Home | History | Annotate | Download | only in Disassembler
      1 //===-- X86DisassemblerDecoder.cpp - Disassembler decoder -----------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file is part of the X86 Disassembler.
     11 // It contains the implementation of the instruction decoder.
     12 // Documentation for the disassembler can be found in X86Disassembler.h.
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 #include <cstdarg>   /* for va_*()       */
     17 #include <cstdio>    /* for vsnprintf()  */
     18 #include <cstdlib>   /* for exit()       */
     19 #include <cstring>   /* for memset()     */
     20 
     21 #include "X86DisassemblerDecoder.h"
     22 
     23 using namespace llvm::X86Disassembler;
     24 
     25 /// Specifies whether a ModR/M byte is needed and (if so) which
     26 /// instruction each possible value of the ModR/M byte corresponds to.  Once
     27 /// this information is known, we have narrowed down to a single instruction.
     28 struct ModRMDecision {
     29   uint8_t modrm_type;
     30   uint16_t instructionIDs;
     31 };
     32 
     33 /// Specifies which set of ModR/M->instruction tables to look at
     34 /// given a particular opcode.
     35 struct OpcodeDecision {
     36   ModRMDecision modRMDecisions[256];
     37 };
     38 
     39 /// Specifies which opcode->instruction tables to look at given
     40 /// a particular context (set of attributes).  Since there are many possible
     41 /// contexts, the decoder first uses CONTEXTS_SYM to determine which context
     42 /// applies given a specific set of attributes.  Hence there are only IC_max
     43 /// entries in this table, rather than 2^(ATTR_max).
     44 struct ContextDecision {
     45   OpcodeDecision opcodeDecisions[IC_max];
     46 };
     47 
     48 #include "X86GenDisassemblerTables.inc"
     49 
     50 #ifndef NDEBUG
     51 #define debug(s) do { Debug(__FILE__, __LINE__, s); } while (0)
     52 #else
     53 #define debug(s) do { } while (0)
     54 #endif
     55 
     56 /*
     57  * contextForAttrs - Client for the instruction context table.  Takes a set of
     58  *   attributes and returns the appropriate decode context.
     59  *
     60  * @param attrMask  - Attributes, from the enumeration attributeBits.
     61  * @return          - The InstructionContext to use when looking up an
     62  *                    an instruction with these attributes.
     63  */
     64 static InstructionContext contextForAttrs(uint16_t attrMask) {
     65   return static_cast<InstructionContext>(CONTEXTS_SYM[attrMask]);
     66 }
     67 
     68 /*
     69  * modRMRequired - Reads the appropriate instruction table to determine whether
     70  *   the ModR/M byte is required to decode a particular instruction.
     71  *
     72  * @param type        - The opcode type (i.e., how many bytes it has).
     73  * @param insnContext - The context for the instruction, as returned by
     74  *                      contextForAttrs.
     75  * @param opcode      - The last byte of the instruction's opcode, not counting
     76  *                      ModR/M extensions and escapes.
     77  * @return            - true if the ModR/M byte is required, false otherwise.
     78  */
     79 static int modRMRequired(OpcodeType type,
     80                          InstructionContext insnContext,
     81                          uint16_t opcode) {
     82   const struct ContextDecision* decision = nullptr;
     83 
     84   switch (type) {
     85   case ONEBYTE:
     86     decision = &ONEBYTE_SYM;
     87     break;
     88   case TWOBYTE:
     89     decision = &TWOBYTE_SYM;
     90     break;
     91   case THREEBYTE_38:
     92     decision = &THREEBYTE38_SYM;
     93     break;
     94   case THREEBYTE_3A:
     95     decision = &THREEBYTE3A_SYM;
     96     break;
     97   case XOP8_MAP:
     98     decision = &XOP8_MAP_SYM;
     99     break;
    100   case XOP9_MAP:
    101     decision = &XOP9_MAP_SYM;
    102     break;
    103   case XOPA_MAP:
    104     decision = &XOPA_MAP_SYM;
    105     break;
    106   }
    107 
    108   return decision->opcodeDecisions[insnContext].modRMDecisions[opcode].
    109     modrm_type != MODRM_ONEENTRY;
    110 }
    111 
    112 /*
    113  * decode - Reads the appropriate instruction table to obtain the unique ID of
    114  *   an instruction.
    115  *
    116  * @param type        - See modRMRequired().
    117  * @param insnContext - See modRMRequired().
    118  * @param opcode      - See modRMRequired().
    119  * @param modRM       - The ModR/M byte if required, or any value if not.
    120  * @return            - The UID of the instruction, or 0 on failure.
    121  */
    122 static InstrUID decode(OpcodeType type,
    123                        InstructionContext insnContext,
    124                        uint8_t opcode,
    125                        uint8_t modRM) {
    126   const struct ModRMDecision* dec = nullptr;
    127 
    128   switch (type) {
    129   case ONEBYTE:
    130     dec = &ONEBYTE_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
    131     break;
    132   case TWOBYTE:
    133     dec = &TWOBYTE_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
    134     break;
    135   case THREEBYTE_38:
    136     dec = &THREEBYTE38_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
    137     break;
    138   case THREEBYTE_3A:
    139     dec = &THREEBYTE3A_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
    140     break;
    141   case XOP8_MAP:
    142     dec = &XOP8_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
    143     break;
    144   case XOP9_MAP:
    145     dec = &XOP9_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
    146     break;
    147   case XOPA_MAP:
    148     dec = &XOPA_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
    149     break;
    150   }
    151 
    152   switch (dec->modrm_type) {
    153   default:
    154     debug("Corrupt table!  Unknown modrm_type");
    155     return 0;
    156   case MODRM_ONEENTRY:
    157     return modRMTable[dec->instructionIDs];
    158   case MODRM_SPLITRM:
    159     if (modFromModRM(modRM) == 0x3)
    160       return modRMTable[dec->instructionIDs+1];
    161     return modRMTable[dec->instructionIDs];
    162   case MODRM_SPLITREG:
    163     if (modFromModRM(modRM) == 0x3)
    164       return modRMTable[dec->instructionIDs+((modRM & 0x38) >> 3)+8];
    165     return modRMTable[dec->instructionIDs+((modRM & 0x38) >> 3)];
    166   case MODRM_SPLITMISC:
    167     if (modFromModRM(modRM) == 0x3)
    168       return modRMTable[dec->instructionIDs+(modRM & 0x3f)+8];
    169     return modRMTable[dec->instructionIDs+((modRM & 0x38) >> 3)];
    170   case MODRM_FULL:
    171     return modRMTable[dec->instructionIDs+modRM];
    172   }
    173 }
    174 
    175 /*
    176  * specifierForUID - Given a UID, returns the name and operand specification for
    177  *   that instruction.
    178  *
    179  * @param uid - The unique ID for the instruction.  This should be returned by
    180  *              decode(); specifierForUID will not check bounds.
    181  * @return    - A pointer to the specification for that instruction.
    182  */
    183 static const struct InstructionSpecifier *specifierForUID(InstrUID uid) {
    184   return &INSTRUCTIONS_SYM[uid];
    185 }
    186 
    187 /*
    188  * consumeByte - Uses the reader function provided by the user to consume one
    189  *   byte from the instruction's memory and advance the cursor.
    190  *
    191  * @param insn  - The instruction with the reader function to use.  The cursor
    192  *                for this instruction is advanced.
    193  * @param byte  - A pointer to a pre-allocated memory buffer to be populated
    194  *                with the data read.
    195  * @return      - 0 if the read was successful; nonzero otherwise.
    196  */
    197 static int consumeByte(struct InternalInstruction* insn, uint8_t* byte) {
    198   int ret = insn->reader(insn->readerArg, byte, insn->readerCursor);
    199 
    200   if (!ret)
    201     ++(insn->readerCursor);
    202 
    203   return ret;
    204 }
    205 
    206 /*
    207  * lookAtByte - Like consumeByte, but does not advance the cursor.
    208  *
    209  * @param insn  - See consumeByte().
    210  * @param byte  - See consumeByte().
    211  * @return      - See consumeByte().
    212  */
    213 static int lookAtByte(struct InternalInstruction* insn, uint8_t* byte) {
    214   return insn->reader(insn->readerArg, byte, insn->readerCursor);
    215 }
    216 
    217 static void unconsumeByte(struct InternalInstruction* insn) {
    218   insn->readerCursor--;
    219 }
    220 
    221 #define CONSUME_FUNC(name, type)                                  \
    222   static int name(struct InternalInstruction* insn, type* ptr) {  \
    223     type combined = 0;                                            \
    224     unsigned offset;                                              \
    225     for (offset = 0; offset < sizeof(type); ++offset) {           \
    226       uint8_t byte;                                               \
    227       int ret = insn->reader(insn->readerArg,                     \
    228                              &byte,                               \
    229                              insn->readerCursor + offset);        \
    230       if (ret)                                                    \
    231         return ret;                                               \
    232       combined = combined | ((uint64_t)byte << (offset * 8));     \
    233     }                                                             \
    234     *ptr = combined;                                              \
    235     insn->readerCursor += sizeof(type);                           \
    236     return 0;                                                     \
    237   }
    238 
    239 /*
    240  * consume* - Use the reader function provided by the user to consume data
    241  *   values of various sizes from the instruction's memory and advance the
    242  *   cursor appropriately.  These readers perform endian conversion.
    243  *
    244  * @param insn    - See consumeByte().
    245  * @param ptr     - A pointer to a pre-allocated memory of appropriate size to
    246  *                  be populated with the data read.
    247  * @return        - See consumeByte().
    248  */
    249 CONSUME_FUNC(consumeInt8, int8_t)
    250 CONSUME_FUNC(consumeInt16, int16_t)
    251 CONSUME_FUNC(consumeInt32, int32_t)
    252 CONSUME_FUNC(consumeUInt16, uint16_t)
    253 CONSUME_FUNC(consumeUInt32, uint32_t)
    254 CONSUME_FUNC(consumeUInt64, uint64_t)
    255 
    256 /*
    257  * dbgprintf - Uses the logging function provided by the user to log a single
    258  *   message, typically without a carriage-return.
