Home | History | Annotate | Download | only in AsmParser
      1 //===-- LLParser.cpp - Parser Class ---------------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 //  This file defines the parser class for .ll files.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "LLParser.h"
     15 #include "llvm/ADT/SmallPtrSet.h"
     16 #include "llvm/ADT/STLExtras.h"
     17 #include "llvm/ADT/StringExtras.h"
     18 #include "llvm/AsmParser/SlotMapping.h"
     19 #include "llvm/IR/AutoUpgrade.h"
     20 #include "llvm/IR/CallingConv.h"
     21 #include "llvm/IR/CallSite.h"
     22 #include "llvm/IR/Constants.h"
     23 #include "llvm/IR/DebugInfo.h"
     24 #include "llvm/IR/DebugInfoMetadata.h"
     25 #include "llvm/IR/DerivedTypes.h"
     26 #include "llvm/IR/InlineAsm.h"
     27 #include "llvm/IR/Instructions.h"
     28 #include "llvm/IR/Intrinsics.h"
     29 #include "llvm/IR/LLVMContext.h"
     30 #include "llvm/IR/Module.h"
     31 #include "llvm/IR/Operator.h"
     32 #include "llvm/IR/ValueSymbolTable.h"
     33 #include "llvm/Support/Debug.h"
     34 #include "llvm/Support/Dwarf.h"
     35 #include "llvm/Support/ErrorHandling.h"
     36 #include "llvm/Support/SaveAndRestore.h"
     37 #include "llvm/Support/raw_ostream.h"
     38 using namespace llvm;
     39 
     40 static std::string getTypeString(Type *T) {
     41   std::string Result;
     42   raw_string_ostream Tmp(Result);
     43   Tmp << *T;
     44   return Tmp.str();
     45 }
     46 
     47 /// Run: module ::= toplevelentity*
     48 bool LLParser::Run() {
     49   // Prime the lexer.
     50   Lex.Lex();
     51 
     52   if (Context.shouldDiscardValueNames())
     53     return Error(
     54         Lex.getLoc(),
     55         "Can't read textual IR with a Context that discards named Values");
     56 
     57   return ParseTopLevelEntities() ||
     58          ValidateEndOfModule();
     59 }
     60 
     61 bool LLParser::parseStandaloneConstantValue(Constant *&C,
     62                                             const SlotMapping *Slots) {
     63   restoreParsingState(Slots);
     64   Lex.Lex();
     65 
     66   Type *Ty = nullptr;
     67   if (ParseType(Ty) || parseConstantValue(Ty, C))
     68     return true;
     69   if (Lex.getKind() != lltok::Eof)
     70     return Error(Lex.getLoc(), "expected end of string");
     71   return false;
     72 }
     73 
     74 bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read,
     75                                     const SlotMapping *Slots) {
     76   restoreParsingState(Slots);
     77   Lex.Lex();
     78 
     79   Read = 0;
     80   SMLoc Start = Lex.getLoc();
     81   Ty = nullptr;
     82   if (ParseType(Ty))
     83     return true;
     84   SMLoc End = Lex.getLoc();
     85   Read = End.getPointer() - Start.getPointer();
     86 
     87   return false;
     88 }
     89 
     90 void LLParser::restoreParsingState(const SlotMapping *Slots) {
     91   if (!Slots)
     92     return;
     93   NumberedVals = Slots->GlobalValues;
     94   NumberedMetadata = Slots->MetadataNodes;
     95   for (const auto &I : Slots->NamedTypes)
     96     NamedTypes.insert(
     97         std::make_pair(I.getKey(), std::make_pair(I.second, LocTy())));
     98   for (const auto &I : Slots->Types)
     99     NumberedTypes.insert(
    100         std::make_pair(I.first, std::make_pair(I.second, LocTy())));
    101 }
    102 
    103 /// ValidateEndOfModule - Do final validity and sanity checks at the end of the
    104 /// module.
    105 bool LLParser::ValidateEndOfModule() {
    106   // Handle any function attribute group forward references.
    107   for (std::map<Value*, std::vector<unsigned> >::iterator
    108          I = ForwardRefAttrGroups.begin(), E = ForwardRefAttrGroups.end();
    109          I != E; ++I) {
    110     Value *V = I->first;
    111     std::vector<unsigned> &Vec = I->second;
    112     AttrBuilder B;
    113 
    114     for (std::vector<unsigned>::iterator VI = Vec.begin(), VE = Vec.end();
    115          VI != VE; ++VI)
    116       B.merge(NumberedAttrBuilders[*VI]);
    117 
    118     if (Function *Fn = dyn_cast<Function>(V)) {
    119       AttributeSet AS = Fn->getAttributes();
    120       AttrBuilder FnAttrs(AS.getFnAttributes(), AttributeSet::FunctionIndex);
    121       AS = AS.removeAttributes(Context, AttributeSet::FunctionIndex,
    122                                AS.getFnAttributes());
    123 
    124       FnAttrs.merge(B);
    125 
    126       // If the alignment was parsed as an attribute, move to the alignment
    127       // field.
    128       if (FnAttrs.hasAlignmentAttr()) {
    129         Fn->setAlignment(FnAttrs.getAlignment());
    130         FnAttrs.removeAttribute(Attribute::Alignment);
    131       }
    132 
    133       AS = AS.addAttributes(Context, AttributeSet::FunctionIndex,
    134                             AttributeSet::get(Context,
    135                                               AttributeSet::FunctionIndex,
    136                                               FnAttrs));
    137       Fn->setAttributes(AS);
    138     } else if (CallInst *CI = dyn_cast<CallInst>(V)) {
    139       AttributeSet AS = CI->getAttributes();
    140       AttrBuilder FnAttrs(AS.getFnAttributes(), AttributeSet::FunctionIndex);
    141       AS = AS.removeAttributes(Context, AttributeSet::FunctionIndex,
    142                                AS.getFnAttributes());
    143       FnAttrs.merge(B);
    144       AS = AS.addAttributes(Context, AttributeSet::FunctionIndex,
    145                             AttributeSet::get(Context,
    146                                               AttributeSet::FunctionIndex,
    147                                               FnAttrs));
    148       CI->setAttributes(AS);
    149     } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) {
    150       AttributeSet AS = II->getAttributes();
    151       AttrBuilder FnAttrs(AS.getFnAttributes(), AttributeSet::FunctionIndex);
    152       AS = AS.removeAttributes(Context, AttributeSet::FunctionIndex,
    153                                AS.getFnAttributes());
    154       FnAttrs.merge(B);
    155       AS = AS.addAttributes(Context, AttributeSet::FunctionIndex,
    156                             AttributeSet::get(Context,
    157                                               AttributeSet::FunctionIndex,
    158                                               FnAttrs));
    159       II->setAttributes(AS);
    160     } else {
    161       llvm_unreachable("invalid object with forward attribute group reference");
    162     }
    163   }
    164 
    165   // If there are entries in ForwardRefBlockAddresses at this point, the
    166   // function was never defined.
    167   if (!ForwardRefBlockAddresses.empty())
    168     return Error(ForwardRefBlockAddresses.begin()->first.Loc,
    169                  "expected function name in blockaddress");
    170 
    171   for (const auto &NT : NumberedTypes)
    172     if (NT.second.second.isValid())
    173       return Error(NT.second.second,
    174                    "use of undefined type '%" + Twine(NT.first) + "'");
    175 
    176   for (StringMap<std::pair<Type*, LocTy> >::iterator I =
    177        NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I)
    178     if (I->second.second.isValid())
    179       return Error(I->second.second,
    180                    "use of undefined type named '" + I->getKey() + "'");
    181 
    182   if (!ForwardRefComdats.empty())
    183     return Error(ForwardRefComdats.begin()->second,
    184                  "use of undefined comdat '$" +
    185                      ForwardRefComdats.begin()->first + "'");
    186 
    187   if (!ForwardRefVals.empty())
    188     return Error(ForwardRefVals.begin()->second.second,
    189                  "use of undefined value '@" + ForwardRefVals.begin()->first +
    190                  "'");
    191 
    192   if (!ForwardRefValIDs.empty())
    193     return Error(ForwardRefValIDs.begin()->second.second,
    194                  "use of undefined value '@" +
    195                  Twine(ForwardRefValIDs.begin()->first) + "'");
    196 
    197   if (!ForwardRefMDNodes.empty())
    198     return Error(ForwardRefMDNodes.begin()->second.second,
    199                  "use of undefined metadata '!" +
    200                  Twine(ForwardRefMDNodes.begin()->first) + "'");
    201 
    202   // Resolve metadata cycles.
    203   for (auto &N : NumberedMetadata) {
    204     if (N.second && !N.second->isResolved())
    205       N.second->resolveCycles();
    206   }
    207 
    208   for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++)
    209     UpgradeInstWithTBAATag(InstsWithTBAATag[I]);
    210 
    211   // Look for intrinsic functions and CallInst that need to be upgraded
    212   for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; )
    213     UpgradeCallsToIntrinsic(&*FI++); // must be post-increment, as we remove
    214 
    215   // Some types could be renamed during loading if several modules are
    216   // loaded in the same LLVMContext (LTO scenario). In this case we should
    217   // remangle intrinsics names as well.
    218   for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) {
    219     Function *F = &*FI++;
    220     if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F)) {
    221       F->replaceAllUsesWith(Remangled.getValue());
    222       F->eraseFromParent();
    223     }
    224   }
    225 
    226   UpgradeDebugInfo(*M);
    227 
    228   UpgradeModuleFlags(*M);
    229 
    230   if (!Slots)
    231     return false;
    232   // Initialize the slot mapping.
    233   // Because by this point we've parsed and validated everything, we can "steal"
    234   // the mapping from LLParser as it doesn't need it anymore.
    235   Slots->GlobalValues = std::move(NumberedVals);
    236   Slots->MetadataNodes = std::move(NumberedMetadata);
    237   for (const auto &I : NamedTypes)
    238     Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first));
    239   for (const auto &I : NumberedTypes)
    240     Slots->Types.insert(std::make_pair(I.first, I.second.first));
    241 
    242   return false;
    243 }
    244 
    245 //===----------------------------------------------------------------------===//
    246 // Top-Level Entities
    247 //===----------------------------------------------------------------------===//
    248 
    249 bool LLParser::ParseTopLevelEntities() {
    250   while (1) {
    251     switch (Lex.getKind()) {
    252     default:         return TokError("expected top-level entity");
    253     case lltok::Eof: return false;
    254     case lltok::kw_declare: if (ParseDeclare()) return true; break;
    255     case lltok::kw_define:  if (ParseDefine()) return true; break;
    256     case lltok::kw_module:  if (ParseModuleAsm()) return true; break;
    257     case lltok::kw_target:  if (ParseTargetDefinition()) return true; break;
    258     case lltok::kw_source_filename:
    259       if (ParseSourceFileName())
    260         return true;
    261       break;
    262     case lltok::kw_deplibs: if (ParseDepLibs()) return true; break;
    263     case lltok::LocalVarID: if (ParseUnnamedType()) return true; break;
    264     case lltok::LocalVar:   if (ParseNamedType()) return true; break;
    265     case lltok::GlobalID:   if (ParseUnnamedGlobal()) return true; break;
    266     case lltok::GlobalVar:  if (ParseNamedGlobal()) return true; break;
    267     case lltok::ComdatVar:  if (parseComdat()) return true; break;
    268     case lltok::exclaim:    if (ParseStandaloneMetadata()) return true; break;
    269     case lltok::MetadataVar:if (ParseNamedMetadata()) return true; break;
    270     case lltok::kw_attributes: if (ParseUnnamedAttrGrp()) return true; break;
    271     case lltok::kw_uselistorder: if (ParseUseListOrder()) return true; break;
    272     case lltok::kw_uselistorder_bb:
    273                                  if (ParseUseListOrderBB()) return true; break;
    274     }
    275   }
    276 }
    277 
    278 
    279 /// toplevelentity
    280 ///   ::= 'module' 'asm' STRINGCONSTANT
    281 bool LLParser::ParseModuleAsm() {
    282   assert(Lex.getKind() == lltok::kw_module);
    283   Lex.Lex();
    284 
    285   std::string AsmStr;
    286   if (ParseToken(lltok::kw_asm, "expected 'module asm'") ||
    287       ParseStringConstant(AsmStr)) return true;
    288 
    289   M->appendModuleInlineAsm(AsmStr);
    290   return false;
    291 }
    292 
    293 /// toplevelentity
    294 ///   ::= 'target' 'triple' '=' STRINGCONSTANT
    295 ///   ::= 'target' 'datalayout' '=' STRINGCONSTANT
    296 bool LLParser::ParseTargetDefinition() {
    297   assert(Lex.getKind() == lltok::kw_target);
    298   std::string Str;
    299   switch (Lex.Lex()) {
    300   default: return TokError("unknown target property");
    301   case lltok::kw_triple:
    302     Lex.Lex();
    303     if (ParseToken(lltok::equal, "expected '=' after target triple") ||
    304         ParseStringConstant(Str))
    305       return true;
    306     M->setTargetTriple(Str);
    307     return false;
    308   case lltok::kw_datalayout:
    309     Lex.Lex();
    310     if (ParseToken(lltok::equal, "expected '=' after target datalayout") ||
    311         ParseStringConstant(Str))
    312       return true;
    313     M->setDataLayout(Str);
    314     return false;
    315   }
    316 }
    317 
    318 /// toplevelentity
    319 ///   ::= 'source_filename' '=' STRINGCONSTANT
    320 bool LLParser::ParseSourceFileName() {
    321   assert(Lex.getKind() == lltok::kw_source_filename);
    322   std::string Str;
    323   Lex.Lex();
    324   if (ParseToken(lltok::equal, "expected '=' after source_filename") ||
    325       ParseStringConstant(Str))
    326     return true;
    327   M->setSourceFileName(Str);
    328   return false;
    329 }
    330 
    331 /// toplevelentity
    332 ///   ::= 'deplibs' '=' '[' ']'
    333 ///   ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']'
    334 /// FIXME: Remove in 4.0. Currently parse, but ignore.
    335 bool LLParser::ParseDepLibs() {
    336   assert(Lex.getKind() == lltok::kw_deplibs);
    337   Lex.Lex();
    338   if (ParseToken(lltok::equal, "expected '=' after deplibs") ||
    339       ParseToken(lltok::lsquare, "expected '=' after deplibs"))
    340     return true;
    341 
    342   if (EatIfPresent(lltok::rsquare))
    343     return false;
    344 
    345   do {
    346     std::string Str;
    347     if (ParseStringConstant(Str)) return true;
    348   } while (EatIfPresent(lltok::comma));
    349 
    350   return ParseToken(lltok::rsquare, "expected ']' at end of list");
    351 }
    352 
    353 /// ParseUnnamedType:
    354 ///   ::= LocalVarID '=' 'type' type
    355 bool LLParser::ParseUnnamedType() {
    356   LocTy TypeLoc = Lex.getLoc();
    357   unsigned TypeID = Lex.getUIntVal();
    358   Lex.Lex(); // eat LocalVarID;
    359 
    360   if (ParseToken(lltok::equal, "expected '=' after name") ||
    361       ParseToken(lltok::kw_type, "expected 'type' after '='"))
    362     return true;
    363 
    364   Type *Result = nullptr;
    365   if (ParseStructDefinition(TypeLoc, "",
    366                             NumberedTypes[TypeID], Result)) return true;
    367 
    368   if (!isa<StructType>(Result)) {
    369     std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID];
    370     if (Entry.first)
    371       return Error(TypeLoc, "non-struct types may not be recursive");
    372     Entry.first = Result;
    373     Entry.second = SMLoc();
    374   }
    375 
    376   return false;
    377 }
    378 
    379 
    380 /// toplevelentity
    381 ///   ::= LocalVar '=' 'type' type
    382 bool LLParser::ParseNamedType() {
    383   std::string Name = Lex.getStrVal();
    384   LocTy NameLoc = Lex.getLoc();
    385   Lex.Lex();  // eat LocalVar.
    386 
    387   if (ParseToken(lltok::equal, "expected '=' after name") ||
    388       ParseToken(lltok::kw_type, "expected 'type' after name"))
    389     return true;
    390 
    391   Type *Result = nullptr;
    392   if (ParseStructDefinition(NameLoc, Name,
    393                             NamedTypes[Name], Result)) return true;
    394 
    395   if (!isa<StructType>(Result)) {
    396     std::pair<Type*, LocTy> &Entry = NamedTypes[Name];
    397     if (Entry.first)
    398       return Error(NameLoc, "non-struct types may not be recursive");
    399     Entry.first = Result;
    400     Entry.second = SMLoc();
    401   }
    402 
    403   return false;
    404 }
    405 
    406 
    407 /// toplevelentity
    408 ///   ::= 'declare' FunctionHeader
    409 bool LLParser::ParseDeclare() {
    410   assert(Lex.getKind() == lltok::kw_declare);
    411   Lex.Lex();
    412 
    413   std::vector<std::pair<unsigned, MDNode *>> MDs;
    414   while (Lex.getKind() == lltok::MetadataVar) {
    415     unsigned MDK;
    416     MDNode *N;
    417     if (ParseMetadataAttachment(MDK, N))
    418       return true;
    419     MDs.push_back({MDK, N});
    420   }
    421 
    422   Function *F;
    423   if (ParseFunctionHeader(F, false))
    424     return true;
    425   for (auto &MD : MDs)
    426     F->addMetadata(MD.first, *MD.second);
    427   return false;
    428 }
    429 
    430 /// toplevelentity
    431 ///   ::= 'define' FunctionHeader (!dbg !56)* '{' ...
    432 bool LLParser::ParseDefine() {
    433   assert(Lex.getKind() == lltok::kw_define);
    434   Lex.Lex();
    435 
    436   Function *F;
    437   return ParseFunctionHeader(F, true) ||
    438          ParseOptionalFunctionMetadata(*F) ||
    439          ParseFunctionBody(*F);
    440 }
    441 
    442 /// ParseGlobalType
    443 ///   ::= 'constant'
    444 ///   ::= 'global'
    445 bool LLParser::ParseGlobalType(bool &IsConstant) {
    446   if (Lex.getKind() == lltok::kw_constant)
    447     IsConstant = true;
    448   else if (Lex.getKind() == lltok::kw_global)
    449     IsConstant = false;
    450   else {
    451     IsConstant = false;
    452     return TokError("expected 'global' or 'constant'");
    453   }
    454   Lex.Lex();
    455   return false;
    456 }
    457 
    458 bool LLParser::ParseOptionalUnnamedAddr(
    459     GlobalVariable::UnnamedAddr &UnnamedAddr) {
    460   if (EatIfPresent(lltok::kw_unnamed_addr))
    461     UnnamedAddr = GlobalValue::UnnamedAddr::Global;
    462   else if (EatIfPresent(lltok::kw_local_unnamed_addr))
    463     UnnamedAddr = GlobalValue::UnnamedAddr::Local;
    464   else
    465     UnnamedAddr = GlobalValue::UnnamedAddr::None;
    466   return false;
    467 }
    468 
    469 /// ParseUnnamedGlobal:
    470 ///   OptionalVisibility (ALIAS | IFUNC) ...
    471 ///   OptionalLinkage OptionalVisibility OptionalDLLStorageClass
    472 ///                                                     ...   -> global variable
    473 ///   GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ...
    474 ///   GlobalID '=' OptionalLinkage OptionalVisibility OptionalDLLStorageClass
    475 ///                                                     ...   -> global variable
    476 bool LLParser::ParseUnnamedGlobal() {
    477   unsigned VarID = NumberedVals.size();
    478   std::string Name;
    479   LocTy NameLoc = Lex.getLoc();
    480 
    481   // Handle the GlobalID form.
    482   if (Lex.getKind() == lltok::GlobalID) {
    483     if (Lex.getUIntVal() != VarID)
    484       return Error(Lex.getLoc(), "variable expected to be numbered '%" +
    485                    Twine(VarID) + "'");
    486     Lex.Lex(); // eat GlobalID;
    487 
    488     if (ParseToken(lltok::equal, "expected '=' after name"))
    489       return true;
    490   }
    491 
    492   bool HasLinkage;
    493   unsigned Linkage, Visibility, DLLStorageClass;
    494   GlobalVariable::ThreadLocalMode TLM;
    495   GlobalVariable::UnnamedAddr UnnamedAddr;
    496   if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass) ||
    497       ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr))
    498     return true;
    499 
    500   if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc)
    501     return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
    502                        DLLStorageClass, TLM, UnnamedAddr);
    503 
    504   return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility,
    505                              DLLStorageClass, TLM, UnnamedAddr);
    506 }
    507 
    508 /// ParseNamedGlobal:
    509 ///   GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ...
    510 ///   GlobalVar '=' OptionalLinkage OptionalVisibility OptionalDLLStorageClass
    511 ///                                                     ...   -> global variable
    512 bool LLParser::ParseNamedGlobal() {
    513   assert(Lex.getKind() == lltok::GlobalVar);
    514   LocTy NameLoc = Lex.getLoc();
    515   std::string Name = Lex.getStrVal();
    516   Lex.Lex();
    517 
    518   bool HasLinkage;
    519   unsigned Linkage, Visibility, DLLStorageClass;
    520   GlobalVariable::ThreadLocalMode TLM;
    521   GlobalVariable::UnnamedAddr UnnamedAddr;
    522   if (ParseToken(lltok::equal, "expected '=' in global variable") ||
    523       ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass) ||
    524       ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr))
    525     return true;
    526 
    527   if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc)
    528     return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
    529                        DLLStorageClass, TLM, UnnamedAddr);
    530 
    531   return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility,
    532                              DLLStorageClass, TLM, UnnamedAddr);
    533 }
    534 
    535 bool LLParser::parseComdat() {
    536   assert(Lex.getKind() == lltok::ComdatVar);
    537   std::string Name = Lex.getStrVal();
    538   LocTy NameLoc = Lex.getLoc();
    539   Lex.Lex();
    540 
    541   if (ParseToken(lltok::equal, "expected '=' here"))
    542     return true;
    543 
    544   if (ParseToken(lltok::kw_comdat, "expected comdat keyword"))
    545     return TokError("expected comdat type");
    546 
    547   Comdat::SelectionKind SK;
    548   switch (Lex.getKind()) {
    549   default:
    550     return TokError("unknown selection kind");
    551   case lltok::kw_any:
    552     SK = Comdat::Any;
    553     break;
    554   case lltok::kw_exactmatch:
    555     SK = Comdat::ExactMatch;
    556     break;
    557   case lltok::kw_largest:
    558     SK = Comdat::Largest;
    559     break;
    560   case lltok::kw_noduplicates:
    561     SK = Comdat::NoDuplicates;
    562     break;
    563   case lltok::kw_samesize:
    564     SK = Comdat::SameSize;
    565     break;
    566   }
    567   Lex.Lex();
    568 
    569   // See if the comdat was forward referenced, if so, use the comdat.
    570   Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
    571   Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
    572   if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name))
    573     return Error(NameLoc, "redefinition of comdat '$" + Name + "'");
    574 
    575   Comdat *C;
    576   if (I != ComdatSymTab.end())
    577     C = &I->second;
    578   else
    579     C = M->getOrInsertComdat(Name);
    580   C->setSelectionKind(SK);
    581 
    582   return false;
    583 }
    584 
    585 // MDString:
    586 //   ::= '!' STRINGCONSTANT
    587 bool LLParser::ParseMDString(MDString *&Result) {
    588   std::string Str;
    589   if (ParseStringConstant(Str)) return true;
    590   Result = MDString::get(Context, Str);
    591   return false;
    592 }
    593 
    594 // MDNode:
    595 //   ::= '!' MDNodeNumber
    596 bool LLParser::ParseMDNodeID(MDNode *&Result) {
    597   // !{ ..., !42, ... }
    598   LocTy IDLoc = Lex.getLoc();
    599   unsigned MID = 0;
    600   if (ParseUInt32(MID))
    601     return true;
    602 
    603   // If not a forward reference, just return it now.
    604   if (NumberedMetadata.count(MID)) {
    605     Result = NumberedMetadata[MID];
    606     return false;
    607   }
    608 
    609   // Otherwise, create MDNode forward reference.
    610   auto &FwdRef = ForwardRefMDNodes[MID];
    611   FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), IDLoc);
    612 
    613   Result = FwdRef.first.get();
    614   NumberedMetadata[MID].reset(Result);
    615   return false;
    616 }
    617 
    618 /// ParseNamedMetadata:
    619 ///   !foo = !{ !1, !2 }
    620 bool LLParser::ParseNamedMetadata() {
    621   assert(Lex.getKind() == lltok::MetadataVar);
    622   std::string Name = Lex.getStrVal();
    623   Lex.Lex();
    624 
    625   if (ParseToken(lltok::equal, "expected '=' here") ||
    626       ParseToken(lltok::exclaim, "Expected '!' here") ||
    627       ParseToken(lltok::lbrace, "Expected '{' here"))
    628     return true;
    629 
    630   NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name);
    631   if (Lex.getKind() != lltok::rbrace)
    632     do {
    633       if (ParseToken(lltok::exclaim, "Expected '!' here"))
    634         return true;
    635 
    636       MDNode *N = nullptr;
    637       if (ParseMDNodeID(N)) return true;
    638       NMD->addOperand(N);
    639     } while (EatIfPresent(lltok::comma));
    640 
    641   return ParseToken(lltok::rbrace, "expected end of metadata node");
    642 }
    643 
    644 /// ParseStandaloneMetadata:
    645 ///   !42 = !{...}
    646 bool LLParser::ParseStandaloneMetadata() {
    647   assert(Lex.getKind() == lltok::exclaim);
    648   Lex.Lex();
    649   unsigned MetadataID = 0;
    650 
    651   MDNode *Init;
    652   if (ParseUInt32(MetadataID) ||
    653       ParseToken(lltok::equal, "expected '=' here"))
    654     return true;
    655 
    656   // Detect common error, from old metadata syntax.
    657   if (Lex.getKind() == lltok::Type)
    658     return TokError("unexpected type in metadata definition");
    659 
    660   bool IsDistinct = EatIfPresent(lltok::kw_distinct);
    661   if (Lex.getKind() == lltok::MetadataVar) {
    662     if (ParseSpecializedMDNode(Init, IsDistinct))
    663       return true;
    664   } else if (ParseToken(lltok::exclaim, "Expected '!' here") ||
    665              ParseMDTuple(Init, IsDistinct))
    666     return true;
    667 
    668   // See if this was forward referenced, if so, handle it.
    669   auto FI = ForwardRefMDNodes.find(MetadataID);
    670   if (FI != ForwardRefMDNodes.end()) {
    671     FI->second.first->replaceAllUsesWith(Init);
    672     ForwardRefMDNodes.erase(FI);
    673 
    674     assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work");
    675   } else {
    676     if (NumberedMetadata.count(MetadataID))
    677       return TokError("Metadata id is already used");
    678     NumberedMetadata[MetadataID].reset(Init);
    679   }
    680 
    681   return false;
    682 }
    683 
    684 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) {
    685   return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) ||
    686          (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility;
    687 }
    688 
    689 /// parseIndirectSymbol:
    690 ///   ::= GlobalVar '=' OptionalLinkage OptionalVisibility
    691 ///                     OptionalDLLStorageClass OptionalThreadLocal
    692 ///                     OptionalUnnamedAddr 'alias|ifunc' IndirectSymbol
    693 ///
    694 /// IndirectSymbol
    695 ///   ::= TypeAndValue
    696 ///
    697 /// Everything through OptionalUnnamedAddr has already been parsed.
    698 ///
    699 bool LLParser::parseIndirectSymbol(
    700     const std::string &Name, LocTy NameLoc, unsigned L, unsigned Visibility,
    701     unsigned DLLStorageClass, GlobalVariable::ThreadLocalMode TLM,
    702     GlobalVariable::UnnamedAddr UnnamedAddr) {
    703   bool IsAlias;
    704   if (Lex.getKind() == lltok::kw_alias)
    705     IsAlias = true;
    706   else if (Lex.getKind() == lltok::kw_ifunc)
    707     IsAlias = false;
    708   else
    709     llvm_unreachable("Not an alias or ifunc!");
    710   Lex.Lex();
    711 
    712   GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L;
    713 
    714   if(IsAlias && !GlobalAlias::isValidLinkage(Linkage))
    715     return Error(NameLoc, "invalid linkage type for alias");
    716 
    717   if (!isValidVisibilityForLinkage(Visibility, L))
    718     return Error(NameLoc,
    719                  "symbol with local linkage must have default visibility");
    720 
    721   Type *Ty;
    722   LocTy ExplicitTypeLoc = Lex.getLoc();
    723   if (ParseType(Ty) ||
    724       ParseToken(lltok::comma, "expected comma after alias or ifunc's type"))
    725     return true;
    726 
    727   Constant *Aliasee;
    728   LocTy AliaseeLoc = Lex.getLoc();
    729   if (Lex.getKind() != lltok::kw_bitcast &&
    730       Lex.getKind() != lltok::kw_getelementptr &&
    731       Lex.getKind() != lltok::kw_addrspacecast &&
    732       Lex.getKind() != lltok::kw_inttoptr) {
    733     if (ParseGlobalTypeAndValue(Aliasee))
    734       return true;
    735   } else {
    736     // The bitcast dest type is not present, it is implied by the dest type.
    737     ValID ID;
    738     if (ParseValID(ID))
    739       return true;
    740     if (ID.Kind != ValID::t_Constant)
    741       return Error(AliaseeLoc, "invalid aliasee");
    742     Aliasee = ID.ConstantVal;
    743   }
    744 
    745   Type *AliaseeType = Aliasee->getType();
    746   auto *PTy = dyn_cast<PointerType>(AliaseeType);
    747   if (!PTy)
    748     return Error(AliaseeLoc, "An alias or ifunc must have pointer type");
    749   unsigned AddrSpace = PTy->getAddressSpace();
    750 
    751   if (IsAlias && Ty != PTy->getElementType())
    752     return Error(
    753         ExplicitTypeLoc,
    754         "explicit pointee type doesn't match operand's pointee type");
    755 
    756   if (!IsAlias && !PTy->getElementType()->isFunctionTy())
    757     return Error(
    758         ExplicitTypeLoc,
    759         "explicit pointee type should be a function type");
    760 
    761   GlobalValue *GVal = nullptr;
    762 
    763   // See if the alias was forward referenced, if so, prepare to replace the
    764   // forward reference.
    765   if (!Name.empty()) {
    766     GVal = M->getNamedValue(Name);
    767     if (GVal) {
    768       if (!ForwardRefVals.erase(Name))
    769         return Error(NameLoc, "redefinition of global '@" + Name + "'");
    770     }
    771   } else {
    772     auto I = ForwardRefValIDs.find(NumberedVals.size());
    773     if (I != ForwardRefValIDs.end()) {
    774       GVal = I->second.first;
    775       ForwardRefValIDs.erase(I);
    776     }
    777   }
    778 
    779   // Okay, create the alias but do not insert it into the module yet.
    780   std::unique_ptr<GlobalIndirectSymbol> GA;
    781   if (IsAlias)
    782     GA.reset(GlobalAlias::create(Ty, AddrSpace,
    783                                  (GlobalValue::LinkageTypes)Linkage, Name,
    784                                  Aliasee, /*Parent*/ nullptr));
    785   else
    786     GA.reset(GlobalIFunc::create(Ty, AddrSpace,
    787                                  (GlobalValue::LinkageTypes)Linkage, Name,
    788                                  Aliasee, /*Parent*/ nullptr));
    789   GA->setThreadLocalMode(TLM);
    790   GA->setVisibility((GlobalValue::VisibilityTypes)Visibility);
    791   GA->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
    792   GA->setUnnamedAddr(UnnamedAddr);
    793 
    794   if (Name.empty())
    795     NumberedVals.push_back(GA.get());
    796 
    797   if (GVal) {
    798     // Verify that types agree.
    799     if (GVal->getType() != GA->getType())
    800       return Error(
    801           ExplicitTypeLoc,
    802           "forward reference and definition of alias have different types");
    803 
    804     // If they agree, just RAUW the old value with the alias and remove the
    805     // forward ref info.
    806     GVal->replaceAllUsesWith(GA.get());
    807     GVal->eraseFromParent();
    808   }
    809 
    810   // Insert into the module, we know its name won't collide now.
    811   if (IsAlias)
    812     M->getAliasList().push_back(cast<GlobalAlias>(GA.get()));
    813   else
    814     M->getIFuncList().push_back(cast<GlobalIFunc>(GA.get()));
    815   assert(GA->getName() == Name && "Should not be a name conflict!");
    816 
    817   // The module owns this now
    818   GA.release();
    819 
    820   return false;
    821 }
    822 
    823 /// ParseGlobal
    824 ///   ::= GlobalVar '=' OptionalLinkage OptionalVisibility OptionalDLLStorageClass
    825 ///       OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace
    826 ///       OptionalExternallyInitialized GlobalType Type Const
    827 ///   ::= OptionalLinkage OptionalVisibility OptionalDLLStorageClass
    828 ///       OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace
    829 ///       OptionalExternallyInitialized GlobalType Type Const
    830 ///
    831 /// Everything up to and including OptionalUnnamedAddr has been parsed
    832 /// already.
