Home | History | Annotate | Download | only in test
      1 // This file is part of Eigen, a lightweight C++ template library
      2 // for linear algebra.
      3 //
      4 // Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog (at) gmail.com>
      5 //
      6 // This Source Code Form is subject to the terms of the Mozilla
      7 // Public License v. 2.0. If a copy of the MPL was not distributed
      8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
      9 
     10 #include "main.h"
     11 
     12 #include <Eigen/CXX11/Tensor>
     13 
     14 using Eigen::Tensor;
     15 using Eigen::RowMajor;
     16 
     17 
     18 static void test_0d()
     19 {
     20   TensorFixedSize<float, Sizes<> > scalar1;
     21   TensorFixedSize<float, Sizes<>, RowMajor> scalar2;
     22   VERIFY_IS_EQUAL(scalar1.rank(), 0);
     23   VERIFY_IS_EQUAL(scalar1.size(), 1);
     24   VERIFY_IS_EQUAL(array_prod(scalar1.dimensions()), 1);
     25 
     26   scalar1() = 7.0;
     27   scalar2() = 13.0;
     28 
     29   // Test against shallow copy.
     30   TensorFixedSize<float, Sizes<> > copy = scalar1;
     31   VERIFY_IS_NOT_EQUAL(scalar1.data(), copy.data());
     32   VERIFY_IS_APPROX(scalar1(), copy());
     33   copy = scalar1;
     34   VERIFY_IS_NOT_EQUAL(scalar1.data(), copy.data());
     35   VERIFY_IS_APPROX(scalar1(), copy());
     36 
     37   TensorFixedSize<float, Sizes<> > scalar3 = scalar1.sqrt();
     38   TensorFixedSize<float, Sizes<>, RowMajor> scalar4 = scalar2.sqrt();
     39   VERIFY_IS_EQUAL(scalar3.rank(), 0);
     40   VERIFY_IS_APPROX(scalar3(), sqrtf(7.0));
     41   VERIFY_IS_APPROX(scalar4(), sqrtf(13.0));
     42 
     43   scalar3 = scalar1 + scalar2;
     44   VERIFY_IS_APPROX(scalar3(), 7.0f + 13.0f);
     45 }
     46 
     47 static void test_1d()
     48 {
     49   TensorFixedSize<float, Sizes<6> > vec1;
     50   TensorFixedSize<float, Sizes<6>, RowMajor> vec2;
     51 
     52   VERIFY_IS_EQUAL((vec1.size()), 6);
     53   //  VERIFY_IS_EQUAL((vec1.dimensions()[0]), 6);
     54   //  VERIFY_IS_EQUAL((vec1.dimension(0)), 6);
     55 
     56   vec1(0) = 4.0;  vec2(0) = 0.0;
     57   vec1(1) = 8.0;  vec2(1) = 1.0;
     58   vec1(2) = 15.0; vec2(2) = 2.0;
     59   vec1(3) = 16.0; vec2(3) = 3.0;
     60   vec1(4) = 23.0; vec2(4) = 4.0;
     61   vec1(5) = 42.0; vec2(5) = 5.0;
     62 
     63   // Test against shallow copy.
     64   TensorFixedSize<float, Sizes<6> > copy = vec1;
     65   VERIFY_IS_NOT_EQUAL(vec1.data(), copy.data());
     66   for (int i = 0; i < 6; ++i) {
     67     VERIFY_IS_APPROX(vec1(i), copy(i));
     68   }
     69   copy = vec1;
     70   VERIFY_IS_NOT_EQUAL(vec1.data(), copy.data());
     71   for (int i = 0; i < 6; ++i) {
     72     VERIFY_IS_APPROX(vec1(i), copy(i));
     73   }
     74 
     75   TensorFixedSize<float, Sizes<6> > vec3 = vec1.sqrt();
     76   TensorFixedSize<float, Sizes<6>, RowMajor> vec4 = vec2.sqrt();
     77 
     78   VERIFY_IS_EQUAL((vec3.size()), 6);
     79   VERIFY_IS_EQUAL(vec3.rank(), 1);
     80   //  VERIFY_IS_EQUAL((vec3.dimensions()[0]), 6);