    259  *
    260  * @param insn    - The instruction containing the logging function.
    261  * @param format  - See printf().
    262  * @param ...     - See printf().
    263  */
    264 static void dbgprintf(struct InternalInstruction* insn,
    265                       const char* format,
    266                       ...) {
    267   char buffer[256];
    268   va_list ap;
    269 
    270   if (!insn->dlog)
    271     return;
    272 
    273   va_start(ap, format);
    274   (void)vsnprintf(buffer, sizeof(buffer), format, ap);
    275   va_end(ap);
    276 
    277   insn->dlog(insn->dlogArg, buffer);
    278 }
    279 
    280 /*
    281  * setPrefixPresent - Marks that a particular prefix is present at a particular
    282  *   location.
    283  *
    284  * @param insn      - The instruction to be marked as having the prefix.
    285  * @param prefix    - The prefix that is present.
    286  * @param location  - The location where the prefix is located (in the address
    287  *                    space of the instruction's reader).
    288  */
    289 static void setPrefixPresent(struct InternalInstruction* insn,
    290                                     uint8_t prefix,
    291                                     uint64_t location)
    292 {
    293   insn->prefixPresent[prefix] = 1;
    294   insn->prefixLocations[prefix] = location;
    295 }
    296 
    297 /*
    298  * isPrefixAtLocation - Queries an instruction to determine whether a prefix is
    299  *   present at a given location.
    300  *
    301  * @param insn      - The instruction to be queried.
    302  * @param prefix    - The prefix.
    303  * @param location  - The location to query.
    304  * @return          - Whether the prefix is at that location.
    305  */
    306 static bool isPrefixAtLocation(struct InternalInstruction* insn,
    307                                uint8_t prefix,
    308                                uint64_t location)
    309 {
    310   return insn->prefixPresent[prefix] == 1 &&
    311      insn->prefixLocations[prefix] == location;
    312 }
    313 
    314 /*
    315  * readPrefixes - Consumes all of an instruction's prefix bytes, and marks the
    316  *   instruction as having them.  Also sets the instruction's default operand,
    317  *   address, and other relevant data sizes to report operands correctly.
    318  *
    319  * @param insn  - The instruction whose prefixes are to be read.
    320  * @return      - 0 if the instruction could be read until the end of the prefix
    321  *                bytes, and no prefixes conflicted; nonzero otherwise.
    322  */
    323 static int readPrefixes(struct InternalInstruction* insn) {
    324   bool isPrefix = true;
    325   bool prefixGroups[4] = { false };
    326   uint64_t prefixLocation;
    327   uint8_t byte = 0;
    328   uint8_t nextByte;
    329 
    330   bool hasAdSize = false;
    331   bool hasOpSize = false;
    332 
    333   dbgprintf(insn, "readPrefixes()");
    334 
    335   while (isPrefix) {
    336     prefixLocation = insn->readerCursor;
    337 
    338     /* If we fail reading prefixes, just stop here and let the opcode reader deal with it */
    339     if (consumeByte(insn, &byte))
    340       break;
    341 
    342     /*
    343      * If the byte is a LOCK/REP/REPNE prefix and not a part of the opcode, then
    344      * break and let it be disassembled as a normal "instruction".
    345      */
    346     if (insn->readerCursor - 1 == insn->startLocation && byte == 0xf0)
    347       break;
    348 
    349     if (insn->readerCursor - 1 == insn->startLocation
    350         && (byte == 0xf2 || byte == 0xf3)
    351         && !lookAtByte(insn, &nextByte))
    352     {
    353       /*
    354        * If the byte is 0xf2 or 0xf3, and any of the following conditions are
    355        * met:
    356        * - it is followed by a LOCK (0xf0) prefix
    357        * - it is followed by an xchg instruction
    358        * then it should be disassembled as a xacquire/xrelease not repne/rep.
    359        */
    360       if ((byte == 0xf2 || byte == 0xf3) &&
    361           ((nextByte == 0xf0) ||
    362           ((nextByte & 0xfe) == 0x86 || (nextByte & 0xf8) == 0x90)))
    363         insn->xAcquireRelease = true;
    364       /*
    365        * Also if the byte is 0xf3, and the following condition is met:
    366        * - it is followed by a "mov mem, reg" (opcode 0x88/0x89) or
    367        *                       "mov mem, imm" (opcode 0xc6/0xc7) instructions.
    368        * then it should be disassembled as an xrelease not rep.
    369        */
    370       if (byte == 0xf3 &&
    371           (nextByte == 0x88 || nextByte == 0x89 ||
    372            nextByte == 0xc6 || nextByte == 0xc7))
    373         insn->xAcquireRelease = true;
    374       if (insn->mode == MODE_64BIT && (nextByte & 0xf0) == 0x40) {
    375         if (consumeByte(insn, &nextByte))
    376           return -1;
    377         if (lookAtByte(insn, &nextByte))
    378           return -1;
    379         unconsumeByte(insn);
    380       }
    381       if (nextByte != 0x0f && nextByte != 0x90)
    382         break;
    383     }
    384 
    385     switch (byte) {
    386     case 0xf0:  /* LOCK */
    387     case 0xf2:  /* REPNE/REPNZ */
    388     case 0xf3:  /* REP or REPE/REPZ */
    389       if (prefixGroups[0])
    390         dbgprintf(insn, "Redundant Group 1 prefix");
    391       prefixGroups[0] = true;
    392       setPrefixPresent(insn, byte, prefixLocation);
    393       break;
    394     case 0x2e:  /* CS segment override -OR- Branch not taken */
    395     case 0x36:  /* SS segment override -OR- Branch taken */
    396     case 0x3e:  /* DS segment override */
    397     case 0x26:  /* ES segment override */
    398     case 0x64:  /* FS segment override */
    399     case 0x65:  /* GS segment override */
    400       switch (byte) {
    401       case 0x2e:
    402         insn->segmentOverride = SEG_OVERRIDE_CS;
    403         break;
    404       case 0x36:
    405         insn->segmentOverride = SEG_OVERRIDE_SS;
    406         break;
    407       case 0x3e:
    408         insn->segmentOverride = SEG_OVERRIDE_DS;
    409         break;
    410       case 0x26:
    411         insn->segmentOverride = SEG_OVERRIDE_ES;
    412         break;
    413       case 0x64:
    414         insn->segmentOverride = SEG_OVERRIDE_FS;
    415         break;
    416       case 0x65:
    417         insn->segmentOverride = SEG_OVERRIDE_GS;
    418         break;
    419       default:
    420         debug("Unhandled override");
    421         return -1;
    422       }
    423       if (prefixGroups[1])
    424         dbgprintf(insn, "Redundant Group 2 prefix");
    425       prefixGroups[1] = true;
    426       setPrefixPresent(insn, byte, prefixLocation);
    427       break;
    428     case 0x66:  /* Operand-size override */
    429       if (prefixGroups[2])
    430         dbgprintf(insn, "Redundant Group 3 prefix");
    431       prefixGroups[2] = true;
    432       hasOpSize = true;
    433       setPrefixPresent(insn, byte, prefixLocation);
    434       break;
    435     case 0x67:  /* Address-size override */
    436       if (prefixGroups[3])
    437         dbgprintf(insn, "Redundant Group 4 prefix");
    438       prefixGroups[3] = true;
    439       hasAdSize = true;
    440       setPrefixPresent(insn, byte, prefixLocation);
    441       break;
    442     default:    /* Not a prefix byte */
    443       isPrefix = false;
    444       break;
    445     }
    446 
    447     if (isPrefix)
    448       dbgprintf(insn, "Found prefix 0x%hhx", byte);
    449   }
    450 
    451   insn->vectorExtensionType = TYPE_NO_VEX_XOP;
    452 
    453   if (byte == 0x62) {
    454     uint8_t byte1, byte2;
    455 
    456     if (consumeByte(insn, &byte1)) {
    457       dbgprintf(insn, "Couldn't read second byte of EVEX prefix");
    458       return -1;
    459     }
    460 
    461     if (lookAtByte(insn, &byte2)) {
    462       dbgprintf(insn, "Couldn't read third byte of EVEX prefix");
    463       return -1;
    464     }
    465 
    466     if ((insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0) &&
    467        ((~byte1 & 0xc) == 0xc) && ((byte2 & 0x4) == 0x4)) {
    468       insn->vectorExtensionType = TYPE_EVEX;
    469     } else {
    470       unconsumeByte(insn); /* unconsume byte1 */
    471       unconsumeByte(insn); /* unconsume byte  */
    472       insn->necessaryPrefixLocation = insn->readerCursor - 2;
    473     }
    474 
