Home | History | Annotate | Download | only in i965
      1 /*
      2  * Copyright  2010 Intel Corporation
      3  *
      4  * Permission is hereby granted, free of charge, to any person obtaining a
      5  * copy of this software and associated documentation files (the "Software"),
      6  * to deal in the Software without restriction, including without limitation
      7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
      8  * and/or sell copies of the Software, and to permit persons to whom the
      9  * Software is furnished to do so, subject to the following conditions:
     10  *
     11  * The above copyright notice and this permission notice (including the next
     12  * paragraph) shall be included in all copies or substantial portions of the
     13  * Software.
     14  *
     15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
     18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
     19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
     20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
     21  * IN THE SOFTWARE.
     22  */
     23 
     24 /** @file brw_fs_visitor.cpp
     25  *
     26  * This file supports generating the FS LIR from the GLSL IR.  The LIR
     27  * makes it easier to do backend-specific optimizations than doing so
     28  * in the GLSL IR or in the native code.
     29  */
     30 #include "brw_fs.h"
     31 #include "compiler/glsl_types.h"
     32 
     33 using namespace brw;
     34 
     35 fs_reg *
     36 fs_visitor::emit_vs_system_value(int location)
     37 {
     38    fs_reg *reg = new(this->mem_ctx)
     39       fs_reg(ATTR, 4 * _mesa_bitcount_64(nir->info->inputs_read),
     40              BRW_REGISTER_TYPE_D);
     41    struct brw_vs_prog_data *vs_prog_data = brw_vs_prog_data(prog_data);
     42 
     43    switch (location) {
     44    case SYSTEM_VALUE_BASE_VERTEX:
     45       reg->offset = 0;
     46       vs_prog_data->uses_basevertex = true;
     47       break;
     48    case SYSTEM_VALUE_BASE_INSTANCE:
     49       reg->offset = REG_SIZE;
     50       vs_prog_data->uses_baseinstance = true;
     51       break;
     52    case SYSTEM_VALUE_VERTEX_ID:
     53       unreachable("should have been lowered");
     54    case SYSTEM_VALUE_VERTEX_ID_ZERO_BASE:
     55       reg->offset = 2 * REG_SIZE;
     56       vs_prog_data->uses_vertexid = true;
     57       break;
     58    case SYSTEM_VALUE_INSTANCE_ID:
     59       reg->offset = 3 * REG_SIZE;
     60       vs_prog_data->uses_instanceid = true;
     61       break;
     62    case SYSTEM_VALUE_DRAW_ID:
     63       if (nir->info->system_values_read &
     64           (BITFIELD64_BIT(SYSTEM_VALUE_BASE_VERTEX) |
     65            BITFIELD64_BIT(SYSTEM_VALUE_BASE_INSTANCE) |
     66            BITFIELD64_BIT(SYSTEM_VALUE_VERTEX_ID_ZERO_BASE) |
     67            BITFIELD64_BIT(SYSTEM_VALUE_INSTANCE_ID)))
     68          reg->nr += 4;
     69       reg->offset = 0;
     70       vs_prog_data->uses_drawid = true;
     71       break;
     72    default:
     73       unreachable("not reached");
     74    }
     75 
     76    return reg;
     77 }
     78 
     79 /* Sample from the MCS surface attached to this multisample texture. */
     80 fs_reg
     81 fs_visitor::emit_mcs_fetch(const fs_reg &coordinate, unsigned components,
     82                            const fs_reg &texture)
     83 {
     84    const fs_reg dest = vgrf(glsl_type::uvec4_type);
     85 
     86    fs_reg srcs[TEX_LOGICAL_NUM_SRCS];
     87    srcs[TEX_LOGICAL_SRC_COORDINATE] = coordinate;
     88    srcs[TEX_LOGICAL_SRC_SURFACE] = texture;
     89    srcs[TEX_LOGICAL_SRC_SAMPLER] = texture;
     90    srcs[TEX_LOGICAL_SRC_COORD_COMPONENTS] = brw_imm_d(components);
     91    srcs[TEX_LOGICAL_SRC_GRAD_COMPONENTS] = brw_imm_d(0);
     92 
     93    fs_inst *inst = bld.emit(SHADER_OPCODE_TXF_MCS_LOGICAL, dest, srcs,
     94                             ARRAY_SIZE(srcs));
     95 
     96    /* We only care about one or two regs of response, but the sampler always
     97     * writes 4/8.
     98     */
     99    inst->size_written = 4 * dest.component_size(inst->exec_size);
    100 
    101    return dest;
    102 }
    103 
    104 /**
    105  * Apply workarounds for Gen6 gather with UINT/SINT
    106  */
    107 void
    108 fs_visitor::emit_gen6_gather_wa(uint8_t wa, fs_reg dst)
    109 {
    110    if (!wa)
    111       return;
    112 
    113    int width = (wa & WA_8BIT) ? 8 : 16;
    114 
    115    for (int i = 0; i < 4; i++) {
    116       fs_reg dst_f = retype(dst, BRW_REGISTER_TYPE_F);
    117       /* Convert from UNORM to UINT */
    118       bld.MUL(dst_f, dst_f, brw_imm_f((1 << width) - 1));
    119       bld.MOV(dst, dst_f);
    120 
    121       if (wa & WA_SIGN) {
    122          /* Reinterpret the UINT value as a signed INT value by
    123           * shifting the sign bit into place, then shifting back
    124           * preserving sign.