    833 ///
    834 bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc,
    835                            unsigned Linkage, bool HasLinkage,
    836                            unsigned Visibility, unsigned DLLStorageClass,
    837                            GlobalVariable::ThreadLocalMode TLM,
    838                            GlobalVariable::UnnamedAddr UnnamedAddr) {
    839   if (!isValidVisibilityForLinkage(Visibility, Linkage))
    840     return Error(NameLoc,
    841                  "symbol with local linkage must have default visibility");
    842 
    843   unsigned AddrSpace;
    844   bool IsConstant, IsExternallyInitialized;
    845   LocTy IsExternallyInitializedLoc;
    846   LocTy TyLoc;
    847 
    848   Type *Ty = nullptr;
    849   if (ParseOptionalAddrSpace(AddrSpace) ||
    850       ParseOptionalToken(lltok::kw_externally_initialized,
    851                          IsExternallyInitialized,
    852                          &IsExternallyInitializedLoc) ||
    853       ParseGlobalType(IsConstant) ||
    854       ParseType(Ty, TyLoc))
    855     return true;
    856 
    857   // If the linkage is specified and is external, then no initializer is
    858   // present.
    859   Constant *Init = nullptr;
    860   if (!HasLinkage ||
    861       !GlobalValue::isValidDeclarationLinkage(
    862           (GlobalValue::LinkageTypes)Linkage)) {
    863     if (ParseGlobalValue(Ty, Init))
    864       return true;
    865   }
    866 
    867   if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
    868     return Error(TyLoc, "invalid type for global variable");
    869 
    870   GlobalValue *GVal = nullptr;
    871 
    872   // See if the global was forward referenced, if so, use the global.
    873   if (!Name.empty()) {
    874     GVal = M->getNamedValue(Name);
    875     if (GVal) {
    876       if (!ForwardRefVals.erase(Name))
    877         return Error(NameLoc, "redefinition of global '@" + Name + "'");
    878     }
    879   } else {
    880     auto I = ForwardRefValIDs.find(NumberedVals.size());
    881     if (I != ForwardRefValIDs.end()) {
    882       GVal = I->second.first;
    883       ForwardRefValIDs.erase(I);
    884     }
    885   }
    886 
    887   GlobalVariable *GV;
    888   if (!GVal) {
    889     GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, nullptr,
    890                             Name, nullptr, GlobalVariable::NotThreadLocal,
    891                             AddrSpace);
    892   } else {
    893     if (GVal->getValueType() != Ty)
    894       return Error(TyLoc,
    895             "forward reference and definition of global have different types");
    896 
    897     GV = cast<GlobalVariable>(GVal);
    898 
    899     // Move the forward-reference to the correct spot in the module.
    900     M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV);
    901   }
    902 
    903   if (Name.empty())
    904     NumberedVals.push_back(GV);
    905 
    906   // Set the parsed properties on the global.
    907   if (Init)
    908     GV->setInitializer(Init);
    909   GV->setConstant(IsConstant);
    910   GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
    911   GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
    912   GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
    913   GV->setExternallyInitialized(IsExternallyInitialized);
    914   GV->setThreadLocalMode(TLM);
    915   GV->setUnnamedAddr(UnnamedAddr);
    916 
    917   // Parse attributes on the global.
    918   while (Lex.getKind() == lltok::comma) {
    919     Lex.Lex();
    920 
    921     if (Lex.getKind() == lltok::kw_section) {
    922       Lex.Lex();
    923       GV->setSection(Lex.getStrVal());
    924       if (ParseToken(lltok::StringConstant, "expected global section string"))
    925         return true;
    926     } else if (Lex.getKind() == lltok::kw_align) {
    927       unsigned Alignment;
    928       if (ParseOptionalAlignment(Alignment)) return true;
    929       GV->setAlignment(Alignment);
    930     } else if (Lex.getKind() == lltok::MetadataVar) {
    931       if (ParseGlobalObjectMetadataAttachment(*GV))
    932         return true;
    933     } else {
    934       Comdat *C;
    935       if (parseOptionalComdat(Name, C))
    936         return true;
    937       if (C)
    938         GV->setComdat(C);
    939       else
    940         return TokError("unknown global variable property!");
    941     }
    942   }
    943 
    944   return false;
    945 }
    946 
    947 /// ParseUnnamedAttrGrp
    948 ///   ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}'
    949 bool LLParser::ParseUnnamedAttrGrp() {
    950   assert(Lex.getKind() == lltok::kw_attributes);
    951   LocTy AttrGrpLoc = Lex.getLoc();
    952   Lex.Lex();
    953 
    954   if (Lex.getKind() != lltok::AttrGrpID)
    955     return TokError("expected attribute group id");
    956 
    957   unsigned VarID = Lex.getUIntVal();
    958   std::vector<unsigned> unused;
    959   LocTy BuiltinLoc;
    960   Lex.Lex();
    961 
    962   if (ParseToken(lltok::equal, "expected '=' here") ||
    963       ParseToken(lltok::lbrace, "expected '{' here") ||
    964       ParseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true,
    965                                  BuiltinLoc) ||
    966       ParseToken(lltok::rbrace, "expected end of attribute group"))
    967     return true;
    968 
    969   if (!NumberedAttrBuilders[VarID].hasAttributes())
    970     return Error(AttrGrpLoc, "attribute group has no attributes");
    971 
    972   return false;
    973 }
    974 
    975 /// ParseFnAttributeValuePairs
    976 ///   ::= <attr> | <attr> '=' <value>
    977 bool LLParser::ParseFnAttributeValuePairs(AttrBuilder &B,
    978                                           std::vector<unsigned> &FwdRefAttrGrps,
    979                                           bool inAttrGrp, LocTy &BuiltinLoc) {
    980   bool HaveError = false;
    981 
    982   B.clear();
    983 
    984   while (true) {
    985     lltok::Kind Token = Lex.getKind();
    986     if (Token == lltok::kw_builtin)
    987       BuiltinLoc = Lex.getLoc();
    988     switch (Token) {
    989     default:
    990       if (!inAttrGrp) return HaveError;
    991       return Error(Lex.getLoc(), "unterminated attribute group");
    992     case lltok::rbrace:
    993       // Finished.
    994       return false;
    995 
    996     case lltok::AttrGrpID: {
    997       // Allow a function to reference an attribute group:
    998       //
    999       //   define void @foo() #1 { ... }
   1000       if (inAttrGrp)
   1001         HaveError |=
   1002           Error(Lex.getLoc(),
   1003               "cannot have an attribute group reference in an attribute group");
   1004 
   1005       unsigned AttrGrpNum = Lex.getUIntVal();
   1006       if (inAttrGrp) break;
   1007 
   1008       // Save the reference to the attribute group. We'll fill it in later.
   1009       FwdRefAttrGrps.push_back(AttrGrpNum);
   1010       break;
   1011     }
   1012     // Target-dependent attributes:
   1013     case lltok::StringConstant: {
   1014       if (ParseStringAttribute(B))
   1015         return true;
   1016       continue;
   1017     }
   1018 
   1019     // Target-independent attributes:
   1020     case lltok::kw_align: {
   1021       // As a hack, we allow function alignment to be initially parsed as an
   1022       // attribute on a function declaration/definition or added to an attribute
   1023       // group and later moved to the alignment field.
   1024       unsigned Alignment;
   1025       if (inAttrGrp) {
   1026         Lex.Lex();
   1027         if (ParseToken(lltok::equal, "expected '=' here") ||
   1028             ParseUInt32(Alignment))
   1029           return true;
   1030       } else {
   1031         if (ParseOptionalAlignment(Alignment))
   1032           return true;
   1033       }
   1034       B.addAlignmentAttr(Alignment);
   1035       continue;
   1036     }
   1037     case lltok::kw_alignstack: {
   1038       unsigned Alignment;
   1039       if (inAttrGrp) {
   1040         Lex.Lex();
   1041         if (ParseToken(lltok::equal, "expected '=' here") ||
   1042             ParseUInt32(Alignment))
   1043           return true;
   1044       } else {
   1045         if (ParseOptionalStackAlignment(Alignment))
   1046           return true;
   1047       }
   1048       B.addStackAlignmentAttr(Alignment);
   1049       continue;
   1050     }
   1051     case lltok::kw_allocsize: {
   1052       unsigned ElemSizeArg;
   1053       Optional<unsigned> NumElemsArg;
   1054       // inAttrGrp doesn't matter; we only support allocsize(a[, b])
   1055       if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg))
   1056         return true;
   1057       B.addAllocSizeAttr(ElemSizeArg, NumElemsArg);
   1058       continue;
   1059     }
   1060     case lltok::kw_alwaysinline: B.addAttribute(Attribute::AlwaysInline); break;
   1061     case lltok::kw_argmemonly: B.addAttribute(Attribute::ArgMemOnly); break;
   1062     case lltok::kw_builtin: B.addAttribute(Attribute::Builtin); break;
   1063     case lltok::kw_cold: B.addAttribute(Attribute::Cold); break;
   1064     case lltok::kw_convergent: B.addAttribute(Attribute::Convergent); break;
   1065     case lltok::kw_inaccessiblememonly:
   1066       B.addAttribute(Attribute::InaccessibleMemOnly); break;
   1067     case lltok::kw_inaccessiblemem_or_argmemonly:
   1068       B.addAttribute(Attribute::InaccessibleMemOrArgMemOnly); break;
   1069     case lltok::kw_inlinehint: B.addAttribute(Attribute::InlineHint); break;
   1070     case lltok::kw_jumptable: B.addAttribute(Attribute::JumpTable); break;
   1071     case lltok::kw_minsize: B.addAttribute(Attribute::MinSize); break;
   1072     case lltok::kw_naked: B.addAttribute(Attribute::Naked); break;
   1073     case lltok::kw_nobuiltin: B.addAttribute(Attribute::NoBuiltin); break;
   1074     case lltok::kw_noduplicate: B.addAttribute(Attribute::NoDuplicate); break;
   1075     case lltok::kw_noimplicitfloat:
   1076       B.addAttribute(Attribute::NoImplicitFloat); break;
   1077     case lltok::kw_noinline: B.addAttribute(Attribute::NoInline); break;
   1078     case lltok::kw_nonlazybind: B.addAttribute(Attribute::NonLazyBind); break;
   1079     case lltok::kw_noredzone: B.addAttribute(Attribute::NoRedZone); break;
   1080     case lltok::kw_noreturn: B.addAttribute(Attribute::NoReturn); break;
   1081     case lltok::kw_norecurse: B.addAttribute(Attribute::NoRecurse); break;
   1082     case lltok::kw_nounwind: B.addAttribute(Attribute::NoUnwind); break;
   1083     case lltok::kw_optnone: B.addAttribute(Attribute::OptimizeNone); break;
   1084     case lltok::kw_optsize: B.addAttribute(Attribute::OptimizeForSize); break;
   1085     case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break;
   1086     case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break;
   1087     case lltok::kw_returns_twice:
   1088       B.addAttribute(Attribute::ReturnsTwice); break;
   1089     case lltok::kw_ssp: B.addAttribute(Attribute::StackProtect); break;
   1090     case lltok::kw_sspreq: B.addAttribute(Attribute::StackProtectReq); break;
   1091     case lltok::kw_sspstrong:
   1092       B.addAttribute(Attribute::StackProtectStrong); break;
   1093     case lltok::kw_safestack: B.addAttribute(Attribute::SafeStack); break;
   1094     case lltok::kw_sanitize_address:
   1095       B.addAttribute(Attribute::SanitizeAddress); break;
   1096     case lltok::kw_sanitize_thread:
   1097       B.addAttribute(Attribute::SanitizeThread); break;
   1098     case lltok::kw_sanitize_memory:
   1099       B.addAttribute(Attribute::SanitizeMemory); break;
   1100     case lltok::kw_uwtable: B.addAttribute(Attribute::UWTable); break;
   1101     case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break;
   1102 
   1103     // Error handling.
   1104     case lltok::kw_inreg:
   1105     case lltok::kw_signext:
   1106     case lltok::kw_zeroext:
   1107       HaveError |=
   1108         Error(Lex.getLoc(),
   1109               "invalid use of attribute on a function");
   1110       break;
   1111     case lltok::kw_byval:
   1112     case lltok::kw_dereferenceable:
   1113     case lltok::kw_dereferenceable_or_null:
   1114     case lltok::kw_inalloca:
   1115     case lltok::kw_nest:
   1116     case lltok::kw_noalias:
   1117     case lltok::kw_nocapture:
   1118     case lltok::kw_nonnull:
   1119     case lltok::kw_returned:
   1120     case lltok::kw_sret:
   1121     case lltok::kw_swifterror:
   1122     case lltok::kw_swiftself:
   1123       HaveError |=
   1124         Error(Lex.getLoc(),
   1125               "invalid use of parameter-only attribute on a function");
   1126       break;
   1127     }
   1128 
   1129     Lex.Lex();
   1130   }
   1131 }
   1132 
   1133 //===----------------------------------------------------------------------===//
   1134 // GlobalValue Reference/Resolution Routines.
   1135 //===----------------------------------------------------------------------===//
   1136 
   1137 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy,
   1138                                               const std::string &Name) {
   1139   if (auto *FT = dyn_cast<FunctionType>(PTy->getElementType()))
   1140     return Function::Create(FT, GlobalValue::ExternalWeakLinkage, Name, M);
   1141   else
   1142     return new GlobalVariable(*M, PTy->getElementType(), false,
   1143                               GlobalValue::ExternalWeakLinkage, nullptr, Name,
   1144                               nullptr, GlobalVariable::NotThreadLocal,
   1145                               PTy->getAddressSpace());
   1146 }
   1147 
   1148 /// GetGlobalVal - Get a value with the specified name or ID, creating a
   1149 /// forward reference record if needed.  This can return null if the value
   1150 /// exists but does not have the right type.
   1151 GlobalValue *LLParser::GetGlobalVal(const std::string &Name, Type *Ty,
   1152                                     LocTy Loc) {
   1153   PointerType *PTy = dyn_cast<PointerType>(Ty);
   1154   if (!PTy) {
   1155     Error(Loc, "global variable reference must have pointer type");
   1156     return nullptr;
   1157   }
   1158 
   1159   // Look this name up in the normal function symbol table.
   1160   GlobalValue *Val =
   1161     cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
   1162 
   1163   // If this is a forward reference for the value, see if we already created a
   1164   // forward ref record.
   1165   if (!Val) {
   1166     auto I = ForwardRefVals.find(Name);
   1167     if (I != ForwardRefVals.end())
   1168       Val = I->second.first;
   1169   }
   1170 
   1171   // If we have the value in the symbol table or fwd-ref table, return it.
   1172   if (Val) {
   1173     if (Val->getType() == Ty) return Val;
   1174     Error(Loc, "'@" + Name + "' defined with type '" +
   1175           getTypeString(Val->getType()) + "'");
   1176     return nullptr;
   1177   }
   1178 
   1179   // Otherwise, create a new forward reference for this value and remember it.
   1180   GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, Name);
   1181   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
   1182   return FwdVal;
   1183 }
   1184 
   1185 GlobalValue *LLParser::GetGlobalVal(unsigned ID, Type *Ty, LocTy Loc) {
   1186   PointerType *PTy = dyn_cast<PointerType>(Ty);
   1187   if (!PTy) {
   1188     Error(Loc, "global variable reference must have pointer type");
   1189     return nullptr;
   1190   }
   1191 
   1192   GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
   1193 
   1194   // If this is a forward reference for the value, see if we already created a
   1195   // forward ref record.
   1196   if (!Val) {
   1197     auto I = ForwardRefValIDs.find(ID);
   1198     if (I != ForwardRefValIDs.end())
   1199       Val = I->second.first;
   1200   }
   1201 
   1202   // If we have the value in the symbol table or fwd-ref table, return it.
   1203   if (Val) {
   1204     if (Val->getType() == Ty) return Val;
   1205     Error(Loc, "'@" + Twine(ID) + "' defined with type '" +
   1206           getTypeString(Val->getType()) + "'");
   1207     return nullptr;
   1208   }
   1209 
   1210   // Otherwise, create a new forward reference for this value and remember it.
   1211   GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, "");
   1212   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
   1213   return FwdVal;
   1214 }
   1215 
   1216 
   1217 //===----------------------------------------------------------------------===//
   1218 // Comdat Reference/Resolution Routines.
   1219 //===----------------------------------------------------------------------===//
   1220 
   1221 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) {
   1222   // Look this name up in the comdat symbol table.
   1223   Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
   1224   Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
   1225   if (I != ComdatSymTab.end())
   1226     return &I->second;
   1227 
   1228   // Otherwise, create a new forward reference for this value and remember it.
   1229   Comdat *C = M->getOrInsertComdat(Name);
   1230   ForwardRefComdats[Name] = Loc;
   1231   return C;
   1232 }
   1233 
   1234 
   1235 //===----------------------------------------------------------------------===//
   1236 // Helper Routines.
   1237 //===----------------------------------------------------------------------===//
   1238 
   1239 /// ParseToken - If the current token has the specified kind, eat it and return
   1240 /// success.  Otherwise, emit the specified error and return failure.
   1241 bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) {
   1242   if (Lex.getKind() != T)
   1243     return TokError(ErrMsg);
   1244   Lex.Lex();
   1245   return false;
   1246 }
   1247 
   1248 /// ParseStringConstant
   1249 ///   ::= StringConstant
   1250 bool LLParser::ParseStringConstant(std::string &Result) {
   1251   if (Lex.getKind() != lltok::StringConstant)
   1252     return TokError("expected string constant");
   1253   Result = Lex.getStrVal();
   1254   Lex.Lex();
   1255   return false;
   1256 }
   1257 
   1258 /// ParseUInt32
   1259 ///   ::= uint32
   1260 bool LLParser::ParseUInt32(unsigned &Val) {
   1261   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
   1262     return TokError("expected integer");
   1263   uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
   1264   if (Val64 != unsigned(Val64))
   1265     return TokError("expected 32-bit integer (too large)");
   1266   Val = Val64;
   1267   Lex.Lex();
   1268   return false;
   1269 }
   1270 
   1271 /// ParseUInt64
   1272 ///   ::= uint64
   1273 bool LLParser::ParseUInt64(uint64_t &Val) {
   1274   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
   1275     return TokError("expected integer");
   1276   Val = Lex.getAPSIntVal().getLimitedValue();
   1277   Lex.Lex();
   1278   return false;
   1279 }
   1280 
   1281 /// ParseTLSModel
   1282 ///   := 'localdynamic'
   1283 ///   := 'initialexec'
   1284 ///   := 'localexec'
   1285 bool LLParser::ParseTLSModel(GlobalVariable::ThreadLocalMode &TLM) {
   1286   switch (Lex.getKind()) {
   1287     default:
   1288       return TokError("expected localdynamic, initialexec or localexec");
   1289     case lltok::kw_localdynamic:
   1290       TLM = GlobalVariable::LocalDynamicTLSModel;
   1291       break;
   1292     case lltok::kw_initialexec:
   1293       TLM = GlobalVariable::InitialExecTLSModel;
   1294       break;
   1295     case lltok::kw_localexec:
   1296       TLM = GlobalVariable::LocalExecTLSModel;
   1297       break;
   1298   }
   1299 
   1300   Lex.Lex();
   1301   return false;
   1302 }
   1303 
   1304 /// ParseOptionalThreadLocal
   1305 ///   := /*empty*/
   1306 ///   := 'thread_local'
   1307 ///   := 'thread_local' '(' tlsmodel ')'
   1308 bool LLParser::ParseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) {
   1309   TLM = GlobalVariable::NotThreadLocal;
   1310   if (!EatIfPresent(lltok::kw_thread_local))
   1311     return false;
   1312 
   1313   TLM = GlobalVariable::GeneralDynamicTLSModel;
   1314   if (Lex.getKind() == lltok::lparen) {
   1315     Lex.Lex();
   1316     return ParseTLSModel(TLM) ||
   1317       ParseToken(lltok::rparen, "expected ')' after thread local model");
   1318   }
   1319   return false;
   1320 }
   1321 
   1322 /// ParseOptionalAddrSpace
   1323 ///   := /*empty*/
   1324 ///   := 'addrspace' '(' uint32 ')'
   1325 bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace) {
   1326   AddrSpace = 0;
   1327   if (!EatIfPresent(lltok::kw_addrspace))
   1328     return false;
   1329   return ParseToken(lltok::lparen, "expected '(' in address space") ||
   1330          ParseUInt32(AddrSpace) ||
   1331          ParseToken(lltok::rparen, "expected ')' in address space");
   1332 }
   1333 
   1334 /// ParseStringAttribute
   1335 ///   := StringConstant
   1336 ///   := StringConstant '=' StringConstant
   1337 bool LLParser::ParseStringAttribute(AttrBuilder &B) {
   1338   std::string Attr = Lex.getStrVal();
   1339   Lex.Lex();
   1340   std::string Val;
   1341   if (EatIfPresent(lltok::equal) && ParseStringConstant(Val))
   1342     return true;
   1343   B.addAttribute(Attr, Val);
   1344   return false;
   1345 }
   1346 
   1347 /// ParseOptionalParamAttrs - Parse a potentially empty list of parameter attributes.
   1348 bool LLParser::ParseOptionalParamAttrs(AttrBuilder &B) {
   1349   bool HaveError = false;
   1350 
   1351   B.clear();
   1352 
   1353   while (1) {
   1354     lltok::Kind Token = Lex.getKind();
   1355     switch (Token) {
   1356     default:  // End of attributes.
   1357       return HaveError;
   1358     case lltok::StringConstant: {
   1359       if (ParseStringAttribute(B))
   1360         return true;
   1361       continue;
   1362     }
   1363     case lltok::kw_align: {
   1364       unsigned Alignment;
   1365       if (ParseOptionalAlignment(Alignment))
   1366         return true;
   1367       B.addAlignmentAttr(Alignment);
   1368       continue;
   1369     }
   1370     case lltok::kw_byval:           B.addAttribute(Attribute::ByVal); break;
   1371     case lltok::kw_dereferenceable: {
   1372       uint64_t Bytes;
   1373       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
   1374         return true;
   1375       B.addDereferenceableAttr(Bytes);
   1376       continue;
   1377     }
   1378     case lltok::kw_dereferenceable_or_null: {
   1379       uint64_t Bytes;
   1380       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
   1381         return true;
   1382       B.addDereferenceableOrNullAttr(Bytes);
   1383       continue;
   1384     }
   1385     case lltok::kw_inalloca:        B.addAttribute(Attribute::InAlloca); break;
   1386     case lltok::kw_inreg:           B.addAttribute(Attribute::InReg); break;
   1387     case lltok::kw_nest:            B.addAttribute(Attribute::Nest); break;
   1388     case lltok::kw_noalias:         B.addAttribute(Attribute::NoAlias); break;
   1389     case lltok::kw_nocapture:       B.addAttribute(Attribute::NoCapture); break;
   1390     case lltok::kw_nonnull:         B.addAttribute(Attribute::NonNull); break;
   1391     case lltok::kw_readnone:        B.addAttribute(Attribute::ReadNone); break;
   1392     case lltok::kw_readonly:        B.addAttribute(Attribute::ReadOnly); break;
   1393     case lltok::kw_returned:        B.addAttribute(Attribute::Returned); break;
   1394     case lltok::kw_signext:         B.addAttribute(Attribute::SExt); break;
   1395     case lltok::kw_sret:            B.addAttribute(Attribute::StructRet); break;
   1396     case lltok::kw_swifterror:      B.addAttribute(Attribute::SwiftError); break;
   1397     case lltok::kw_swiftself:       B.addAttribute(Attribute::SwiftSelf); break;
   1398     case lltok::kw_writeonly:       B.addAttribute(Attribute::WriteOnly); break;
   1399     case lltok::kw_zeroext:         B.addAttribute(Attribute::ZExt); break;
   1400 
   1401     case lltok::kw_alignstack:
   1402     case lltok::kw_alwaysinline:
   1403     case lltok::kw_argmemonly:
   1404     case lltok::kw_builtin:
   1405     case lltok::kw_inlinehint:
   1406     case lltok::kw_jumptable:
   1407     case lltok::kw_minsize:
   1408     case lltok::kw_naked:
   1409     case lltok::kw_nobuiltin:
   1410     case lltok::kw_noduplicate:
   1411     case lltok::kw_noimplicitfloat:
   1412     case lltok::kw_noinline:
   1413     case lltok::kw_nonlazybind:
   1414     case lltok::kw_noredzone:
   1415     case lltok::kw_noreturn:
   1416     case lltok::kw_nounwind:
   1417     case lltok::kw_optnone:
   1418     case lltok::kw_optsize:
   1419     case lltok::kw_returns_twice:
   1420     case lltok::kw_sanitize_address:
   1421     case lltok::kw_sanitize_memory:
   1422     case lltok::kw_sanitize_thread:
   1423     case lltok::kw_ssp:
   1424     case lltok::kw_sspreq:
   1425     case lltok::kw_sspstrong:
   1426     case lltok::kw_safestack:
   1427     case lltok::kw_uwtable:
   1428       HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute");
   1429       break;
   1430     }
   1431 
   1432     Lex.Lex();
   1433   }
   1434 }
   1435 
   1436 /// ParseOptionalReturnAttrs - Parse a potentially empty list of return attributes.
   1437 bool LLParser::ParseOptionalReturnAttrs(AttrBuilder &B) {
   1438   bool HaveError = false;
   1439 
   1440   B.clear();
   1441 
   1442   while (1) {
   1443     lltok::Kind Token = Lex.getKind();
   1444     switch (Token) {
   1445     default:  // End of attributes.
   1446       return HaveError;
   1447     case lltok::StringConstant: {
   1448       if (ParseStringAttribute(B))
   1449         return true;
   1450       continue;
   1451     }
   1452     case lltok::kw_dereferenceable: {
   1453       uint64_t Bytes;
   1454       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
   1455         return true;
   1456       B.addDereferenceableAttr(Bytes);
   1457       continue;
   1458     }
   1459     case lltok::kw_dereferenceable_or_null: {
   1460       uint64_t Bytes;
   1461       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
   1462         return true;
   1463       B.addDereferenceableOrNullAttr(Bytes);
   1464       continue;
   1465     }
   1466     case lltok::kw_align: {
   1467       unsigned Alignment;
   1468       if (ParseOptionalAlignment(Alignment))
   1469         return true;
   1470       B.addAlignmentAttr(Alignment);
   1471       continue;
   1472     }
   1473     case lltok::kw_inreg:           B.addAttribute(Attribute::InReg); break;
   1474     case lltok::kw_noalias:         B.addAttribute(Attribute::NoAlias); break;
   1475     case lltok::kw_nonnull:         B.addAttribute(Attribute::NonNull); break;
   1476     case lltok::kw_signext:         B.addAttribute(Attribute::SExt); break;
   1477     case lltok::kw_zeroext:         B.addAttribute(Attribute::ZExt); break;
   1478 
   1479     // Error handling.
   1480     case lltok::kw_byval:
   1481     case lltok::kw_inalloca:
   1482     case lltok::kw_nest:
   1483     case lltok::kw_nocapture:
   1484     case lltok::kw_returned:
   1485     case lltok::kw_sret:
   1486     case lltok::kw_swifterror:
   1487     case lltok::kw_swiftself:
   1488       HaveError |= Error(Lex.getLoc(), "invalid use of parameter-only attribute");
   1489       break;
   1490 
   1491     case lltok::kw_alignstack:
   1492     case lltok::kw_alwaysinline:
   1493     case lltok::kw_argmemonly:
   1494     case lltok::kw_builtin:
   1495     case lltok::kw_cold:
   1496     case lltok::kw_inlinehint:
   1497     case lltok::kw_jumptable:
   1498     case lltok::kw_minsize:
   1499     case lltok::kw_naked:
   1500     case lltok::kw_nobuiltin:
   1501     case lltok::kw_noduplicate:
   1502     case lltok::kw_noimplicitfloat:
   1503     case lltok::kw_noinline:
   1504     case lltok::kw_nonlazybind:
   1505     case lltok::kw_noredzone:
   1506     case lltok::kw_noreturn:
   1507     case lltok::kw_nounwind:
   1508     case lltok::kw_optnone:
   1509     case lltok::kw_optsize:
   1510     case lltok::kw_returns_twice:
   1511     case lltok::kw_sanitize_address:
   1512     case lltok::kw_sanitize_memory:
   1513     case lltok::kw_sanitize_thread:
   1514     case lltok::kw_ssp:
   1515     case lltok::kw_sspreq:
   1516     case lltok::kw_sspstrong:
   1517     case lltok::kw_safestack:
   1518     case lltok::kw_uwtable:
   1519       HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute");
   1520       break;
   1521 
   1522     case lltok::kw_readnone:
   1523     case lltok::kw_readonly:
   1524       HaveError |= Error(Lex.getLoc(), "invalid use of attribute on return type");
   1525     }
   1526 
   1527     Lex.Lex();
   1528   }
   1529 }
   1530 
   1531 static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) {
   1532   HasLinkage = true;
   1533   switch (Kind) {
   1534   default:
   1535     HasLinkage = false;
   1536     return GlobalValue::ExternalLinkage;
   1537   case lltok::kw_private:
   1538     return GlobalValue::PrivateLinkage;
   1539   case lltok::kw_internal:
   1540     return GlobalValue::InternalLinkage;
   1541   case lltok::kw_weak:
   1542     return GlobalValue::WeakAnyLinkage;
   1543   case lltok::kw_weak_odr:
   1544     return GlobalValue::WeakODRLinkage;
   1545   case lltok::kw_linkonce:
   1546     return GlobalValue::LinkOnceAnyLinkage;
   1547   case lltok::kw_linkonce_odr:
   1548     return GlobalValue::LinkOnceODRLinkage;
   1549   case lltok::kw_available_externally:
   1550     return GlobalValue::AvailableExternallyLinkage;
   1551   case lltok::kw_appending:
   1552     return GlobalValue::AppendingLinkage;
   1553   case lltok::kw_common:
   1554     return GlobalValue::CommonLinkage;
   1555   case lltok::kw_extern_weak:
   1556     return GlobalValue::ExternalWeakLinkage;
   1557   case lltok::kw_external:
   1558     return GlobalValue::ExternalLinkage;
   1559   }
   1560 }
   1561 
   1562 /// ParseOptionalLinkage
   1563 ///   ::= /*empty*/
   1564 ///   ::= 'private'
   1565 ///   ::= 'internal'
   1566 ///   ::= 'weak'
   1567 ///   ::= 'weak_odr'
   1568 ///   ::= 'linkonce'
   1569 ///   ::= 'linkonce_odr'
   1570 ///   ::= 'available_externally'
   1571 ///   ::= 'appending'
   1572 ///   ::= 'common'
   1573 ///   ::= 'extern_weak'
   1574 ///   ::= 'external'
   1575 bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage,
   1576                                     unsigned &Visibility,
   1577                                     unsigned &DLLStorageClass) {
   1578   Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage);
   1579   if (HasLinkage)
   1580     Lex.Lex();
   1581   ParseOptionalVisibility(Visibility);
   1582   ParseOptionalDLLStorageClass(DLLStorageClass);
   1583   return false;
   1584 }
   1585 
   1586 /// ParseOptionalVisibility
   1587 ///   ::= /*empty*/
   1588 ///   ::= 'default'
   1589 ///   ::= 'hidden'
   1590 ///   ::= 'protected'
   1591 ///
   1592 void LLParser::ParseOptionalVisibility(unsigned &Res) {
   1593   switch (Lex.getKind()) {
   1594   default:
   1595     Res = GlobalValue::DefaultVisibility;
   1596     return;
   1597   case lltok::kw_default:
   1598     Res = GlobalValue::DefaultVisibility;
   1599     break;
   1600   case lltok::kw_hidden:
   1601     Res = GlobalValue::HiddenVisibility;
   1602     break;
   1603   case lltok::kw_protected:
   1604     Res = GlobalValue::ProtectedVisibility;
   1605     break;
   1606   }
   1607   Lex.Lex();
   1608 }
   1609 
   1610 /// ParseOptionalDLLStorageClass
   1611 ///   ::= /*empty*/
   1612 ///   ::= 'dllimport'
   1613 ///   ::= 'dllexport'
   1614 ///
   1615 void LLParser::ParseOptionalDLLStorageClass(unsigned &Res) {
   1616   switch (Lex.getKind()) {
   1617   default:
   1618     Res = GlobalValue::DefaultStorageClass;
   1619     return;
   1620   case lltok::kw_dllimport:
   1621     Res = GlobalValue::DLLImportStorageClass;
   1622     break;
   1623   case lltok::kw_dllexport:
   1624     Res = GlobalValue::DLLExportStorageClass;
   1625     break;
   1626   }
   1627   Lex.Lex();
   1628 }
   1629 
   1630 /// ParseOptionalCallingConv
   1631 ///   ::= /*empty*/
   1632 ///   ::= 'ccc'
   1633 ///   ::= 'fastcc'
   1634 ///   ::= 'intel_ocl_bicc'
   1635 ///   ::= 'coldcc'
   1636 ///   ::= 'x86_stdcallcc'
   1637 ///   ::= 'x86_fastcallcc'
   1638 ///   ::= 'x86_thiscallcc'
   1639 ///   ::= 'x86_vectorcallcc'
   1640 ///   ::= 'arm_apcscc'
   1641 ///   ::= 'arm_aapcscc'
   1642 ///   ::= 'arm_aapcs_vfpcc'
   1643 ///   ::= 'msp430_intrcc'
   1644 ///   ::= 'avr_intrcc'
   1645 ///   ::= 'avr_signalcc'
   1646 ///   ::= 'ptx_kernel'
   1647 ///   ::= 'ptx_device'
   1648 ///   ::= 'spir_func'
   1649 ///   ::= 'spir_kernel'
   1650 ///   ::= 'x86_64_sysvcc'
   1651 ///   ::= 'x86_64_win64cc'
   1652 ///   ::= 'webkit_jscc'
   1653 ///   ::= 'anyregcc'
   1654 ///   ::= 'preserve_mostcc'
   1655 ///   ::= 'preserve_allcc'
   1656 ///   ::= 'ghccc'
   1657 ///   ::= 'swiftcc'
   1658 ///   ::= 'x86_intrcc'
   1659 ///   ::= 'hhvmcc'
   1660 ///   ::= 'hhvm_ccc'
   1661 ///   ::= 'cxx_fast_tlscc'
   1662 ///   ::= 'amdgpu_vs'
   1663 ///   ::= 'amdgpu_tcs'
   1664 ///   ::= 'amdgpu_tes'
   1665 ///   ::= 'amdgpu_gs'
   1666 ///   ::= 'amdgpu_ps'
   1667 ///   ::= 'amdgpu_cs'
   1668 ///   ::= 'amdgpu_kernel'
   1669 ///   ::= 'cc' UINT
   1670 ///
   1671 bool LLParser::ParseOptionalCallingConv(unsigned &CC) {
   1672   switch (Lex.getKind()) {
   1673   default:                       CC = CallingConv::C; return false;
   1674   case lltok::kw_ccc:            CC = CallingConv::C; break;
   1675   case lltok::kw_fastcc:         CC = CallingConv::Fast; break;
   1676   case lltok::kw_coldcc:         CC = CallingConv::Cold; break;
   1677   case lltok::kw_x86_stdcallcc:  CC = CallingConv::X86_StdCall; break;
   1678   case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
   1679   case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break;
   1680   case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break;
   1681   case lltok::kw_arm_apcscc:     CC = CallingConv::ARM_APCS; break;
   1682   case lltok::kw_arm_aapcscc:    CC = CallingConv::ARM_AAPCS; break;
   1683   case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break;
   1684   case lltok::kw_msp430_intrcc:  CC = CallingConv::MSP430_INTR; break;
   1685   case lltok::kw_avr_intrcc:     CC = CallingConv::AVR_INTR; break;
   1686   case lltok::kw_avr_signalcc:   CC = CallingConv::AVR_SIGNAL; break;
   1687   case lltok::kw_ptx_kernel:     CC = CallingConv::PTX_Kernel; break;
   1688   case lltok::kw_ptx_device:     CC = CallingConv::PTX_Device; break;
   1689   case lltok::kw_spir_kernel:    CC = CallingConv::SPIR_KERNEL; break;
   1690   case lltok::kw_spir_func:      CC = CallingConv::SPIR_FUNC; break;
   1691   case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break;
   1692   case lltok::kw_x86_64_sysvcc:  CC = CallingConv::X86_64_SysV; break;
   1693   case lltok::kw_x86_64_win64cc: CC = CallingConv::X86_64_Win64; break;
   1694   case lltok::kw_webkit_jscc:    CC = CallingConv::WebKit_JS; break;
   1695   case lltok::kw_anyregcc:       CC = CallingConv::AnyReg; break;
   1696   case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break;
   1697   case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break;
   1698   case lltok::kw_ghccc:          CC = CallingConv::GHC; break;
   1699   case lltok::kw_swiftcc:        CC = CallingConv::Swift; break;
   1700   case lltok::kw_x86_intrcc:     CC = CallingConv::X86_INTR; break;
   1701   case lltok::kw_hhvmcc:         CC = CallingConv::HHVM; break;
   1702   case lltok::kw_hhvm_ccc:       CC = CallingConv::HHVM_C; break;
   1703   case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break;
   1704   case lltok::kw_amdgpu_vs:      CC = CallingConv::AMDGPU_VS; break;
   1705   case lltok::kw_amdgpu_gs:      CC = CallingConv::AMDGPU_GS; break;
   1706   case lltok::kw_amdgpu_ps:      CC = CallingConv::AMDGPU_PS; break;
   1707   case lltok::kw_amdgpu_cs:      CC = CallingConv::AMDGPU_CS; break;
   1708   case lltok::kw_amdgpu_kernel:  CC = CallingConv::AMDGPU_KERNEL; break;
   1709   case lltok::kw_cc: {
   1710       Lex.Lex();
   1711       return ParseUInt32(CC);
   1712     }
   1713   }
   1714 
   1715   Lex.Lex();
   1716   return false;
   1717 }
   1718 
   1719 /// ParseMetadataAttachment
   1720 ///   ::= !dbg !42
   1721 bool LLParser::ParseMetadataAttachment(unsigned &Kind, MDNode *&MD) {
   1722   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment");
   1723 
   1724   std::string Name = Lex.getStrVal();
   1725   Kind = M->getMDKindID(Name);
   1726   Lex.Lex();
   1727 
   1728   return ParseMDNode(MD);
   1729 }
   1730 
   1731 /// ParseInstructionMetadata
   1732 ///   ::= !dbg !42 (',' !dbg !57)*
   1733 bool LLParser::ParseInstructionMetadata(Instruction &Inst) {
   1734   do {
   1735     if (Lex.getKind() != lltok::MetadataVar)
   1736       return TokError("expected metadata after comma");
   1737 
   1738     unsigned MDK;
   1739     MDNode *N;
   1740     if (ParseMetadataAttachment(MDK, N))
   1741       return true;
   1742 
   1743     Inst.setMetadata(MDK, N);
   1744     if (MDK == LLVMContext::MD_tbaa)
   1745       InstsWithTBAATag.push_back(&Inst);
   1746 
   1747     // If this is the end of the list, we're done.
