMIN: return std::make_pair(C1.sle(C2) ? C1 : C2, true); 3244 case ISD::SMAX: return std::make_pair(C1.sge(C2) ? C1 : C2, true); 3245 case ISD::UMIN: return std::make_pair(C1.ule(C2) ? C1 : C2, true); 3246 case ISD::UMAX: return std::make_pair(C1.uge(C2) ? C1 : C2, true); 3247 case ISD::UDIV: 3248 if (!C2.getBoolValue()) 3249 break; 3250 return std::make_pair(C1.udiv(C2), true); 3251 case ISD::UREM: 3252 if (!C2.getBoolValue()) 3253 break; 3254 return std::make_pair(C1.urem(C2), true); 3255 case ISD::SDIV: 3256 if (!C2.getBoolValue()) 3257 break; 3258 return std::make_pair(C1.sdiv(C2), true); 3259 case ISD::SREM: 3260 if (!C2.getBoolValue()) 3261 break; 3262 return std::make_pair(C1.srem(C2), true); 3263 } 3264 return std::make_pair(APInt(1, 0), false); 3265 } 3266 3267 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, 3268 EVT VT, const ConstantSDNode *Cst1, 3269 const ConstantSDNode *Cst2) { 3270 if (Cst1->isOpaque() || Cst2->isOpaque()) 3271 return SDValue(); 3272 3273 std::pair<APInt, bool> Folded = FoldValue(Opcode, Cst1->getAPIntValue(), 3274 Cst2->getAPIntValue()); 3275 if (!Folded.second) 3276 return SDValue(); 3277 return getConstant(Folded.first, DL, VT); 3278 } 3279 3280 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT, 3281 const GlobalAddressSDNode *GA, 3282 const SDNode *N2) { 3283 if (GA->getOpcode() != ISD::GlobalAddress) 3284 return SDValue(); 3285 if (!TLI->isOffsetFoldingLegal(GA)) 3286 return SDValue(); 3287 const ConstantSDNode *Cst2 = dyn_cast<ConstantSDNode>(N2); 3288 if (!Cst2) 3289 return SDValue(); 3290 int64_t Offset = Cst2->getSExtValue(); 3291 switch (Opcode) { 3292 case ISD::ADD: break; 3293 case ISD::SUB: Offset = -uint64_t(Offset); break; 3294 default: return SDValue(); 3295 } 3296 return getGlobalAddress(GA->getGlobal(), SDLoc(Cst2), VT, 3297 GA->getOffset() + uint64_t(Offset)); 3298 } 3299 3300 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, 3301 EVT VT, SDNode *Cst1, 3302 SDNode *Cst2) { 3303 // If the opcode is a target-specific ISD node, there's nothing we can 3304 // do here and the operand rules may not line up with the below, so 3305 // bail early. 3306 if (Opcode >= ISD::BUILTIN_OP_END) 3307 return SDValue(); 3308 3309 // Handle the case of two scalars. 3310 if (const ConstantSDNode *Scalar1 = dyn_cast<ConstantSDNode>(Cst1)) { 3311 if (const ConstantSDNode *Scalar2 = dyn_cast<ConstantSDNode>(Cst2)) { 3312 SDValue Folded = FoldConstantArithmetic(Opcode, DL, VT, Scalar1, Scalar2); 3313 assert((!Folded || !VT.isVector()) && 3314 "Can't fold vectors ops with scalar operands"); 3315 return Folded; 3316 } 3317 } 3318 3319 // fold (add Sym, c) -> Sym+c 3320 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Cst1)) 3321 return FoldSymbolOffset(Opcode, VT, GA, Cst2); 3322 if (isCommutativeBinOp(Opcode)) 3323 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Cst2)) 3324 return FoldSymbolOffset(Opcode, VT, GA, Cst1); 3325 3326 // For vectors extract each constant element into Inputs so we can constant 3327 // fold them individually. 3328 BuildVectorSDNode *BV1 = dyn_cast<BuildVectorSDNode>(Cst1); 3329 BuildVectorSDNode *BV2 = dyn_cast<BuildVectorSDNode>(Cst2); 3330 if (!BV1 || !BV2) 3331 return SDValue(); 3332 3333 assert(BV1->getNumOperands() == BV2->getNumOperands() && "Out of sync!"); 3334 3335 EVT SVT = VT.getScalarType(); 3336 SmallVector<SDValue, 4> Outputs; 3337 for (unsigned I = 0, E = BV1->getNumOperands(); I != E; ++I) { 3338 ConstantSDNode *V1 = dyn_cast<ConstantSDNode>(BV1->getOperand(I)); 3339 ConstantSDNode *V2 = dyn_cast<ConstantSDNode>(BV2->getOperand(I)); 3340 if (!V1 || !V2) // Not a constant, bail. 3341 return SDValue(); 3342 3343 if (V1->isOpaque() || V2->isOpaque()) 3344 return SDValue(); 3345 3346 // Avoid BUILD_VECTOR nodes that perform implicit truncation. 3347 // FIXME: This is valid and could be handled by truncating the APInts. 3348 if (V1->getValueType(0) != SVT || V2->getValueType(0) != SVT) 3349 return SDValue(); 3350 3351 // Fold one vector element. 3352 std::pair<APInt, bool> Folded = FoldValue(Opcode, V1->getAPIntValue(), 3353 V2->getAPIntValue()); 3354 if (!Folded.second) 3355 return SDValue(); 3356 Outputs.push_back(getConstant(Folded.first, DL, SVT)); 3357 } 3358 3359 assert(VT.getVectorNumElements() == Outputs.size() && 3360 "Vector size mismatch!"); 3361 3362 // We may have a vector type but a scalar result. Create a splat. 3363 Outputs.resize(VT.getVectorNumElements(), Outputs.back()); 3364 3365 // Build a big vector out of the scalar elements we generated. 3366 return getBuildVector(VT, SDLoc(), Outputs); 3367 } 3368 3369 SDValue SelectionDAG::FoldConstantVectorArithmetic(unsigned Opcode, 3370 const SDLoc &DL, EVT VT, 3371 ArrayRef<SDValue> Ops, 3372 const SDNodeFlags *Flags) { 3373 // If the opcode is a target-specific ISD node, there's nothing we can 3374 // do here and the operand rules may not line up with the below, so 3375 // bail early. 3376 if (Opcode >= ISD::BUILTIN_OP_END) 3377 return SDValue(); 3378 3379 // We can only fold vectors - maybe merge with FoldConstantArithmetic someday? 3380 if (!VT.isVector()) 3381 return SDValue(); 3382 3383 unsigned NumElts = VT.getVectorNumElements(); 3384 3385 auto IsScalarOrSameVectorSize = [&](const SDValue &Op) { 3386 return !Op.getValueType().isVector() || 3387 Op.getValueType().getVectorNumElements() == NumElts; 3388 }; 3389 3390 auto IsConstantBuildVectorOrUndef = [&](const SDValue &Op) { 3391 BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op); 3392 return (Op.isUndef()) || (Op.getOpcode() == ISD::CONDCODE) || 3393 (BV && BV->isConstant()); 3394 }; 3395 3396 // All operands must be vector types with the same number of elements as 3397 // the result type and must be either UNDEF or a build vector of constant 3398 // or UNDEF scalars. 3399 if (!std::all_of(Ops.begin(), Ops.end(), IsConstantBuildVectorOrUndef) || 3400 !std::all_of(Ops.begin(), Ops.end(), IsScalarOrSameVectorSize)) 3401 return SDValue(); 3402 3403 // If we are comparing vectors, then the result needs to be a i1 boolean 3404 // that is then sign-extended back to the legal result type. 3405 EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType()); 3406 3407 // Find legal integer scalar type for constant promotion and 3408 // ensure that its scalar size is at least as large as source. 3409 EVT LegalSVT = VT.getScalarType(); 3410 if (LegalSVT.isInteger()) { 3411 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 3412 if (LegalSVT.bitsLT(VT.getScalarType())) 3413 return SDValue(); 3414 } 3415 3416 // Constant fold each scalar lane separately. 3417 SmallVector<SDValue, 4> ScalarResults; 3418 for (unsigned i = 0; i != NumElts; i++) { 3419 SmallVector<SDValue, 4> ScalarOps; 3420 for (SDValue Op : Ops) { 3421 EVT InSVT = Op.getValueType().getScalarType(); 3422 BuildVectorSDNode *InBV = dyn_cast<BuildVectorSDNode>(Op); 3423 if (!InBV) { 3424 // We've checked that this is UNDEF or a constant of some kind. 3425 if (Op.isUndef()) 3426 ScalarOps.push_back(getUNDEF(InSVT)); 3427 else 3428 ScalarOps.push_back(Op); 3429 continue; 3430 } 3431 3432 SDValue ScalarOp = InBV->getOperand(i); 3433 EVT ScalarVT = ScalarOp.getValueType(); 3434 3435 // Build vector (integer) scalar operands may need implicit 3436 // truncation - do this before constant folding. 3437 if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT)) 3438 ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp); 3439 3440 ScalarOps.push_back(ScalarOp); 3441 } 3442 3443 // Constant fold the scalar operands. 3444 SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps, Flags); 3445 3446 // Legalize the (integer) scalar constant if necessary. 3447 if (LegalSVT != SVT) 3448 ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult); 3449 3450 // Scalar folding only succeeded if the result is a constant or UNDEF. 3451 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && 3452 ScalarResult.getOpcode() != ISD::ConstantFP) 3453 return SDValue(); 3454 ScalarResults.push_back(ScalarResult); 3455 } 3456 3457 return getBuildVector(VT, DL, ScalarResults); 3458 } 3459 3460 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 3461 SDValue N1, SDValue N2, 3462 const SDNodeFlags *Flags) { 3463 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 3464 ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2); 3465 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 3466 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 3467 3468 // Canonicalize constant to RHS if commutative. 3469 if (isCommutativeBinOp(Opcode)) { 3470 if (N1C && !N2C) { 3471 std::swap(N1C, N2C); 3472 std::swap(N1, N2); 3473 } else if (N1CFP && !N2CFP) { 3474 std::swap(N1CFP, N2CFP); 3475 std::swap(N1, N2); 3476 } 3477 } 3478 3479 switch (Opcode) { 3480 default: break; 3481 case ISD::TokenFactor: 3482 assert(VT == MVT::Other && N1.getValueType() == MVT::Other && 3483 N2.getValueType() == MVT::Other && "Invalid token factor!"); 3484 // Fold trivial token factors. 3485 if (N1.getOpcode() == ISD::EntryToken) return N2; 3486 if (N2.getOpcode() == ISD::EntryToken) return N1; 3487 if (N1 == N2) return N1; 3488 break; 3489 case ISD::CONCAT_VECTORS: { 3490 // Attempt to fold CONCAT_VECTORS into BUILD_VECTOR or UNDEF. 3491 SDValue Ops[] = {N1, N2}; 3492 if (SDValue V = FoldCONCAT_VECTORS(DL, VT, Ops, *this)) 3493 return V; 3494 break; 3495 } 3496 case ISD::AND: 3497 assert(VT.isInteger() && "This operator does not apply to FP types!"); 3498 assert(N1.getValueType() == N2.getValueType() && 3499 N1.getValueType() == VT && "Binary operator types must match!"); 3500 // (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's 3501 // worth handling here. 3502 if (N2C && N2C->isNullValue()) 3503 return N2; 3504 if (N2C && N2C->isAllOnesValue()) // X & -1 -> X 3505 return N1; 3506 break; 3507 case ISD::OR: 3508 case ISD::XOR: 3509 case ISD::ADD: 3510 case ISD::SUB: 3511 assert(VT.isInteger() && "This operator does not apply to FP types!"); 3512 assert(N1.getValueType() == N2.getValueType() && 3513 N1.getValueType() == VT && "Binary operator types must match!"); 3514 // (X ^|+- 0) -> X. This commonly occurs when legalizing i64 values, so 3515 // it's worth handling here. 3516 if (N2C && N2C->isNullValue()) 3517 return N1; 3518 break; 3519 case ISD::UDIV: 3520 case ISD::UREM: 3521 case ISD::MULHU: 3522 case ISD::MULHS: 3523 case ISD::MUL: 3524 case ISD::SDIV: 3525 case ISD::SREM: 3526 case ISD::SMIN: 3527 case ISD::SMAX: 3528 case ISD::UMIN: 3529 case ISD::UMAX: 3530 assert(VT.isInteger() && "This operator does not apply to FP types!"); 3531 assert(N1.getValueType() == N2.getValueType() && 3532 N1.getValueType() == VT && "Binary operator types must match!"); 3533 break; 3534 case ISD::FADD: 3535 case ISD::FSUB: 3536 case ISD::FMUL: 3537 case ISD::FDIV: 3538 case ISD::FREM: 3539 if (getTarget().Options.UnsafeFPMath) { 3540 if (Opcode == ISD::FADD) { 3541 // x+0 --> x 3542 if (N2CFP && N2CFP->getValueAPF().isZero()) 3543 return N1; 3544 } else if (Opcode == ISD::FSUB) { 3545 // x-0 --> x 3546 if (N2CFP && N2CFP->getValueAPF().isZero()) 3547 return N1; 3548 } else if (Opcode == ISD::FMUL) { 3549 // x*0 --> 0 3550 if (N2CFP && N2CFP->isZero()) 3551 return N2; 3552 // x*1 --> x 3553 if (N2CFP && N2CFP->isExactlyValue(1.0)) 3554 return N1; 3555 } 3556 } 3557 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 3558 assert(N1.getValueType() == N2.getValueType() && 3559 N1.getValueType() == VT && "Binary operator types must match!"); 3560 break; 3561 case ISD::FCOPYSIGN: // N1 and result must match. N1/N2 need not match. 3562 assert(N1.getValueType() == VT && 3563 N1.getValueType().isFloatingPoint() && 3564 N2.getValueType().isFloatingPoint() && 3565 "Invalid FCOPYSIGN!"); 3566 break; 3567 case ISD::SHL: 3568 case ISD::SRA: 3569 case ISD::SRL: 3570 case ISD::ROTL: 3571 case ISD::ROTR: 3572 assert(VT == N1.getValueType() && 3573 "Shift operators return type must be the same as their first arg"); 3574 assert(VT.isInteger() && N2.getValueType().isInteger() && 3575 "Shifts only work on integers"); 3576 assert((!VT.isVector() || VT == N2.getValueType()) && 3577 "Vector shift amounts must be in the same as their first arg"); 3578 // Verify that the shift amount VT is bit enough to hold valid shift 3579 // amounts. This catches things like trying to shift an i1024 value by an 3580 // i8, which is easy to fall into in generic code that uses 3581 // TLI.getShiftAmount(). 3582 assert(N2.getValueType().getSizeInBits() >= 3583 Log2_32_Ceil(N1.getValueType().getSizeInBits()) && 3584 "Invalid use of small shift amount with oversized value!"); 3585 3586 // Always fold shifts of i1 values so the code generator doesn't need to 3587 // handle them. Since we know the size of the shift has to be less than the 3588 // size of the value, the shift/rotate count is guaranteed to be zero. 3589 if (VT == MVT::i1) 3590 return N1; 3591 if (N2C && N2C->isNullValue()) 3592 return N1; 3593 break; 3594 case ISD::FP_ROUND_INREG: { 3595 EVT EVT = cast<VTSDNode>(N2)->getVT(); 3596 assert(VT == N1.getValueType() && "Not an inreg round!"); 3597 assert(VT.isFloatingPoint() && EVT.isFloatingPoint() && 3598 "Cannot FP_ROUND_INREG integer types"); 3599 assert(EVT.isVector() == VT.isVector() && 3600 "FP_ROUND_INREG type should be vector iff the operand " 3601 "type is vector!"); 3602 assert((!EVT.isVector() || 3603 EVT.getVectorNumElements() == VT.getVectorNumElements()) && 3604 "Vector element counts must match in FP_ROUND_INREG"); 3605 assert(EVT.bitsLE(VT) && "Not rounding down!"); 3606 (void)EVT; 3607 if (cast<VTSDNode>(N2)->getVT() == VT) return N1; // Not actually rounding. 3608 break; 3609 } 3610 case ISD::FP_ROUND: 3611 assert(VT.isFloatingPoint() && 3612 N1.getValueType().isFloatingPoint() && 3613 VT.bitsLE(N1.getValueType()) && 3614 N2C && "Invalid FP_ROUND!"); 3615 if (N1.getValueType() == VT) return N1; // noop conversion. 3616 break; 3617 case ISD::AssertSext: 3618 case ISD::AssertZext: { 3619 EVT EVT = cast<VTSDNode>(N2)->getVT(); 3620 assert(VT == N1.getValueType() && "Not an inreg extend!"); 3621 assert(VT.isInteger() && EVT.isInteger() && 3622 "Cannot *_EXTEND_INREG FP types"); 3623 assert(!EVT.isVector() && 3624 "AssertSExt/AssertZExt type should be the vector element type " 3625 "rather than the vector type!"); 3626 assert(EVT.bitsLE(VT) && "Not extending!"); 3627 if (VT == EVT) return N1; // noop assertion. 3628 break; 3629 } 3630 case ISD::SIGN_EXTEND_INREG: { 3631 EVT EVT = cast<VTSDNode>(N2)->getVT(); 3632 assert(VT == N1.getValueType() && "Not an inreg extend!"); 3633 assert(VT.isInteger() && EVT.isInteger() && 3634 "Cannot *_EXTEND_INREG FP types"); 3635 assert(EVT.isVector() == VT.isVector() && 3636 "SIGN_EXTEND_INREG type should be vector iff the operand " 3637 "type is vector!"); 3638 assert((!EVT.isVector() || 3639 EVT.getVectorNumElements() == VT.getVectorNumElements()) && 3640 "Vector element counts must match in SIGN_EXTEND_INREG"); 3641 assert(EVT.bitsLE(VT) && "Not extending!"); 3642 if (EVT == VT) return N1; // Not actually extending 3643 3644 auto SignExtendInReg = [&](APInt Val) { 3645 unsigned FromBits = EVT.getScalarType().getSizeInBits(); 3646 Val <<= Val.getBitWidth() - FromBits; 3647 Val = Val.ashr(Val.getBitWidth() - FromBits); 3648 return getConstant(Val, DL, VT.getScalarType()); 3649 }; 3650 3651 if (N1C) { 3652 const APInt &Val = N1C->getAPIntValue(); 3653 return SignExtendInReg(Val); 3654 } 3655 if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) { 3656 SmallVector<SDValue, 8> Ops; 3657 for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 3658 SDValue Op = N1.getOperand(i); 3659 if (Op.isUndef()) { 3660 Ops.push_back(getUNDEF(VT.getScalarType())); 3661 continue; 3662 } 3663 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { 3664 APInt Val = C->getAPIntValue(); 3665 Val = Val.zextOrTrunc(VT.getScalarSizeInBits()); 3666 Ops.push_back(SignExtendInReg(Val)); 3667 continue; 3668 } 3669 break; 3670 } 3671 if (Ops.size() == VT.getVectorNumElements()) 3672 return getBuildVector(VT, DL, Ops); 3673 } 3674 break; 3675 } 3676 case ISD::EXTRACT_VECTOR_ELT: 3677 // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF. 3678 if (N1.isUndef()) 3679 return getUNDEF(VT); 3680 3681 // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF 3682 if (N2C && N2C->getZExtValue() >= N1.getValueType().getVectorNumElements()) 3683 return getUNDEF(VT); 3684 3685 // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is 3686 // expanding copies of large vectors from registers. 3687 if (N2C && 3688 N1.getOpcode() == ISD::CONCAT_VECTORS && 3689 N1.getNumOperands() > 0) { 3690 unsigned Factor = 3691 N1.getOperand(0).getValueType().getVectorNumElements(); 3692 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, 3693 N1.getOperand(N2C->getZExtValue() / Factor), 3694 getConstant(N2C->getZExtValue() % Factor, DL, 3695 N2.getValueType())); 3696 } 3697 3698 // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is 3699 // expanding large vector constants. 3700 if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) { 3701 SDValue Elt = N1.getOperand(N2C->getZExtValue()); 3702 3703 if (VT != Elt.getValueType()) 3704 // If the vector element type is not legal, the BUILD_VECTOR operands 3705 // are promoted and implicitly truncated, and the result implicitly 3706 // extended. Make that explicit here. 3707 Elt = getAnyExtOrTrunc(Elt, DL, VT); 3708 3709 return Elt; 3710 } 3711 3712 // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector 3713 // operations are lowered to scalars. 3714 if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) { 3715 // If the indices are the same, return the inserted element else 3716 // if the indices are known different, extract the element from 3717 // the original vector. 3718 SDValue N1Op2 = N1.getOperand(2); 3719 ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2); 3720 3721 if (N1Op2C && N2C) { 3722 if (N1Op2C->getZExtValue() == N2C->getZExtValue()) { 3723 if (VT == N1.getOperand(1).getValueType()) 3724 return N1.getOperand(1); 3725 else 3726 return getSExtOrTrunc(N1.getOperand(1), DL, VT); 3727 } 3728 3729 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2); 3730 } 3731 } 3732 break; 3733 case ISD::EXTRACT_ELEMENT: 3734 assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!"); 3735 assert(!N1.getValueType().isVector() && !VT.isVector() && 3736 (N1.getValueType().isInteger() == VT.isInteger()) && 3737 N1.getValueType() != VT && 3738 "Wrong types for EXTRACT_ELEMENT!"); 3739 3740 // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding 3741 // 64-bit integers into 32-bit parts. Instead of building the extract of 3742 // the BUILD_PAIR, only to have legalize rip it apart, just do it now. 3743 if (N1.getOpcode() == ISD::BUILD_PAIR) 3744 return N1.getOperand(N2C->getZExtValue()); 3745 3746 // EXTRACT_ELEMENT of a constant int is also very common. 