    125           */
    126          bld.SHL(dst, dst, brw_imm_d(32 - width));
    127          bld.ASR(dst, dst, brw_imm_d(32 - width));
    128       }
    129 
    130       dst = offset(dst, bld, 1);
    131    }
    132 }
    133 
    134 /** Emits a dummy fragment shader consisting of magenta for bringup purposes. */
    135 void
    136 fs_visitor::emit_dummy_fs()
    137 {
    138    int reg_width = dispatch_width / 8;
    139 
    140    /* Everyone's favorite color. */
    141    const float color[4] = { 1.0, 0.0, 1.0, 0.0 };
    142    for (int i = 0; i < 4; i++) {
    143       bld.MOV(fs_reg(MRF, 2 + i * reg_width, BRW_REGISTER_TYPE_F),
    144               brw_imm_f(color[i]));
    145    }
    146 
    147    fs_inst *write;
    148    write = bld.emit(FS_OPCODE_FB_WRITE);
    149    write->eot = true;
    150    if (devinfo->gen >= 6) {
    151       write->base_mrf = 2;
    152       write->mlen = 4 * reg_width;
    153    } else {
    154       write->header_size = 2;
    155       write->base_mrf = 0;
    156       write->mlen = 2 + 4 * reg_width;
    157    }
    158 
    159    /* Tell the SF we don't have any inputs.  Gen4-5 require at least one
    160     * varying to avoid GPU hangs, so set that.
    161     */
    162    struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(this->prog_data);
    163    wm_prog_data->num_varying_inputs = devinfo->gen < 6 ? 1 : 0;
    164    memset(wm_prog_data->urb_setup, -1,
    165           sizeof(wm_prog_data->urb_setup[0]) * VARYING_SLOT_MAX);
    166 
    167    /* We don't have any uniforms. */
    168    stage_prog_data->nr_params = 0;
    169    stage_prog_data->nr_pull_params = 0;
    170    stage_prog_data->curb_read_length = 0;
    171    stage_prog_data->dispatch_grf_start_reg = 2;
    172    wm_prog_data->dispatch_grf_start_reg_2 = 2;
    173    grf_used = 1; /* Gen4-5 don't allow zero GRF blocks */
    174 
    175    calculate_cfg();
    176 }
    177 
    178 /* The register location here is relative to the start of the URB
    179  * data.  It will get adjusted to be a real location before
    180  * generate_code() time.
    181  */
    182 struct brw_reg
    183 fs_visitor::interp_reg(int location, int channel)
    184 {
    185    assert(stage == MESA_SHADER_FRAGMENT);
    186    struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
    187    int regnr = prog_data->urb_setup[location] * 2 + channel / 2;
    188    int stride = (channel & 1) * 4;
    189 
    190    assert(prog_data->urb_setup[location] != -1);
    191 
    192    return brw_vec1_grf(regnr, stride);
    193 }
    194 
    195 /** Emits the interpolation for the varying inputs. */
    196 void
    197 fs_visitor::emit_interpolation_setup_gen4()
    198 {
    199    struct brw_reg g1_uw = retype(brw_vec1_grf(1, 0), BRW_REGISTER_TYPE_UW);
    200 
    201    fs_builder abld = bld.annotate("compute pixel centers");
    202    this->pixel_x = vgrf(glsl_type::uint_type);
    203    this->pixel_y = vgrf(glsl_type::uint_type);
    204    this->pixel_x.type = BRW_REGISTER_TYPE_UW;
    205    this->pixel_y.type = BRW_REGISTER_TYPE_UW;
    206    abld.ADD(this->pixel_x,
    207             fs_reg(stride(suboffset(g1_uw, 4), 2, 4, 0)),
    208             fs_reg(brw_imm_v(0x10101010)));
    209    abld.ADD(this->pixel_y,
    210             fs_reg(stride(suboffset(g1_uw, 5), 2, 4, 0)),
    211             fs_reg(brw_imm_v(0x11001100)));
    212 
    213    abld = bld.annotate("compute pixel deltas from v0");
    214 
    215    this->delta_xy[BRW_BARYCENTRIC_PERSPECTIVE_PIXEL] =
    216       vgrf(glsl_type::vec2_type);
    217    const fs_reg &delta_xy = this->delta_xy[BRW_BARYCENTRIC_PERSPECTIVE_PIXEL];
    218    const fs_reg xstart(negate(brw_vec1_grf(1, 0)));
    219    const fs_reg ystart(negate(brw_vec1_grf(1, 1)));
    220 
    221    if (devinfo->has_pln && dispatch_width == 16) {
    222       for (unsigned i = 0; i < 2; i++) {
    223          abld.half(i).ADD(half(offset(delta_xy, abld, i), 0),
    224                           half(this->pixel_x, i), xstart);
    225          abld.half(i).ADD(half(offset(delta_xy, abld, i), 1),
    226                           half(this->pixel_y, i), ystart);
    227       }
    228    } else {
    229       abld.ADD(offset(delta_xy, abld, 0), this->pixel_x, xstart);
    230       abld.ADD(offset(delta_xy, abld, 1), this->pixel_y, ystart);
    231    }
    232 
    233    abld = bld.annotate("compute pos.w and 1/pos.w");
    234    /* Compute wpos.w.  It's always in our setup, since it's needed to
    235     * interpolate the other attributes.