   1748   } while (EatIfPresent(lltok::comma));
   1749   return false;
   1750 }
   1751 
   1752 /// ParseGlobalObjectMetadataAttachment
   1753 ///   ::= !dbg !57
   1754 bool LLParser::ParseGlobalObjectMetadataAttachment(GlobalObject &GO) {
   1755   unsigned MDK;
   1756   MDNode *N;
   1757   if (ParseMetadataAttachment(MDK, N))
   1758     return true;
   1759 
   1760   GO.addMetadata(MDK, *N);
   1761   return false;
   1762 }
   1763 
   1764 /// ParseOptionalFunctionMetadata
   1765 ///   ::= (!dbg !57)*
   1766 bool LLParser::ParseOptionalFunctionMetadata(Function &F) {
   1767   while (Lex.getKind() == lltok::MetadataVar)
   1768     if (ParseGlobalObjectMetadataAttachment(F))
   1769       return true;
   1770   return false;
   1771 }
   1772 
   1773 /// ParseOptionalAlignment
   1774 ///   ::= /* empty */
   1775 ///   ::= 'align' 4
   1776 bool LLParser::ParseOptionalAlignment(unsigned &Alignment) {
   1777   Alignment = 0;
   1778   if (!EatIfPresent(lltok::kw_align))
   1779     return false;
   1780   LocTy AlignLoc = Lex.getLoc();
   1781   if (ParseUInt32(Alignment)) return true;
   1782   if (!isPowerOf2_32(Alignment))
   1783     return Error(AlignLoc, "alignment is not a power of two");
   1784   if (Alignment > Value::MaximumAlignment)
   1785     return Error(AlignLoc, "huge alignments are not supported yet");
   1786   return false;
   1787 }
   1788 
   1789 /// ParseOptionalDerefAttrBytes
   1790 ///   ::= /* empty */
   1791 ///   ::= AttrKind '(' 4 ')'
   1792 ///
   1793 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'.
   1794 bool LLParser::ParseOptionalDerefAttrBytes(lltok::Kind AttrKind,
   1795                                            uint64_t &Bytes) {
   1796   assert((AttrKind == lltok::kw_dereferenceable ||
   1797           AttrKind == lltok::kw_dereferenceable_or_null) &&
   1798          "contract!");
   1799 
   1800   Bytes = 0;
   1801   if (!EatIfPresent(AttrKind))
   1802     return false;
   1803   LocTy ParenLoc = Lex.getLoc();
   1804   if (!EatIfPresent(lltok::lparen))
   1805     return Error(ParenLoc, "expected '('");
   1806   LocTy DerefLoc = Lex.getLoc();
   1807   if (ParseUInt64(Bytes)) return true;
   1808   ParenLoc = Lex.getLoc();
   1809   if (!EatIfPresent(lltok::rparen))
   1810     return Error(ParenLoc, "expected ')'");
   1811   if (!Bytes)
   1812     return Error(DerefLoc, "dereferenceable bytes must be non-zero");
   1813   return false;
   1814 }
   1815 
   1816 /// ParseOptionalCommaAlign
   1817 ///   ::=
   1818 ///   ::= ',' align 4
   1819 ///
   1820 /// This returns with AteExtraComma set to true if it ate an excess comma at the
   1821 /// end.
   1822 bool LLParser::ParseOptionalCommaAlign(unsigned &Alignment,
   1823                                        bool &AteExtraComma) {
   1824   AteExtraComma = false;
   1825   while (EatIfPresent(lltok::comma)) {
   1826     // Metadata at the end is an early exit.
   1827     if (Lex.getKind() == lltok::MetadataVar) {
   1828       AteExtraComma = true;
   1829       return false;
   1830     }
   1831 
   1832     if (Lex.getKind() != lltok::kw_align)
   1833       return Error(Lex.getLoc(), "expected metadata or 'align'");
   1834 
   1835     if (ParseOptionalAlignment(Alignment)) return true;
   1836   }
   1837 
   1838   return false;
   1839 }
   1840 
   1841 bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg,
   1842                                        Optional<unsigned> &HowManyArg) {
   1843   Lex.Lex();
   1844 
   1845   auto StartParen = Lex.getLoc();
   1846   if (!EatIfPresent(lltok::lparen))
   1847     return Error(StartParen, "expected '('");
   1848 
   1849   if (ParseUInt32(BaseSizeArg))
   1850     return true;
   1851 
   1852   if (EatIfPresent(lltok::comma)) {
   1853     auto HowManyAt = Lex.getLoc();
   1854     unsigned HowMany;
   1855     if (ParseUInt32(HowMany))
   1856       return true;
   1857     if (HowMany == BaseSizeArg)
   1858       return Error(HowManyAt,
   1859                    "'allocsize' indices can't refer to the same parameter");
   1860     HowManyArg = HowMany;
   1861   } else
   1862     HowManyArg = None;
   1863 
   1864   auto EndParen = Lex.getLoc();
   1865   if (!EatIfPresent(lltok::rparen))
   1866     return Error(EndParen, "expected ')'");
   1867   return false;
   1868 }
   1869 
   1870 /// ParseScopeAndOrdering
   1871 ///   if isAtomic: ::= 'singlethread'? AtomicOrdering
   1872 ///   else: ::=
   1873 ///
   1874 /// This sets Scope and Ordering to the parsed values.
   1875 bool LLParser::ParseScopeAndOrdering(bool isAtomic, SynchronizationScope &Scope,
   1876                                      AtomicOrdering &Ordering) {
   1877   if (!isAtomic)
   1878     return false;
   1879 
   1880   Scope = CrossThread;
   1881   if (EatIfPresent(lltok::kw_singlethread))
   1882     Scope = SingleThread;
   1883 
   1884   return ParseOrdering(Ordering);
   1885 }
   1886 
   1887 /// ParseOrdering
   1888 ///   ::= AtomicOrdering
   1889 ///
   1890 /// This sets Ordering to the parsed value.
   1891 bool LLParser::ParseOrdering(AtomicOrdering &Ordering) {
   1892   switch (Lex.getKind()) {
   1893   default: return TokError("Expected ordering on atomic instruction");
   1894   case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break;
   1895   case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break;
   1896   // Not specified yet:
   1897   // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break;
   1898   case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break;
   1899   case lltok::kw_release: Ordering = AtomicOrdering::Release; break;
   1900   case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break;
   1901   case lltok::kw_seq_cst:
   1902     Ordering = AtomicOrdering::SequentiallyConsistent;
   1903     break;
   1904   }
   1905   Lex.Lex();
   1906   return false;
   1907 }
   1908 
   1909 /// ParseOptionalStackAlignment
   1910 ///   ::= /* empty */
   1911 ///   ::= 'alignstack' '(' 4 ')'
   1912 bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) {
   1913   Alignment = 0;
   1914   if (!EatIfPresent(lltok::kw_alignstack))
   1915     return false;
   1916   LocTy ParenLoc = Lex.getLoc();
   1917   if (!EatIfPresent(lltok::lparen))
   1918     return Error(ParenLoc, "expected '('");
   1919   LocTy AlignLoc = Lex.getLoc();
   1920   if (ParseUInt32(Alignment)) return true;
   1921   ParenLoc = Lex.getLoc();
   1922   if (!EatIfPresent(lltok::rparen))
   1923     return Error(ParenLoc, "expected ')'");
   1924   if (!isPowerOf2_32(Alignment))
   1925     return Error(AlignLoc, "stack alignment is not a power of two");
   1926   return false;
   1927 }
   1928 
   1929 /// ParseIndexList - This parses the index list for an insert/extractvalue
   1930 /// instruction.  This sets AteExtraComma in the case where we eat an extra
   1931 /// comma at the end of the line and find that it is followed by metadata.
   1932 /// Clients that don't allow metadata can call the version of this function that
   1933 /// only takes one argument.
   1934 ///
   1935 /// ParseIndexList
   1936 ///    ::=  (',' uint32)+
   1937 ///
   1938 bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices,
   1939                               bool &AteExtraComma) {
   1940   AteExtraComma = false;
   1941 
   1942   if (Lex.getKind() != lltok::comma)
   1943     return TokError("expected ',' as start of index list");
   1944 
   1945   while (EatIfPresent(lltok::comma)) {
   1946     if (Lex.getKind() == lltok::MetadataVar) {
   1947       if (Indices.empty()) return TokError("expected index");
   1948       AteExtraComma = true;
   1949       return false;
   1950     }
   1951     unsigned Idx = 0;
   1952     if (ParseUInt32(Idx)) return true;
   1953     Indices.push_back(Idx);
   1954   }
   1955 
   1956   return false;
   1957 }
   1958 
   1959 //===----------------------------------------------------------------------===//
   1960 // Type Parsing.
   1961 //===----------------------------------------------------------------------===//
   1962 
   1963 /// ParseType - Parse a type.
   1964 bool LLParser::ParseType(Type *&Result, const Twine &Msg, bool AllowVoid) {
   1965   SMLoc TypeLoc = Lex.getLoc();
   1966   switch (Lex.getKind()) {
   1967   default:
   1968     return TokError(Msg);
   1969   case lltok::Type:
   1970     // Type ::= 'float' | 'void' (etc)
   1971     Result = Lex.getTyVal();
   1972     Lex.Lex();
   1973     break;
   1974   case lltok::lbrace:
   1975     // Type ::= StructType
   1976     if (ParseAnonStructType(Result, false))
   1977       return true;
   1978     break;
   1979   case lltok::lsquare:
   1980     // Type ::= '[' ... ']'
   1981     Lex.Lex(); // eat the lsquare.
   1982     if (ParseArrayVectorType(Result, false))
   1983       return true;
   1984     break;
   1985   case lltok::less: // Either vector or packed struct.
   1986     // Type ::= '<' ... '>'
   1987     Lex.Lex();
   1988     if (Lex.getKind() == lltok::lbrace) {
   1989       if (ParseAnonStructType(Result, true) ||
   1990           ParseToken(lltok::greater, "expected '>' at end of packed struct"))
   1991         return true;
   1992     } else if (ParseArrayVectorType(Result, true))
   1993       return true;
   1994     break;
   1995   case lltok::LocalVar: {
   1996     // Type ::= %foo
   1997     std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()];
   1998 
   1999     // If the type hasn't been defined yet, create a forward definition and
   2000     // remember where that forward def'n was seen (in case it never is defined).
   2001     if (!Entry.first) {
   2002       Entry.first = StructType::create(Context, Lex.getStrVal());
   2003       Entry.second = Lex.getLoc();
   2004     }
   2005     Result = Entry.first;
   2006     Lex.Lex();
   2007     break;
   2008   }
   2009 
   2010   case lltok::LocalVarID: {
   2011     // Type ::= %4
   2012     std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()];
   2013 
   2014     // If the type hasn't been defined yet, create a forward definition and
   2015     // remember where that forward def'n was seen (in case it never is defined).
   2016     if (!Entry.first) {
   2017       Entry.first = StructType::create(Context);
   2018       Entry.second = Lex.getLoc();
   2019     }
   2020     Result = Entry.first;
   2021     Lex.Lex();
   2022     break;
   2023   }
   2024   }
   2025 
   2026   // Parse the type suffixes.
   2027   while (1) {
   2028     switch (Lex.getKind()) {
   2029     // End of type.
   2030     default:
   2031       if (!AllowVoid && Result->isVoidTy())
   2032         return Error(TypeLoc, "void type only allowed for function results");
   2033       return false;
   2034 
   2035     // Type ::= Type '*'
   2036     case lltok::star:
   2037       if (Result->isLabelTy())
   2038         return TokError("basic block pointers are invalid");
   2039       if (Result->isVoidTy())
   2040         return TokError("pointers to void are invalid - use i8* instead");
   2041       if (!PointerType::isValidElementType(Result))
   2042         return TokError("pointer to this type is invalid");
   2043       Result = PointerType::getUnqual(Result);
   2044       Lex.Lex();
   2045       break;
   2046 
   2047     // Type ::= Type 'addrspace' '(' uint32 ')' '*'
   2048     case lltok::kw_addrspace: {
   2049       if (Result->isLabelTy())
   2050         return TokError("basic block pointers are invalid");
   2051       if (Result->isVoidTy())
   2052         return TokError("pointers to void are invalid; use i8* instead");
   2053       if (!PointerType::isValidElementType(Result))
   2054         return TokError("pointer to this type is invalid");
   2055       unsigned AddrSpace;
   2056       if (ParseOptionalAddrSpace(AddrSpace) ||
   2057           ParseToken(lltok::star, "expected '*' in address space"))
   2058         return true;
   2059 
   2060       Result = PointerType::get(Result, AddrSpace);
   2061       break;
   2062     }
   2063 
   2064     /// Types '(' ArgTypeListI ')' OptFuncAttrs
   2065     case lltok::lparen:
   2066       if (ParseFunctionType(Result))
   2067         return true;
   2068       break;
   2069     }
   2070   }
   2071 }
   2072 
   2073 /// ParseParameterList
   2074 ///    ::= '(' ')'
   2075 ///    ::= '(' Arg (',' Arg)* ')'
   2076 ///  Arg
   2077 ///    ::= Type OptionalAttributes Value OptionalAttributes
   2078 bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
   2079                                   PerFunctionState &PFS, bool IsMustTailCall,
   2080                                   bool InVarArgsFunc) {
   2081   if (ParseToken(lltok::lparen, "expected '(' in call"))
   2082     return true;
   2083 
   2084   unsigned AttrIndex = 1;
   2085   while (Lex.getKind() != lltok::rparen) {
   2086     // If this isn't the first argument, we need a comma.
   2087     if (!ArgList.empty() &&
   2088         ParseToken(lltok::comma, "expected ',' in argument list"))
   2089       return true;
   2090 
   2091     // Parse an ellipsis if this is a musttail call in a variadic function.
   2092     if (Lex.getKind() == lltok::dotdotdot) {
   2093       const char *Msg = "unexpected ellipsis in argument list for ";
   2094       if (!IsMustTailCall)
   2095         return TokError(Twine(Msg) + "non-musttail call");
   2096       if (!InVarArgsFunc)
   2097         return TokError(Twine(Msg) + "musttail call in non-varargs function");
   2098       Lex.Lex();  // Lex the '...', it is purely for readability.
   2099       return ParseToken(lltok::rparen, "expected ')' at end of argument list");
   2100     }
   2101 
   2102     // Parse the argument.
   2103     LocTy ArgLoc;
   2104     Type *ArgTy = nullptr;
   2105     AttrBuilder ArgAttrs;
   2106     Value *V;
   2107     if (ParseType(ArgTy, ArgLoc))
   2108       return true;
   2109 
   2110     if (ArgTy->isMetadataTy()) {
   2111       if (ParseMetadataAsValue(V, PFS))
   2112         return true;
   2113     } else {
   2114       // Otherwise, handle normal operands.
   2115       if (ParseOptionalParamAttrs(ArgAttrs) || ParseValue(ArgTy, V, PFS))
   2116         return true;
   2117     }
   2118     ArgList.push_back(ParamInfo(ArgLoc, V, AttributeSet::get(V->getContext(),
   2119                                                              AttrIndex++,
   2120                                                              ArgAttrs)));
   2121   }
   2122 
   2123   if (IsMustTailCall && InVarArgsFunc)
   2124     return TokError("expected '...' at end of argument list for musttail call "
   2125                     "in varargs function");
   2126 
   2127   Lex.Lex();  // Lex the ')'.
   2128   return false;
   2129 }
   2130 
   2131 /// ParseOptionalOperandBundles
   2132 ///    ::= /*empty*/
   2133 ///    ::= '[' OperandBundle [, OperandBundle ]* ']'
   2134 ///
   2135 /// OperandBundle
   2136 ///    ::= bundle-tag '(' ')'
   2137 ///    ::= bundle-tag '(' Type Value [, Type Value ]* ')'
   2138 ///
   2139 /// bundle-tag ::= String Constant
   2140 bool LLParser::ParseOptionalOperandBundles(
   2141     SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) {
   2142   LocTy BeginLoc = Lex.getLoc();
   2143   if (!EatIfPresent(lltok::lsquare))
   2144     return false;
   2145 
   2146   while (Lex.getKind() != lltok::rsquare) {
   2147     // If this isn't the first operand bundle, we need a comma.
   2148     if (!BundleList.empty() &&
   2149         ParseToken(lltok::comma, "expected ',' in input list"))
   2150       return true;
   2151 
   2152     std::string Tag;
   2153     if (ParseStringConstant(Tag))
   2154       return true;
   2155 
   2156     if (ParseToken(lltok::lparen, "expected '(' in operand bundle"))
   2157       return true;
   2158 
   2159     std::vector<Value *> Inputs;
   2160     while (Lex.getKind() != lltok::rparen) {
   2161       // If this isn't the first input, we need a comma.
   2162       if (!Inputs.empty() &&
   2163           ParseToken(lltok::comma, "expected ',' in input list"))
   2164         return true;
   2165 
   2166       Type *Ty = nullptr;
   2167       Value *Input = nullptr;
   2168       if (ParseType(Ty) || ParseValue(Ty, Input, PFS))
   2169         return true;
   2170       Inputs.push_back(Input);
   2171     }
   2172 
   2173     BundleList.emplace_back(std::move(Tag), std::move(Inputs));
   2174 
   2175     Lex.Lex(); // Lex the ')'.
   2176   }
   2177 
   2178   if (BundleList.empty())
   2179     return Error(BeginLoc, "operand bundle set must not be empty");
   2180 
   2181   Lex.Lex(); // Lex the ']'.
   2182   return false;
   2183 }
   2184 
   2185 /// ParseArgumentList - Parse the argument list for a function type or function
   2186 /// prototype.
   2187 ///   ::= '(' ArgTypeListI ')'
   2188 /// ArgTypeListI
   2189 ///   ::= /*empty*/
   2190 ///   ::= '...'
   2191 ///   ::= ArgTypeList ',' '...'
   2192 ///   ::= ArgType (',' ArgType)*
   2193 ///
   2194 bool LLParser::ParseArgumentList(SmallVectorImpl<ArgInfo> &ArgList,
   2195                                  bool &isVarArg){
   2196   isVarArg = false;
   2197   assert(Lex.getKind() == lltok::lparen);
   2198   Lex.Lex(); // eat the (.
   2199 
   2200   if (Lex.getKind() == lltok::rparen) {
   2201     // empty
   2202   } else if (Lex.getKind() == lltok::dotdotdot) {
   2203     isVarArg = true;
   2204     Lex.Lex();
   2205   } else {
   2206     LocTy TypeLoc = Lex.getLoc();
   2207     Type *ArgTy = nullptr;
   2208     AttrBuilder Attrs;
   2209     std::string Name;
   2210 
   2211     if (ParseType(ArgTy) ||
   2212         ParseOptionalParamAttrs(Attrs)) return true;
   2213 
   2214     if (ArgTy->isVoidTy())
   2215       return Error(TypeLoc, "argument can not have void type");
   2216 
   2217     if (Lex.getKind() == lltok::LocalVar) {
   2218       Name = Lex.getStrVal();
   2219       Lex.Lex();
   2220     }
   2221 
   2222     if (!FunctionType::isValidArgumentType(ArgTy))
   2223       return Error(TypeLoc, "invalid type for function argument");
   2224 
   2225     unsigned AttrIndex = 1;
   2226     ArgList.emplace_back(TypeLoc, ArgTy, AttributeSet::get(ArgTy->getContext(),
   2227                                                            AttrIndex++, Attrs),
   2228                          std::move(Name));
   2229 
   2230     while (EatIfPresent(lltok::comma)) {
   2231       // Handle ... at end of arg list.
   2232       if (EatIfPresent(lltok::dotdotdot)) {
   2233         isVarArg = true;
   2234         break;
   2235       }
   2236 
   2237       // Otherwise must be an argument type.
   2238       TypeLoc = Lex.getLoc();
   2239       if (ParseType(ArgTy) || ParseOptionalParamAttrs(Attrs)) return true;
   2240 
   2241       if (ArgTy->isVoidTy())
   2242         return Error(TypeLoc, "argument can not have void type");
   2243 
   2244       if (Lex.getKind() == lltok::LocalVar) {
   2245         Name = Lex.getStrVal();
   2246         Lex.Lex();
   2247       } else {
   2248         Name = "";
   2249       }
   2250 
   2251       if (!ArgTy->isFirstClassType())
   2252         return Error(TypeLoc, "invalid type for function argument");
   2253 
   2254       ArgList.emplace_back(
   2255           TypeLoc, ArgTy,
   2256           AttributeSet::get(ArgTy->getContext(), AttrIndex++, Attrs),
   2257           std::move(Name));
   2258     }
   2259   }
   2260 
   2261   return ParseToken(lltok::rparen, "expected ')' at end of argument list");
   2262 }
   2263 
   2264 /// ParseFunctionType
   2265 ///  ::= Type ArgumentList OptionalAttrs
   2266 bool LLParser::ParseFunctionType(Type *&Result) {
   2267   assert(Lex.getKind() == lltok::lparen);
   2268 
   2269   if (!FunctionType::isValidReturnType(Result))
   2270     return TokError("invalid function return type");
   2271 
   2272   SmallVector<ArgInfo, 8> ArgList;
   2273   bool isVarArg;
   2274   if (ParseArgumentList(ArgList, isVarArg))
   2275     return true;
   2276 
   2277   // Reject names on the arguments lists.
   2278   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
   2279     if (!ArgList[i].Name.empty())
   2280       return Error(ArgList[i].Loc, "argument name invalid in function type");
   2281     if (ArgList[i].Attrs.hasAttributes(i + 1))
   2282       return Error(ArgList[i].Loc,
   2283                    "argument attributes invalid in function type");
   2284   }
   2285 
   2286   SmallVector<Type*, 16> ArgListTy;
   2287   for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
   2288     ArgListTy.push_back(ArgList[i].Ty);
   2289 
   2290   Result = FunctionType::get(Result, ArgListTy, isVarArg);
   2291   return false;
   2292 }
   2293 
   2294 /// ParseAnonStructType - Parse an anonymous struct type, which is inlined into
   2295 /// other structs.
   2296 bool LLParser::ParseAnonStructType(Type *&Result, bool Packed) {
   2297   SmallVector<Type*, 8> Elts;
   2298   if (ParseStructBody(Elts)) return true;
   2299 
   2300   Result = StructType::get(Context, Elts, Packed);
   2301   return false;
   2302 }
   2303 
   2304 /// ParseStructDefinition - Parse a struct in a 'type' definition.
   2305 bool LLParser::ParseStructDefinition(SMLoc TypeLoc, StringRef Name,
   2306                                      std::pair<Type*, LocTy> &Entry,
   2307                                      Type *&ResultTy) {
   2308   // If the type was already defined, diagnose the redefinition.
   2309   if (Entry.first && !Entry.second.isValid())
   2310     return Error(TypeLoc, "redefinition of type");
   2311 
   2312   // If we have opaque, just return without filling in the definition for the
   2313   // struct.  This counts as a definition as far as the .ll file goes.
   2314   if (EatIfPresent(lltok::kw_opaque)) {
   2315     // This type is being defined, so clear the location to indicate this.
   2316     Entry.second = SMLoc();
   2317 
   2318     // If this type number has never been uttered, create it.
   2319     if (!Entry.first)
   2320       Entry.first = StructType::create(Context, Name);
   2321     ResultTy = Entry.first;
   2322     return false;
   2323   }
   2324 
   2325   // If the type starts with '<', then it is either a packed struct or a vector.
   2326   bool isPacked = EatIfPresent(lltok::less);
   2327 
   2328   // If we don't have a struct, then we have a random type alias, which we
   2329   // accept for compatibility with old files.  These types are not allowed to be
   2330   // forward referenced and not allowed to be recursive.
   2331   if (Lex.getKind() != lltok::lbrace) {
   2332     if (Entry.first)
   2333       return Error(TypeLoc, "forward references to non-struct type");
   2334 
   2335     ResultTy = nullptr;
   2336     if (isPacked)
   2337       return ParseArrayVectorType(ResultTy, true);
   2338     return ParseType(ResultTy);
   2339   }
   2340 
   2341   // This type is being defined, so clear the location to indicate this.
   2342   Entry.second = SMLoc();
   2343 
   2344   // If this type number has never been uttered, create it.
   2345   if (!Entry.first)
   2346     Entry.first = StructType::create(Context, Name);
   2347 
   2348   StructType *STy = cast<StructType>(Entry.first);
   2349 
   2350   SmallVector<Type*, 8> Body;
   2351   if (ParseStructBody(Body) ||
   2352       (isPacked && ParseToken(lltok::greater, "expected '>' in packed struct")))
   2353     return true;
   2354 
   2355   STy->setBody(Body, isPacked);
   2356   ResultTy = STy;
   2357   return false;
   2358 }
   2359 
   2360 
   2361 /// ParseStructType: Handles packed and unpacked types.  </> parsed elsewhere.
   2362 ///   StructType
   2363 ///     ::= '{' '}'
   2364 ///     ::= '{' Type (',' Type)* '}'
   2365 ///     ::= '<' '{' '}' '>'
   2366 ///     ::= '<' '{' Type (',' Type)* '}' '>'
   2367 bool LLParser::ParseStructBody(SmallVectorImpl<Type*> &Body) {
   2368   assert(Lex.getKind() == lltok::lbrace);
   2369   Lex.Lex(); // Consume the '{'
   2370 
   2371   // Handle the empty struct.
   2372   if (EatIfPresent(lltok::rbrace))
   2373     return false;
   2374 
   2375   LocTy EltTyLoc = Lex.getLoc();
   2376   Type *Ty = nullptr;
   2377   if (ParseType(Ty)) return true;
   2378   Body.push_back(Ty);
   2379 
   2380   if (!StructType::isValidElementType(Ty))
   2381     return Error(EltTyLoc, "invalid element type for struct");
   2382 
   2383   while (EatIfPresent(lltok::comma)) {
   2384     EltTyLoc = Lex.getLoc();
   2385     if (ParseType(Ty)) return true;
   2386 
   2387     if (!StructType::isValidElementType(Ty))
   2388       return Error(EltTyLoc, "invalid element type for struct");
   2389 
   2390     Body.push_back(Ty);
   2391   }
   2392 
   2393   return ParseToken(lltok::rbrace, "expected '}' at end of struct");
   2394 }
   2395 
   2396 /// ParseArrayVectorType - Parse an array or vector type, assuming the first
   2397 /// token has already been consumed.
   2398 ///   Type
   2399 ///     ::= '[' APSINTVAL 'x' Types ']'
   2400 ///     ::= '<' APSINTVAL 'x' Types '>'
   2401 bool LLParser::ParseArrayVectorType(Type *&Result, bool isVector) {
   2402   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
   2403       Lex.getAPSIntVal().getBitWidth() > 64)
   2404     return TokError("expected number in address space");
   2405 
   2406   LocTy SizeLoc = Lex.getLoc();
   2407   uint64_t Size = Lex.getAPSIntVal().getZExtValue();
   2408   Lex.Lex();
   2409 
   2410   if (ParseToken(lltok::kw_x, "expected 'x' after element count"))
   2411       return true;
   2412 
   2413   LocTy TypeLoc = Lex.getLoc();
   2414   Type *EltTy = nullptr;
   2415   if (ParseType(EltTy)) return true;
   2416 
   2417   if (ParseToken(isVector ? lltok::greater : lltok::rsquare,
   2418                  "expected end of sequential type"))
   2419     return true;
   2420 
   2421   if (isVector) {
   2422     if (Size == 0)
   2423       return Error(SizeLoc, "zero element vector is illegal");
   2424     if ((unsigned)Size != Size)
   2425       return Error(SizeLoc, "size too large for vector");
   2426     if (!VectorType::isValidElementType(EltTy))
   2427       return Error(TypeLoc, "invalid vector element type");
   2428     Result = VectorType::get(EltTy, unsigned(Size));
   2429   } else {
   2430     if (!ArrayType::isValidElementType(EltTy))
   2431       return Error(TypeLoc, "invalid array element type");
   2432     Result = ArrayType::get(EltTy, Size);
   2433   }
   2434   return false;
   2435 }
   2436 
   2437 //===----------------------------------------------------------------------===//
   2438 // Function Semantic Analysis.
   2439 //===----------------------------------------------------------------------===//
   2440 
   2441 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f,
   2442                                              int functionNumber)
   2443   : P(p), F(f), FunctionNumber(functionNumber) {
   2444 
   2445   // Insert unnamed arguments into the NumberedVals list.
   2446   for (Argument &A : F.args())
   2447     if (!A.hasName())
   2448       NumberedVals.push_back(&A);
   2449 }
   2450 
   2451 LLParser::PerFunctionState::~PerFunctionState() {
   2452   // If there were any forward referenced non-basicblock values, delete them.