    475     if (insn->vectorExtensionType == TYPE_EVEX) {
    476       insn->vectorExtensionPrefix[0] = byte;
    477       insn->vectorExtensionPrefix[1] = byte1;
    478       if (consumeByte(insn, &insn->vectorExtensionPrefix[2])) {
    479         dbgprintf(insn, "Couldn't read third byte of EVEX prefix");
    480         return -1;
    481       }
    482       if (consumeByte(insn, &insn->vectorExtensionPrefix[3])) {
    483         dbgprintf(insn, "Couldn't read fourth byte of EVEX prefix");
    484         return -1;
    485       }
    486 
    487       /* We simulate the REX prefix for simplicity's sake */
    488       if (insn->mode == MODE_64BIT) {
    489         insn->rexPrefix = 0x40
    490                         | (wFromEVEX3of4(insn->vectorExtensionPrefix[2]) << 3)
    491                         | (rFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 2)
    492                         | (xFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 1)
    493                         | (bFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 0);
    494       }
    495 
    496       dbgprintf(insn, "Found EVEX prefix 0x%hhx 0x%hhx 0x%hhx 0x%hhx",
    497               insn->vectorExtensionPrefix[0], insn->vectorExtensionPrefix[1],
    498               insn->vectorExtensionPrefix[2], insn->vectorExtensionPrefix[3]);
    499     }
    500   } else if (byte == 0xc4) {
    501     uint8_t byte1;
    502 
    503     if (lookAtByte(insn, &byte1)) {
    504       dbgprintf(insn, "Couldn't read second byte of VEX");
    505       return -1;
    506     }
    507 
    508     if (insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0) {
    509       insn->vectorExtensionType = TYPE_VEX_3B;
    510       insn->necessaryPrefixLocation = insn->readerCursor - 1;
    511     } else {
    512       unconsumeByte(insn);
    513       insn->necessaryPrefixLocation = insn->readerCursor - 1;
    514     }
    515 
    516     if (insn->vectorExtensionType == TYPE_VEX_3B) {
    517       insn->vectorExtensionPrefix[0] = byte;
    518       consumeByte(insn, &insn->vectorExtensionPrefix[1]);
    519       consumeByte(insn, &insn->vectorExtensionPrefix[2]);
    520 
    521       /* We simulate the REX prefix for simplicity's sake */
    522 
    523       if (insn->mode == MODE_64BIT) {
    524         insn->rexPrefix = 0x40
    525                         | (wFromVEX3of3(insn->vectorExtensionPrefix[2]) << 3)
    526                         | (rFromVEX2of3(insn->vectorExtensionPrefix[1]) << 2)
    527                         | (xFromVEX2of3(insn->vectorExtensionPrefix[1]) << 1)
    528                         | (bFromVEX2of3(insn->vectorExtensionPrefix[1]) << 0);
    529       }
    530 
    531       dbgprintf(insn, "Found VEX prefix 0x%hhx 0x%hhx 0x%hhx",
    532                 insn->vectorExtensionPrefix[0], insn->vectorExtensionPrefix[1],
    533                 insn->vectorExtensionPrefix[2]);
    534     }
    535   } else if (byte == 0xc5) {
    536     uint8_t byte1;
    537 
    538     if (lookAtByte(insn, &byte1)) {
    539       dbgprintf(insn, "Couldn't read second byte of VEX");
    540       return -1;
    541     }
    542 
    543     if (insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0) {
    544       insn->vectorExtensionType = TYPE_VEX_2B;
    545     } else {
    546       unconsumeByte(insn);
    547     }
    548 
    549     if (insn->vectorExtensionType == TYPE_VEX_2B) {
    550       insn->vectorExtensionPrefix[0] = byte;
    551       consumeByte(insn, &insn->vectorExtensionPrefix[1]);
    552 
    553       if (insn->mode == MODE_64BIT) {
    554         insn->rexPrefix = 0x40
    555                         | (rFromVEX2of2(insn->vectorExtensionPrefix[1]) << 2);
    556       }
    557 
    558       switch (ppFromVEX2of2(insn->vectorExtensionPrefix[1])) {
    559       default:
    560         break;
    561       case VEX_PREFIX_66:
    562         hasOpSize = true;
    563         break;
    564       }
    565 
    566       dbgprintf(insn, "Found VEX prefix 0x%hhx 0x%hhx",
    567                 insn->vectorExtensionPrefix[0],
    568                 insn->vectorExtensionPrefix[1]);
    569     }
    570   } else if (byte == 0x8f) {
    571     uint8_t byte1;
    572 
    573     if (lookAtByte(insn, &byte1)) {
    574       dbgprintf(insn, "Couldn't read second byte of XOP");
    575       return -1;
    576     }
    577 
    578     if ((byte1 & 0x38) != 0x0) { /* 0 in these 3 bits is a POP instruction. */
    579       insn->vectorExtensionType = TYPE_XOP;
    580       insn->necessaryPrefixLocation = insn->readerCursor - 1;
    581     } else {
    582       unconsumeByte(insn);
    583       insn->necessaryPrefixLocation = insn->readerCursor - 1;
    584     }
    585 
    586     if (insn->vectorExtensionType == TYPE_XOP) {
    587       insn->vectorExtensionPrefix[0] = byte;
    588       consumeByte(insn, &insn->vectorExtensionPrefix[1]);
    589       consumeByte(insn, &insn->vectorExtensionPrefix[2]);
    590 
    591       /* We simulate the REX prefix for simplicity's sake */
    592 
    593       if (insn->mode == MODE_64BIT) {
    594         insn->rexPrefix = 0x40
    595                         | (wFromXOP3of3(insn->vectorExtensionPrefix[2]) << 3)
    596                         | (rFromXOP2of3(insn->vectorExtensionPrefix[1]) << 2)
    597                         | (xFromXOP2of3(insn->vectorExtensionPrefix[1]) << 1)
    598                         | (bFromXOP2of3(insn->vectorExtensionPrefix[1]) << 0);
    599       }
    600 
    601       switch (ppFromXOP3of3(insn->vectorExtensionPrefix[2])) {
    602       default:
    603         break;
    604       case VEX_PREFIX_66:
    605         hasOpSize = true;
    606         break;
    607       }
    608 
    609       dbgprintf(insn, "Found XOP prefix 0x%hhx 0x%hhx 0x%hhx",
    610                 insn->vectorExtensionPrefix[0], insn->vectorExtensionPrefix[1],
    611                 insn->vectorExtensionPrefix[2]);
    612     }
    613   } else {
    614     if (insn->mode == MODE_64BIT) {
    615       if ((byte & 0xf0) == 0x40) {
    616         uint8_t opcodeByte;
    617 
    618         if (lookAtByte(insn, &opcodeByte) || ((opcodeByte & 0xf0) == 0x40)) {
    619           dbgprintf(insn, "Redundant REX prefix");
    620           return -1;
    621         }
    622 
    623         insn->rexPrefix = byte;
    624         insn->necessaryPrefixLocation = insn->readerCursor - 2;
    625 
    626         dbgprintf(insn, "Found REX prefix 0x%hhx", byte);
    627       } else {
    628         unconsumeByte(insn);
    629         insn->necessaryPrefixLocation = insn->readerCursor - 1;
    630       }
    631     } else {
    632       unconsumeByte(insn);
    633       insn->necessaryPrefixLocation = insn->readerCursor - 1;
    634     }
    635   }
    636 
    637   if (insn->mode == MODE_16BIT) {
    638     insn->registerSize       = (hasOpSize ? 4 : 2);
    639     insn->addressSize        = (hasAdSize ? 4 : 2);
    640     insn->displacementSize   = (hasAdSize ? 4 : 2);
    641     insn->immediateSize      = (hasOpSize ? 4 : 2);
    642   } else if (insn->mode == MODE_32BIT) {
    643     insn->registerSize       = (hasOpSize ? 2 : 4);
    644     insn->addressSize        = (hasAdSize ? 2 : 4);
    645     insn->displacementSize   = (hasAdSize ? 2 : 4);
    646     insn->immediateSize      = (hasOpSize ? 2 : 4);
    647   } else if (insn->mode == MODE_64BIT) {
    648     if (insn->rexPrefix && wFromREX(insn->rexPrefix)) {
    649       insn->registerSize       = 8;
    650       insn->addressSize        = (hasAdSize ? 4 : 8);
    651       insn->displacementSize   = 4;
    652       insn->immediateSize      = 4;
    653     } else if (insn->rexPrefix) {
    654       insn->registerSize       = (hasOpSize ? 2 : 4);
    655       insn->addressSize        = (hasAdSize ? 4 : 8);
    656       insn->displacementSize   = (hasOpSize ? 2 : 4);
    657       insn->immediateSize      = (hasOpSize ? 2 : 4);
    658     } else {
    659       insn->registerSize       = (hasOpSize ? 2 : 4);
    660       insn->addressSize        = (hasAdSize ? 4 : 8);
    661       insn->displacementSize   = (hasOpSize ? 2 : 4);
    662       insn->immediateSize      = (hasOpSize ? 2 : 4);
    663     }
    664   }
    665 
    666   return 0;
    667 }
    668 
    669 /*
    670  * readOpcode - Reads the opcode (excepting the ModR/M byte in the case of
    671  *   extended or escape opcodes).
    672  *
    673  * @param insn  - The instruction whose opcode is to be read.
    674  * @return      - 0 if the opcode could be read successfully; nonzero otherwise.