3747 if (N1C) { 3748 unsigned ElementSize = VT.getSizeInBits(); 3749 unsigned Shift = ElementSize * N2C->getZExtValue(); 3750 APInt ShiftedVal = N1C->getAPIntValue().lshr(Shift); 3751 return getConstant(ShiftedVal.trunc(ElementSize), DL, VT); 3752 } 3753 break; 3754 case ISD::EXTRACT_SUBVECTOR: 3755 if (VT.isSimple() && N1.getValueType().isSimple()) { 3756 assert(VT.isVector() && N1.getValueType().isVector() && 3757 "Extract subvector VTs must be a vectors!"); 3758 assert(VT.getVectorElementType() == 3759 N1.getValueType().getVectorElementType() && 3760 "Extract subvector VTs must have the same element type!"); 3761 assert(VT.getSimpleVT() <= N1.getSimpleValueType() && 3762 "Extract subvector must be from larger vector to smaller vector!"); 3763 3764 if (N2C) { 3765 assert((VT.getVectorNumElements() + N2C->getZExtValue() 3766 <= N1.getValueType().getVectorNumElements()) 3767 && "Extract subvector overflow!"); 3768 } 3769 3770 // Trivial extraction. 3771 if (VT.getSimpleVT() == N1.getSimpleValueType()) 3772 return N1; 3773 } 3774 break; 3775 } 3776 3777 // Perform trivial constant folding. 3778 if (SDValue SV = 3779 FoldConstantArithmetic(Opcode, DL, VT, N1.getNode(), N2.getNode())) 3780 return SV; 3781 3782 // Constant fold FP operations. 3783 bool HasFPExceptions = TLI->hasFloatingPointExceptions(); 3784 if (N1CFP) { 3785 if (N2CFP) { 3786 APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF(); 3787 APFloat::opStatus s; 3788 switch (Opcode) { 3789 case ISD::FADD: 3790 s = V1.add(V2, APFloat::rmNearestTiesToEven); 3791 if (!HasFPExceptions || s != APFloat::opInvalidOp) 3792 return getConstantFP(V1, DL, VT); 3793 break; 3794 case ISD::FSUB: 3795 s = V1.subtract(V2, APFloat::rmNearestTiesToEven); 3796 if (!HasFPExceptions || s!=APFloat::opInvalidOp) 3797 return getConstantFP(V1, DL, VT); 3798 break; 3799 case ISD::FMUL: 3800 s = V1.multiply(V2, APFloat::rmNearestTiesToEven); 3801 if (!HasFPExceptions || s!=APFloat::opInvalidOp) 3802 return getConstantFP(V1, DL, VT); 3803 break; 3804 case ISD::FDIV: 3805 s = V1.divide(V2, APFloat::rmNearestTiesToEven); 3806 if (!HasFPExceptions || (s!=APFloat::opInvalidOp && 3807 s!=APFloat::opDivByZero)) { 3808 return getConstantFP(V1, DL, VT); 3809 } 3810 break; 3811 case ISD::FREM : 3812 s = V1.mod(V2); 3813 if (!HasFPExceptions || (s!=APFloat::opInvalidOp && 3814 s!=APFloat::opDivByZero)) { 3815 return getConstantFP(V1, DL, VT); 3816 } 3817 break; 3818 case ISD::FCOPYSIGN: 3819 V1.copySign(V2); 3820 return getConstantFP(V1, DL, VT); 3821 default: break; 3822 } 3823 } 3824 3825 if (Opcode == ISD::FP_ROUND) { 3826 APFloat V = N1CFP->getValueAPF(); // make copy 3827 bool ignored; 3828 // This can return overflow, underflow, or inexact; we don't care. 3829 // FIXME need to be more flexible about rounding mode. 3830 (void)V.convert(EVTToAPFloatSemantics(VT), 3831 APFloat::rmNearestTiesToEven, &ignored); 3832 return getConstantFP(V, DL, VT); 3833 } 3834 } 3835 3836 // Canonicalize an UNDEF to the RHS, even over a constant. 3837 if (N1.isUndef()) { 3838 if (isCommutativeBinOp(Opcode)) { 3839 std::swap(N1, N2); 3840 } else { 3841 switch (Opcode) { 3842 case ISD::FP_ROUND_INREG: 3843 case ISD::SIGN_EXTEND_INREG: 3844 case ISD::SUB: 3845 case ISD::FSUB: 3846 case ISD::FDIV: 3847 case ISD::FREM: 3848 case ISD::SRA: 3849 return N1; // fold op(undef, arg2) -> undef 3850 case ISD::UDIV: 3851 case ISD::SDIV: 3852 case ISD::UREM: 3853 case ISD::SREM: 3854 case ISD::SRL: 3855 case ISD::SHL: 3856 if (!VT.isVector()) 3857 return getConstant(0, DL, VT); // fold op(undef, arg2) -> 0 3858 // For vectors, we can't easily build an all zero vector, just return 3859 // the LHS. 3860 return N2; 3861 } 3862 } 3863 } 3864 3865 // Fold a bunch of operators when the RHS is undef. 3866 if (N2.isUndef()) { 3867 switch (Opcode) { 3868 case ISD::XOR: 3869 if (N1.isUndef()) 3870 // Handle undef ^ undef -> 0 special case. This is a common 3871 // idiom (misuse). 3872 return getConstant(0, DL, VT); 3873 // fallthrough 3874 case ISD::ADD: 3875 case ISD::ADDC: 3876 case ISD::ADDE: 3877 case ISD::SUB: 3878 case ISD::UDIV: 3879 case ISD::SDIV: 3880 case ISD::UREM: 3881 case ISD::SREM: 3882 return N2; // fold op(arg1, undef) -> undef 3883 case ISD::FADD: 3884 case ISD::FSUB: 3885 case ISD::FMUL: 3886 case ISD::FDIV: 3887 case ISD::FREM: 3888 if (getTarget().Options.UnsafeFPMath) 3889 return N2; 3890 break; 3891 case ISD::MUL: 3892 case ISD::AND: 3893 case ISD::SRL: 3894 case ISD::SHL: 3895 if (!VT.isVector()) 3896 return getConstant(0, DL, VT); // fold op(arg1, undef) -> 0 3897 // For vectors, we can't easily build an all zero vector, just return 3898 // the LHS. 3899 return N1; 3900 case ISD::OR: 3901 if (!VT.isVector()) 3902 return getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), DL, VT); 3903 // For vectors, we can't easily build an all one vector, just return 3904 // the LHS. 3905 return N1; 3906 case ISD::SRA: 3907 return N1; 3908 } 3909 } 3910 3911 // Memoize this node if possible. 3912 SDNode *N; 3913 SDVTList VTs = getVTList(VT); 3914 if (VT != MVT::Glue) { 3915 SDValue Ops[] = {N1, N2}; 3916 FoldingSetNodeID ID; 3917 AddNodeIDNode(ID, Opcode, VTs, Ops); 3918 void *IP = nullptr; 3919 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 3920 if (Flags) 3921 E->intersectFlagsWith(Flags); 3922 return SDValue(E, 0); 3923 } 3924 3925 N = GetBinarySDNode(Opcode, DL, VTs, N1, N2, Flags); 3926 CSEMap.InsertNode(N, IP); 3927 } else { 3928 N = GetBinarySDNode(Opcode, DL, VTs, N1, N2, Flags); 3929 } 3930 3931 InsertNode(N); 3932 return SDValue(N, 0); 3933 } 3934 3935 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 3936 SDValue N1, SDValue N2, SDValue N3) { 3937 // Perform various simplifications. 3938 switch (Opcode) { 3939 case ISD::FMA: { 3940 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 3941 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 3942 ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3); 3943 if (N1CFP && N2CFP && N3CFP) { 3944 APFloat V1 = N1CFP->getValueAPF(); 3945 const APFloat &V2 = N2CFP->getValueAPF(); 3946 const APFloat &V3 = N3CFP->getValueAPF(); 3947 APFloat::opStatus s = 3948 V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven); 3949 if (!TLI->hasFloatingPointExceptions() || s != APFloat::opInvalidOp) 3950 return getConstantFP(V1, DL, VT); 3951 } 3952 break; 3953 } 3954 case ISD::CONCAT_VECTORS: { 3955 // Attempt to fold CONCAT_VECTORS into BUILD_VECTOR or UNDEF. 3956 SDValue Ops[] = {N1, N2, N3}; 3957 if (SDValue V = FoldCONCAT_VECTORS(DL, VT, Ops, *this)) 3958 return V; 3959 break; 3960 } 3961 case ISD::SETCC: { 3962 // Use FoldSetCC to simplify SETCC's. 3963 if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL)) 3964 return V; 3965 // Vector constant folding. 3966 SDValue Ops[] = {N1, N2, N3}; 3967 if (SDValue V = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) 3968 return V; 3969 break; 3970 } 3971 case ISD::SELECT: 3972 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) { 3973 if (N1C->getZExtValue()) 3974 return N2; // select true, X, Y -> X 3975 return N3; // select false, X, Y -> Y 3976 } 3977 3978 if (N2 == N3) return N2; // select C, X, X -> X 3979 break; 3980 case ISD::VECTOR_SHUFFLE: 3981 llvm_unreachable("should use getVectorShuffle constructor!"); 3982 case ISD::INSERT_SUBVECTOR: { 3983 SDValue Index = N3; 3984 if (VT.isSimple() && N1.getValueType().isSimple() 3985 && N2.getValueType().isSimple()) { 3986 assert(VT.isVector() && N1.getValueType().isVector() && 3987 N2.getValueType().isVector() && 3988 "Insert subvector VTs must be a vectors"); 3989 assert(VT == N1.getValueType() && 3990 "Dest and insert subvector source types must match!"); 3991 assert(N2.getSimpleValueType() <= N1.getSimpleValueType() && 3992 "Insert subvector must be from smaller vector to larger vector!"); 3993 if (isa<ConstantSDNode>(Index)) { 3994 assert((N2.getValueType().getVectorNumElements() + 3995 cast<ConstantSDNode>(Index)->getZExtValue() 3996 <= VT.getVectorNumElements()) 3997 && "Insert subvector overflow!"); 3998 } 3999 4000 // Trivial insertion. 4001 if (VT.getSimpleVT() == N2.getSimpleValueType()) 4002 return N2; 4003 } 4004 break; 4005 } 4006 case ISD::BITCAST: 4007 // Fold bit_convert nodes from a type to themselves. 4008 if (N1.getValueType() == VT) 4009 return N1; 4010 break; 4011 } 4012 4013 // Memoize node if it doesn't produce a flag. 4014 SDNode *N; 4015 SDVTList VTs = getVTList(VT); 4016 SDValue Ops[] = {N1, N2, N3}; 4017 if (VT != MVT::Glue) { 4018 FoldingSetNodeID ID; 4019 AddNodeIDNode(ID, Opcode, VTs, Ops); 4020 void *IP = nullptr; 4021 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 4022 return SDValue(E, 0); 4023 4024 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 4025 createOperands(N, Ops); 4026 CSEMap.InsertNode(N, IP); 4027 } else { 4028 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 4029 createOperands(N, Ops); 4030 } 4031 4032 InsertNode(N); 4033 return SDValue(N, 0); 4034 } 4035 4036 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4037 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 4038 SDValue Ops[] = { N1, N2, N3, N4 }; 4039 return getNode(Opcode, DL, VT, Ops); 4040 } 4041 4042 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4043 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 4044 SDValue N5) { 4045 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 4046 return getNode(Opcode, DL, VT, Ops); 4047 } 4048 4049 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all 4050 /// the incoming stack arguments to be loaded from the stack. 4051 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) { 4052 SmallVector<SDValue, 8> ArgChains; 4053 4054 // Include the original chain at the beginning of the list. When this is 4055 // used by target LowerCall hooks, this helps legalize find the 4056 // CALLSEQ_BEGIN node. 4057 ArgChains.push_back(Chain); 4058 4059 // Add a chain value for each stack argument. 4060 for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(), 4061 UE = getEntryNode().getNode()->use_end(); U != UE; ++U) 4062 if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U)) 4063 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) 4064 if (FI->getIndex() < 0) 4065 ArgChains.push_back(SDValue(L, 1)); 4066 4067 // Build a tokenfactor for all the chains. 4068 return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); 4069 } 4070 4071 /// getMemsetValue - Vectorized representation of the memset value 4072 /// operand. 4073 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG, 4074 const SDLoc &dl) { 4075 assert(!Value.isUndef()); 4076 4077 unsigned NumBits = VT.getScalarType().getSizeInBits(); 4078 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) { 4079 assert(C->getAPIntValue().getBitWidth() == 8); 4080 APInt Val = APInt::getSplat(NumBits, C->getAPIntValue()); 4081 if (VT.isInteger()) 4082 return DAG.getConstant(Val, dl, VT); 4083 return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl, 4084 VT); 4085 } 4086 4087 assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?"); 4088 EVT IntVT = VT.getScalarType(); 4089 if (!IntVT.isInteger()) 4090 IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits()); 4091 4092 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value); 4093 if (NumBits > 8) { 4094 // Use a multiplication with 0x010101... to extend the input to the 4095 // required length. 4096 APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01)); 4097 Value = DAG.getNode(ISD::MUL, dl, IntVT, Value, 4098 DAG.getConstant(Magic, dl, IntVT)); 4099 } 4100 4101 if (VT != Value.getValueType() && !VT.isInteger()) 4102 Value = DAG.getBitcast(VT.getScalarType(), Value); 4103 if (VT != Value.getValueType()) 4104 Value = DAG.getSplatBuildVector(VT, dl, Value); 4105 4106 return Value; 4107 } 4108 4109 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only 4110 /// used when a memcpy is turned into a memset when the source is a constant 4111 /// string ptr. 4112 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG, 4113 const TargetLowering &TLI, StringRef Str) { 4114 // Handle vector with all elements zero. 4115 if (Str.empty()) { 4116 if (VT.isInteger()) 4117 return DAG.getConstant(0, dl, VT); 4118 else if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128) 4119 return DAG.getConstantFP(0.0, dl, VT); 4120 else if (VT.isVector()) { 4121 unsigned NumElts = VT.getVectorNumElements(); 4122 MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64; 4123 return DAG.getNode(ISD::BITCAST, dl, VT, 4124 DAG.getConstant(0, dl, 4125 EVT::getVectorVT(*DAG.getContext(), 4126 EltVT, NumElts))); 4127 } else 4128 llvm_unreachable("Expected type!"); 4129 } 4130 4131 assert(!VT.isVector() && "Can't handle vector type here!"); 4132 unsigned NumVTBits = VT.getSizeInBits(); 4133 unsigned NumVTBytes = NumVTBits / 8; 4134 unsigned NumBytes = std::min(NumVTBytes, unsigned(Str.size())); 4135 4136 APInt Val(NumVTBits, 0); 4137 if (DAG.getDataLayout().isLittleEndian()) { 4138 for (unsigned i = 0; i != NumBytes; ++i) 4139 Val |= (uint64_t)(unsigned char)Str[i] << i*8; 4140 } else { 4141 for (unsigned i = 0; i != NumBytes; ++i) 4142 Val |= (uint64_t)(unsigned char)Str[i] << (NumVTBytes-i-1)*8; 4143 } 4144 4145 // If the "cost" of materializing the integer immediate is less than the cost 4146 // of a load, then it is cost effective to turn the load into the immediate. 4147 Type *Ty = VT.getTypeForEVT(*DAG.getContext()); 4148 if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty)) 4149 return DAG.getConstant(Val, dl, VT); 4150 return SDValue(nullptr, 0); 4151 } 4152 4153 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, unsigned Offset, 4154 const SDLoc &DL) { 4155 EVT VT = Base.getValueType(); 4156 return getNode(ISD::ADD, DL, VT, Base, getConstant(Offset, DL, VT)); 4157 } 4158 4159 /// isMemSrcFromString - Returns true if memcpy source is a string constant. 4160 /// 4161 static bool isMemSrcFromString(SDValue Src, StringRef &Str) { 4162 uint64_t SrcDelta = 0; 4163 GlobalAddressSDNode *G = nullptr; 4164 if (Src.getOpcode() == ISD::GlobalAddress) 4165 G = cast<GlobalAddressSDNode>(Src); 4166 else if (Src.getOpcode() == ISD::ADD && 4167 Src.getOperand(0).getOpcode() == ISD::GlobalAddress && 4168 Src.getOperand(1).getOpcode() == ISD::Constant) { 4169 G = cast<GlobalAddressSDNode>(Src.getOperand(0)); 4170 SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue(); 4171 } 4172 if (!G) 4173 return false; 4174 4175 return getConstantStringInfo(G->getGlobal(), Str, 4176 SrcDelta + G->getOffset(), false); 4177 } 4178 4179 /// Determines the optimal series of memory ops to replace the memset / memcpy. 4180 /// Return true if the number of memory ops is below the threshold (Limit). 4181 /// It returns the types of the sequence of memory ops to perform 4182 /// memset / memcpy by reference. 4183 static bool FindOptimalMemOpLowering(std::vector<EVT> &MemOps, 4184 unsigned Limit, uint64_t Size, 4185 unsigned DstAlign, unsigned SrcAlign, 4186 bool IsMemset, 4187 bool ZeroMemset, 4188 bool MemcpyStrSrc, 4189 bool AllowOverlap, 4190 unsigned DstAS, unsigned SrcAS, 4191 SelectionDAG &DAG, 4192 const TargetLowering &TLI) { 4193 assert((SrcAlign == 0 || SrcAlign >= DstAlign) && 4194 "Expecting memcpy / memset source to meet alignment requirement!"); 4195 // If 'SrcAlign' is zero, that means the memory operation does not need to 4196 // load the value, i.e. memset or memcpy from constant string. Otherwise, 4197 // it's the inferred alignment of the source. 'DstAlign', on the other hand, 4198 // is the specified alignment of the memory operation. If it is zero, that 4199 // means it's possible to change the alignment of the destination. 4200 // 'MemcpyStrSrc' indicates whether the memcpy source is constant so it does 4201 // not need to be loaded. 4202 EVT VT = TLI.getOptimalMemOpType(Size, DstAlign, SrcAlign, 4203 IsMemset, ZeroMemset, MemcpyStrSrc, 4204 DAG.getMachineFunction()); 4205 4206 if (VT == MVT::Other) { 4207 if (DstAlign >= DAG.getDataLayout().getPointerPrefAlignment(DstAS) || 4208 TLI.allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign)) { 4209 VT = TLI.getPointerTy(DAG.getDataLayout(), DstAS); 4210 } else { 4211 switch (DstAlign & 7) { 4212 case 0: VT = MVT::i64; break; 4213 case 4: VT = MVT::i32; break; 4214 case 2: VT = MVT::i16; break; 4215 default: VT = MVT::i8; break; 4216 } 4217 } 4218 4219 MVT LVT = MVT::i64; 4220 while (!TLI.isTypeLegal(LVT)) 4221 LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1); 4222 assert(LVT.isInteger()); 4223 4224 if (VT.bitsGT(LVT)) 4225 VT = LVT; 4226 } 4227 4228 unsigned NumMemOps = 0; 4229 while (Size != 0) { 4230 unsigned VTSize = VT.getSizeInBits() / 8; 4231 while (VTSize > Size) { 4232 // For now, only use non-vector load / store's for the left-over pieces. 4233 EVT NewVT = VT; 4234 unsigned NewVTSize; 4235 4236 bool Found = false; 4237 if (VT.isVector() || VT.isFloatingPoint()) { 4238 NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32; 4239 if (TLI.isOperationLegalOrCustom(ISD::STORE, NewVT) && 4240 TLI.isSafeMemOpType(NewVT.getSimpleVT())) 4241 Found = true; 4242 else if (NewVT == MVT::i64 && 4243 TLI.isOperationLegalOrCustom(ISD::STORE, MVT::f64) && 4244 TLI.isSafeMemOpType(MVT::f64)) { 4245 // i64 is usually not legal on 32-bit targets, but f64 may be. 4246 NewVT = MVT::f64; 4247 Found = true; 4248 } 4249 } 4250 4251 if (!Found) { 4252 do { 4253 NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1); 4254 if (NewVT == MVT::i8) 4255 break; 4256 } while (!TLI.isSafeMemOpType(NewVT.getSimpleVT())); 4257 } 4258 NewVTSize = NewVT.getSizeInBits() / 8; 4259 4260 // If the new VT cannot cover all of the remaining bits, then consider 4261 // issuing a (or a pair of) unaligned and overlapping load / store. 4262 // FIXME: Only does this for 64-bit or more since we don't have proper 4263 // cost model for unaligned load / store. 