1 /* 2 * Copyright 2010 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 */ 23 24 /** @file brw_fs_visitor.cpp 25 * 26 * This file supports generating the FS LIR from the GLSL IR. The LIR 27 * makes it easier to do backend-specific optimizations than doing so 28 * in the GLSL IR or in the native code. 29 */ 30 #include "brw_fs.h" 31 #include "compiler/glsl_types.h" 32 33 using namespace brw; 34 35 fs_reg * 36 fs_visitor::emit_vs_system_value(int location) 37 { 38 fs_reg *reg = new(this->mem_ctx) 39 fs_reg(ATTR, 4 * _mesa_bitcount_64(nir->info->inputs_read), 40 BRW_REGISTER_TYPE_D); 41 struct brw_vs_prog_data *vs_prog_data = brw_vs_prog_data(prog_data); 42 43 switch (location) { 44 case SYSTEM_VALUE_BASE_VERTEX: 45 reg->offset = 0; 46 vs_prog_data->uses_basevertex = true; 47 break; 48 case SYSTEM_VALUE_BASE_INSTANCE: 49 reg->offset = REG_SIZE; 50 vs_prog_data->uses_baseinstance = true; 51 break; 52 case SYSTEM_VALUE_VERTEX_ID: 53 unreachable("should have been lowered"); 54 case SYSTEM_VALUE_VERTEX_ID_ZERO_BASE: 55 reg->offset = 2 * REG_SIZE; 56 vs_prog_data->uses_vertexid = true; 57 break; 58 case SYSTEM_VALUE_INSTANCE_ID: 59 reg->offset = 3 * REG_SIZE; 60 vs_prog_data->uses_instanceid = true; 61 break; 62 case SYSTEM_VALUE_DRAW_ID: 63 if (nir->info->system_values_read & 64 (BITFIELD64_BIT(SYSTEM_VALUE_BASE_VERTEX) | 65 BITFIELD64_BIT(SYSTEM_VALUE_BASE_INSTANCE) | 66 BITFIELD64_BIT(SYSTEM_VALUE_VERTEX_ID_ZERO_BASE) | 67 BITFIELD64_BIT(SYSTEM_VALUE_INSTANCE_ID))) 68 reg->nr += 4; 69 reg->offset = 0; 70 vs_prog_data->uses_drawid = true; 71 break; 72 default: 73 unreachable("not reached"); 74 } 75 76 return reg; 77 } 78 79 /* Sample from the MCS surface attached to this multisample texture. */ 80 fs_reg 81 fs_visitor::emit_mcs_fetch(const fs_reg &coordinate, unsigned components, 82 const fs_reg &texture) 83 { 84 const fs_reg dest = vgrf(glsl_type::uvec4_type); 85 86 fs_reg srcs[TEX_LOGICAL_NUM_SRCS]; 87 srcs[TEX_LOGICAL_SRC_COORDINATE] = coordinate; 88 srcs[TEX_LOGICAL_SRC_SURFACE] = texture; 89 srcs[TEX_LOGICAL_SRC_SAMPLER] = texture; 90 srcs[TEX_LOGICAL_SRC_COORD_COMPONENTS] = brw_imm_d(components); 91 srcs[TEX_LOGICAL_SRC_GRAD_COMPONENTS] = brw_imm_d(0); 92 93 fs_inst *inst = bld.emit(SHADER_OPCODE_TXF_MCS_LOGICAL, dest, srcs, 94 ARRAY_SIZE(srcs)); 95 96 /* We only care about one or two regs of response, but the sampler always 97 * writes 4/8. 98 */ 99 inst->size_written = 4 * dest.component_size(inst->exec_size); 100 101 return dest; 102 } 103 104 /** 105 * Apply workarounds for Gen6 gather with UINT/SINT 106 */ 107 void 108 fs_visitor::emit_gen6_gather_wa(uint8_t wa, fs_reg dst) 109 { 110 if (!wa) 111 return; 112 113 int width = (wa & WA_8BIT) ? 8 : 16; 114 115 for (int i = 0; i < 4; i++) { 116 fs_reg dst_f = retype(dst, BRW_REGISTER_TYPE_F); 117 /* Convert from UNORM to UINT */ 118 bld.MUL(dst_f, dst_f, brw_imm_f((1 << width) - 1)); 119 bld.MOV(dst, dst_f); 120 121 if (wa & WA_SIGN) { 122 /* Reinterpret the UINT value as a signed INT value by 123 * shifting the sign bit into place, then shifting back 124 * preserving sign. 125 */ 126 bld.SHL(dst, dst, brw_imm_d(32 - width)); 127 bld.ASR(dst, dst, brw_imm_d(32 - width)); 128 } 129 130 dst = offset(dst, bld, 1); 131 } 132 } 133 134 /** Emits a dummy fragment shader consisting of magenta for bringup purposes. */ 135 void 136 fs_visitor::emit_dummy_fs() 137 { 138 int reg_width = dispatch_width / 8; 139 140 /* Everyone's favorite color. */ 141 const float color[4] = { 1.0, 0.0, 1.0, 0.0 }; 142 for (int i = 0; i < 4; i++) { 143 bld.MOV(fs_reg(MRF, 2 + i * reg_width, BRW_REGISTER_TYPE_F), 144 brw_imm_f(color[i])); 145 } 146 147 fs_inst *write; 148 write = bld.emit(FS_OPCODE_FB_WRITE); 149 write->eot = true; 150 if (devinfo->gen >= 6) { 151 write->base_mrf = 2; 152 write->mlen = 4 * reg_width; 153 } else { 154 write->header_size = 2; 155 write->base_mrf = 0; 156 write->mlen = 2 + 4 * reg_width; 157 } 158 159 /* Tell the SF we don't have any inputs. Gen4-5 require at least one 160 * varying to avoid GPU hangs, so set that. 161 */ 162 struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(this->prog_data); 163 wm_prog_data->num_varying_inputs = devinfo->gen < 6 ? 