     81   //  VERIFY_IS_EQUAL((vec3.dimension(0)), 6);
     82 
     83   VERIFY_IS_APPROX(vec3(0), sqrtf(4.0));
     84   VERIFY_IS_APPROX(vec3(1), sqrtf(8.0));
     85   VERIFY_IS_APPROX(vec3(2), sqrtf(15.0));
     86   VERIFY_IS_APPROX(vec3(3), sqrtf(16.0));
     87   VERIFY_IS_APPROX(vec3(4), sqrtf(23.0));
     88   VERIFY_IS_APPROX(vec3(5), sqrtf(42.0));
     89 
     90   VERIFY_IS_APPROX(vec4(0), sqrtf(0.0));
     91   VERIFY_IS_APPROX(vec4(1), sqrtf(1.0));
     92   VERIFY_IS_APPROX(vec4(2), sqrtf(2.0));
     93   VERIFY_IS_APPROX(vec4(3), sqrtf(3.0));
     94   VERIFY_IS_APPROX(vec4(4), sqrtf(4.0));
     95   VERIFY_IS_APPROX(vec4(5), sqrtf(5.0));
     96 
     97   vec3 = vec1 + vec2;
     98   VERIFY_IS_APPROX(vec3(0), 4.0f + 0.0f);
     99   VERIFY_IS_APPROX(vec3(1), 8.0f + 1.0f);
    100   VERIFY_IS_APPROX(vec3(2), 15.0f + 2.0f);
    101   VERIFY_IS_APPROX(vec3(3), 16.0f + 3.0f);
    102   VERIFY_IS_APPROX(vec3(4), 23.0f + 4.0f);
    103   VERIFY_IS_APPROX(vec3(5), 42.0f + 5.0f);
    104 }
    105 
    106 static void test_tensor_map()
    107 {
    108   TensorFixedSize<float, Sizes<6> > vec1;
    109   TensorFixedSize<float, Sizes<6>, RowMajor> vec2;
    110 
    111   vec1(0) = 4.0;  vec2(0) = 0.0;
    112   vec1(1) = 8.0;  vec2(1) = 1.0;
    113   vec1(2) = 15.0; vec2(2) = 2.0;
    114   vec1(3) = 16.0; vec2(3) = 3.0;
    115   vec1(4) = 23.0; vec2(4) = 4.0;
    116   vec1(5) = 42.0; vec2(5) = 5.0;
    117 
    118   float data3[6];
    119   TensorMap<TensorFixedSize<float, Sizes<6> > > vec3(data3, 6);
    120   vec3 = vec1.sqrt() + vec2;
    121 
    122   VERIFY_IS_APPROX(vec3(0), sqrtf(4.0));
    123   VERIFY_IS_APPROX(vec3(1), sqrtf(8.0) + 1.0f);
    124   VERIFY_IS_APPROX(vec3(2), sqrtf(15.0) + 2.0f);
    125   VERIFY_IS_APPROX(vec3(3), sqrtf(16.0) + 3.0f);
    126   VERIFY_IS_APPROX(vec3(4), sqrtf(23.0) + 4.0f);
    127   VERIFY_IS_APPROX(vec3(5), sqrtf(42.0) + 5.0f);
    128 }
    129 
    130 static void test_2d()
    131 {
    132   float data1[6];
    133   TensorMap<TensorFixedSize<float, Sizes<2, 3> > > mat1(data1,2,3);
    134   float data2[6];
    135   TensorMap<TensorFixedSize<float, Sizes<2, 3>, RowMajor> > mat2(data2,2,3);
    136 
    137   VERIFY_IS_EQUAL((mat1.size()), 2*3);
    138   VERIFY_IS_EQUAL(mat1.rank(), 2);
    139   //  VERIFY_IS_EQUAL((mat1.dimension(0)), 2);
    140   //  VERIFY_IS_EQUAL((mat1.dimension(1)), 3);
    141 
    142   mat1(0,0) = 0.0;
    143   mat1(0,1) = 1.0;
    144   mat1(0,2) = 2.0;
    145   mat1(1,0) = 3.0;
    146   mat1(1,1) = 4.0;
    147   mat1(1,2) = 5.0;
    148 
    149   mat2(0,0) = -0.0;
    150   mat2(0,1) = -1.0;
    151   mat2(0,2) = -2.0;
    152   mat2(1,0) = -3.0;
    153   mat2(1,1) = -4.0;
    154   mat2(1,2) = -5.0;
    155 
    156   TensorFixedSize<float, Sizes<2, 3> > mat3;
    157   TensorFixedSize<float, Sizes<2, 3>, RowMajor> mat4;
    158   mat3 = mat1.abs();
    159   mat4 = mat2.abs();
    160 
    161   VERIFY_IS_EQUAL((mat3.size()), 2*3);
    162     //  VERIFY_IS_EQUAL((mat3.dimension(0)), 2);
    163     //  VERIFY_IS_EQUAL((mat3.dimension(1)), 3);
    164 
    165   VERIFY_IS_APPROX(mat3(0,0), 0.0f);