4264 bool Fast; 4265 if (NumMemOps && AllowOverlap && 4266 VTSize >= 8 && NewVTSize < Size && 4267 TLI.allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign, &Fast) && Fast) 4268 VTSize = Size; 4269 else { 4270 VT = NewVT; 4271 VTSize = NewVTSize; 4272 } 4273 } 4274 4275 if (++NumMemOps > Limit) 4276 return false; 4277 4278 MemOps.push_back(VT); 4279 Size -= VTSize; 4280 } 4281 4282 return true; 4283 } 4284 4285 static bool shouldLowerMemFuncForSize(const MachineFunction &MF) { 4286 // On Darwin, -Os means optimize for size without hurting performance, so 4287 // only really optimize for size when -Oz (MinSize) is used. 4288 if (MF.getTarget().getTargetTriple().isOSDarwin()) 4289 return MF.getFunction()->optForMinSize(); 4290 return MF.getFunction()->optForSize(); 4291 } 4292 4293 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 4294 SDValue Chain, SDValue Dst, SDValue Src, 4295 uint64_t Size, unsigned Align, 4296 bool isVol, bool AlwaysInline, 4297 MachinePointerInfo DstPtrInfo, 4298 MachinePointerInfo SrcPtrInfo) { 4299 // Turn a memcpy of undef to nop. 4300 if (Src.isUndef()) 4301 return Chain; 4302 4303 // Expand memcpy to a series of load and store ops if the size operand falls 4304 // below a certain threshold. 4305 // TODO: In the AlwaysInline case, if the size is big then generate a loop 4306 // rather than maybe a humongous number of loads and stores. 4307 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4308 std::vector<EVT> MemOps; 4309 bool DstAlignCanChange = false; 4310 MachineFunction &MF = DAG.getMachineFunction(); 4311 MachineFrameInfo *MFI = MF.getFrameInfo(); 4312 bool OptSize = shouldLowerMemFuncForSize(MF); 4313 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 4314 if (FI && !MFI->isFixedObjectIndex(FI->getIndex())) 4315 DstAlignCanChange = true; 4316 unsigned SrcAlign = DAG.InferPtrAlignment(Src); 4317 if (Align > SrcAlign) 4318 SrcAlign = Align; 4319 StringRef Str; 4320 bool CopyFromStr = isMemSrcFromString(Src, Str); 4321 bool isZeroStr = CopyFromStr && Str.empty(); 4322 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize); 4323 4324 if (!FindOptimalMemOpLowering(MemOps, Limit, Size, 4325 (DstAlignCanChange ? 0 : Align), 4326 (isZeroStr ? 0 : SrcAlign), 4327 false, false, CopyFromStr, true, 4328 DstPtrInfo.getAddrSpace(), 4329 SrcPtrInfo.getAddrSpace(), 4330 DAG, TLI)) 4331 return SDValue(); 4332 4333 if (DstAlignCanChange) { 4334 Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext()); 4335 unsigned NewAlign = (unsigned)DAG.getDataLayout().getABITypeAlignment(Ty); 4336 4337 // Don't promote to an alignment that would require dynamic stack 4338 // realignment. 4339 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 4340 if (!TRI->needsStackRealignment(MF)) 4341 while (NewAlign > Align && 4342 DAG.getDataLayout().exceedsNaturalStackAlignment(NewAlign)) 4343 NewAlign /= 2; 4344 4345 if (NewAlign > Align) { 4346 // Give the stack frame object a larger alignment if needed. 4347 if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign) 4348 MFI->setObjectAlignment(FI->getIndex(), NewAlign); 4349 Align = NewAlign; 4350 } 4351 } 4352 4353 SmallVector<SDValue, 8> OutChains; 4354 unsigned NumMemOps = MemOps.size(); 4355 uint64_t SrcOff = 0, DstOff = 0; 4356 for (unsigned i = 0; i != NumMemOps; ++i) { 4357 EVT VT = MemOps[i]; 4358 unsigned VTSize = VT.getSizeInBits() / 8; 4359 SDValue Value, Store; 4360 4361 if (VTSize > Size) { 4362 // Issuing an unaligned load / store pair that overlaps with the previous 4363 // pair. Adjust the offset accordingly. 4364 assert(i == NumMemOps-1 && i != 0); 4365 SrcOff -= VTSize - Size; 4366 DstOff -= VTSize - Size; 4367 } 4368 4369 if (CopyFromStr && 4370 (isZeroStr || (VT.isInteger() && !VT.isVector()))) { 4371 // It's unlikely a store of a vector immediate can be done in a single 4372 // instruction. It would require a load from a constantpool first. 4373 // We only handle zero vectors here. 4374 // FIXME: Handle other cases where store of vector immediate is done in 4375 // a single instruction. 4376 Value = getMemsetStringVal(VT, dl, DAG, TLI, Str.substr(SrcOff)); 4377 if (Value.getNode()) 4378 Store = DAG.getStore(Chain, dl, Value, 4379 DAG.getMemBasePlusOffset(Dst, DstOff, dl), 4380 DstPtrInfo.getWithOffset(DstOff), isVol, 4381 false, Align); 4382 } 4383 4384 if (!Store.getNode()) { 4385 // The type might not be legal for the target. This should only happen 4386 // if the type is smaller than a legal type, as on PPC, so the right 4387 // thing to do is generate a LoadExt/StoreTrunc pair. These simplify 4388 // to Load/Store if NVT==VT. 4389 // FIXME does the case above also need this? 4390 EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT); 4391 assert(NVT.bitsGE(VT)); 4392 Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain, 4393 DAG.getMemBasePlusOffset(Src, SrcOff, dl), 4394 SrcPtrInfo.getWithOffset(SrcOff), VT, isVol, false, 4395 false, MinAlign(SrcAlign, SrcOff)); 4396 OutChains.push_back(Value.getValue(1)); 4397 Store = DAG.getTruncStore(Chain, dl, Value, 4398 DAG.getMemBasePlusOffset(Dst, DstOff, dl), 4399 DstPtrInfo.getWithOffset(DstOff), VT, isVol, 4400 false, Align); 4401 } 4402 OutChains.push_back(Store); 4403 SrcOff += VTSize; 4404 DstOff += VTSize; 4405 Size -= VTSize; 4406 } 4407 4408 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 4409 } 4410 4411 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 4412 SDValue Chain, SDValue Dst, SDValue Src, 4413 uint64_t Size, unsigned Align, 4414 bool isVol, bool AlwaysInline, 4415 MachinePointerInfo DstPtrInfo, 4416 MachinePointerInfo SrcPtrInfo) { 4417 // Turn a memmove of undef to nop. 4418 if (Src.isUndef()) 4419 return Chain; 4420 4421 // Expand memmove to a series of load and store ops if the size operand falls 4422 // below a certain threshold. 4423 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4424 std::vector<EVT> MemOps; 4425 bool DstAlignCanChange = false; 4426 MachineFunction &MF = DAG.getMachineFunction(); 4427 MachineFrameInfo *MFI = MF.getFrameInfo(); 4428 bool OptSize = shouldLowerMemFuncForSize(MF); 4429 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 4430 if (FI && !MFI->isFixedObjectIndex(FI->getIndex())) 4431 DstAlignCanChange = true; 4432 unsigned SrcAlign = DAG.InferPtrAlignment(Src); 4433 if (Align > SrcAlign) 4434 SrcAlign = Align; 4435 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize); 4436 4437 if (!FindOptimalMemOpLowering(MemOps, Limit, Size, 4438 (DstAlignCanChange ? 0 : Align), SrcAlign, 4439 false, false, false, false, 4440 DstPtrInfo.getAddrSpace(), 4441 SrcPtrInfo.getAddrSpace(), 4442 DAG, TLI)) 4443 return SDValue(); 4444 4445 if (DstAlignCanChange) { 4446 Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext()); 4447 unsigned NewAlign = (unsigned)DAG.getDataLayout().getABITypeAlignment(Ty); 4448 if (NewAlign > Align) { 4449 // Give the stack frame object a larger alignment if needed. 4450 if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign) 4451 MFI->setObjectAlignment(FI->getIndex(), NewAlign); 4452 Align = NewAlign; 4453 } 4454 } 4455 4456 uint64_t SrcOff = 0, DstOff = 0; 4457 SmallVector<SDValue, 8> LoadValues; 4458 SmallVector<SDValue, 8> LoadChains; 4459 SmallVector<SDValue, 8> OutChains; 4460 unsigned NumMemOps = MemOps.size(); 4461 for (unsigned i = 0; i < NumMemOps; i++) { 4462 EVT VT = MemOps[i]; 4463 unsigned VTSize = VT.getSizeInBits() / 8; 4464 SDValue Value; 4465 4466 Value = DAG.getLoad(VT, dl, Chain, 4467 DAG.getMemBasePlusOffset(Src, SrcOff, dl), 4468 SrcPtrInfo.getWithOffset(SrcOff), isVol, 4469 false, false, SrcAlign); 4470 LoadValues.push_back(Value); 4471 LoadChains.push_back(Value.getValue(1)); 4472 SrcOff += VTSize; 4473 } 4474 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 4475 OutChains.clear(); 4476 for (unsigned i = 0; i < NumMemOps; i++) { 4477 EVT VT = MemOps[i]; 4478 unsigned VTSize = VT.getSizeInBits() / 8; 4479 SDValue Store; 4480 4481 Store = DAG.getStore(Chain, dl, LoadValues[i], 4482 DAG.getMemBasePlusOffset(Dst, DstOff, dl), 4483 DstPtrInfo.getWithOffset(DstOff), isVol, false, Align); 4484 OutChains.push_back(Store); 4485 DstOff += VTSize; 4486 } 4487 4488 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 4489 } 4490 4491 /// \brief Lower the call to 'memset' intrinsic function into a series of store 4492 /// operations. 4493 /// 4494 /// \param DAG Selection DAG where lowered code is placed. 4495 /// \param dl Link to corresponding IR location. 4496 /// \param Chain Control flow dependency. 4497 /// \param Dst Pointer to destination memory location. 4498 /// \param Src Value of byte to write into the memory. 4499 /// \param Size Number of bytes to write. 4500 /// \param Align Alignment of the destination in bytes. 4501 /// \param isVol True if destination is volatile. 4502 /// \param DstPtrInfo IR information on the memory pointer. 4503 /// \returns New head in the control flow, if lowering was successful, empty 4504 /// SDValue otherwise. 4505 /// 4506 /// The function tries to replace 'llvm.memset' intrinsic with several store 4507 /// operations and value calculation code. This is usually profitable for small 4508 /// memory size. 4509 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl, 4510 SDValue Chain, SDValue Dst, SDValue Src, 4511 uint64_t Size, unsigned Align, bool isVol, 4512 MachinePointerInfo DstPtrInfo) { 4513 // Turn a memset of undef to nop. 4514 if (Src.isUndef()) 4515 return Chain; 4516 4517 // Expand memset to a series of load/store ops if the size operand 4518 // falls below a certain threshold. 4519 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4520 std::vector<EVT> MemOps; 4521 bool DstAlignCanChange = false; 4522 MachineFunction &MF = DAG.getMachineFunction(); 4523 MachineFrameInfo *MFI = MF.getFrameInfo(); 4524 bool OptSize = shouldLowerMemFuncForSize(MF); 4525 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 4526 if (FI && !MFI->isFixedObjectIndex(FI->getIndex())) 4527 DstAlignCanChange = true; 4528 bool IsZeroVal = 4529 isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue(); 4530 if (!FindOptimalMemOpLowering(MemOps, TLI.getMaxStoresPerMemset(OptSize), 4531 Size, (DstAlignCanChange ? 0 : Align), 0, 4532 true, IsZeroVal, false, true, 4533 DstPtrInfo.getAddrSpace(), ~0u, 4534 DAG, TLI)) 4535 return SDValue(); 4536 4537 if (DstAlignCanChange) { 4538 Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext()); 4539 unsigned NewAlign = (unsigned)DAG.getDataLayout().getABITypeAlignment(Ty); 4540 if (NewAlign > Align) { 4541 // Give the stack frame object a larger alignment if needed. 4542 if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign) 4543 MFI->setObjectAlignment(FI->getIndex(), NewAlign); 4544 Align = NewAlign; 4545 } 4546 } 4547 4548 SmallVector<SDValue, 8> OutChains; 4549 uint64_t DstOff = 0; 4550 unsigned NumMemOps = MemOps.size(); 4551 4552 // Find the largest store and generate the bit pattern for it. 4553 EVT LargestVT = MemOps[0]; 4554 for (unsigned i = 1; i < NumMemOps; i++) 4555 if (MemOps[i].bitsGT(LargestVT)) 4556 LargestVT = MemOps[i]; 4557 SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl); 4558 4559 for (unsigned i = 0; i < NumMemOps; i++) { 4560 EVT VT = MemOps[i]; 4561 unsigned VTSize = VT.getSizeInBits() / 8; 4562 if (VTSize > Size) { 4563 // Issuing an unaligned load / store pair that overlaps with the previous 4564 // pair. Adjust the offset accordingly. 4565 assert(i == NumMemOps-1 && i != 0); 4566 DstOff -= VTSize - Size; 4567 } 4568 4569 // If this store is smaller than the largest store see whether we can get 4570 // the smaller value for free with a truncate. 4571 SDValue Value = MemSetValue; 4572 if (VT.bitsLT(LargestVT)) { 4573 if (!LargestVT.isVector() && !VT.isVector() && 4574 TLI.isTruncateFree(LargestVT, VT)) 4575 Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue); 4576 else 4577 Value = getMemsetValue(Src, VT, DAG, dl); 4578 } 4579 assert(Value.getValueType() == VT && "Value with wrong type."); 4580 SDValue Store = DAG.getStore(Chain, dl, Value, 4581 DAG.getMemBasePlusOffset(Dst, DstOff, dl), 4582 DstPtrInfo.getWithOffset(DstOff), 4583 isVol, false, Align); 4584 OutChains.push_back(Store); 4585 DstOff += VT.getSizeInBits() / 8; 4586 Size -= VTSize; 4587 } 4588 4589 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 4590 } 4591 4592 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI, 4593 unsigned AS) { 4594 // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all 4595 // pointer operands can be losslessly bitcasted to pointers of address space 0 4596 if (AS != 0 && !TLI->isNoopAddrSpaceCast(AS, 0)) { 4597 report_fatal_error("cannot lower memory intrinsic in address space " + 4598 Twine(AS)); 4599 } 4600 } 4601 4602 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, 4603 SDValue Src, SDValue Size, unsigned Align, 4604 bool isVol, bool AlwaysInline, bool isTailCall, 4605 MachinePointerInfo DstPtrInfo, 4606 MachinePointerInfo SrcPtrInfo) { 4607 assert(Align && "The SDAG layer expects explicit alignment and reserves 0"); 4608 4609 // Check to see if we should lower the memcpy to loads and stores first. 4610 // For cases within the target-specified limits, this is the best choice. 4611 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 4612 if (ConstantSize) { 4613 // Memcpy with size zero? Just return the original chain. 4614 if (ConstantSize->isNullValue()) 4615 return Chain; 4616 4617 SDValue Result = getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src, 4618 ConstantSize->getZExtValue(),Align, 4619 isVol, false, DstPtrInfo, SrcPtrInfo); 4620 if (Result.getNode()) 4621 return Result; 4622 } 4623 4624 // Then check to see if we should lower the memcpy with target-specific 4625 // code. If the target chooses to do this, this is the next best. 4626 if (TSI) { 4627 SDValue Result = TSI->EmitTargetCodeForMemcpy( 4628 *this, dl, Chain, Dst, Src, Size, Align, isVol, AlwaysInline, 4629 DstPtrInfo, SrcPtrInfo); 4630 if (Result.getNode()) 4631 return Result; 4632 } 4633 4634 // If we really need inline code and the target declined to provide it, 4635 // use a (potentially long) sequence of loads and stores. 4636 if (AlwaysInline) { 4637 assert(ConstantSize && "AlwaysInline requires a constant size!"); 4638 return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src, 4639 ConstantSize->getZExtValue(), Align, isVol, 4640 true, DstPtrInfo, SrcPtrInfo); 4641 } 4642 4643 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 4644 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 4645 4646 // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc 4647 // memcpy is not guaranteed to be safe. libc memcpys aren't required to 4648 // respect volatile, so they may do things like read or write memory 4649 // beyond the given memory regions. But fixing this isn't easy, and most 4650 // people don't care. 4651 4652 // Emit a library call. 4653 TargetLowering::ArgListTy Args; 4654 TargetLowering::ArgListEntry Entry; 4655 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 4656 Entry.Node = Dst; Args.push_back(Entry); 4657 Entry.Node = Src; Args.push_back(Entry); 4658 Entry.Node = Size; Args.push_back(Entry); 4659 // FIXME: pass in SDLoc 4660 TargetLowering::CallLoweringInfo CLI(*this); 4661 CLI.setDebugLoc(dl) 4662 .setChain(Chain) 4663 .setCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY), 4664 Dst.getValueType().getTypeForEVT(*getContext()), 4665 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY), 4666 TLI->getPointerTy(getDataLayout())), 4667 std::move(Args)) 4668 .setDiscardResult() 4669 .setTailCall(isTailCall); 4670 4671 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 4672 return CallResult.second; 4673 } 4674 4675 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, 4676 SDValue Src, SDValue Size, unsigned Align, 4677 bool isVol, bool isTailCall, 4678 MachinePointerInfo DstPtrInfo, 4679 MachinePointerInfo SrcPtrInfo) { 4680 assert(Align && "The SDAG layer expects explicit alignment and reserves 0"); 4681 4682 // Check to see if we should lower the memmove to loads and stores first. 4683 // For cases within the target-specified limits, this is the best choice. 4684 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 4685 if (ConstantSize) { 4686 // Memmove with size zero? Just return the original chain. 4687 if (ConstantSize->isNullValue()) 4688 return Chain; 4689 4690 SDValue Result = 4691 getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src, 4692 ConstantSize->getZExtValue(), Align, isVol, 4693 false, DstPtrInfo, SrcPtrInfo); 4694 if (Result.getNode()) 4695 return Result; 4696 } 4697 4698 // Then check to see if we should lower the memmove with target-specific 4699 // code. If the target chooses to do this, this is the next best. 4700 if (TSI) { 4701 SDValue Result = TSI->EmitTargetCodeForMemmove( 4702 *this, dl, Chain, Dst, Src, Size, Align, isVol, DstPtrInfo, SrcPtrInfo); 4703 if (Result.getNode()) 4704 return Result; 4705 } 4706 4707 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 4708 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 4709 4710 // FIXME: If the memmove is volatile, lowering it to plain libc memmove may 4711 // not be safe. See memcpy above for more details. 4712 4713 // Emit a library call. 4714 TargetLowering::ArgListTy Args; 4715 TargetLowering::ArgListEntry Entry; 4716 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 4717 Entry.Node = Dst; Args.push_back(Entry); 4718 Entry.Node = Src; Args.push_back(Entry); 4719 Entry.Node = Size; Args.push_back(Entry); 4720 // FIXME: pass in SDLoc 4721 TargetLowering::CallLoweringInfo CLI(*this); 4722 CLI.setDebugLoc(dl) 4723 .setChain(Chain) 4724 .setCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE), 4725 Dst.getValueType().getTypeForEVT(*getContext()), 4726 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE), 4727 TLI->getPointerTy(getDataLayout())), 4728 std::move(Args)) 4729 .setDiscardResult() 4730 .setTailCall(isTailCall); 4731 4732 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 4733 return CallResult.second; 4734 } 4735 4736 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, 4737 SDValue Src, SDValue Size, unsigned Align, 4738 bool isVol, bool isTailCall, 4739 MachinePointerInfo DstPtrInfo) { 4740 assert(Align && "The SDAG layer expects explicit alignment and reserves 0"); 4741 4742 // Check to see if we should lower the memset to stores first. 4743 // For cases within the target-specified limits, this is the best choice. 4744 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 4745 if (ConstantSize) { 4746 // Memset with size zero? Just return the original chain. 