1 : 0; 164 memset(wm_prog_data->urb_setup, -1, 165 sizeof(wm_prog_data->urb_setup[0]) * VARYING_SLOT_MAX); 166 167 /* We don't have any uniforms. */ 168 stage_prog_data->nr_params = 0; 169 stage_prog_data->nr_pull_params = 0; 170 stage_prog_data->curb_read_length = 0; 171 stage_prog_data->dispatch_grf_start_reg = 2; 172 wm_prog_data->dispatch_grf_start_reg_2 = 2; 173 grf_used = 1; /* Gen4-5 don't allow zero GRF blocks */ 174 175 calculate_cfg(); 176 } 177 178 /* The register location here is relative to the start of the URB 179 * data. It will get adjusted to be a real location before 180 * generate_code() time. 181 */ 182 struct brw_reg 183 fs_visitor::interp_reg(int location, int channel) 184 { 185 assert(stage == MESA_SHADER_FRAGMENT); 186 struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data); 187 int regnr = prog_data->urb_setup[location] * 2 + channel / 2; 188 int stride = (channel & 1) * 4; 189 190 assert(prog_data->urb_setup[location] != -1); 191 192 return brw_vec1_grf(regnr, stride); 193 } 194 195 /** Emits the interpolation for the varying inputs. */ 196 void 197 fs_visitor::emit_interpolation_setup_gen4() 198 { 199 struct brw_reg g1_uw = retype(brw_vec1_grf(1, 0), BRW_REGISTER_TYPE_UW); 200 201 fs_builder abld = bld.annotate("compute pixel centers"); 202 this->pixel_x = vgrf(glsl_type::uint_type); 203 this->pixel_y = vgrf(glsl_type::uint_type); 204 this->pixel_x.type = BRW_REGISTER_TYPE_UW; 205 this->pixel_y.type = BRW_REGISTER_TYPE_UW; 206 abld.ADD(this->pixel_x, 207 fs_reg(stride(suboffset(g1_uw, 4), 2, 4, 0)), 208 fs_reg(brw_imm_v(0x10101010))); 209 abld.ADD(this->pixel_y, 210 fs_reg(stride(suboffset(g1_uw, 5), 2, 4, 0)), 211 fs_reg(brw_imm_v(0x11001100))); 212 213 abld = bld.annotate("compute pixel deltas from v0"); 214 215 this->delta_xy[BRW_BARYCENTRIC_PERSPECTIVE_PIXEL] = 216 vgrf(glsl_type::vec2_type); 217 const fs_reg &delta_xy = this->delta_xy[BRW_BARYCENTRIC_PERSPECTIVE_PIXEL]; 218 const fs_reg xstart(negate(brw_vec1_grf(1, 0))); 219 const fs_reg ystart(negate(brw_vec1_grf(1, 1))); 220 221 if (devinfo->has_pln && dispatch_width == 16) { 222 for (unsigned i = 0; i < 2; i++) { 223 abld.half(i).ADD(half(offset(delta_xy, abld, i), 0), 224 half(this->pixel_x, i), xstart); 225 abld.half(i).ADD(half(offset(delta_xy, abld, i), 1), 226 half(this->pixel_y, i), ystart); 227 } 228 } else { 229 abld.ADD(offset(delta_xy, abld, 0), this->pixel_x, xstart); 230 abld.ADD(offset(delta_xy, abld, 1), this->pixel_y, ystart); 231 } 232 233 abld = bld.annotate("compute pos.w and 1/pos.w"); 234 /* Compute wpos.w. It's always in our setup, since it's needed to 235 * interpolate the other attributes. 236 */ 237 this->wpos_w = vgrf(glsl_type::float_type); 238 abld.emit(FS_OPCODE_LINTERP, wpos_w, delta_xy, 239 interp_reg(VARYING_SLOT_POS, 3)); 240 /* Compute the pixel 1/W value from wpos.w. */ 241 this->pixel_w = vgrf(glsl_type::float_type); 242 abld.emit(SHADER_OPCODE_RCP, this->pixel_w, wpos_w); 243 } 244 245 /** Emits the interpolation for the varying inputs. */ 246 void 247 fs_visitor::emit_interpolation_setup_gen6() 248 { 249 struct brw_reg g1_uw = retype(brw_vec1_grf(1, 0), BRW_REGISTER_TYPE_UW); 250 251 fs_builder abld = bld.annotate("compute pixel centers"); 252 if (devinfo->gen >= 8 || dispatch_width == 8) { 253 /* The "Register Region Restrictions" page says for BDW (and newer, 254 * presumably): 255 * 256 * "When destination spans two registers, the source may be one or 257 * two registers. The destination elements must be evenly split 258 * between the two registers." 259 * 260 * Thus we can do a single add(16) in SIMD8 or an add(32) in SIMD16 to 261 * compute our pixel centers. 