   2453 
   2454   for (const auto &P : ForwardRefVals) {
   2455     if (isa<BasicBlock>(P.second.first))
   2456       continue;
   2457     P.second.first->replaceAllUsesWith(
   2458         UndefValue::get(P.second.first->getType()));
   2459     delete P.second.first;
   2460   }
   2461 
   2462   for (const auto &P : ForwardRefValIDs) {
   2463     if (isa<BasicBlock>(P.second.first))
   2464       continue;
   2465     P.second.first->replaceAllUsesWith(
   2466         UndefValue::get(P.second.first->getType()));
   2467     delete P.second.first;
   2468   }
   2469 }
   2470 
   2471 bool LLParser::PerFunctionState::FinishFunction() {
   2472   if (!ForwardRefVals.empty())
   2473     return P.Error(ForwardRefVals.begin()->second.second,
   2474                    "use of undefined value '%" + ForwardRefVals.begin()->first +
   2475                    "'");
   2476   if (!ForwardRefValIDs.empty())
   2477     return P.Error(ForwardRefValIDs.begin()->second.second,
   2478                    "use of undefined value '%" +
   2479                    Twine(ForwardRefValIDs.begin()->first) + "'");
   2480   return false;
   2481 }
   2482 
   2483 
   2484 /// GetVal - Get a value with the specified name or ID, creating a
   2485 /// forward reference record if needed.  This can return null if the value
   2486 /// exists but does not have the right type.
   2487 Value *LLParser::PerFunctionState::GetVal(const std::string &Name, Type *Ty,
   2488                                           LocTy Loc) {
   2489   // Look this name up in the normal function symbol table.
   2490   Value *Val = F.getValueSymbolTable().lookup(Name);
   2491 
   2492   // If this is a forward reference for the value, see if we already created a
   2493   // forward ref record.
   2494   if (!Val) {
   2495     auto I = ForwardRefVals.find(Name);
   2496     if (I != ForwardRefVals.end())
   2497       Val = I->second.first;
   2498   }
   2499 
   2500   // If we have the value in the symbol table or fwd-ref table, return it.
   2501   if (Val) {
   2502     if (Val->getType() == Ty) return Val;
   2503     if (Ty->isLabelTy())
   2504       P.Error(Loc, "'%" + Name + "' is not a basic block");
   2505     else
   2506       P.Error(Loc, "'%" + Name + "' defined with type '" +
   2507               getTypeString(Val->getType()) + "'");
   2508     return nullptr;
   2509   }
   2510 
   2511   // Don't make placeholders with invalid type.
   2512   if (!Ty->isFirstClassType()) {
   2513     P.Error(Loc, "invalid use of a non-first-class type");
   2514     return nullptr;
   2515   }
   2516 
   2517   // Otherwise, create a new forward reference for this value and remember it.
   2518   Value *FwdVal;
   2519   if (Ty->isLabelTy()) {
   2520     FwdVal = BasicBlock::Create(F.getContext(), Name, &F);
   2521   } else {
   2522     FwdVal = new Argument(Ty, Name);
   2523   }
   2524 
   2525   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
   2526   return FwdVal;
   2527 }
   2528 
   2529 Value *LLParser::PerFunctionState::GetVal(unsigned ID, Type *Ty, LocTy Loc) {
   2530   // Look this name up in the normal function symbol table.
   2531   Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
   2532 
   2533   // If this is a forward reference for the value, see if we already created a
   2534   // forward ref record.
   2535   if (!Val) {
   2536     auto I = ForwardRefValIDs.find(ID);
   2537     if (I != ForwardRefValIDs.end())
   2538       Val = I->second.first;
   2539   }
   2540 
   2541   // If we have the value in the symbol table or fwd-ref table, return it.
   2542   if (Val) {
   2543     if (Val->getType() == Ty) return Val;
   2544     if (Ty->isLabelTy())
   2545       P.Error(Loc, "'%" + Twine(ID) + "' is not a basic block");
   2546     else
   2547       P.Error(Loc, "'%" + Twine(ID) + "' defined with type '" +
   2548               getTypeString(Val->getType()) + "'");
   2549     return nullptr;
   2550   }
   2551 
   2552   if (!Ty->isFirstClassType()) {
   2553     P.Error(Loc, "invalid use of a non-first-class type");
   2554     return nullptr;
   2555   }
   2556 
   2557   // Otherwise, create a new forward reference for this value and remember it.
   2558   Value *FwdVal;
   2559   if (Ty->isLabelTy()) {
   2560     FwdVal = BasicBlock::Create(F.getContext(), "", &F);
   2561   } else {
   2562     FwdVal = new Argument(Ty);
   2563   }
   2564 
   2565   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
   2566   return FwdVal;
   2567 }
   2568 
   2569 /// SetInstName - After an instruction is parsed and inserted into its
   2570 /// basic block, this installs its name.
   2571 bool LLParser::PerFunctionState::SetInstName(int NameID,
   2572                                              const std::string &NameStr,
   2573                                              LocTy NameLoc, Instruction *Inst) {
   2574   // If this instruction has void type, it cannot have a name or ID specified.
   2575   if (Inst->getType()->isVoidTy()) {
   2576     if (NameID != -1 || !NameStr.empty())
   2577       return P.Error(NameLoc, "instructions returning void cannot have a name");
   2578     return false;
   2579   }
   2580 
   2581   // If this was a numbered instruction, verify that the instruction is the
   2582   // expected value and resolve any forward references.
   2583   if (NameStr.empty()) {
   2584     // If neither a name nor an ID was specified, just use the next ID.
   2585     if (NameID == -1)
   2586       NameID = NumberedVals.size();
   2587 
   2588     if (unsigned(NameID) != NumberedVals.size())
   2589       return P.Error(NameLoc, "instruction expected to be numbered '%" +
   2590                      Twine(NumberedVals.size()) + "'");
   2591 
   2592     auto FI = ForwardRefValIDs.find(NameID);
   2593     if (FI != ForwardRefValIDs.end()) {
   2594       Value *Sentinel = FI->second.first;
   2595       if (Sentinel->getType() != Inst->getType())
   2596         return P.Error(NameLoc, "instruction forward referenced with type '" +
   2597                        getTypeString(FI->second.first->getType()) + "'");
   2598 
   2599       Sentinel->replaceAllUsesWith(Inst);
   2600       delete Sentinel;
   2601       ForwardRefValIDs.erase(FI);
   2602     }
   2603 
   2604     NumberedVals.push_back(Inst);
   2605     return false;
   2606   }
   2607 
   2608   // Otherwise, the instruction had a name.  Resolve forward refs and set it.
   2609   auto FI = ForwardRefVals.find(NameStr);
   2610   if (FI != ForwardRefVals.end()) {
   2611     Value *Sentinel = FI->second.first;
   2612     if (Sentinel->getType() != Inst->getType())
   2613       return P.Error(NameLoc, "instruction forward referenced with type '" +
   2614                      getTypeString(FI->second.first->getType()) + "'");
   2615 
   2616     Sentinel->replaceAllUsesWith(Inst);
   2617     delete Sentinel;
   2618     ForwardRefVals.erase(FI);
   2619   }
   2620 
   2621   // Set the name on the instruction.
   2622   Inst->setName(NameStr);
   2623 
   2624   if (Inst->getName() != NameStr)
   2625     return P.Error(NameLoc, "multiple definition of local value named '" +
   2626                    NameStr + "'");
   2627   return false;
   2628 }
   2629 
   2630 /// GetBB - Get a basic block with the specified name or ID, creating a
   2631 /// forward reference record if needed.
   2632 BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name,
   2633                                               LocTy Loc) {
   2634   return dyn_cast_or_null<BasicBlock>(GetVal(Name,
   2635                                       Type::getLabelTy(F.getContext()), Loc));
   2636 }
   2637 
   2638 BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) {
   2639   return dyn_cast_or_null<BasicBlock>(GetVal(ID,
   2640                                       Type::getLabelTy(F.getContext()), Loc));
   2641 }
   2642 
   2643 /// DefineBB - Define the specified basic block, which is either named or
   2644 /// unnamed.  If there is an error, this returns null otherwise it returns
   2645 /// the block being defined.
   2646 BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name,
   2647                                                  LocTy Loc) {
   2648   BasicBlock *BB;
   2649   if (Name.empty())
   2650     BB = GetBB(NumberedVals.size(), Loc);
   2651   else
   2652     BB = GetBB(Name, Loc);
   2653   if (!BB) return nullptr; // Already diagnosed error.
   2654 
   2655   // Move the block to the end of the function.  Forward ref'd blocks are
   2656   // inserted wherever they happen to be referenced.
   2657   F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
   2658 
   2659   // Remove the block from forward ref sets.
   2660   if (Name.empty()) {
   2661     ForwardRefValIDs.erase(NumberedVals.size());
   2662     NumberedVals.push_back(BB);
   2663   } else {
   2664     // BB forward references are already in the function symbol table.
   2665     ForwardRefVals.erase(Name);
   2666   }
   2667 
   2668   return BB;
   2669 }
   2670 
   2671 //===----------------------------------------------------------------------===//
   2672 // Constants.
   2673 //===----------------------------------------------------------------------===//
   2674 
   2675 /// ParseValID - Parse an abstract value that doesn't necessarily have a
   2676 /// type implied.  For example, if we parse "4" we don't know what integer type
   2677 /// it has.  The value will later be combined with its type and checked for
   2678 /// sanity.  PFS is used to convert function-local operands of metadata (since
   2679 /// metadata operands are not just parsed here but also converted to values).
   2680 /// PFS can be null when we are not parsing metadata values inside a function.
   2681 bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) {
   2682   ID.Loc = Lex.getLoc();
   2683   switch (Lex.getKind()) {
   2684   default: return TokError("expected value token");
   2685   case lltok::GlobalID:  // @42
   2686     ID.UIntVal = Lex.getUIntVal();
   2687     ID.Kind = ValID::t_GlobalID;
   2688     break;
   2689   case lltok::GlobalVar:  // @foo
   2690     ID.StrVal = Lex.getStrVal();
   2691     ID.Kind = ValID::t_GlobalName;
   2692     break;
   2693   case lltok::LocalVarID:  // %42
   2694     ID.UIntVal = Lex.getUIntVal();
   2695     ID.Kind = ValID::t_LocalID;
   2696     break;
   2697   case lltok::LocalVar:  // %foo
   2698     ID.StrVal = Lex.getStrVal();
   2699     ID.Kind = ValID::t_LocalName;
   2700     break;
   2701   case lltok::APSInt:
   2702     ID.APSIntVal = Lex.getAPSIntVal();
   2703     ID.Kind = ValID::t_APSInt;
   2704     break;
   2705   case lltok::APFloat:
   2706     ID.APFloatVal = Lex.getAPFloatVal();
   2707     ID.Kind = ValID::t_APFloat;
   2708     break;
   2709   case lltok::kw_true:
   2710     ID.ConstantVal = ConstantInt::getTrue(Context);
   2711     ID.Kind = ValID::t_Constant;
   2712     break;
   2713   case lltok::kw_false:
   2714     ID.ConstantVal = ConstantInt::getFalse(Context);
   2715     ID.Kind = ValID::t_Constant;
   2716     break;
   2717   case lltok::kw_null: ID.Kind = ValID::t_Null; break;
   2718   case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
   2719   case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
   2720   case lltok::kw_none: ID.Kind = ValID::t_None; break;
   2721 
   2722   case lltok::lbrace: {
   2723     // ValID ::= '{' ConstVector '}'
   2724     Lex.Lex();
   2725     SmallVector<Constant*, 16> Elts;
   2726     if (ParseGlobalValueVector(Elts) ||
   2727         ParseToken(lltok::rbrace, "expected end of struct constant"))
   2728       return true;
   2729 
   2730     ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size());
   2731     ID.UIntVal = Elts.size();
   2732     memcpy(ID.ConstantStructElts.get(), Elts.data(),
   2733            Elts.size() * sizeof(Elts[0]));
   2734     ID.Kind = ValID::t_ConstantStruct;
   2735     return false;
   2736   }
   2737   case lltok::less: {
   2738     // ValID ::= '<' ConstVector '>'         --> Vector.
   2739     // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
   2740     Lex.Lex();
   2741     bool isPackedStruct = EatIfPresent(lltok::lbrace);
   2742 
   2743     SmallVector<Constant*, 16> Elts;
   2744     LocTy FirstEltLoc = Lex.getLoc();
   2745     if (ParseGlobalValueVector(Elts) ||
   2746         (isPackedStruct &&
   2747          ParseToken(lltok::rbrace, "expected end of packed struct")) ||
   2748         ParseToken(lltok::greater, "expected end of constant"))
   2749       return true;
   2750 
   2751     if (isPackedStruct) {
   2752       ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size());
   2753       memcpy(ID.ConstantStructElts.get(), Elts.data(),
   2754              Elts.size() * sizeof(Elts[0]));
   2755       ID.UIntVal = Elts.size();
   2756       ID.Kind = ValID::t_PackedConstantStruct;
   2757       return false;
   2758     }
   2759 
   2760     if (Elts.empty())
   2761       return Error(ID.Loc, "constant vector must not be empty");
   2762 
   2763     if (!Elts[0]->getType()->isIntegerTy() &&
   2764         !Elts[0]->getType()->isFloatingPointTy() &&
   2765         !Elts[0]->getType()->isPointerTy())
   2766       return Error(FirstEltLoc,
   2767             "vector elements must have integer, pointer or floating point type");
   2768 
   2769     // Verify that all the vector elements have the same type.
   2770     for (unsigned i = 1, e = Elts.size(); i != e; ++i)
   2771       if (Elts[i]->getType() != Elts[0]->getType())
   2772         return Error(FirstEltLoc,
   2773                      "vector element #" + Twine(i) +
   2774                     " is not of type '" + getTypeString(Elts[0]->getType()));
   2775 
   2776     ID.ConstantVal = ConstantVector::get(Elts);
   2777     ID.Kind = ValID::t_Constant;
   2778     return false;
   2779   }
   2780   case lltok::lsquare: {   // Array Constant
   2781     Lex.Lex();
   2782     SmallVector<Constant*, 16> Elts;
   2783     LocTy FirstEltLoc = Lex.getLoc();
   2784     if (ParseGlobalValueVector(Elts) ||
   2785         ParseToken(lltok::rsquare, "expected end of array constant"))
   2786       return true;
   2787 
   2788     // Handle empty element.
   2789     if (Elts.empty()) {
   2790       // Use undef instead of an array because it's inconvenient to determine
   2791       // the element type at this point, there being no elements to examine.
   2792       ID.Kind = ValID::t_EmptyArray;
   2793       return false;
   2794     }
   2795 
   2796     if (!Elts[0]->getType()->isFirstClassType())
   2797       return Error(FirstEltLoc, "invalid array element type: " +
   2798                    getTypeString(Elts[0]->getType()));
   2799 
   2800     ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
   2801 
   2802     // Verify all elements are correct type!
   2803     for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
   2804       if (Elts[i]->getType() != Elts[0]->getType())
   2805         return Error(FirstEltLoc,
   2806                      "array element #" + Twine(i) +
   2807                      " is not of type '" + getTypeString(Elts[0]->getType()));
   2808     }
   2809 
   2810     ID.ConstantVal = ConstantArray::get(ATy, Elts);
   2811     ID.Kind = ValID::t_Constant;
   2812     return false;
   2813   }
   2814   case lltok::kw_c:  // c "foo"
   2815     Lex.Lex();
   2816     ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(),
   2817                                                   false);
   2818     if (ParseToken(lltok::StringConstant, "expected string")) return true;
   2819     ID.Kind = ValID::t_Constant;
   2820     return false;
   2821 
   2822   case lltok::kw_asm: {
   2823     // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ','
   2824     //             STRINGCONSTANT
   2825     bool HasSideEffect, AlignStack, AsmDialect;
   2826     Lex.Lex();
   2827     if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
   2828         ParseOptionalToken(lltok::kw_alignstack, AlignStack) ||
   2829         ParseOptionalToken(lltok::kw_inteldialect, AsmDialect) ||
   2830         ParseStringConstant(ID.StrVal) ||
   2831         ParseToken(lltok::comma, "expected comma in inline asm expression") ||
   2832         ParseToken(lltok::StringConstant, "expected constraint string"))
   2833       return true;
   2834     ID.StrVal2 = Lex.getStrVal();
   2835     ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1) |
   2836       (unsigned(AsmDialect)<<2);
   2837     ID.Kind = ValID::t_InlineAsm;
   2838     return false;
   2839   }
   2840 
   2841   case lltok::kw_blockaddress: {
   2842     // ValID ::= 'blockaddress' '(' @foo ',' %bar ')'
   2843     Lex.Lex();
   2844 
   2845     ValID Fn, Label;
   2846 
   2847     if (ParseToken(lltok::lparen, "expected '(' in block address expression") ||
   2848         ParseValID(Fn) ||
   2849         ParseToken(lltok::comma, "expected comma in block address expression")||
   2850         ParseValID(Label) ||
   2851         ParseToken(lltok::rparen, "expected ')' in block address expression"))
   2852       return true;
   2853 
   2854     if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
   2855       return Error(Fn.Loc, "expected function name in blockaddress");
   2856     if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName)
   2857       return Error(Label.Loc, "expected basic block name in blockaddress");
   2858 
   2859     // Try to find the function (but skip it if it's forward-referenced).
   2860     GlobalValue *GV = nullptr;
   2861     if (Fn.Kind == ValID::t_GlobalID) {
   2862       if (Fn.UIntVal < NumberedVals.size())
   2863         GV = NumberedVals[Fn.UIntVal];
   2864     } else if (!ForwardRefVals.count(Fn.StrVal)) {
   2865       GV = M->getNamedValue(Fn.StrVal);
   2866     }
   2867     Function *F = nullptr;
   2868     if (GV) {
   2869       // Confirm that it's actually a function with a definition.
   2870       if (!isa<Function>(GV))
   2871         return Error(Fn.Loc, "expected function name in blockaddress");
   2872       F = cast<Function>(GV);
   2873       if (F->isDeclaration())
   2874         return Error(Fn.Loc, "cannot take blockaddress inside a declaration");
   2875     }
   2876 
   2877     if (!F) {
   2878       // Make a global variable as a placeholder for this reference.
   2879       GlobalValue *&FwdRef =
   2880           ForwardRefBlockAddresses.insert(std::make_pair(
   2881                                               std::move(Fn),
   2882                                               std::map<ValID, GlobalValue *>()))
   2883               .first->second.insert(std::make_pair(std::move(Label), nullptr))
   2884               .first->second;
   2885       if (!FwdRef)
   2886         FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), false,
   2887                                     GlobalValue::InternalLinkage, nullptr, "");
   2888       ID.ConstantVal = FwdRef;
   2889       ID.Kind = ValID::t_Constant;
   2890       return false;
   2891     }
   2892 
   2893     // We found the function; now find the basic block.  Don't use PFS, since we
   2894     // might be inside a constant expression.
   2895     BasicBlock *BB;
   2896     if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) {
   2897       if (Label.Kind == ValID::t_LocalID)
   2898         BB = BlockAddressPFS->GetBB(Label.UIntVal, Label.Loc);
   2899       else
   2900         BB = BlockAddressPFS->GetBB(Label.StrVal, Label.Loc);
   2901       if (!BB)
   2902         return Error(Label.Loc, "referenced value is not a basic block");
   2903     } else {
   2904       if (Label.Kind == ValID::t_LocalID)
   2905         return Error(Label.Loc, "cannot take address of numeric label after "
   2906                                 "the function is defined");
   2907       BB = dyn_cast_or_null<BasicBlock>(
   2908           F->getValueSymbolTable().lookup(Label.StrVal));
   2909       if (!BB)
   2910         return Error(Label.Loc, "referenced value is not a basic block");
   2911     }
   2912 
   2913     ID.ConstantVal = BlockAddress::get(F, BB);
   2914     ID.Kind = ValID::t_Constant;
   2915     return false;
   2916   }
   2917 
   2918   case lltok::kw_trunc:
   2919   case lltok::kw_zext:
   2920   case lltok::kw_sext:
   2921   case lltok::kw_fptrunc:
   2922   case lltok::kw_fpext:
   2923   case lltok::kw_bitcast:
   2924   case lltok::kw_addrspacecast:
   2925   case lltok::kw_uitofp:
   2926   case lltok::kw_sitofp:
   2927   case lltok::kw_fptoui:
   2928   case lltok::kw_fptosi:
   2929   case lltok::kw_inttoptr:
   2930   case lltok::kw_ptrtoint: {
   2931     unsigned Opc = Lex.getUIntVal();
   2932     Type *DestTy = nullptr;
   2933     Constant *SrcVal;
   2934     Lex.Lex();
   2935     if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
   2936         ParseGlobalTypeAndValue(SrcVal) ||
   2937         ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") ||
   2938         ParseType(DestTy) ||
   2939         ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
   2940       return true;
   2941     if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
   2942       return Error(ID.Loc, "invalid cast opcode for cast from '" +
   2943                    getTypeString(SrcVal->getType()) + "' to '" +
   2944                    getTypeString(DestTy) + "'");
   2945     ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc,
   2946                                                  SrcVal, DestTy);
   2947     ID.Kind = ValID::t_Constant;
   2948     return false;
   2949   }
   2950   case lltok::kw_extractvalue: {
   2951     Lex.Lex();
   2952     Constant *Val;
   2953     SmallVector<unsigned, 4> Indices;
   2954     if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")||
   2955         ParseGlobalTypeAndValue(Val) ||
   2956         ParseIndexList(Indices) ||
   2957         ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
   2958       return true;
   2959 
   2960     if (!Val->getType()->isAggregateType())
   2961       return Error(ID.Loc, "extractvalue operand must be aggregate type");
   2962     if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
   2963       return Error(ID.Loc, "invalid indices for extractvalue");
   2964     ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices);
   2965     ID.Kind = ValID::t_Constant;
   2966     return false;
   2967   }
   2968   case lltok::kw_insertvalue: {
   2969     Lex.Lex();
   2970     Constant *Val0, *Val1;
   2971     SmallVector<unsigned, 4> Indices;
   2972     if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")||
   2973         ParseGlobalTypeAndValue(Val0) ||
   2974         ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")||
   2975         ParseGlobalTypeAndValue(Val1) ||
   2976         ParseIndexList(Indices) ||
   2977         ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
   2978       return true;
   2979     if (!Val0->getType()->isAggregateType())
   2980       return Error(ID.Loc, "insertvalue operand must be aggregate type");
   2981     Type *IndexedType =
   2982         ExtractValueInst::getIndexedType(Val0->getType(), Indices);
   2983     if (!IndexedType)
   2984       return Error(ID.Loc, "invalid indices for insertvalue");
   2985     if (IndexedType != Val1->getType())
   2986       return Error(ID.Loc, "insertvalue operand and field disagree in type: '" +
   2987                                getTypeString(Val1->getType()) +
   2988                                "' instead of '" + getTypeString(IndexedType) +
   2989                                "'");
   2990     ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices);
   2991     ID.Kind = ValID::t_Constant;
   2992     return false;
   2993   }
   2994   case lltok::kw_icmp:
   2995   case lltok::kw_fcmp: {
   2996     unsigned PredVal, Opc = Lex.getUIntVal();
   2997     Constant *Val0, *Val1;
   2998     Lex.Lex();
   2999     if (ParseCmpPredicate(PredVal, Opc) ||
   3000         ParseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
   3001         ParseGlobalTypeAndValue(Val0) ||
   3002         ParseToken(lltok::comma, "expected comma in compare constantexpr") ||
   3003         ParseGlobalTypeAndValue(Val1) ||
   3004         ParseToken(lltok::rparen, "expected ')' in compare constantexpr"))
   3005       return true;
   3006 
   3007     if (Val0->getType() != Val1->getType())
   3008       return Error(ID.Loc, "compare operands must have the same type");
   3009 
   3010     CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
   3011 
   3012     if (Opc == Instruction::FCmp) {
   3013       if (!Val0->getType()->isFPOrFPVectorTy())
   3014         return Error(ID.Loc, "fcmp requires floating point operands");
   3015       ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
   3016     } else {
   3017       assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!");
   3018       if (!Val0->getType()->isIntOrIntVectorTy() &&
   3019           !Val0->getType()->getScalarType()->isPointerTy())
   3020         return Error(ID.Loc, "icmp requires pointer or integer operands");
   3021       ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
   3022     }
   3023     ID.Kind = ValID::t_Constant;
   3024     return false;
   3025   }
   3026 
   3027   // Binary Operators.
   3028   case lltok::kw_add:
   3029   case lltok::kw_fadd:
   3030   case lltok::kw_sub:
   3031   case lltok::kw_fsub:
   3032   case lltok::kw_mul:
   3033   case lltok::kw_fmul:
   3034   case lltok::kw_udiv:
   3035   case lltok::kw_sdiv:
   3036   case lltok::kw_fdiv:
   3037   case lltok::kw_urem:
   3038   case lltok::kw_srem:
   3039   case lltok::kw_frem:
   3040   case lltok::kw_shl:
   3041   case lltok::kw_lshr:
   3042   case lltok::kw_ashr: {
   3043     bool NUW = false;
   3044     bool NSW = false;
   3045     bool Exact = false;
   3046     unsigned Opc = Lex.getUIntVal();
   3047     Constant *Val0, *Val1;
   3048     Lex.Lex();
   3049     LocTy ModifierLoc = Lex.getLoc();
   3050     if (Opc == Instruction::Add || Opc == Instruction::Sub ||
   3051         Opc == Instruction::Mul || Opc == Instruction::Shl) {
   3052       if (EatIfPresent(lltok::kw_nuw))
   3053         NUW = true;
   3054       if (EatIfPresent(lltok::kw_nsw)) {
   3055         NSW = true;
   3056         if (EatIfPresent(lltok::kw_nuw))
   3057           NUW = true;
   3058       }
   3059     } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv ||
   3060                Opc == Instruction::LShr || Opc == Instruction::AShr) {
   3061       if (EatIfPresent(lltok::kw_exact))
   3062         Exact = true;
   3063     }
   3064     if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
   3065         ParseGlobalTypeAndValue(Val0) ||
   3066         ParseToken(lltok::comma, "expected comma in binary constantexpr") ||
   3067         ParseGlobalTypeAndValue(Val1) ||
   3068         ParseToken(lltok::rparen, "expected ')' in binary constantexpr"))
   3069       return true;
   3070     if (Val0->getType() != Val1->getType())
   3071       return Error(ID.Loc, "operands of constexpr must have same type");
   3072     if (!Val0->getType()->isIntOrIntVectorTy()) {
   3073       if (NUW)
   3074         return Error(ModifierLoc, "nuw only applies to integer operations");
   3075       if (NSW)
   3076         return Error(ModifierLoc, "nsw only applies to integer operations");
   3077     }
   3078     // Check that the type is valid for the operator.
   3079     switch (Opc) {
   3080     case Instruction::Add:
   3081     case Instruction::Sub:
   3082     case Instruction::Mul:
   3083     case Instruction::UDiv:
   3084     case Instruction::SDiv:
   3085     case Instruction::URem:
   3086     case Instruction::SRem:
   3087     case Instruction::Shl:
   3088     case Instruction::AShr:
   3089     case Instruction::LShr:
   3090       if (!Val0->getType()->isIntOrIntVectorTy())
   3091         return Error(ID.Loc, "constexpr requires integer operands");
   3092       break;
   3093     case Instruction::FAdd:
   3094     case Instruction::FSub:
   3095     case Instruction::FMul:
   3096     case Instruction::FDiv:
   3097     case Instruction::FRem:
   3098       if (!Val0->getType()->isFPOrFPVectorTy())
   3099         return Error(ID.Loc, "constexpr requires fp operands");
   3100       break;
   3101     default: llvm_unreachable("Unknown binary operator!");
   3102     }
   3103     unsigned Flags = 0;
   3104     if (NUW)   Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
   3105     if (NSW)   Flags |= OverflowingBinaryOperator::NoSignedWrap;
   3106     if (Exact) Flags |= PossiblyExactOperator::IsExact;
   3107     Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags);
   3108     ID.ConstantVal = C;
   3109     ID.Kind = ValID::t_Constant;
   3110     return false;
   3111   }
   3112 
   3113   // Logical Operations
   3114   case lltok::kw_and:
   3115   case lltok::kw_or:
   3116   case lltok::kw_xor: {
   3117     unsigned Opc = Lex.getUIntVal();
   3118     Constant *Val0, *Val1;
   3119     Lex.Lex();
   3120     if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
   3121         ParseGlobalTypeAndValue(Val0) ||
   3122         ParseToken(lltok::comma, "expected comma in logical constantexpr") ||
   3123         ParseGlobalTypeAndValue(Val1) ||
   3124         ParseToken(lltok::rparen, "expected ')' in logical constantexpr"))
   3125       return true;
   3126     if (Val0->getType() != Val1->getType())
   3127       return Error(ID.Loc, "operands of constexpr must have same type");
   3128     if (!Val0->getType()->isIntOrIntVectorTy())
   3129       return Error(ID.Loc,
   3130                    "constexpr requires integer or integer vector operands");
   3131     ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
   3132     ID.Kind = ValID::t_Constant;
   3133     return false;
   3134   }
   3135 
   3136   case lltok::kw_getelementptr:
   3137   case lltok::kw_shufflevector:
   3138   case lltok::kw_insertelement:
   3139   case lltok::kw_extractelement:
   3140   case lltok::kw_select: {
   3141     unsigned Opc = Lex.getUIntVal();
   3142     SmallVector<Constant*, 16> Elts;
   3143     bool InBounds = false;
   3144     Type *Ty;
   3145     Lex.Lex();
   3146 
   3147     if (Opc == Instruction::GetElementPtr)
   3148       InBounds = EatIfPresent(lltok::kw_inbounds);
   3149 
   3150     if (ParseToken(lltok::lparen, "expected '(' in constantexpr"))
   3151       return true;
   3152 
   3153     LocTy ExplicitTypeLoc = Lex.getLoc();
   3154     if (Opc == Instruction::GetElementPtr) {
   3155       if (ParseType(Ty) ||
   3156           ParseToken(lltok::comma, "expected comma after getelementptr's type"))
   3157         return true;
   3158     }
   3159 
   3160     if (ParseGlobalValueVector(Elts) ||
   3161         ParseToken(lltok::rparen, "expected ')' in constantexpr"))
   3162       return true;
   3163 
   3164     if (Opc == Instruction::GetElementPtr) {
   3165       if (Elts.size() == 0 ||
   3166           !Elts[0]->getType()->getScalarType()->isPointerTy())
   3167         return Error(ID.Loc, "base of getelementptr must be a pointer");
   3168 
   3169       Type *BaseType = Elts[0]->getType();
   3170       auto *BasePointerType = cast<PointerType>(BaseType->getScalarType());
   3171       if (Ty != BasePointerType->getElementType())
   3172         return Error(
   3173             ExplicitTypeLoc,
   3174             "explicit pointee type doesn't match operand's pointee type");
   3175 
   3176       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
   3177       for (Constant *Val : Indices) {
   3178         Type *ValTy = Val->getType();
   3179         if (!ValTy->getScalarType()->isIntegerTy())
   3180           return Error(ID.Loc, "getelementptr index must be an integer");
   3181         if (ValTy->isVectorTy() != BaseType->isVectorTy())
   3182           return Error(ID.Loc, "getelementptr index type missmatch");
   3183         if (ValTy->isVectorTy()) {
   3184           unsigned ValNumEl = ValTy->getVectorNumElements();
   3185           unsigned PtrNumEl = BaseType->getVectorNumElements();
   3186           if (ValNumEl != PtrNumEl)
   3187             return Error(
   3188                 ID.Loc,
   3189                 "getelementptr vector index has a wrong number of elements");
   3190         }
   3191       }
   3192 
   3193       SmallPtrSet<Type*, 4> Visited;
   3194       if (!Indices.empty() && !Ty->isSized(&Visited))
   3195         return Error(ID.Loc, "base element of getelementptr must be sized");
   3196 
   3197       if (!GetElementPtrInst::getIndexedType(Ty, Indices))
   3198         return Error(ID.Loc, "invalid getelementptr indices");
   3199       ID.ConstantVal =
   3200           ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices, InBounds);
   3201     } else if (Opc == Instruction::Select) {
   3202       if (Elts.size() != 3)
   3203         return Error(ID.Loc, "expected three operands to select");
   3204       if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
   3205                                                               Elts[2]))
   3206         return Error(ID.Loc, Reason);
   3207       ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
   3208     } else if (Opc == Instruction::ShuffleVector) {
   3209       if (Elts.size() != 3)
   3210         return Error(ID.Loc, "expected three operands to shufflevector");
   3211       if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
   3212         return Error(ID.Loc, "invalid operands to shufflevector");
   3213       ID.ConstantVal =
   3214                  ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]);
   3215     } else if (Opc == Instruction::ExtractElement) {
   3216       if (Elts.size() != 2)
   3217         return Error(ID.Loc, "expected two operands to extractelement");
   3218       if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
   3219         return Error(ID.Loc, "invalid extractelement operands");
   3220       ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
   3221     } else {
   3222       assert(Opc == Instruction::InsertElement && "Unknown opcode");
   3223       if (Elts.size() != 3)
   3224       return Error(ID.Loc, "expected three operands to insertelement");
   3225       if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
   3226         return Error(ID.Loc, "invalid insertelement operands");
   3227       ID.ConstantVal =
   3228                  ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
   3229     }
   3230 
   3231     ID.Kind = ValID::t_Constant;
   3232     return false;
   3233   }
   3234   }
   3235 
   3236   Lex.Lex();
   3237   return false;
   3238 }
   3239 
   3240 /// ParseGlobalValue - Parse a global value with the specified type.