4747 if (ConstantSize->isNullValue()) 4748 return Chain; 4749 4750 SDValue Result = 4751 getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), 4752 Align, isVol, DstPtrInfo); 4753 4754 if (Result.getNode()) 4755 return Result; 4756 } 4757 4758 // Then check to see if we should lower the memset with target-specific 4759 // code. If the target chooses to do this, this is the next best. 4760 if (TSI) { 4761 SDValue Result = TSI->EmitTargetCodeForMemset( 4762 *this, dl, Chain, Dst, Src, Size, Align, isVol, DstPtrInfo); 4763 if (Result.getNode()) 4764 return Result; 4765 } 4766 4767 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 4768 4769 // Emit a library call. 4770 Type *IntPtrTy = getDataLayout().getIntPtrType(*getContext()); 4771 TargetLowering::ArgListTy Args; 4772 TargetLowering::ArgListEntry Entry; 4773 Entry.Node = Dst; Entry.Ty = IntPtrTy; 4774 Args.push_back(Entry); 4775 Entry.Node = Src; 4776 Entry.Ty = Src.getValueType().getTypeForEVT(*getContext()); 4777 Args.push_back(Entry); 4778 Entry.Node = Size; 4779 Entry.Ty = IntPtrTy; 4780 Args.push_back(Entry); 4781 4782 // FIXME: pass in SDLoc 4783 TargetLowering::CallLoweringInfo CLI(*this); 4784 CLI.setDebugLoc(dl) 4785 .setChain(Chain) 4786 .setCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET), 4787 Dst.getValueType().getTypeForEVT(*getContext()), 4788 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET), 4789 TLI->getPointerTy(getDataLayout())), 4790 std::move(Args)) 4791 .setDiscardResult() 4792 .setTailCall(isTailCall); 4793 4794 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 4795 return CallResult.second; 4796 } 4797 4798 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 4799 SDVTList VTList, ArrayRef<SDValue> Ops, 4800 MachineMemOperand *MMO, 4801 AtomicOrdering SuccessOrdering, 4802 AtomicOrdering FailureOrdering, 4803 SynchronizationScope SynchScope) { 4804 FoldingSetNodeID ID; 4805 ID.AddInteger(MemVT.getRawBits()); 4806 AddNodeIDNode(ID, Opcode, VTList, Ops); 4807 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 4808 void* IP = nullptr; 4809 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 4810 cast<AtomicSDNode>(E)->refineAlignment(MMO); 4811 return SDValue(E, 0); 4812 } 4813 4814 auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 4815 VTList, MemVT, MMO, SuccessOrdering, 4816 FailureOrdering, SynchScope); 4817 createOperands(N, Ops); 4818 4819 CSEMap.InsertNode(N, IP); 4820 InsertNode(N); 4821 return SDValue(N, 0); 4822 } 4823 4824 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 4825 SDVTList VTList, ArrayRef<SDValue> Ops, 4826 MachineMemOperand *MMO, AtomicOrdering Ordering, 4827 SynchronizationScope SynchScope) { 4828 return getAtomic(Opcode, dl, MemVT, VTList, Ops, MMO, Ordering, 4829 Ordering, SynchScope); 4830 } 4831 4832 SDValue SelectionDAG::getAtomicCmpSwap( 4833 unsigned Opcode, const SDLoc &dl, EVT MemVT, SDVTList VTs, SDValue Chain, 4834 SDValue Ptr, SDValue Cmp, SDValue Swp, MachinePointerInfo PtrInfo, 4835 unsigned Alignment, AtomicOrdering SuccessOrdering, 4836 AtomicOrdering FailureOrdering, SynchronizationScope SynchScope) { 4837 assert(Opcode == ISD::ATOMIC_CMP_SWAP || 4838 Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS); 4839 assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types"); 4840 4841 if (Alignment == 0) // Ensure that codegen never sees alignment 0 4842 Alignment = getEVTAlignment(MemVT); 4843 4844 MachineFunction &MF = getMachineFunction(); 4845 4846 // FIXME: Volatile isn't really correct; we should keep track of atomic 4847 // orderings in the memoperand. 4848 unsigned Flags = MachineMemOperand::MOVolatile; 4849 Flags |= MachineMemOperand::MOLoad; 4850 Flags |= MachineMemOperand::MOStore; 4851 4852 MachineMemOperand *MMO = 4853 MF.getMachineMemOperand(PtrInfo, Flags, MemVT.getStoreSize(), Alignment); 4854 4855 return getAtomicCmpSwap(Opcode, dl, MemVT, VTs, Chain, Ptr, Cmp, Swp, MMO, 4856 SuccessOrdering, FailureOrdering, SynchScope); 4857 } 4858 4859 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, 4860 EVT MemVT, SDVTList VTs, SDValue Chain, 4861 SDValue Ptr, SDValue Cmp, SDValue Swp, 4862 MachineMemOperand *MMO, 4863 AtomicOrdering SuccessOrdering, 4864 AtomicOrdering FailureOrdering, 4865 SynchronizationScope SynchScope) { 4866 assert(Opcode == ISD::ATOMIC_CMP_SWAP || 4867 Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS); 4868 assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types"); 4869 4870 SDValue Ops[] = {Chain, Ptr, Cmp, Swp}; 4871 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO, 4872 SuccessOrdering, FailureOrdering, SynchScope); 4873 } 4874 4875 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 4876 SDValue Chain, SDValue Ptr, SDValue Val, 4877 const Value *PtrVal, unsigned Alignment, 4878 AtomicOrdering Ordering, 4879 SynchronizationScope SynchScope) { 4880 if (Alignment == 0) // Ensure that codegen never sees alignment 0 4881 Alignment = getEVTAlignment(MemVT); 4882 4883 MachineFunction &MF = getMachineFunction(); 4884 // An atomic store does not load. An atomic load does not store. 4885 // (An atomicrmw obviously both loads and stores.) 4886 // For now, atomics are considered to be volatile always, and they are 4887 // chained as such. 4888 // FIXME: Volatile isn't really correct; we should keep track of atomic 4889 // orderings in the memoperand. 4890 unsigned Flags = MachineMemOperand::MOVolatile; 4891 if (Opcode != ISD::ATOMIC_STORE) 4892 Flags |= MachineMemOperand::MOLoad; 4893 if (Opcode != ISD::ATOMIC_LOAD) 4894 Flags |= MachineMemOperand::MOStore; 4895 4896 MachineMemOperand *MMO = 4897 MF.getMachineMemOperand(MachinePointerInfo(PtrVal), Flags, 4898 MemVT.getStoreSize(), Alignment); 4899 4900 return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Val, MMO, 4901 Ordering, SynchScope); 4902 } 4903 4904 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 4905 SDValue Chain, SDValue Ptr, SDValue Val, 4906 MachineMemOperand *MMO, AtomicOrdering Ordering, 4907 SynchronizationScope SynchScope) { 4908 assert((Opcode == ISD::ATOMIC_LOAD_ADD || 4909 Opcode == ISD::ATOMIC_LOAD_SUB || 4910 Opcode == ISD::ATOMIC_LOAD_AND || 4911 Opcode == ISD::ATOMIC_LOAD_OR || 4912 Opcode == ISD::ATOMIC_LOAD_XOR || 4913 Opcode == ISD::ATOMIC_LOAD_NAND || 4914 Opcode == ISD::ATOMIC_LOAD_MIN || 4915 Opcode == ISD::ATOMIC_LOAD_MAX || 4916 Opcode == ISD::ATOMIC_LOAD_UMIN || 4917 Opcode == ISD::ATOMIC_LOAD_UMAX || 4918 Opcode == ISD::ATOMIC_SWAP || 4919 Opcode == ISD::ATOMIC_STORE) && 4920 "Invalid Atomic Op"); 4921 4922 EVT VT = Val.getValueType(); 4923 4924 SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) : 4925 getVTList(VT, MVT::Other); 4926 SDValue Ops[] = {Chain, Ptr, Val}; 4927 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO, Ordering, SynchScope); 4928 } 4929 4930 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 4931 EVT VT, SDValue Chain, SDValue Ptr, 4932 MachineMemOperand *MMO, AtomicOrdering Ordering, 4933 SynchronizationScope SynchScope) { 4934 assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op"); 4935 4936 SDVTList VTs = getVTList(VT, MVT::Other); 4937 SDValue Ops[] = {Chain, Ptr}; 4938 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO, Ordering, SynchScope); 4939 } 4940 4941 /// getMergeValues - Create a MERGE_VALUES node from the given operands. 4942 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) { 4943 if (Ops.size() == 1) 4944 return Ops[0]; 4945 4946 SmallVector<EVT, 4> VTs; 4947 VTs.reserve(Ops.size()); 4948 for (unsigned i = 0; i < Ops.size(); ++i) 4949 VTs.push_back(Ops[i].getValueType()); 4950 return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops); 4951 } 4952 4953 SDValue SelectionDAG::getMemIntrinsicNode( 4954 unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops, 4955 EVT MemVT, MachinePointerInfo PtrInfo, unsigned Align, bool Vol, 4956 bool ReadMem, bool WriteMem, unsigned Size) { 4957 if (Align == 0) // Ensure that codegen never sees alignment 0 4958 Align = getEVTAlignment(MemVT); 4959 4960 MachineFunction &MF = getMachineFunction(); 4961 unsigned Flags = 0; 4962 if (WriteMem) 4963 Flags |= MachineMemOperand::MOStore; 4964 if (ReadMem) 4965 Flags |= MachineMemOperand::MOLoad; 4966 if (Vol) 4967 Flags |= MachineMemOperand::MOVolatile; 4968 if (!Size) 4969 Size = MemVT.getStoreSize(); 4970 MachineMemOperand *MMO = 4971 MF.getMachineMemOperand(PtrInfo, Flags, Size, Align); 4972 4973 return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO); 4974 } 4975 4976 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, 4977 SDVTList VTList, 4978 ArrayRef<SDValue> Ops, EVT MemVT, 4979 MachineMemOperand *MMO) { 4980 assert((Opcode == ISD::INTRINSIC_VOID || 4981 Opcode == ISD::INTRINSIC_W_CHAIN || 4982 Opcode == ISD::PREFETCH || 4983 Opcode == ISD::LIFETIME_START || 4984 Opcode == ISD::LIFETIME_END || 4985 (Opcode <= INT_MAX && 4986 (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) && 4987 "Opcode is not a memory-accessing opcode!"); 4988 4989 // Memoize the node unless it returns a flag. 4990 MemIntrinsicSDNode *N; 4991 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 4992 FoldingSetNodeID ID; 4993 AddNodeIDNode(ID, Opcode, VTList, Ops); 4994 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 4995 void *IP = nullptr; 4996 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 4997 cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO); 4998 return SDValue(E, 0); 4999 } 5000 5001 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 5002 VTList, MemVT, MMO); 5003 createOperands(N, Ops); 5004 5005 CSEMap.InsertNode(N, IP); 5006 } else { 5007 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 5008 VTList, MemVT, MMO); 5009 createOperands(N, Ops); 5010 } 5011 InsertNode(N); 5012 return SDValue(N, 0); 5013 } 5014 5015 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 5016 /// MachinePointerInfo record from it. This is particularly useful because the 5017 /// code generator has many cases where it doesn't bother passing in a 5018 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 5019 static MachinePointerInfo InferPointerInfo(SelectionDAG &DAG, SDValue Ptr, 5020 int64_t Offset = 0) { 5021 // If this is FI+Offset, we can model it. 5022 if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) 5023 return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), 5024 FI->getIndex(), Offset); 5025 5026 // If this is (FI+Offset1)+Offset2, we can model it. 5027 if (Ptr.getOpcode() != ISD::ADD || 5028 !isa<ConstantSDNode>(Ptr.getOperand(1)) || 5029 !isa<FrameIndexSDNode>(Ptr.getOperand(0))) 5030 return MachinePointerInfo(); 5031 5032 int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 5033 return MachinePointerInfo::getFixedStack( 5034 DAG.getMachineFunction(), FI, 5035 Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue()); 5036 } 5037 5038 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 5039 /// MachinePointerInfo record from it. This is particularly useful because the 5040 /// code generator has many cases where it doesn't bother passing in a 5041 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 5042 static MachinePointerInfo InferPointerInfo(SelectionDAG &DAG, SDValue Ptr, 5043 SDValue OffsetOp) { 5044 // If the 'Offset' value isn't a constant, we can't handle this. 5045 if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp)) 5046 return InferPointerInfo(DAG, Ptr, OffsetNode->getSExtValue()); 5047 if (OffsetOp.isUndef()) 5048 return InferPointerInfo(DAG, Ptr); 5049 return MachinePointerInfo(); 5050 } 5051 5052 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 5053 EVT VT, const SDLoc &dl, SDValue Chain, 5054 SDValue Ptr, SDValue Offset, 5055 MachinePointerInfo PtrInfo, EVT MemVT, 5056 bool isVolatile, bool isNonTemporal, 5057 bool isInvariant, unsigned Alignment, 5058 const AAMDNodes &AAInfo, const MDNode *Ranges) { 5059 assert(Chain.getValueType() == MVT::Other && 5060 "Invalid chain type"); 5061 if (Alignment == 0) // Ensure that codegen never sees alignment 0 5062 Alignment = getEVTAlignment(VT); 5063 5064 unsigned Flags = MachineMemOperand::MOLoad; 5065 if (isVolatile) 5066 Flags |= MachineMemOperand::MOVolatile; 5067 if (isNonTemporal) 5068 Flags |= MachineMemOperand::MONonTemporal; 5069 if (isInvariant) 5070 Flags |= MachineMemOperand::MOInvariant; 5071 5072 // If we don't have a PtrInfo, infer the trivial frame index case to simplify 5073 // clients. 5074 if (PtrInfo.V.isNull()) 5075 PtrInfo = InferPointerInfo(*this, Ptr, Offset); 5076 5077 MachineFunction &MF = getMachineFunction(); 5078 MachineMemOperand *MMO = 5079 MF.getMachineMemOperand(PtrInfo, Flags, MemVT.getStoreSize(), Alignment, 5080 AAInfo, Ranges); 5081 return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO); 5082 } 5083 5084 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 5085 EVT VT, const SDLoc &dl, SDValue Chain, 5086 SDValue Ptr, SDValue Offset, EVT MemVT, 5087 MachineMemOperand *MMO) { 5088 if (VT == MemVT) { 5089 ExtType = ISD::NON_EXTLOAD; 5090 } else if (ExtType == ISD::NON_EXTLOAD) { 5091 assert(VT == MemVT && "Non-extending load from different memory type!"); 5092 } else { 5093 // Extending load. 5094 assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) && 5095 "Should only be an extending load, not truncating!"); 5096 assert(VT.isInteger() == MemVT.isInteger() && 5097 "Cannot convert from FP to Int or Int -> FP!"); 5098 assert(VT.isVector() == MemVT.isVector() && 5099 "Cannot use an ext load to convert to or from a vector!"); 5100 assert((!VT.isVector() || 5101 VT.getVectorNumElements() == MemVT.getVectorNumElements()) && 5102 "Cannot use an ext load to change the number of vector elements!"); 5103 } 5104 5105 bool Indexed = AM != ISD::UNINDEXED; 5106 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!"); 5107 5108 SDVTList VTs = Indexed ? 5109 getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other); 5110 SDValue Ops[] = { Chain, Ptr, Offset }; 5111 FoldingSetNodeID ID; 5112 AddNodeIDNode(ID, ISD::LOAD, VTs, Ops); 5113 ID.AddInteger(MemVT.getRawBits()); 5114 ID.AddInteger(encodeMemSDNodeFlags(ExtType, AM, MMO->isVolatile(), 5115 MMO->isNonTemporal(), 5116 MMO->isInvariant())); 5117 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 5118 void *IP = nullptr; 5119 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 5120 cast<LoadSDNode>(E)->refineAlignment(MMO); 5121 return SDValue(E, 0); 5122 } 5123 auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 5124 ExtType, MemVT, MMO); 5125 createOperands(N, Ops); 5126 5127 CSEMap.InsertNode(N, IP); 5128 InsertNode(N); 5129 return SDValue(N, 0); 5130 } 5131 5132 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 5133 SDValue Ptr, MachinePointerInfo PtrInfo, 5134 bool isVolatile, bool isNonTemporal, 5135 bool isInvariant, unsigned Alignment, 5136 const AAMDNodes &AAInfo, const MDNode *Ranges) { 5137 SDValue Undef = getUNDEF(Ptr.getValueType()); 5138 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 5139 PtrInfo, VT, isVolatile, isNonTemporal, isInvariant, Alignment, 5140 AAInfo, Ranges); 5141 } 5142 5143 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 5144 SDValue Ptr, MachineMemOperand *MMO) { 5145 SDValue Undef = getUNDEF(Ptr.getValueType()); 5146 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 5147 VT, MMO); 5148 } 5149 5150 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 5151 EVT VT, SDValue Chain, SDValue Ptr, 5152 MachinePointerInfo PtrInfo, EVT MemVT, 5153 bool isVolatile, bool isNonTemporal, 5154 bool isInvariant, unsigned Alignment, 5155 const AAMDNodes &AAInfo) { 5156 SDValue Undef = getUNDEF(Ptr.getValueType()); 5157 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, 5158 PtrInfo, MemVT, isVolatile, isNonTemporal, isInvariant, 5159 Alignment, AAInfo); 5160 } 5161 5162 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 5163 EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT, 5164 MachineMemOperand *MMO) { 5165 SDValue Undef = getUNDEF(Ptr.getValueType()); 5166 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, 5167 MemVT, MMO); 5168 } 5169 5170 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl, 5171 SDValue Base, SDValue Offset, 5172 ISD::MemIndexedMode AM) { 5173 LoadSDNode *LD = cast<LoadSDNode>(OrigLoad); 5174 assert(LD->getOffset().isUndef() && "Load is already a indexed load!"); 5175 return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl, 5176 LD->getChain(), Base, Offset, LD->getPointerInfo(), 5177 LD->getMemoryVT(), LD->isVolatile(), LD->isNonTemporal(), 5178 false, LD->getAlignment()); 5179 } 5180 5181 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 5182 SDValue Ptr, MachinePointerInfo PtrInfo, 5183 bool isVolatile, bool isNonTemporal, 5184 unsigned Alignment, const AAMDNodes &AAInfo) { 5185 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 5186 if (Alignment == 0) // Ensure that codegen never sees alignment 0 5187 Alignment = getEVTAlignment(Val.getValueType()); 5188 5189 unsigned Flags = MachineMemOperand::MOStore; 5190 if (isVolatile) 5191 Flags |= MachineMemOperand::MOVolatile; 5192 if (isNonTemporal) 5193 Flags |= MachineMemOperand::MONonTemporal; 5194 5195 if (PtrInfo.V.isNull()) 5196 PtrInfo = InferPointerInfo(*this, Ptr); 5197 5198 MachineFunction &MF = getMachineFunction(); 5199 MachineMemOperand *MMO = 5200 MF.getMachineMemOperand(PtrInfo, Flags, 5201 Val.getValueType().getStoreSize(), Alignment, 5202 AAInfo); 5203 5204 return getStore(Chain, dl, Val, Ptr, MMO); 5205 } 5206 5207 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 5208 SDValue Ptr, MachineMemOperand *MMO) { 5209 assert(Chain.getValueType() == MVT::Other && 5210 "Invalid chain type"); 5211 EVT VT = Val.getValueType(); 5212 SDVTList VTs = getVTList(MVT::Other); 5213 SDValue Undef = getUNDEF(Ptr.getValueType()); 5214 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 5215 FoldingSetNodeID ID; 5216 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 5217 ID.AddInteger(VT.getRawBits()); 5218 ID.AddInteger(encodeMemSDNodeFlags(false, ISD::UNINDEXED, MMO->isVolatile(), 5219 MMO->isNonTemporal(), MMO->isInvariant())); 5220 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 5221 void *IP = nullptr; 5222 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 5223 cast<StoreSDNode>(E)->refineAlignment(MMO); 5224 return SDValue(E, 0); 5225 } 5226 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 5227 