    236     */
    237    this->wpos_w = vgrf(glsl_type::float_type);
    238    abld.emit(FS_OPCODE_LINTERP, wpos_w, delta_xy,
    239              interp_reg(VARYING_SLOT_POS, 3));
    240    /* Compute the pixel 1/W value from wpos.w. */
    241    this->pixel_w = vgrf(glsl_type::float_type);
    242    abld.emit(SHADER_OPCODE_RCP, this->pixel_w, wpos_w);
    243 }
    244 
    245 /** Emits the interpolation for the varying inputs. */
    246 void
    247 fs_visitor::emit_interpolation_setup_gen6()
    248 {
    249    struct brw_reg g1_uw = retype(brw_vec1_grf(1, 0), BRW_REGISTER_TYPE_UW);
    250 
    251    fs_builder abld = bld.annotate("compute pixel centers");
    252    if (devinfo->gen >= 8 || dispatch_width == 8) {
    253       /* The "Register Region Restrictions" page says for BDW (and newer,
    254        * presumably):
    255        *
    256        *     "When destination spans two registers, the source may be one or
    257        *      two registers. The destination elements must be evenly split
    258        *      between the two registers."
    259        *
    260        * Thus we can do a single add(16) in SIMD8 or an add(32) in SIMD16 to
    261        * compute our pixel centers.
    262        */
    263       fs_reg int_pixel_xy(VGRF, alloc.allocate(dispatch_width / 8),
    264                           BRW_REGISTER_TYPE_UW);
    265 
    266       const fs_builder dbld = abld.exec_all().group(dispatch_width * 2, 0);
    267       dbld.ADD(int_pixel_xy,
    268                fs_reg(stride(suboffset(g1_uw, 4), 1, 4, 0)),
    269                fs_reg(brw_imm_v(0x11001010)));
    270 
    271       this->pixel_x = vgrf(glsl_type::float_type);
    272       this->pixel_y = vgrf(glsl_type::float_type);
    273       abld.emit(FS_OPCODE_PIXEL_X, this->pixel_x, int_pixel_xy);
    274       abld.emit(FS_OPCODE_PIXEL_Y, this->pixel_y, int_pixel_xy);
    275    } else {
    276       /* The "Register Region Restrictions" page says for SNB, IVB, HSW:
    277        *
    278        *     "When destination spans two registers, the source MUST span two
    279        *      registers."
    280        *
    281        * Since the GRF source of the ADD will only read a single register, we
    282        * must do two separate ADDs in SIMD16.
    283        */
    284       fs_reg int_pixel_x = vgrf(glsl_type::uint_type);
    285       fs_reg int_pixel_y = vgrf(glsl_type::uint_type);
    286       int_pixel_x.type = BRW_REGISTER_TYPE_UW;
    287       int_pixel_y.type = BRW_REGISTER_TYPE_UW;
    288       abld.ADD(int_pixel_x,
    289                fs_reg(stride(suboffset(g1_uw, 4), 2, 4, 0)),
    290                fs_reg(brw_imm_v(0x10101010)));
    291       abld.ADD(int_pixel_y,
    292                fs_reg(stride(suboffset(g1_uw, 5), 2, 4, 0)),
    293                fs_reg(brw_imm_v(0x11001100)));
    294 
    295       /* As of gen6, we can no longer mix float and int sources.  We have
    296        * to turn the integer pixel centers into floats for their actual
    297        * use.
    298        */
    299       this->pixel_x = vgrf(glsl_type::float_type);
    300       this->pixel_y = vgrf(glsl_type::float_type);
    301       abld.MOV(this->pixel_x, int_pixel_x);
    302       abld.MOV(this->pixel_y, int_pixel_y);
    303    }
    304 
    305    abld = bld.annotate("compute pos.w");
    306    this->pixel_w = fs_reg(brw_vec8_grf(payload.source_w_reg, 0));
    307    this->wpos_w = vgrf(glsl_type::float_type);
    308    abld.emit(SHADER_OPCODE_RCP, this->wpos_w, this->pixel_w);
    309 
    310    struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(prog_data);
    311    uint32_t centroid_modes = wm_prog_data->barycentric_interp_modes &
    312       (1 << BRW_BARYCENTRIC_PERSPECTIVE_CENTROID |
    313        1 << BRW_BARYCENTRIC_NONPERSPECTIVE_CENTROID);
    314 
    315    for (int i = 0; i < BRW_BARYCENTRIC_MODE_COUNT; ++i) {
    316       uint8_t reg = payload.barycentric_coord_reg[i];
    317       this->delta_xy[i] = fs_reg(brw_vec16_grf(reg, 0));
    318 
    319       if (devinfo->needs_unlit_centroid_workaround &&
    320           (centroid_modes & (1 << i))) {
    321          /* Get the pixel/sample mask into f0 so that we know which
    322           * pixels are lit.  Then, for each channel that is unlit,
    323           * replace the centroid data with non-centroid data.