   3241 bool LLParser::ParseGlobalValue(Type *Ty, Constant *&C) {
   3242   C = nullptr;
   3243   ValID ID;
   3244   Value *V = nullptr;
   3245   bool Parsed = ParseValID(ID) ||
   3246                 ConvertValIDToValue(Ty, ID, V, nullptr);
   3247   if (V && !(C = dyn_cast<Constant>(V)))
   3248     return Error(ID.Loc, "global values must be constants");
   3249   return Parsed;
   3250 }
   3251 
   3252 bool LLParser::ParseGlobalTypeAndValue(Constant *&V) {
   3253   Type *Ty = nullptr;
   3254   return ParseType(Ty) ||
   3255          ParseGlobalValue(Ty, V);
   3256 }
   3257 
   3258 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) {
   3259   C = nullptr;
   3260 
   3261   LocTy KwLoc = Lex.getLoc();
   3262   if (!EatIfPresent(lltok::kw_comdat))
   3263     return false;
   3264 
   3265   if (EatIfPresent(lltok::lparen)) {
   3266     if (Lex.getKind() != lltok::ComdatVar)
   3267       return TokError("expected comdat variable");
   3268     C = getComdat(Lex.getStrVal(), Lex.getLoc());
   3269     Lex.Lex();
   3270     if (ParseToken(lltok::rparen, "expected ')' after comdat var"))
   3271       return true;
   3272   } else {
   3273     if (GlobalName.empty())
   3274       return TokError("comdat cannot be unnamed");
   3275     C = getComdat(GlobalName, KwLoc);
   3276   }
   3277 
   3278   return false;
   3279 }
   3280 
   3281 /// ParseGlobalValueVector
   3282 ///   ::= /*empty*/
   3283 ///   ::= TypeAndValue (',' TypeAndValue)*
   3284 bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant *> &Elts) {
   3285   // Empty list.
   3286   if (Lex.getKind() == lltok::rbrace ||
   3287       Lex.getKind() == lltok::rsquare ||
   3288       Lex.getKind() == lltok::greater ||
   3289       Lex.getKind() == lltok::rparen)
   3290     return false;
   3291 
   3292   Constant *C;
   3293   if (ParseGlobalTypeAndValue(C)) return true;
   3294   Elts.push_back(C);
   3295 
   3296   while (EatIfPresent(lltok::comma)) {
   3297     if (ParseGlobalTypeAndValue(C)) return true;
   3298     Elts.push_back(C);
   3299   }
   3300 
   3301   return false;
   3302 }
   3303 
   3304 bool LLParser::ParseMDTuple(MDNode *&MD, bool IsDistinct) {
   3305   SmallVector<Metadata *, 16> Elts;
   3306   if (ParseMDNodeVector(Elts))
   3307     return true;
   3308 
   3309   MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts);
   3310   return false;
   3311 }
   3312 
   3313 /// MDNode:
   3314 ///  ::= !{ ... }
   3315 ///  ::= !7
   3316 ///  ::= !DILocation(...)
   3317 bool LLParser::ParseMDNode(MDNode *&N) {
   3318   if (Lex.getKind() == lltok::MetadataVar)
   3319     return ParseSpecializedMDNode(N);
   3320 
   3321   return ParseToken(lltok::exclaim, "expected '!' here") ||
   3322          ParseMDNodeTail(N);
   3323 }
   3324 
   3325 bool LLParser::ParseMDNodeTail(MDNode *&N) {
   3326   // !{ ... }
   3327   if (Lex.getKind() == lltok::lbrace)
   3328     return ParseMDTuple(N);
   3329 
   3330   // !42
   3331   return ParseMDNodeID(N);
   3332 }
   3333 
   3334 namespace {
   3335 
   3336 /// Structure to represent an optional metadata field.
   3337 template <class FieldTy> struct MDFieldImpl {
   3338   typedef MDFieldImpl ImplTy;
   3339   FieldTy Val;
   3340   bool Seen;
   3341 
   3342   void assign(FieldTy Val) {
   3343     Seen = true;
   3344     this->Val = std::move(Val);
   3345   }
   3346 
   3347   explicit MDFieldImpl(FieldTy Default)
   3348       : Val(std::move(Default)), Seen(false) {}
   3349 };
   3350 
   3351 struct MDUnsignedField : public MDFieldImpl<uint64_t> {
   3352   uint64_t Max;
   3353 
   3354   MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX)
   3355       : ImplTy(Default), Max(Max) {}
   3356 };
   3357 struct LineField : public MDUnsignedField {
   3358   LineField() : MDUnsignedField(0, UINT32_MAX) {}
   3359 };
   3360 struct ColumnField : public MDUnsignedField {
   3361   ColumnField() : MDUnsignedField(0, UINT16_MAX) {}
   3362 };
   3363 struct DwarfTagField : public MDUnsignedField {
   3364   DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {}
   3365   DwarfTagField(dwarf::Tag DefaultTag)
   3366       : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {}
   3367 };
   3368 struct DwarfMacinfoTypeField : public MDUnsignedField {
   3369   DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {}
   3370   DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType)
   3371     : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {}
   3372 };
   3373 struct DwarfAttEncodingField : public MDUnsignedField {
   3374   DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {}
   3375 };
   3376 struct DwarfVirtualityField : public MDUnsignedField {
   3377   DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {}
   3378 };
   3379 struct DwarfLangField : public MDUnsignedField {
   3380   DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {}
   3381 };
   3382 struct DwarfCCField : public MDUnsignedField {
   3383   DwarfCCField() : MDUnsignedField(0, dwarf::DW_CC_hi_user) {}
   3384 };
   3385 struct EmissionKindField : public MDUnsignedField {
   3386   EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {}
   3387 };
   3388 
   3389 struct DIFlagField : public MDUnsignedField {
   3390   DIFlagField() : MDUnsignedField(0, UINT32_MAX) {}
   3391 };
   3392 
   3393 struct MDSignedField : public MDFieldImpl<int64_t> {
   3394   int64_t Min;
   3395   int64_t Max;
   3396 
   3397   MDSignedField(int64_t Default = 0)
   3398       : ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {}
   3399   MDSignedField(int64_t Default, int64_t Min, int64_t Max)
   3400       : ImplTy(Default), Min(Min), Max(Max) {}
   3401 };
   3402 
   3403 struct MDBoolField : public MDFieldImpl<bool> {
   3404   MDBoolField(bool Default = false) : ImplTy(Default) {}
   3405 };
   3406 struct MDField : public MDFieldImpl<Metadata *> {
   3407   bool AllowNull;
   3408 
   3409   MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {}
   3410 };
   3411 struct MDConstant : public MDFieldImpl<ConstantAsMetadata *> {
   3412   MDConstant() : ImplTy(nullptr) {}
   3413 };
   3414 struct MDStringField : public MDFieldImpl<MDString *> {
   3415   bool AllowEmpty;
   3416   MDStringField(bool AllowEmpty = true)
   3417       : ImplTy(nullptr), AllowEmpty(AllowEmpty) {}
   3418 };
   3419 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> {
   3420   MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {}
   3421 };
   3422 
   3423 } // end namespace
   3424 
   3425 namespace llvm {
   3426 
   3427 template <>
   3428 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
   3429                             MDUnsignedField &Result) {
   3430   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
   3431     return TokError("expected unsigned integer");
   3432 
   3433   auto &U = Lex.getAPSIntVal();
   3434   if (U.ugt(Result.Max))
   3435     return TokError("value for '" + Name + "' too large, limit is " +
   3436                     Twine(Result.Max));
   3437   Result.assign(U.getZExtValue());
   3438   assert(Result.Val <= Result.Max && "Expected value in range");
   3439   Lex.Lex();
   3440   return false;
   3441 }
   3442 
   3443 template <>
   3444 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, LineField &Result) {
   3445   return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
   3446 }
   3447 template <>
   3448 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, ColumnField &Result) {
   3449   return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
   3450 }
   3451 
   3452 template <>
   3453 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) {
   3454   if (Lex.getKind() == lltok::APSInt)
   3455     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
   3456 
   3457   if (Lex.getKind() != lltok::DwarfTag)
   3458     return TokError("expected DWARF tag");
   3459 
   3460   unsigned Tag = dwarf::getTag(Lex.getStrVal());
   3461   if (Tag == dwarf::DW_TAG_invalid)
   3462     return TokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'");
   3463   assert(Tag <= Result.Max && "Expected valid DWARF tag");
   3464 
   3465   Result.assign(Tag);
   3466   Lex.Lex();
   3467   return false;
   3468 }
   3469 
   3470 template <>
   3471 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
   3472                             DwarfMacinfoTypeField &Result) {
   3473   if (Lex.getKind() == lltok::APSInt)
   3474     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
   3475 
   3476   if (Lex.getKind() != lltok::DwarfMacinfo)
   3477     return TokError("expected DWARF macinfo type");
   3478 
   3479   unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal());
   3480   if (Macinfo == dwarf::DW_MACINFO_invalid)
   3481     return TokError(
   3482         "invalid DWARF macinfo type" + Twine(" '") + Lex.getStrVal() + "'");
   3483   assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type");
   3484 
   3485   Result.assign(Macinfo);
   3486   Lex.Lex();
   3487   return false;
   3488 }
   3489 
   3490 template <>
   3491 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
   3492                             DwarfVirtualityField &Result) {
   3493   if (Lex.getKind() == lltok::APSInt)
   3494     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
   3495 
   3496   if (Lex.getKind() != lltok::DwarfVirtuality)
   3497     return TokError("expected DWARF virtuality code");
   3498 
   3499   unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal());
   3500   if (Virtuality == dwarf::DW_VIRTUALITY_invalid)
   3501     return TokError("invalid DWARF virtuality code" + Twine(" '") +
   3502                     Lex.getStrVal() + "'");
   3503   assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code");
   3504   Result.assign(Virtuality);
   3505   Lex.Lex();
   3506   return false;
   3507 }
   3508 
   3509 template <>
   3510 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) {
   3511   if (Lex.getKind() == lltok::APSInt)
   3512     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
   3513 
   3514   if (Lex.getKind() != lltok::DwarfLang)
   3515     return TokError("expected DWARF language");
   3516 
   3517   unsigned Lang = dwarf::getLanguage(Lex.getStrVal());
   3518   if (!Lang)
   3519     return TokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() +
   3520                     "'");
   3521   assert(Lang <= Result.Max && "Expected valid DWARF language");
   3522   Result.assign(Lang);
   3523   Lex.Lex();
   3524   return false;
   3525 }
   3526 
   3527 template <>
   3528 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfCCField &Result) {
   3529   if (Lex.getKind() == lltok::APSInt)
   3530     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
   3531 
   3532   if (Lex.getKind() != lltok::DwarfCC)
   3533     return TokError("expected DWARF calling convention");
   3534 
   3535   unsigned CC = dwarf::getCallingConvention(Lex.getStrVal());
   3536   if (!CC)
   3537     return TokError("invalid DWARF calling convention" + Twine(" '") + Lex.getStrVal() +
   3538                     "'");
   3539   assert(CC <= Result.Max && "Expected valid DWARF calling convention");
   3540   Result.assign(CC);
   3541   Lex.Lex();
   3542   return false;
   3543 }
   3544 
   3545 template <>
   3546 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, EmissionKindField &Result) {
   3547   if (Lex.getKind() == lltok::APSInt)
   3548     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
   3549 
   3550   if (Lex.getKind() != lltok::EmissionKind)
   3551     return TokError("expected emission kind");
   3552 
   3553   auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal());
   3554   if (!Kind)
   3555     return TokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() +
   3556                     "'");
   3557   assert(*Kind <= Result.Max && "Expected valid emission kind");
   3558   Result.assign(*Kind);
   3559   Lex.Lex();
   3560   return false;
   3561 }
   3562 
   3563 template <>
   3564 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
   3565                             DwarfAttEncodingField &Result) {
   3566   if (Lex.getKind() == lltok::APSInt)
   3567     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
   3568 
   3569   if (Lex.getKind() != lltok::DwarfAttEncoding)
   3570     return TokError("expected DWARF type attribute encoding");
   3571 
   3572   unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal());
   3573   if (!Encoding)
   3574     return TokError("invalid DWARF type attribute encoding" + Twine(" '") +
   3575                     Lex.getStrVal() + "'");
   3576   assert(Encoding <= Result.Max && "Expected valid DWARF language");
   3577   Result.assign(Encoding);
   3578   Lex.Lex();
   3579   return false;
   3580 }
   3581 
   3582 /// DIFlagField
   3583 ///  ::= uint32
   3584 ///  ::= DIFlagVector
   3585 ///  ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic
   3586 template <>
   3587 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) {
   3588   assert(Result.Max == UINT32_MAX && "Expected only 32-bits");
   3589 
   3590   // Parser for a single flag.
   3591   auto parseFlag = [&](unsigned &Val) {
   3592     if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned())
   3593       return ParseUInt32(Val);
   3594 
   3595     if (Lex.getKind() != lltok::DIFlag)
   3596       return TokError("expected debug info flag");
   3597 
   3598     Val = DINode::getFlag(Lex.getStrVal());
   3599     if (!Val)
   3600       return TokError(Twine("invalid debug info flag flag '") +
   3601                       Lex.getStrVal() + "'");
   3602     Lex.Lex();
   3603     return false;
   3604   };
   3605 
   3606   // Parse the flags and combine them together.
   3607   unsigned Combined = 0;
   3608   do {
   3609     unsigned Val;
   3610     if (parseFlag(Val))
   3611       return true;
   3612     Combined |= Val;
   3613   } while (EatIfPresent(lltok::bar));
   3614 
   3615   Result.assign(Combined);
   3616   return false;
   3617 }
   3618 
   3619 template <>
   3620 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
   3621                             MDSignedField &Result) {
   3622   if (Lex.getKind() != lltok::APSInt)
   3623     return TokError("expected signed integer");
   3624 
   3625   auto &S = Lex.getAPSIntVal();
   3626   if (S < Result.Min)
   3627     return TokError("value for '" + Name + "' too small, limit is " +
   3628                     Twine(Result.Min));
   3629   if (S > Result.Max)
   3630     return TokError("value for '" + Name + "' too large, limit is " +
   3631                     Twine(Result.Max));
   3632   Result.assign(S.getExtValue());
   3633   assert(Result.Val >= Result.Min && "Expected value in range");
   3634   assert(Result.Val <= Result.Max && "Expected value in range");
   3635   Lex.Lex();
   3636   return false;
   3637 }
   3638 
   3639 template <>
   3640 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) {
   3641   switch (Lex.getKind()) {
   3642   default:
   3643     return TokError("expected 'true' or 'false'");
   3644   case lltok::kw_true:
   3645     Result.assign(true);
   3646     break;
   3647   case lltok::kw_false:
   3648     Result.assign(false);
   3649     break;
   3650   }
   3651   Lex.Lex();
   3652   return false;
   3653 }
   3654 
   3655 template <>
   3656 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDField &Result) {
   3657   if (Lex.getKind() == lltok::kw_null) {
   3658     if (!Result.AllowNull)
   3659       return TokError("'" + Name + "' cannot be null");
   3660     Lex.Lex();
   3661     Result.assign(nullptr);
   3662     return false;
   3663   }
   3664 
   3665   Metadata *MD;
   3666   if (ParseMetadata(MD, nullptr))
   3667     return true;
   3668 
   3669   Result.assign(MD);
   3670   return false;
   3671 }
   3672 
   3673 template <>
   3674 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDConstant &Result) {
   3675   Metadata *MD;
   3676   if (ParseValueAsMetadata(MD, "expected constant", nullptr))
   3677     return true;
   3678 
   3679   Result.assign(cast<ConstantAsMetadata>(MD));
   3680   return false;
   3681 }
   3682 
   3683 template <>
   3684 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDStringField &Result) {
   3685   LocTy ValueLoc = Lex.getLoc();
   3686   std::string S;
   3687   if (ParseStringConstant(S))
   3688     return true;
   3689 
   3690   if (!Result.AllowEmpty && S.empty())
   3691     return Error(ValueLoc, "'" + Name + "' cannot be empty");
   3692 
   3693   Result.assign(S.empty() ? nullptr : MDString::get(Context, S));
   3694   return false;
   3695 }
   3696 
   3697 template <>
   3698 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) {
   3699   SmallVector<Metadata *, 4> MDs;
   3700   if (ParseMDNodeVector(MDs))
   3701     return true;
   3702 
   3703   Result.assign(std::move(MDs));
   3704   return false;
   3705 }
   3706 
   3707 } // end namespace llvm
   3708 
   3709 template <class ParserTy>
   3710 bool LLParser::ParseMDFieldsImplBody(ParserTy parseField) {
   3711   do {
   3712     if (Lex.getKind() != lltok::LabelStr)
   3713       return TokError("expected field label here");
   3714 
   3715     if (parseField())
   3716       return true;
   3717   } while (EatIfPresent(lltok::comma));
   3718 
   3719   return false;
   3720 }
   3721 
   3722 template <class ParserTy>
   3723 bool LLParser::ParseMDFieldsImpl(ParserTy parseField, LocTy &ClosingLoc) {
   3724   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
   3725   Lex.Lex();
   3726 
   3727   if (ParseToken(lltok::lparen, "expected '(' here"))
   3728     return true;
   3729   if (Lex.getKind() != lltok::rparen)
   3730     if (ParseMDFieldsImplBody(parseField))
   3731       return true;
   3732 
   3733   ClosingLoc = Lex.getLoc();
   3734   return ParseToken(lltok::rparen, "expected ')' here");
   3735 }
   3736 
   3737 template <class FieldTy>
   3738 bool LLParser::ParseMDField(StringRef Name, FieldTy &Result) {
   3739   if (Result.Seen)
   3740     return TokError("field '" + Name + "' cannot be specified more than once");
   3741 
   3742   LocTy Loc = Lex.getLoc();
   3743   Lex.Lex();
   3744   return ParseMDField(Loc, Name, Result);
   3745 }
   3746 
   3747 bool LLParser::ParseSpecializedMDNode(MDNode *&N, bool IsDistinct) {
   3748   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
   3749 
   3750 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS)                                  \
   3751   if (Lex.getStrVal() == #CLASS)                                               \
   3752     return Parse##CLASS(N, IsDistinct);
   3753 #include "llvm/IR/Metadata.def"
   3754 
   3755   return TokError("expected metadata type");
   3756 }
   3757 
   3758 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT
   3759 #define NOP_FIELD(NAME, TYPE, INIT)
   3760 #define REQUIRE_FIELD(NAME, TYPE, INIT)                                        \
   3761   if (!NAME.Seen)                                                              \
   3762     return Error(ClosingLoc, "missing required field '" #NAME "'");
   3763 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT)                                    \
   3764   if (Lex.getStrVal() == #NAME)                                                \
   3765     return ParseMDField(#NAME, NAME);
   3766 #define PARSE_MD_FIELDS()                                                      \
   3767   VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD)                                \
   3768   do {                                                                         \
   3769     LocTy ClosingLoc;                                                          \
   3770     if (ParseMDFieldsImpl([&]() -> bool {                                      \
   3771       VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD)                          \
   3772       return TokError(Twine("invalid field '") + Lex.getStrVal() + "'");       \
   3773     }, ClosingLoc))                                                            \
   3774       return true;                                                             \
   3775     VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD)                                  \
   3776   } while (false)
   3777 #define GET_OR_DISTINCT(CLASS, ARGS)                                           \
   3778   (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS)
   3779 
   3780 /// ParseDILocationFields:
   3781 ///   ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6)
   3782 bool LLParser::ParseDILocation(MDNode *&Result, bool IsDistinct) {
   3783 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
   3784   OPTIONAL(line, LineField, );                                                 \
   3785   OPTIONAL(column, ColumnField, );                                             \
   3786   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
   3787   OPTIONAL(inlinedAt, MDField, );
   3788   PARSE_MD_FIELDS();
   3789 #undef VISIT_MD_FIELDS
   3790 
   3791   Result = GET_OR_DISTINCT(
   3792       DILocation, (Context, line.Val, column.Val, scope.Val, inlinedAt.Val));
   3793   return false;
   3794 }
   3795 
   3796 /// ParseGenericDINode:
   3797 ///   ::= !GenericDINode(tag: 15, header: "...", operands: {...})
   3798 bool LLParser::ParseGenericDINode(MDNode *&Result, bool IsDistinct) {
   3799 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
   3800   REQUIRED(tag, DwarfTagField, );                                              \
   3801   OPTIONAL(header, MDStringField, );                                           \
   3802   OPTIONAL(operands, MDFieldList, );
   3803   PARSE_MD_FIELDS();
   3804 #undef VISIT_MD_FIELDS
   3805 
   3806   Result = GET_OR_DISTINCT(GenericDINode,
   3807                            (Context, tag.Val, header.Val, operands.Val));
   3808   return false;
   3809 }
   3810 
   3811 /// ParseDISubrange:
   3812 ///   ::= !DISubrange(count: 30, lowerBound: 2)
   3813 bool LLParser::ParseDISubrange(MDNode *&Result, bool IsDistinct) {
   3814 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
   3815   REQUIRED(count, MDSignedField, (-1, -1, INT64_MAX));                         \
   3816   OPTIONAL(lowerBound, MDSignedField, );
   3817   PARSE_MD_FIELDS();
   3818 #undef VISIT_MD_FIELDS
   3819 
   3820   Result = GET_OR_DISTINCT(DISubrange, (Context, count.Val, lowerBound.Val));
   3821   return false;
   3822 }
   3823 
   3824 /// ParseDIEnumerator:
   3825 ///   ::= !DIEnumerator(value: 30, name: "SomeKind")
   3826 bool LLParser::ParseDIEnumerator(MDNode *&Result, bool IsDistinct) {
   3827 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
   3828   REQUIRED(name, MDStringField, );                                             \
   3829   REQUIRED(value, MDSignedField, );
   3830   PARSE_MD_FIELDS();
   3831 #undef VISIT_MD_FIELDS
   3832 
   3833   Result = GET_OR_DISTINCT(DIEnumerator, (Context, value.Val, name.Val));
   3834   return false;
   3835 }
   3836 
   3837 /// ParseDIBasicType:
   3838 ///   ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32)
   3839 bool LLParser::ParseDIBasicType(MDNode *&Result, bool IsDistinct) {
   3840 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
   3841   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type));                     \
   3842   OPTIONAL(name, MDStringField, );                                             \
   3843   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
   3844   OPTIONAL(align, MDUnsignedField, (0, UINT64_MAX));                           \
   3845   OPTIONAL(encoding, DwarfAttEncodingField, );
   3846   PARSE_MD_FIELDS();
   3847 #undef VISIT_MD_FIELDS
   3848 
   3849   Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val,
   3850                                          align.Val, encoding.Val));
   3851   return false;
   3852 }
   3853 
   3854 /// ParseDIDerivedType:
   3855 ///   ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0,
   3856 ///                      line: 7, scope: !1, baseType: !2, size: 32,
   3857 ///                      align: 32, offset: 0, flags: 0, extraData: !3)
   3858 bool LLParser::ParseDIDerivedType(MDNode *&Result, bool IsDistinct) {
   3859 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
   3860   REQUIRED(tag, DwarfTagField, );                                              \
   3861   OPTIONAL(name, MDStringField, );                                             \
   3862   OPTIONAL(file, MDField, );                                                   \
   3863   OPTIONAL(line, LineField, );                                                 \
   3864   OPTIONAL(scope, MDField, );                                                  \
   3865   REQUIRED(baseType, MDField, );                                               \
   3866   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
   3867   OPTIONAL(align, MDUnsignedField, (0, UINT64_MAX));                           \
   3868   OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX));                          \
   3869   OPTIONAL(flags, DIFlagField, );                                              \
   3870   OPTIONAL(extraData, MDField, );
   3871   PARSE_MD_FIELDS();
   3872 #undef VISIT_MD_FIELDS
   3873 
   3874   Result = GET_OR_DISTINCT(DIDerivedType,
   3875                            (Context, tag.Val, name.Val, file.Val, line.Val,
   3876                             scope.Val, baseType.Val, size.Val, align.Val,
   3877                             offset.Val, flags.Val, extraData.Val));
   3878   return false;
   3879 }
   3880 
   3881 bool LLParser::ParseDICompositeType(MDNode *&Result, bool IsDistinct) {
   3882 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
   3883   REQUIRED(tag, DwarfTagField, );                                              \
   3884   OPTIONAL(name, MDStringField, );                                             \
   3885   OPTIONAL(file, MDField, );                                                   \
   3886   OPTIONAL(line, LineField, );                                                 \
   3887   OPTIONAL(scope, MDField, );                                                  \
   3888   OPTIONAL(baseType, MDField, );                                               \
   3889   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
   3890   OPTIONAL(align, MDUnsignedField, (0, UINT64_MAX));                           \
   3891   OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX));                          \
   3892   OPTIONAL(flags, DIFlagField, );                                              \
   3893   OPTIONAL(elements, MDField, );                                               \
   3894   OPTIONAL(runtimeLang, DwarfLangField, );                                     \
   3895   OPTIONAL(vtableHolder, MDField, );                                           \
   3896   OPTIONAL(templateParams, MDField, );                                         \
   3897   OPTIONAL(identifier, MDStringField, );
   3898   PARSE_MD_FIELDS();
   3899 #undef VISIT_MD_FIELDS
   3900 
   3901   // If this has an identifier try to build an ODR type.
   3902   if (identifier.Val)
   3903     if (auto *CT = DICompositeType::buildODRType(
   3904             Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val,
   3905             scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val,
   3906             elements.Val, runtimeLang.Val, vtableHolder.Val,
   3907             templateParams.Val)) {
   3908       Result = CT;
   3909       return false;
   3910     }
   3911 
   3912   // Create a new node, and save it in the context if it belongs in the type
   3913   // map.