ISD::UNINDEXED, false, VT, MMO); 5228 createOperands(N, Ops); 5229 5230 CSEMap.InsertNode(N, IP); 5231 InsertNode(N); 5232 return SDValue(N, 0); 5233 } 5234 5235 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 5236 SDValue Ptr, MachinePointerInfo PtrInfo, 5237 EVT SVT, bool isVolatile, 5238 bool isNonTemporal, unsigned Alignment, 5239 const AAMDNodes &AAInfo) { 5240 assert(Chain.getValueType() == MVT::Other && 5241 "Invalid chain type"); 5242 if (Alignment == 0) // Ensure that codegen never sees alignment 0 5243 Alignment = getEVTAlignment(SVT); 5244 5245 unsigned Flags = MachineMemOperand::MOStore; 5246 if (isVolatile) 5247 Flags |= MachineMemOperand::MOVolatile; 5248 if (isNonTemporal) 5249 Flags |= MachineMemOperand::MONonTemporal; 5250 5251 if (PtrInfo.V.isNull()) 5252 PtrInfo = InferPointerInfo(*this, Ptr); 5253 5254 MachineFunction &MF = getMachineFunction(); 5255 MachineMemOperand *MMO = 5256 MF.getMachineMemOperand(PtrInfo, Flags, SVT.getStoreSize(), Alignment, 5257 AAInfo); 5258 5259 return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO); 5260 } 5261 5262 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 5263 SDValue Ptr, EVT SVT, 5264 MachineMemOperand *MMO) { 5265 EVT VT = Val.getValueType(); 5266 5267 assert(Chain.getValueType() == MVT::Other && 5268 "Invalid chain type"); 5269 if (VT == SVT) 5270 return getStore(Chain, dl, Val, Ptr, MMO); 5271 5272 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) && 5273 "Should only be a truncating store, not extending!"); 5274 assert(VT.isInteger() == SVT.isInteger() && 5275 "Can't do FP-INT conversion!"); 5276 assert(VT.isVector() == SVT.isVector() && 5277 "Cannot use trunc store to convert to or from a vector!"); 5278 assert((!VT.isVector() || 5279 VT.getVectorNumElements() == SVT.getVectorNumElements()) && 5280 "Cannot use trunc store to change the number of vector elements!"); 5281 5282 SDVTList VTs = getVTList(MVT::Other); 5283 SDValue Undef = getUNDEF(Ptr.getValueType()); 5284 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 5285 FoldingSetNodeID ID; 5286 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 5287 ID.AddInteger(SVT.getRawBits()); 5288 ID.AddInteger(encodeMemSDNodeFlags(true, ISD::UNINDEXED, MMO->isVolatile(), 5289 MMO->isNonTemporal(), MMO->isInvariant())); 5290 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 5291 void *IP = nullptr; 5292 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 5293 cast<StoreSDNode>(E)->refineAlignment(MMO); 5294 return SDValue(E, 0); 5295 } 5296 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 5297 ISD::UNINDEXED, true, SVT, MMO); 5298 createOperands(N, Ops); 5299 5300 CSEMap.InsertNode(N, IP); 5301 InsertNode(N); 5302 return SDValue(N, 0); 5303 } 5304 5305 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl, 5306 SDValue Base, SDValue Offset, 5307 ISD::MemIndexedMode AM) { 5308 StoreSDNode *ST = cast<StoreSDNode>(OrigStore); 5309 assert(ST->getOffset().isUndef() && "Store is already a indexed store!"); 5310 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other); 5311 SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset }; 5312 FoldingSetNodeID ID; 5313 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 5314 ID.AddInteger(ST->getMemoryVT().getRawBits()); 5315 ID.AddInteger(ST->getRawSubclassData()); 5316 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 5317 void *IP = nullptr; 5318 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 5319 return SDValue(E, 0); 5320 5321 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 5322 ST->isTruncatingStore(), ST->getMemoryVT(), 5323 ST->getMemOperand()); 5324 createOperands(N, Ops); 5325 5326 CSEMap.InsertNode(N, IP); 5327 InsertNode(N); 5328 return SDValue(N, 0); 5329 } 5330 5331 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain, 5332 SDValue Ptr, SDValue Mask, SDValue Src0, 5333 EVT MemVT, MachineMemOperand *MMO, 5334 ISD::LoadExtType ExtTy) { 5335 5336 SDVTList VTs = getVTList(VT, MVT::Other); 5337 SDValue Ops[] = { Chain, Ptr, Mask, Src0 }; 5338 FoldingSetNodeID ID; 5339 AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops); 5340 ID.AddInteger(VT.getRawBits()); 5341 ID.AddInteger(encodeMemSDNodeFlags(ExtTy, ISD::UNINDEXED, 5342 MMO->isVolatile(), 5343 MMO->isNonTemporal(), 5344 MMO->isInvariant())); 5345 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 5346 void *IP = nullptr; 5347 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 5348 cast<MaskedLoadSDNode>(E)->refineAlignment(MMO); 5349 return SDValue(E, 0); 5350 } 5351 auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 5352 ExtTy, MemVT, MMO); 5353 createOperands(N, Ops); 5354 5355 CSEMap.InsertNode(N, IP); 5356 InsertNode(N); 5357 return SDValue(N, 0); 5358 } 5359 5360 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl, 5361 SDValue Val, SDValue Ptr, SDValue Mask, 5362 EVT MemVT, MachineMemOperand *MMO, 5363 bool isTrunc) { 5364 assert(Chain.getValueType() == MVT::Other && 5365 "Invalid chain type"); 5366 EVT VT = Val.getValueType(); 5367 SDVTList VTs = getVTList(MVT::Other); 5368 SDValue Ops[] = { Chain, Ptr, Mask, Val }; 5369 FoldingSetNodeID ID; 5370 AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops); 5371 ID.AddInteger(VT.getRawBits()); 5372 ID.AddInteger(encodeMemSDNodeFlags(false, ISD::UNINDEXED, MMO->isVolatile(), 5373 MMO->isNonTemporal(), MMO->isInvariant())); 5374 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 5375 void *IP = nullptr; 5376 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 5377 cast<MaskedStoreSDNode>(E)->refineAlignment(MMO); 5378 return SDValue(E, 0); 5379 } 5380 auto *N = newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 5381 isTrunc, MemVT, MMO); 5382 createOperands(N, Ops); 5383 5384 CSEMap.InsertNode(N, IP); 5385 InsertNode(N); 5386 return SDValue(N, 0); 5387 } 5388 5389 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT VT, const SDLoc &dl, 5390 ArrayRef<SDValue> Ops, 5391 MachineMemOperand *MMO) { 5392 assert(Ops.size() == 5 && "Incompatible number of operands"); 5393 5394 FoldingSetNodeID ID; 5395 AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops); 5396 ID.AddInteger(VT.getRawBits()); 5397 ID.AddInteger(encodeMemSDNodeFlags(ISD::NON_EXTLOAD, ISD::UNINDEXED, 5398 MMO->isVolatile(), 5399 MMO->isNonTemporal(), 5400 MMO->isInvariant())); 5401 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 5402 void *IP = nullptr; 5403 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 5404 cast<MaskedGatherSDNode>(E)->refineAlignment(MMO); 5405 return SDValue(E, 0); 5406 } 5407 5408 auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), 5409 VTs, VT, MMO); 5410 createOperands(N, Ops); 5411 5412 assert(N->getValue().getValueType() == N->getValueType(0) && 5413 "Incompatible type of the PassThru value in MaskedGatherSDNode"); 5414 assert(N->getMask().getValueType().getVectorNumElements() == 5415 N->getValueType(0).getVectorNumElements() && 5416 "Vector width mismatch between mask and data"); 5417 assert(N->getIndex().getValueType().getVectorNumElements() == 5418 N->getValueType(0).getVectorNumElements() && 5419 "Vector width mismatch between index and data"); 5420 5421 CSEMap.InsertNode(N, IP); 5422 InsertNode(N); 5423 return SDValue(N, 0); 5424 } 5425 5426 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT VT, const SDLoc &dl, 5427 ArrayRef<SDValue> Ops, 5428 MachineMemOperand *MMO) { 5429 assert(Ops.size() == 5 && "Incompatible number of operands"); 5430 5431 FoldingSetNodeID ID; 5432 AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops); 5433 ID.AddInteger(VT.getRawBits()); 5434 ID.AddInteger(encodeMemSDNodeFlags(false, ISD::UNINDEXED, MMO->isVolatile(), 5435 MMO->isNonTemporal(), 5436 MMO->isInvariant())); 5437 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 5438 void *IP = nullptr; 5439 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 5440 cast<MaskedScatterSDNode>(E)->refineAlignment(MMO); 5441 return SDValue(E, 0); 5442 } 5443 auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), 5444 VTs, VT, MMO); 5445 createOperands(N, Ops); 5446 5447 assert(N->getMask().getValueType().getVectorNumElements() == 5448 N->getValue().getValueType().getVectorNumElements() && 5449 "Vector width mismatch between mask and data"); 5450 assert(N->getIndex().getValueType().getVectorNumElements() == 5451 N->getValue().getValueType().getVectorNumElements() && 5452 "Vector width mismatch between index and data"); 5453 5454 CSEMap.InsertNode(N, IP); 5455 InsertNode(N); 5456 return SDValue(N, 0); 5457 } 5458 5459 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain, 5460 SDValue Ptr, SDValue SV, unsigned Align) { 5461 SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) }; 5462 return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops); 5463 } 5464 5465 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5466 ArrayRef<SDUse> Ops) { 5467 switch (Ops.size()) { 5468 case 0: return getNode(Opcode, DL, VT); 5469 case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0])); 5470 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]); 5471 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]); 5472 default: break; 5473 } 5474 5475 // Copy from an SDUse array into an SDValue array for use with 5476 // the regular getNode logic. 5477 SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end()); 5478 return getNode(Opcode, DL, VT, NewOps); 5479 } 5480 5481 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5482 ArrayRef<SDValue> Ops, const SDNodeFlags *Flags) { 5483 unsigned NumOps = Ops.size(); 5484 switch (NumOps) { 5485 case 0: return getNode(Opcode, DL, VT); 5486 case 1: return getNode(Opcode, DL, VT, Ops[0]); 5487 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags); 5488 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]); 5489 default: break; 5490 } 5491 5492 switch (Opcode) { 5493 default: break; 5494 case ISD::CONCAT_VECTORS: { 5495 // Attempt to fold CONCAT_VECTORS into BUILD_VECTOR or UNDEF. 5496 if (SDValue V = FoldCONCAT_VECTORS(DL, VT, Ops, *this)) 5497 return V; 5498 break; 5499 } 5500 case ISD::SELECT_CC: { 5501 assert(NumOps == 5 && "SELECT_CC takes 5 operands!"); 5502 assert(Ops[0].getValueType() == Ops[1].getValueType() && 5503 "LHS and RHS of condition must have same type!"); 5504 assert(Ops[2].getValueType() == Ops[3].getValueType() && 5505 "True and False arms of SelectCC must have same type!"); 5506 assert(Ops[2].getValueType() == VT && 5507 "select_cc node must be of same type as true and false value!"); 5508 break; 5509 } 5510 case ISD::BR_CC: { 5511 assert(NumOps == 5 && "BR_CC takes 5 operands!"); 5512 assert(Ops[2].getValueType() == Ops[3].getValueType() && 5513 "LHS/RHS of comparison should match types!"); 5514 break; 5515 } 5516 } 5517 5518 // Memoize nodes. 5519 SDNode *N; 5520 SDVTList VTs = getVTList(VT); 5521 5522 if (VT != MVT::Glue) { 5523 FoldingSetNodeID ID; 5524 AddNodeIDNode(ID, Opcode, VTs, Ops); 5525 void *IP = nullptr; 5526 5527 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 5528 return SDValue(E, 0); 5529 5530 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5531 createOperands(N, Ops); 5532 5533 CSEMap.InsertNode(N, IP); 5534 } else { 5535 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5536 createOperands(N, Ops); 5537 } 5538 5539 InsertNode(N); 5540 return SDValue(N, 0); 5541 } 5542 5543 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 5544 ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) { 5545 return getNode(Opcode, DL, getVTList(ResultTys), Ops); 5546 } 5547 5548 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 5549 ArrayRef<SDValue> Ops) { 5550 if (VTList.NumVTs == 1) 5551 return getNode(Opcode, DL, VTList.VTs[0], Ops); 5552 5553 #if 0 5554 switch (Opcode) { 5555 // FIXME: figure out how to safely handle things like 5556 // int foo(int x) { return 1 << (x & 255); } 5557 // int bar() { return foo(256); } 5558 case ISD::SRA_PARTS: 5559 case ISD::SRL_PARTS: 5560 case ISD::SHL_PARTS: 5561 if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG && 5562 cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1) 5563 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 5564 else if (N3.getOpcode() == ISD::AND) 5565 if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) { 5566 // If the and is only masking out bits that cannot effect the shift, 5567 // eliminate the and. 5568 unsigned NumBits = VT.getScalarType().getSizeInBits()*2; 5569 if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1) 5570 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 5571 } 5572 break; 5573 } 5574 #endif 5575 5576 // Memoize the node unless it returns a flag. 5577 SDNode *N; 5578 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 5579 FoldingSetNodeID ID; 5580 AddNodeIDNode(ID, Opcode, VTList, Ops); 5581 void *IP = nullptr; 5582 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 5583 return SDValue(E, 0); 5584 5585 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 5586 createOperands(N, Ops); 5587 CSEMap.InsertNode(N, IP); 5588 } else { 5589 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 5590 createOperands(N, Ops); 5591 } 5592 InsertNode(N); 5593 return SDValue(N, 0); 5594 } 5595 5596 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 5597 SDVTList VTList) { 5598 return getNode(Opcode, DL, VTList, None); 5599 } 5600 5601 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 5602 SDValue N1) { 5603 SDValue Ops[] = { N1 }; 5604 return getNode(Opcode, DL, VTList, Ops); 5605 } 5606 5607 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 5608 SDValue N1, SDValue N2) { 5609 SDValue Ops[] = { N1, N2 }; 5610 return getNode(Opcode, DL, VTList, Ops); 5611 } 5612 5613 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 5614 SDValue N1, SDValue N2, SDValue N3) { 5615 SDValue Ops[] = { N1, N2, N3 }; 5616 return getNode(Opcode, DL, VTList, Ops); 5617 } 5618 5619 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 5620 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 5621 SDValue Ops[] = { N1, N2, N3, N4 }; 5622 return getNode(Opcode, DL, VTList, Ops); 5623 } 5624 5625 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 5626 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 5627 SDValue N5) { 5628 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 5629 return getNode(Opcode, DL, VTList, Ops); 5630 } 5631 5632 SDVTList SelectionDAG::getVTList(EVT VT) { 5633 return makeVTList(SDNode::getValueTypeList(VT), 1); 5634 } 5635 5636 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) { 5637 FoldingSetNodeID ID; 5638 ID.AddInteger(2U); 5639 ID.AddInteger(VT1.getRawBits()); 5640 ID.AddInteger(VT2.getRawBits()); 5641 5642 void *IP = nullptr; 5643 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 5644 if (!Result) { 5645 EVT *Array = Allocator.Allocate<EVT>(2); 5646 Array[0] = VT1; 5647 Array[1] = VT2; 5648 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2); 5649 VTListMap.InsertNode(Result, IP); 5650 } 5651 return Result->getSDVTList(); 5652 } 5653 5654 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) { 5655 FoldingSetNodeID ID; 5656 ID.AddInteger(3U); 5657 ID.AddInteger(VT1.getRawBits()); 5658 ID.AddInteger(VT2.getRawBits()); 5659 ID.AddInteger(VT3.getRawBits()); 5660 5661 void *IP = nullptr; 5662 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 5663 if (!Result) { 5664 EVT *Array = Allocator.Allocate<EVT>(3); 5665 Array[0] = VT1; 5666 Array[1] = VT2; 5667 Array[2] = VT3; 5668 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3); 5669 VTListMap.InsertNode(Result, IP); 5670 } 5671 return Result->getSDVTList(); 5672 } 5673 5674 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) { 5675 FoldingSetNodeID ID; 5676 ID.AddInteger(4U); 5677 ID.AddInteger(VT1.getRawBits()); 5678 ID.AddInteger(VT2.getRawBits()); 5679 ID.AddInteger(VT3.getRawBits()); 5680 ID.AddInteger(VT4.getRawBits()); 5681 5682 void *IP = nullptr; 5683 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 5684 if (!Result) { 5685 EVT *Array = Allocator.Allocate<EVT>(4); 5686 Array[0] = VT1; 5687 Array[1] = VT2; 5688 Array[2] = VT3; 5689 Array[3] = VT4; 5690 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4); 5691 VTListMap.InsertNode(Result, IP); 5692 } 5693 return Result->getSDVTList(); 5694 } 5695 5696 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) { 5697 unsigned NumVTs = VTs.size(); 5698 FoldingSetNodeID ID; 5699 ID.AddInteger(NumVTs); 5700 for (unsigned index = 0; index < NumVTs; index++) { 5701 ID.AddInteger(VTs[index].getRawBits()); 5702 } 5703 5704 void *IP = nullptr; 5705 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 5706 if (!Result) { 5707 EVT *Array = Allocator.Allocate<EVT>(NumVTs); 5708 std::copy(VTs.begin(), VTs.end(), Array); 5709 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs); 5710 VTListMap.InsertNode(Result, IP); 5711 } 5712 return Result->getSDVTList(); 5713 } 5714 5715 5716 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the 5717 /// specified operands. If the resultant node already exists in the DAG, 5718 /// this does not modify the specified node, instead it returns the node that 5719 /// already exists. If the resultant node does not exist in the DAG, the 5720 /// input node is returned. As a degenerate case, if you specify the same 5721 /// input operands as the node already has, the input node is returned. 5722 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) { 5723 assert(N->getNumOperands() == 1 && "Update with wrong number of operands"); 5724 5725 // Check to see if there is no change. 5726 if (Op == N->getOperand(0)) return N; 5727 5728 // See if the modified node already exists. 5729 void *InsertPos = nullptr; 5730 if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos)) 5731 return Existing; 5732 5733 // Nope it doesn't. Remove the node from its current place in the maps. 5734 if (InsertPos) 5735 if (!RemoveNodeFromCSEMaps(N)) 5736 InsertPos = nullptr; 5737 5738 // Now we update the operands. 5739 N->OperandList[0].set(Op); 5740 5741 // If this gets put into a CSE map, add it. 5742 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 5743 return N; 5744 } 5745 5746 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) { 5747 assert(N->getNumOperands() == 2 && "Update with wrong number of operands"); 5748 5749 // Check to see if there is no change. 5750 if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1)) 5751 return N; // No operands changed, just return the input node. 5752 5753 // See if the modified node already exists. 