262 */ 263 fs_reg int_pixel_xy(VGRF, alloc.allocate(dispatch_width / 8), 264 BRW_REGISTER_TYPE_UW); 265 266 const fs_builder dbld = abld.exec_all().group(dispatch_width * 2, 0); 267 dbld.ADD(int_pixel_xy, 268 fs_reg(stride(suboffset(g1_uw, 4), 1, 4, 0)), 269 fs_reg(brw_imm_v(0x11001010))); 270 271 this->pixel_x = vgrf(glsl_type::float_type); 272 this->pixel_y = vgrf(glsl_type::float_type); 273 abld.emit(FS_OPCODE_PIXEL_X, this->pixel_x, int_pixel_xy); 274 abld.emit(FS_OPCODE_PIXEL_Y, this->pixel_y, int_pixel_xy); 275 } else { 276 /* The "Register Region Restrictions" page says for SNB, IVB, HSW: 277 * 278 * "When destination spans two registers, the source MUST span two 279 * registers." 280 * 281 * Since the GRF source of the ADD will only read a single register, we 282 * must do two separate ADDs in SIMD16. 283 */ 284 fs_reg int_pixel_x = vgrf(glsl_type::uint_type); 285 fs_reg int_pixel_y = vgrf(glsl_type::uint_type); 286 int_pixel_x.type = BRW_REGISTER_TYPE_UW; 287 int_pixel_y.type = BRW_REGISTER_TYPE_UW; 288 abld.ADD(int_pixel_x, 289 fs_reg(stride(suboffset(g1_uw, 4), 2, 4, 0)), 290 fs_reg(brw_imm_v(0x10101010))); 291 abld.ADD(int_pixel_y, 292 fs_reg(stride(suboffset(g1_uw, 5), 2, 4, 0)), 293 fs_reg(brw_imm_v(0x11001100))); 294 295 /* As of gen6, we can no longer mix float and int sources. We have 296 * to turn the integer pixel centers into floats for their actual 297 * use. 298 */ 299 this->pixel_x = vgrf(glsl_type::float_type); 300 this->pixel_y = vgrf(glsl_type::float_type); 301 abld.MOV(this->pixel_x, int_pixel_x); 302 abld.MOV(this->pixel_y, int_pixel_y); 303 } 304 305 abld = bld.annotate("compute pos.w"); 306 this->pixel_w = fs_reg(brw_vec8_grf(payload.source_w_reg, 0)); 307 this->wpos_w = vgrf(glsl_type::float_type); 308 abld.emit(SHADER_OPCODE_RCP, this->wpos_w, this->pixel_w); 309 310 struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(prog_data); 311 uint32_t centroid_modes = wm_prog_data->barycentric_interp_modes & 312 (1 << BRW_BARYCENTRIC_PERSPECTIVE_CENTROID | 313 1 << BRW_BARYCENTRIC_NONPERSPECTIVE_CENTROID); 314 315 for (int i = 0; i < BRW_BARYCENTRIC_MODE_COUNT; ++i) { 316 uint8_t reg = payload.barycentric_coord_reg[i]; 317 this->delta_xy[i] = fs_reg(brw_vec16_grf(reg, 0)); 318 319 if (devinfo->needs_unlit_centroid_workaround && 320 (centroid_modes & (1 << i))) { 321 /* Get the pixel/sample mask into f0 so that we know which 322 * pixels are lit. Then, for each channel that is unlit, 323 * replace the centroid data with non-centroid data. 324 */ 325 bld.emit(FS_OPCODE_MOV_DISPATCH_TO_FLAGS); 326 327 uint8_t pixel_reg = payload.barycentric_coord_reg[i - 1]; 328 329 set_predicate_inv(BRW_PREDICATE_NORMAL, true, 330 bld.half(0).MOV(brw_vec8_grf(reg, 0), 331 brw_vec8_grf(pixel_reg, 0))); 332 set_predicate_inv(BRW_PREDICATE_NORMAL, true, 333 bld.half(0).MOV(brw_vec8_grf(reg + 1, 0), 334 brw_vec8_grf(pixel_reg + 1, 0))); 335 if (dispatch_width == 16) { 336 set_predicate_inv(BRW_PREDICATE_NORMAL, true, 337 bld.half(1).MOV(brw_vec8_grf(reg + 2, 0), 338 brw_vec8_grf(pixel_reg + 2, 0))); 339 set_predicate_inv(BRW_PREDICATE_NORMAL, true, 340 bld.half(1).MOV(brw_vec8_grf(reg + 3, 0), 341 brw_vec8_grf(pixel_reg + 3, 0))); 342 } 343 assert(dispatch_width != 32); /* not implemented yet */ 344 } 345 } 346 } 347 348 static enum brw_conditional_mod 349 cond_for_alpha_func(GLenum func) 350 { 351 switch(func) { 352 case GL_GREATER: 353 return BRW_CONDITIONAL_G; 354 case GL_GEQUAL: 355 return BRW_CONDITIONAL_GE; 356 case GL_LESS: 357 return BRW_CONDITIONAL_L; 358 case GL_LEQUAL: 359 return BRW_CONDITIONAL_LE; 360 case GL_EQUAL: 361 return BRW_CONDITIONAL_EQ; 362 case GL_NOTEQUAL: 363 return BRW_CONDITIONAL_NEQ; 364 default: 365 unreachable("Not reached"); 366 } 367 } 368 369 /** 370 * Alpha test support for when we compile it into the shader instead 371 * of using the normal fixed-function alpha test. 372 */ 373 void 374 fs_visitor::emit_alpha_test() 375 { 376 assert(stage == MESA_SHADER_FRAGMENT); 377 