   3914   Result = GET_OR_DISTINCT(
   3915       DICompositeType,
   3916       (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val,
   3917        size.Val, align.Val, offset.Val, flags.Val, elements.Val,
   3918        runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val));
   3919   return false;
   3920 }
   3921 
   3922 bool LLParser::ParseDISubroutineType(MDNode *&Result, bool IsDistinct) {
   3923 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
   3924   OPTIONAL(flags, DIFlagField, );                                              \
   3925   OPTIONAL(cc, DwarfCCField, );                                                \
   3926   REQUIRED(types, MDField, );
   3927   PARSE_MD_FIELDS();
   3928 #undef VISIT_MD_FIELDS
   3929 
   3930   Result = GET_OR_DISTINCT(DISubroutineType,
   3931                            (Context, flags.Val, cc.Val, types.Val));
   3932   return false;
   3933 }
   3934 
   3935 /// ParseDIFileType:
   3936 ///   ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir")
   3937 bool LLParser::ParseDIFile(MDNode *&Result, bool IsDistinct) {
   3938 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
   3939   REQUIRED(filename, MDStringField, );                                         \
   3940   REQUIRED(directory, MDStringField, );
   3941   PARSE_MD_FIELDS();
   3942 #undef VISIT_MD_FIELDS
   3943 
   3944   Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val));
   3945   return false;
   3946 }
   3947 
   3948 /// ParseDICompileUnit:
   3949 ///   ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang",
   3950 ///                      isOptimized: true, flags: "-O2", runtimeVersion: 1,
   3951 ///                      splitDebugFilename: "abc.debug",
   3952 ///                      emissionKind: FullDebug, enums: !1, retainedTypes: !2,
   3953 ///                      globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd)
   3954 bool LLParser::ParseDICompileUnit(MDNode *&Result, bool IsDistinct) {
   3955   if (!IsDistinct)
   3956     return Lex.Error("missing 'distinct', required for !DICompileUnit");
   3957 
   3958 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
   3959   REQUIRED(language, DwarfLangField, );                                        \
   3960   REQUIRED(file, MDField, (/* AllowNull */ false));                            \
   3961   OPTIONAL(producer, MDStringField, );                                         \
   3962   OPTIONAL(isOptimized, MDBoolField, );                                        \
   3963   OPTIONAL(flags, MDStringField, );                                            \
   3964   OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX));                  \
   3965   OPTIONAL(splitDebugFilename, MDStringField, );                               \
   3966   OPTIONAL(emissionKind, EmissionKindField, );                                 \
   3967   OPTIONAL(enums, MDField, );                                                  \
   3968   OPTIONAL(retainedTypes, MDField, );                                          \
   3969   OPTIONAL(globals, MDField, );                                                \
   3970   OPTIONAL(imports, MDField, );                                                \
   3971   OPTIONAL(macros, MDField, );                                                 \
   3972   OPTIONAL(dwoId, MDUnsignedField, );
   3973   PARSE_MD_FIELDS();
   3974 #undef VISIT_MD_FIELDS
   3975 
   3976   Result = DICompileUnit::getDistinct(
   3977       Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val,
   3978       runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val,
   3979       retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val);
   3980   return false;
   3981 }
   3982 
   3983 /// ParseDISubprogram:
   3984 ///   ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo",
   3985 ///                     file: !1, line: 7, type: !2, isLocal: false,
   3986 ///                     isDefinition: true, scopeLine: 8, containingType: !3,
   3987 ///                     virtuality: DW_VIRTUALTIY_pure_virtual,
   3988 ///                     virtualIndex: 10, thisAdjustment: 4, flags: 11,
   3989 ///                     isOptimized: false, templateParams: !4, declaration: !5,
   3990 ///                     variables: !6)
   3991 bool LLParser::ParseDISubprogram(MDNode *&Result, bool IsDistinct) {
   3992   auto Loc = Lex.getLoc();
   3993 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
   3994   OPTIONAL(scope, MDField, );                                                  \
   3995   OPTIONAL(name, MDStringField, );                                             \
   3996   OPTIONAL(linkageName, MDStringField, );                                      \
   3997   OPTIONAL(file, MDField, );                                                   \
   3998   OPTIONAL(line, LineField, );                                                 \
   3999   OPTIONAL(type, MDField, );                                                   \
   4000   OPTIONAL(isLocal, MDBoolField, );                                            \
   4001   OPTIONAL(isDefinition, MDBoolField, (true));                                 \
   4002   OPTIONAL(scopeLine, LineField, );                                            \
   4003   OPTIONAL(containingType, MDField, );                                         \
   4004   OPTIONAL(virtuality, DwarfVirtualityField, );                                \
   4005   OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX));                    \
   4006   OPTIONAL(thisAdjustment, MDSignedField, (0, INT32_MIN, INT32_MAX));          \
   4007   OPTIONAL(flags, DIFlagField, );                                              \
   4008   OPTIONAL(isOptimized, MDBoolField, );                                        \
   4009   OPTIONAL(unit, MDField, );                                                   \
   4010   OPTIONAL(templateParams, MDField, );                                         \
   4011   OPTIONAL(declaration, MDField, );                                            \
   4012   OPTIONAL(variables, MDField, );
   4013   PARSE_MD_FIELDS();
   4014 #undef VISIT_MD_FIELDS
   4015 
   4016   if (isDefinition.Val && !IsDistinct)
   4017     return Lex.Error(
   4018         Loc,
   4019         "missing 'distinct', required for !DISubprogram when 'isDefinition'");
   4020 
   4021   Result = GET_OR_DISTINCT(
   4022       DISubprogram, (Context, scope.Val, name.Val, linkageName.Val, file.Val,
   4023                      line.Val, type.Val, isLocal.Val, isDefinition.Val,
   4024                      scopeLine.Val, containingType.Val, virtuality.Val,
   4025                      virtualIndex.Val, thisAdjustment.Val, flags.Val,
   4026                      isOptimized.Val, unit.Val, templateParams.Val,
   4027                      declaration.Val, variables.Val));
   4028   return false;
   4029 }
   4030 
   4031 /// ParseDILexicalBlock:
   4032 ///   ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9)
   4033 bool LLParser::ParseDILexicalBlock(MDNode *&Result, bool IsDistinct) {
   4034 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
   4035   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
   4036   OPTIONAL(file, MDField, );                                                   \
   4037   OPTIONAL(line, LineField, );                                                 \
   4038   OPTIONAL(column, ColumnField, );
   4039   PARSE_MD_FIELDS();
   4040 #undef VISIT_MD_FIELDS
   4041 
   4042   Result = GET_OR_DISTINCT(
   4043       DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val));
   4044   return false;
   4045 }
   4046 
   4047 /// ParseDILexicalBlockFile:
   4048 ///   ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9)
   4049 bool LLParser::ParseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) {
   4050 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
   4051   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
   4052   OPTIONAL(file, MDField, );                                                   \
   4053   REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX));
   4054   PARSE_MD_FIELDS();
   4055 #undef VISIT_MD_FIELDS
   4056 
   4057   Result = GET_OR_DISTINCT(DILexicalBlockFile,
   4058                            (Context, scope.Val, file.Val, discriminator.Val));
   4059   return false;
   4060 }
   4061 
   4062 /// ParseDINamespace:
   4063 ///   ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9)
   4064 bool LLParser::ParseDINamespace(MDNode *&Result, bool IsDistinct) {
   4065 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
   4066   REQUIRED(scope, MDField, );                                                  \
   4067   OPTIONAL(file, MDField, );                                                   \
   4068   OPTIONAL(name, MDStringField, );                                             \
   4069   OPTIONAL(line, LineField, );
   4070   PARSE_MD_FIELDS();
   4071 #undef VISIT_MD_FIELDS
   4072 
   4073   Result = GET_OR_DISTINCT(DINamespace,
   4074                            (Context, scope.Val, file.Val, name.Val, line.Val));
   4075   return false;
   4076 }
   4077 
   4078 /// ParseDIMacro:
   4079 ///   ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value: "SomeValue")
   4080 bool LLParser::ParseDIMacro(MDNode *&Result, bool IsDistinct) {
   4081 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
   4082   REQUIRED(type, DwarfMacinfoTypeField, );                                     \
   4083   REQUIRED(line, LineField, );                                                 \
   4084   REQUIRED(name, MDStringField, );                                             \
   4085   OPTIONAL(value, MDStringField, );
   4086   PARSE_MD_FIELDS();
   4087 #undef VISIT_MD_FIELDS
   4088 
   4089   Result = GET_OR_DISTINCT(DIMacro,
   4090                            (Context, type.Val, line.Val, name.Val, value.Val));
   4091   return false;
   4092 }
   4093 
   4094 /// ParseDIMacroFile:
   4095 ///   ::= !DIMacroFile(line: 9, file: !2, nodes: !3)
   4096 bool LLParser::ParseDIMacroFile(MDNode *&Result, bool IsDistinct) {
   4097 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
   4098   OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file));       \
   4099   REQUIRED(line, LineField, );                                                 \
   4100   REQUIRED(file, MDField, );                                                   \
   4101   OPTIONAL(nodes, MDField, );
   4102   PARSE_MD_FIELDS();
   4103 #undef VISIT_MD_FIELDS
   4104 
   4105   Result = GET_OR_DISTINCT(DIMacroFile,
   4106                            (Context, type.Val, line.Val, file.Val, nodes.Val));
   4107   return false;
   4108 }
   4109 
   4110 
   4111 /// ParseDIModule:
   4112 ///   ::= !DIModule(scope: !0, name: "SomeModule", configMacros: "-DNDEBUG",
   4113 ///                 includePath: "/usr/include", isysroot: "/")
   4114 bool LLParser::ParseDIModule(MDNode *&Result, bool IsDistinct) {
   4115 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
   4116   REQUIRED(scope, MDField, );                                                  \
   4117   REQUIRED(name, MDStringField, );                                             \
   4118   OPTIONAL(configMacros, MDStringField, );                                     \
   4119   OPTIONAL(includePath, MDStringField, );                                      \
   4120   OPTIONAL(isysroot, MDStringField, );
   4121   PARSE_MD_FIELDS();
   4122 #undef VISIT_MD_FIELDS
   4123 
   4124   Result = GET_OR_DISTINCT(DIModule, (Context, scope.Val, name.Val,
   4125                            configMacros.Val, includePath.Val, isysroot.Val));
   4126   return false;
   4127 }
   4128 
   4129 /// ParseDITemplateTypeParameter:
   4130 ///   ::= !DITemplateTypeParameter(name: "Ty", type: !1)
   4131 bool LLParser::ParseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) {
   4132 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
   4133   OPTIONAL(name, MDStringField, );                                             \
   4134   REQUIRED(type, MDField, );
   4135   PARSE_MD_FIELDS();
   4136 #undef VISIT_MD_FIELDS
   4137 
   4138   Result =
   4139       GET_OR_DISTINCT(DITemplateTypeParameter, (Context, name.Val, type.Val));
   4140   return false;
   4141 }
   4142 
   4143 /// ParseDITemplateValueParameter:
   4144 ///   ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter,
   4145 ///                                 name: "V", type: !1, value: i32 7)
   4146 bool LLParser::ParseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) {
   4147 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
   4148   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter));      \
   4149   OPTIONAL(name, MDStringField, );                                             \
   4150   OPTIONAL(type, MDField, );                                                   \
   4151   REQUIRED(value, MDField, );
   4152   PARSE_MD_FIELDS();
   4153 #undef VISIT_MD_FIELDS
   4154 
   4155   Result = GET_OR_DISTINCT(DITemplateValueParameter,
   4156                            (Context, tag.Val, name.Val, type.Val, value.Val));
   4157   return false;
   4158 }
   4159 
   4160 /// ParseDIGlobalVariable:
   4161 ///   ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo",
   4162 ///                         file: !1, line: 7, type: !2, isLocal: false,
   4163 ///                         isDefinition: true, variable: i32* @foo,
   4164 ///                         declaration: !3)
   4165 bool LLParser::ParseDIGlobalVariable(MDNode *&Result, bool IsDistinct) {
   4166 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
   4167   REQUIRED(name, MDStringField, (/* AllowEmpty */ false));                     \
   4168   OPTIONAL(scope, MDField, );                                                  \
   4169   OPTIONAL(linkageName, MDStringField, );                                      \
   4170   OPTIONAL(file, MDField, );                                                   \
   4171   OPTIONAL(line, LineField, );                                                 \
   4172   OPTIONAL(type, MDField, );                                                   \
   4173   OPTIONAL(isLocal, MDBoolField, );                                            \
   4174   OPTIONAL(isDefinition, MDBoolField, (true));                                 \
   4175   OPTIONAL(variable, MDConstant, );                                            \
   4176   OPTIONAL(declaration, MDField, );
   4177   PARSE_MD_FIELDS();
   4178 #undef VISIT_MD_FIELDS
   4179 
   4180   Result = GET_OR_DISTINCT(DIGlobalVariable,
   4181                            (Context, scope.Val, name.Val, linkageName.Val,
   4182                             file.Val, line.Val, type.Val, isLocal.Val,
   4183                             isDefinition.Val, variable.Val, declaration.Val));
   4184   return false;
   4185 }
   4186 
   4187 /// ParseDILocalVariable:
   4188 ///   ::= !DILocalVariable(arg: 7, scope: !0, name: "foo",
   4189 ///                        file: !1, line: 7, type: !2, arg: 2, flags: 7)
   4190 ///   ::= !DILocalVariable(scope: !0, name: "foo",
   4191 ///                        file: !1, line: 7, type: !2, arg: 2, flags: 7)
   4192 bool LLParser::ParseDILocalVariable(MDNode *&Result, bool IsDistinct) {
   4193 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
   4194   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
   4195   OPTIONAL(name, MDStringField, );                                             \
   4196   OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX));                             \
   4197   OPTIONAL(file, MDField, );                                                   \
   4198   OPTIONAL(line, LineField, );                                                 \
   4199   OPTIONAL(type, MDField, );                                                   \
   4200   OPTIONAL(flags, DIFlagField, );
   4201   PARSE_MD_FIELDS();
   4202 #undef VISIT_MD_FIELDS
   4203 
   4204   Result = GET_OR_DISTINCT(DILocalVariable,
   4205                            (Context, scope.Val, name.Val, file.Val, line.Val,
   4206                             type.Val, arg.Val, flags.Val));
   4207   return false;
   4208 }
   4209 
   4210 /// ParseDIExpression:
   4211 ///   ::= !DIExpression(0, 7, -1)
   4212 bool LLParser::ParseDIExpression(MDNode *&Result, bool IsDistinct) {
   4213   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
   4214   Lex.Lex();
   4215 
   4216   if (ParseToken(lltok::lparen, "expected '(' here"))
   4217     return true;
   4218 
   4219   SmallVector<uint64_t, 8> Elements;
   4220   if (Lex.getKind() != lltok::rparen)
   4221     do {
   4222       if (Lex.getKind() == lltok::DwarfOp) {
   4223         if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) {
   4224           Lex.Lex();
   4225           Elements.push_back(Op);
   4226           continue;
   4227         }
   4228         return TokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'");
   4229       }
   4230 
   4231       if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
   4232         return TokError("expected unsigned integer");
   4233 
   4234       auto &U = Lex.getAPSIntVal();
   4235       if (U.ugt(UINT64_MAX))
   4236         return TokError("element too large, limit is " + Twine(UINT64_MAX));
   4237       Elements.push_back(U.getZExtValue());
   4238       Lex.Lex();
   4239     } while (EatIfPresent(lltok::comma));
   4240 
   4241   if (ParseToken(lltok::rparen, "expected ')' here"))
   4242     return true;
   4243 
   4244   Result = GET_OR_DISTINCT(DIExpression, (Context, Elements));
   4245   return false;
   4246 }
   4247 
   4248 /// ParseDIObjCProperty:
   4249 ///   ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
   4250 ///                       getter: "getFoo", attributes: 7, type: !2)
   4251 bool LLParser::ParseDIObjCProperty(MDNode *&Result, bool IsDistinct) {
   4252 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
   4253   OPTIONAL(name, MDStringField, );                                             \
   4254   OPTIONAL(file, MDField, );                                                   \
   4255   OPTIONAL(line, LineField, );                                                 \
   4256   OPTIONAL(setter, MDStringField, );                                           \
   4257   OPTIONAL(getter, MDStringField, );                                           \
   4258   OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX));                      \
   4259   OPTIONAL(type, MDField, );
   4260   PARSE_MD_FIELDS();
   4261 #undef VISIT_MD_FIELDS
   4262 
   4263   Result = GET_OR_DISTINCT(DIObjCProperty,
   4264                            (Context, name.Val, file.Val, line.Val, setter.Val,
   4265                             getter.Val, attributes.Val, type.Val));
   4266   return false;
   4267 }
   4268 
   4269 /// ParseDIImportedEntity:
   4270 ///   ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1,
   4271 ///                         line: 7, name: "foo")
   4272 bool LLParser::ParseDIImportedEntity(MDNode *&Result, bool IsDistinct) {
   4273 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
   4274   REQUIRED(tag, DwarfTagField, );                                              \
   4275   REQUIRED(scope, MDField, );                                                  \
   4276   OPTIONAL(entity, MDField, );                                                 \
   4277   OPTIONAL(line, LineField, );                                                 \
   4278   OPTIONAL(name, MDStringField, );
   4279   PARSE_MD_FIELDS();
   4280 #undef VISIT_MD_FIELDS
   4281 
   4282   Result = GET_OR_DISTINCT(DIImportedEntity, (Context, tag.Val, scope.Val,
   4283                                               entity.Val, line.Val, name.Val));
   4284   return false;
   4285 }
   4286 
   4287 #undef PARSE_MD_FIELD
   4288 #undef NOP_FIELD
   4289 #undef REQUIRE_FIELD
   4290 #undef DECLARE_FIELD
   4291 
   4292 /// ParseMetadataAsValue
   4293 ///  ::= metadata i32 %local
   4294 ///  ::= metadata i32 @global
   4295 ///  ::= metadata i32 7
   4296 ///  ::= metadata !0
   4297 ///  ::= metadata !{...}
   4298 ///  ::= metadata !"string"
   4299 bool LLParser::ParseMetadataAsValue(Value *&V, PerFunctionState &PFS) {
   4300   // Note: the type 'metadata' has already been parsed.
   4301   Metadata *MD;
   4302   if (ParseMetadata(MD, &PFS))
   4303     return true;
   4304 
   4305   V = MetadataAsValue::get(Context, MD);
   4306   return false;
   4307 }
   4308 
   4309 /// ParseValueAsMetadata
   4310 ///  ::= i32 %local
   4311 ///  ::= i32 @global
   4312 ///  ::= i32 7
   4313 bool LLParser::ParseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg,
   4314                                     PerFunctionState *PFS) {
   4315   Type *Ty;
   4316   LocTy Loc;
   4317   if (ParseType(Ty, TypeMsg, Loc))
   4318     return true;
   4319   if (Ty->isMetadataTy())
   4320     return Error(Loc, "invalid metadata-value-metadata roundtrip");
   4321 
   4322   Value *V;
   4323   if (ParseValue(Ty, V, PFS))
   4324     return true;
   4325 
   4326   MD = ValueAsMetadata::get(V);
   4327   return false;
   4328 }
   4329 
   4330 /// ParseMetadata
   4331 ///  ::= i32 %local
   4332 ///  ::= i32 @global
   4333 ///  ::= i32 7
   4334 ///  ::= !42
   4335 ///  ::= !{...}
   4336 ///  ::= !"string"
   4337 ///  ::= !DILocation(...)
   4338 bool LLParser::ParseMetadata(Metadata *&MD, PerFunctionState *PFS) {
   4339   if (Lex.getKind() == lltok::MetadataVar) {
   4340     MDNode *N;
   4341     if (ParseSpecializedMDNode(N))
   4342       return true;
   4343     MD = N;
   4344     return false;
   4345   }
   4346 
   4347   // ValueAsMetadata:
   4348   // <type> <value>
   4349   if (Lex.getKind() != lltok::exclaim)
   4350     return ParseValueAsMetadata(MD, "expected metadata operand", PFS);
   4351 
   4352   // '!'.
   4353   assert(Lex.getKind() == lltok::exclaim && "Expected '!' here");
   4354   Lex.Lex();
   4355 
   4356   // MDString:
   4357   //   ::= '!' STRINGCONSTANT
   4358   if (Lex.getKind() == lltok::StringConstant) {
   4359     MDString *S;
   4360     if (ParseMDString(S))
   4361       return true;
   4362     MD = S;
   4363     return false;
   4364   }
   4365 
   4366   // MDNode:
   4367   // !{ ... }
   4368   // !7
   4369   MDNode *N;
   4370   if (ParseMDNodeTail(N))
   4371     return true;
   4372   MD = N;
   4373   return false;
   4374 }
   4375 
   4376 
   4377 //===----------------------------------------------------------------------===//
   4378 // Function Parsing.
   4379 //===----------------------------------------------------------------------===//
   4380 
   4381 bool LLParser::ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V,
   4382                                    PerFunctionState *PFS) {
   4383   if (Ty->isFunctionTy())
   4384     return Error(ID.Loc, "functions are not values, refer to them as pointers");
   4385 
   4386   switch (ID.Kind) {
   4387   case ValID::t_LocalID:
   4388     if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
   4389     V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc);
   4390     return V == nullptr;
   4391   case ValID::t_LocalName:
   4392     if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
   4393     V = PFS->GetVal(ID.StrVal, Ty, ID.Loc);
   4394     return V == nullptr;
   4395   case ValID::t_InlineAsm: {
   4396     if (!ID.FTy || !InlineAsm::Verify(ID.FTy, ID.StrVal2))
   4397       return Error(ID.Loc, "invalid type for inline asm constraint string");
   4398     V = InlineAsm::get(ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1,
   4399                        (ID.UIntVal >> 1) & 1,
   4400                        (InlineAsm::AsmDialect(ID.UIntVal >> 2)));
   4401     return false;
   4402   }
   4403   case ValID::t_GlobalName:
   4404     V = GetGlobalVal(ID.StrVal, Ty, ID.Loc);
   4405     return V == nullptr;
   4406   case ValID::t_GlobalID:
   4407     V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc);
   4408     return V == nullptr;
   4409   case ValID::t_APSInt:
   4410     if (!Ty->isIntegerTy())
   4411       return Error(ID.Loc, "integer constant must have integer type");
   4412     ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
   4413     V = ConstantInt::get(Context, ID.APSIntVal);
   4414     return false;
   4415   case ValID::t_APFloat:
   4416     if (!Ty->isFloatingPointTy() ||
   4417         !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
   4418       return Error(ID.Loc, "floating point constant invalid for type");
   4419 
   4420     // The lexer has no type info, so builds all half, float, and double FP
   4421     // constants as double.  Fix this here.  Long double does not need this.
   4422     if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble) {
   4423       bool Ignored;
   4424       if (Ty->isHalfTy())
   4425         ID.APFloatVal.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven,
   4426                               &Ignored);
   4427       else if (Ty->isFloatTy())
   4428         ID.APFloatVal.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven,
   4429                               &Ignored);
   4430     }
   4431     V = ConstantFP::get(Context, ID.APFloatVal);
   4432 
   4433     if (V->getType() != Ty)
   4434       return Error(ID.Loc, "floating point constant does not have type '" +
   4435                    getTypeString(Ty) + "'");
   4436 
   4437     return false;
   4438   case ValID::t_Null:
   4439     if (!Ty->isPointerTy())
   4440       return Error(ID.Loc, "null must be a pointer type");
   4441     V = ConstantPointerNull::get(cast<PointerType>(Ty));
   4442     return false;
   4443   case ValID::t_Undef:
   4444     // FIXME: LabelTy should not be a first-class type.
   4445     if (!Ty->isFirstClassType() || Ty->isLabelTy())
   4446       return Error(ID.Loc, "invalid type for undef constant");
   4447     V = UndefValue::get(Ty);
   4448     return false;
   4449   case ValID::t_EmptyArray:
   4450     if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0)
   4451       return Error(ID.Loc, "invalid empty array initializer");
   4452     V = UndefValue::get(Ty);
   4453     return false;
   4454   case ValID::t_Zero:
   4455     // FIXME: LabelTy should not be a first-class type.
   4456     if (!Ty->isFirstClassType() || Ty->isLabelTy())
   4457       return Error(ID.Loc, "invalid type for null constant");
   4458     V = Constant::getNullValue(Ty);
   4459     return false;
   4460   case ValID::t_None:
   4461     if (!Ty->isTokenTy())
   4462       return Error(ID.Loc, "invalid type for none constant");
   4463     V = Constant::getNullValue(Ty);
   4464     return false;
   4465   case ValID::t_Constant:
   4466     if (ID.ConstantVal->getType() != Ty)
   4467       return Error(ID.Loc, "constant expression type mismatch");
   4468 
   4469     V = ID.ConstantVal;
   4470     return false;
   4471   case ValID::t_ConstantStruct:
   4472   case ValID::t_PackedConstantStruct:
   4473     if (StructType *ST = dyn_cast<StructType>(Ty)) {
   4474       if (ST->getNumElements() != ID.UIntVal)
   4475         return Error(ID.Loc,
   4476                      "initializer with struct type has wrong # elements");
   4477       if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct))
   4478         return Error(ID.Loc, "packed'ness of initializer and type don't match");
   4479 
   4480       // Verify that the elements are compatible with the structtype.
   4481       for (unsigned i = 0, e = ID.UIntVal; i != e; ++i)
   4482         if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i))
   4483           return Error(ID.Loc, "element " + Twine(i) +
   4484                     " of struct initializer doesn't match struct element type");
   4485 
   4486       V = ConstantStruct::get(
   4487           ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal));
   4488     } else
   4489       return Error(ID.Loc, "constant expression type mismatch");
   4490     return false;
   4491   }
   4492   llvm_unreachable("Invalid ValID");
   4493 }
   4494 
   4495 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) {
   4496   C = nullptr;
   4497   ValID ID;
   4498   auto Loc = Lex.getLoc();
   4499   if (ParseValID(ID, /*PFS=*/nullptr))
   4500     return true;
   4501   switch (ID.Kind) {
   4502   case ValID::t_APSInt:
   4503   case ValID::t_APFloat:
   4504   case ValID::t_Undef:
   4505   case ValID::t_Constant:
   4506   case ValID::t_ConstantStruct:
   4507   case ValID::t_PackedConstantStruct: {
   4508     Value *V;
   4509     if (ConvertValIDToValue(Ty, ID, V, /*PFS=*/nullptr))
   4510       return true;
   4511     assert(isa<Constant>(V) && "Expected a constant value");
   4512     C = cast<Constant>(V);
   4513     return false;
   4514   }
   4515   default:
   4516     return Error(Loc, "expected a constant value");
   4517   }
   4518 }
   4519 
   4520 bool LLParser::ParseValue(Type *Ty, Value *&V, PerFunctionState *PFS) {
   4521   V = nullptr;
   4522   ValID ID;
   4523   return ParseValID(ID, PFS) || ConvertValIDToValue(Ty, ID, V, PFS);
   4524 }
   4525 
   4526 bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState *PFS) {
   4527   Type *Ty = nullptr;
   4528   return ParseType(Ty) ||
   4529          ParseValue(Ty, V, PFS);
   4530 }
   4531 
   4532 bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc,
   4533                                       PerFunctionState &PFS) {
   4534   Value *V;
   4535   Loc = Lex.getLoc();
   4536   if (ParseTypeAndValue(V, PFS)) return true;
   4537   if (!isa<BasicBlock>(V))
   4538     return Error(Loc, "expected a basic block");
   4539   BB = cast<BasicBlock>(V);
   4540   return false;
   4541 }
   4542 
   4543 
   4544 /// FunctionHeader
   4545 ///   ::= OptionalLinkage OptionalVisibility OptionalCallingConv OptRetAttrs
   4546 ///       OptUnnamedAddr Type GlobalName '(' ArgList ')' OptFuncAttrs OptSection
   4547 ///       OptionalAlign OptGC OptionalPrefix OptionalPrologue OptPersonalityFn
   4548 bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) {
   4549   // Parse the linkage.
   4550   LocTy LinkageLoc = Lex.getLoc();
   4551   unsigned Linkage;
   4552 
   4553   unsigned Visibility;
   4554   unsigned DLLStorageClass;
   4555   AttrBuilder RetAttrs;
   4556   unsigned CC;
   4557   bool HasLinkage;
   4558   Type *RetType = nullptr;
   4559   LocTy RetTypeLoc = Lex.getLoc();
   4560   if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass) ||
   4561       ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
   4562       ParseType(RetType, RetTypeLoc, true /*void allowed*/))
   4563     return true;
   4564 
   4565   // Verify that the linkage is ok.
   4566   switch ((GlobalValue::LinkageTypes)Linkage) {
   4567   case GlobalValue::ExternalLinkage:
   4568     break; // always ok.
   4569   case GlobalValue::ExternalWeakLinkage:
   4570     if (isDefine)
   4571       return Error(LinkageLoc, "invalid linkage for function definition");
   4572     break;
   4573   case GlobalValue::PrivateLinkage:
   4574   case GlobalValue::InternalLinkage:
   4575   case GlobalValue::AvailableExternallyLinkage:
   4576   case GlobalValue::LinkOnceAnyLinkage:
   4577   case GlobalValue::LinkOnceODRLinkage:
   4578   case GlobalValue::WeakAnyLinkage:
   4579   case GlobalValue::WeakODRLinkage:
   4580     if (!isDefine)
   4581       return Error(LinkageLoc, "invalid linkage for function declaration");
   4582     break;
   4583   case GlobalValue::AppendingLinkage:
   4584   case GlobalValue::CommonLinkage:
   4585     return Error(LinkageLoc, "invalid function linkage type");
   4586   }
   4587 
   4588   if (!isValidVisibilityForLinkage(Visibility, Linkage))
   4589     return Error(LinkageLoc,
   4590                  "symbol with local linkage must have default visibility");
   4591 
   4592   if (!FunctionType::isValidReturnType(RetType))
   4593     return Error(RetTypeLoc, "invalid function return type");
   4594 
   4595   LocTy NameLoc = Lex.getLoc();
   4596 
   4597   std::string FunctionName;
   4598   if (Lex.getKind() == lltok::GlobalVar) {
   4599     FunctionName = Lex.getStrVal();
   4600   } else if (Lex.getKind() == lltok::GlobalID) {     // @42 is ok.
   4601     unsigned NameID = Lex.getUIntVal();
   4602 
   4603     if (NameID != NumberedVals.size())
   4604       return TokError("function expected to be numbered '%" +
   4605                       Twine(NumberedVals.size()) + "'");
   4606   } else {
   4607     return TokError("expected function name");
   4608   }
   4609 
   4610   Lex.Lex();
   4611 
   4612   if (Lex.getKind() != lltok::lparen)
   4613     return TokError("expected '(' in function argument list");
   4614 
   4615   SmallVector<ArgInfo, 8> ArgList;
   4616   bool isVarArg;
   4617   AttrBuilder FuncAttrs;
   4618   std::vector<unsigned> FwdRefAttrGrps;
   4619   LocTy BuiltinLoc;
   4620   std::string Section;
   4621   unsigned Alignment;
   4622   std::string GC;
   4623   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
   4624   LocTy UnnamedAddrLoc;
   4625   Constant *Prefix = nullptr;
   4626   Constant *Prologue = nullptr;
   4627   Constant *PersonalityFn = nullptr;
   4628   Comdat *C;
   4629 
   4630   if (ParseArgumentList(ArgList, isVarArg) ||
   4631       ParseOptionalUnnamedAddr(UnnamedAddr) ||
   4632       ParseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false,
   4633                                  BuiltinLoc) ||
   4634       (EatIfPresent(lltok::kw_section) &&
   4635        ParseStringConstant(Section)) ||
   4636       parseOptionalComdat(FunctionName, C) ||
   4637       ParseOptionalAlignment(Alignment) ||
   4638       (EatIfPresent(lltok::kw_gc) &&
   4639        ParseStringConstant(GC)) ||
   4640       (EatIfPresent(lltok::kw_prefix) &&
   4641        ParseGlobalTypeAndValue(Prefix)) ||
   4642       (EatIfPresent(lltok::kw_prologue) &&
   4643        ParseGlobalTypeAndValue(Prologue)) ||
   4644       (EatIfPresent(lltok::kw_personality) &&
   4645        ParseGlobalTypeAndValue(PersonalityFn)))
   4646     return true;
   4647 
   4648   if (FuncAttrs.contains(Attribute::Builtin))
   4649     return Error(BuiltinLoc, "'builtin' attribute not valid on function");
   4650 
   4651   // If the alignment was parsed as an attribute, move to the alignment field.
   4652   if (FuncAttrs.hasAlignmentAttr()) {
   4653     Alignment = FuncAttrs.getAlignment();
   4654     FuncAttrs.removeAttribute(Attribute::Alignment);
   4655   }
   4656 
   4657   // Okay, if we got here, the function is syntactically valid.  Convert types
   4658   // and do semantic checks.
   4659   std::vector<Type*> ParamTypeList;
   4660   SmallVector<AttributeSet, 8> Attrs;
   4661 
   4662   if (RetAttrs.hasAttributes())
   4663     Attrs.push_back(AttributeSet::get(RetType->getContext(),
   4664                                       AttributeSet::ReturnIndex,
   4665                                       RetAttrs));
   4666 
   4667   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
   4668     ParamTypeList.push_back(ArgList[i].Ty);
   4669     if (ArgList[i].Attrs.hasAttributes(i + 1)) {
   4670       AttrBuilder B(ArgList[i].Attrs, i + 1);
   4671       Attrs.push_back(AttributeSet::get(RetType->getContext(), i + 1, B));
   4672     }
   4673   }
   4674 
   4675   if (FuncAttrs.hasAttributes())
   4676     Attrs.push_back(AttributeSet::get(RetType->getContext(),
   4677                                       AttributeSet::FunctionIndex,
   4678                                       FuncAttrs));
   4679 
   4680   AttributeSet PAL = AttributeSet::get(Context, Attrs);
   4681 
   4682   if (PAL.hasAttribute(1, Attribute::StructRet) && !RetType->isVoidTy())
   4683     return Error(RetTypeLoc, "functions with 'sret' argument must return void");
   4684 
   4685   FunctionType *FT =
   4686     FunctionType::get(RetType, ParamTypeList, isVarArg);
   4687   PointerType *PFT = PointerType::getUnqual(FT);
   4688 
   4689   Fn = nullptr;
   4690   if (!FunctionName.empty()) {
   4691     // If this was a definition of a forward reference, remove the definition
   4692     // from the forward reference table and fill in the forward ref.
   4693     auto FRVI = ForwardRefVals.find(FunctionName);
   4694     if (FRVI != ForwardRefVals.end()) {
   4695       Fn = M->getFunction(FunctionName);
   4696       if (!Fn)
   4697         return Error(FRVI->second.second, "invalid forward reference to "
   4698                      "function as global value!");
   4699       if (Fn->getType() != PFT)
   4700         return Error(FRVI->second.second, "invalid forward reference to "
   4701                      "function '" + FunctionName + "' with wrong type!");
   4702 
   4703       ForwardRefVals.erase(FRVI);
   4704     } else if ((Fn = M->getFunction(FunctionName))) {
   4705       // Reject redefinitions.
   4706       return Error(NameLoc, "invalid redefinition of function '" +
   4707                    FunctionName + "'");
   4708     } else if (M->getNamedValue(FunctionName)) {
   4709       return Error(NameLoc, "redefinition of function '@" + FunctionName + "'");
   4710     }
   4711 
   4712   } else {
   4713     // If this is a definition of a forward referenced function, make sure the
   4714     // types agree.
   4715     auto I = ForwardRefValIDs.find(NumberedVals.size());
   4716     if (I != ForwardRefValIDs.end()) {
   4717       Fn = cast<Function>(I->second.first);
   4718       if (Fn->getType() != PFT)
   4719         return Error(NameLoc, "type of definition and forward reference of '@" +
   4720                      Twine(NumberedVals.size()) + "' disagree");
   4721       ForwardRefValIDs.erase(I);
   4722     }
   4723   }
   4724 
   4725   if (!Fn)
   4726     Fn = Function::Create(FT, GlobalValue::ExternalLinkage, FunctionName, M);
   4727   else // Move the forward-reference to the correct spot in the module.
   4728     M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn);
   4729 
   4730   if (FunctionName.empty())
   4731     NumberedVals.push_back(Fn);
   4732 
   4733   Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
   4734   Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
   4735   Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
   4736   Fn->setCallingConv(CC);
   4737   Fn->setAttributes(PAL);
   4738   Fn->setUnnamedAddr(UnnamedAddr);
   4739   Fn->setAlignment(Alignment);
   4740   Fn->setSection(Section);
   4741   Fn->setComdat(C);
   4742   Fn->setPersonalityFn(PersonalityFn);
   4743   if (!GC.empty()) Fn->setGC(GC);
   4744   Fn->setPrefixData(Prefix);
   4745   Fn->setPrologueData(Prologue);
   4746   ForwardRefAttrGroups[Fn] = FwdRefAttrGrps;
   4747 
   4748   // Add all of the arguments we parsed to the function.
   4749   Function::arg_iterator ArgIt = Fn->arg_begin();
   4750   for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
   4751     // If the argument has a name, insert it into the argument symbol table.
   4752     if (ArgList[i].Name.empty()) continue;
   4753 
   4754     // Set the name, if it conflicted, it will be auto-renamed.
   4755     ArgIt->setName(ArgList[i].Name);
   4756 
   4757     if (ArgIt->getName() != ArgList[i].Name)
   4758       return Error(ArgList[i].Loc, "redefinition of argument '%" +
   4759                    ArgList[i].Name + "'");
   4760   }
   4761 
   4762   if (isDefine)
   4763     return false;
   4764 
   4765   // Check the declaration has no block address forward references.
   4766   ValID ID;
   4767   if (FunctionName.empty()) {
   4768     ID.Kind = ValID::t_GlobalID;
   4769     ID.UIntVal = NumberedVals.size() - 1;
   4770   } else {
   4771     ID.Kind = ValID::t_GlobalName;
   4772     ID.StrVal = FunctionName;
   4773   }
   4774   auto Blocks = ForwardRefBlockAddresses.find(ID);
   4775   if (Blocks != ForwardRefBlockAddresses.end())
   4776     return Error(Blocks->first.Loc,
   4777                  "cannot take blockaddress inside a declaration");
   4778   return false;
   4779 }
   4780 
   4781 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() {
   4782   ValID ID;
   4783   if (FunctionNumber == -1) {
   4784     ID.Kind = ValID::t_GlobalName;
   4785     ID.StrVal = F.getName();
   4786   } else {
   4787     ID.Kind = ValID::t_GlobalID;
   4788     ID.UIntVal = FunctionNumber;
   4789   }
   4790 
   4791   auto Blocks = P.ForwardRefBlockAddresses.find(ID);
   4792   if (Blocks == P.ForwardRefBlockAddresses.end())
   4793     return false;
   4794 
   4795   for (const auto &I : Blocks->second) {
   4796     const ValID &BBID = I.first;
   4797     GlobalValue *GV = I.second;
   4798 
   4799     assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) &&
   4800            "Expected local id or name");
   4801     BasicBlock *BB;
   4802     if (BBID.Kind == ValID::t_LocalName)
   4803       BB = GetBB(BBID.StrVal, BBID.Loc);
   4804     else
   4805       BB = GetBB(BBID.UIntVal, BBID.Loc);
   4806     if (!BB)
   4807       return P.Error(BBID.Loc, "referenced value is not a basic block");
   4808 
   4809     GV->replaceAllUsesWith(BlockAddress::get(&F, BB));
   4810     GV->eraseFromParent();
   4811   }
   4812 
   4813   P.ForwardRefBlockAddresses.erase(Blocks);
   4814   return false;
   4815 }
   4816 
   4817 /// ParseFunctionBody
   4818 ///   ::= '{' BasicBlock+ UseListOrderDirective* '}'
   4819 bool LLParser::ParseFunctionBody(Function &Fn) {
   4820   if (Lex.getKind() != lltok::lbrace)
   4821     return TokError("expected '{' in function body");
   4822   Lex.Lex();  // eat the {.
   4823 
   4824   int FunctionNumber = -1;
   4825   if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1;
   4826 
   4827   PerFunctionState PFS(*this, Fn, FunctionNumber);
   4828 
   4829   // Resolve block addresses and allow basic blocks to be forward-declared
   4830   // within this function.
   4831   if (PFS.resolveForwardRefBlockAddresses())
   4832     return true;
   4833   SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS);
   4834 
   4835   // We need at least one basic block.
   4836   if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder)
   4837     return TokError("function body requires at least one basic block");
   4838 
   4839   while (Lex.getKind() != lltok::rbrace &&
   4840          Lex.getKind() != lltok::kw_uselistorder)
   4841     if (ParseBasicBlock(PFS)) return true;
   4842 
   4843   while (Lex.getKind() != lltok::rbrace)
   4844     if (ParseUseListOrder(&PFS))
   4845       return true;
   4846 
   4847   // Eat the }.
   4848   Lex.Lex();
   4849 
   4850   // Verify function is ok.
   4851   return PFS.FinishFunction();
   4852 }
   4853 
   4854 /// ParseBasicBlock
   4855 ///   ::= LabelStr? Instruction*
   4856 bool LLParser::ParseBasicBlock(PerFunctionState &PFS) {
   4857   // If this basic block starts out with a name, remember it.