    324           */
    325          bld.emit(FS_OPCODE_MOV_DISPATCH_TO_FLAGS);
    326 
    327          uint8_t pixel_reg = payload.barycentric_coord_reg[i - 1];
    328 
    329          set_predicate_inv(BRW_PREDICATE_NORMAL, true,
    330                            bld.half(0).MOV(brw_vec8_grf(reg, 0),
    331                                            brw_vec8_grf(pixel_reg, 0)));
    332          set_predicate_inv(BRW_PREDICATE_NORMAL, true,
    333                            bld.half(0).MOV(brw_vec8_grf(reg + 1, 0),
    334                                            brw_vec8_grf(pixel_reg + 1, 0)));
    335          if (dispatch_width == 16) {
    336             set_predicate_inv(BRW_PREDICATE_NORMAL, true,
    337                               bld.half(1).MOV(brw_vec8_grf(reg + 2, 0),
    338                                               brw_vec8_grf(pixel_reg + 2, 0)));
    339             set_predicate_inv(BRW_PREDICATE_NORMAL, true,
    340                               bld.half(1).MOV(brw_vec8_grf(reg + 3, 0),
    341                                               brw_vec8_grf(pixel_reg + 3, 0)));
    342          }
    343          assert(dispatch_width != 32); /* not implemented yet */
    344       }
    345    }
    346 }
    347 
    348 static enum brw_conditional_mod
    349 cond_for_alpha_func(GLenum func)
    350 {
    351    switch(func) {
    352       case GL_GREATER:
    353          return BRW_CONDITIONAL_G;
    354       case GL_GEQUAL:
    355          return BRW_CONDITIONAL_GE;
    356       case GL_LESS:
    357          return BRW_CONDITIONAL_L;
    358       case GL_LEQUAL:
    359          return BRW_CONDITIONAL_LE;
    360       case GL_EQUAL:
    361          return BRW_CONDITIONAL_EQ;
    362       case GL_NOTEQUAL:
    363          return BRW_CONDITIONAL_NEQ;
    364       default:
    365          unreachable("Not reached");
    366    }
    367 }
    368 
    369 /**
    370  * Alpha test support for when we compile it into the shader instead
    371  * of using the normal fixed-function alpha test.
    372  */
    373 void
    374 fs_visitor::emit_alpha_test()
    375 {
    376    assert(stage == MESA_SHADER_FRAGMENT);
    377    brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
    378    const fs_builder abld = bld.annotate("Alpha test");
    379 
    380    fs_inst *cmp;
    381    if (key->alpha_test_func == GL_ALWAYS)
    382       return;
    383 
    384    if (key->alpha_test_func == GL_NEVER) {
    385       /* f0.1 = 0 */
    386       fs_reg some_reg = fs_reg(retype(brw_vec8_grf(0, 0),
    387                                       BRW_REGISTER_TYPE_UW));
    388       cmp = abld.CMP(bld.null_reg_f(), some_reg, some_reg,
    389                      BRW_CONDITIONAL_NEQ);
    390    } else {
    391       /* RT0 alpha */
    392       fs_reg color = offset(outputs[0], bld, 3);
    393 
    394       /* f0.1 &= func(color, ref) */
    395       cmp = abld.CMP(bld.null_reg_f(), color, brw_imm_f(key->alpha_test_ref),
    396                      cond_for_alpha_func(key->alpha_test_func));
    397    }
    398    cmp->predicate = BRW_PREDICATE_NORMAL;
    399    cmp->flag_subreg = 1;
    400 }
    401 
    402 fs_inst *
    403 fs_visitor::emit_single_fb_write(const fs_builder &bld,
    404                                  fs_reg color0, fs_reg color1,
    405                                  fs_reg src0_alpha, unsigned components)
    406 {
    407    assert(stage == MESA_SHADER_FRAGMENT);
    408    struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
    409 
    410    /* Hand over gl_FragDepth or the payload depth. */
    411    const fs_reg dst_depth = (payload.dest_depth_reg ?
    412                              fs_reg(brw_vec8_grf(payload.dest_depth_reg, 0)) :
    413                              fs_reg());
    414    fs_reg src_depth, src_stencil;
    415 
    416    if (source_depth_to_render_target) {
    417       if (nir->info->outputs_written & BITFIELD64_BIT(FRAG_RESULT_DEPTH))
    418          src_depth = frag_depth;
    419       else
    420          src_depth = fs_reg(brw_vec8_grf(payload.source_depth_reg, 0));
    421    }
    422 
    423    if (nir->info->outputs_written & BITFIELD64_BIT(FRAG_RESULT_STENCIL))
    424       src_stencil = frag_stencil;
    425 
    426    const fs_reg sources[] = {
    427       color0, color1, src0_alpha, src_depth, dst_depth, src_stencil,
    428       (prog_data->uses_omask ? sample_mask : fs_reg()),
    429       brw_imm_ud(components)
    430    };
    431    assert(ARRAY_SIZE(sources) - 1 == FB_WRITE_LOGICAL_SRC_COMPONENTS);
    432    fs_inst *write = bld.emit(FS_OPCODE_FB_WRITE_LOGICAL, fs_reg(),
    433                              sources, ARRAY_SIZE(sources));
    434 
    435    if (prog_data->uses_kill) {
    436       write->predicate = BRW_PREDICATE_NORMAL;
    437       write->flag_subreg = 1;
    438    }
    439 
    440    return write;
    441 }
    442 
    443 void
    444 fs_visitor::emit_fb_writes()
    445 {
    446    assert(stage == MESA_SHADER_FRAGMENT);
    447    struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
    448    brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
    449 
    450    fs_inst *inst = NULL;
    451 
    452    if (source_depth_to_render_target && devinfo->gen == 6) {
    453       /* For outputting oDepth on gen6, SIMD8 writes have to be used.  This
    454        * would require SIMD8 moves of each half to message regs, e.g. by using
    455        * the SIMD lowering pass.  Unfortunately this is more difficult than it
    456        * sounds because the SIMD8 single-source message lacks channel selects
    457        * for the second and third subspans.