    675  */
    676 static int readOpcode(struct InternalInstruction* insn) {
    677   /* Determine the length of the primary opcode */
    678 
    679   uint8_t current;
    680 
    681   dbgprintf(insn, "readOpcode()");
    682 
    683   insn->opcodeType = ONEBYTE;
    684 
    685   if (insn->vectorExtensionType == TYPE_EVEX) {
    686     switch (mmFromEVEX2of4(insn->vectorExtensionPrefix[1])) {
    687     default:
    688       dbgprintf(insn, "Unhandled mm field for instruction (0x%hhx)",
    689                 mmFromEVEX2of4(insn->vectorExtensionPrefix[1]));
    690       return -1;
    691     case VEX_LOB_0F:
    692       insn->opcodeType = TWOBYTE;
    693       return consumeByte(insn, &insn->opcode);
    694     case VEX_LOB_0F38:
    695       insn->opcodeType = THREEBYTE_38;
    696       return consumeByte(insn, &insn->opcode);
    697     case VEX_LOB_0F3A:
    698       insn->opcodeType = THREEBYTE_3A;
    699       return consumeByte(insn, &insn->opcode);
    700     }
    701   } else if (insn->vectorExtensionType == TYPE_VEX_3B) {
    702     switch (mmmmmFromVEX2of3(insn->vectorExtensionPrefix[1])) {
    703     default:
    704       dbgprintf(insn, "Unhandled m-mmmm field for instruction (0x%hhx)",
    705                 mmmmmFromVEX2of3(insn->vectorExtensionPrefix[1]));
    706       return -1;
    707     case VEX_LOB_0F:
    708       insn->opcodeType = TWOBYTE;
    709       return consumeByte(insn, &insn->opcode);
    710     case VEX_LOB_0F38:
    711       insn->opcodeType = THREEBYTE_38;
    712       return consumeByte(insn, &insn->opcode);
    713     case VEX_LOB_0F3A:
    714       insn->opcodeType = THREEBYTE_3A;
    715       return consumeByte(insn, &insn->opcode);
    716     }
    717   } else if (insn->vectorExtensionType == TYPE_VEX_2B) {
    718     insn->opcodeType = TWOBYTE;
    719     return consumeByte(insn, &insn->opcode);
    720   } else if (insn->vectorExtensionType == TYPE_XOP) {
    721     switch (mmmmmFromXOP2of3(insn->vectorExtensionPrefix[1])) {
    722     default:
    723       dbgprintf(insn, "Unhandled m-mmmm field for instruction (0x%hhx)",
    724                 mmmmmFromVEX2of3(insn->vectorExtensionPrefix[1]));
    725       return -1;
    726     case XOP_MAP_SELECT_8:
    727       insn->opcodeType = XOP8_MAP;
    728       return consumeByte(insn, &insn->opcode);
    729     case XOP_MAP_SELECT_9:
    730       insn->opcodeType = XOP9_MAP;
    731       return consumeByte(insn, &insn->opcode);
    732     case XOP_MAP_SELECT_A:
    733       insn->opcodeType = XOPA_MAP;
    734       return consumeByte(insn, &insn->opcode);
    735     }
    736   }
    737 
    738   if (consumeByte(insn, &current))
    739     return -1;
    740 
    741   if (current == 0x0f) {
    742     dbgprintf(insn, "Found a two-byte escape prefix (0x%hhx)", current);
    743 
    744     if (consumeByte(insn, &current))
    745       return -1;
    746 
    747     if (current == 0x38) {
    748       dbgprintf(insn, "Found a three-byte escape prefix (0x%hhx)", current);
    749 
    750       if (consumeByte(insn, &current))
    751         return -1;
    752 
    753       insn->opcodeType = THREEBYTE_38;
    754     } else if (current == 0x3a) {
    755       dbgprintf(insn, "Found a three-byte escape prefix (0x%hhx)", current);
    756 
    757       if (consumeByte(insn, &current))
    758         return -1;
    759 
    760       insn->opcodeType = THREEBYTE_3A;
    761     } else {
    762       dbgprintf(insn, "Didn't find a three-byte escape prefix");
    763 
    764       insn->opcodeType = TWOBYTE;
    765     }
    766   }
    767 
    768   /*
    769    * At this point we have consumed the full opcode.
    770    * Anything we consume from here on must be unconsumed.
    771    */
    772 
    773   insn->opcode = current;
    774 
    775   return 0;
    776 }
    777 
    778 static int readModRM(struct InternalInstruction* insn);
    779 
    780 /*
    781  * getIDWithAttrMask - Determines the ID of an instruction, consuming
    782  *   the ModR/M byte as appropriate for extended and escape opcodes,
    783  *   and using a supplied attribute mask.
    784  *
    785  * @param instructionID - A pointer whose target is filled in with the ID of the
    786  *                        instruction.
    787  * @param insn          - The instruction whose ID is to be determined.
    788  * @param attrMask      - The attribute mask to search.
    789  * @return              - 0 if the ModR/M could be read when needed or was not
    790  *                        needed; nonzero otherwise.
    791  */
    792 static int getIDWithAttrMask(uint16_t* instructionID,
    793                              struct InternalInstruction* insn,
    794                              uint16_t attrMask) {
    795   bool hasModRMExtension;
    796 
    797   InstructionContext instructionClass = contextForAttrs(attrMask);
    798 
    799   hasModRMExtension = modRMRequired(insn->opcodeType,
    800                                     instructionClass,
    801                                     insn->opcode);
    802 
    803   if (hasModRMExtension) {
    804     if (readModRM(insn))
    805       return -1;
    806 
    807     *instructionID = decode(insn->opcodeType,
    808                             instructionClass,
    809                             insn->opcode,
    810                             insn->modRM);
    811   } else {
    812     *instructionID = decode(insn->opcodeType,
    813                             instructionClass,
    814                             insn->opcode,
    815                             0);
    816   }
    817 
    818   return 0;
    819 }
    820 
    821 /*
    822  * is16BitEquivalent - Determines whether two instruction names refer to
    823  * equivalent instructions but one is 16-bit whereas the other is not.
    824  *
    825  * @param orig  - The instruction that is not 16-bit
    826  * @param equiv - The instruction that is 16-bit
    827  */
    828 static bool is16BitEquivalent(const char* orig, const char* equiv) {
    829   off_t i;
    830 
    831   for (i = 0;; i++) {
    832     if (orig[i] == '\0' && equiv[i] == '\0')
    833       return true;
    834     if (orig[i] == '\0' || equiv[i] == '\0')
    835       return false;
    836     if (orig[i] != equiv[i]) {
    837       if ((orig[i] == 'Q' || orig[i] == 'L') && equiv[i] == 'W')
    838         continue;
    839       if ((orig[i] == '6' || orig[i] == '3') && equiv[i] == '1')
    840         continue;
    841       if ((orig[i] == '4' || orig[i] == '2') && equiv[i] == '6')
    842         continue;
    843       return false;
    844     }
    845   }
    846 }
    847 
    848 /*
    849  * is64Bit - Determines whether this instruction is a 64-bit instruction.
    850  *
    851  * @param name - The instruction that is not 16-bit
    852  */
    853 static bool is64Bit(const char* name) {
    854   off_t i;
    855 
    856   for (i = 0;; ++i) {
    857     if (name[i] == '\0')
    858       return false;
    859     if (name[i] == '6' && name[i+1] == '4')
    860       return true;
    861   }
    862 }
    863 
    864 /*
    865  * getID - Determines the ID of an instruction, consuming the ModR/M byte as
    866  *   appropriate for extended and escape opcodes.  Determines the attributes and
    867  *   context for the instruction before doing so.
    868  *
    869  * @param insn  - The instruction whose ID is to be determined.
    870  * @return      - 0 if the ModR/M could be read when needed or was not needed;
    871  *                nonzero otherwise.
    872  */
    873 static int getID(struct InternalInstruction* insn, const void *miiArg) {
    874   uint16_t attrMask;
    875   uint16_t instructionID;
    876 
    877   dbgprintf(insn, "getID()");
    878 
    879   attrMask = ATTR_NONE;
    880 
    881   if (insn->mode == MODE_64BIT)
    882     attrMask |= ATTR_64BIT;
    883 
    884   if (insn->vectorExtensionType != TYPE_NO_VEX_XOP) {
    885     attrMask |= (insn->vectorExtensionType == TYPE_EVEX) ? ATTR_EVEX : ATTR_VEX;
    886 
    887     if (insn->vectorExtensionType == TYPE_EVEX) {
    888       switch (ppFromEVEX3of4(insn->vectorExtensionPrefix[2])) {
    889       case VEX_PREFIX_66:
    890         attrMask |= ATTR_OPSIZE;
    891         break;
    892       case VEX_PREFIX_F3:
    893         attrMask |= ATTR_XS;
    894         break;
    895       case VEX_PREFIX_F2:
    896         attrMask |= ATTR_XD;
    897         break;
    898       }
    899 
    900       if (zFromEVEX4of4(insn->vectorExtensionPrefix[3]))
    901         attrMask |= ATTR_EVEXKZ;
    902       if (bFromEVEX4of4(insn->vectorExtensionPrefix[3]))
    903         attrMask |= ATTR_EVEXB;
    904       if (aaaFromEVEX4of4(insn->vectorExtensionPrefix[3]))
    905         attrMask |= ATTR_EVEXK;
    906       if (lFromEVEX4of4(insn->vectorExtensionPrefix[3]))
    907         attrMask |= ATTR_EVEXL;
    908       if (l2FromEVEX4of4(insn->vectorExtensionPrefix[3]))
    909         attrMask |= ATTR_EVEXL2;
    910     } else if (insn->vectorExtensionType == TYPE_VEX_3B) {
    911       switch (ppFromVEX3of3(insn->vectorExtensionPrefix[2])) {
    912       case VEX_PREFIX_66:
    913         attrMask |= ATTR_OPSIZE;
    914         break;
    915       case VEX_PREFIX_F3:
    916         attrMask |= ATTR_XS;
    917         break;
    918       case VEX_PREFIX_F2:
    919         attrMask |= ATTR_XD;
    920         break;
    921       }
    922 
    923       if (lFromVEX3of3(insn->vectorExtensionPrefix[2]))
    924         attrMask |= ATTR_VEXL;
    925     } else if (insn->vectorExtensionType == TYPE_VEX_2B) {
    926       switch (ppFromVEX2of2(insn->vectorExtensionPrefix[1])) {
    927       case VEX_PREFIX_66:
    928         attrMask |= ATTR_OPSIZE;
    929         break;
    930       case VEX_PREFIX_F3:
    931         attrMask |= ATTR_XS;
    932         break;
    933       case VEX_PREFIX_F2:
    934         attrMask |= ATTR_XD;
    935         break;
    936       }
    937 
    938       if (lFromVEX2of2(insn->vectorExtensionPrefix[1]))
    939         attrMask |= ATTR_VEXL;
    940     } else if (insn->vectorExtensionType == TYPE_XOP) {
    941       switch (ppFromXOP3of3(insn->vectorExtensionPrefix[2])) {
    942       case VEX_PREFIX_66:
    943         attrMask |= ATTR_OPSIZE;
    944         break;
    945       case VEX_PREFIX_F3:
    946         attrMask |= ATTR_XS;
    947         break;
    948       case VEX_PREFIX_F2:
    949         attrMask |= ATTR_XD;
    950         break;
    951       }
    952 
    953       if (lFromXOP3of3(insn->vectorExtensionPrefix[2]))
    954         attrMask |= ATTR_VEXL;
    955     } else {
    956       return -1;
    957     }
    958   } else {
    959     if (insn->mode != MODE_16BIT && isPrefixAtLocation(insn, 0x66, insn->necessaryPrefixLocation))
    960       attrMask |= ATTR_OPSIZE;
    961     else if (isPrefixAtLocation(insn, 0x67, insn->necessaryPrefixLocation))
    962       attrMask |= ATTR_ADSIZE;
    963     else if (isPrefixAtLocation(insn, 0xf3, insn->necessaryPrefixLocation))
    964       attrMask |= ATTR_XS;
    965     else if (isPrefixAtLocation(insn, 0xf2, insn->necessaryPrefixLocation))
    966       attrMask |= ATTR_XD;
    967   }
    968 
    969   if (insn->rexPrefix & 0x08)
    970     attrMask |= ATTR_REXW;
    971 
    972   /*
    973    * JCXZ/JECXZ need special handling for 16-bit mode because the meaning
    974    * of the AdSize prefix is inverted w.r.t. 32-bit mode.