   4858   std::string Name;
   4859   LocTy NameLoc = Lex.getLoc();
   4860   if (Lex.getKind() == lltok::LabelStr) {
   4861     Name = Lex.getStrVal();
   4862     Lex.Lex();
   4863   }
   4864 
   4865   BasicBlock *BB = PFS.DefineBB(Name, NameLoc);
   4866   if (!BB)
   4867     return Error(NameLoc,
   4868                  "unable to create block named '" + Name + "'");
   4869 
   4870   std::string NameStr;
   4871 
   4872   // Parse the instructions in this block until we get a terminator.
   4873   Instruction *Inst;
   4874   do {
   4875     // This instruction may have three possibilities for a name: a) none
   4876     // specified, b) name specified "%foo =", c) number specified: "%4 =".
   4877     LocTy NameLoc = Lex.getLoc();
   4878     int NameID = -1;
   4879     NameStr = "";
   4880 
   4881     if (Lex.getKind() == lltok::LocalVarID) {
   4882       NameID = Lex.getUIntVal();
   4883       Lex.Lex();
   4884       if (ParseToken(lltok::equal, "expected '=' after instruction id"))
   4885         return true;
   4886     } else if (Lex.getKind() == lltok::LocalVar) {
   4887       NameStr = Lex.getStrVal();
   4888       Lex.Lex();
   4889       if (ParseToken(lltok::equal, "expected '=' after instruction name"))
   4890         return true;
   4891     }
   4892 
   4893     switch (ParseInstruction(Inst, BB, PFS)) {
   4894     default: llvm_unreachable("Unknown ParseInstruction result!");
   4895     case InstError: return true;
   4896     case InstNormal:
   4897       BB->getInstList().push_back(Inst);
   4898 
   4899       // With a normal result, we check to see if the instruction is followed by
   4900       // a comma and metadata.
   4901       if (EatIfPresent(lltok::comma))
   4902         if (ParseInstructionMetadata(*Inst))
   4903           return true;
   4904       break;
   4905     case InstExtraComma:
   4906       BB->getInstList().push_back(Inst);
   4907 
   4908       // If the instruction parser ate an extra comma at the end of it, it
   4909       // *must* be followed by metadata.
   4910       if (ParseInstructionMetadata(*Inst))
   4911         return true;
   4912       break;
   4913     }
   4914 
   4915     // Set the name on the instruction.
   4916     if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true;
   4917   } while (!isa<TerminatorInst>(Inst));
   4918 
   4919   return false;
   4920 }
   4921 
   4922 //===----------------------------------------------------------------------===//
   4923 // Instruction Parsing.
   4924 //===----------------------------------------------------------------------===//
   4925 
   4926 /// ParseInstruction - Parse one of the many different instructions.
   4927 ///
   4928 int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB,
   4929                                PerFunctionState &PFS) {
   4930   lltok::Kind Token = Lex.getKind();
   4931   if (Token == lltok::Eof)
   4932     return TokError("found end of file when expecting more instructions");
   4933   LocTy Loc = Lex.getLoc();
   4934   unsigned KeywordVal = Lex.getUIntVal();
   4935   Lex.Lex();  // Eat the keyword.
   4936 
   4937   switch (Token) {
   4938   default:                    return Error(Loc, "expected instruction opcode");
   4939   // Terminator Instructions.
   4940   case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false;
   4941   case lltok::kw_ret:         return ParseRet(Inst, BB, PFS);
   4942   case lltok::kw_br:          return ParseBr(Inst, PFS);
   4943   case lltok::kw_switch:      return ParseSwitch(Inst, PFS);
   4944   case lltok::kw_indirectbr:  return ParseIndirectBr(Inst, PFS);
   4945   case lltok::kw_invoke:      return ParseInvoke(Inst, PFS);
   4946   case lltok::kw_resume:      return ParseResume(Inst, PFS);
   4947   case lltok::kw_cleanupret:  return ParseCleanupRet(Inst, PFS);
   4948   case lltok::kw_catchret:    return ParseCatchRet(Inst, PFS);
   4949   case lltok::kw_catchswitch: return ParseCatchSwitch(Inst, PFS);
   4950   case lltok::kw_catchpad:    return ParseCatchPad(Inst, PFS);
   4951   case lltok::kw_cleanuppad:  return ParseCleanupPad(Inst, PFS);
   4952   // Binary Operators.
   4953   case lltok::kw_add:
   4954   case lltok::kw_sub:
   4955   case lltok::kw_mul:
   4956   case lltok::kw_shl: {
   4957     bool NUW = EatIfPresent(lltok::kw_nuw);
   4958     bool NSW = EatIfPresent(lltok::kw_nsw);
   4959     if (!NUW) NUW = EatIfPresent(lltok::kw_nuw);
   4960 
   4961     if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true;
   4962 
   4963     if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true);
   4964     if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true);
   4965     return false;
   4966   }
   4967   case lltok::kw_fadd:
   4968   case lltok::kw_fsub:
   4969   case lltok::kw_fmul:
   4970   case lltok::kw_fdiv:
   4971   case lltok::kw_frem: {
   4972     FastMathFlags FMF = EatFastMathFlagsIfPresent();
   4973     int Res = ParseArithmetic(Inst, PFS, KeywordVal, 2);
   4974     if (Res != 0)
   4975       return Res;
   4976     if (FMF.any())
   4977       Inst->setFastMathFlags(FMF);
   4978     return 0;
   4979   }
   4980 
   4981   case lltok::kw_sdiv:
   4982   case lltok::kw_udiv:
   4983   case lltok::kw_lshr:
   4984   case lltok::kw_ashr: {
   4985     bool Exact = EatIfPresent(lltok::kw_exact);
   4986 
   4987     if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true;
   4988     if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true);
   4989     return false;
   4990   }
   4991 
   4992   case lltok::kw_urem:
   4993   case lltok::kw_srem:   return ParseArithmetic(Inst, PFS, KeywordVal, 1);
   4994   case lltok::kw_and:
   4995   case lltok::kw_or:
   4996   case lltok::kw_xor:    return ParseLogical(Inst, PFS, KeywordVal);
   4997   case lltok::kw_icmp:   return ParseCompare(Inst, PFS, KeywordVal);
   4998   case lltok::kw_fcmp: {
   4999     FastMathFlags FMF = EatFastMathFlagsIfPresent();
   5000     int Res = ParseCompare(Inst, PFS, KeywordVal);
   5001     if (Res != 0)
   5002       return Res;
   5003     if (FMF.any())
   5004       Inst->setFastMathFlags(FMF);
   5005     return 0;
   5006   }
   5007 
   5008   // Casts.
   5009   case lltok::kw_trunc:
   5010   case lltok::kw_zext:
   5011   case lltok::kw_sext:
   5012   case lltok::kw_fptrunc:
   5013   case lltok::kw_fpext:
   5014   case lltok::kw_bitcast:
   5015   case lltok::kw_addrspacecast:
   5016   case lltok::kw_uitofp:
   5017   case lltok::kw_sitofp:
   5018   case lltok::kw_fptoui:
   5019   case lltok::kw_fptosi:
   5020   case lltok::kw_inttoptr:
   5021   case lltok::kw_ptrtoint:       return ParseCast(Inst, PFS, KeywordVal);
   5022   // Other.
   5023   case lltok::kw_select:         return ParseSelect(Inst, PFS);
   5024   case lltok::kw_va_arg:         return ParseVA_Arg(Inst, PFS);
   5025   case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS);
   5026   case lltok::kw_insertelement:  return ParseInsertElement(Inst, PFS);
   5027   case lltok::kw_shufflevector:  return ParseShuffleVector(Inst, PFS);
   5028   case lltok::kw_phi:            return ParsePHI(Inst, PFS);
   5029   case lltok::kw_landingpad:     return ParseLandingPad(Inst, PFS);
   5030   // Call.
   5031   case lltok::kw_call:     return ParseCall(Inst, PFS, CallInst::TCK_None);
   5032   case lltok::kw_tail:     return ParseCall(Inst, PFS, CallInst::TCK_Tail);
   5033   case lltok::kw_musttail: return ParseCall(Inst, PFS, CallInst::TCK_MustTail);
   5034   case lltok::kw_notail:   return ParseCall(Inst, PFS, CallInst::TCK_NoTail);
   5035   // Memory.
   5036   case lltok::kw_alloca:         return ParseAlloc(Inst, PFS);
   5037   case lltok::kw_load:           return ParseLoad(Inst, PFS);
   5038   case lltok::kw_store:          return ParseStore(Inst, PFS);
   5039   case lltok::kw_cmpxchg:        return ParseCmpXchg(Inst, PFS);
   5040   case lltok::kw_atomicrmw:      return ParseAtomicRMW(Inst, PFS);
   5041   case lltok::kw_fence:          return ParseFence(Inst, PFS);
   5042   case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS);
   5043   case lltok::kw_extractvalue:  return ParseExtractValue(Inst, PFS);
   5044   case lltok::kw_insertvalue:   return ParseInsertValue(Inst, PFS);
   5045   }
   5046 }
   5047 
   5048 /// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind.
   5049 bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) {
   5050   if (Opc == Instruction::FCmp) {
   5051     switch (Lex.getKind()) {
   5052     default: return TokError("expected fcmp predicate (e.g. 'oeq')");
   5053     case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
   5054     case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
   5055     case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
   5056     case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
   5057     case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
   5058     case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
   5059     case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
   5060     case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
   5061     case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
   5062     case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
   5063     case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
   5064     case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
   5065     case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
   5066     case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
   5067     case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
   5068     case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
   5069     }
   5070   } else {
   5071     switch (Lex.getKind()) {
   5072     default: return TokError("expected icmp predicate (e.g. 'eq')");
   5073     case lltok::kw_eq:  P = CmpInst::ICMP_EQ; break;
   5074     case lltok::kw_ne:  P = CmpInst::ICMP_NE; break;
   5075     case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
   5076     case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
   5077     case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
   5078     case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
   5079     case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
   5080     case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
   5081     case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
   5082     case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
   5083     }
   5084   }
   5085   Lex.Lex();
   5086   return false;
   5087 }
   5088 
   5089 //===----------------------------------------------------------------------===//
   5090 // Terminator Instructions.
   5091 //===----------------------------------------------------------------------===//
   5092 
   5093 /// ParseRet - Parse a return instruction.
   5094 ///   ::= 'ret' void (',' !dbg, !1)*
   5095 ///   ::= 'ret' TypeAndValue (',' !dbg, !1)*
   5096 bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB,
   5097                         PerFunctionState &PFS) {
   5098   SMLoc TypeLoc = Lex.getLoc();
   5099   Type *Ty = nullptr;
   5100   if (ParseType(Ty, true /*void allowed*/)) return true;
   5101 
   5102   Type *ResType = PFS.getFunction().getReturnType();
   5103 
   5104   if (Ty->isVoidTy()) {
   5105     if (!ResType->isVoidTy())
   5106       return Error(TypeLoc, "value doesn't match function result type '" +
   5107                    getTypeString(ResType) + "'");
   5108 
   5109     Inst = ReturnInst::Create(Context);
   5110     return false;
   5111   }
   5112 
   5113   Value *RV;
   5114   if (ParseValue(Ty, RV, PFS)) return true;
   5115 
   5116   if (ResType != RV->getType())
   5117     return Error(TypeLoc, "value doesn't match function result type '" +
   5118                  getTypeString(ResType) + "'");
   5119 
   5120   Inst = ReturnInst::Create(Context, RV);
   5121   return false;
   5122 }
   5123 
   5124 
   5125 /// ParseBr
   5126 ///   ::= 'br' TypeAndValue
   5127 ///   ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
   5128 bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) {
   5129   LocTy Loc, Loc2;
   5130   Value *Op0;
   5131   BasicBlock *Op1, *Op2;
   5132   if (ParseTypeAndValue(Op0, Loc, PFS)) return true;
   5133 
   5134   if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
   5135     Inst = BranchInst::Create(BB);
   5136     return false;
   5137   }
   5138 
   5139   if (Op0->getType() != Type::getInt1Ty(Context))
   5140     return Error(Loc, "branch condition must have 'i1' type");
   5141 
   5142   if (ParseToken(lltok::comma, "expected ',' after branch condition") ||
   5143       ParseTypeAndBasicBlock(Op1, Loc, PFS) ||
   5144       ParseToken(lltok::comma, "expected ',' after true destination") ||
   5145       ParseTypeAndBasicBlock(Op2, Loc2, PFS))
   5146     return true;
   5147 
   5148   Inst = BranchInst::Create(Op1, Op2, Op0);
   5149   return false;
   5150 }
   5151 
   5152 /// ParseSwitch
   5153 ///  Instruction
   5154 ///    ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
   5155 ///  JumpTable
   5156 ///    ::= (TypeAndValue ',' TypeAndValue)*
   5157 bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
   5158   LocTy CondLoc, BBLoc;
   5159   Value *Cond;
   5160   BasicBlock *DefaultBB;
   5161   if (ParseTypeAndValue(Cond, CondLoc, PFS) ||
   5162       ParseToken(lltok::comma, "expected ',' after switch condition") ||
   5163       ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) ||
   5164       ParseToken(lltok::lsquare, "expected '[' with switch table"))
   5165     return true;
   5166 
   5167   if (!Cond->getType()->isIntegerTy())
   5168     return Error(CondLoc, "switch condition must have integer type");
   5169 
   5170   // Parse the jump table pairs.
   5171   SmallPtrSet<Value*, 32> SeenCases;
   5172   SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
   5173   while (Lex.getKind() != lltok::rsquare) {
   5174     Value *Constant;
   5175     BasicBlock *DestBB;
   5176 
   5177     if (ParseTypeAndValue(Constant, CondLoc, PFS) ||
   5178         ParseToken(lltok::comma, "expected ',' after case value") ||
   5179         ParseTypeAndBasicBlock(DestBB, PFS))
   5180       return true;
   5181 
   5182     if (!SeenCases.insert(Constant).second)
   5183       return Error(CondLoc, "duplicate case value in switch");
   5184     if (!isa<ConstantInt>(Constant))
   5185       return Error(CondLoc, "case value is not a constant integer");
   5186 
   5187     Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB));
   5188   }
   5189 
   5190   Lex.Lex();  // Eat the ']'.
   5191 
   5192   SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size());
   5193   for (unsigned i = 0, e = Table.size(); i != e; ++i)
   5194     SI->addCase(Table[i].first, Table[i].second);
   5195   Inst = SI;
   5196   return false;
   5197 }
   5198 
   5199 /// ParseIndirectBr
   5200 ///  Instruction
   5201 ///    ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']'
   5202 bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) {
   5203   LocTy AddrLoc;
   5204   Value *Address;
   5205   if (ParseTypeAndValue(Address, AddrLoc, PFS) ||
   5206       ParseToken(lltok::comma, "expected ',' after indirectbr address") ||
   5207       ParseToken(lltok::lsquare, "expected '[' with indirectbr"))
   5208     return true;
   5209 
   5210   if (!Address->getType()->isPointerTy())
   5211     return Error(AddrLoc, "indirectbr address must have pointer type");
   5212 
   5213   // Parse the destination list.
   5214   SmallVector<BasicBlock*, 16> DestList;
   5215 
   5216   if (Lex.getKind() != lltok::rsquare) {
   5217     BasicBlock *DestBB;
   5218     if (ParseTypeAndBasicBlock(DestBB, PFS))
   5219       return true;
   5220     DestList.push_back(DestBB);
   5221 
   5222     while (EatIfPresent(lltok::comma)) {
   5223       if (ParseTypeAndBasicBlock(DestBB, PFS))
   5224         return true;
   5225       DestList.push_back(DestBB);
   5226     }
   5227   }
   5228 
   5229   if (ParseToken(lltok::rsquare, "expected ']' at end of block list"))
   5230     return true;
   5231 
   5232   IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size());
   5233   for (unsigned i = 0, e = DestList.size(); i != e; ++i)
   5234     IBI->addDestination(DestList[i]);
   5235   Inst = IBI;
   5236   return false;
   5237 }
   5238 
   5239 
   5240 /// ParseInvoke
   5241 ///   ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
   5242 ///       OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
   5243 bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
   5244   LocTy CallLoc = Lex.getLoc();
   5245   AttrBuilder RetAttrs, FnAttrs;
   5246   std::vector<unsigned> FwdRefAttrGrps;
   5247   LocTy NoBuiltinLoc;
   5248   unsigned CC;
   5249   Type *RetType = nullptr;
   5250   LocTy RetTypeLoc;
   5251   ValID CalleeID;
   5252   SmallVector<ParamInfo, 16> ArgList;
   5253   SmallVector<OperandBundleDef, 2> BundleList;
   5254 
   5255   BasicBlock *NormalBB, *UnwindBB;
   5256   if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
   5257       ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
   5258       ParseValID(CalleeID) || ParseParameterList(ArgList, PFS) ||
   5259       ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
   5260                                  NoBuiltinLoc) ||
   5261       ParseOptionalOperandBundles(BundleList, PFS) ||
   5262       ParseToken(lltok::kw_to, "expected 'to' in invoke") ||
   5263       ParseTypeAndBasicBlock(NormalBB, PFS) ||
   5264       ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
   5265       ParseTypeAndBasicBlock(UnwindBB, PFS))
   5266     return true;
   5267 
   5268   // If RetType is a non-function pointer type, then this is the short syntax
   5269   // for the call, which means that RetType is just the return type.  Infer the
   5270   // rest of the function argument types from the arguments that are present.
   5271   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
   5272   if (!Ty) {
   5273     // Pull out the types of all of the arguments...
   5274     std::vector<Type*> ParamTypes;
   5275     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
   5276       ParamTypes.push_back(ArgList[i].V->getType());
   5277 
   5278     if (!FunctionType::isValidReturnType(RetType))
   5279       return Error(RetTypeLoc, "Invalid result type for LLVM function");
   5280 
   5281     Ty = FunctionType::get(RetType, ParamTypes, false);
   5282   }
   5283 
   5284   CalleeID.FTy = Ty;
   5285 
   5286   // Look up the callee.
   5287   Value *Callee;
   5288   if (ConvertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS))
   5289     return true;
   5290 
   5291   // Set up the Attribute for the function.
   5292   SmallVector<AttributeSet, 8> Attrs;
   5293   if (RetAttrs.hasAttributes())
   5294     Attrs.push_back(AttributeSet::get(RetType->getContext(),
   5295                                       AttributeSet::ReturnIndex,
   5296                                       RetAttrs));
   5297 
   5298   SmallVector<Value*, 8> Args;
   5299 
   5300   // Loop through FunctionType's arguments and ensure they are specified
   5301   // correctly.  Also, gather any parameter attributes.
   5302   FunctionType::param_iterator I = Ty->param_begin();
   5303   FunctionType::param_iterator E = Ty->param_end();
   5304   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
   5305     Type *ExpectedTy = nullptr;
   5306     if (I != E) {
   5307       ExpectedTy = *I++;
   5308     } else if (!Ty->isVarArg()) {
   5309       return Error(ArgList[i].Loc, "too many arguments specified");
   5310     }
   5311 
   5312     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
   5313       return Error(ArgList[i].Loc, "argument is not of expected type '" +
   5314                    getTypeString(ExpectedTy) + "'");
   5315     Args.push_back(ArgList[i].V);
   5316     if (ArgList[i].Attrs.hasAttributes(i + 1)) {
   5317       AttrBuilder B(ArgList[i].Attrs, i + 1);
   5318       Attrs.push_back(AttributeSet::get(RetType->getContext(), i + 1, B));
   5319     }
   5320   }
   5321 
   5322   if (I != E)
   5323     return Error(CallLoc, "not enough parameters specified for call");
   5324 
   5325   if (FnAttrs.hasAttributes()) {
   5326     if (FnAttrs.hasAlignmentAttr())
   5327       return Error(CallLoc, "invoke instructions may not have an alignment");
   5328 
   5329     Attrs.push_back(AttributeSet::get(RetType->getContext(),
   5330                                       AttributeSet::FunctionIndex,
   5331                                       FnAttrs));
   5332   }
   5333 
   5334   // Finish off the Attribute and check them
   5335   AttributeSet PAL = AttributeSet::get(Context, Attrs);
   5336 
   5337   InvokeInst *II =
   5338       InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList);
   5339   II->setCallingConv(CC);
   5340   II->setAttributes(PAL);
   5341   ForwardRefAttrGroups[II] = FwdRefAttrGrps;
   5342   Inst = II;
   5343   return false;
   5344 }
   5345 
   5346 /// ParseResume
   5347 ///   ::= 'resume' TypeAndValue
   5348 bool LLParser::ParseResume(Instruction *&Inst, PerFunctionState &PFS) {
   5349   Value *Exn; LocTy ExnLoc;
   5350   if (ParseTypeAndValue(Exn, ExnLoc, PFS))
   5351     return true;
   5352 
   5353   ResumeInst *RI = ResumeInst::Create(Exn);
   5354   Inst = RI;
   5355   return false;
   5356 }
   5357 
   5358 bool LLParser::ParseExceptionArgs(SmallVectorImpl<Value *> &Args,
   5359                                   PerFunctionState &PFS) {
   5360   if (ParseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad"))
   5361     return true;
   5362 
   5363   while (Lex.getKind() != lltok::rsquare) {
   5364     // If this isn't the first argument, we need a comma.
   5365     if (!Args.empty() &&
   5366         ParseToken(lltok::comma, "expected ',' in argument list"))
   5367       return true;
   5368 
   5369     // Parse the argument.
   5370     LocTy ArgLoc;
   5371     Type *ArgTy = nullptr;
   5372     if (ParseType(ArgTy, ArgLoc))
   5373       return true;
   5374 
   5375     Value *V;
   5376     if (ArgTy->isMetadataTy()) {
   5377       if (ParseMetadataAsValue(V, PFS))
   5378         return true;
   5379     } else {
   5380       if (ParseValue(ArgTy, V, PFS))
   5381         return true;
   5382     }
   5383     Args.push_back(V);
   5384   }
   5385 
   5386   Lex.Lex();  // Lex the ']'.
   5387   return false;
   5388 }
   5389 
   5390 /// ParseCleanupRet
   5391 ///   ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue)
   5392 bool LLParser::ParseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) {
   5393   Value *CleanupPad = nullptr;
   5394 
   5395   if (ParseToken(lltok::kw_from, "expected 'from' after cleanupret"))
   5396     return true;
   5397 
   5398   if (ParseValue(Type::getTokenTy(Context), CleanupPad, PFS))
   5399     return true;
   5400 
   5401   if (ParseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret"))
   5402     return true;
   5403 
   5404   BasicBlock *UnwindBB = nullptr;
   5405   if (Lex.getKind() == lltok::kw_to) {
   5406     Lex.Lex();
   5407     if (ParseToken(lltok::kw_caller, "expected 'caller' in cleanupret"))
   5408       return true;
   5409   } else {
   5410     if (ParseTypeAndBasicBlock(UnwindBB, PFS)) {
   5411       return true;
   5412     }
   5413   }
   5414 
   5415   Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB);
   5416   return false;
   5417 }
   5418 
   5419 /// ParseCatchRet
   5420 ///   ::= 'catchret' from Parent Value 'to' TypeAndValue
   5421 bool LLParser::ParseCatchRet(Instruction *&Inst, PerFunctionState &PFS) {
   5422   Value *CatchPad = nullptr;
   5423 
   5424   if (ParseToken(lltok::kw_from, "expected 'from' after catchret"))
   5425     return true;
   5426 
   5427   if (ParseValue(Type::getTokenTy(Context), CatchPad, PFS))
   5428     return true;
   5429 
   5430   BasicBlock *BB;
   5431   if (ParseToken(lltok::kw_to, "expected 'to' in catchret") ||
   5432       ParseTypeAndBasicBlock(BB, PFS))
   5433       return true;
   5434 
   5435   Inst = CatchReturnInst::Create(CatchPad, BB);
   5436   return false;
   5437 }
   5438 
   5439 /// ParseCatchSwitch
   5440 ///   ::= 'catchswitch' within Parent
   5441 bool LLParser::ParseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) {
   5442   Value *ParentPad;
   5443   LocTy BBLoc;
   5444 
   5445   if (ParseToken(lltok::kw_within, "expected 'within' after catchswitch"))
   5446     return true;
   5447 
   5448   if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
   5449       Lex.getKind() != lltok::LocalVarID)
   5450     return TokError("expected scope value for catchswitch");
   5451 
   5452   if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS))
   5453     return true;
   5454 
   5455   if (ParseToken(lltok::lsquare, "expected '[' with catchswitch labels"))
   5456     return true;
   5457 
   5458   SmallVector<BasicBlock *, 32> Table;
   5459   do {
   5460     BasicBlock *DestBB;
   5461     if (ParseTypeAndBasicBlock(DestBB, PFS))
   5462       return true;
   5463     Table.push_back(DestBB);
   5464   } while (EatIfPresent(lltok::comma));
   5465 
   5466   if (ParseToken(lltok::rsquare, "expected ']' after catchswitch labels"))
   5467     return true;
   5468 
   5469   if (ParseToken(lltok::kw_unwind,
   5470                  "expected 'unwind' after catchswitch scope"))
   5471     return true;
   5472 
   5473   BasicBlock *UnwindBB = nullptr;
   5474   if (EatIfPresent(lltok::kw_to)) {
   5475     if (ParseToken(lltok::kw_caller, "expected 'caller' in catchswitch"))
   5476       return true;
   5477   } else {
   5478     if (ParseTypeAndBasicBlock(UnwindBB, PFS))
   5479       return true;
   5480   }
   5481 
   5482   auto *CatchSwitch =
   5483       CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size());
   5484   for (BasicBlock *DestBB : Table)
   5485     CatchSwitch->addHandler(DestBB);
   5486   Inst = CatchSwitch;
   5487   return false;
   5488 }
   5489 
   5490 /// ParseCatchPad
   5491 ///   ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue
   5492 bool LLParser::ParseCatchPad(Instruction *&Inst, PerFunctionState &PFS) {
   5493   Value *CatchSwitch = nullptr;
   5494 
   5495   if (ParseToken(lltok::kw_within, "expected 'within' after catchpad"))
   5496     return true;
   5497 
   5498   if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID)
   5499     return TokError("expected scope value for catchpad");
   5500 
   5501   if (ParseValue(Type::getTokenTy(Context), CatchSwitch, PFS))
   5502     return true;
   5503 
   5504   SmallVector<Value *, 8> Args;
   5505   if (ParseExceptionArgs(Args, PFS))
   5506     return true;
   5507 
   5508   Inst = CatchPadInst::Create(CatchSwitch, Args);
   5509   return false;
   5510 }
   5511 
   5512 /// ParseCleanupPad
   5513 ///   ::= 'cleanuppad' within Parent ParamList
   5514 bool LLParser::ParseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) {
   5515   Value *ParentPad = nullptr;
   5516 
   5517   if (ParseToken(lltok::kw_within, "expected 'within' after cleanuppad"))
   5518     return true;
   5519 
   5520   if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
   5521       Lex.getKind() != lltok::LocalVarID)
   5522     return TokError("expected scope value for cleanuppad");
   5523 
   5524   if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS))
   5525     return true;
   5526 
   5527   SmallVector<Value *, 8> Args;
   5528   if (ParseExceptionArgs(Args, PFS))
   5529     return true;
   5530 
   5531   Inst = CleanupPadInst::Create(ParentPad, Args);
   5532   return false;
   5533 }
   5534 
   5535 //===----------------------------------------------------------------------===//
   5536 // Binary Operators.
   5537 //===----------------------------------------------------------------------===//
   5538 
   5539 /// ParseArithmetic
   5540 ///  ::= ArithmeticOps TypeAndValue ',' Value
   5541 ///
   5542 /// If OperandType is 0, then any FP or integer operand is allowed.  If it is 1,
   5543 /// then any integer operand is allowed, if it is 2, any fp operand is allowed.
   5544 bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
   5545                                unsigned Opc, unsigned OperandType) {
   5546   LocTy Loc; Value *LHS, *RHS;
   5547   if (ParseTypeAndValue(LHS, Loc, PFS) ||
   5548       ParseToken(lltok::comma, "expected ',' in arithmetic operation") ||
   5549       ParseValue(LHS->getType(), RHS, PFS))
   5550     return true;
   5551 
   5552   bool Valid;
   5553   switch (OperandType) {
   5554   default: llvm_unreachable("Unknown operand type!");
   5555   case 0: // int or FP.
   5556     Valid = LHS->getType()->isIntOrIntVectorTy() ||
   5557             LHS->getType()->isFPOrFPVectorTy();
   5558     break;
   5559   case 1: Valid = LHS->getType()->isIntOrIntVectorTy(); break;
   5560   case 2: Valid = LHS->getType()->isFPOrFPVectorTy(); break;
   5561   }
   5562 
   5563   if (!Valid)
   5564     return Error(Loc, "invalid operand type for instruction");
   5565 
   5566   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
   5567   return false;
   5568 }
   5569 
   5570 /// ParseLogical
   5571 ///  ::= ArithmeticOps TypeAndValue ',' Value {
   5572 bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS,
   5573                             unsigned Opc) {
   5574   LocTy Loc; Value *LHS, *RHS;
   5575   if (ParseTypeAndValue(LHS, Loc, PFS) ||
   5576       ParseToken(lltok::comma, "expected ',' in logical operation") ||
   5577       ParseValue(LHS->getType(), RHS, PFS))
   5578     return true;
   5579 
   5580   if (!LHS->getType()->isIntOrIntVectorTy())
   5581     return Error(Loc,"instruction requires integer or integer vector operands");
   5582 
   5583   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
   5584   return false;
   5585 }
   5586 
   5587 
   5588 /// ParseCompare
   5589 ///  ::= 'icmp' IPredicates TypeAndValue ',' Value
   5590 ///  ::= 'fcmp' FPredicates TypeAndValue ',' Value
   5591 bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS,
   5592                             unsigned Opc) {
   5593   // Parse the integer/fp comparison predicate.
   5594   LocTy Loc;
   5595   unsigned Pred;
   5596   Value *LHS, *RHS;
   5597   if (ParseCmpPredicate(Pred, Opc) ||
   5598       ParseTypeAndValue(LHS, Loc, PFS) ||
   5599       ParseToken(lltok::comma, "expected ',' after compare value") ||
   5600       ParseValue(LHS->getType(), RHS, PFS))
   5601     return true;
   5602 
   5603   if (Opc == Instruction::FCmp) {
   5604     if (!LHS->getType()->isFPOrFPVectorTy())
   5605       return Error(Loc, "fcmp requires floating point operands");
   5606     Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
   5607   } else {
   5608     assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!");
   5609     if (!LHS->getType()->isIntOrIntVectorTy() &&
   5610         !LHS->getType()->getScalarType()->isPointerTy())
   5611       return Error(Loc, "icmp requires integer operands");
   5612     Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
   5613   }
   5614   return false;
   5615 }
   5616 
   5617 //===----------------------------------------------------------------------===//
   5618 // Other Instructions.