    458        */
    459       limit_dispatch_width(8, "Depth writes unsupported in SIMD16+ mode.\n");
    460    }
    461 
    462    if (nir->info->outputs_written & BITFIELD64_BIT(FRAG_RESULT_STENCIL)) {
    463       /* From the 'Render Target Write message' section of the docs:
    464        * "Output Stencil is not supported with SIMD16 Render Target Write
    465        * Messages."
    466        */
    467       limit_dispatch_width(8, "gl_FragStencilRefARB unsupported "
    468                            "in SIMD16+ mode.\n");
    469    }
    470 
    471    for (int target = 0; target < key->nr_color_regions; target++) {
    472       /* Skip over outputs that weren't written. */
    473       if (this->outputs[target].file == BAD_FILE)
    474          continue;
    475 
    476       const fs_builder abld = bld.annotate(
    477          ralloc_asprintf(this->mem_ctx, "FB write target %d", target));
    478 
    479       fs_reg src0_alpha;
    480       if (devinfo->gen >= 6 && key->replicate_alpha && target != 0)
    481          src0_alpha = offset(outputs[0], bld, 3);
    482 
    483       inst = emit_single_fb_write(abld, this->outputs[target],
    484                                   this->dual_src_output, src0_alpha, 4);
    485       inst->target = target;
    486    }
    487 
    488    prog_data->dual_src_blend = (this->dual_src_output.file != BAD_FILE);
    489    assert(!prog_data->dual_src_blend || key->nr_color_regions == 1);
    490 
    491    if (inst == NULL) {
    492       /* Even if there's no color buffers enabled, we still need to send
    493        * alpha out the pipeline to our null renderbuffer to support
    494        * alpha-testing, alpha-to-coverage, and so on.
    495        */
    496       /* FINISHME: Factor out this frequently recurring pattern into a
    497        * helper function.
    498        */
    499       const fs_reg srcs[] = { reg_undef, reg_undef,
    500                               reg_undef, offset(this->outputs[0], bld, 3) };
    501       const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD, 4);
    502       bld.LOAD_PAYLOAD(tmp, srcs, 4, 0);
    503 
    504       inst = emit_single_fb_write(bld, tmp, reg_undef, reg_undef, 4);
    505       inst->target = 0;
    506    }
    507 
    508    inst->eot = true;
    509 }
    510 
    511 void
    512 fs_visitor::setup_uniform_clipplane_values(gl_clip_plane *clip_planes)
    513 {
    514    const struct brw_vs_prog_key *key =
    515       (const struct brw_vs_prog_key *) this->key;
    516 
    517    for (int i = 0; i < key->nr_userclip_plane_consts; i++) {
    518       this->userplane[i] = fs_reg(UNIFORM, uniforms);
    519       for (int j = 0; j < 4; ++j) {
    520          stage_prog_data->param[uniforms + j] =
    521             (gl_constant_value *) &clip_planes[i][j];
    522       }
    523       uniforms += 4;
    524    }
    525 }
    526 
    527 /**
    528  * Lower legacy fixed-function and gl_ClipVertex clipping to clip distances.
    529  *
    530  * This does nothing if the shader uses gl_ClipDistance or user clipping is
    531  * disabled altogether.
    532  */
    533 void fs_visitor::compute_clip_distance(gl_clip_plane *clip_planes)
    534 {
    535    struct brw_vue_prog_data *vue_prog_data = brw_vue_prog_data(prog_data);
    536    const struct brw_vs_prog_key *key =
    537       (const struct brw_vs_prog_key *) this->key;
    538 
    539    /* Bail unless some sort of legacy clipping is enabled */
    540    if (key->nr_userclip_plane_consts == 0)
    541       return;
    542 
    543    /* From the GLSL 1.30 spec, section 7.1 (Vertex Shader Special Variables):
    544     *
    545     *     "If a linked set of shaders forming the vertex stage contains no
    546     *     static write to gl_ClipVertex or gl_ClipDistance, but the
    547     *     application has requested clipping against user clip planes through
    548     *     the API, then the coordinate written to gl_Position is used for
    549     *     comparison against the user clip planes."
    550     *
    551     * This function is only called if the shader didn't write to
    552     * gl_ClipDistance.  Accordingly, we use gl_ClipVertex to perform clipping
    553     * if the user wrote to it; otherwise we use gl_Position.