    166   VERIFY_IS_APPROX(mat3(0,1), 1.0f);
    167   VERIFY_IS_APPROX(mat3(0,2), 2.0f);
    168   VERIFY_IS_APPROX(mat3(1,0), 3.0f);
    169   VERIFY_IS_APPROX(mat3(1,1), 4.0f);
    170   VERIFY_IS_APPROX(mat3(1,2), 5.0f);
    171 
    172   VERIFY_IS_APPROX(mat4(0,0), 0.0f);
    173   VERIFY_IS_APPROX(mat4(0,1), 1.0f);
    174   VERIFY_IS_APPROX(mat4(0,2), 2.0f);
    175   VERIFY_IS_APPROX(mat4(1,0), 3.0f);
    176   VERIFY_IS_APPROX(mat4(1,1), 4.0f);
    177   VERIFY_IS_APPROX(mat4(1,2), 5.0f);
    178 }
    179 
    180 static void test_3d()
    181 {
    182   TensorFixedSize<float, Sizes<2, 3, 7> > mat1;
    183   TensorFixedSize<float, Sizes<2, 3, 7>, RowMajor> mat2;
    184 
    185   VERIFY_IS_EQUAL((mat1.size()), 2*3*7);
    186   VERIFY_IS_EQUAL(mat1.rank(), 3);
    187   //  VERIFY_IS_EQUAL((mat1.dimension(0)), 2);
    188   //  VERIFY_IS_EQUAL((mat1.dimension(1)), 3);
    189   //  VERIFY_IS_EQUAL((mat1.dimension(2)), 7);
    190 
    191   float val = 0.0f;
    192   for (int i = 0; i < 2; ++i) {
    193     for (int j = 0; j < 3; ++j) {
    194       for (int k = 0; k < 7; ++k) {
    195         mat1(i,j,k) = val;
    196         mat2(i,j,k) = val;
    197         val += 1.0f;
    198       }
    199     }
    200   }
    201 
    202   TensorFixedSize<float, Sizes<2, 3, 7> > mat3;
    203   mat3 = mat1.sqrt();
    204   TensorFixedSize<float, Sizes<2, 3, 7>, RowMajor> mat4;
    205   mat4 = mat2.sqrt();
    206 
    207   VERIFY_IS_EQUAL((mat3.size()), 2*3*7);
    208   //  VERIFY_IS_EQUAL((mat3.dimension(0)), 2);
    209   //  VERIFY_IS_EQUAL((mat3.dimension(1)), 3);
    210   //  VERIFY_IS_EQUAL((mat3.dimension(2)), 7);
    211 
    212 
    213   val = 0.0f;
    214   for (int i = 0; i < 2; ++i) {
    215     for (int j = 0; j < 3; ++j) {
    216       for (int k = 0; k < 7; ++k) {
    217         VERIFY_IS_APPROX(mat3(i,j,k), sqrtf(val));
    218         VERIFY_IS_APPROX(mat4(i,j,k), sqrtf(val));
    219         val += 1.0f;
    220       }
    221     }
    222   }
    223 }
    224 
    225 
    226 static void test_array()
    227 {
    228   TensorFixedSize<float, Sizes<2, 3, 7> > mat1;
    229   float val = 0.0f;
    230   for (int i = 0; i < 2; ++i) {
    231     for (int j = 0; j < 3; ++j) {
    232       for (int k = 0; k < 7; ++k) {
    233         mat1(i,j,k) = val;
    234         val += 1.0f;
    235       }
    236     }
    237   }
    238 
    239   TensorFixedSize<float, Sizes<2, 3, 7> > mat3;
    240   mat3 = mat1.pow(3.5f);
    241 
    242   val = 0.0f;
    243   for (int i = 0; i < 2; ++i) {
    244     for (int j = 0; j < 3; ++j) {
    245       for (int k = 0; k < 7; ++k) {
    246         VERIFY_IS_APPROX(mat3(i,j,k), powf(val, 3.5f));
    247         val += 1.0f;
    248       }
    249     }
    250   }
    251 }
    252 
    253 void test_cxx11_tensor_fixed_size()
    254 {
    255   CALL_SUBTEST(test_0d());
    256   CALL_SUBTEST(test_1d());
    257   CALL_SUBTEST(test_tensor_map());
    258   CALL_SUBTEST(test_2d());
    259   CALL_SUBTEST(test_3d());
    260   CALL_SUBTEST(test_array());
    261 }
    262