   5619 //===----------------------------------------------------------------------===//
   5620 
   5621 
   5622 /// ParseCast
   5623 ///   ::= CastOpc TypeAndValue 'to' Type
   5624 bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS,
   5625                          unsigned Opc) {
   5626   LocTy Loc;
   5627   Value *Op;
   5628   Type *DestTy = nullptr;
   5629   if (ParseTypeAndValue(Op, Loc, PFS) ||
   5630       ParseToken(lltok::kw_to, "expected 'to' after cast value") ||
   5631       ParseType(DestTy))
   5632     return true;
   5633 
   5634   if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
   5635     CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
   5636     return Error(Loc, "invalid cast opcode for cast from '" +
   5637                  getTypeString(Op->getType()) + "' to '" +
   5638                  getTypeString(DestTy) + "'");
   5639   }
   5640   Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
   5641   return false;
   5642 }
   5643 
   5644 /// ParseSelect
   5645 ///   ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
   5646 bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) {
   5647   LocTy Loc;
   5648   Value *Op0, *Op1, *Op2;
   5649   if (ParseTypeAndValue(Op0, Loc, PFS) ||
   5650       ParseToken(lltok::comma, "expected ',' after select condition") ||
   5651       ParseTypeAndValue(Op1, PFS) ||
   5652       ParseToken(lltok::comma, "expected ',' after select value") ||
   5653       ParseTypeAndValue(Op2, PFS))
   5654     return true;
   5655 
   5656   if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
   5657     return Error(Loc, Reason);
   5658 
   5659   Inst = SelectInst::Create(Op0, Op1, Op2);
   5660   return false;
   5661 }
   5662 
   5663 /// ParseVA_Arg
   5664 ///   ::= 'va_arg' TypeAndValue ',' Type
   5665 bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) {
   5666   Value *Op;
   5667   Type *EltTy = nullptr;
   5668   LocTy TypeLoc;
   5669   if (ParseTypeAndValue(Op, PFS) ||
   5670       ParseToken(lltok::comma, "expected ',' after vaarg operand") ||
   5671       ParseType(EltTy, TypeLoc))
   5672     return true;
   5673 
   5674   if (!EltTy->isFirstClassType())
   5675     return Error(TypeLoc, "va_arg requires operand with first class type");
   5676 
   5677   Inst = new VAArgInst(Op, EltTy);
   5678   return false;
   5679 }
   5680 
   5681 /// ParseExtractElement
   5682 ///   ::= 'extractelement' TypeAndValue ',' TypeAndValue
   5683 bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
   5684   LocTy Loc;
   5685   Value *Op0, *Op1;
   5686   if (ParseTypeAndValue(Op0, Loc, PFS) ||
   5687       ParseToken(lltok::comma, "expected ',' after extract value") ||
   5688       ParseTypeAndValue(Op1, PFS))
   5689     return true;
   5690 
   5691   if (!ExtractElementInst::isValidOperands(Op0, Op1))
   5692     return Error(Loc, "invalid extractelement operands");
   5693 
   5694   Inst = ExtractElementInst::Create(Op0, Op1);
   5695   return false;
   5696 }
   5697 
   5698 /// ParseInsertElement
   5699 ///   ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
   5700 bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
   5701   LocTy Loc;
   5702   Value *Op0, *Op1, *Op2;
   5703   if (ParseTypeAndValue(Op0, Loc, PFS) ||
   5704       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
   5705       ParseTypeAndValue(Op1, PFS) ||
   5706       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
   5707       ParseTypeAndValue(Op2, PFS))
   5708     return true;
   5709 
   5710   if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
   5711     return Error(Loc, "invalid insertelement operands");
   5712 
   5713   Inst = InsertElementInst::Create(Op0, Op1, Op2);
   5714   return false;
   5715 }
   5716 
   5717 /// ParseShuffleVector
   5718 ///   ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
   5719 bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
   5720   LocTy Loc;
   5721   Value *Op0, *Op1, *Op2;
   5722   if (ParseTypeAndValue(Op0, Loc, PFS) ||
   5723       ParseToken(lltok::comma, "expected ',' after shuffle mask") ||
   5724       ParseTypeAndValue(Op1, PFS) ||
   5725       ParseToken(lltok::comma, "expected ',' after shuffle value") ||
   5726       ParseTypeAndValue(Op2, PFS))
   5727     return true;
   5728 
   5729   if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
   5730     return Error(Loc, "invalid shufflevector operands");
   5731 
   5732   Inst = new ShuffleVectorInst(Op0, Op1, Op2);
   5733   return false;
   5734 }
   5735 
   5736 /// ParsePHI
   5737 ///   ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')*
   5738 int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) {
   5739   Type *Ty = nullptr;  LocTy TypeLoc;
   5740   Value *Op0, *Op1;
   5741 
   5742   if (ParseType(Ty, TypeLoc) ||
   5743       ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
   5744       ParseValue(Ty, Op0, PFS) ||
   5745       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
   5746       ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
   5747       ParseToken(lltok::rsquare, "expected ']' in phi value list"))
   5748     return true;
   5749 
   5750   bool AteExtraComma = false;
   5751   SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
   5752   while (1) {
   5753     PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
   5754 
   5755     if (!EatIfPresent(lltok::comma))
   5756       break;
   5757 
   5758     if (Lex.getKind() == lltok::MetadataVar) {
   5759       AteExtraComma = true;
   5760       break;
   5761     }
   5762 
   5763     if (ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
   5764         ParseValue(Ty, Op0, PFS) ||
   5765         ParseToken(lltok::comma, "expected ',' after insertelement value") ||
   5766         ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
   5767         ParseToken(lltok::rsquare, "expected ']' in phi value list"))
   5768       return true;
   5769   }
   5770 
   5771   if (!Ty->isFirstClassType())
   5772     return Error(TypeLoc, "phi node must have first class type");
   5773 
   5774   PHINode *PN = PHINode::Create(Ty, PHIVals.size());
   5775   for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
   5776     PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
   5777   Inst = PN;
   5778   return AteExtraComma ? InstExtraComma : InstNormal;
   5779 }
   5780 
   5781 /// ParseLandingPad
   5782 ///   ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+
   5783 /// Clause
   5784 ///   ::= 'catch' TypeAndValue
   5785 ///   ::= 'filter'
   5786 ///   ::= 'filter' TypeAndValue ( ',' TypeAndValue )*
   5787 bool LLParser::ParseLandingPad(Instruction *&Inst, PerFunctionState &PFS) {
   5788   Type *Ty = nullptr; LocTy TyLoc;
   5789 
   5790   if (ParseType(Ty, TyLoc))
   5791     return true;
   5792 
   5793   std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0));
   5794   LP->setCleanup(EatIfPresent(lltok::kw_cleanup));
   5795 
   5796   while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){
   5797     LandingPadInst::ClauseType CT;
   5798     if (EatIfPresent(lltok::kw_catch))
   5799       CT = LandingPadInst::Catch;
   5800     else if (EatIfPresent(lltok::kw_filter))
   5801       CT = LandingPadInst::Filter;
   5802     else
   5803       return TokError("expected 'catch' or 'filter' clause type");
   5804 
   5805     Value *V;
   5806     LocTy VLoc;
   5807     if (ParseTypeAndValue(V, VLoc, PFS))
   5808       return true;
   5809 
   5810     // A 'catch' type expects a non-array constant. A filter clause expects an
   5811     // array constant.
   5812     if (CT == LandingPadInst::Catch) {
   5813       if (isa<ArrayType>(V->getType()))
   5814         Error(VLoc, "'catch' clause has an invalid type");
   5815     } else {
   5816       if (!isa<ArrayType>(V->getType()))
   5817         Error(VLoc, "'filter' clause has an invalid type");
   5818     }
   5819 
   5820     Constant *CV = dyn_cast<Constant>(V);
   5821     if (!CV)
   5822       return Error(VLoc, "clause argument must be a constant");
   5823     LP->addClause(CV);
   5824   }
   5825 
   5826   Inst = LP.release();
   5827   return false;
   5828 }
   5829 
   5830 /// ParseCall
   5831 ///   ::= 'call' OptionalFastMathFlags OptionalCallingConv
   5832 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
   5833 ///   ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv
   5834 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
   5835 ///   ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv
   5836 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
   5837 ///   ::= 'notail' 'call'  OptionalFastMathFlags OptionalCallingConv
   5838 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
   5839 bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS,
   5840                          CallInst::TailCallKind TCK) {
   5841   AttrBuilder RetAttrs, FnAttrs;
   5842   std::vector<unsigned> FwdRefAttrGrps;
   5843   LocTy BuiltinLoc;
   5844   unsigned CC;
   5845   Type *RetType = nullptr;
   5846   LocTy RetTypeLoc;
   5847   ValID CalleeID;
   5848   SmallVector<ParamInfo, 16> ArgList;
   5849   SmallVector<OperandBundleDef, 2> BundleList;
   5850   LocTy CallLoc = Lex.getLoc();
   5851 
   5852   if (TCK != CallInst::TCK_None &&
   5853       ParseToken(lltok::kw_call,
   5854                  "expected 'tail call', 'musttail call', or 'notail call'"))
   5855     return true;
   5856 
   5857   FastMathFlags FMF = EatFastMathFlagsIfPresent();
   5858 
   5859   if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
   5860       ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
   5861       ParseValID(CalleeID) ||
   5862       ParseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail,
   5863                          PFS.getFunction().isVarArg()) ||
   5864       ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) ||
   5865       ParseOptionalOperandBundles(BundleList, PFS))
   5866     return true;
   5867 
   5868   if (FMF.any() && !RetType->isFPOrFPVectorTy())
   5869     return Error(CallLoc, "fast-math-flags specified for call without "
   5870                           "floating-point scalar or vector return type");
   5871 
   5872   // If RetType is a non-function pointer type, then this is the short syntax
   5873   // for the call, which means that RetType is just the return type.  Infer the
   5874   // rest of the function argument types from the arguments that are present.
   5875   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
   5876   if (!Ty) {
   5877     // Pull out the types of all of the arguments...
   5878     std::vector<Type*> ParamTypes;
   5879     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
   5880       ParamTypes.push_back(ArgList[i].V->getType());
   5881 
   5882     if (!FunctionType::isValidReturnType(RetType))
   5883       return Error(RetTypeLoc, "Invalid result type for LLVM function");
   5884 
   5885     Ty = FunctionType::get(RetType, ParamTypes, false);
   5886   }
   5887 
   5888   CalleeID.FTy = Ty;
   5889 
   5890   // Look up the callee.
   5891   Value *Callee;
   5892   if (ConvertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS))
   5893     return true;
   5894 
   5895   // Set up the Attribute for the function.
   5896   SmallVector<AttributeSet, 8> Attrs;
   5897   if (RetAttrs.hasAttributes())
   5898     Attrs.push_back(AttributeSet::get(RetType->getContext(),
   5899                                       AttributeSet::ReturnIndex,
   5900                                       RetAttrs));
   5901 
   5902   SmallVector<Value*, 8> Args;
   5903 
   5904   // Loop through FunctionType's arguments and ensure they are specified
   5905   // correctly.  Also, gather any parameter attributes.
   5906   FunctionType::param_iterator I = Ty->param_begin();
   5907   FunctionType::param_iterator E = Ty->param_end();
   5908   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
   5909     Type *ExpectedTy = nullptr;
   5910     if (I != E) {
   5911       ExpectedTy = *I++;
   5912     } else if (!Ty->isVarArg()) {
   5913       return Error(ArgList[i].Loc, "too many arguments specified");
   5914     }
   5915 
   5916     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
   5917       return Error(ArgList[i].Loc, "argument is not of expected type '" +
   5918                    getTypeString(ExpectedTy) + "'");
   5919     Args.push_back(ArgList[i].V);
   5920     if (ArgList[i].Attrs.hasAttributes(i + 1)) {
   5921       AttrBuilder B(ArgList[i].Attrs, i + 1);
   5922       Attrs.push_back(AttributeSet::get(RetType->getContext(), i + 1, B));
   5923     }
   5924   }
   5925 
   5926   if (I != E)
   5927     return Error(CallLoc, "not enough parameters specified for call");
   5928 
   5929   if (FnAttrs.hasAttributes()) {
   5930     if (FnAttrs.hasAlignmentAttr())
   5931       return Error(CallLoc, "call instructions may not have an alignment");
   5932 
   5933     Attrs.push_back(AttributeSet::get(RetType->getContext(),
   5934                                       AttributeSet::FunctionIndex,
   5935                                       FnAttrs));
   5936   }
   5937 
   5938   // Finish off the Attribute and check them
   5939   AttributeSet PAL = AttributeSet::get(Context, Attrs);
   5940 
   5941   CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList);
   5942   CI->setTailCallKind(TCK);
   5943   CI->setCallingConv(CC);
   5944   if (FMF.any())
   5945     CI->setFastMathFlags(FMF);
   5946   CI->setAttributes(PAL);
   5947   ForwardRefAttrGroups[CI] = FwdRefAttrGrps;
   5948   Inst = CI;
   5949   return false;
   5950 }
   5951 
   5952 //===----------------------------------------------------------------------===//
   5953 // Memory Instructions.
   5954 //===----------------------------------------------------------------------===//
   5955 
   5956 /// ParseAlloc
   5957 ///   ::= 'alloca' 'inalloca'? 'swifterror'? Type (',' TypeAndValue)?
   5958 ///       (',' 'align' i32)?
   5959 int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS) {
   5960   Value *Size = nullptr;
   5961   LocTy SizeLoc, TyLoc;
   5962   unsigned Alignment = 0;
   5963   Type *Ty = nullptr;
   5964 
   5965   bool IsInAlloca = EatIfPresent(lltok::kw_inalloca);
   5966   bool IsSwiftError = EatIfPresent(lltok::kw_swifterror);
   5967 
   5968   if (ParseType(Ty, TyLoc)) return true;
   5969 
   5970   if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
   5971     return Error(TyLoc, "invalid type for alloca");
   5972 
   5973   bool AteExtraComma = false;
   5974   if (EatIfPresent(lltok::comma)) {
   5975     if (Lex.getKind() == lltok::kw_align) {
   5976       if (ParseOptionalAlignment(Alignment)) return true;
   5977     } else if (Lex.getKind() == lltok::MetadataVar) {
   5978       AteExtraComma = true;
   5979     } else {
   5980       if (ParseTypeAndValue(Size, SizeLoc, PFS) ||
   5981           ParseOptionalCommaAlign(Alignment, AteExtraComma))
   5982         return true;
   5983     }
   5984   }
   5985 
   5986   if (Size && !Size->getType()->isIntegerTy())
   5987     return Error(SizeLoc, "element count must have integer type");
   5988 
   5989   AllocaInst *AI = new AllocaInst(Ty, Size, Alignment);
   5990   AI->setUsedWithInAlloca(IsInAlloca);
   5991   AI->setSwiftError(IsSwiftError);
   5992   Inst = AI;
   5993   return AteExtraComma ? InstExtraComma : InstNormal;
   5994 }
   5995 
   5996 /// ParseLoad
   5997 ///   ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)?
   5998 ///   ::= 'load' 'atomic' 'volatile'? TypeAndValue
   5999 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
   6000 int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS) {
   6001   Value *Val; LocTy Loc;
   6002   unsigned Alignment = 0;
   6003   bool AteExtraComma = false;
   6004   bool isAtomic = false;
   6005   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
   6006   SynchronizationScope Scope = CrossThread;
   6007 
   6008   if (Lex.getKind() == lltok::kw_atomic) {
   6009     isAtomic = true;
   6010     Lex.Lex();
   6011   }
   6012 
   6013   bool isVolatile = false;
   6014   if (Lex.getKind() == lltok::kw_volatile) {
   6015     isVolatile = true;
   6016     Lex.Lex();
   6017   }
   6018 
   6019   Type *Ty;
   6020   LocTy ExplicitTypeLoc = Lex.getLoc();
   6021   if (ParseType(Ty) ||
   6022       ParseToken(lltok::comma, "expected comma after load's type") ||
   6023       ParseTypeAndValue(Val, Loc, PFS) ||
   6024       ParseScopeAndOrdering(isAtomic, Scope, Ordering) ||
   6025       ParseOptionalCommaAlign(Alignment, AteExtraComma))
   6026     return true;
   6027 
   6028   if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType())
   6029     return Error(Loc, "load operand must be a pointer to a first class type");
   6030   if (isAtomic && !Alignment)
   6031     return Error(Loc, "atomic load must have explicit non-zero alignment");
   6032   if (Ordering == AtomicOrdering::Release ||
   6033       Ordering == AtomicOrdering::AcquireRelease)
   6034     return Error(Loc, "atomic load cannot use Release ordering");
   6035 
   6036   if (Ty != cast<PointerType>(Val->getType())->getElementType())
   6037     return Error(ExplicitTypeLoc,
   6038                  "explicit pointee type doesn't match operand's pointee type");
   6039 
   6040   Inst = new LoadInst(Ty, Val, "", isVolatile, Alignment, Ordering, Scope);
   6041   return AteExtraComma ? InstExtraComma : InstNormal;
   6042 }
   6043 
   6044 /// ParseStore
   6045 
   6046 ///   ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)?
   6047 ///   ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue
   6048 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
   6049 int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS) {
   6050   Value *Val, *Ptr; LocTy Loc, PtrLoc;
   6051   unsigned Alignment = 0;
   6052   bool AteExtraComma = false;
   6053   bool isAtomic = false;
   6054   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
   6055   SynchronizationScope Scope = CrossThread;
   6056 
   6057   if (Lex.getKind() == lltok::kw_atomic) {
   6058     isAtomic = true;
   6059     Lex.Lex();
   6060   }
   6061 
   6062   bool isVolatile = false;
   6063   if (Lex.getKind() == lltok::kw_volatile) {
   6064     isVolatile = true;
   6065     Lex.Lex();
   6066   }
   6067 
   6068   if (ParseTypeAndValue(Val, Loc, PFS) ||
   6069       ParseToken(lltok::comma, "expected ',' after store operand") ||
   6070       ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
   6071       ParseScopeAndOrdering(isAtomic, Scope, Ordering) ||
   6072       ParseOptionalCommaAlign(Alignment, AteExtraComma))
   6073     return true;
   6074 
   6075   if (!Ptr->getType()->isPointerTy())
   6076     return Error(PtrLoc, "store operand must be a pointer");
   6077   if (!Val->getType()->isFirstClassType())
   6078     return Error(Loc, "store operand must be a first class value");
   6079   if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
   6080     return Error(Loc, "stored value and pointer type do not match");
   6081   if (isAtomic && !Alignment)
   6082     return Error(Loc, "atomic store must have explicit non-zero alignment");
   6083   if (Ordering == AtomicOrdering::Acquire ||
   6084       Ordering == AtomicOrdering::AcquireRelease)
   6085     return Error(Loc, "atomic store cannot use Acquire ordering");
   6086 
   6087   Inst = new StoreInst(Val, Ptr, isVolatile, Alignment, Ordering, Scope);
   6088   return AteExtraComma ? InstExtraComma : InstNormal;
   6089 }
   6090 
   6091 /// ParseCmpXchg
   6092 ///   ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ','
   6093 ///       TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering
   6094 int LLParser::ParseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) {
   6095   Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc;
   6096   bool AteExtraComma = false;
   6097   AtomicOrdering SuccessOrdering = AtomicOrdering::NotAtomic;
   6098   AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic;
   6099   SynchronizationScope Scope = CrossThread;
   6100   bool isVolatile = false;
   6101   bool isWeak = false;
   6102 
   6103   if (EatIfPresent(lltok::kw_weak))
   6104     isWeak = true;
   6105 
   6106   if (EatIfPresent(lltok::kw_volatile))
   6107     isVolatile = true;
   6108 
   6109   if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
   6110       ParseToken(lltok::comma, "expected ',' after cmpxchg address") ||
   6111       ParseTypeAndValue(Cmp, CmpLoc, PFS) ||
   6112       ParseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") ||
   6113       ParseTypeAndValue(New, NewLoc, PFS) ||
   6114       ParseScopeAndOrdering(true /*Always atomic*/, Scope, SuccessOrdering) ||
   6115       ParseOrdering(FailureOrdering))
   6116     return true;
   6117 
   6118   if (SuccessOrdering == AtomicOrdering::Unordered ||
   6119       FailureOrdering == AtomicOrdering::Unordered)
   6120     return TokError("cmpxchg cannot be unordered");
   6121   if (isStrongerThan(FailureOrdering, SuccessOrdering))
   6122     return TokError("cmpxchg failure argument shall be no stronger than the "
   6123                     "success argument");
   6124   if (FailureOrdering == AtomicOrdering::Release ||
   6125       FailureOrdering == AtomicOrdering::AcquireRelease)
   6126     return TokError(
   6127         "cmpxchg failure ordering cannot include release semantics");
   6128   if (!Ptr->getType()->isPointerTy())
   6129     return Error(PtrLoc, "cmpxchg operand must be a pointer");
   6130   if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType())
   6131     return Error(CmpLoc, "compare value and pointer type do not match");
   6132   if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType())
   6133     return Error(NewLoc, "new value and pointer type do not match");
   6134   if (!New->getType()->isFirstClassType())
   6135     return Error(NewLoc, "cmpxchg operand must be a first class value");
   6136   AtomicCmpXchgInst *CXI = new AtomicCmpXchgInst(
   6137       Ptr, Cmp, New, SuccessOrdering, FailureOrdering, Scope);
   6138   CXI->setVolatile(isVolatile);
   6139   CXI->setWeak(isWeak);
   6140   Inst = CXI;
   6141   return AteExtraComma ? InstExtraComma : InstNormal;
   6142 }
   6143 
   6144 /// ParseAtomicRMW
   6145 ///   ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue
   6146 ///       'singlethread'? AtomicOrdering
   6147 int LLParser::ParseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) {
   6148   Value *Ptr, *Val; LocTy PtrLoc, ValLoc;
   6149   bool AteExtraComma = false;
   6150   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
   6151   SynchronizationScope Scope = CrossThread;
   6152   bool isVolatile = false;
   6153   AtomicRMWInst::BinOp Operation;
   6154 
   6155   if (EatIfPresent(lltok::kw_volatile))
   6156     isVolatile = true;
   6157 
   6158   switch (Lex.getKind()) {
   6159   default: return TokError("expected binary operation in atomicrmw");
   6160   case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break;
   6161   case lltok::kw_add: Operation = AtomicRMWInst::Add; break;
   6162   case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break;
   6163   case lltok::kw_and: Operation = AtomicRMWInst::And; break;
   6164   case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break;
   6165   case lltok::kw_or: Operation = AtomicRMWInst::Or; break;
   6166   case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break;
   6167   case lltok::kw_max: Operation = AtomicRMWInst::Max; break;
   6168   case lltok::kw_min: Operation = AtomicRMWInst::Min; break;
   6169   case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break;
   6170   case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break;
   6171   }
   6172   Lex.Lex();  // Eat the operation.
   6173 
   6174   if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
   6175       ParseToken(lltok::comma, "expected ',' after atomicrmw address") ||
   6176       ParseTypeAndValue(Val, ValLoc, PFS) ||
   6177       ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering))
   6178     return true;
   6179 
   6180   if (Ordering == AtomicOrdering::Unordered)
   6181     return TokError("atomicrmw cannot be unordered");
   6182   if (!Ptr->getType()->isPointerTy())
   6183     return Error(PtrLoc, "atomicrmw operand must be a pointer");
   6184   if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
   6185     return Error(ValLoc, "atomicrmw value and pointer type do not match");
   6186   if (!Val->getType()->isIntegerTy())
   6187     return Error(ValLoc, "atomicrmw operand must be an integer");
   6188   unsigned Size = Val->getType()->getPrimitiveSizeInBits();
   6189   if (Size < 8 || (Size & (Size - 1)))
   6190     return Error(ValLoc, "atomicrmw operand must be power-of-two byte-sized"
   6191                          " integer");
   6192 
   6193   AtomicRMWInst *RMWI =
   6194     new AtomicRMWInst(Operation, Ptr, Val, Ordering, Scope);
   6195   RMWI->setVolatile(isVolatile);
   6196   Inst = RMWI;
   6197   return AteExtraComma ? InstExtraComma : InstNormal;
   6198 }
   6199 
   6200 /// ParseFence
   6201 ///   ::= 'fence' 'singlethread'? AtomicOrdering
   6202 int LLParser::ParseFence(Instruction *&Inst, PerFunctionState &PFS) {
   6203   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
   6204   SynchronizationScope Scope = CrossThread;
   6205   if (ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering))
   6206     return true;
   6207 
   6208   if (Ordering == AtomicOrdering::Unordered)
   6209     return TokError("fence cannot be unordered");
   6210   if (Ordering == AtomicOrdering::Monotonic)
   6211     return TokError("fence cannot be monotonic");
   6212 
   6213   Inst = new FenceInst(Context, Ordering, Scope);
   6214   return InstNormal;
   6215 }
   6216 
   6217 /// ParseGetElementPtr
   6218 ///   ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)*
   6219 int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
   6220   Value *Ptr = nullptr;
   6221   Value *Val = nullptr;
   6222   LocTy Loc, EltLoc;
   6223 
   6224   bool InBounds = EatIfPresent(lltok::kw_inbounds);
   6225 
   6226   Type *Ty = nullptr;
   6227   LocTy ExplicitTypeLoc = Lex.getLoc();
   6228   if (ParseType(Ty) ||
   6229       ParseToken(lltok::comma, "expected comma after getelementptr's type") ||
   6230       ParseTypeAndValue(Ptr, Loc, PFS))
   6231     return true;
   6232 
   6233   Type *BaseType = Ptr->getType();
   6234   PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType());
   6235   if (!BasePointerType)
   6236     return Error(Loc, "base of getelementptr must be a pointer");
   6237 
   6238   if (Ty != BasePointerType->getElementType())
   6239     return Error(ExplicitTypeLoc,
   6240                  "explicit pointee type doesn't match operand's pointee type");
   6241 
   6242   SmallVector<Value*, 16> Indices;
   6243   bool AteExtraComma = false;
   6244   // GEP returns a vector of pointers if at least one of parameters is a vector.
   6245   // All vector parameters should have the same vector width.
   6246   unsigned GEPWidth = BaseType->isVectorTy() ?
   6247     BaseType->getVectorNumElements() : 0;
   6248 
   6249   while (EatIfPresent(lltok::comma)) {
   6250     if (Lex.getKind() == lltok::MetadataVar) {
   6251       AteExtraComma = true;
   6252       break;
   6253     }
   6254     if (ParseTypeAndValue(Val, EltLoc, PFS)) return true;
   6255     if (!Val->getType()->getScalarType()->isIntegerTy())
   6256       return Error(EltLoc, "getelementptr index must be an integer");
   6257 
   6258     if (Val->getType()->isVectorTy()) {
   6259       unsigned ValNumEl = Val->getType()->getVectorNumElements();
   6260       if (GEPWidth && GEPWidth != ValNumEl)
   6261         return Error(EltLoc,
   6262           "getelementptr vector index has a wrong number of elements");
   6263       GEPWidth = ValNumEl;
   6264     }
   6265     Indices.push_back(Val);
   6266   }
   6267 
   6268   SmallPtrSet<Type*, 4> Visited;
   6269   if (!Indices.empty() && !Ty->isSized(&Visited))
   6270     return Error(Loc, "base element of getelementptr must be sized");
   6271 
   6272   if (!GetElementPtrInst::getIndexedType(Ty, Indices))
   6273     return Error(Loc, "invalid getelementptr indices");
   6274   Inst = GetElementPtrInst::Create(Ty, Ptr, Indices);
   6275   if (InBounds)
   6276     cast<GetElementPtrInst>(Inst)->setIsInBounds(true);
   6277   return AteExtraComma ? InstExtraComma : InstNormal;
   6278 }
   6279 
   6280 /// ParseExtractValue
   6281 ///   ::= 'extractvalue' TypeAndValue (',' uint32)+
   6282 int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
   6283   Value *Val; LocTy Loc;
   6284   SmallVector<unsigned, 4> Indices;
   6285   bool AteExtraComma;
   6286   if (ParseTypeAndValue(Val, Loc, PFS) ||
   6287       ParseIndexList(Indices, AteExtraComma))
   6288     return true;
   6289 
   6290   if (!Val->getType()->isAggregateType())
   6291     return Error(Loc, "extractvalue operand must be aggregate type");
   6292 
   6293   if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
   6294     return Error(Loc, "invalid indices for extractvalue");
   6295   Inst = ExtractValueInst::Create(Val, Indices);
   6296   return AteExtraComma ? InstExtraComma : InstNormal;
   6297 }
   6298 
   6299 /// ParseInsertValue
   6300 ///   ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
   6301 int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
   6302   Value *Val0, *Val1; LocTy Loc0, Loc1;
   6303   SmallVector<unsigned, 4> Indices;
   6304   bool AteExtraComma;
   6305   if (ParseTypeAndValue(Val0, Loc0, PFS) ||
   6306       ParseToken(lltok::comma, "expected comma after insertvalue operand") ||
   6307       ParseTypeAndValue(Val1, Loc1, PFS) ||
   6308       ParseIndexList(Indices, AteExtraComma))
   6309     return true;
   6310 
   6311   if (!Val0->getType()->isAggregateType())
   6312     return Error(Loc0, "insertvalue operand must be aggregate type");
   6313 
   6314   Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices);
   6315   if (!IndexedType)
   6316     return Error(Loc0, "invalid indices for insertvalue");
   6317   if (IndexedType != Val1->getType())
   6318     return Error(Loc1, "insertvalue operand and field disagree in type: '" +
   6319                            getTypeString(Val1->getType()) + "' instead of '" +
   6320                            getTypeString(IndexedType) + "'");
   6321   Inst = InsertValueInst::Create(Val0, Val1, Indices);
   6322   return AteExtraComma ? InstExtraComma : InstNormal;
   6323 }
   6324 
   6325 //===----------------------------------------------------------------------===//
   6326 // Embedded metadata.
   6327 //===----------------------------------------------------------------------===//
   6328 
   6329 /// ParseMDNodeVector
   6330 ///   ::= { Element (',' Element)* }
   6331 /// Element
   6332 ///   ::= 'null' | TypeAndValue
   6333 bool LLParser::ParseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) {
   6334   if (ParseToken(lltok::lbrace, "expected '{' here"))
   6335     return true;
   6336 
   6337   // Check for an empty list.
   6338   if (EatIfPresent(lltok::rbrace))
   6339     return false;
   6340 
   6341   do {
   6342     // Null is a special case since it is typeless.
   6343     if (EatIfPresent(lltok::kw_null)) {
   6344       Elts.push_back(nullptr);
   6345       continue;
   6346     }
   6347 
   6348     Metadata *MD;
   6349     if (ParseMetadata(MD, nullptr))
   6350       return true;
   6351     Elts.push_back(MD);
   6352   } while (EatIfPresent(lltok::comma));
   6353 
   6354   return ParseToken(lltok::rbrace, "expected end of metadata node");
   6355 }
   6356 
   6357 //===----------------------------------------------------------------------===//
   6358 // Use-list order directives.
   6359 //===----------------------------------------------------------------------===//
   6360 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes,
   6361                                 SMLoc Loc) {
   6362   if (V->use_empty())
   6363     return Error(Loc, "value has no uses");
   6364 
   6365   unsigned NumUses = 0;
   6366   SmallDenseMap<const Use *, unsigned, 16> Order;
   6367   for (const Use &U : V->uses()) {
   6368     if (++NumUses > Indexes.size())
   6369       break;
   6370     Order[&U] = Indexes[NumUses - 1];
   6371   }
   6372   if (NumUses < 2)
   6373     return Error(Loc, "value only has one use");
   6374   if (Order.size() != Indexes.size() || NumUses > Indexes.size())
   6375     return Error(Loc, "wrong number of indexes, expected " +
   6376                           Twine(std::distance(V->use_begin(), V->use_end())));
   6377 
   6378   V->sortUseList([&](const Use &L, const Use &R) {
   6379     return Order.lookup(&L) < Order.lookup(&R);
   6380   });
   6381   return false;
   6382 }
   6383 
   6384 /// ParseUseListOrderIndexes
   6385 ///   ::= '{' uint32 (',' uint32)+ '}'
   6386 bool LLParser::ParseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) {
   6387   SMLoc Loc = Lex.getLoc();
   6388   if (ParseToken(lltok::lbrace, "expected '{' here"))
   6389     return true;
   6390   if (Lex.getKind() == lltok::rbrace)
   6391     return Lex.Error("expected non-empty list of uselistorder indexes");
   6392 
   6393   // Use Offset, Max, and IsOrdered to check consistency of indexes.  The
   6394   // indexes should be distinct numbers in the range [0, size-1], and should
   6395   // not be in order.
   6396   unsigned Offset = 0;
   6397   unsigned Max = 0;
   6398   bool IsOrdered = true;
   6399   assert(Indexes.empty() && "Expected empty order vector");
   6400   do {
   6401     unsigned Index;
   6402     if (ParseUInt32(Index))
   6403       return true;
   6404 
   6405     // Update consistency checks.
   6406     Offset += Index - Indexes.size();
   6407     Max = std::max(Max, Index);
   6408     IsOrdered &= Index == Indexes.size();
   6409 
   6410     Indexes.push_back(Index);
   6411   } while (EatIfPresent(lltok::comma));
   6412 
   6413   if (ParseToken(lltok::rbrace, "expected '}' here"))
   6414     return true;
   6415 
   6416   if (Indexes.size() < 2)
   6417     return Error(Loc, "expected >= 2 uselistorder indexes");
   6418   if (Offset != 0 || Max >= Indexes.size())
   6419     return Error(Loc, "expected distinct uselistorder indexes in range [0, size)");
   6420   if (IsOrdered)
   6421     return Error(Loc, "expected uselistorder indexes to change the order");
   6422 
   6423   return false;
   6424 }
   6425 
   6426 /// ParseUseListOrder
   6427 ///   ::= 'uselistorder' Type Value ',' UseListOrderIndexes
   6428 bool LLParser::ParseUseListOrder(PerFunctionState *PFS) {
   6429   SMLoc Loc = Lex.getLoc();
   6430   if (ParseToken(lltok::kw_uselistorder, "expected uselistorder directive"))
   6431     return true;
   6432 
   6433   Value *V;
   6434   SmallVector<unsigned, 16> Indexes;
   6435   if (ParseTypeAndValue(V, PFS) ||
   6436       ParseToken(lltok::comma, "expected comma in uselistorder directive") ||
   6437       ParseUseListOrderIndexes(Indexes))
   6438     return true;
   6439 
   6440   return sortUseListOrder(V, Indexes, Loc);
   6441 }
   6442 
   6443 /// ParseUseListOrderBB
   6444 ///   ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes
   6445 bool LLParser::ParseUseListOrderBB() {
   6446   assert(Lex.getKind() == lltok::kw_uselistorder_bb);
   6447   SMLoc Loc = Lex.getLoc();
   6448   Lex.Lex();
   6449 
   6450   ValID Fn, Label;
   6451   SmallVector<unsigned, 16> Indexes;
   6452   if (ParseValID(Fn) ||
   6453       ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
   6454       ParseValID(Label) ||
   6455       ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
   6456       ParseUseListOrderIndexes(Indexes))
   6457     return true;
   6458 
   6459   // Check the function.
   6460   GlobalValue *GV;
   6461   if (Fn.Kind == ValID::t_GlobalName)
   6462     GV = M->getNamedValue(Fn.StrVal);
   6463   else if (Fn.Kind == ValID::t_GlobalID)
   6464     GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr;
   6465   else
   6466     return Error(Fn.Loc, "expected function name in uselistorder_bb");
   6467   if (!GV)
   6468     return Error(Fn.Loc, "invalid function forward reference in uselistorder_bb");
   6469   auto *F = dyn_cast<Function>(GV);
   6470   if (!F)
   6471     return Error(Fn.Loc, "expected function name in uselistorder_bb");
   6472   if (F->isDeclaration())
   6473     return Error(Fn.Loc, "invalid declaration in uselistorder_bb");
   6474 
   6475   // Check the basic block.
   6476   if (Label.Kind == ValID::t_LocalID)
   6477     return Error(Label.Loc, "invalid numeric label in uselistorder_bb");
   6478   if (Label.Kind != ValID::t_LocalName)
   6479     return Error(Label.Loc, "expected basic block name in uselistorder_bb");
   6480   Value *V = F->getValueSymbolTable().lookup(Label.StrVal);
   6481   if (!V)
   6482     return Error(Label.Loc, "invalid basic block in uselistorder_bb");
   6483   if (!isa<BasicBlock>(V))
   6484     return Error(Label.Loc, "expected basic block in uselistorder_bb");
   6485 
   6486   return sortUseListOrder(V, Indexes, Loc);
   6487 }
   6488