    554     */
    555 
    556    gl_varying_slot clip_vertex = VARYING_SLOT_CLIP_VERTEX;
    557    if (!(vue_prog_data->vue_map.slots_valid & VARYING_BIT_CLIP_VERTEX))
    558       clip_vertex = VARYING_SLOT_POS;
    559 
    560    /* If the clip vertex isn't written, skip this.  Typically this means
    561     * the GS will set up clipping. */
    562    if (outputs[clip_vertex].file == BAD_FILE)
    563       return;
    564 
    565    setup_uniform_clipplane_values(clip_planes);
    566 
    567    const fs_builder abld = bld.annotate("user clip distances");
    568 
    569    this->outputs[VARYING_SLOT_CLIP_DIST0] = vgrf(glsl_type::vec4_type);
    570    this->outputs[VARYING_SLOT_CLIP_DIST1] = vgrf(glsl_type::vec4_type);
    571 
    572    for (int i = 0; i < key->nr_userclip_plane_consts; i++) {
    573       fs_reg u = userplane[i];
    574       const fs_reg output = offset(outputs[VARYING_SLOT_CLIP_DIST0 + i / 4],
    575                                    bld, i & 3);
    576 
    577       abld.MUL(output, outputs[clip_vertex], u);
    578       for (int j = 1; j < 4; j++) {
    579          u.nr = userplane[i].nr + j;
    580          abld.MAD(output, output, offset(outputs[clip_vertex], bld, j), u);
    581       }
    582    }
    583 }
    584 
    585 void
    586 fs_visitor::emit_urb_writes(const fs_reg &gs_vertex_count)
    587 {
    588    int slot, urb_offset, length;
    589    int starting_urb_offset = 0;
    590    const struct brw_vue_prog_data *vue_prog_data =
    591       brw_vue_prog_data(this->prog_data);
    592    const struct brw_vs_prog_key *vs_key =
    593       (const struct brw_vs_prog_key *) this->key;
    594    const GLbitfield64 psiz_mask =
    595       VARYING_BIT_LAYER | VARYING_BIT_VIEWPORT | VARYING_BIT_PSIZ;
    596    const struct brw_vue_map *vue_map = &vue_prog_data->vue_map;
    597    bool flush;
    598    fs_reg sources[8];
    599    fs_reg urb_handle;
    600 
    601    if (stage == MESA_SHADER_TESS_EVAL)
    602       urb_handle = fs_reg(retype(brw_vec8_grf(4, 0), BRW_REGISTER_TYPE_UD));
    603    else
    604       urb_handle = fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
    605 
    606    /* If we don't have any valid slots to write, just do a minimal urb write
    607     * send to terminate the shader.  This includes 1 slot of undefined data,
    608     * because it's invalid to write 0 data:
    609     *
    610     * From the Broadwell PRM, Volume 7: 3D Media GPGPU, Shared Functions -
    611     * Unified Return Buffer (URB) > URB_SIMD8_Write and URB_SIMD8_Read >
    612     * Write Data Payload:
    613     *
    614     *    "The write data payload can be between 1 and 8 message phases long."
    615     */
    616    if (vue_map->slots_valid == 0) {
    617       /* For GS, just turn EmitVertex() into a no-op.  We don't want it to
    618        * end the thread, and emit_gs_thread_end() already emits a SEND with
    619        * EOT at the end of the program for us.
    620        */
    621       if (stage == MESA_SHADER_GEOMETRY)
    622          return;
    623 
    624       fs_reg payload = fs_reg(VGRF, alloc.allocate(2), BRW_REGISTER_TYPE_UD);
    625       bld.exec_all().MOV(payload, urb_handle);
    626 
    627       fs_inst *inst = bld.emit(SHADER_OPCODE_URB_WRITE_SIMD8, reg_undef, payload);
    628       inst->eot = true;
    629       inst->mlen = 2;
    630       inst->offset = 1;
    631       return;
    632    }
    633 
    634    opcode opcode = SHADER_OPCODE_URB_WRITE_SIMD8;
    635    int header_size = 1;
    636    fs_reg per_slot_offsets;
    637 
    638    if (stage == MESA_SHADER_GEOMETRY) {
    639       const struct brw_gs_prog_data *gs_prog_data =
    640          brw_gs_prog_data(this->prog_data);
    641 
    642       /* We need to increment the Global Offset to skip over the control data
    643        * header and the extra "Vertex Count" field (1 HWord) at the beginning
    644        * of the VUE.  We're counting in OWords, so the units are doubled.
    645        */
    646       starting_urb_offset = 2 * gs_prog_data->control_data_header_size_hwords;
    647       if (gs_prog_data->static_vertex_count == -1)
    648          starting_urb_offset += 2;
    649 
    650       /* We also need to use per-slot offsets.  The per-slot offset is the
    651        * Vertex Count.  SIMD8 mode processes 8 different primitives at a
    652        * time; each may output a different number of vertices.
    653        */
    654       opcode = SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT;
    655       header_size++;
    656 
    657       /* The URB offset is in 128-bit units, so we need to multiply by 2 */
    658       const int output_vertex_size_owords =
    659          gs_prog_data->output_vertex_size_hwords * 2;
    660 
    661       if (gs_vertex_count.file == IMM) {
    662          per_slot_offsets = brw_imm_ud(output_vertex_size_owords *
    663                                        gs_vertex_count.ud);
    664       } else {
    665          per_slot_offsets = vgrf(glsl_type::int_type);
    666          bld.MUL(per_slot_offsets, gs_vertex_count,
    667                  brw_imm_ud(output_vertex_size_owords));
    668       }
    669    }
    670 
    671    length = 0;
    672    urb_offset = starting_urb_offset;
    673    flush = false;
    674 
    675    /* SSO shaders can have VUE slots allocated which are never actually
    676     * written to, so ignore them when looking for the last (written) slot.