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key; 378 const fs_builder abld = bld.annotate("Alpha test"); 379 380 fs_inst *cmp; 381 if (key->alpha_test_func == GL_ALWAYS) 382 return; 383 384 if (key->alpha_test_func == GL_NEVER) { 385 /* f0.1 = 0 */ 386 fs_reg some_reg = fs_reg(retype(brw_vec8_grf(0, 0), 387 BRW_REGISTER_TYPE_UW)); 388 cmp = abld.CMP(bld.null_reg_f(), some_reg, some_reg, 389 BRW_CONDITIONAL_NEQ); 390 } else { 391 /* RT0 alpha */ 392 fs_reg color = offset(outputs[0], bld, 3); 393 394 /* f0.1 &= func(color, ref) */ 395 cmp = abld.CMP(bld.null_reg_f(), color, brw_imm_f(key->alpha_test_ref), 396 cond_for_alpha_func(key->alpha_test_func)); 397 } 398 cmp->predicate = BRW_PREDICATE_NORMAL; 399 cmp->flag_subreg = 1; 400 } 401 402 fs_inst * 403 fs_visitor::emit_single_fb_write(const fs_builder &bld, 404 fs_reg color0, fs_reg color1, 405 fs_reg src0_alpha, unsigned components) 406 { 407 assert(stage == MESA_SHADER_FRAGMENT); 408 struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data); 409 410 /* Hand over gl_FragDepth or the payload depth. */ 411 const fs_reg dst_depth = (payload.dest_depth_reg ? 412 fs_reg(brw_vec8_grf(payload.dest_depth_reg, 0)) : 413 fs_reg()); 414 fs_reg src_depth, src_stencil; 415 416 if (source_depth_to_render_target) { 417 if (nir->info->outputs_written & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) 418 src_depth = frag_depth; 419 else 420 src_depth = fs_reg(brw_vec8_grf(payload.source_depth_reg, 0)); 421 } 422 423 if (nir->info->outputs_written & BITFIELD64_BIT(FRAG_RESULT_STENCIL)) 424 src_stencil = frag_stencil; 425 426 const fs_reg sources[] = { 427 color0, color1, src0_alpha, src_depth, dst_depth, src_stencil, 428 (prog_data->uses_omask ? sample_mask : fs_reg()), 429 brw_imm_ud(components) 430 }; 431 assert(ARRAY_SIZE(sources) - 1 == FB_WRITE_LOGICAL_SRC_COMPONENTS); 432 fs_inst *write = bld.emit(FS_OPCODE_FB_WRITE_LOGICAL, fs_reg(), 433 sources, ARRAY_SIZE(sources)); 434 435 if (prog_data->uses_kill) { 436 write->predicate = BRW_PREDICATE_NORMAL; 437 write->flag_subreg = 1; 438 } 439 440 return write; 441 } 442 443 void 444 fs_visitor::emit_fb_writes() 445 { 446 assert(stage == MESA_SHADER_FRAGMENT); 447 struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data); 448 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key; 449 450 fs_inst *inst = NULL; 451 452 if (source_depth_to_render_target && devinfo->gen == 6) { 453 /* For outputting oDepth on gen6, SIMD8 writes have to be used. This 454 * would require SIMD8 moves of each half to message regs, e.g. by using 455 * the SIMD lowering pass. Unfortunately this is more difficult than it 456 * sounds because the SIMD8 single-source message lacks channel selects 457 * for the second and third subspans. 458 */ 459 limit_dispatch_width(8, "Depth writes unsupported in SIMD16+ mode.\n"); 460 } 461 462 if (nir->info->outputs_written & BITFIELD64_BIT(FRAG_RESULT_STENCIL)) { 463 /* From the 'Render Target Write message' section of the docs: 464 * "Output Stencil is not supported with SIMD16 Render Target Write 465 * Messages." 466 */ 467 limit_dispatch_width(8, "gl_FragStencilRefARB unsupported " 468 "in SIMD16+ mode.\n"); 469 } 470 471 for (int target = 0; target < key->nr_color_regions; target++) { 472 /* Skip over outputs that weren't written. */ 473 if (this->outputs[target].file == BAD_FILE) 474 continue; 475 476 const fs_builder abld = bld.annotate( 477 ralloc_asprintf(this->mem_ctx, "FB write target %d", target)); 478 479 fs_reg src0_alpha; 480 if (devinfo->gen >= 6 && key->replicate_alpha && target != 0) 481 src0_alpha = offset(outputs[0], bld, 3); 482 483 inst = emit_single_fb_write(abld, this->outputs[target], 484 this->dual_src_output, src0_alpha, 4); 485 inst->target = target; 486 } 487 488 prog_data->dual_src_blend = (this->dual_src_output.file != BAD_FILE); 489 assert(!prog_data->dual_src_blend || key->nr_color_regions == 1); 490 491 if (inst == NULL) { 492 /* Even if there's no color buffers enabled, we still need to send 493 * alpha out the pipeline to our null renderbuffer to support 494 * alpha-testing, alpha-to-coverage, and so on. 495 */ 496 /* FINISHME: Factor out this frequently recurring pattern into a 497 * helper function. 