5754 void *InsertPos = nullptr; 5755 if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos)) 5756 return Existing; 5757 5758 // Nope it doesn't. Remove the node from its current place in the maps. 5759 if (InsertPos) 5760 if (!RemoveNodeFromCSEMaps(N)) 5761 InsertPos = nullptr; 5762 5763 // Now we update the operands. 5764 if (N->OperandList[0] != Op1) 5765 N->OperandList[0].set(Op1); 5766 if (N->OperandList[1] != Op2) 5767 N->OperandList[1].set(Op2); 5768 5769 // If this gets put into a CSE map, add it. 5770 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 5771 return N; 5772 } 5773 5774 SDNode *SelectionDAG:: 5775 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) { 5776 SDValue Ops[] = { Op1, Op2, Op3 }; 5777 return UpdateNodeOperands(N, Ops); 5778 } 5779 5780 SDNode *SelectionDAG:: 5781 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 5782 SDValue Op3, SDValue Op4) { 5783 SDValue Ops[] = { Op1, Op2, Op3, Op4 }; 5784 return UpdateNodeOperands(N, Ops); 5785 } 5786 5787 SDNode *SelectionDAG:: 5788 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 5789 SDValue Op3, SDValue Op4, SDValue Op5) { 5790 SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 }; 5791 return UpdateNodeOperands(N, Ops); 5792 } 5793 5794 SDNode *SelectionDAG:: 5795 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) { 5796 unsigned NumOps = Ops.size(); 5797 assert(N->getNumOperands() == NumOps && 5798 "Update with wrong number of operands"); 5799 5800 // If no operands changed just return the input node. 5801 if (std::equal(Ops.begin(), Ops.end(), N->op_begin())) 5802 return N; 5803 5804 // See if the modified node already exists. 5805 void *InsertPos = nullptr; 5806 if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos)) 5807 return Existing; 5808 5809 // Nope it doesn't. Remove the node from its current place in the maps. 5810 if (InsertPos) 5811 if (!RemoveNodeFromCSEMaps(N)) 5812 InsertPos = nullptr; 5813 5814 // Now we update the operands. 5815 for (unsigned i = 0; i != NumOps; ++i) 5816 if (N->OperandList[i] != Ops[i]) 5817 N->OperandList[i].set(Ops[i]); 5818 5819 // If this gets put into a CSE map, add it. 5820 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 5821 return N; 5822 } 5823 5824 /// DropOperands - Release the operands and set this node to have 5825 /// zero operands. 5826 void SDNode::DropOperands() { 5827 // Unlike the code in MorphNodeTo that does this, we don't need to 5828 // watch for dead nodes here. 5829 for (op_iterator I = op_begin(), E = op_end(); I != E; ) { 5830 SDUse &Use = *I++; 5831 Use.set(SDValue()); 5832 } 5833 } 5834 5835 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a 5836 /// machine opcode. 5837 /// 5838 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 5839 EVT VT) { 5840 SDVTList VTs = getVTList(VT); 5841 return SelectNodeTo(N, MachineOpc, VTs, None); 5842 } 5843 5844 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 5845 EVT VT, SDValue Op1) { 5846 SDVTList VTs = getVTList(VT); 5847 SDValue Ops[] = { Op1 }; 5848 return SelectNodeTo(N, MachineOpc, VTs, Ops); 5849 } 5850 5851 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 5852 EVT VT, SDValue Op1, 5853 SDValue Op2) { 5854 SDVTList VTs = getVTList(VT); 5855 SDValue Ops[] = { Op1, Op2 }; 5856 return SelectNodeTo(N, MachineOpc, VTs, Ops); 5857 } 5858 5859 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 5860 EVT VT, SDValue Op1, 5861 SDValue Op2, SDValue Op3) { 5862 SDVTList VTs = getVTList(VT); 5863 SDValue Ops[] = { Op1, Op2, Op3 }; 5864 return SelectNodeTo(N, MachineOpc, VTs, Ops); 5865 } 5866 5867 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 5868 EVT VT, ArrayRef<SDValue> Ops) { 5869 SDVTList VTs = getVTList(VT); 5870 return SelectNodeTo(N, MachineOpc, VTs, Ops); 5871 } 5872 5873 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 5874 EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) { 5875 SDVTList VTs = getVTList(VT1, VT2); 5876 return SelectNodeTo(N, MachineOpc, VTs, Ops); 5877 } 5878 5879 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 5880 EVT VT1, EVT VT2) { 5881 SDVTList VTs = getVTList(VT1, VT2); 5882 return SelectNodeTo(N, MachineOpc, VTs, None); 5883 } 5884 5885 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 5886 EVT VT1, EVT VT2, EVT VT3, 5887 ArrayRef<SDValue> Ops) { 5888 SDVTList VTs = getVTList(VT1, VT2, VT3); 5889 return SelectNodeTo(N, MachineOpc, VTs, Ops); 5890 } 5891 5892 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 5893 EVT VT1, EVT VT2, EVT VT3, EVT VT4, 5894 ArrayRef<SDValue> Ops) { 5895 SDVTList VTs = getVTList(VT1, VT2, VT3, VT4); 5896 return SelectNodeTo(N, MachineOpc, VTs, Ops); 5897 } 5898 5899 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 5900 EVT VT1, EVT VT2, 5901 SDValue Op1) { 5902 SDVTList VTs = getVTList(VT1, VT2); 5903 SDValue Ops[] = { Op1 }; 5904 return SelectNodeTo(N, MachineOpc, VTs, Ops); 5905 } 5906 5907 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 5908 EVT VT1, EVT VT2, 5909 SDValue Op1, SDValue Op2) { 5910 SDVTList VTs = getVTList(VT1, VT2); 5911 SDValue Ops[] = { Op1, Op2 }; 5912 return SelectNodeTo(N, MachineOpc, VTs, Ops); 5913 } 5914 5915 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 5916 EVT VT1, EVT VT2, 5917 SDValue Op1, SDValue Op2, 5918 SDValue Op3) { 5919 SDVTList VTs = getVTList(VT1, VT2); 5920 SDValue Ops[] = { Op1, Op2, Op3 }; 5921 return SelectNodeTo(N, MachineOpc, VTs, Ops); 5922 } 5923 5924 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 5925 EVT VT1, EVT VT2, EVT VT3, 5926 SDValue Op1, SDValue Op2, 5927 SDValue Op3) { 5928 SDVTList VTs = getVTList(VT1, VT2, VT3); 5929 SDValue Ops[] = { Op1, Op2, Op3 }; 5930 return SelectNodeTo(N, MachineOpc, VTs, Ops); 5931 } 5932 5933 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 5934 SDVTList VTs,ArrayRef<SDValue> Ops) { 5935 SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops); 5936 // Reset the NodeID to -1. 5937 New->setNodeId(-1); 5938 if (New != N) { 5939 ReplaceAllUsesWith(N, New); 5940 RemoveDeadNode(N); 5941 } 5942 return New; 5943 } 5944 5945 /// UpdadeSDLocOnMergedSDNode - If the opt level is -O0 then it throws away 5946 /// the line number information on the merged node since it is not possible to 5947 /// preserve the information that operation is associated with multiple lines. 5948 /// This will make the debugger working better at -O0, were there is a higher 5949 /// probability having other instructions associated with that line. 5950 /// 5951 /// For IROrder, we keep the smaller of the two 5952 SDNode *SelectionDAG::UpdadeSDLocOnMergedSDNode(SDNode *N, const SDLoc &OLoc) { 5953 DebugLoc NLoc = N->getDebugLoc(); 5954 if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) { 5955 N->setDebugLoc(DebugLoc()); 5956 } 5957 unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder()); 5958 N->setIROrder(Order); 5959 return N; 5960 } 5961 5962 /// MorphNodeTo - This *mutates* the specified node to have the specified 5963 /// return type, opcode, and operands. 5964 /// 5965 /// Note that MorphNodeTo returns the resultant node. If there is already a 5966 /// node of the specified opcode and operands, it returns that node instead of 5967 /// the current one. Note that the SDLoc need not be the same. 5968 /// 5969 /// Using MorphNodeTo is faster than creating a new node and swapping it in 5970 /// with ReplaceAllUsesWith both because it often avoids allocating a new 5971 /// node, and because it doesn't require CSE recalculation for any of 5972 /// the node's users. 5973 /// 5974 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG. 5975 /// As a consequence it isn't appropriate to use from within the DAG combiner or 5976 /// the legalizer which maintain worklists that would need to be updated when 5977 /// deleting things. 5978 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc, 5979 SDVTList VTs, ArrayRef<SDValue> Ops) { 5980 // If an identical node already exists, use it. 5981 void *IP = nullptr; 5982 if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) { 5983 FoldingSetNodeID ID; 5984 AddNodeIDNode(ID, Opc, VTs, Ops); 5985 if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP)) 5986 return UpdadeSDLocOnMergedSDNode(ON, SDLoc(N)); 5987 } 5988 5989 if (!RemoveNodeFromCSEMaps(N)) 5990 IP = nullptr; 5991 5992 // Start the morphing. 5993 N->NodeType = Opc; 5994 N->ValueList = VTs.VTs; 5995 N->NumValues = VTs.NumVTs; 5996 5997 // Clear the operands list, updating used nodes to remove this from their 5998 // use list. Keep track of any operands that become dead as a result. 5999 SmallPtrSet<SDNode*, 16> DeadNodeSet; 6000 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 6001 SDUse &Use = *I++; 6002 SDNode *Used = Use.getNode(); 6003 Use.set(SDValue()); 6004 if (Used->use_empty()) 6005 DeadNodeSet.insert(Used); 6006 } 6007 6008 // For MachineNode, initialize the memory references information. 6009 if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) 6010 MN->setMemRefs(nullptr, nullptr); 6011 6012 // Swap for an appropriately sized array from the recycler. 6013 removeOperands(N); 6014 createOperands(N, Ops); 6015 6016 // Delete any nodes that are still dead after adding the uses for the 6017 // new operands. 6018 if (!DeadNodeSet.empty()) { 6019 SmallVector<SDNode *, 16> DeadNodes; 6020 for (SDNode *N : DeadNodeSet) 6021 if (N->use_empty()) 6022 DeadNodes.push_back(N); 6023 RemoveDeadNodes(DeadNodes); 6024 } 6025 6026 if (IP) 6027 CSEMap.InsertNode(N, IP); // Memoize the new node. 6028 return N; 6029 } 6030 6031 6032 /// getMachineNode - These are used for target selectors to create a new node 6033 /// with specified return type(s), MachineInstr opcode, and operands. 6034 /// 6035 /// Note that getMachineNode returns the resultant node. If there is already a 6036 /// node of the specified opcode and operands, it returns that node instead of 6037 /// the current one. 6038 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6039 EVT VT) { 6040 SDVTList VTs = getVTList(VT); 6041 return getMachineNode(Opcode, dl, VTs, None); 6042 } 6043 6044 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6045 EVT VT, SDValue Op1) { 6046 SDVTList VTs = getVTList(VT); 6047 SDValue Ops[] = { Op1 }; 6048 return getMachineNode(Opcode, dl, VTs, Ops); 6049 } 6050 6051 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6052 EVT VT, SDValue Op1, SDValue Op2) { 6053 SDVTList VTs = getVTList(VT); 6054 SDValue Ops[] = { Op1, Op2 }; 6055 return getMachineNode(Opcode, dl, VTs, Ops); 6056 } 6057 6058 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6059 EVT VT, SDValue Op1, SDValue Op2, 6060 SDValue Op3) { 6061 SDVTList VTs = getVTList(VT); 6062 SDValue Ops[] = { Op1, Op2, Op3 }; 6063 return getMachineNode(Opcode, dl, VTs, Ops); 6064 } 6065 6066 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6067 EVT VT, ArrayRef<SDValue> Ops) { 6068 SDVTList VTs = getVTList(VT); 6069 return getMachineNode(Opcode, dl, VTs, Ops); 6070 } 6071 6072 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6073 EVT VT1, EVT VT2) { 6074 SDVTList VTs = getVTList(VT1, VT2); 6075 return getMachineNode(Opcode, dl, VTs, None); 6076 } 6077 6078 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6079 EVT VT1, EVT VT2, SDValue Op1) { 6080 SDVTList VTs = getVTList(VT1, VT2); 6081 SDValue Ops[] = { Op1 }; 6082 return getMachineNode(Opcode, dl, VTs, Ops); 6083 } 6084 6085 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6086 EVT VT1, EVT VT2, SDValue Op1, 6087 SDValue Op2) { 6088 SDVTList VTs = getVTList(VT1, VT2); 6089 SDValue Ops[] = { Op1, Op2 }; 6090 return getMachineNode(Opcode, dl, VTs, Ops); 6091 } 6092 6093 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6094 EVT VT1, EVT VT2, SDValue Op1, 6095 SDValue Op2, SDValue Op3) { 6096 SDVTList VTs = getVTList(VT1, VT2); 6097 SDValue Ops[] = { Op1, Op2, Op3 }; 6098 return getMachineNode(Opcode, dl, VTs, Ops); 6099 } 6100 6101 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6102 EVT VT1, EVT VT2, 6103 ArrayRef<SDValue> Ops) { 6104 SDVTList VTs = getVTList(VT1, VT2); 6105 return getMachineNode(Opcode, dl, VTs, Ops); 6106 } 6107 6108 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6109 EVT VT1, EVT VT2, EVT VT3, 6110 SDValue Op1, SDValue Op2) { 6111 SDVTList VTs = getVTList(VT1, VT2, VT3); 6112 SDValue Ops[] = { Op1, Op2 }; 6113 return getMachineNode(Opcode, dl, VTs, Ops); 6114 } 6115 6116 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6117 EVT VT1, EVT VT2, EVT VT3, 6118 SDValue Op1, SDValue Op2, 6119 SDValue Op3) { 6120 SDVTList VTs = getVTList(VT1, VT2, VT3); 6121 SDValue Ops[] = { Op1, Op2, Op3 }; 6122 return getMachineNode(Opcode, dl, VTs, Ops); 6123 } 6124 6125 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6126 EVT VT1, EVT VT2, EVT VT3, 6127 ArrayRef<SDValue> Ops) { 6128 SDVTList VTs = getVTList(VT1, VT2, VT3); 6129 return getMachineNode(Opcode, dl, VTs, Ops); 6130 } 6131 6132 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6133 EVT VT1, EVT VT2, EVT VT3, EVT VT4, 6134 ArrayRef<SDValue> Ops) { 6135 SDVTList VTs = getVTList(VT1, VT2, VT3, VT4); 6136 return getMachineNode(Opcode, dl, VTs, Ops); 6137 } 6138 6139 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6140 ArrayRef<EVT> ResultTys, 6141 ArrayRef<SDValue> Ops) { 6142 SDVTList VTs = getVTList(ResultTys); 6143 return getMachineNode(Opcode, dl, VTs, Ops); 6144 } 6145 6146 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL, 6147 SDVTList VTs, 6148 ArrayRef<SDValue> Ops) { 6149 bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue; 6150 MachineSDNode *N; 6151 void *IP = nullptr; 6152 6153 if (DoCSE) { 6154 FoldingSetNodeID ID; 6155 AddNodeIDNode(ID, ~Opcode, VTs, Ops); 6156 IP = nullptr; 6157 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 6158 return cast<MachineSDNode>(UpdadeSDLocOnMergedSDNode(E, DL)); 6159 } 6160 } 6161 6162 // Allocate a new MachineSDNode. 6163 N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6164 createOperands(N, Ops); 6165 6166 if (DoCSE) 6167 CSEMap.InsertNode(N, IP); 6168 6169 InsertNode(N); 6170 return N; 6171 } 6172 6173 /// getTargetExtractSubreg - A convenience function for creating 6174 /// TargetOpcode::EXTRACT_SUBREG nodes. 6175 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT, 6176 SDValue Operand) { 6177 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 6178 SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, 6179 VT, Operand, SRIdxVal); 6180 return SDValue(Subreg, 0); 6181 } 6182 6183 /// getTargetInsertSubreg - A convenience function for creating 6184 /// TargetOpcode::INSERT_SUBREG nodes. 6185 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT, 6186 SDValue Operand, SDValue Subreg) { 6187 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 6188 SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL, 6189 VT, Operand, Subreg, SRIdxVal); 6190 return SDValue(Result, 0); 6191 } 6192 6193 /// getNodeIfExists - Get the specified node if it's already available, or 6194 /// else return NULL. 6195 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList, 6196 ArrayRef<SDValue> Ops, 6197 const SDNodeFlags *Flags) { 6198 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) { 6199 FoldingSetNodeID ID; 6200 AddNodeIDNode(ID, Opcode, VTList, Ops); 6201 void *IP = nullptr; 6202 if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) { 6203 if (Flags) 6204 E->intersectFlagsWith(Flags); 6205 return E; 6206 } 6207 } 6208 return nullptr; 6209 } 6210 6211 /// getDbgValue - Creates a SDDbgValue node. 6212 /// 6213 /// SDNode 6214 SDDbgValue *SelectionDAG::getDbgValue(MDNode *Var, MDNode *Expr, SDNode *N, 6215 unsigned R, bool IsIndirect, uint64_t Off, 6216 const DebugLoc &DL, unsigned O) { 6217 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 6218 "Expected inlined-at fields to agree"); 6219 return new (DbgInfo->getAlloc()) 6220 SDDbgValue(Var, Expr, N, R, IsIndirect, Off, DL, O); 6221 } 6222 6223 /// Constant 6224 SDDbgValue *SelectionDAG::getConstantDbgValue(MDNode *Var, MDNode *Expr, 6225 const Value *C, uint64_t Off, 6226 const DebugLoc &DL, unsigned O) { 6227 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 6228 "Expected inlined-at fields to agree"); 6229 return new (DbgInfo->getAlloc()) SDDbgValue(Var, Expr, C, Off, DL, O); 6230 } 6231 6232 /// FrameIndex 6233 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(MDNode *Var, MDNode *Expr, 6234 unsigned FI, uint64_t Off, 6235 const DebugLoc &DL, 6236 unsigned O) { 6237 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 6238 "Expected inlined-at fields to agree"); 6239 return new (DbgInfo->getAlloc()) SDDbgValue(Var, Expr, FI, Off, DL, O); 6240 } 6241 6242 namespace { 6243 6244 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node 6245 /// pointed to by a use iterator is deleted, increment the use iterator 6246 /// so that it doesn't dangle. 6247 /// 6248 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener { 6249 SDNode::use_iterator &UI; 6250 SDNode::use_iterator &UE; 6251 6252 void NodeDeleted(SDNode *N, SDNode *E) override { 6253 // Increment the iterator as needed. 6254 while (UI != UE && N == *UI) 6255 ++UI; 6256 } 6257 6258 public: 6259 RAUWUpdateListener(SelectionDAG &d, 6260 SDNode::use_iterator &ui, 6261 SDNode::use_iterator &ue) 6262 : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {} 6263 }; 6264 6265 } 6266 6267 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 6268 /// This can cause recursive merging of nodes in the DAG. 6269 /// 6270 /// This version assumes From has a single result value. 6271 /// 6272 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) { 6273 SDNode *From = FromN.getNode(); 6274 assert(From->getNumValues() == 1 && FromN.getResNo() == 0 && 6275 "Cannot replace with this method!"); 6276 assert(From != To.getNode() && "Cannot replace uses of with self"); 6277 6278 // Iterate over all the existing uses of From. New uses will be added 6279 // to the beginning of the use list, which we avoid visiting. 