    975    */
    976   if (insn->mode == MODE_16BIT && insn->opcodeType == ONEBYTE &&
    977       insn->opcode == 0xE3)
    978     attrMask ^= ATTR_ADSIZE;
    979 
    980   /*
    981    * In 64-bit mode all f64 superscripted opcodes ignore opcode size prefix
    982    * CALL/JMP/JCC instructions need to ignore 0x66 and consume 4 bytes
    983    */
    984 
    985   if (insn->mode == MODE_64BIT &&
    986       isPrefixAtLocation(insn, 0x66, insn->necessaryPrefixLocation)) {
    987     switch (insn->opcode) {
    988     case 0xE8:
    989     case 0xE9:
    990       // Take care of psubsb and other mmx instructions.
    991       if (insn->opcodeType == ONEBYTE) {
    992         attrMask ^= ATTR_OPSIZE;
    993         insn->immediateSize = 4;
    994         insn->displacementSize = 4;
    995       }
    996       break;
    997     case 0x82:
    998     case 0x83:
    999     case 0x84:
   1000     case 0x85:
   1001     case 0x86:
   1002     case 0x87:
   1003     case 0x88:
   1004     case 0x89:
   1005     case 0x8A:
   1006     case 0x8B:
   1007     case 0x8C:
   1008     case 0x8D:
   1009     case 0x8E:
   1010     case 0x8F:
   1011       // Take care of lea and three byte ops.
   1012       if (insn->opcodeType == TWOBYTE) {
   1013         attrMask ^= ATTR_OPSIZE;
   1014         insn->immediateSize = 4;
   1015         insn->displacementSize = 4;
   1016       }
   1017       break;
   1018     }
   1019   }
   1020 
   1021   if (getIDWithAttrMask(&instructionID, insn, attrMask))
   1022     return -1;
   1023 
   1024   /* The following clauses compensate for limitations of the tables. */
   1025 
   1026   if (insn->mode != MODE_64BIT &&
   1027       insn->vectorExtensionType != TYPE_NO_VEX_XOP) {
   1028     /*
   1029      * The tables can't distinquish between cases where the W-bit is used to
   1030      * select register size and cases where its a required part of the opcode.
   1031      */
   1032     if ((insn->vectorExtensionType == TYPE_EVEX &&
   1033          wFromEVEX3of4(insn->vectorExtensionPrefix[2])) ||
   1034         (insn->vectorExtensionType == TYPE_VEX_3B &&
   1035          wFromVEX3of3(insn->vectorExtensionPrefix[2])) ||
   1036         (insn->vectorExtensionType == TYPE_XOP &&
   1037          wFromXOP3of3(insn->vectorExtensionPrefix[2]))) {
   1038 
   1039       uint16_t instructionIDWithREXW;
   1040       if (getIDWithAttrMask(&instructionIDWithREXW,
   1041                             insn, attrMask | ATTR_REXW)) {
   1042         insn->instructionID = instructionID;
   1043         insn->spec = specifierForUID(instructionID);
   1044         return 0;
   1045       }
   1046 
   1047       const char *SpecName = GetInstrName(instructionIDWithREXW, miiArg);
   1048       // If not a 64-bit instruction. Switch the opcode.
   1049       if (!is64Bit(SpecName)) {
   1050         insn->instructionID = instructionIDWithREXW;
   1051         insn->spec = specifierForUID(instructionIDWithREXW);
   1052         return 0;
   1053       }
   1054     }
   1055   }
   1056 
   1057   /*
   1058    * Absolute moves need special handling.
   1059    * -For 16-bit mode because the meaning of the AdSize and OpSize prefixes are
   1060    *  inverted w.r.t.
   1061    * -For 32-bit mode we need to ensure the ADSIZE prefix is observed in
   1062    *  any position.
   1063    */
   1064   if (insn->opcodeType == ONEBYTE && ((insn->opcode & 0xFC) == 0xA0)) {
   1065     /* Make sure we observed the prefixes in any position. */
   1066     if (insn->prefixPresent[0x67])
   1067       attrMask |= ATTR_ADSIZE;
   1068     if (insn->prefixPresent[0x66])
   1069       attrMask |= ATTR_OPSIZE;
   1070 
   1071     /* In 16-bit, invert the attributes. */
   1072     if (insn->mode == MODE_16BIT)
   1073       attrMask ^= ATTR_ADSIZE | ATTR_OPSIZE;
   1074 
   1075     if (getIDWithAttrMask(&instructionID, insn, attrMask))
   1076       return -1;
   1077 
   1078     insn->instructionID = instructionID;
   1079     insn->spec = specifierForUID(instructionID);
   1080     return 0;
   1081   }
   1082 
   1083   if ((insn->mode == MODE_16BIT || insn->prefixPresent[0x66]) &&
   1084       !(attrMask & ATTR_OPSIZE)) {
   1085     /*
   1086      * The instruction tables make no distinction between instructions that
   1087      * allow OpSize anywhere (i.e., 16-bit operations) and that need it in a
   1088      * particular spot (i.e., many MMX operations).  In general we're
   1089      * conservative, but in the specific case where OpSize is present but not
   1090      * in the right place we check if there's a 16-bit operation.
   1091      */
   1092 
   1093     const struct InstructionSpecifier *spec;
   1094     uint16_t instructionIDWithOpsize;
   1095     const char *specName, *specWithOpSizeName;
   1096 
   1097     spec = specifierForUID(instructionID);
   1098 
   1099     if (getIDWithAttrMask(&instructionIDWithOpsize,
   1100                           insn,
   1101                           attrMask | ATTR_OPSIZE)) {
   1102       /*
   1103        * ModRM required with OpSize but not present; give up and return version
   1104        * without OpSize set
   1105        */
   1106 
   1107       insn->instructionID = instructionID;
   1108       insn->spec = spec;
   1109       return 0;
   1110     }
   1111 
   1112     specName = GetInstrName(instructionID, miiArg);
   1113     specWithOpSizeName = GetInstrName(instructionIDWithOpsize, miiArg);
   1114 
   1115     if (is16BitEquivalent(specName, specWithOpSizeName) &&
   1116         (insn->mode == MODE_16BIT) ^ insn->prefixPresent[0x66]) {
   1117       insn->instructionID = instructionIDWithOpsize;
   1118       insn->spec = specifierForUID(instructionIDWithOpsize);
   1119     } else {
   1120       insn->instructionID = instructionID;
   1121       insn->spec = spec;
   1122     }
   1123     return 0;
   1124   }
   1125 
   1126   if (insn->opcodeType == ONEBYTE && insn->opcode == 0x90 &&
   1127       insn->rexPrefix & 0x01) {
   1128     /*
   1129      * NOOP shouldn't decode as NOOP if REX.b is set. Instead
   1130      * it should decode as XCHG %r8, %eax.
   1131      */
   1132 
   1133     const struct InstructionSpecifier *spec;
   1134     uint16_t instructionIDWithNewOpcode;
   1135     const struct InstructionSpecifier *specWithNewOpcode;
   1136 
   1137     spec = specifierForUID(instructionID);
   1138 
   1139     /* Borrow opcode from one of the other XCHGar opcodes */
   1140     insn->opcode = 0x91;
   1141 
   1142     if (getIDWithAttrMask(&instructionIDWithNewOpcode,
   1143                           insn,
   1144                           attrMask)) {
   1145       insn->opcode = 0x90;
   1146 
   1147       insn->instructionID = instructionID;
   1148       insn->spec = spec;
   1149       return 0;
   1150     }
   1151 
   1152     specWithNewOpcode = specifierForUID(instructionIDWithNewOpcode);
   1153 
   1154     /* Change back */
   1155     insn->opcode = 0x90;
   1156 
   1157     insn->instructionID = instructionIDWithNewOpcode;
   1158     insn->spec = specWithNewOpcode;
   1159 
   1160     return 0;
   1161   }
   1162 
   1163   insn->instructionID = instructionID;
   1164   insn->spec = specifierForUID(insn->instructionID);
   1165 
   1166   return 0;
   1167 }
   1168 
   1169 /*
   1170  * readSIB - Consumes the SIB byte to determine addressing information for an
   1171  *   instruction.
   1172  *
   1173  * @param insn  - The instruction whose SIB byte is to be read.
   1174  * @return      - 0 if the SIB byte was successfully read; nonzero otherwise.