498 */ 499 const fs_reg srcs[] = { reg_undef, reg_undef, 500 reg_undef, offset(this->outputs[0], bld, 3) }; 501 const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD, 4); 502 bld.LOAD_PAYLOAD(tmp, srcs, 4, 0); 503 504 inst = emit_single_fb_write(bld, tmp, reg_undef, reg_undef, 4); 505 inst->target = 0; 506 } 507 508 inst->eot = true; 509 } 510 511 void 512 fs_visitor::setup_uniform_clipplane_values(gl_clip_plane *clip_planes) 513 { 514 const struct brw_vs_prog_key *key = 515 (const struct brw_vs_prog_key *) this->key; 516 517 for (int i = 0; i < key->nr_userclip_plane_consts; i++) { 518 this->userplane[i] = fs_reg(UNIFORM, uniforms); 519 for (int j = 0; j < 4; ++j) { 520 stage_prog_data->param[uniforms + j] = 521 (gl_constant_value *) &clip_planes[i][j]; 522 } 523 uniforms += 4; 524 } 525 } 526 527 /** 528 * Lower legacy fixed-function and gl_ClipVertex clipping to clip distances. 529 * 530 * This does nothing if the shader uses gl_ClipDistance or user clipping is 531 * disabled altogether. 532 */ 533 void fs_visitor::compute_clip_distance(gl_clip_plane *clip_planes) 534 { 535 struct brw_vue_prog_data *vue_prog_data = brw_vue_prog_data(prog_data); 536 const struct brw_vs_prog_key *key = 537 (const struct brw_vs_prog_key *) this->key; 538 539 /* Bail unless some sort of legacy clipping is enabled */ 540 if (key->nr_userclip_plane_consts == 0) 541 return; 542 543 /* From the GLSL 1.30 spec, section 7.1 (Vertex Shader Special Variables): 544 * 545 * "If a linked set of shaders forming the vertex stage contains no 546 * static write to gl_ClipVertex or gl_ClipDistance, but the 547 * application has requested clipping against user clip planes through 548 * the API, then the coordinate written to gl_Position is used for 549 * comparison against the user clip planes." 550 * 551 * This function is only called if the shader didn't write to 552 * gl_ClipDistance. Accordingly, we use gl_ClipVertex to perform clipping 553 * if the user wrote to it; otherwise we use gl_Position. 554 */ 555 556 gl_varying_slot clip_vertex = VARYING_SLOT_CLIP_VERTEX; 557 if (!(vue_prog_data->vue_map.slots_valid & VARYING_BIT_CLIP_VERTEX)) 558 clip_vertex = VARYING_SLOT_POS; 559 560 /* If the clip vertex isn't written, skip this. Typically this means 561 * the GS will set up clipping. */ 562 if (outputs[clip_vertex].file == BAD_FILE) 563 return; 564 565 setup_uniform_clipplane_values(clip_planes); 566 567 const fs_builder abld = bld.annotate("user clip distances"); 568 569 this->outputs[VARYING_SLOT_CLIP_DIST0] = vgrf(glsl_type::vec4_type); 570 this->outputs[VARYING_SLOT_CLIP_DIST1] = vgrf(glsl_type::vec4_type); 571 572 for (int i = 0; i < key->nr_userclip_plane_consts; i++) { 573 fs_reg u = userplane[i]; 574 const fs_reg output = offset(outputs[VARYING_SLOT_CLIP_DIST0 + i / 4], 575 bld, i & 3); 576 577 abld.MUL(output, outputs[clip_vertex], u); 578 for (int j = 1; j < 4; j++) { 579 u.nr = userplane[i].nr + j; 580 abld.MAD(output, output, offset(outputs[clip_vertex], bld, j), u); 581 } 582 } 583 } 584 585 void 586 fs_visitor::emit_urb_writes(const fs_reg &gs_vertex_count) 587 { 588 int slot, urb_offset, length; 589 int starting_urb_offset = 0; 590 const struct brw_vue_prog_data *vue_prog_data = 591 brw_vue_prog_data(this->prog_data); 592 const struct brw_vs_prog_key *vs_key = 593 (const struct brw_vs_prog_key *) this->key; 594 const GLbitfield64 psiz_mask = 595 VARYING_BIT_LAYER | VARYING_BIT_VIEWPORT | VARYING_BIT_PSIZ; 596 const struct brw_vue_map *vue_map = &vue_prog_data->vue_map; 597 bool flush; 598 fs_reg sources[8]; 599 fs_reg urb_handle; 600 601 if (stage == MESA_SHADER_TESS_EVAL) 602 urb_handle = fs_reg(retype(brw_vec8_grf(4, 0), BRW_REGISTER_TYPE_UD)); 603 else 604 urb_handle = fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD)); 605 606 /* If we don't have any valid slots to write, just do a minimal urb write 607 * send to terminate the shader. This includes 1 slot of undefined data, 608 * because it's invalid to write 0 data: 609 * 610 * From the Broadwell PRM, Volume 7: 3D Media GPGPU, Shared Functions - 611 * Unified Return Buffer (URB) > URB_SIMD8_Write and URB_SIMD8_Read > 612 * Write Data Payload: 613 * 614 * "The write data payload can be between 1 and 8 message phases long." 615 */ 616 if (vue_map->slots_valid == 0) { 617 /* For GS, just turn EmitVertex() into a no-op. We don't want it to 618 * end the thread, and emit_gs_thread_end() already emits a SEND with 619 * EOT at the end of the program for us. 620 */ 621 if (stage == MESA_SHADER_GEOMETRY) 622 return; 623 624 fs_reg payload = fs_reg(VGRF, alloc.allocate(2), BRW_REGISTER_TYPE_UD); 625 bld.exec_all().MOV(payload, urb_handle); 626 627 fs_inst *inst = bld.emit(SHADER_OPCODE_URB_WRITE_SIMD8, reg_undef, payload); 628 inst->eot = true; 629 inst->mlen = 2; 630 inst->offset = 1; 631 return; 632 } 633 634 opcode opcode = SHADER_OPCODE_URB_WRITE_SIMD8; 635 int header_size = 1; 636 fs_reg per_slot_offsets; 637 638 if (stage == MESA_SHADER_GEOMETRY) { 639 const struct brw_gs_prog_data *gs_prog_data = 640 brw_gs_prog_data(this->prog_data); 641 642 /* We need to increment the Global Offset to skip over the control data 643 * header and the extra "Vertex Count" field (1 HWord) at the beginning 644 * of the VUE. We're counting in OWords, so the units are doubled. 645 */ 646 starting_urb_offset = 2 * gs_prog_data->control_data_header_size_hwords; 647 if (gs_prog_data->static_vertex_count == -1) 648 starting_urb_offset += 2; 649 650 /* We also need to use per-slot offsets. The per-slot offset is the 651 * Vertex Count. SIMD8 mode processes 8 different primitives at a 652 * time; each may output a different number of vertices. 653 */ 654 opcode = SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT; 655 header_size++; 656 657 /* The URB offset is in 128-bit units, so we need to multiply by 2 */ 658 const int output_vertex_size_owords = 659 gs_prog_data->output_vertex_size_hwords * 2; 660 661 if (gs_vertex_count.file == IMM) { 662 per_slot_offsets = brw_imm_ud(output_vertex_size_owords * 663 gs_vertex_count.ud); 664 } else { 665 per_slot_offsets = vgrf(glsl_type::int_type); 666 bld.MUL(per_slot_offsets, gs_vertex_count, 667 brw_imm_ud(output_vertex_size_owords)); 668 } 669 } 670 671 length = 0; 672 urb_offset = starting_urb_offset; 673 flush = false; 674 675 /* SSO shaders can have VUE slots allocated which are never actually 676 * written to, so ignore them when looking for the last (written) slot. 677 */ 678 int last_slot = vue_map->num_slots - 1; 679 while (last_slot > 0 && 680 (vue_map->slot_to_varying[last_slot] == BRW_VARYING_SLOT_PAD || 681 outputs[vue_map->slot_to_varying[last_slot]].file == BAD_FILE)) { 682 last_slot--; 683 } 684 685 for (slot = 0; slot < vue_map->num_slots; slot++) { 686 int varying = vue_map->slot_to_varying[slot]; 687 switch (varying) { 688 case VARYING_SLOT_PSIZ: { 689 /* The point size varying slot is the vue header and is always in the 690 * vue map. But often none of the special varyings that live there 691 * are written and in that case we can skip writing to the vue 692 * header, provided the corresponding state properly clamps the 693 * values further down the pipeline. */ 694 if ((vue_map->slots_valid & psiz_mask) == 0) { 695 assert(length == 0); 696 urb_offset++; 697 break; 698 } 699 700 fs_reg zero(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD); 701 bld.MOV(zero, brw_imm_ud(0u)); 702 703 sources[length++] = zero; 704 if (vue_map->slots_valid & VARYING_BIT_LAYER) 705 sources[length++] = this->outputs[VARYING_SLOT_LAYER]; 706 else 707 sources[length++] = zero; 708 709 if (vue_map->slots_valid & VARYING_BIT_VIEWPORT) 710 sources[length++] = this->outputs[VARYING_SLOT_VIEWPORT]; 711 else 712 sources[length++] = zero; 713 714 if (vue_map->slots_valid & VARYING_BIT_PSIZ) 715 sources[length++] = this->outputs[VARYING_SLOT_PSIZ]; 716 else 717 sources[length++] = zero; 718 break; 719 } 720 case BRW_VARYING_SLOT_NDC: 721 case VARYING_SLOT_EDGE: 722 unreachable("unexpected scalar vs output"); 723 break; 724 725 default: 726 /* gl_Position is always in the vue map, but isn't always written by 727 * the shader. Other varyings (clip distances) get added to the vue 728 * map but don't always get written. In those cases, the 729 * corresponding this->output[] slot will be invalid we and can skip 730 * the urb write for the varying. If we've already queued up a vue 731 * slot for writing we flush a mlen 5 urb write, otherwise we just 732 * advance the urb_offset. 733 */ 734 if (varying == BRW_VARYING_SLOT_PAD || 735 this->outputs[varying].file == BAD_FILE) { 736 if (length > 0) 737 flush = true; 738 else 739 urb_offset++; 740 break; 741 } 742 743 if (stage == MESA_SHADER_VERTEX && vs_key->clamp_vertex_color && 744 (varying == VARYING_SLOT_COL0 || 745 varying == VARYING_SLOT_COL1 || 746 varying == VARYING_SLOT_BFC0 || 747 varying == VARYING_SLOT_BFC1)) { 748 /* We need to clamp these guys, so do a saturating MOV into a 749 * temp register and use that for the payload. 750 */ 751 for (int i = 0; i < 4; i++) { 752 fs_reg reg = fs_reg(VGRF, alloc.allocate(1), outputs[varying].type); 753 fs_reg src = offset(this->outputs[varying], bld, i); 754 set_saturate(true, bld.MOV(reg, src)); 755 sources[length++] = reg; 756 } 757 } else { 758 for (unsigned i = 0; i < 4; i++) 759 sources[length++] = offset(this->outputs[varying], bld, i); 760 } 761 break; 762 } 763 764 const fs_builder abld = bld.annotate("URB write"); 765 766 /* If we've queued up 8 registers of payload (2 VUE slots), if this is 767 * the last slot or if we need to flush (see BAD_FILE varying case 768 * above), emit a URB write send now to flush out the data. 769 */ 770 if (length == 8 || slot == last_slot) 771 flush = true; 772 if (flush) { 773 fs_reg *payload_sources = 774 ralloc_array(mem_ctx, fs_reg, length + header_size); 775 fs_reg payload = fs_reg(VGRF, alloc.allocate(length + header_size), 776 BRW_REGISTER_TYPE_F); 777 payload_sources[0] = urb_handle; 778 779 if (opcode == SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT) 780 payload_sources[1] = per_slot_offsets; 781 782 memcpy(&payload_sources[header_size], sources, 783 length * sizeof sources[0]); 784 785 abld.LOAD_PAYLOAD(payload, payload_sources, length + header_size, 786 header_size); 787 788 fs_inst *inst = abld.emit(opcode, reg_undef, payload); 789 inst->eot = slot == last_slot && stage != MESA_SHADER_GEOMETRY; 790 inst->mlen = length + header_size; 791 inst->offset = urb_offset; 792 urb_offset = starting_urb_offset + slot + 1; 793 length = 0; 794 flush = false; 795 } 796 } 797 } 798 799 void 800 fs_visitor::emit_cs_terminate() 801 { 802 assert(devinfo->gen >= 7); 803 804 /* We are getting the thread ID from the compute shader header */ 805 assert(stage == MESA_SHADER_COMPUTE); 806 807 /* We can't directly send from g0, since sends with EOT have to use 808 * g112-127. So, copy it to a virtual register, The register allocator will 809 * make sure it uses the appropriate register range. 810 */ 811 struct brw_reg g0 = retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD); 812 fs_reg payload = fs_reg(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD); 813 bld.group(8, 0).exec_all().MOV(payload, g0); 814 815 /* Send a message to the thread spawner to terminate the thread. */ 816 fs_inst *inst = bld.exec_all() 817 .emit(CS_OPCODE_CS_TERMINATE, reg_undef, payload); 818 inst->eot = true; 819 } 820 821 void 822 fs_visitor::emit_barrier() 823 { 824 assert(devinfo->gen >= 7); 825 const uint32_t barrier_id_mask = 826 devinfo->gen >= 9 ? 