6280 // This specifically avoids visiting uses of From that arise while the 6281 // replacement is happening, because any such uses would be the result 6282 // of CSE: If an existing node looks like From after one of its operands 6283 // is replaced by To, we don't want to replace of all its users with To 6284 // too. See PR3018 for more info. 6285 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 6286 RAUWUpdateListener Listener(*this, UI, UE); 6287 while (UI != UE) { 6288 SDNode *User = *UI; 6289 6290 // This node is about to morph, remove its old self from the CSE maps. 6291 RemoveNodeFromCSEMaps(User); 6292 6293 // A user can appear in a use list multiple times, and when this 6294 // happens the uses are usually next to each other in the list. 6295 // To help reduce the number of CSE recomputations, process all 6296 // the uses of this user that we can find this way. 6297 do { 6298 SDUse &Use = UI.getUse(); 6299 ++UI; 6300 Use.set(To); 6301 } while (UI != UE && *UI == User); 6302 6303 // Now that we have modified User, add it back to the CSE maps. If it 6304 // already exists there, recursively merge the results together. 6305 AddModifiedNodeToCSEMaps(User); 6306 } 6307 6308 // Preserve Debug Values 6309 TransferDbgValues(FromN, To); 6310 6311 // If we just RAUW'd the root, take note. 6312 if (FromN == getRoot()) 6313 setRoot(To); 6314 } 6315 6316 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 6317 /// This can cause recursive merging of nodes in the DAG. 6318 /// 6319 /// This version assumes that for each value of From, there is a 6320 /// corresponding value in To in the same position with the same type. 6321 /// 6322 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) { 6323 #ifndef NDEBUG 6324 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 6325 assert((!From->hasAnyUseOfValue(i) || 6326 From->getValueType(i) == To->getValueType(i)) && 6327 "Cannot use this version of ReplaceAllUsesWith!"); 6328 #endif 6329 6330 // Handle the trivial case. 6331 if (From == To) 6332 return; 6333 6334 // Preserve Debug Info. Only do this if there's a use. 6335 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 6336 if (From->hasAnyUseOfValue(i)) { 6337 assert((i < To->getNumValues()) && "Invalid To location"); 6338 TransferDbgValues(SDValue(From, i), SDValue(To, i)); 6339 } 6340 6341 // Iterate over just the existing users of From. See the comments in 6342 // the ReplaceAllUsesWith above. 6343 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 6344 RAUWUpdateListener Listener(*this, UI, UE); 6345 while (UI != UE) { 6346 SDNode *User = *UI; 6347 6348 // This node is about to morph, remove its old self from the CSE maps. 6349 RemoveNodeFromCSEMaps(User); 6350 6351 // A user can appear in a use list multiple times, and when this 6352 // happens the uses are usually next to each other in the list. 6353 // To help reduce the number of CSE recomputations, process all 6354 // the uses of this user that we can find this way. 6355 do { 6356 SDUse &Use = UI.getUse(); 6357 ++UI; 6358 Use.setNode(To); 6359 } while (UI != UE && *UI == User); 6360 6361 // Now that we have modified User, add it back to the CSE maps. If it 6362 // already exists there, recursively merge the results together. 6363 AddModifiedNodeToCSEMaps(User); 6364 } 6365 6366 // If we just RAUW'd the root, take note. 6367 if (From == getRoot().getNode()) 6368 setRoot(SDValue(To, getRoot().getResNo())); 6369 } 6370 6371 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 6372 /// This can cause recursive merging of nodes in the DAG. 6373 /// 6374 /// This version can replace From with any result values. To must match the 6375 /// number and types of values returned by From. 6376 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) { 6377 if (From->getNumValues() == 1) // Handle the simple case efficiently. 6378 return ReplaceAllUsesWith(SDValue(From, 0), To[0]); 6379 6380 // Preserve Debug Info. 6381 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 6382 TransferDbgValues(SDValue(From, i), *To); 6383 6384 // Iterate over just the existing users of From. See the comments in 6385 // the ReplaceAllUsesWith above. 6386 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 6387 RAUWUpdateListener Listener(*this, UI, UE); 6388 while (UI != UE) { 6389 SDNode *User = *UI; 6390 6391 // This node is about to morph, remove its old self from the CSE maps. 6392 RemoveNodeFromCSEMaps(User); 6393 6394 // A user can appear in a use list multiple times, and when this 6395 // happens the uses are usually next to each other in the list. 6396 // To help reduce the number of CSE recomputations, process all 6397 // the uses of this user that we can find this way. 6398 do { 6399 SDUse &Use = UI.getUse(); 6400 const SDValue &ToOp = To[Use.getResNo()]; 6401 ++UI; 6402 Use.set(ToOp); 6403 } while (UI != UE && *UI == User); 6404 6405 // Now that we have modified User, add it back to the CSE maps. If it 6406 // already exists there, recursively merge the results together. 6407 AddModifiedNodeToCSEMaps(User); 6408 } 6409 6410 // If we just RAUW'd the root, take note. 6411 if (From == getRoot().getNode()) 6412 setRoot(SDValue(To[getRoot().getResNo()])); 6413 } 6414 6415 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving 6416 /// uses of other values produced by From.getNode() alone. The Deleted 6417 /// vector is handled the same way as for ReplaceAllUsesWith. 6418 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){ 6419 // Handle the really simple, really trivial case efficiently. 6420 if (From == To) return; 6421 6422 // Handle the simple, trivial, case efficiently. 6423 if (From.getNode()->getNumValues() == 1) { 6424 ReplaceAllUsesWith(From, To); 6425 return; 6426 } 6427 6428 // Preserve Debug Info. 6429 TransferDbgValues(From, To); 6430 6431 // Iterate over just the existing users of From. See the comments in 6432 // the ReplaceAllUsesWith above. 6433 SDNode::use_iterator UI = From.getNode()->use_begin(), 6434 UE = From.getNode()->use_end(); 6435 RAUWUpdateListener Listener(*this, UI, UE); 6436 while (UI != UE) { 6437 SDNode *User = *UI; 6438 bool UserRemovedFromCSEMaps = false; 6439 6440 // A user can appear in a use list multiple times, and when this 6441 // happens the uses are usually next to each other in the list. 6442 // To help reduce the number of CSE recomputations, process all 6443 // the uses of this user that we can find this way. 6444 do { 6445 SDUse &Use = UI.getUse(); 6446 6447 // Skip uses of different values from the same node. 6448 if (Use.getResNo() != From.getResNo()) { 6449 ++UI; 6450 continue; 6451 } 6452 6453 // If this node hasn't been modified yet, it's still in the CSE maps, 6454 // so remove its old self from the CSE maps. 6455 if (!UserRemovedFromCSEMaps) { 6456 RemoveNodeFromCSEMaps(User); 6457 UserRemovedFromCSEMaps = true; 6458 } 6459 6460 ++UI; 6461 Use.set(To); 6462 } while (UI != UE && *UI == User); 6463 6464 // We are iterating over all uses of the From node, so if a use 6465 // doesn't use the specific value, no changes are made. 6466 if (!UserRemovedFromCSEMaps) 6467 continue; 6468 6469 // Now that we have modified User, add it back to the CSE maps. If it 6470 // already exists there, recursively merge the results together. 6471 AddModifiedNodeToCSEMaps(User); 6472 } 6473 6474 // If we just RAUW'd the root, take note. 6475 if (From == getRoot()) 6476 setRoot(To); 6477 } 6478 6479 namespace { 6480 /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith 6481 /// to record information about a use. 6482 struct UseMemo { 6483 SDNode *User; 6484 unsigned Index; 6485 SDUse *Use; 6486 }; 6487 6488 /// operator< - Sort Memos by User. 6489 bool operator<(const UseMemo &L, const UseMemo &R) { 6490 return (intptr_t)L.User < (intptr_t)R.User; 6491 } 6492 } 6493 6494 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving 6495 /// uses of other values produced by From.getNode() alone. The same value 6496 /// may appear in both the From and To list. The Deleted vector is 6497 /// handled the same way as for ReplaceAllUsesWith. 6498 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From, 6499 const SDValue *To, 6500 unsigned Num){ 6501 // Handle the simple, trivial case efficiently. 6502 if (Num == 1) 6503 return ReplaceAllUsesOfValueWith(*From, *To); 6504 6505 TransferDbgValues(*From, *To); 6506 6507 // Read up all the uses and make records of them. This helps 6508 // processing new uses that are introduced during the 6509 // replacement process. 6510 SmallVector<UseMemo, 4> Uses; 6511 for (unsigned i = 0; i != Num; ++i) { 6512 unsigned FromResNo = From[i].getResNo(); 6513 SDNode *FromNode = From[i].getNode(); 6514 for (SDNode::use_iterator UI = FromNode->use_begin(), 6515 E = FromNode->use_end(); UI != E; ++UI) { 6516 SDUse &Use = UI.getUse(); 6517 if (Use.getResNo() == FromResNo) { 6518 UseMemo Memo = { *UI, i, &Use }; 6519 Uses.push_back(Memo); 6520 } 6521 } 6522 } 6523 6524 // Sort the uses, so that all the uses from a given User are together. 6525 std::sort(Uses.begin(), Uses.end()); 6526 6527 for (unsigned UseIndex = 0, UseIndexEnd = Uses.size(); 6528 UseIndex != UseIndexEnd; ) { 6529 // We know that this user uses some value of From. If it is the right 6530 // value, update it. 6531 SDNode *User = Uses[UseIndex].User; 6532 6533 // This node is about to morph, remove its old self from the CSE maps. 6534 RemoveNodeFromCSEMaps(User); 6535 6536 // The Uses array is sorted, so all the uses for a given User 6537 // are next to each other in the list. 6538 // To help reduce the number of CSE recomputations, process all 6539 // the uses of this user that we can find this way. 6540 do { 6541 unsigned i = Uses[UseIndex].Index; 6542 SDUse &Use = *Uses[UseIndex].Use; 6543 ++UseIndex; 6544 6545 Use.set(To[i]); 6546 } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User); 6547 6548 // Now that we have modified User, add it back to the CSE maps. If it 6549 // already exists there, recursively merge the results together. 6550 AddModifiedNodeToCSEMaps(User); 6551 } 6552 } 6553 6554 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG 6555 /// based on their topological order. It returns the maximum id and a vector 6556 /// of the SDNodes* in assigned order by reference. 6557 unsigned SelectionDAG::AssignTopologicalOrder() { 6558 6559 unsigned DAGSize = 0; 6560 6561 // SortedPos tracks the progress of the algorithm. Nodes before it are 6562 // sorted, nodes after it are unsorted. When the algorithm completes 6563 // it is at the end of the list. 6564 allnodes_iterator SortedPos = allnodes_begin(); 6565 6566 // Visit all the nodes. Move nodes with no operands to the front of 6567 // the list immediately. Annotate nodes that do have operands with their 6568 // operand count. Before we do this, the Node Id fields of the nodes 6569 // may contain arbitrary values. After, the Node Id fields for nodes 6570 // before SortedPos will contain the topological sort index, and the 6571 // Node Id fields for nodes At SortedPos and after will contain the 6572 // count of outstanding operands. 6573 for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) { 6574 SDNode *N = &*I++; 6575 checkForCycles(N, this); 6576 unsigned Degree = N->getNumOperands(); 6577 if (Degree == 0) { 6578 // A node with no uses, add it to the result array immediately. 6579 N->setNodeId(DAGSize++); 6580 allnodes_iterator Q(N); 6581 if (Q != SortedPos) 6582 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q)); 6583 assert(SortedPos != AllNodes.end() && "Overran node list"); 6584 ++SortedPos; 6585 } else { 6586 // Temporarily use the Node Id as scratch space for the degree count. 6587 N->setNodeId(Degree); 6588 } 6589 } 6590 6591 // Visit all the nodes. As we iterate, move nodes into sorted order, 6592 // such that by the time the end is reached all nodes will be sorted. 6593 for (SDNode &Node : allnodes()) { 6594 SDNode *N = &Node; 6595 checkForCycles(N, this); 6596 // N is in sorted position, so all its uses have one less operand 6597 // that needs to be sorted. 6598 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); 6599 UI != UE; ++UI) { 6600 SDNode *P = *UI; 6601 unsigned Degree = P->getNodeId(); 6602 assert(Degree != 0 && "Invalid node degree"); 6603 --Degree; 6604 if (Degree == 0) { 6605 // All of P's operands are sorted, so P may sorted now. 6606 P->setNodeId(DAGSize++); 6607 if (P->getIterator() != SortedPos) 6608 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P)); 6609 assert(SortedPos != AllNodes.end() && "Overran node list"); 6610 ++SortedPos; 6611 } else { 6612 // Update P's outstanding operand count. 6613 P->setNodeId(Degree); 6614 } 6615 } 6616 if (Node.getIterator() == SortedPos) { 6617 #ifndef NDEBUG 6618 allnodes_iterator I(N); 6619 SDNode *S = &*++I; 6620 dbgs() << "Overran sorted position:\n"; 6621 S->dumprFull(this); dbgs() << "\n"; 6622 dbgs() << "Checking if this is due to cycles\n"; 6623 checkForCycles(this, true); 6624 #endif 6625 llvm_unreachable(nullptr); 6626 } 6627 } 6628 6629 assert(SortedPos == AllNodes.end() && 6630 "Topological sort incomplete!"); 6631 assert(AllNodes.front().getOpcode() == ISD::EntryToken && 6632 "First node in topological sort is not the entry token!"); 6633 assert(AllNodes.front().getNodeId() == 0 && 6634 "First node in topological sort has non-zero id!"); 6635 assert(AllNodes.front().getNumOperands() == 0 && 6636 "First node in topological sort has operands!"); 6637 assert(AllNodes.back().getNodeId() == (int)DAGSize-1 && 6638 "Last node in topologic sort has unexpected id!"); 6639 assert(AllNodes.back().use_empty() && 6640 "Last node in topologic sort has users!"); 6641 assert(DAGSize == allnodes_size() && "Node count mismatch!"); 6642 return DAGSize; 6643 } 6644 6645 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the 6646 /// value is produced by SD. 6647 void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) { 6648 if (SD) { 6649 assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue()); 6650 SD->setHasDebugValue(true); 6651 } 6652 DbgInfo->add(DB, SD, isParameter); 6653 } 6654 6655 /// TransferDbgValues - Transfer SDDbgValues. Called in replace nodes. 6656 void SelectionDAG::TransferDbgValues(SDValue From, SDValue To) { 6657 if (From == To || !From.getNode()->getHasDebugValue()) 6658 return; 6659 SDNode *FromNode = From.getNode(); 6660 SDNode *ToNode = To.getNode(); 6661 ArrayRef<SDDbgValue *> DVs = GetDbgValues(FromNode); 6662 for (ArrayRef<SDDbgValue *>::iterator I = DVs.begin(), E = DVs.end(); 6663 I != E; ++I) { 6664 SDDbgValue *Dbg = *I; 6665 // Only add Dbgvalues attached to same ResNo. 6666 if (Dbg->getKind() == SDDbgValue::SDNODE && 6667 Dbg->getResNo() == From.getResNo()) { 6668 SDDbgValue *Clone = 6669 getDbgValue(Dbg->getVariable(), Dbg->getExpression(), ToNode, 6670 To.getResNo(), Dbg->isIndirect(), Dbg->getOffset(), 6671 Dbg->getDebugLoc(), Dbg->getOrder()); 6672 AddDbgValue(Clone, ToNode, false); 6673 } 6674 } 6675 } 6676 6677 //===----------------------------------------------------------------------===// 6678 // SDNode Class 6679 //===----------------------------------------------------------------------===// 6680 6681 bool llvm::isNullConstant(SDValue V) { 6682 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 6683 return Const != nullptr && Const->isNullValue(); 6684 } 6685 6686 bool llvm::isNullFPConstant(SDValue V) { 6687 ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V); 6688 return Const != nullptr && Const->isZero() && !Const->isNegative(); 6689 } 6690 6691 bool llvm::isAllOnesConstant(SDValue V) { 6692 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 6693 return Const != nullptr && Const->isAllOnesValue(); 6694 } 6695 6696 bool llvm::isOneConstant(SDValue V) { 6697 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 6698 return Const != nullptr && Const->isOne(); 6699 } 6700 6701 bool llvm::isBitwiseNot(SDValue V) { 6702 return V.getOpcode() == ISD::XOR && isAllOnesConstant(V.getOperand(1)); 6703 } 6704 6705 HandleSDNode::~HandleSDNode() { 6706 DropOperands(); 6707 } 6708 6709 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order, 6710 const DebugLoc &DL, 6711 const GlobalValue *GA, EVT VT, 6712 int64_t o, unsigned char TF) 6713 : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) { 6714 TheGlobal = GA; 6715 } 6716 6717 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl, 6718 EVT VT, unsigned SrcAS, 6719 unsigned DestAS) 6720 : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)), 6721 SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {} 6722 6723 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, 6724 SDVTList VTs, EVT memvt, MachineMemOperand *mmo) 6725 : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) { 6726 SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile(), 6727 MMO->isNonTemporal(), MMO->isInvariant()); 6728 assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!"); 6729 assert(isNonTemporal() == MMO->isNonTemporal() && 6730 "Non-temporal encoding error!"); 6731 // We check here that the size of the memory operand fits within the size of 6732 // the MMO. This is because the MMO might indicate only a possible address 6733 // range instead of specifying the affected memory addresses precisely. 6734 assert(memvt.getStoreSize() <= MMO->getSize() && "Size mismatch!"); 6735 } 6736 6737 /// Profile - Gather unique data for the node. 6738 /// 6739 void SDNode::Profile(FoldingSetNodeID &ID) const { 6740 AddNodeIDNode(ID, this); 6741 } 6742 6743 namespace { 6744 struct EVTArray { 6745 std::vector<EVT> VTs; 6746 6747 EVTArray() { 6748 VTs.reserve(MVT::LAST_VALUETYPE); 6749 for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i) 6750 VTs.push_back(MVT((MVT::SimpleValueType)i)); 6751 } 6752 }; 6753 } 6754 6755 static ManagedStatic<std::set<EVT, EVT::compareRawBits> > EVTs; 6756 static ManagedStatic<EVTArray> SimpleVTArray; 6757 static ManagedStatic<sys::SmartMutex<true> > VTMutex; 6758 6759 /// getValueTypeList - Return a pointer to the specified value type. 6760 /// 6761 const EVT *SDNode::getValueTypeList(EVT VT) { 6762 if (VT.isExtended()) { 6763 sys::SmartScopedLock<true> Lock(*VTMutex); 6764 return &(*EVTs->insert(VT).first); 6765 } else { 6766 assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE && 6767 "Value type out of range!"); 6768 return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy]; 6769 } 6770 } 6771 6772 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the 6773 /// indicated value. This method ignores uses of other values defined by this 6774 /// operation. 