    677     */
    678    int last_slot = vue_map->num_slots - 1;
    679    while (last_slot > 0 &&
    680           (vue_map->slot_to_varying[last_slot] == BRW_VARYING_SLOT_PAD ||
    681            outputs[vue_map->slot_to_varying[last_slot]].file == BAD_FILE)) {
    682       last_slot--;
    683    }
    684 
    685    for (slot = 0; slot < vue_map->num_slots; slot++) {
    686       int varying = vue_map->slot_to_varying[slot];
    687       switch (varying) {
    688       case VARYING_SLOT_PSIZ: {
    689          /* The point size varying slot is the vue header and is always in the
    690           * vue map.  But often none of the special varyings that live there
    691           * are written and in that case we can skip writing to the vue
    692           * header, provided the corresponding state properly clamps the
    693           * values further down the pipeline. */
    694          if ((vue_map->slots_valid & psiz_mask) == 0) {
    695             assert(length == 0);
    696             urb_offset++;
    697             break;
    698          }
    699 
    700          fs_reg zero(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
    701          bld.MOV(zero, brw_imm_ud(0u));
    702 
    703          sources[length++] = zero;
    704          if (vue_map->slots_valid & VARYING_BIT_LAYER)
    705             sources[length++] = this->outputs[VARYING_SLOT_LAYER];
    706          else
    707             sources[length++] = zero;
    708 
    709          if (vue_map->slots_valid & VARYING_BIT_VIEWPORT)
    710             sources[length++] = this->outputs[VARYING_SLOT_VIEWPORT];
    711          else
    712             sources[length++] = zero;
    713 
    714          if (vue_map->slots_valid & VARYING_BIT_PSIZ)
    715             sources[length++] = this->outputs[VARYING_SLOT_PSIZ];
    716          else
    717             sources[length++] = zero;
    718          break;
    719       }
    720       case BRW_VARYING_SLOT_NDC:
    721       case VARYING_SLOT_EDGE:
    722          unreachable("unexpected scalar vs output");
    723          break;
    724 
    725       default:
    726          /* gl_Position is always in the vue map, but isn't always written by
    727           * the shader.  Other varyings (clip distances) get added to the vue
    728           * map but don't always get written.  In those cases, the
    729           * corresponding this->output[] slot will be invalid we and can skip
    730           * the urb write for the varying.  If we've already queued up a vue
    731           * slot for writing we flush a mlen 5 urb write, otherwise we just
    732           * advance the urb_offset.
    733           */
    734          if (varying == BRW_VARYING_SLOT_PAD ||
    735              this->outputs[varying].file == BAD_FILE) {
    736             if (length > 0)
    737                flush = true;
    738             else
    739                urb_offset++;
    740             break;
    741          }
    742 
    743          if (stage == MESA_SHADER_VERTEX && vs_key->clamp_vertex_color &&
    744              (varying == VARYING_SLOT_COL0 ||
    745               varying == VARYING_SLOT_COL1 ||
    746               varying == VARYING_SLOT_BFC0 ||
    747               varying == VARYING_SLOT_BFC1)) {
    748             /* We need to clamp these guys, so do a saturating MOV into a
    749              * temp register and use that for the payload.
    750              */
    751             for (int i = 0; i < 4; i++) {
    752                fs_reg reg = fs_reg(VGRF, alloc.allocate(1), outputs[varying].type);
    753                fs_reg src = offset(this->outputs[varying], bld, i);
    754                set_saturate(true, bld.MOV(reg, src));
    755                sources[length++] = reg;
    756             }
    757          } else {
    758             for (unsigned i = 0; i < 4; i++)
    759                sources[length++] = offset(this->outputs[varying], bld, i);
    760          }
    761          break;
    762       }
    763 
    764       const fs_builder abld = bld.annotate("URB write");
    765 
    766       /* If we've queued up 8 registers of payload (2 VUE slots), if this is
    767        * the last slot or if we need to flush (see BAD_FILE varying case
    768        * above), emit a URB write send now to flush out the data.
    769        */
    770       if (length == 8 || slot == last_slot)
    771          flush = true;
    772       if (flush) {
    773          fs_reg *payload_sources =
    774             ralloc_array(mem_ctx, fs_reg, length + header_size);
    775          fs_reg payload = fs_reg(VGRF, alloc.allocate(length + header_size),
    776                                  BRW_REGISTER_TYPE_F);
    777          payload_sources[0] = urb_handle;
    778 
    779          if (opcode == SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT)
    780             payload_sources[1] = per_slot_offsets;
    781 
    782          memcpy(&payload_sources[header_size], sources,
    783                 length * sizeof sources[0]);
    784 
    785          abld.LOAD_PAYLOAD(payload, payload_sources, length + header_size,
    786                            header_size);
    787 
    788          fs_inst *inst = abld.emit(opcode, reg_undef, payload);
    789          inst->eot = slot == last_slot && stage != MESA_SHADER_GEOMETRY;
    790          inst->mlen = length + header_size;
    791          inst->offset = urb_offset;
    792          urb_offset = starting_urb_offset + slot + 1;
    793          length = 0;
    794          flush = false;
    795       }
    796    }
    797 }
    798 
    799 void
    800 fs_visitor::emit_cs_terminate()
    801 {
    802    assert(devinfo->gen >= 7);
    803 
    804    /* We are getting the thread ID from the compute shader header */
    805    assert(stage == MESA_SHADER_COMPUTE);
    806 
    807    /* We can't directly send from g0, since sends with EOT have to use
    808     * g112-127. So, copy it to a virtual register, The register allocator will
    809     * make sure it uses the appropriate register range.