   1175  */
   1176 static int readSIB(struct InternalInstruction* insn) {
   1177   SIBIndex sibIndexBase = SIB_INDEX_NONE;
   1178   SIBBase sibBaseBase = SIB_BASE_NONE;
   1179   uint8_t index, base;
   1180 
   1181   dbgprintf(insn, "readSIB()");
   1182 
   1183   if (insn->consumedSIB)
   1184     return 0;
   1185 
   1186   insn->consumedSIB = true;
   1187 
   1188   switch (insn->addressSize) {
   1189   case 2:
   1190     dbgprintf(insn, "SIB-based addressing doesn't work in 16-bit mode");
   1191     return -1;
   1192   case 4:
   1193     sibIndexBase = SIB_INDEX_EAX;
   1194     sibBaseBase = SIB_BASE_EAX;
   1195     break;
   1196   case 8:
   1197     sibIndexBase = SIB_INDEX_RAX;
   1198     sibBaseBase = SIB_BASE_RAX;
   1199     break;
   1200   }
   1201 
   1202   if (consumeByte(insn, &insn->sib))
   1203     return -1;
   1204 
   1205   index = indexFromSIB(insn->sib) | (xFromREX(insn->rexPrefix) << 3);
   1206 
   1207   // FIXME: The fifth bit (bit index 4) is only to be used for instructions
   1208   // that understand VSIB indexing. ORing the bit in here is mildy dangerous
   1209   // because performing math on an 'enum SIBIndex' can produce garbage.
   1210   // Excluding the "none" value, it should cover 6 spaces of register names:
   1211   //   - 16 possibilities for 16-bit GPR starting at SIB_INDEX_BX_SI
   1212   //   - 16 possibilities for 32-bit GPR starting at SIB_INDEX_EAX
   1213   //   - 16 possibilities for 64-bit GPR starting at SIB_INDEX_RAX
   1214   //   - 32 possibilities for each of XMM, YMM, ZMM registers
   1215   // When sibIndexBase gets assigned SIB_INDEX_RAX as it does in 64-bit mode,
   1216   // summing in a fully decoded index between 0 and 31 can end up with a value
   1217   // that looks like something in the low half of the XMM range.
   1218   // translateRMMemory() tries to reverse the damage, with only partial success,
   1219   // as evidenced by known bugs in "test/MC/Disassembler/X86/x86-64.txt"
   1220   if (insn->vectorExtensionType == TYPE_EVEX)
   1221     index |= v2FromEVEX4of4(insn->vectorExtensionPrefix[3]) << 4;
   1222 
   1223   if (index == 0x4) {
   1224     insn->sibIndex = SIB_INDEX_NONE;
   1225   } else {
   1226     insn->sibIndex = (SIBIndex)(sibIndexBase + index);
   1227   }
   1228 
   1229   insn->sibScale = 1 << scaleFromSIB(insn->sib);
   1230 
   1231   base = baseFromSIB(insn->sib) | (bFromREX(insn->rexPrefix) << 3);
   1232 
   1233   switch (base) {
   1234   case 0x5:
   1235   case 0xd:
   1236     switch (modFromModRM(insn->modRM)) {
   1237     case 0x0:
   1238       insn->eaDisplacement = EA_DISP_32;
   1239       insn->sibBase = SIB_BASE_NONE;
   1240       break;
   1241     case 0x1:
   1242       insn->eaDisplacement = EA_DISP_8;
   1243       insn->sibBase = (SIBBase)(sibBaseBase + base);
   1244       break;
   1245     case 0x2:
   1246       insn->eaDisplacement = EA_DISP_32;
   1247       insn->sibBase = (SIBBase)(sibBaseBase + base);
   1248       break;
   1249     case 0x3:
   1250       debug("Cannot have Mod = 0b11 and a SIB byte");
   1251       return -1;
   1252     }
   1253     break;
   1254   default:
   1255     insn->sibBase = (SIBBase)(sibBaseBase + base);
   1256     break;
   1257   }
   1258 
   1259   return 0;
   1260 }
   1261 
   1262 /*
   1263  * readDisplacement - Consumes the displacement of an instruction.
   1264  *
   1265  * @param insn  - The instruction whose displacement is to be read.
   1266  * @return      - 0 if the displacement byte was successfully read; nonzero
   1267  *                otherwise.
   1268  */
   1269 static int readDisplacement(struct InternalInstruction* insn) {
   1270   int8_t d8;
   1271   int16_t d16;
   1272   int32_t d32;
   1273 
   1274   dbgprintf(insn, "readDisplacement()");
   1275 
   1276   if (insn->consumedDisplacement)
   1277     return 0;
   1278 
   1279   insn->consumedDisplacement = true;
   1280   insn->displacementOffset = insn->readerCursor - insn->startLocation;
   1281 
   1282   switch (insn->eaDisplacement) {
   1283   case EA_DISP_NONE:
   1284     insn->consumedDisplacement = false;
   1285     break;
   1286   case EA_DISP_8:
   1287     if (consumeInt8(insn, &d8))
   1288       return -1;
   1289     insn->displacement = d8;
   1290     break;
   1291   case EA_DISP_16:
   1292     if (consumeInt16(insn, &d16))
   1293       return -1;
   1294     insn->displacement = d16;
   1295     break;
   1296   case EA_DISP_32:
   1297     if (consumeInt32(insn, &d32))
   1298       return -1;
   1299     insn->displacement = d32;
   1300     break;
   1301   }
   1302 
   1303   insn->consumedDisplacement = true;
   1304   return 0;
   1305 }
   1306 
   1307 /*
   1308  * readModRM - Consumes all addressing information (ModR/M byte, SIB byte, and
   1309  *   displacement) for an instruction and interprets it.
   1310  *
   1311  * @param insn  - The instruction whose addressing information is to be read.
   1312  * @return      - 0 if the information was successfully read; nonzero otherwise.
   1313  */
   1314 static int readModRM(struct InternalInstruction* insn) {
   1315   uint8_t mod, rm, reg;
   1316 
   1317   dbgprintf(insn, "readModRM()");
   1318 
   1319   if (insn->consumedModRM)
   1320     return 0;
   1321 
   1322   if (consumeByte(insn, &insn->modRM))
   1323     return -1;
   1324   insn->consumedModRM = true;
   1325 
   1326   mod     = modFromModRM(insn->modRM);
   1327   rm      = rmFromModRM(insn->modRM);
   1328   reg     = regFromModRM(insn->modRM);
   1329 
   1330   /*
   1331    * This goes by insn->registerSize to pick the correct register, which messes
   1332    * up if we're using (say) XMM or 8-bit register operands.  That gets fixed in
   1333    * fixupReg().
   1334    */
   1335   switch (insn->registerSize) {
   1336   case 2:
   1337     insn->regBase = MODRM_REG_AX;
   1338     insn->eaRegBase = EA_REG_AX;
   1339     break;
   1340   case 4:
   1341     insn->regBase = MODRM_REG_EAX;
   1342     insn->eaRegBase = EA_REG_EAX;
   1343     break;
   1344   case 8:
   1345     insn->regBase = MODRM_REG_RAX;
   1346     insn->eaRegBase = EA_REG_RAX;
   1347     break;
   1348   }
   1349 
   1350   reg |= rFromREX(insn->rexPrefix) << 3;
   1351   rm  |= bFromREX(insn->rexPrefix) << 3;
   1352   if (insn->vectorExtensionType == TYPE_EVEX) {
   1353     reg |= r2FromEVEX2of4(insn->vectorExtensionPrefix[1]) << 4;
   1354     rm  |=  xFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 4;
   1355   }
   1356 
   1357   insn->reg = (Reg)(insn->regBase + reg);
   1358 
   1359   switch (insn->addressSize) {
   1360   case 2:
   1361     insn->eaBaseBase = EA_BASE_BX_SI;
   1362 
   1363     switch (mod) {
   1364     case 0x0:
   1365       if (rm == 0x6) {
   1366         insn->eaBase = EA_BASE_NONE;
   1367         insn->eaDisplacement = EA_DISP_16;
   1368         if (readDisplacement(insn))
   1369           return -1;
   1370       } else {
   1371         insn->eaBase = (EABase)(insn->eaBaseBase + rm);
   1372         insn->eaDisplacement = EA_DISP_NONE;
   1373       }
   1374       break;
   1375     case 0x1:
   1376       insn->eaBase = (EABase)(insn->eaBaseBase + rm);
   1377       insn->eaDisplacement = EA_DISP_8;
   1378       insn->displacementSize = 1;
   1379       if (readDisplacement(insn))
   1380         return -1;
   1381       break;
   1382     case 0x2:
   1383       insn->eaBase = (EABase)(insn->eaBaseBase + rm);
   1384       insn->eaDisplacement = EA_DISP_16;
   1385       if (readDisplacement(insn))
   1386         return -1;
   1387       break;
   1388     case 0x3:
   1389       insn->eaBase = (EABase)(insn->eaRegBase + rm);
   1390       if (readDisplacement(insn))
   1391         return -1;
   1392       break;
   1393     }
   1394     break;
   1395   case 4:
   1396   case 8:
   1397     insn->eaBaseBase = (insn->addressSize == 4 ? EA_BASE_EAX : EA_BASE_RAX);
   1398 
   1399     switch (mod) {
   1400     case 0x0:
   1401       insn->eaDisplacement = EA_DISP_NONE; /* readSIB may override this */
   1402       // In determining whether RIP-relative mode is used (rm=5),
   1403       // or whether a SIB byte is present (rm=4),
   1404       // the extension bits (REX.b and EVEX.x) are ignored.
   1405       switch (rm & 7) {
   1406       case 0x4: // SIB byte is present
   1407         insn->eaBase = (insn->addressSize == 4 ?