6775 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const { 6776 assert(Value < getNumValues() && "Bad value!"); 6777 6778 // TODO: Only iterate over uses of a given value of the node 6779 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) { 6780 if (UI.getUse().getResNo() == Value) { 6781 if (NUses == 0) 6782 return false; 6783 --NUses; 6784 } 6785 } 6786 6787 // Found exactly the right number of uses? 6788 return NUses == 0; 6789 } 6790 6791 6792 /// hasAnyUseOfValue - Return true if there are any use of the indicated 6793 /// value. This method ignores uses of other values defined by this operation. 6794 bool SDNode::hasAnyUseOfValue(unsigned Value) const { 6795 assert(Value < getNumValues() && "Bad value!"); 6796 6797 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) 6798 if (UI.getUse().getResNo() == Value) 6799 return true; 6800 6801 return false; 6802 } 6803 6804 6805 /// isOnlyUserOf - Return true if this node is the only use of N. 6806 /// 6807 bool SDNode::isOnlyUserOf(const SDNode *N) const { 6808 bool Seen = false; 6809 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { 6810 SDNode *User = *I; 6811 if (User == this) 6812 Seen = true; 6813 else 6814 return false; 6815 } 6816 6817 return Seen; 6818 } 6819 6820 /// isOperand - Return true if this node is an operand of N. 6821 /// 6822 bool SDValue::isOperandOf(const SDNode *N) const { 6823 for (const SDValue &Op : N->op_values()) 6824 if (*this == Op) 6825 return true; 6826 return false; 6827 } 6828 6829 bool SDNode::isOperandOf(const SDNode *N) const { 6830 for (const SDValue &Op : N->op_values()) 6831 if (this == Op.getNode()) 6832 return true; 6833 return false; 6834 } 6835 6836 /// reachesChainWithoutSideEffects - Return true if this operand (which must 6837 /// be a chain) reaches the specified operand without crossing any 6838 /// side-effecting instructions on any chain path. In practice, this looks 6839 /// through token factors and non-volatile loads. In order to remain efficient, 6840 /// this only looks a couple of nodes in, it does not do an exhaustive search. 6841 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest, 6842 unsigned Depth) const { 6843 if (*this == Dest) return true; 6844 6845 // Don't search too deeply, we just want to be able to see through 6846 // TokenFactor's etc. 6847 if (Depth == 0) return false; 6848 6849 // If this is a token factor, all inputs to the TF happen in parallel. If any 6850 // of the operands of the TF does not reach dest, then we cannot do the xform. 6851 if (getOpcode() == ISD::TokenFactor) { 6852 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 6853 if (!getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1)) 6854 return false; 6855 return true; 6856 } 6857 6858 // Loads don't have side effects, look through them. 6859 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) { 6860 if (!Ld->isVolatile()) 6861 return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1); 6862 } 6863 return false; 6864 } 6865 6866 bool SDNode::hasPredecessor(const SDNode *N) const { 6867 SmallPtrSet<const SDNode *, 32> Visited; 6868 SmallVector<const SDNode *, 16> Worklist; 6869 Worklist.push_back(this); 6870 return hasPredecessorHelper(N, Visited, Worklist); 6871 } 6872 6873 uint64_t SDNode::getConstantOperandVal(unsigned Num) const { 6874 assert(Num < NumOperands && "Invalid child # of SDNode!"); 6875 return cast<ConstantSDNode>(OperandList[Num])->getZExtValue(); 6876 } 6877 6878 const SDNodeFlags *SDNode::getFlags() const { 6879 if (auto *FlagsNode = dyn_cast<BinaryWithFlagsSDNode>(this)) 6880 return &FlagsNode->Flags; 6881 return nullptr; 6882 } 6883 6884 void SDNode::intersectFlagsWith(const SDNodeFlags *Flags) { 6885 if (auto *FlagsNode = dyn_cast<BinaryWithFlagsSDNode>(this)) 6886 FlagsNode->Flags.intersectWith(Flags); 6887 } 6888 6889 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) { 6890 assert(N->getNumValues() == 1 && 6891 "Can't unroll a vector with multiple results!"); 6892 6893 EVT VT = N->getValueType(0); 6894 unsigned NE = VT.getVectorNumElements(); 6895 EVT EltVT = VT.getVectorElementType(); 6896 SDLoc dl(N); 6897 6898 SmallVector<SDValue, 8> Scalars; 6899 SmallVector<SDValue, 4> Operands(N->getNumOperands()); 6900 6901 // If ResNE is 0, fully unroll the vector op. 6902 if (ResNE == 0) 6903 ResNE = NE; 6904 else if (NE > ResNE) 6905 NE = ResNE; 6906 6907 unsigned i; 6908 for (i= 0; i != NE; ++i) { 6909 for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) { 6910 SDValue Operand = N->getOperand(j); 6911 EVT OperandVT = Operand.getValueType(); 6912 if (OperandVT.isVector()) { 6913 // A vector operand; extract a single element. 6914 EVT OperandEltVT = OperandVT.getVectorElementType(); 6915 Operands[j] = 6916 getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT, Operand, 6917 getConstant(i, dl, TLI->getVectorIdxTy(getDataLayout()))); 6918 } else { 6919 // A scalar operand; just use it as is. 6920 Operands[j] = Operand; 6921 } 6922 } 6923 6924 switch (N->getOpcode()) { 6925 default: { 6926 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands, 6927 N->getFlags())); 6928 break; 6929 } 6930 case ISD::VSELECT: 6931 Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands)); 6932 break; 6933 case ISD::SHL: 6934 case ISD::SRA: 6935 case ISD::SRL: 6936 case ISD::ROTL: 6937 case ISD::ROTR: 6938 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0], 6939 getShiftAmountOperand(Operands[0].getValueType(), 6940 Operands[1]))); 6941 break; 6942 case ISD::SIGN_EXTEND_INREG: 6943 case ISD::FP_ROUND_INREG: { 6944 EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType(); 6945 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, 6946 Operands[0], 6947 getValueType(ExtVT))); 6948 } 6949 } 6950 } 6951 6952 for (; i < ResNE; ++i) 6953 Scalars.push_back(getUNDEF(EltVT)); 6954 6955 return getNode(ISD::BUILD_VECTOR, dl, 6956 EVT::getVectorVT(*getContext(), EltVT, ResNE), Scalars); 6957 } 6958 6959 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD, 6960 LoadSDNode *Base, 6961 unsigned Bytes, 6962 int Dist) const { 6963 if (LD->isVolatile() || Base->isVolatile()) 6964 return false; 6965 if (LD->isIndexed() || Base->isIndexed()) 6966 return false; 6967 if (LD->getChain() != Base->getChain()) 6968 return false; 6969 EVT VT = LD->getValueType(0); 6970 if (VT.getSizeInBits() / 8 != Bytes) 6971 return false; 6972 6973 SDValue Loc = LD->getOperand(1); 6974 SDValue BaseLoc = Base->getOperand(1); 6975 if (Loc.getOpcode() == ISD::FrameIndex) { 6976 if (BaseLoc.getOpcode() != ISD::FrameIndex) 6977 return false; 6978 const MachineFrameInfo *MFI = getMachineFunction().getFrameInfo(); 6979 int FI = cast<FrameIndexSDNode>(Loc)->getIndex(); 6980 int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex(); 6981 int FS = MFI->getObjectSize(FI); 6982 int BFS = MFI->getObjectSize(BFI); 6983 if (FS != BFS || FS != (int)Bytes) return false; 6984 return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes); 6985 } 6986 6987 // Handle X + C. 6988 if (isBaseWithConstantOffset(Loc)) { 6989 int64_t LocOffset = cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue(); 6990 if (Loc.getOperand(0) == BaseLoc) { 6991 // If the base location is a simple address with no offset itself, then 6992 // the second load's first add operand should be the base address. 6993 if (LocOffset == Dist * (int)Bytes) 6994 return true; 6995 } else if (isBaseWithConstantOffset(BaseLoc)) { 6996 // The base location itself has an offset, so subtract that value from the 6997 // second load's offset before comparing to distance * size. 6998 int64_t BOffset = 6999 cast<ConstantSDNode>(BaseLoc.getOperand(1))->getSExtValue(); 7000 if (Loc.getOperand(0) == BaseLoc.getOperand(0)) { 7001 if ((LocOffset - BOffset) == Dist * (int)Bytes) 7002 return true; 7003 } 7004 } 7005 } 7006 const GlobalValue *GV1 = nullptr; 7007 const GlobalValue *GV2 = nullptr; 7008 int64_t Offset1 = 0; 7009 int64_t Offset2 = 0; 7010 bool isGA1 = TLI->isGAPlusOffset(Loc.getNode(), GV1, Offset1); 7011 bool isGA2 = TLI->isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2); 7012 if (isGA1 && isGA2 && GV1 == GV2) 7013 return Offset1 == (Offset2 + Dist*Bytes); 7014 return false; 7015 } 7016 7017 7018 /// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if 7019 /// it cannot be inferred. 7020 unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const { 7021 // If this is a GlobalAddress + cst, return the alignment. 7022 const GlobalValue *GV; 7023 int64_t GVOffset = 0; 7024 if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) { 7025 unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 7026 APInt KnownZero(PtrWidth, 0), KnownOne(PtrWidth, 0); 7027 llvm::computeKnownBits(const_cast<GlobalValue *>(GV), KnownZero, KnownOne, 7028 getDataLayout()); 7029 unsigned AlignBits = KnownZero.countTrailingOnes(); 7030 unsigned Align = AlignBits ? 1 << std::min(31U, AlignBits) : 0; 7031 if (Align) 7032 return MinAlign(Align, GVOffset); 7033 } 7034 7035 // If this is a direct reference to a stack slot, use information about the 7036 // stack slot's alignment. 7037 int FrameIdx = 1 << 31; 7038 int64_t FrameOffset = 0; 7039 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) { 7040 FrameIdx = FI->getIndex(); 7041 } else if (isBaseWithConstantOffset(Ptr) && 7042 isa<FrameIndexSDNode>(Ptr.getOperand(0))) { 7043 // Handle FI+Cst 7044 FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 7045 FrameOffset = Ptr.getConstantOperandVal(1); 7046 } 7047 7048 if (FrameIdx != (1 << 31)) { 7049 const MachineFrameInfo &MFI = *getMachineFunction().getFrameInfo(); 7050 unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx), 7051 FrameOffset); 7052 return FIInfoAlign; 7053 } 7054 7055 return 0; 7056 } 7057 7058 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type 7059 /// which is split (or expanded) into two not necessarily identical pieces. 7060 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const { 7061 // Currently all types are split in half. 7062 EVT LoVT, HiVT; 7063 if (!VT.isVector()) { 7064 LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT); 7065 } else { 7066 unsigned NumElements = VT.getVectorNumElements(); 7067 assert(!(NumElements & 1) && "Splitting vector, but not in half!"); 7068 LoVT = HiVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(), 7069 NumElements/2); 7070 } 7071 return std::make_pair(LoVT, HiVT); 7072 } 7073 7074 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the 7075 /// low/high part. 7076 std::pair<SDValue, SDValue> 7077 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT, 7078 const EVT &HiVT) { 7079 assert(LoVT.getVectorNumElements() + HiVT.getVectorNumElements() <= 7080 N.getValueType().getVectorNumElements() && 7081 "More vector elements requested than available!"); 7082 SDValue Lo, Hi; 7083 Lo = getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, 7084 getConstant(0, DL, TLI->getVectorIdxTy(getDataLayout()))); 7085 Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N, 7086 getConstant(LoVT.getVectorNumElements(), DL, 7087 TLI->getVectorIdxTy(getDataLayout()))); 7088 return std::make_pair(Lo, Hi); 7089 } 7090 7091 void SelectionDAG::ExtractVectorElements(SDValue Op, 7092 SmallVectorImpl<SDValue> &Args, 7093 unsigned Start, unsigned Count) { 7094 EVT VT = Op.getValueType(); 7095 if (Count == 0) 7096 Count = VT.getVectorNumElements(); 7097 7098 EVT EltVT = VT.getVectorElementType(); 7099 EVT IdxTy = TLI->getVectorIdxTy(getDataLayout()); 7100 SDLoc SL(Op); 7101 for (unsigned i = Start, e = Start + Count; i != e; ++i) { 7102 Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, 7103 Op, getConstant(i, SL, IdxTy))); 7104 } 7105 } 7106 7107 // getAddressSpace - Return the address space this GlobalAddress belongs to. 7108 unsigned GlobalAddressSDNode::getAddressSpace() const { 7109 return getGlobal()->getType()->getAddressSpace(); 7110 } 7111 7112 7113 Type *ConstantPoolSDNode::getType() const { 7114 if (isMachineConstantPoolEntry()) 7115 return Val.MachineCPVal->getType(); 7116 return Val.ConstVal->getType(); 7117 } 7118 7119 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, 7120 APInt &SplatUndef, 7121 unsigned &SplatBitSize, 7122 bool &HasAnyUndefs, 7123 unsigned MinSplatBits, 7124 bool isBigEndian) const { 7125 EVT VT = getValueType(0); 7126 assert(VT.isVector() && "Expected a vector type"); 7127 unsigned sz = VT.getSizeInBits(); 7128 if (MinSplatBits > sz) 7129 return false; 7130 7131 SplatValue = APInt(sz, 0); 7132 SplatUndef = APInt(sz, 0); 7133 7134 // Get the bits. Bits with undefined values (when the corresponding element 7135 // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared 7136 // in SplatValue. If any of the values are not constant, give up and return 7137 // false. 7138 unsigned int nOps = getNumOperands(); 7139 assert(nOps > 0 && "isConstantSplat has 0-size build vector"); 7140 unsigned EltBitSize = VT.getVectorElementType().getSizeInBits(); 7141 7142 for (unsigned j = 0; j < nOps; ++j) { 7143 unsigned i = isBigEndian ? nOps-1-j : j; 7144 SDValue OpVal = getOperand(i); 7145 unsigned BitPos = j * EltBitSize; 7146 7147 if (OpVal.isUndef()) 7148 SplatUndef |= APInt::getBitsSet(sz, BitPos, BitPos + EltBitSize); 7149 else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) 7150 SplatValue |= CN->getAPIntValue().zextOrTrunc(EltBitSize). 7151 zextOrTrunc(sz) << BitPos; 7152 else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) 7153 SplatValue |= CN->getValueAPF().bitcastToAPInt().zextOrTrunc(sz) <<BitPos; 7154 else 7155 return false; 7156 } 7157 7158 // The build_vector is all constants or undefs. Find the smallest element 7159 // size that splats the vector. 7160 7161 HasAnyUndefs = (SplatUndef != 0); 7162 while (sz > 8) { 7163 7164 unsigned HalfSize = sz / 2; 7165 APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize); 7166 APInt LowValue = SplatValue.trunc(HalfSize); 7167 APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize); 7168 APInt LowUndef = SplatUndef.trunc(HalfSize); 7169 7170 // If the two halves do not match (ignoring undef bits), stop here. 7171 if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) || 7172 MinSplatBits > HalfSize) 7173 break; 7174 7175 SplatValue = HighValue | LowValue; 7176 SplatUndef = HighUndef & LowUndef; 7177 7178 sz = HalfSize; 7179 } 7180 7181 SplatBitSize = sz; 7182 return true; 7183 } 7184 7185 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const { 7186 if (UndefElements) { 7187 UndefElements->clear(); 7188 UndefElements->resize(getNumOperands()); 7189 } 7190 SDValue Splatted; 7191 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 7192 SDValue Op = getOperand(i); 7193 if (Op.isUndef()) { 7194 if (UndefElements) 7195 (*UndefElements)[i] = true; 7196 } else if (!Splatted) { 7197 Splatted = Op; 7198 } else if (Splatted != Op) { 7199 return SDValue(); 7200 } 7201 } 7202 7203 if (!Splatted) { 7204 assert(getOperand(0).isUndef() && 7205 "Can only have a splat without a constant for all undefs."); 7206 return getOperand(0); 7207 } 7208 7209 return Splatted; 7210 } 7211 7212 ConstantSDNode * 7213 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const { 7214 return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements)); 7215 } 7216 7217 ConstantFPSDNode * 7218 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const { 7219 return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements)); 7220 } 7221 7222 int32_t 7223 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements, 7224 uint32_t BitWidth) const { 7225 if (ConstantFPSDNode *CN = 7226 dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) { 7227 bool IsExact; 7228 APSInt IntVal(BitWidth); 7229 const APFloat &APF = CN->getValueAPF(); 7230 if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) != 7231 APFloat::opOK || 7232 !IsExact) 7233 return -1; 7234 7235 return IntVal.exactLogBase2(); 7236 } 7237 return -1; 7238 } 7239 7240 bool BuildVectorSDNode::isConstant() const { 7241 for (const SDValue &Op : op_values()) { 7242 unsigned Opc = Op.getOpcode(); 7243 if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP) 7244 return false; 7245 } 7246 return true; 7247 } 7248 7249 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) { 7250 // Find the first non-undef value in the shuffle mask. 7251 unsigned i, e; 7252 for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i) 7253 /* search */; 7254 7255 assert(i != e && "VECTOR_SHUFFLE node with all undef indices!"); 7256 7257 // Make sure all remaining elements are either undef or the same as the first 7258 // non-undef value. 7259 for (int Idx = Mask[i]; i != e; ++i) 7260 if (Mask[i] >= 0 && Mask[i] != Idx) 7261 return false; 7262 return true; 7263 } 7264 7265 // \brief Returns the SDNode if it is a constant integer BuildVector 7266 // or constant integer. 7267 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) { 7268 if (isa<ConstantSDNode>(N)) 7269 return N.getNode(); 7270 if (ISD::isBuildVectorOfConstantSDNodes(N.getNode())) 7271 return N.getNode(); 7272 // Treat a GlobalAddress supporting constant offset folding as a 7273 // constant integer. 7274 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N)) 7275 if (GA->getOpcode() == ISD::GlobalAddress && 7276 TLI->isOffsetFoldingLegal(GA)) 7277 return GA; 7278 return nullptr; 7279 } 7280 7281 #ifndef NDEBUG 7282 static void checkForCyclesHelper(const SDNode *N, 7283 SmallPtrSetImpl<const SDNode*> &Visited, 7284 SmallPtrSetImpl<const SDNode*> &Checked, 7285 const llvm::SelectionDAG *DAG) { 7286 // If this node has already been checked, don't check it again. 7287 if (Checked.count(N)) 7288 return; 7289 7290 // If a node has already been visited on this depth-first walk, reject it as 7291 // a cycle. 7292 if (!Visited.insert(N).second) { 7293 errs() << "Detected cycle in SelectionDAG\n"; 7294 dbgs() << "Offending node:\n"; 7295 N->dumprFull(DAG); dbgs() << "\n"; 7296 abort(); 7297 } 7298 7299 for (const SDValue &Op : N->op_values()) 7300 checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG); 7301 7302 Checked.insert(N); 7303 Visited.erase(N); 7304 } 7305 #endif 7306 7307 void llvm::checkForCycles(const llvm::SDNode *N, 7308 const llvm::SelectionDAG *DAG, 7309 bool force) { 7310 #ifndef NDEBUG 7311 bool check = force; 7312 #ifdef EXPENSIVE_CHECKS 7313 check = true; 7314 #endif // EXPENSIVE_CHECKS 7315 if (check) { 7316 assert(N && "Checking nonexistent SDNode"); 7317 SmallPtrSet<const SDNode*, 32> visited; 7318 SmallPtrSet<const SDNode*, 32> checked; 7319 checkForCyclesHelper(N, visited, checked, DAG); 7320 } 7321 #endif // !NDEBUG 7322 } 7323 7324 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) { 7325 checkForCycles(DAG->getRoot().getNode(), DAG, force); 7326 } 7327