0x8f000000u : 0x0f000000u; 827 828 /* We are getting the barrier ID from the compute shader header */ 829 assert(stage == MESA_SHADER_COMPUTE); 830 831 fs_reg payload = fs_reg(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD); 832 833 const fs_builder pbld = bld.exec_all().group(8, 0); 834 835 /* Clear the message payload */ 836 pbld.MOV(payload, brw_imm_ud(0u)); 837 838 /* Copy the barrier id from r0.2 to the message payload reg.2 */ 839 fs_reg r0_2 = fs_reg(retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD)); 840 pbld.AND(component(payload, 2), r0_2, brw_imm_ud(barrier_id_mask)); 841 842 /* Emit a gateway "barrier" message using the payload we set up, followed 843 * by a wait instruction. 844 */ 845 bld.exec_all().emit(SHADER_OPCODE_BARRIER, reg_undef, payload); 846 } 847 848 fs_visitor::fs_visitor(const struct brw_compiler *compiler, void *log_data, 849 void *mem_ctx, 850 const void *key, 851 struct brw_stage_prog_data *prog_data, 852 struct gl_program *prog, 853 const nir_shader *shader, 854 unsigned dispatch_width, 855 int shader_time_index, 856 const struct brw_vue_map *input_vue_map) 857 : backend_shader(compiler, log_data, mem_ctx, shader, prog_data), 858 key(key), gs_compile(NULL), prog_data(prog_data), prog(prog), 859 input_vue_map(input_vue_map), 860 dispatch_width(dispatch_width), 861 shader_time_index(shader_time_index), 862 bld(fs_builder(this, dispatch_width).at_end()) 863 { 864 init(); 865 } 866 867 fs_visitor::fs_visitor(const struct brw_compiler *compiler, void *log_data, 868 void *mem_ctx, 869 struct brw_gs_compile *c, 870 struct brw_gs_prog_data *prog_data, 871 const nir_shader *shader, 872 int shader_time_index) 873 : backend_shader(compiler, log_data, mem_ctx, shader, 874 &prog_data->base.base), 875 key(&c->key), gs_compile(c), 876 prog_data(&prog_data->base.base), prog(NULL), 877 dispatch_width(8), 878 shader_time_index(shader_time_index), 879 bld(fs_builder(this, dispatch_width).at_end()) 880 { 881 init(); 882 } 883 884 885 void 886 fs_visitor::init() 887 { 888 switch (stage) { 889 case MESA_SHADER_FRAGMENT: 890 key_tex = &((const brw_wm_prog_key *) key)->tex; 891 break; 892 case MESA_SHADER_VERTEX: 893 key_tex = &((const brw_vs_prog_key *) key)->tex; 894 break; 895 case MESA_SHADER_TESS_CTRL: 896 key_tex = &((const brw_tcs_prog_key *) key)->tex; 897 break; 898 case MESA_SHADER_TESS_EVAL: 899 key_tex = &((const brw_tes_prog_key *) key)->tex; 900 break; 901 case MESA_SHADER_GEOMETRY: 902 key_tex = &((const brw_gs_prog_key *) key)->tex; 903 break; 904 case MESA_SHADER_COMPUTE: 905 key_tex = &((const brw_cs_prog_key*) key)->tex; 906 break; 907 default: 908 unreachable("unhandled shader stage"); 909 } 910 911 if (stage == MESA_SHADER_COMPUTE) { 912 const struct brw_cs_prog_data *cs_prog_data = brw_cs_prog_data(prog_data); 913 unsigned size = cs_prog_data->local_size[0] * 914 cs_prog_data->local_size[1] * 915 cs_prog_data->local_size[2]; 916 size = DIV_ROUND_UP(size, devinfo->max_cs_threads); 917 min_dispatch_width = size > 16 ? 32 : (size > 8 ? 16 : 8); 918 } else { 919 min_dispatch_width = 8; 920 } 921 922 this->max_dispatch_width = 32; 923 this->prog_data = this->stage_prog_data; 924 925 this->failed = false; 926 927 this->nir_locals = NULL; 928 this->nir_ssa_values = NULL; 929 930 memset(&this->payload, 0, sizeof(this->payload)); 931 this->source_depth_to_render_target = false; 932 this->runtime_check_aads_emit = false; 933 this->first_non_payload_grf = 0; 934 this->max_grf = devinfo->gen >= 7 ? GEN7_MRF_HACK_START : BRW_MAX_GRF; 935 936 this->virtual_grf_start = NULL; 937 this->virtual_grf_end = NULL; 938 this->live_intervals = NULL; 939 this->regs_live_at_ip = NULL; 940 941 this->uniforms = 0; 942 this->last_scratch = 0; 943 this->pull_constant_loc = NULL; 944 this->push_constant_loc = NULL; 945 946 this->promoted_constants = 0, 947 948 this->spilled_any_registers = false; 949 } 950 951 fs_visitor::~fs_visitor() 952 { 953 } 954