   1408                         EA_BASE_sib : EA_BASE_sib64);
   1409         if (readSIB(insn) || readDisplacement(insn))
   1410           return -1;
   1411         break;
   1412       case 0x5: // RIP-relative
   1413         insn->eaBase = EA_BASE_NONE;
   1414         insn->eaDisplacement = EA_DISP_32;
   1415         if (readDisplacement(insn))
   1416           return -1;
   1417         break;
   1418       default:
   1419         insn->eaBase = (EABase)(insn->eaBaseBase + rm);
   1420         break;
   1421       }
   1422       break;
   1423     case 0x1:
   1424       insn->displacementSize = 1;
   1425       /* FALLTHROUGH */
   1426     case 0x2:
   1427       insn->eaDisplacement = (mod == 0x1 ? EA_DISP_8 : EA_DISP_32);
   1428       switch (rm & 7) {
   1429       case 0x4: // SIB byte is present
   1430         insn->eaBase = EA_BASE_sib;
   1431         if (readSIB(insn) || readDisplacement(insn))
   1432           return -1;
   1433         break;
   1434       default:
   1435         insn->eaBase = (EABase)(insn->eaBaseBase + rm);
   1436         if (readDisplacement(insn))
   1437           return -1;
   1438         break;
   1439       }
   1440       break;
   1441     case 0x3:
   1442       insn->eaDisplacement = EA_DISP_NONE;
   1443       insn->eaBase = (EABase)(insn->eaRegBase + rm);
   1444       break;
   1445     }
   1446     break;
   1447   } /* switch (insn->addressSize) */
   1448 
   1449   return 0;
   1450 }
   1451 
   1452 #define GENERIC_FIXUP_FUNC(name, base, prefix)            \
   1453   static uint16_t name(struct InternalInstruction *insn,  \
   1454                        OperandType type,                  \
   1455                        uint8_t index,                     \
   1456                        uint8_t *valid) {                  \
   1457     *valid = 1;                                           \
   1458     switch (type) {                                       \
   1459     default:                                              \
   1460       debug("Unhandled register type");                   \
   1461       *valid = 0;                                         \
   1462       return 0;                                           \
   1463     case TYPE_Rv:                                         \
   1464       return base + index;                                \
   1465     case TYPE_R8:                                         \
   1466       if (insn->rexPrefix &&                              \
   1467          index >= 4 && index <= 7) {                      \
   1468         return prefix##_SPL + (index - 4);                \
   1469       } else {                                            \
   1470         return prefix##_AL + index;                       \
   1471       }                                                   \
   1472     case TYPE_R16:                                        \
   1473       return prefix##_AX + index;                         \
   1474     case TYPE_R32:                                        \
   1475       return prefix##_EAX + index;                        \
   1476     case TYPE_R64:                                        \
   1477       return prefix##_RAX + index;                        \
   1478     case TYPE_XMM512:                                     \
   1479       return prefix##_ZMM0 + index;                       \
   1480     case TYPE_XMM256:                                     \
   1481       return prefix##_YMM0 + index;                       \
   1482     case TYPE_XMM128:                                     \
   1483     case TYPE_XMM64:                                      \
   1484     case TYPE_XMM32:                                      \
   1485       return prefix##_XMM0 + index;                       \
   1486     case TYPE_VK1:                                        \
   1487     case TYPE_VK2:                                        \
   1488     case TYPE_VK4:                                        \
   1489     case TYPE_VK8:                                        \
   1490     case TYPE_VK16:                                       \
   1491     case TYPE_VK32:                                       \
   1492     case TYPE_VK64:                                       \
   1493       if (index > 7)                                      \
   1494         *valid = 0;                                       \
   1495       return prefix##_K0 + index;                         \
   1496     case TYPE_MM64:                                       \
   1497       return prefix##_MM0 + (index & 0x7);                \
   1498     case TYPE_SEGMENTREG:                                 \
   1499       if (index > 5)                                      \
   1500         *valid = 0;                                       \
   1501       return prefix##_ES + index;                         \
   1502     case TYPE_DEBUGREG:                                   \
   1503       return prefix##_DR0 + index;                        \
   1504     case TYPE_CONTROLREG:                                 \
   1505       return prefix##_CR0 + index;                        \
   1506     case TYPE_BNDR:                                       \
   1507       if (index > 3)                                      \
   1508         *valid = 0;                                       \
   1509       return prefix##_BND0 + index;                       \
   1510     }                                                     \
   1511   }
   1512 
   1513 /*
   1514  * fixup*Value - Consults an operand type to determine the meaning of the
   1515  *   reg or R/M field.  If the operand is an XMM operand, for example, an
   1516  *   operand would be XMM0 instead of AX, which readModRM() would otherwise
   1517  *   misinterpret it as.
   1518  *
   1519  * @param insn  - The instruction containing the operand.
   1520  * @param type  - The operand type.
   1521  * @param index - The existing value of the field as reported by readModRM().
   1522  * @param valid - The address of a uint8_t.  The target is set to 1 if the
   1523  *                field is valid for the register class; 0 if not.
   1524  * @return      - The proper value.
   1525  */
   1526 GENERIC_FIXUP_FUNC(fixupRegValue, insn->regBase,    MODRM_REG)
   1527 GENERIC_FIXUP_FUNC(fixupRMValue,  insn->eaRegBase,  EA_REG)
   1528 
   1529 /*
   1530  * fixupReg - Consults an operand specifier to determine which of the
   1531  *   fixup*Value functions to use in correcting readModRM()'ss interpretation.
   1532  *
   1533  * @param insn  - See fixup*Value().
   1534  * @param op    - The operand specifier.
   1535  * @return      - 0 if fixup was successful; -1 if the register returned was
   1536  *                invalid for its class.
   1537  */
   1538 static int fixupReg(struct InternalInstruction *insn,
   1539                     const struct OperandSpecifier *op) {
   1540   uint8_t valid;
   1541 
   1542   dbgprintf(insn, "fixupReg()");
   1543 
   1544   switch ((OperandEncoding)op->encoding) {
   1545   default:
   1546     debug("Expected a REG or R/M encoding in fixupReg");
   1547     return -1;
   1548   case ENCODING_VVVV:
   1549     insn->vvvv = (Reg)fixupRegValue(insn,
   1550                                     (OperandType)op->type,
   1551                                     insn->vvvv,
   1552                                     &valid);
   1553     if (!valid)
   1554       return -1;
   1555     break;
   1556   case ENCODING_REG:
   1557     insn->reg = (Reg)fixupRegValue(insn,
   1558                                    (OperandType)op->type,
   1559                                    insn->reg - insn->regBase,
   1560                                    &valid);
   1561     if (!valid)
   1562       return -1;
   1563     break;
   1564   CASE_ENCODING_RM:
   1565     if (insn->eaBase >= insn->eaRegBase) {
   1566       insn->eaBase = (EABase)fixupRMValue(insn,
   1567                                           (OperandType)op->type,
   1568                                           insn->eaBase - insn->eaRegBase,
   1569                                           &valid);
   1570       if (!valid)
   1571         return -1;
   1572     }
   1573     break;
   1574   }
   1575 
   1576   return 0;
   1577 }
   1578 
   1579 /*
   1580  * readOpcodeRegister - Reads an operand from the opcode field of an
   1581  *   instruction and interprets it appropriately given the operand width.
   1582  *   Handles AddRegFrm instructions.
   1583  *
   1584  * @param insn  - the instruction whose opcode field is to be read.
   1585  * @param size  - The width (in bytes) of the register being specified.
   1586  *                1 means AL and friends, 2 means AX, 4 means EAX, and 8 means
   1587  *                RAX.
   1588  * @return      - 0 on success; nonzero otherwise.
   1589  */
   1590 static int readOpcodeRegister(struct InternalInstruction* insn, uint8_t size) {
   1591   dbgprintf(insn, "readOpcodeRegister()");
   1592 
   1593   if (size == 0)
   1594     size = insn->registerSize;
   1595 
   1596   switch (size) {
   1597   case 1:
   1598     insn->opcodeRegister = (Reg)(MODRM_REG_AL + ((bFromREX(insn->rexPrefix) << 3)
   1599                                                   | (insn->opcode & 7)));
   1600     if (insn->rexPrefix &&
   1601         insn->opcodeRegister >= MODRM_REG_AL + 0x4 &&
   1602         insn->opcodeRegister < MODRM_REG_AL + 0x8) {
   1603       insn->opcodeRegister = (Reg)(MODRM_REG_SPL
   1604                                    + (insn->opcodeRegister - MODRM_REG_AL - 4));
   1605     }
   1606 
   1607     break;
   1608   case 2:
   1609     insn->opcodeRegister = (Reg)(MODRM_REG_AX
   1610                                  + ((bFromREX(insn->rexPrefix) << 3)
   1611                                     | (insn->opcode & 7)));
   1612     break;
   1613   case 4:
   1614     insn->opcodeRegister = (Reg)(MODRM_REG_EAX
   1615                                  + ((bFromREX(insn->rexPrefix) << 3)
   1616                                     | (insn->opcode & 7)));
   1617     break;
   1618   case 8:
   1619     insn->opcodeRegister = (Reg)(MODRM_REG_RAX
   1620                                  + ((bFromREX(insn->rexPrefix) << 3)
   1621                                     | (insn->opcode & 7)));
   1622     break;
   1623   }
   1624 
   1625   return 0;
   1626 }
   1627 
   1628 /*
   1629  * readImmediate - Consumes an immediate operand from an instruction, given the
   1630  *   desired operand size.
   1631  *
   1632  * @param insn  - The instruction whose operand is to be read.
   1633  * @param size  - The width (in bytes) of the operand.
   1634  * @return      - 0 if the immediate was successfully consumed; nonzero
   1635  *                otherwise.