    810     */
    811    struct brw_reg g0 = retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD);
    812    fs_reg payload = fs_reg(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
    813    bld.group(8, 0).exec_all().MOV(payload, g0);
    814 
    815    /* Send a message to the thread spawner to terminate the thread. */
    816    fs_inst *inst = bld.exec_all()
    817                       .emit(CS_OPCODE_CS_TERMINATE, reg_undef, payload);
    818    inst->eot = true;
    819 }
    820 
    821 void
    822 fs_visitor::emit_barrier()
    823 {
    824    assert(devinfo->gen >= 7);
    825    const uint32_t barrier_id_mask =
    826       devinfo->gen >= 9 ? 0x8f000000u : 0x0f000000u;
    827 
    828    /* We are getting the barrier ID from the compute shader header */
    829    assert(stage == MESA_SHADER_COMPUTE);
    830 
    831    fs_reg payload = fs_reg(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
    832 
    833    const fs_builder pbld = bld.exec_all().group(8, 0);
    834 
    835    /* Clear the message payload */
    836    pbld.MOV(payload, brw_imm_ud(0u));
    837 
    838    /* Copy the barrier id from r0.2 to the message payload reg.2 */
    839    fs_reg r0_2 = fs_reg(retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD));
    840    pbld.AND(component(payload, 2), r0_2, brw_imm_ud(barrier_id_mask));
    841 
    842    /* Emit a gateway "barrier" message using the payload we set up, followed
    843     * by a wait instruction.
    844     */
    845    bld.exec_all().emit(SHADER_OPCODE_BARRIER, reg_undef, payload);
    846 }
    847 
    848 fs_visitor::fs_visitor(const struct brw_compiler *compiler, void *log_data,
    849                        void *mem_ctx,
    850                        const void *key,
    851                        struct brw_stage_prog_data *prog_data,
    852                        struct gl_program *prog,
    853                        const nir_shader *shader,
    854                        unsigned dispatch_width,
    855                        int shader_time_index,
    856                        const struct brw_vue_map *input_vue_map)
    857    : backend_shader(compiler, log_data, mem_ctx, shader, prog_data),
    858      key(key), gs_compile(NULL), prog_data(prog_data), prog(prog),
    859      input_vue_map(input_vue_map),
    860      dispatch_width(dispatch_width),
    861      shader_time_index(shader_time_index),
    862      bld(fs_builder(this, dispatch_width).at_end())
    863 {
    864    init();
    865 }
    866 
    867 fs_visitor::fs_visitor(const struct brw_compiler *compiler, void *log_data,
    868                        void *mem_ctx,
    869                        struct brw_gs_compile *c,
    870                        struct brw_gs_prog_data *prog_data,
    871                        const nir_shader *shader,
    872                        int shader_time_index)
    873    : backend_shader(compiler, log_data, mem_ctx, shader,
    874                     &prog_data->base.base),
    875      key(&c->key), gs_compile(c),
    876      prog_data(&prog_data->base.base), prog(NULL),
    877      dispatch_width(8),
    878      shader_time_index(shader_time_index),
    879      bld(fs_builder(this, dispatch_width).at_end())
    880 {
    881    init();
    882 }
    883 
    884 
    885 void
    886 fs_visitor::init()
    887 {
    888    switch (stage) {
    889    case MESA_SHADER_FRAGMENT:
    890       key_tex = &((const brw_wm_prog_key *) key)->tex;
    891       break;
    892    case MESA_SHADER_VERTEX:
    893       key_tex = &((const brw_vs_prog_key *) key)->tex;
    894       break;
    895    case MESA_SHADER_TESS_CTRL:
    896       key_tex = &((const brw_tcs_prog_key *) key)->tex;
    897       break;
    898    case MESA_SHADER_TESS_EVAL:
    899       key_tex = &((const brw_tes_prog_key *) key)->tex;
    900       break;
    901    case MESA_SHADER_GEOMETRY:
    902       key_tex = &((const brw_gs_prog_key *) key)->tex;
    903       break;
    904    case MESA_SHADER_COMPUTE:
    905       key_tex = &((const brw_cs_prog_key*) key)->tex;
    906       break;
    907    default:
    908       unreachable("unhandled shader stage");
    909    }
    910 
    911    if (stage == MESA_SHADER_COMPUTE) {
    912       const struct brw_cs_prog_data *cs_prog_data = brw_cs_prog_data(prog_data);
    913       unsigned size = cs_prog_data->local_size[0] *
    914                       cs_prog_data->local_size[1] *
    915                       cs_prog_data->local_size[2];
    916       size = DIV_ROUND_UP(size, devinfo->max_cs_threads);
    917       min_dispatch_width = size > 16 ? 32 : (size > 8 ? 16 : 8);
    918    } else {
    919       min_dispatch_width = 8;
    920    }
    921 
    922    this->max_dispatch_width = 32;
    923    this->prog_data = this->stage_prog_data;
    924 
    925    this->failed = false;
    926 
    927    this->nir_locals = NULL;
    928    this->nir_ssa_values = NULL;
    929 
    930    memset(&this->payload, 0, sizeof(this->payload));
    931    this->source_depth_to_render_target = false;
    932    this->runtime_check_aads_emit = false;
    933    this->first_non_payload_grf = 0;
    934    this->max_grf = devinfo->gen >= 7 ? GEN7_MRF_HACK_START : BRW_MAX_GRF;
    935 
    936    this->virtual_grf_start = NULL;
    937    this->virtual_grf_end = NULL;
    938    this->live_intervals = NULL;
    939    this->regs_live_at_ip = NULL;
    940 
    941    this->uniforms = 0;
    942    this->last_scratch = 0;
    943    this->pull_constant_loc = NULL;
    944    this->push_constant_loc = NULL;
    945 
    946    this->promoted_constants = 0,
    947 
    948    this->spilled_any_registers = false;
    949 }
    950 
    951 fs_visitor::~fs_visitor()
    952 {
    953 }
    954