   1636  */
   1637 static int readImmediate(struct InternalInstruction* insn, uint8_t size) {
   1638   uint8_t imm8;
   1639   uint16_t imm16;
   1640   uint32_t imm32;
   1641   uint64_t imm64;
   1642 
   1643   dbgprintf(insn, "readImmediate()");
   1644 
   1645   if (insn->numImmediatesConsumed == 2) {
   1646     debug("Already consumed two immediates");
   1647     return -1;
   1648   }
   1649 
   1650   if (size == 0)
   1651     size = insn->immediateSize;
   1652   else
   1653     insn->immediateSize = size;
   1654   insn->immediateOffset = insn->readerCursor - insn->startLocation;
   1655 
   1656   switch (size) {
   1657   case 1:
   1658     if (consumeByte(insn, &imm8))
   1659       return -1;
   1660     insn->immediates[insn->numImmediatesConsumed] = imm8;
   1661     break;
   1662   case 2:
   1663     if (consumeUInt16(insn, &imm16))
   1664       return -1;
   1665     insn->immediates[insn->numImmediatesConsumed] = imm16;
   1666     break;
   1667   case 4:
   1668     if (consumeUInt32(insn, &imm32))
   1669       return -1;
   1670     insn->immediates[insn->numImmediatesConsumed] = imm32;
   1671     break;
   1672   case 8:
   1673     if (consumeUInt64(insn, &imm64))
   1674       return -1;
   1675     insn->immediates[insn->numImmediatesConsumed] = imm64;
   1676     break;
   1677   }
   1678 
   1679   insn->numImmediatesConsumed++;
   1680 
   1681   return 0;
   1682 }
   1683 
   1684 /*
   1685  * readVVVV - Consumes vvvv from an instruction if it has a VEX prefix.
   1686  *
   1687  * @param insn  - The instruction whose operand is to be read.
   1688  * @return      - 0 if the vvvv was successfully consumed; nonzero
   1689  *                otherwise.
   1690  */
   1691 static int readVVVV(struct InternalInstruction* insn) {
   1692   dbgprintf(insn, "readVVVV()");
   1693 
   1694   int vvvv;
   1695   if (insn->vectorExtensionType == TYPE_EVEX)
   1696     vvvv = (v2FromEVEX4of4(insn->vectorExtensionPrefix[3]) << 4 |
   1697             vvvvFromEVEX3of4(insn->vectorExtensionPrefix[2]));
   1698   else if (insn->vectorExtensionType == TYPE_VEX_3B)
   1699     vvvv = vvvvFromVEX3of3(insn->vectorExtensionPrefix[2]);
   1700   else if (insn->vectorExtensionType == TYPE_VEX_2B)
   1701     vvvv = vvvvFromVEX2of2(insn->vectorExtensionPrefix[1]);
   1702   else if (insn->vectorExtensionType == TYPE_XOP)
   1703     vvvv = vvvvFromXOP3of3(insn->vectorExtensionPrefix[2]);
   1704   else
   1705     return -1;
   1706 
   1707   if (insn->mode != MODE_64BIT)
   1708     vvvv &= 0x7;
   1709 
   1710   insn->vvvv = static_cast<Reg>(vvvv);
   1711   return 0;
   1712 }
   1713 
   1714 /*
   1715  * readMaskRegister - Reads an mask register from the opcode field of an
   1716  *   instruction.
   1717  *
   1718  * @param insn    - The instruction whose opcode field is to be read.
   1719  * @return        - 0 on success; nonzero otherwise.
   1720  */
   1721 static int readMaskRegister(struct InternalInstruction* insn) {
   1722   dbgprintf(insn, "readMaskRegister()");
   1723 
   1724   if (insn->vectorExtensionType != TYPE_EVEX)
   1725     return -1;
   1726 
   1727   insn->writemask =
   1728       static_cast<Reg>(aaaFromEVEX4of4(insn->vectorExtensionPrefix[3]));
   1729   return 0;
   1730 }
   1731 
   1732 /*
   1733  * readOperands - Consults the specifier for an instruction and consumes all
   1734  *   operands for that instruction, interpreting them as it goes.
   1735  *
   1736  * @param insn  - The instruction whose operands are to be read and interpreted.
   1737  * @return      - 0 if all operands could be read; nonzero otherwise.
   1738  */
   1739 static int readOperands(struct InternalInstruction* insn) {
   1740   int hasVVVV, needVVVV;
   1741   int sawRegImm = 0;
   1742 
   1743   dbgprintf(insn, "readOperands()");
   1744 
   1745   /* If non-zero vvvv specified, need to make sure one of the operands
   1746      uses it. */
   1747   hasVVVV = !readVVVV(insn);
   1748   needVVVV = hasVVVV && (insn->vvvv != 0);
   1749 
   1750   for (const auto &Op : x86OperandSets[insn->spec->operands]) {
   1751     switch (Op.encoding) {
   1752     case ENCODING_NONE:
   1753     case ENCODING_SI:
   1754     case ENCODING_DI:
   1755       break;
   1756     case ENCODING_REG:
   1757     CASE_ENCODING_RM:
   1758       if (readModRM(insn))
   1759         return -1;
   1760       if (fixupReg(insn, &Op))
   1761         return -1;
   1762       // Apply the AVX512 compressed displacement scaling factor.
   1763       if (Op.encoding != ENCODING_REG && insn->eaDisplacement == EA_DISP_8)
   1764         insn->displacement *= 1 << (Op.encoding - ENCODING_RM);
   1765       break;
   1766     case ENCODING_IB:
   1767       if (sawRegImm) {
   1768         /* Saw a register immediate so don't read again and instead split the
   1769            previous immediate.  FIXME: This is a hack. */
   1770         insn->immediates[insn->numImmediatesConsumed] =
   1771           insn->immediates[insn->numImmediatesConsumed - 1] & 0xf;
   1772         ++insn->numImmediatesConsumed;
   1773         break;
   1774       }
   1775       if (readImmediate(insn, 1))
   1776         return -1;
   1777       if (Op.type == TYPE_XMM128 ||
   1778           Op.type == TYPE_XMM256)
   1779         sawRegImm = 1;
   1780       break;
   1781     case ENCODING_IW:
   1782       if (readImmediate(insn, 2))
   1783         return -1;
   1784       break;
   1785     case ENCODING_ID:
   1786       if (readImmediate(insn, 4))
   1787         return -1;
   1788       break;
   1789     case ENCODING_IO:
   1790       if (readImmediate(insn, 8))
   1791         return -1;
   1792       break;
   1793     case ENCODING_Iv:
   1794       if (readImmediate(insn, insn->immediateSize))
   1795         return -1;
   1796       break;
   1797     case ENCODING_Ia:
   1798       if (readImmediate(insn, insn->addressSize))
   1799         return -1;
   1800       break;
   1801     case ENCODING_RB:
   1802       if (readOpcodeRegister(insn, 1))
   1803         return -1;
   1804       break;
   1805     case ENCODING_RW:
   1806       if (readOpcodeRegister(insn, 2))
   1807         return -1;
   1808       break;
   1809     case ENCODING_RD:
   1810       if (readOpcodeRegister(insn, 4))
   1811         return -1;
   1812       break;
   1813     case ENCODING_RO:
   1814       if (readOpcodeRegister(insn, 8))
   1815         return -1;
   1816       break;
   1817     case ENCODING_Rv:
   1818       if (readOpcodeRegister(insn, 0))
   1819         return -1;
   1820       break;
   1821     case ENCODING_FP:
   1822       break;
   1823     case ENCODING_VVVV:
   1824       needVVVV = 0; /* Mark that we have found a VVVV operand. */
   1825       if (!hasVVVV)
   1826         return -1;
   1827       if (fixupReg(insn, &Op))
   1828         return -1;
   1829       break;
   1830     case ENCODING_WRITEMASK:
   1831       if (readMaskRegister(insn))
   1832         return -1;
   1833       break;
   1834     case ENCODING_DUP:
   1835       break;
   1836     default:
   1837       dbgprintf(insn, "Encountered an operand with an unknown encoding.");
   1838       return -1;
   1839     }
   1840   }
   1841 
   1842   /* If we didn't find ENCODING_VVVV operand, but non-zero vvvv present, fail */
   1843   if (needVVVV) return -1;
   1844 
   1845   return 0;
   1846 }
   1847 
   1848 /*
   1849  * decodeInstruction - Reads and interprets a full instruction provided by the
   1850  *   user.
   1851  *
   1852  * @param insn      - A pointer to the instruction to be populated.  Must be
   1853  *                    pre-allocated.
   1854  * @param reader    - The function to be used to read the instruction's bytes.
   1855  * @param readerArg - A generic argument to be passed to the reader to store
   1856  *                    any internal state.
   1857  * @param logger    - If non-NULL, the function to be used to write log messages
   1858  *                    and warnings.
   1859  * @param loggerArg - A generic argument to be passed to the logger to store
   1860  *                    any internal state.
   1861  * @param startLoc  - The address (in the reader's address space) of the first
   1862  *                    byte in the instruction.
   1863  * @param mode      - The mode (real mode, IA-32e, or IA-32e in 64-bit mode) to
   1864  *                    decode the instruction in.
   1865  * @return          - 0 if the instruction's memory could be read; nonzero if
   1866  *                    not.
   1867  */
   1868 int llvm::X86Disassembler::decodeInstruction(
   1869     struct InternalInstruction *insn, byteReader_t reader,
   1870     const void *readerArg, dlog_t logger, void *loggerArg, const void *miiArg,
   1871     uint64_t startLoc, DisassemblerMode mode) {
   1872   memset(insn, 0, sizeof(struct InternalInstruction));
   1873 
   1874   insn->reader = reader;
   1875   insn->readerArg = readerArg;
   1876   insn->dlog = logger;
   1877   insn->dlogArg = loggerArg;
   1878   insn->startLocation = startLoc;
   1879   insn->readerCursor = startLoc;
   1880   insn->mode = mode;
   1881   insn->numImmediatesConsumed = 0;
   1882 
   1883   if (readPrefixes(insn)       ||
   1884       readOpcode(insn)         ||
   1885       getID(insn, miiArg)      ||
   1886       insn->instructionID == 0 ||
   1887       readOperands(insn))
   1888     return -1;
   1889 
   1890   insn->operands = x86OperandSets[insn->spec->operands];
   1891 
   1892   insn->length = insn->readerCursor - insn->startLocation;
   1893 
   1894   dbgprintf(insn, "Read from 0x%llx to 0x%llx: length %zu",
   1895             startLoc, insn->readerCursor, insn->length);
   1896 
   1897   if (insn->length > 15)
   1898     dbgprintf(insn, "Instruction exceeds 15-byte limit");
   1899 
   1900   return 0;
   1901 }
   1902